1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
38 #include <linux/hugetlb.h>
39 #include <linux/pagemap.h>
40 #include <linux/smp.h>
41 #include <linux/page-flags.h>
42 #include <linux/backing-dev.h>
43 #include <linux/bit_spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/limits.h>
46 #include <linux/export.h>
47 #include <linux/mutex.h>
48 #include <linux/rbtree.h>
49 #include <linux/slab.h>
50 #include <linux/swap.h>
51 #include <linux/swapops.h>
52 #include <linux/spinlock.h>
53 #include <linux/eventfd.h>
54 #include <linux/poll.h>
55 #include <linux/sort.h>
57 #include <linux/seq_file.h>
58 #include <linux/vmpressure.h>
59 #include <linux/mm_inline.h>
60 #include <linux/swap_cgroup.h>
61 #include <linux/cpu.h>
62 #include <linux/oom.h>
63 #include <linux/lockdep.h>
64 #include <linux/file.h>
65 #include <linux/tracehook.h>
71 #include <asm/uaccess.h>
73 #include <trace/events/vmscan.h>
75 struct cgroup_subsys memory_cgrp_subsys __read_mostly
;
76 EXPORT_SYMBOL(memory_cgrp_subsys
);
78 struct mem_cgroup
*root_mem_cgroup __read_mostly
;
80 #define MEM_CGROUP_RECLAIM_RETRIES 5
82 /* Socket memory accounting disabled? */
83 static bool cgroup_memory_nosocket
;
85 /* Kernel memory accounting disabled? */
86 static bool cgroup_memory_nokmem
;
88 /* Whether the swap controller is active */
89 #ifdef CONFIG_MEMCG_SWAP
90 int do_swap_account __read_mostly
;
92 #define do_swap_account 0
95 /* Whether legacy memory+swap accounting is active */
96 static bool do_memsw_account(void)
98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys
) && do_swap_account
;
101 static const char * const mem_cgroup_stat_names
[] = {
111 static const char * const mem_cgroup_events_names
[] = {
118 static const char * const mem_cgroup_lru_names
[] = {
126 #define THRESHOLDS_EVENTS_TARGET 128
127 #define SOFTLIMIT_EVENTS_TARGET 1024
128 #define NUMAINFO_EVENTS_TARGET 1024
131 * Cgroups above their limits are maintained in a RB-Tree, independent of
132 * their hierarchy representation
135 struct mem_cgroup_tree_per_node
{
136 struct rb_root rb_root
;
140 struct mem_cgroup_tree
{
141 struct mem_cgroup_tree_per_node
*rb_tree_per_node
[MAX_NUMNODES
];
144 static struct mem_cgroup_tree soft_limit_tree __read_mostly
;
147 struct mem_cgroup_eventfd_list
{
148 struct list_head list
;
149 struct eventfd_ctx
*eventfd
;
153 * cgroup_event represents events which userspace want to receive.
155 struct mem_cgroup_event
{
157 * memcg which the event belongs to.
159 struct mem_cgroup
*memcg
;
161 * eventfd to signal userspace about the event.
163 struct eventfd_ctx
*eventfd
;
165 * Each of these stored in a list by the cgroup.
167 struct list_head list
;
169 * register_event() callback will be used to add new userspace
170 * waiter for changes related to this event. Use eventfd_signal()
171 * on eventfd to send notification to userspace.
173 int (*register_event
)(struct mem_cgroup
*memcg
,
174 struct eventfd_ctx
*eventfd
, const char *args
);
176 * unregister_event() callback will be called when userspace closes
177 * the eventfd or on cgroup removing. This callback must be set,
178 * if you want provide notification functionality.
180 void (*unregister_event
)(struct mem_cgroup
*memcg
,
181 struct eventfd_ctx
*eventfd
);
183 * All fields below needed to unregister event when
184 * userspace closes eventfd.
187 wait_queue_head_t
*wqh
;
189 struct work_struct remove
;
192 static void mem_cgroup_threshold(struct mem_cgroup
*memcg
);
193 static void mem_cgroup_oom_notify(struct mem_cgroup
*memcg
);
195 /* Stuffs for move charges at task migration. */
197 * Types of charges to be moved.
199 #define MOVE_ANON 0x1U
200 #define MOVE_FILE 0x2U
201 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
203 /* "mc" and its members are protected by cgroup_mutex */
204 static struct move_charge_struct
{
205 spinlock_t lock
; /* for from, to */
206 struct mm_struct
*mm
;
207 struct mem_cgroup
*from
;
208 struct mem_cgroup
*to
;
210 unsigned long precharge
;
211 unsigned long moved_charge
;
212 unsigned long moved_swap
;
213 struct task_struct
*moving_task
; /* a task moving charges */
214 wait_queue_head_t waitq
; /* a waitq for other context */
216 .lock
= __SPIN_LOCK_UNLOCKED(mc
.lock
),
217 .waitq
= __WAIT_QUEUE_HEAD_INITIALIZER(mc
.waitq
),
221 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
222 * limit reclaim to prevent infinite loops, if they ever occur.
224 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
225 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
228 MEM_CGROUP_CHARGE_TYPE_CACHE
= 0,
229 MEM_CGROUP_CHARGE_TYPE_ANON
,
230 MEM_CGROUP_CHARGE_TYPE_SWAPOUT
, /* for accounting swapcache */
231 MEM_CGROUP_CHARGE_TYPE_DROP
, /* a page was unused swap cache */
235 /* for encoding cft->private value on file */
244 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
245 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
246 #define MEMFILE_ATTR(val) ((val) & 0xffff)
247 /* Used for OOM nofiier */
248 #define OOM_CONTROL (0)
250 /* Some nice accessors for the vmpressure. */
251 struct vmpressure
*memcg_to_vmpressure(struct mem_cgroup
*memcg
)
254 memcg
= root_mem_cgroup
;
255 return &memcg
->vmpressure
;
258 struct cgroup_subsys_state
*vmpressure_to_css(struct vmpressure
*vmpr
)
260 return &container_of(vmpr
, struct mem_cgroup
, vmpressure
)->css
;
263 static inline bool mem_cgroup_is_root(struct mem_cgroup
*memcg
)
265 return (memcg
== root_mem_cgroup
);
270 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
271 * The main reason for not using cgroup id for this:
272 * this works better in sparse environments, where we have a lot of memcgs,
273 * but only a few kmem-limited. Or also, if we have, for instance, 200
274 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
275 * 200 entry array for that.
277 * The current size of the caches array is stored in memcg_nr_cache_ids. It
278 * will double each time we have to increase it.
280 static DEFINE_IDA(memcg_cache_ida
);
281 int memcg_nr_cache_ids
;
283 /* Protects memcg_nr_cache_ids */
284 static DECLARE_RWSEM(memcg_cache_ids_sem
);
286 void memcg_get_cache_ids(void)
288 down_read(&memcg_cache_ids_sem
);
291 void memcg_put_cache_ids(void)
293 up_read(&memcg_cache_ids_sem
);
297 * MIN_SIZE is different than 1, because we would like to avoid going through
298 * the alloc/free process all the time. In a small machine, 4 kmem-limited
299 * cgroups is a reasonable guess. In the future, it could be a parameter or
300 * tunable, but that is strictly not necessary.
302 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
303 * this constant directly from cgroup, but it is understandable that this is
304 * better kept as an internal representation in cgroup.c. In any case, the
305 * cgrp_id space is not getting any smaller, and we don't have to necessarily
306 * increase ours as well if it increases.
308 #define MEMCG_CACHES_MIN_SIZE 4
309 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
312 * A lot of the calls to the cache allocation functions are expected to be
313 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
314 * conditional to this static branch, we'll have to allow modules that does
315 * kmem_cache_alloc and the such to see this symbol as well
317 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key
);
318 EXPORT_SYMBOL(memcg_kmem_enabled_key
);
320 #endif /* !CONFIG_SLOB */
323 * mem_cgroup_css_from_page - css of the memcg associated with a page
324 * @page: page of interest
326 * If memcg is bound to the default hierarchy, css of the memcg associated
327 * with @page is returned. The returned css remains associated with @page
328 * until it is released.
330 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
333 struct cgroup_subsys_state
*mem_cgroup_css_from_page(struct page
*page
)
335 struct mem_cgroup
*memcg
;
337 memcg
= page
->mem_cgroup
;
339 if (!memcg
|| !cgroup_subsys_on_dfl(memory_cgrp_subsys
))
340 memcg
= root_mem_cgroup
;
346 * page_cgroup_ino - return inode number of the memcg a page is charged to
349 * Look up the closest online ancestor of the memory cgroup @page is charged to
350 * and return its inode number or 0 if @page is not charged to any cgroup. It
351 * is safe to call this function without holding a reference to @page.
353 * Note, this function is inherently racy, because there is nothing to prevent
354 * the cgroup inode from getting torn down and potentially reallocated a moment
355 * after page_cgroup_ino() returns, so it only should be used by callers that
356 * do not care (such as procfs interfaces).
358 ino_t
page_cgroup_ino(struct page
*page
)
360 struct mem_cgroup
*memcg
;
361 unsigned long ino
= 0;
364 memcg
= READ_ONCE(page
->mem_cgroup
);
365 while (memcg
&& !(memcg
->css
.flags
& CSS_ONLINE
))
366 memcg
= parent_mem_cgroup(memcg
);
368 ino
= cgroup_ino(memcg
->css
.cgroup
);
373 static struct mem_cgroup_per_node
*
374 mem_cgroup_page_nodeinfo(struct mem_cgroup
*memcg
, struct page
*page
)
376 int nid
= page_to_nid(page
);
378 return memcg
->nodeinfo
[nid
];
381 static struct mem_cgroup_tree_per_node
*
382 soft_limit_tree_node(int nid
)
384 return soft_limit_tree
.rb_tree_per_node
[nid
];
387 static struct mem_cgroup_tree_per_node
*
388 soft_limit_tree_from_page(struct page
*page
)
390 int nid
= page_to_nid(page
);
392 return soft_limit_tree
.rb_tree_per_node
[nid
];
395 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node
*mz
,
396 struct mem_cgroup_tree_per_node
*mctz
,
397 unsigned long new_usage_in_excess
)
399 struct rb_node
**p
= &mctz
->rb_root
.rb_node
;
400 struct rb_node
*parent
= NULL
;
401 struct mem_cgroup_per_node
*mz_node
;
406 mz
->usage_in_excess
= new_usage_in_excess
;
407 if (!mz
->usage_in_excess
)
411 mz_node
= rb_entry(parent
, struct mem_cgroup_per_node
,
413 if (mz
->usage_in_excess
< mz_node
->usage_in_excess
)
416 * We can't avoid mem cgroups that are over their soft
417 * limit by the same amount
419 else if (mz
->usage_in_excess
>= mz_node
->usage_in_excess
)
422 rb_link_node(&mz
->tree_node
, parent
, p
);
423 rb_insert_color(&mz
->tree_node
, &mctz
->rb_root
);
427 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node
*mz
,
428 struct mem_cgroup_tree_per_node
*mctz
)
432 rb_erase(&mz
->tree_node
, &mctz
->rb_root
);
436 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node
*mz
,
437 struct mem_cgroup_tree_per_node
*mctz
)
441 spin_lock_irqsave(&mctz
->lock
, flags
);
442 __mem_cgroup_remove_exceeded(mz
, mctz
);
443 spin_unlock_irqrestore(&mctz
->lock
, flags
);
446 static unsigned long soft_limit_excess(struct mem_cgroup
*memcg
)
448 unsigned long nr_pages
= page_counter_read(&memcg
->memory
);
449 unsigned long soft_limit
= READ_ONCE(memcg
->soft_limit
);
450 unsigned long excess
= 0;
452 if (nr_pages
> soft_limit
)
453 excess
= nr_pages
- soft_limit
;
458 static void mem_cgroup_update_tree(struct mem_cgroup
*memcg
, struct page
*page
)
460 unsigned long excess
;
461 struct mem_cgroup_per_node
*mz
;
462 struct mem_cgroup_tree_per_node
*mctz
;
464 mctz
= soft_limit_tree_from_page(page
);
468 * Necessary to update all ancestors when hierarchy is used.
469 * because their event counter is not touched.
471 for (; memcg
; memcg
= parent_mem_cgroup(memcg
)) {
472 mz
= mem_cgroup_page_nodeinfo(memcg
, page
);
473 excess
= soft_limit_excess(memcg
);
475 * We have to update the tree if mz is on RB-tree or
476 * mem is over its softlimit.
478 if (excess
|| mz
->on_tree
) {
481 spin_lock_irqsave(&mctz
->lock
, flags
);
482 /* if on-tree, remove it */
484 __mem_cgroup_remove_exceeded(mz
, mctz
);
486 * Insert again. mz->usage_in_excess will be updated.
487 * If excess is 0, no tree ops.
489 __mem_cgroup_insert_exceeded(mz
, mctz
, excess
);
490 spin_unlock_irqrestore(&mctz
->lock
, flags
);
495 static void mem_cgroup_remove_from_trees(struct mem_cgroup
*memcg
)
497 struct mem_cgroup_tree_per_node
*mctz
;
498 struct mem_cgroup_per_node
*mz
;
502 mz
= mem_cgroup_nodeinfo(memcg
, nid
);
503 mctz
= soft_limit_tree_node(nid
);
505 mem_cgroup_remove_exceeded(mz
, mctz
);
509 static struct mem_cgroup_per_node
*
510 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node
*mctz
)
512 struct rb_node
*rightmost
= NULL
;
513 struct mem_cgroup_per_node
*mz
;
517 rightmost
= rb_last(&mctz
->rb_root
);
519 goto done
; /* Nothing to reclaim from */
521 mz
= rb_entry(rightmost
, struct mem_cgroup_per_node
, tree_node
);
523 * Remove the node now but someone else can add it back,
524 * we will to add it back at the end of reclaim to its correct
525 * position in the tree.
527 __mem_cgroup_remove_exceeded(mz
, mctz
);
528 if (!soft_limit_excess(mz
->memcg
) ||
529 !css_tryget_online(&mz
->memcg
->css
))
535 static struct mem_cgroup_per_node
*
536 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node
*mctz
)
538 struct mem_cgroup_per_node
*mz
;
540 spin_lock_irq(&mctz
->lock
);
541 mz
= __mem_cgroup_largest_soft_limit_node(mctz
);
542 spin_unlock_irq(&mctz
->lock
);
547 * Return page count for single (non recursive) @memcg.
549 * Implementation Note: reading percpu statistics for memcg.
551 * Both of vmstat[] and percpu_counter has threshold and do periodic
552 * synchronization to implement "quick" read. There are trade-off between
553 * reading cost and precision of value. Then, we may have a chance to implement
554 * a periodic synchronization of counter in memcg's counter.
556 * But this _read() function is used for user interface now. The user accounts
557 * memory usage by memory cgroup and he _always_ requires exact value because
558 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
559 * have to visit all online cpus and make sum. So, for now, unnecessary
560 * synchronization is not implemented. (just implemented for cpu hotplug)
562 * If there are kernel internal actions which can make use of some not-exact
563 * value, and reading all cpu value can be performance bottleneck in some
564 * common workload, threshold and synchronization as vmstat[] should be
568 mem_cgroup_read_stat(struct mem_cgroup
*memcg
, enum mem_cgroup_stat_index idx
)
573 /* Per-cpu values can be negative, use a signed accumulator */
574 for_each_possible_cpu(cpu
)
575 val
+= per_cpu(memcg
->stat
->count
[idx
], cpu
);
577 * Summing races with updates, so val may be negative. Avoid exposing
578 * transient negative values.
585 static unsigned long mem_cgroup_read_events(struct mem_cgroup
*memcg
,
586 enum mem_cgroup_events_index idx
)
588 unsigned long val
= 0;
591 for_each_possible_cpu(cpu
)
592 val
+= per_cpu(memcg
->stat
->events
[idx
], cpu
);
596 static void mem_cgroup_charge_statistics(struct mem_cgroup
*memcg
,
598 bool compound
, int nr_pages
)
601 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
602 * counted as CACHE even if it's on ANON LRU.
605 __this_cpu_add(memcg
->stat
->count
[MEM_CGROUP_STAT_RSS
],
608 __this_cpu_add(memcg
->stat
->count
[MEM_CGROUP_STAT_CACHE
],
612 VM_BUG_ON_PAGE(!PageTransHuge(page
), page
);
613 __this_cpu_add(memcg
->stat
->count
[MEM_CGROUP_STAT_RSS_HUGE
],
617 /* pagein of a big page is an event. So, ignore page size */
619 __this_cpu_inc(memcg
->stat
->events
[MEM_CGROUP_EVENTS_PGPGIN
]);
621 __this_cpu_inc(memcg
->stat
->events
[MEM_CGROUP_EVENTS_PGPGOUT
]);
622 nr_pages
= -nr_pages
; /* for event */
625 __this_cpu_add(memcg
->stat
->nr_page_events
, nr_pages
);
628 unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup
*memcg
,
629 int nid
, unsigned int lru_mask
)
631 struct lruvec
*lruvec
= mem_cgroup_lruvec(NODE_DATA(nid
), memcg
);
632 unsigned long nr
= 0;
635 VM_BUG_ON((unsigned)nid
>= nr_node_ids
);
638 if (!(BIT(lru
) & lru_mask
))
640 nr
+= mem_cgroup_get_lru_size(lruvec
, lru
);
645 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup
*memcg
,
646 unsigned int lru_mask
)
648 unsigned long nr
= 0;
651 for_each_node_state(nid
, N_MEMORY
)
652 nr
+= mem_cgroup_node_nr_lru_pages(memcg
, nid
, lru_mask
);
656 static bool mem_cgroup_event_ratelimit(struct mem_cgroup
*memcg
,
657 enum mem_cgroup_events_target target
)
659 unsigned long val
, next
;
661 val
= __this_cpu_read(memcg
->stat
->nr_page_events
);
662 next
= __this_cpu_read(memcg
->stat
->targets
[target
]);
663 /* from time_after() in jiffies.h */
664 if ((long)next
- (long)val
< 0) {
666 case MEM_CGROUP_TARGET_THRESH
:
667 next
= val
+ THRESHOLDS_EVENTS_TARGET
;
669 case MEM_CGROUP_TARGET_SOFTLIMIT
:
670 next
= val
+ SOFTLIMIT_EVENTS_TARGET
;
672 case MEM_CGROUP_TARGET_NUMAINFO
:
673 next
= val
+ NUMAINFO_EVENTS_TARGET
;
678 __this_cpu_write(memcg
->stat
->targets
[target
], next
);
685 * Check events in order.
688 static void memcg_check_events(struct mem_cgroup
*memcg
, struct page
*page
)
690 /* threshold event is triggered in finer grain than soft limit */
691 if (unlikely(mem_cgroup_event_ratelimit(memcg
,
692 MEM_CGROUP_TARGET_THRESH
))) {
694 bool do_numainfo __maybe_unused
;
696 do_softlimit
= mem_cgroup_event_ratelimit(memcg
,
697 MEM_CGROUP_TARGET_SOFTLIMIT
);
699 do_numainfo
= mem_cgroup_event_ratelimit(memcg
,
700 MEM_CGROUP_TARGET_NUMAINFO
);
702 mem_cgroup_threshold(memcg
);
703 if (unlikely(do_softlimit
))
704 mem_cgroup_update_tree(memcg
, page
);
706 if (unlikely(do_numainfo
))
707 atomic_inc(&memcg
->numainfo_events
);
712 struct mem_cgroup
*mem_cgroup_from_task(struct task_struct
*p
)
715 * mm_update_next_owner() may clear mm->owner to NULL
716 * if it races with swapoff, page migration, etc.
717 * So this can be called with p == NULL.
722 return mem_cgroup_from_css(task_css(p
, memory_cgrp_id
));
724 EXPORT_SYMBOL(mem_cgroup_from_task
);
726 static struct mem_cgroup
*get_mem_cgroup_from_mm(struct mm_struct
*mm
)
728 struct mem_cgroup
*memcg
= NULL
;
733 * Page cache insertions can happen withou an
734 * actual mm context, e.g. during disk probing
735 * on boot, loopback IO, acct() writes etc.
738 memcg
= root_mem_cgroup
;
740 memcg
= mem_cgroup_from_task(rcu_dereference(mm
->owner
));
741 if (unlikely(!memcg
))
742 memcg
= root_mem_cgroup
;
744 } while (!css_tryget_online(&memcg
->css
));
750 * mem_cgroup_iter - iterate over memory cgroup hierarchy
751 * @root: hierarchy root
752 * @prev: previously returned memcg, NULL on first invocation
753 * @reclaim: cookie for shared reclaim walks, NULL for full walks
755 * Returns references to children of the hierarchy below @root, or
756 * @root itself, or %NULL after a full round-trip.
758 * Caller must pass the return value in @prev on subsequent
759 * invocations for reference counting, or use mem_cgroup_iter_break()
760 * to cancel a hierarchy walk before the round-trip is complete.
762 * Reclaimers can specify a zone and a priority level in @reclaim to
763 * divide up the memcgs in the hierarchy among all concurrent
764 * reclaimers operating on the same zone and priority.
766 struct mem_cgroup
*mem_cgroup_iter(struct mem_cgroup
*root
,
767 struct mem_cgroup
*prev
,
768 struct mem_cgroup_reclaim_cookie
*reclaim
)
770 struct mem_cgroup_reclaim_iter
*uninitialized_var(iter
);
771 struct cgroup_subsys_state
*css
= NULL
;
772 struct mem_cgroup
*memcg
= NULL
;
773 struct mem_cgroup
*pos
= NULL
;
775 if (mem_cgroup_disabled())
779 root
= root_mem_cgroup
;
781 if (prev
&& !reclaim
)
784 if (!root
->use_hierarchy
&& root
!= root_mem_cgroup
) {
793 struct mem_cgroup_per_node
*mz
;
795 mz
= mem_cgroup_nodeinfo(root
, reclaim
->pgdat
->node_id
);
796 iter
= &mz
->iter
[reclaim
->priority
];
798 if (prev
&& reclaim
->generation
!= iter
->generation
)
802 pos
= READ_ONCE(iter
->position
);
803 if (!pos
|| css_tryget(&pos
->css
))
806 * css reference reached zero, so iter->position will
807 * be cleared by ->css_released. However, we should not
808 * rely on this happening soon, because ->css_released
809 * is called from a work queue, and by busy-waiting we
810 * might block it. So we clear iter->position right
813 (void)cmpxchg(&iter
->position
, pos
, NULL
);
821 css
= css_next_descendant_pre(css
, &root
->css
);
824 * Reclaimers share the hierarchy walk, and a
825 * new one might jump in right at the end of
826 * the hierarchy - make sure they see at least
827 * one group and restart from the beginning.
835 * Verify the css and acquire a reference. The root
836 * is provided by the caller, so we know it's alive
837 * and kicking, and don't take an extra reference.
839 memcg
= mem_cgroup_from_css(css
);
841 if (css
== &root
->css
)
852 * The position could have already been updated by a competing
853 * thread, so check that the value hasn't changed since we read
854 * it to avoid reclaiming from the same cgroup twice.
856 (void)cmpxchg(&iter
->position
, pos
, memcg
);
864 reclaim
->generation
= iter
->generation
;
870 if (prev
&& prev
!= root
)
877 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
878 * @root: hierarchy root
879 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
881 void mem_cgroup_iter_break(struct mem_cgroup
*root
,
882 struct mem_cgroup
*prev
)
885 root
= root_mem_cgroup
;
886 if (prev
&& prev
!= root
)
890 static void __invalidate_reclaim_iterators(struct mem_cgroup
*from
,
891 struct mem_cgroup
*dead_memcg
)
893 struct mem_cgroup_reclaim_iter
*iter
;
894 struct mem_cgroup_per_node
*mz
;
899 mz
= mem_cgroup_nodeinfo(from
, nid
);
900 for (i
= 0; i
<= DEF_PRIORITY
; i
++) {
902 cmpxchg(&iter
->position
,
908 static void invalidate_reclaim_iterators(struct mem_cgroup
*dead_memcg
)
910 struct mem_cgroup
*memcg
= dead_memcg
;
911 struct mem_cgroup
*last
;
914 __invalidate_reclaim_iterators(memcg
, dead_memcg
);
916 } while ((memcg
= parent_mem_cgroup(memcg
)));
919 * When cgruop1 non-hierarchy mode is used,
920 * parent_mem_cgroup() does not walk all the way up to the
921 * cgroup root (root_mem_cgroup). So we have to handle
922 * dead_memcg from cgroup root separately.
924 if (last
!= root_mem_cgroup
)
925 __invalidate_reclaim_iterators(root_mem_cgroup
,
930 * Iteration constructs for visiting all cgroups (under a tree). If
931 * loops are exited prematurely (break), mem_cgroup_iter_break() must
932 * be used for reference counting.
934 #define for_each_mem_cgroup_tree(iter, root) \
935 for (iter = mem_cgroup_iter(root, NULL, NULL); \
937 iter = mem_cgroup_iter(root, iter, NULL))
939 #define for_each_mem_cgroup(iter) \
940 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
942 iter = mem_cgroup_iter(NULL, iter, NULL))
945 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
946 * @memcg: hierarchy root
947 * @fn: function to call for each task
948 * @arg: argument passed to @fn
950 * This function iterates over tasks attached to @memcg or to any of its
951 * descendants and calls @fn for each task. If @fn returns a non-zero
952 * value, the function breaks the iteration loop and returns the value.
953 * Otherwise, it will iterate over all tasks and return 0.
955 * This function must not be called for the root memory cgroup.
957 int mem_cgroup_scan_tasks(struct mem_cgroup
*memcg
,
958 int (*fn
)(struct task_struct
*, void *), void *arg
)
960 struct mem_cgroup
*iter
;
963 BUG_ON(memcg
== root_mem_cgroup
);
965 for_each_mem_cgroup_tree(iter
, memcg
) {
966 struct css_task_iter it
;
967 struct task_struct
*task
;
969 css_task_iter_start(&iter
->css
, &it
);
970 while (!ret
&& (task
= css_task_iter_next(&it
)))
972 css_task_iter_end(&it
);
974 mem_cgroup_iter_break(memcg
, iter
);
982 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
984 * @zone: zone of the page
986 * This function is only safe when following the LRU page isolation
987 * and putback protocol: the LRU lock must be held, and the page must
988 * either be PageLRU() or the caller must have isolated/allocated it.
990 struct lruvec
*mem_cgroup_page_lruvec(struct page
*page
, struct pglist_data
*pgdat
)
992 struct mem_cgroup_per_node
*mz
;
993 struct mem_cgroup
*memcg
;
994 struct lruvec
*lruvec
;
996 if (mem_cgroup_disabled()) {
997 lruvec
= &pgdat
->lruvec
;
1001 memcg
= page
->mem_cgroup
;
1003 * Swapcache readahead pages are added to the LRU - and
1004 * possibly migrated - before they are charged.
1007 memcg
= root_mem_cgroup
;
1009 mz
= mem_cgroup_page_nodeinfo(memcg
, page
);
1010 lruvec
= &mz
->lruvec
;
1013 * Since a node can be onlined after the mem_cgroup was created,
1014 * we have to be prepared to initialize lruvec->zone here;
1015 * and if offlined then reonlined, we need to reinitialize it.
1017 if (unlikely(lruvec
->pgdat
!= pgdat
))
1018 lruvec
->pgdat
= pgdat
;
1023 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1024 * @lruvec: mem_cgroup per zone lru vector
1025 * @lru: index of lru list the page is sitting on
1026 * @zid: zone id of the accounted pages
1027 * @nr_pages: positive when adding or negative when removing
1029 * This function must be called under lru_lock, just before a page is added
1030 * to or just after a page is removed from an lru list (that ordering being
1031 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1033 void mem_cgroup_update_lru_size(struct lruvec
*lruvec
, enum lru_list lru
,
1034 int zid
, int nr_pages
)
1036 struct mem_cgroup_per_node
*mz
;
1037 unsigned long *lru_size
;
1040 if (mem_cgroup_disabled())
1043 mz
= container_of(lruvec
, struct mem_cgroup_per_node
, lruvec
);
1044 lru_size
= &mz
->lru_zone_size
[zid
][lru
];
1047 *lru_size
+= nr_pages
;
1050 if (WARN_ONCE(size
< 0,
1051 "%s(%p, %d, %d): lru_size %ld\n",
1052 __func__
, lruvec
, lru
, nr_pages
, size
)) {
1058 *lru_size
+= nr_pages
;
1061 bool task_in_mem_cgroup(struct task_struct
*task
, struct mem_cgroup
*memcg
)
1063 struct mem_cgroup
*task_memcg
;
1064 struct task_struct
*p
;
1067 p
= find_lock_task_mm(task
);
1069 task_memcg
= get_mem_cgroup_from_mm(p
->mm
);
1073 * All threads may have already detached their mm's, but the oom
1074 * killer still needs to detect if they have already been oom
1075 * killed to prevent needlessly killing additional tasks.
1078 task_memcg
= mem_cgroup_from_task(task
);
1079 css_get(&task_memcg
->css
);
1082 ret
= mem_cgroup_is_descendant(task_memcg
, memcg
);
1083 css_put(&task_memcg
->css
);
1088 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1089 * @memcg: the memory cgroup
1091 * Returns the maximum amount of memory @mem can be charged with, in
1094 static unsigned long mem_cgroup_margin(struct mem_cgroup
*memcg
)
1096 unsigned long margin
= 0;
1097 unsigned long count
;
1098 unsigned long limit
;
1100 count
= page_counter_read(&memcg
->memory
);
1101 limit
= READ_ONCE(memcg
->memory
.limit
);
1103 margin
= limit
- count
;
1105 if (do_memsw_account()) {
1106 count
= page_counter_read(&memcg
->memsw
);
1107 limit
= READ_ONCE(memcg
->memsw
.limit
);
1109 margin
= min(margin
, limit
- count
);
1118 * A routine for checking "mem" is under move_account() or not.
1120 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1121 * moving cgroups. This is for waiting at high-memory pressure
1124 static bool mem_cgroup_under_move(struct mem_cgroup
*memcg
)
1126 struct mem_cgroup
*from
;
1127 struct mem_cgroup
*to
;
1130 * Unlike task_move routines, we access mc.to, mc.from not under
1131 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1133 spin_lock(&mc
.lock
);
1139 ret
= mem_cgroup_is_descendant(from
, memcg
) ||
1140 mem_cgroup_is_descendant(to
, memcg
);
1142 spin_unlock(&mc
.lock
);
1146 static bool mem_cgroup_wait_acct_move(struct mem_cgroup
*memcg
)
1148 if (mc
.moving_task
&& current
!= mc
.moving_task
) {
1149 if (mem_cgroup_under_move(memcg
)) {
1151 prepare_to_wait(&mc
.waitq
, &wait
, TASK_INTERRUPTIBLE
);
1152 /* moving charge context might have finished. */
1155 finish_wait(&mc
.waitq
, &wait
);
1162 #define K(x) ((x) << (PAGE_SHIFT-10))
1164 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1165 * @memcg: The memory cgroup that went over limit
1166 * @p: Task that is going to be killed
1168 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1171 void mem_cgroup_print_oom_info(struct mem_cgroup
*memcg
, struct task_struct
*p
)
1173 struct mem_cgroup
*iter
;
1179 pr_info("Task in ");
1180 pr_cont_cgroup_path(task_cgroup(p
, memory_cgrp_id
));
1181 pr_cont(" killed as a result of limit of ");
1183 pr_info("Memory limit reached of cgroup ");
1186 pr_cont_cgroup_path(memcg
->css
.cgroup
);
1191 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1192 K((u64
)page_counter_read(&memcg
->memory
)),
1193 K((u64
)memcg
->memory
.limit
), memcg
->memory
.failcnt
);
1194 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1195 K((u64
)page_counter_read(&memcg
->memsw
)),
1196 K((u64
)memcg
->memsw
.limit
), memcg
->memsw
.failcnt
);
1197 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1198 K((u64
)page_counter_read(&memcg
->kmem
)),
1199 K((u64
)memcg
->kmem
.limit
), memcg
->kmem
.failcnt
);
1201 for_each_mem_cgroup_tree(iter
, memcg
) {
1202 pr_info("Memory cgroup stats for ");
1203 pr_cont_cgroup_path(iter
->css
.cgroup
);
1206 for (i
= 0; i
< MEM_CGROUP_STAT_NSTATS
; i
++) {
1207 if (i
== MEM_CGROUP_STAT_SWAP
&& !do_swap_account
)
1209 pr_cont(" %s:%luKB", mem_cgroup_stat_names
[i
],
1210 K(mem_cgroup_read_stat(iter
, i
)));
1213 for (i
= 0; i
< NR_LRU_LISTS
; i
++)
1214 pr_cont(" %s:%luKB", mem_cgroup_lru_names
[i
],
1215 K(mem_cgroup_nr_lru_pages(iter
, BIT(i
))));
1222 * This function returns the number of memcg under hierarchy tree. Returns
1223 * 1(self count) if no children.
1225 static int mem_cgroup_count_children(struct mem_cgroup
*memcg
)
1228 struct mem_cgroup
*iter
;
1230 for_each_mem_cgroup_tree(iter
, memcg
)
1236 * Return the memory (and swap, if configured) limit for a memcg.
1238 unsigned long mem_cgroup_get_limit(struct mem_cgroup
*memcg
)
1240 unsigned long limit
;
1242 limit
= memcg
->memory
.limit
;
1243 if (mem_cgroup_swappiness(memcg
)) {
1244 unsigned long memsw_limit
;
1245 unsigned long swap_limit
;
1247 memsw_limit
= memcg
->memsw
.limit
;
1248 swap_limit
= memcg
->swap
.limit
;
1249 swap_limit
= min(swap_limit
, (unsigned long)total_swap_pages
);
1250 limit
= min(limit
+ swap_limit
, memsw_limit
);
1255 static bool mem_cgroup_out_of_memory(struct mem_cgroup
*memcg
, gfp_t gfp_mask
,
1258 struct oom_control oc
= {
1262 .gfp_mask
= gfp_mask
,
1267 mutex_lock(&oom_lock
);
1268 ret
= out_of_memory(&oc
);
1269 mutex_unlock(&oom_lock
);
1273 #if MAX_NUMNODES > 1
1276 * test_mem_cgroup_node_reclaimable
1277 * @memcg: the target memcg
1278 * @nid: the node ID to be checked.
1279 * @noswap : specify true here if the user wants flle only information.
1281 * This function returns whether the specified memcg contains any
1282 * reclaimable pages on a node. Returns true if there are any reclaimable
1283 * pages in the node.
1285 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup
*memcg
,
1286 int nid
, bool noswap
)
1288 if (mem_cgroup_node_nr_lru_pages(memcg
, nid
, LRU_ALL_FILE
))
1290 if (noswap
|| !total_swap_pages
)
1292 if (mem_cgroup_node_nr_lru_pages(memcg
, nid
, LRU_ALL_ANON
))
1299 * Always updating the nodemask is not very good - even if we have an empty
1300 * list or the wrong list here, we can start from some node and traverse all
1301 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1304 static void mem_cgroup_may_update_nodemask(struct mem_cgroup
*memcg
)
1308 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1309 * pagein/pageout changes since the last update.
1311 if (!atomic_read(&memcg
->numainfo_events
))
1313 if (atomic_inc_return(&memcg
->numainfo_updating
) > 1)
1316 /* make a nodemask where this memcg uses memory from */
1317 memcg
->scan_nodes
= node_states
[N_MEMORY
];
1319 for_each_node_mask(nid
, node_states
[N_MEMORY
]) {
1321 if (!test_mem_cgroup_node_reclaimable(memcg
, nid
, false))
1322 node_clear(nid
, memcg
->scan_nodes
);
1325 atomic_set(&memcg
->numainfo_events
, 0);
1326 atomic_set(&memcg
->numainfo_updating
, 0);
1330 * Selecting a node where we start reclaim from. Because what we need is just
1331 * reducing usage counter, start from anywhere is O,K. Considering
1332 * memory reclaim from current node, there are pros. and cons.
1334 * Freeing memory from current node means freeing memory from a node which
1335 * we'll use or we've used. So, it may make LRU bad. And if several threads
1336 * hit limits, it will see a contention on a node. But freeing from remote
1337 * node means more costs for memory reclaim because of memory latency.
1339 * Now, we use round-robin. Better algorithm is welcomed.
1341 int mem_cgroup_select_victim_node(struct mem_cgroup
*memcg
)
1345 mem_cgroup_may_update_nodemask(memcg
);
1346 node
= memcg
->last_scanned_node
;
1348 node
= next_node_in(node
, memcg
->scan_nodes
);
1350 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1351 * last time it really checked all the LRUs due to rate limiting.
1352 * Fallback to the current node in that case for simplicity.
1354 if (unlikely(node
== MAX_NUMNODES
))
1355 node
= numa_node_id();
1357 memcg
->last_scanned_node
= node
;
1361 int mem_cgroup_select_victim_node(struct mem_cgroup
*memcg
)
1367 static int mem_cgroup_soft_reclaim(struct mem_cgroup
*root_memcg
,
1370 unsigned long *total_scanned
)
1372 struct mem_cgroup
*victim
= NULL
;
1375 unsigned long excess
;
1376 unsigned long nr_scanned
;
1377 struct mem_cgroup_reclaim_cookie reclaim
= {
1382 excess
= soft_limit_excess(root_memcg
);
1385 victim
= mem_cgroup_iter(root_memcg
, victim
, &reclaim
);
1390 * If we have not been able to reclaim
1391 * anything, it might because there are
1392 * no reclaimable pages under this hierarchy
1397 * We want to do more targeted reclaim.
1398 * excess >> 2 is not to excessive so as to
1399 * reclaim too much, nor too less that we keep
1400 * coming back to reclaim from this cgroup
1402 if (total
>= (excess
>> 2) ||
1403 (loop
> MEM_CGROUP_MAX_RECLAIM_LOOPS
))
1408 total
+= mem_cgroup_shrink_node(victim
, gfp_mask
, false,
1409 pgdat
, &nr_scanned
);
1410 *total_scanned
+= nr_scanned
;
1411 if (!soft_limit_excess(root_memcg
))
1414 mem_cgroup_iter_break(root_memcg
, victim
);
1418 #ifdef CONFIG_LOCKDEP
1419 static struct lockdep_map memcg_oom_lock_dep_map
= {
1420 .name
= "memcg_oom_lock",
1424 static DEFINE_SPINLOCK(memcg_oom_lock
);
1427 * Check OOM-Killer is already running under our hierarchy.
1428 * If someone is running, return false.
1430 static bool mem_cgroup_oom_trylock(struct mem_cgroup
*memcg
)
1432 struct mem_cgroup
*iter
, *failed
= NULL
;
1434 spin_lock(&memcg_oom_lock
);
1436 for_each_mem_cgroup_tree(iter
, memcg
) {
1437 if (iter
->oom_lock
) {
1439 * this subtree of our hierarchy is already locked
1440 * so we cannot give a lock.
1443 mem_cgroup_iter_break(memcg
, iter
);
1446 iter
->oom_lock
= true;
1451 * OK, we failed to lock the whole subtree so we have
1452 * to clean up what we set up to the failing subtree
1454 for_each_mem_cgroup_tree(iter
, memcg
) {
1455 if (iter
== failed
) {
1456 mem_cgroup_iter_break(memcg
, iter
);
1459 iter
->oom_lock
= false;
1462 mutex_acquire(&memcg_oom_lock_dep_map
, 0, 1, _RET_IP_
);
1464 spin_unlock(&memcg_oom_lock
);
1469 static void mem_cgroup_oom_unlock(struct mem_cgroup
*memcg
)
1471 struct mem_cgroup
*iter
;
1473 spin_lock(&memcg_oom_lock
);
1474 mutex_release(&memcg_oom_lock_dep_map
, 1, _RET_IP_
);
1475 for_each_mem_cgroup_tree(iter
, memcg
)
1476 iter
->oom_lock
= false;
1477 spin_unlock(&memcg_oom_lock
);
1480 static void mem_cgroup_mark_under_oom(struct mem_cgroup
*memcg
)
1482 struct mem_cgroup
*iter
;
1484 spin_lock(&memcg_oom_lock
);
1485 for_each_mem_cgroup_tree(iter
, memcg
)
1487 spin_unlock(&memcg_oom_lock
);
1490 static void mem_cgroup_unmark_under_oom(struct mem_cgroup
*memcg
)
1492 struct mem_cgroup
*iter
;
1495 * When a new child is created while the hierarchy is under oom,
1496 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1498 spin_lock(&memcg_oom_lock
);
1499 for_each_mem_cgroup_tree(iter
, memcg
)
1500 if (iter
->under_oom
> 0)
1502 spin_unlock(&memcg_oom_lock
);
1505 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq
);
1507 struct oom_wait_info
{
1508 struct mem_cgroup
*memcg
;
1512 static int memcg_oom_wake_function(wait_queue_t
*wait
,
1513 unsigned mode
, int sync
, void *arg
)
1515 struct mem_cgroup
*wake_memcg
= (struct mem_cgroup
*)arg
;
1516 struct mem_cgroup
*oom_wait_memcg
;
1517 struct oom_wait_info
*oom_wait_info
;
1519 oom_wait_info
= container_of(wait
, struct oom_wait_info
, wait
);
1520 oom_wait_memcg
= oom_wait_info
->memcg
;
1522 if (!mem_cgroup_is_descendant(wake_memcg
, oom_wait_memcg
) &&
1523 !mem_cgroup_is_descendant(oom_wait_memcg
, wake_memcg
))
1525 return autoremove_wake_function(wait
, mode
, sync
, arg
);
1528 static void memcg_oom_recover(struct mem_cgroup
*memcg
)
1531 * For the following lockless ->under_oom test, the only required
1532 * guarantee is that it must see the state asserted by an OOM when
1533 * this function is called as a result of userland actions
1534 * triggered by the notification of the OOM. This is trivially
1535 * achieved by invoking mem_cgroup_mark_under_oom() before
1536 * triggering notification.
1538 if (memcg
&& memcg
->under_oom
)
1539 __wake_up(&memcg_oom_waitq
, TASK_NORMAL
, 0, memcg
);
1542 static void mem_cgroup_oom(struct mem_cgroup
*memcg
, gfp_t mask
, int order
)
1544 if (!current
->memcg_may_oom
)
1547 * We are in the middle of the charge context here, so we
1548 * don't want to block when potentially sitting on a callstack
1549 * that holds all kinds of filesystem and mm locks.
1551 * Also, the caller may handle a failed allocation gracefully
1552 * (like optional page cache readahead) and so an OOM killer
1553 * invocation might not even be necessary.
1555 * That's why we don't do anything here except remember the
1556 * OOM context and then deal with it at the end of the page
1557 * fault when the stack is unwound, the locks are released,
1558 * and when we know whether the fault was overall successful.
1560 css_get(&memcg
->css
);
1561 current
->memcg_in_oom
= memcg
;
1562 current
->memcg_oom_gfp_mask
= mask
;
1563 current
->memcg_oom_order
= order
;
1567 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1568 * @handle: actually kill/wait or just clean up the OOM state
1570 * This has to be called at the end of a page fault if the memcg OOM
1571 * handler was enabled.
1573 * Memcg supports userspace OOM handling where failed allocations must
1574 * sleep on a waitqueue until the userspace task resolves the
1575 * situation. Sleeping directly in the charge context with all kinds
1576 * of locks held is not a good idea, instead we remember an OOM state
1577 * in the task and mem_cgroup_oom_synchronize() has to be called at
1578 * the end of the page fault to complete the OOM handling.
1580 * Returns %true if an ongoing memcg OOM situation was detected and
1581 * completed, %false otherwise.
1583 bool mem_cgroup_oom_synchronize(bool handle
)
1585 struct mem_cgroup
*memcg
= current
->memcg_in_oom
;
1586 struct oom_wait_info owait
;
1589 /* OOM is global, do not handle */
1596 owait
.memcg
= memcg
;
1597 owait
.wait
.flags
= 0;
1598 owait
.wait
.func
= memcg_oom_wake_function
;
1599 owait
.wait
.private = current
;
1600 INIT_LIST_HEAD(&owait
.wait
.task_list
);
1602 prepare_to_wait(&memcg_oom_waitq
, &owait
.wait
, TASK_KILLABLE
);
1603 mem_cgroup_mark_under_oom(memcg
);
1605 locked
= mem_cgroup_oom_trylock(memcg
);
1608 mem_cgroup_oom_notify(memcg
);
1610 if (locked
&& !memcg
->oom_kill_disable
) {
1611 mem_cgroup_unmark_under_oom(memcg
);
1612 finish_wait(&memcg_oom_waitq
, &owait
.wait
);
1613 mem_cgroup_out_of_memory(memcg
, current
->memcg_oom_gfp_mask
,
1614 current
->memcg_oom_order
);
1617 mem_cgroup_unmark_under_oom(memcg
);
1618 finish_wait(&memcg_oom_waitq
, &owait
.wait
);
1622 mem_cgroup_oom_unlock(memcg
);
1624 * There is no guarantee that an OOM-lock contender
1625 * sees the wakeups triggered by the OOM kill
1626 * uncharges. Wake any sleepers explicitely.
1628 memcg_oom_recover(memcg
);
1631 current
->memcg_in_oom
= NULL
;
1632 css_put(&memcg
->css
);
1637 * lock_page_memcg - lock a page->mem_cgroup binding
1640 * This function protects unlocked LRU pages from being moved to
1641 * another cgroup and stabilizes their page->mem_cgroup binding.
1643 void lock_page_memcg(struct page
*page
)
1645 struct mem_cgroup
*memcg
;
1646 unsigned long flags
;
1649 * The RCU lock is held throughout the transaction. The fast
1650 * path can get away without acquiring the memcg->move_lock
1651 * because page moving starts with an RCU grace period.
1655 if (mem_cgroup_disabled())
1658 memcg
= page
->mem_cgroup
;
1659 if (unlikely(!memcg
))
1662 if (atomic_read(&memcg
->moving_account
) <= 0)
1665 spin_lock_irqsave(&memcg
->move_lock
, flags
);
1666 if (memcg
!= page
->mem_cgroup
) {
1667 spin_unlock_irqrestore(&memcg
->move_lock
, flags
);
1672 * When charge migration first begins, we can have locked and
1673 * unlocked page stat updates happening concurrently. Track
1674 * the task who has the lock for unlock_page_memcg().
1676 memcg
->move_lock_task
= current
;
1677 memcg
->move_lock_flags
= flags
;
1681 EXPORT_SYMBOL(lock_page_memcg
);
1684 * unlock_page_memcg - unlock a page->mem_cgroup binding
1687 void unlock_page_memcg(struct page
*page
)
1689 struct mem_cgroup
*memcg
= page
->mem_cgroup
;
1691 if (memcg
&& memcg
->move_lock_task
== current
) {
1692 unsigned long flags
= memcg
->move_lock_flags
;
1694 memcg
->move_lock_task
= NULL
;
1695 memcg
->move_lock_flags
= 0;
1697 spin_unlock_irqrestore(&memcg
->move_lock
, flags
);
1702 EXPORT_SYMBOL(unlock_page_memcg
);
1705 * size of first charge trial. "32" comes from vmscan.c's magic value.
1706 * TODO: maybe necessary to use big numbers in big irons.
1708 #define CHARGE_BATCH 32U
1709 struct memcg_stock_pcp
{
1710 struct mem_cgroup
*cached
; /* this never be root cgroup */
1711 unsigned int nr_pages
;
1712 struct work_struct work
;
1713 unsigned long flags
;
1714 #define FLUSHING_CACHED_CHARGE 0
1716 static DEFINE_PER_CPU(struct memcg_stock_pcp
, memcg_stock
);
1717 static DEFINE_MUTEX(percpu_charge_mutex
);
1720 * consume_stock: Try to consume stocked charge on this cpu.
1721 * @memcg: memcg to consume from.
1722 * @nr_pages: how many pages to charge.
1724 * The charges will only happen if @memcg matches the current cpu's memcg
1725 * stock, and at least @nr_pages are available in that stock. Failure to
1726 * service an allocation will refill the stock.
1728 * returns true if successful, false otherwise.
1730 static bool consume_stock(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
1732 struct memcg_stock_pcp
*stock
;
1733 unsigned long flags
;
1736 if (nr_pages
> CHARGE_BATCH
)
1739 local_irq_save(flags
);
1741 stock
= this_cpu_ptr(&memcg_stock
);
1742 if (memcg
== stock
->cached
&& stock
->nr_pages
>= nr_pages
) {
1743 stock
->nr_pages
-= nr_pages
;
1747 local_irq_restore(flags
);
1753 * Returns stocks cached in percpu and reset cached information.
1755 static void drain_stock(struct memcg_stock_pcp
*stock
)
1757 struct mem_cgroup
*old
= stock
->cached
;
1759 if (stock
->nr_pages
) {
1760 page_counter_uncharge(&old
->memory
, stock
->nr_pages
);
1761 if (do_memsw_account())
1762 page_counter_uncharge(&old
->memsw
, stock
->nr_pages
);
1763 css_put_many(&old
->css
, stock
->nr_pages
);
1764 stock
->nr_pages
= 0;
1766 stock
->cached
= NULL
;
1769 static void drain_local_stock(struct work_struct
*dummy
)
1771 struct memcg_stock_pcp
*stock
;
1772 unsigned long flags
;
1774 local_irq_save(flags
);
1776 stock
= this_cpu_ptr(&memcg_stock
);
1778 clear_bit(FLUSHING_CACHED_CHARGE
, &stock
->flags
);
1780 local_irq_restore(flags
);
1784 * Cache charges(val) to local per_cpu area.
1785 * This will be consumed by consume_stock() function, later.
1787 static void refill_stock(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
1789 struct memcg_stock_pcp
*stock
;
1790 unsigned long flags
;
1792 local_irq_save(flags
);
1794 stock
= this_cpu_ptr(&memcg_stock
);
1795 if (stock
->cached
!= memcg
) { /* reset if necessary */
1797 stock
->cached
= memcg
;
1799 stock
->nr_pages
+= nr_pages
;
1801 local_irq_restore(flags
);
1805 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1806 * of the hierarchy under it.
1808 static void drain_all_stock(struct mem_cgroup
*root_memcg
)
1812 /* If someone's already draining, avoid adding running more workers. */
1813 if (!mutex_trylock(&percpu_charge_mutex
))
1815 /* Notify other cpus that system-wide "drain" is running */
1818 for_each_online_cpu(cpu
) {
1819 struct memcg_stock_pcp
*stock
= &per_cpu(memcg_stock
, cpu
);
1820 struct mem_cgroup
*memcg
;
1822 memcg
= stock
->cached
;
1823 if (!memcg
|| !stock
->nr_pages
)
1825 if (!mem_cgroup_is_descendant(memcg
, root_memcg
))
1827 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE
, &stock
->flags
)) {
1829 drain_local_stock(&stock
->work
);
1831 schedule_work_on(cpu
, &stock
->work
);
1836 mutex_unlock(&percpu_charge_mutex
);
1839 static int memcg_cpu_hotplug_callback(struct notifier_block
*nb
,
1840 unsigned long action
,
1843 int cpu
= (unsigned long)hcpu
;
1844 struct memcg_stock_pcp
*stock
;
1846 if (action
== CPU_ONLINE
)
1849 if (action
!= CPU_DEAD
&& action
!= CPU_DEAD_FROZEN
)
1852 stock
= &per_cpu(memcg_stock
, cpu
);
1857 static void reclaim_high(struct mem_cgroup
*memcg
,
1858 unsigned int nr_pages
,
1862 if (page_counter_read(&memcg
->memory
) <= memcg
->high
)
1864 mem_cgroup_events(memcg
, MEMCG_HIGH
, 1);
1865 try_to_free_mem_cgroup_pages(memcg
, nr_pages
, gfp_mask
, true);
1866 } while ((memcg
= parent_mem_cgroup(memcg
)));
1869 static void high_work_func(struct work_struct
*work
)
1871 struct mem_cgroup
*memcg
;
1873 memcg
= container_of(work
, struct mem_cgroup
, high_work
);
1874 reclaim_high(memcg
, CHARGE_BATCH
, GFP_KERNEL
);
1878 * Scheduled by try_charge() to be executed from the userland return path
1879 * and reclaims memory over the high limit.
1881 void mem_cgroup_handle_over_high(void)
1883 unsigned int nr_pages
= current
->memcg_nr_pages_over_high
;
1884 struct mem_cgroup
*memcg
;
1886 if (likely(!nr_pages
))
1889 memcg
= get_mem_cgroup_from_mm(current
->mm
);
1890 reclaim_high(memcg
, nr_pages
, GFP_KERNEL
);
1891 css_put(&memcg
->css
);
1892 current
->memcg_nr_pages_over_high
= 0;
1895 static int try_charge(struct mem_cgroup
*memcg
, gfp_t gfp_mask
,
1896 unsigned int nr_pages
)
1898 unsigned int batch
= max(CHARGE_BATCH
, nr_pages
);
1899 int nr_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
1900 struct mem_cgroup
*mem_over_limit
;
1901 struct page_counter
*counter
;
1902 unsigned long nr_reclaimed
;
1903 bool may_swap
= true;
1904 bool drained
= false;
1906 if (mem_cgroup_is_root(memcg
))
1909 if (consume_stock(memcg
, nr_pages
))
1912 if (!do_memsw_account() ||
1913 page_counter_try_charge(&memcg
->memsw
, batch
, &counter
)) {
1914 if (page_counter_try_charge(&memcg
->memory
, batch
, &counter
))
1916 if (do_memsw_account())
1917 page_counter_uncharge(&memcg
->memsw
, batch
);
1918 mem_over_limit
= mem_cgroup_from_counter(counter
, memory
);
1920 mem_over_limit
= mem_cgroup_from_counter(counter
, memsw
);
1924 if (batch
> nr_pages
) {
1930 * Unlike in global OOM situations, memcg is not in a physical
1931 * memory shortage. Allow dying and OOM-killed tasks to
1932 * bypass the last charges so that they can exit quickly and
1933 * free their memory.
1935 if (unlikely(test_thread_flag(TIF_MEMDIE
) ||
1936 fatal_signal_pending(current
) ||
1937 current
->flags
& PF_EXITING
))
1941 * Prevent unbounded recursion when reclaim operations need to
1942 * allocate memory. This might exceed the limits temporarily,
1943 * but we prefer facilitating memory reclaim and getting back
1944 * under the limit over triggering OOM kills in these cases.
1946 if (unlikely(current
->flags
& PF_MEMALLOC
))
1949 if (unlikely(task_in_memcg_oom(current
)))
1952 if (!gfpflags_allow_blocking(gfp_mask
))
1955 mem_cgroup_events(mem_over_limit
, MEMCG_MAX
, 1);
1957 nr_reclaimed
= try_to_free_mem_cgroup_pages(mem_over_limit
, nr_pages
,
1958 gfp_mask
, may_swap
);
1960 if (mem_cgroup_margin(mem_over_limit
) >= nr_pages
)
1964 drain_all_stock(mem_over_limit
);
1969 if (gfp_mask
& __GFP_NORETRY
)
1972 * Even though the limit is exceeded at this point, reclaim
1973 * may have been able to free some pages. Retry the charge
1974 * before killing the task.
1976 * Only for regular pages, though: huge pages are rather
1977 * unlikely to succeed so close to the limit, and we fall back
1978 * to regular pages anyway in case of failure.
1980 if (nr_reclaimed
&& nr_pages
<= (1 << PAGE_ALLOC_COSTLY_ORDER
))
1983 * At task move, charge accounts can be doubly counted. So, it's
1984 * better to wait until the end of task_move if something is going on.
1986 if (mem_cgroup_wait_acct_move(mem_over_limit
))
1992 if (gfp_mask
& __GFP_NOFAIL
)
1995 if (fatal_signal_pending(current
))
1998 mem_cgroup_events(mem_over_limit
, MEMCG_OOM
, 1);
2000 mem_cgroup_oom(mem_over_limit
, gfp_mask
,
2001 get_order(nr_pages
* PAGE_SIZE
));
2003 if (!(gfp_mask
& __GFP_NOFAIL
))
2007 * The allocation either can't fail or will lead to more memory
2008 * being freed very soon. Allow memory usage go over the limit
2009 * temporarily by force charging it.
2011 page_counter_charge(&memcg
->memory
, nr_pages
);
2012 if (do_memsw_account())
2013 page_counter_charge(&memcg
->memsw
, nr_pages
);
2014 css_get_many(&memcg
->css
, nr_pages
);
2019 css_get_many(&memcg
->css
, batch
);
2020 if (batch
> nr_pages
)
2021 refill_stock(memcg
, batch
- nr_pages
);
2024 * If the hierarchy is above the normal consumption range, schedule
2025 * reclaim on returning to userland. We can perform reclaim here
2026 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2027 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2028 * not recorded as it most likely matches current's and won't
2029 * change in the meantime. As high limit is checked again before
2030 * reclaim, the cost of mismatch is negligible.
2033 if (page_counter_read(&memcg
->memory
) > memcg
->high
) {
2034 /* Don't bother a random interrupted task */
2035 if (in_interrupt()) {
2036 schedule_work(&memcg
->high_work
);
2039 current
->memcg_nr_pages_over_high
+= batch
;
2040 set_notify_resume(current
);
2043 } while ((memcg
= parent_mem_cgroup(memcg
)));
2048 static void cancel_charge(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
2050 if (mem_cgroup_is_root(memcg
))
2053 page_counter_uncharge(&memcg
->memory
, nr_pages
);
2054 if (do_memsw_account())
2055 page_counter_uncharge(&memcg
->memsw
, nr_pages
);
2057 css_put_many(&memcg
->css
, nr_pages
);
2060 static void lock_page_lru(struct page
*page
, int *isolated
)
2062 struct zone
*zone
= page_zone(page
);
2064 spin_lock_irq(zone_lru_lock(zone
));
2065 if (PageLRU(page
)) {
2066 struct lruvec
*lruvec
;
2068 lruvec
= mem_cgroup_page_lruvec(page
, zone
->zone_pgdat
);
2070 del_page_from_lru_list(page
, lruvec
, page_lru(page
));
2076 static void unlock_page_lru(struct page
*page
, int isolated
)
2078 struct zone
*zone
= page_zone(page
);
2081 struct lruvec
*lruvec
;
2083 lruvec
= mem_cgroup_page_lruvec(page
, zone
->zone_pgdat
);
2084 VM_BUG_ON_PAGE(PageLRU(page
), page
);
2086 add_page_to_lru_list(page
, lruvec
, page_lru(page
));
2088 spin_unlock_irq(zone_lru_lock(zone
));
2091 static void commit_charge(struct page
*page
, struct mem_cgroup
*memcg
,
2096 VM_BUG_ON_PAGE(page
->mem_cgroup
, page
);
2099 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2100 * may already be on some other mem_cgroup's LRU. Take care of it.
2103 lock_page_lru(page
, &isolated
);
2106 * Nobody should be changing or seriously looking at
2107 * page->mem_cgroup at this point:
2109 * - the page is uncharged
2111 * - the page is off-LRU
2113 * - an anonymous fault has exclusive page access, except for
2114 * a locked page table
2116 * - a page cache insertion, a swapin fault, or a migration
2117 * have the page locked
2119 page
->mem_cgroup
= memcg
;
2122 unlock_page_lru(page
, isolated
);
2126 static int memcg_alloc_cache_id(void)
2131 id
= ida_simple_get(&memcg_cache_ida
,
2132 0, MEMCG_CACHES_MAX_SIZE
, GFP_KERNEL
);
2136 if (id
< memcg_nr_cache_ids
)
2140 * There's no space for the new id in memcg_caches arrays,
2141 * so we have to grow them.
2143 down_write(&memcg_cache_ids_sem
);
2145 size
= 2 * (id
+ 1);
2146 if (size
< MEMCG_CACHES_MIN_SIZE
)
2147 size
= MEMCG_CACHES_MIN_SIZE
;
2148 else if (size
> MEMCG_CACHES_MAX_SIZE
)
2149 size
= MEMCG_CACHES_MAX_SIZE
;
2151 err
= memcg_update_all_caches(size
);
2153 err
= memcg_update_all_list_lrus(size
);
2155 memcg_nr_cache_ids
= size
;
2157 up_write(&memcg_cache_ids_sem
);
2160 ida_simple_remove(&memcg_cache_ida
, id
);
2166 static void memcg_free_cache_id(int id
)
2168 ida_simple_remove(&memcg_cache_ida
, id
);
2171 struct memcg_kmem_cache_create_work
{
2172 struct mem_cgroup
*memcg
;
2173 struct kmem_cache
*cachep
;
2174 struct work_struct work
;
2177 static struct workqueue_struct
*memcg_kmem_cache_create_wq
;
2179 static void memcg_kmem_cache_create_func(struct work_struct
*w
)
2181 struct memcg_kmem_cache_create_work
*cw
=
2182 container_of(w
, struct memcg_kmem_cache_create_work
, work
);
2183 struct mem_cgroup
*memcg
= cw
->memcg
;
2184 struct kmem_cache
*cachep
= cw
->cachep
;
2186 memcg_create_kmem_cache(memcg
, cachep
);
2188 css_put(&memcg
->css
);
2193 * Enqueue the creation of a per-memcg kmem_cache.
2195 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup
*memcg
,
2196 struct kmem_cache
*cachep
)
2198 struct memcg_kmem_cache_create_work
*cw
;
2200 cw
= kmalloc(sizeof(*cw
), GFP_NOWAIT
);
2204 css_get(&memcg
->css
);
2207 cw
->cachep
= cachep
;
2208 INIT_WORK(&cw
->work
, memcg_kmem_cache_create_func
);
2210 queue_work(memcg_kmem_cache_create_wq
, &cw
->work
);
2213 static void memcg_schedule_kmem_cache_create(struct mem_cgroup
*memcg
,
2214 struct kmem_cache
*cachep
)
2217 * We need to stop accounting when we kmalloc, because if the
2218 * corresponding kmalloc cache is not yet created, the first allocation
2219 * in __memcg_schedule_kmem_cache_create will recurse.
2221 * However, it is better to enclose the whole function. Depending on
2222 * the debugging options enabled, INIT_WORK(), for instance, can
2223 * trigger an allocation. This too, will make us recurse. Because at
2224 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2225 * the safest choice is to do it like this, wrapping the whole function.
2227 current
->memcg_kmem_skip_account
= 1;
2228 __memcg_schedule_kmem_cache_create(memcg
, cachep
);
2229 current
->memcg_kmem_skip_account
= 0;
2232 static inline bool memcg_kmem_bypass(void)
2234 if (in_interrupt() || !current
->mm
|| (current
->flags
& PF_KTHREAD
))
2240 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2241 * @cachep: the original global kmem cache
2243 * Return the kmem_cache we're supposed to use for a slab allocation.
2244 * We try to use the current memcg's version of the cache.
2246 * If the cache does not exist yet, if we are the first user of it, we
2247 * create it asynchronously in a workqueue and let the current allocation
2248 * go through with the original cache.
2250 * This function takes a reference to the cache it returns to assure it
2251 * won't get destroyed while we are working with it. Once the caller is
2252 * done with it, memcg_kmem_put_cache() must be called to release the
2255 struct kmem_cache
*memcg_kmem_get_cache(struct kmem_cache
*cachep
)
2257 struct mem_cgroup
*memcg
;
2258 struct kmem_cache
*memcg_cachep
;
2261 VM_BUG_ON(!is_root_cache(cachep
));
2263 if (memcg_kmem_bypass())
2266 if (current
->memcg_kmem_skip_account
)
2269 memcg
= get_mem_cgroup_from_mm(current
->mm
);
2270 kmemcg_id
= READ_ONCE(memcg
->kmemcg_id
);
2274 memcg_cachep
= cache_from_memcg_idx(cachep
, kmemcg_id
);
2275 if (likely(memcg_cachep
))
2276 return memcg_cachep
;
2279 * If we are in a safe context (can wait, and not in interrupt
2280 * context), we could be be predictable and return right away.
2281 * This would guarantee that the allocation being performed
2282 * already belongs in the new cache.
2284 * However, there are some clashes that can arrive from locking.
2285 * For instance, because we acquire the slab_mutex while doing
2286 * memcg_create_kmem_cache, this means no further allocation
2287 * could happen with the slab_mutex held. So it's better to
2290 memcg_schedule_kmem_cache_create(memcg
, cachep
);
2292 css_put(&memcg
->css
);
2297 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2298 * @cachep: the cache returned by memcg_kmem_get_cache
2300 void memcg_kmem_put_cache(struct kmem_cache
*cachep
)
2302 if (!is_root_cache(cachep
))
2303 css_put(&cachep
->memcg_params
.memcg
->css
);
2307 * memcg_kmem_charge: charge a kmem page
2308 * @page: page to charge
2309 * @gfp: reclaim mode
2310 * @order: allocation order
2311 * @memcg: memory cgroup to charge
2313 * Returns 0 on success, an error code on failure.
2315 int memcg_kmem_charge_memcg(struct page
*page
, gfp_t gfp
, int order
,
2316 struct mem_cgroup
*memcg
)
2318 unsigned int nr_pages
= 1 << order
;
2319 struct page_counter
*counter
;
2322 ret
= try_charge(memcg
, gfp
, nr_pages
);
2326 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
) &&
2327 !page_counter_try_charge(&memcg
->kmem
, nr_pages
, &counter
)) {
2330 * Enforce __GFP_NOFAIL allocation because callers are not
2331 * prepared to see failures and likely do not have any failure
2334 if (gfp
& __GFP_NOFAIL
) {
2335 page_counter_charge(&memcg
->kmem
, nr_pages
);
2338 cancel_charge(memcg
, nr_pages
);
2342 page
->mem_cgroup
= memcg
;
2348 * memcg_kmem_charge: charge a kmem page to the current memory cgroup
2349 * @page: page to charge
2350 * @gfp: reclaim mode
2351 * @order: allocation order
2353 * Returns 0 on success, an error code on failure.
2355 int memcg_kmem_charge(struct page
*page
, gfp_t gfp
, int order
)
2357 struct mem_cgroup
*memcg
;
2360 if (memcg_kmem_bypass())
2363 memcg
= get_mem_cgroup_from_mm(current
->mm
);
2364 if (!mem_cgroup_is_root(memcg
)) {
2365 ret
= memcg_kmem_charge_memcg(page
, gfp
, order
, memcg
);
2367 __SetPageKmemcg(page
);
2369 css_put(&memcg
->css
);
2373 * memcg_kmem_uncharge: uncharge a kmem page
2374 * @page: page to uncharge
2375 * @order: allocation order
2377 void memcg_kmem_uncharge(struct page
*page
, int order
)
2379 struct mem_cgroup
*memcg
= page
->mem_cgroup
;
2380 unsigned int nr_pages
= 1 << order
;
2385 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg
), page
);
2387 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
))
2388 page_counter_uncharge(&memcg
->kmem
, nr_pages
);
2390 page_counter_uncharge(&memcg
->memory
, nr_pages
);
2391 if (do_memsw_account())
2392 page_counter_uncharge(&memcg
->memsw
, nr_pages
);
2394 page
->mem_cgroup
= NULL
;
2396 /* slab pages do not have PageKmemcg flag set */
2397 if (PageKmemcg(page
))
2398 __ClearPageKmemcg(page
);
2400 css_put_many(&memcg
->css
, nr_pages
);
2402 #endif /* !CONFIG_SLOB */
2404 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2407 * Because tail pages are not marked as "used", set it. We're under
2408 * zone_lru_lock and migration entries setup in all page mappings.
2410 void mem_cgroup_split_huge_fixup(struct page
*head
)
2414 if (mem_cgroup_disabled())
2417 for (i
= 1; i
< HPAGE_PMD_NR
; i
++)
2418 head
[i
].mem_cgroup
= head
->mem_cgroup
;
2420 __this_cpu_sub(head
->mem_cgroup
->stat
->count
[MEM_CGROUP_STAT_RSS_HUGE
],
2423 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2425 #ifdef CONFIG_MEMCG_SWAP
2426 static void mem_cgroup_swap_statistics(struct mem_cgroup
*memcg
,
2429 int val
= (charge
) ? 1 : -1;
2430 this_cpu_add(memcg
->stat
->count
[MEM_CGROUP_STAT_SWAP
], val
);
2434 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2435 * @entry: swap entry to be moved
2436 * @from: mem_cgroup which the entry is moved from
2437 * @to: mem_cgroup which the entry is moved to
2439 * It succeeds only when the swap_cgroup's record for this entry is the same
2440 * as the mem_cgroup's id of @from.
2442 * Returns 0 on success, -EINVAL on failure.
2444 * The caller must have charged to @to, IOW, called page_counter_charge() about
2445 * both res and memsw, and called css_get().
2447 static int mem_cgroup_move_swap_account(swp_entry_t entry
,
2448 struct mem_cgroup
*from
, struct mem_cgroup
*to
)
2450 unsigned short old_id
, new_id
;
2452 old_id
= mem_cgroup_id(from
);
2453 new_id
= mem_cgroup_id(to
);
2455 if (swap_cgroup_cmpxchg(entry
, old_id
, new_id
) == old_id
) {
2456 mem_cgroup_swap_statistics(from
, false);
2457 mem_cgroup_swap_statistics(to
, true);
2463 static inline int mem_cgroup_move_swap_account(swp_entry_t entry
,
2464 struct mem_cgroup
*from
, struct mem_cgroup
*to
)
2470 static DEFINE_MUTEX(memcg_limit_mutex
);
2472 static int mem_cgroup_resize_limit(struct mem_cgroup
*memcg
,
2473 unsigned long limit
)
2475 unsigned long curusage
;
2476 unsigned long oldusage
;
2477 bool enlarge
= false;
2482 * For keeping hierarchical_reclaim simple, how long we should retry
2483 * is depends on callers. We set our retry-count to be function
2484 * of # of children which we should visit in this loop.
2486 retry_count
= MEM_CGROUP_RECLAIM_RETRIES
*
2487 mem_cgroup_count_children(memcg
);
2489 oldusage
= page_counter_read(&memcg
->memory
);
2492 if (signal_pending(current
)) {
2497 mutex_lock(&memcg_limit_mutex
);
2498 if (limit
> memcg
->memsw
.limit
) {
2499 mutex_unlock(&memcg_limit_mutex
);
2503 if (limit
> memcg
->memory
.limit
)
2505 ret
= page_counter_limit(&memcg
->memory
, limit
);
2506 mutex_unlock(&memcg_limit_mutex
);
2511 try_to_free_mem_cgroup_pages(memcg
, 1, GFP_KERNEL
, true);
2513 curusage
= page_counter_read(&memcg
->memory
);
2514 /* Usage is reduced ? */
2515 if (curusage
>= oldusage
)
2518 oldusage
= curusage
;
2519 } while (retry_count
);
2521 if (!ret
&& enlarge
)
2522 memcg_oom_recover(memcg
);
2527 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup
*memcg
,
2528 unsigned long limit
)
2530 unsigned long curusage
;
2531 unsigned long oldusage
;
2532 bool enlarge
= false;
2536 /* see mem_cgroup_resize_res_limit */
2537 retry_count
= MEM_CGROUP_RECLAIM_RETRIES
*
2538 mem_cgroup_count_children(memcg
);
2540 oldusage
= page_counter_read(&memcg
->memsw
);
2543 if (signal_pending(current
)) {
2548 mutex_lock(&memcg_limit_mutex
);
2549 if (limit
< memcg
->memory
.limit
) {
2550 mutex_unlock(&memcg_limit_mutex
);
2554 if (limit
> memcg
->memsw
.limit
)
2556 ret
= page_counter_limit(&memcg
->memsw
, limit
);
2557 mutex_unlock(&memcg_limit_mutex
);
2562 try_to_free_mem_cgroup_pages(memcg
, 1, GFP_KERNEL
, false);
2564 curusage
= page_counter_read(&memcg
->memsw
);
2565 /* Usage is reduced ? */
2566 if (curusage
>= oldusage
)
2569 oldusage
= curusage
;
2570 } while (retry_count
);
2572 if (!ret
&& enlarge
)
2573 memcg_oom_recover(memcg
);
2578 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t
*pgdat
, int order
,
2580 unsigned long *total_scanned
)
2582 unsigned long nr_reclaimed
= 0;
2583 struct mem_cgroup_per_node
*mz
, *next_mz
= NULL
;
2584 unsigned long reclaimed
;
2586 struct mem_cgroup_tree_per_node
*mctz
;
2587 unsigned long excess
;
2588 unsigned long nr_scanned
;
2593 mctz
= soft_limit_tree_node(pgdat
->node_id
);
2596 * Do not even bother to check the largest node if the root
2597 * is empty. Do it lockless to prevent lock bouncing. Races
2598 * are acceptable as soft limit is best effort anyway.
2600 if (!mctz
|| RB_EMPTY_ROOT(&mctz
->rb_root
))
2604 * This loop can run a while, specially if mem_cgroup's continuously
2605 * keep exceeding their soft limit and putting the system under
2612 mz
= mem_cgroup_largest_soft_limit_node(mctz
);
2617 reclaimed
= mem_cgroup_soft_reclaim(mz
->memcg
, pgdat
,
2618 gfp_mask
, &nr_scanned
);
2619 nr_reclaimed
+= reclaimed
;
2620 *total_scanned
+= nr_scanned
;
2621 spin_lock_irq(&mctz
->lock
);
2622 __mem_cgroup_remove_exceeded(mz
, mctz
);
2625 * If we failed to reclaim anything from this memory cgroup
2626 * it is time to move on to the next cgroup
2630 next_mz
= __mem_cgroup_largest_soft_limit_node(mctz
);
2632 excess
= soft_limit_excess(mz
->memcg
);
2634 * One school of thought says that we should not add
2635 * back the node to the tree if reclaim returns 0.
2636 * But our reclaim could return 0, simply because due
2637 * to priority we are exposing a smaller subset of
2638 * memory to reclaim from. Consider this as a longer
2641 /* If excess == 0, no tree ops */
2642 __mem_cgroup_insert_exceeded(mz
, mctz
, excess
);
2643 spin_unlock_irq(&mctz
->lock
);
2644 css_put(&mz
->memcg
->css
);
2647 * Could not reclaim anything and there are no more
2648 * mem cgroups to try or we seem to be looping without
2649 * reclaiming anything.
2651 if (!nr_reclaimed
&&
2653 loop
> MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS
))
2655 } while (!nr_reclaimed
);
2657 css_put(&next_mz
->memcg
->css
);
2658 return nr_reclaimed
;
2662 * Test whether @memcg has children, dead or alive. Note that this
2663 * function doesn't care whether @memcg has use_hierarchy enabled and
2664 * returns %true if there are child csses according to the cgroup
2665 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2667 static inline bool memcg_has_children(struct mem_cgroup
*memcg
)
2672 ret
= css_next_child(NULL
, &memcg
->css
);
2678 * Reclaims as many pages from the given memcg as possible.
2680 * Caller is responsible for holding css reference for memcg.
2682 static int mem_cgroup_force_empty(struct mem_cgroup
*memcg
)
2684 int nr_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
2686 /* we call try-to-free pages for make this cgroup empty */
2687 lru_add_drain_all();
2688 /* try to free all pages in this cgroup */
2689 while (nr_retries
&& page_counter_read(&memcg
->memory
)) {
2692 if (signal_pending(current
))
2695 progress
= try_to_free_mem_cgroup_pages(memcg
, 1,
2699 /* maybe some writeback is necessary */
2700 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
2708 static ssize_t
mem_cgroup_force_empty_write(struct kernfs_open_file
*of
,
2709 char *buf
, size_t nbytes
,
2712 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
2714 if (mem_cgroup_is_root(memcg
))
2716 return mem_cgroup_force_empty(memcg
) ?: nbytes
;
2719 static u64
mem_cgroup_hierarchy_read(struct cgroup_subsys_state
*css
,
2722 return mem_cgroup_from_css(css
)->use_hierarchy
;
2725 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state
*css
,
2726 struct cftype
*cft
, u64 val
)
2729 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
2730 struct mem_cgroup
*parent_memcg
= mem_cgroup_from_css(memcg
->css
.parent
);
2732 if (memcg
->use_hierarchy
== val
)
2736 * If parent's use_hierarchy is set, we can't make any modifications
2737 * in the child subtrees. If it is unset, then the change can
2738 * occur, provided the current cgroup has no children.
2740 * For the root cgroup, parent_mem is NULL, we allow value to be
2741 * set if there are no children.
2743 if ((!parent_memcg
|| !parent_memcg
->use_hierarchy
) &&
2744 (val
== 1 || val
== 0)) {
2745 if (!memcg_has_children(memcg
))
2746 memcg
->use_hierarchy
= val
;
2755 static void tree_stat(struct mem_cgroup
*memcg
, unsigned long *stat
)
2757 struct mem_cgroup
*iter
;
2760 memset(stat
, 0, sizeof(*stat
) * MEMCG_NR_STAT
);
2762 for_each_mem_cgroup_tree(iter
, memcg
) {
2763 for (i
= 0; i
< MEMCG_NR_STAT
; i
++)
2764 stat
[i
] += mem_cgroup_read_stat(iter
, i
);
2768 static void tree_events(struct mem_cgroup
*memcg
, unsigned long *events
)
2770 struct mem_cgroup
*iter
;
2773 memset(events
, 0, sizeof(*events
) * MEMCG_NR_EVENTS
);
2775 for_each_mem_cgroup_tree(iter
, memcg
) {
2776 for (i
= 0; i
< MEMCG_NR_EVENTS
; i
++)
2777 events
[i
] += mem_cgroup_read_events(iter
, i
);
2781 static unsigned long mem_cgroup_usage(struct mem_cgroup
*memcg
, bool swap
)
2783 unsigned long val
= 0;
2785 if (mem_cgroup_is_root(memcg
)) {
2786 struct mem_cgroup
*iter
;
2788 for_each_mem_cgroup_tree(iter
, memcg
) {
2789 val
+= mem_cgroup_read_stat(iter
,
2790 MEM_CGROUP_STAT_CACHE
);
2791 val
+= mem_cgroup_read_stat(iter
,
2792 MEM_CGROUP_STAT_RSS
);
2794 val
+= mem_cgroup_read_stat(iter
,
2795 MEM_CGROUP_STAT_SWAP
);
2799 val
= page_counter_read(&memcg
->memory
);
2801 val
= page_counter_read(&memcg
->memsw
);
2814 static u64
mem_cgroup_read_u64(struct cgroup_subsys_state
*css
,
2817 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
2818 struct page_counter
*counter
;
2820 switch (MEMFILE_TYPE(cft
->private)) {
2822 counter
= &memcg
->memory
;
2825 counter
= &memcg
->memsw
;
2828 counter
= &memcg
->kmem
;
2831 counter
= &memcg
->tcpmem
;
2837 switch (MEMFILE_ATTR(cft
->private)) {
2839 if (counter
== &memcg
->memory
)
2840 return (u64
)mem_cgroup_usage(memcg
, false) * PAGE_SIZE
;
2841 if (counter
== &memcg
->memsw
)
2842 return (u64
)mem_cgroup_usage(memcg
, true) * PAGE_SIZE
;
2843 return (u64
)page_counter_read(counter
) * PAGE_SIZE
;
2845 return (u64
)counter
->limit
* PAGE_SIZE
;
2847 return (u64
)counter
->watermark
* PAGE_SIZE
;
2849 return counter
->failcnt
;
2850 case RES_SOFT_LIMIT
:
2851 return (u64
)memcg
->soft_limit
* PAGE_SIZE
;
2858 static int memcg_online_kmem(struct mem_cgroup
*memcg
)
2862 if (cgroup_memory_nokmem
)
2865 BUG_ON(memcg
->kmemcg_id
>= 0);
2866 BUG_ON(memcg
->kmem_state
);
2868 memcg_id
= memcg_alloc_cache_id();
2872 static_branch_inc(&memcg_kmem_enabled_key
);
2874 * A memory cgroup is considered kmem-online as soon as it gets
2875 * kmemcg_id. Setting the id after enabling static branching will
2876 * guarantee no one starts accounting before all call sites are
2879 memcg
->kmemcg_id
= memcg_id
;
2880 memcg
->kmem_state
= KMEM_ONLINE
;
2885 static void memcg_offline_kmem(struct mem_cgroup
*memcg
)
2887 struct cgroup_subsys_state
*css
;
2888 struct mem_cgroup
*parent
, *child
;
2891 if (memcg
->kmem_state
!= KMEM_ONLINE
)
2894 * Clear the online state before clearing memcg_caches array
2895 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2896 * guarantees that no cache will be created for this cgroup
2897 * after we are done (see memcg_create_kmem_cache()).
2899 memcg
->kmem_state
= KMEM_ALLOCATED
;
2901 memcg_deactivate_kmem_caches(memcg
);
2903 kmemcg_id
= memcg
->kmemcg_id
;
2904 BUG_ON(kmemcg_id
< 0);
2906 parent
= parent_mem_cgroup(memcg
);
2908 parent
= root_mem_cgroup
;
2911 * Change kmemcg_id of this cgroup and all its descendants to the
2912 * parent's id, and then move all entries from this cgroup's list_lrus
2913 * to ones of the parent. After we have finished, all list_lrus
2914 * corresponding to this cgroup are guaranteed to remain empty. The
2915 * ordering is imposed by list_lru_node->lock taken by
2916 * memcg_drain_all_list_lrus().
2918 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
2919 css_for_each_descendant_pre(css
, &memcg
->css
) {
2920 child
= mem_cgroup_from_css(css
);
2921 BUG_ON(child
->kmemcg_id
!= kmemcg_id
);
2922 child
->kmemcg_id
= parent
->kmemcg_id
;
2923 if (!memcg
->use_hierarchy
)
2928 memcg_drain_all_list_lrus(kmemcg_id
, parent
->kmemcg_id
);
2930 memcg_free_cache_id(kmemcg_id
);
2933 static void memcg_free_kmem(struct mem_cgroup
*memcg
)
2935 /* css_alloc() failed, offlining didn't happen */
2936 if (unlikely(memcg
->kmem_state
== KMEM_ONLINE
))
2937 memcg_offline_kmem(memcg
);
2939 if (memcg
->kmem_state
== KMEM_ALLOCATED
) {
2940 memcg_destroy_kmem_caches(memcg
);
2941 static_branch_dec(&memcg_kmem_enabled_key
);
2942 WARN_ON(page_counter_read(&memcg
->kmem
));
2946 static int memcg_online_kmem(struct mem_cgroup
*memcg
)
2950 static void memcg_offline_kmem(struct mem_cgroup
*memcg
)
2953 static void memcg_free_kmem(struct mem_cgroup
*memcg
)
2956 #endif /* !CONFIG_SLOB */
2958 static int memcg_update_kmem_limit(struct mem_cgroup
*memcg
,
2959 unsigned long limit
)
2963 mutex_lock(&memcg_limit_mutex
);
2964 ret
= page_counter_limit(&memcg
->kmem
, limit
);
2965 mutex_unlock(&memcg_limit_mutex
);
2969 static int memcg_update_tcp_limit(struct mem_cgroup
*memcg
, unsigned long limit
)
2973 mutex_lock(&memcg_limit_mutex
);
2975 ret
= page_counter_limit(&memcg
->tcpmem
, limit
);
2979 if (!memcg
->tcpmem_active
) {
2981 * The active flag needs to be written after the static_key
2982 * update. This is what guarantees that the socket activation
2983 * function is the last one to run. See mem_cgroup_sk_alloc()
2984 * for details, and note that we don't mark any socket as
2985 * belonging to this memcg until that flag is up.
2987 * We need to do this, because static_keys will span multiple
2988 * sites, but we can't control their order. If we mark a socket
2989 * as accounted, but the accounting functions are not patched in
2990 * yet, we'll lose accounting.
2992 * We never race with the readers in mem_cgroup_sk_alloc(),
2993 * because when this value change, the code to process it is not
2996 static_branch_inc(&memcg_sockets_enabled_key
);
2997 memcg
->tcpmem_active
= true;
3000 mutex_unlock(&memcg_limit_mutex
);
3005 * The user of this function is...
3008 static ssize_t
mem_cgroup_write(struct kernfs_open_file
*of
,
3009 char *buf
, size_t nbytes
, loff_t off
)
3011 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
3012 unsigned long nr_pages
;
3015 buf
= strstrip(buf
);
3016 ret
= page_counter_memparse(buf
, "-1", &nr_pages
);
3020 switch (MEMFILE_ATTR(of_cft(of
)->private)) {
3022 if (mem_cgroup_is_root(memcg
)) { /* Can't set limit on root */
3026 switch (MEMFILE_TYPE(of_cft(of
)->private)) {
3028 ret
= mem_cgroup_resize_limit(memcg
, nr_pages
);
3031 ret
= mem_cgroup_resize_memsw_limit(memcg
, nr_pages
);
3034 ret
= memcg_update_kmem_limit(memcg
, nr_pages
);
3037 ret
= memcg_update_tcp_limit(memcg
, nr_pages
);
3041 case RES_SOFT_LIMIT
:
3042 memcg
->soft_limit
= nr_pages
;
3046 return ret
?: nbytes
;
3049 static ssize_t
mem_cgroup_reset(struct kernfs_open_file
*of
, char *buf
,
3050 size_t nbytes
, loff_t off
)
3052 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
3053 struct page_counter
*counter
;
3055 switch (MEMFILE_TYPE(of_cft(of
)->private)) {
3057 counter
= &memcg
->memory
;
3060 counter
= &memcg
->memsw
;
3063 counter
= &memcg
->kmem
;
3066 counter
= &memcg
->tcpmem
;
3072 switch (MEMFILE_ATTR(of_cft(of
)->private)) {
3074 page_counter_reset_watermark(counter
);
3077 counter
->failcnt
= 0;
3086 static u64
mem_cgroup_move_charge_read(struct cgroup_subsys_state
*css
,
3089 return mem_cgroup_from_css(css
)->move_charge_at_immigrate
;
3093 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state
*css
,
3094 struct cftype
*cft
, u64 val
)
3096 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
3098 if (val
& ~MOVE_MASK
)
3102 * No kind of locking is needed in here, because ->can_attach() will
3103 * check this value once in the beginning of the process, and then carry
3104 * on with stale data. This means that changes to this value will only
3105 * affect task migrations starting after the change.
3107 memcg
->move_charge_at_immigrate
= val
;
3111 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state
*css
,
3112 struct cftype
*cft
, u64 val
)
3119 static int memcg_numa_stat_show(struct seq_file
*m
, void *v
)
3123 unsigned int lru_mask
;
3126 static const struct numa_stat stats
[] = {
3127 { "total", LRU_ALL
},
3128 { "file", LRU_ALL_FILE
},
3129 { "anon", LRU_ALL_ANON
},
3130 { "unevictable", BIT(LRU_UNEVICTABLE
) },
3132 const struct numa_stat
*stat
;
3135 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
3137 for (stat
= stats
; stat
< stats
+ ARRAY_SIZE(stats
); stat
++) {
3138 nr
= mem_cgroup_nr_lru_pages(memcg
, stat
->lru_mask
);
3139 seq_printf(m
, "%s=%lu", stat
->name
, nr
);
3140 for_each_node_state(nid
, N_MEMORY
) {
3141 nr
= mem_cgroup_node_nr_lru_pages(memcg
, nid
,
3143 seq_printf(m
, " N%d=%lu", nid
, nr
);
3148 for (stat
= stats
; stat
< stats
+ ARRAY_SIZE(stats
); stat
++) {
3149 struct mem_cgroup
*iter
;
3152 for_each_mem_cgroup_tree(iter
, memcg
)
3153 nr
+= mem_cgroup_nr_lru_pages(iter
, stat
->lru_mask
);
3154 seq_printf(m
, "hierarchical_%s=%lu", stat
->name
, nr
);
3155 for_each_node_state(nid
, N_MEMORY
) {
3157 for_each_mem_cgroup_tree(iter
, memcg
)
3158 nr
+= mem_cgroup_node_nr_lru_pages(
3159 iter
, nid
, stat
->lru_mask
);
3160 seq_printf(m
, " N%d=%lu", nid
, nr
);
3167 #endif /* CONFIG_NUMA */
3169 static int memcg_stat_show(struct seq_file
*m
, void *v
)
3171 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
3172 unsigned long memory
, memsw
;
3173 struct mem_cgroup
*mi
;
3176 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names
) !=
3177 MEM_CGROUP_STAT_NSTATS
);
3178 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names
) !=
3179 MEM_CGROUP_EVENTS_NSTATS
);
3180 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names
) != NR_LRU_LISTS
);
3182 for (i
= 0; i
< MEM_CGROUP_STAT_NSTATS
; i
++) {
3183 if (i
== MEM_CGROUP_STAT_SWAP
&& !do_memsw_account())
3185 seq_printf(m
, "%s %lu\n", mem_cgroup_stat_names
[i
],
3186 mem_cgroup_read_stat(memcg
, i
) * PAGE_SIZE
);
3189 for (i
= 0; i
< MEM_CGROUP_EVENTS_NSTATS
; i
++)
3190 seq_printf(m
, "%s %lu\n", mem_cgroup_events_names
[i
],
3191 mem_cgroup_read_events(memcg
, i
));
3193 for (i
= 0; i
< NR_LRU_LISTS
; i
++)
3194 seq_printf(m
, "%s %lu\n", mem_cgroup_lru_names
[i
],
3195 mem_cgroup_nr_lru_pages(memcg
, BIT(i
)) * PAGE_SIZE
);
3197 /* Hierarchical information */
3198 memory
= memsw
= PAGE_COUNTER_MAX
;
3199 for (mi
= memcg
; mi
; mi
= parent_mem_cgroup(mi
)) {
3200 memory
= min(memory
, mi
->memory
.limit
);
3201 memsw
= min(memsw
, mi
->memsw
.limit
);
3203 seq_printf(m
, "hierarchical_memory_limit %llu\n",
3204 (u64
)memory
* PAGE_SIZE
);
3205 if (do_memsw_account())
3206 seq_printf(m
, "hierarchical_memsw_limit %llu\n",
3207 (u64
)memsw
* PAGE_SIZE
);
3209 for (i
= 0; i
< MEM_CGROUP_STAT_NSTATS
; i
++) {
3210 unsigned long long val
= 0;
3212 if (i
== MEM_CGROUP_STAT_SWAP
&& !do_memsw_account())
3214 for_each_mem_cgroup_tree(mi
, memcg
)
3215 val
+= mem_cgroup_read_stat(mi
, i
) * PAGE_SIZE
;
3216 seq_printf(m
, "total_%s %llu\n", mem_cgroup_stat_names
[i
], val
);
3219 for (i
= 0; i
< MEM_CGROUP_EVENTS_NSTATS
; i
++) {
3220 unsigned long long val
= 0;
3222 for_each_mem_cgroup_tree(mi
, memcg
)
3223 val
+= mem_cgroup_read_events(mi
, i
);
3224 seq_printf(m
, "total_%s %llu\n",
3225 mem_cgroup_events_names
[i
], val
);
3228 for (i
= 0; i
< NR_LRU_LISTS
; i
++) {
3229 unsigned long long val
= 0;
3231 for_each_mem_cgroup_tree(mi
, memcg
)
3232 val
+= mem_cgroup_nr_lru_pages(mi
, BIT(i
)) * PAGE_SIZE
;
3233 seq_printf(m
, "total_%s %llu\n", mem_cgroup_lru_names
[i
], val
);
3236 #ifdef CONFIG_DEBUG_VM
3239 struct mem_cgroup_per_node
*mz
;
3240 struct zone_reclaim_stat
*rstat
;
3241 unsigned long recent_rotated
[2] = {0, 0};
3242 unsigned long recent_scanned
[2] = {0, 0};
3244 for_each_online_pgdat(pgdat
) {
3245 mz
= mem_cgroup_nodeinfo(memcg
, pgdat
->node_id
);
3246 rstat
= &mz
->lruvec
.reclaim_stat
;
3248 recent_rotated
[0] += rstat
->recent_rotated
[0];
3249 recent_rotated
[1] += rstat
->recent_rotated
[1];
3250 recent_scanned
[0] += rstat
->recent_scanned
[0];
3251 recent_scanned
[1] += rstat
->recent_scanned
[1];
3253 seq_printf(m
, "recent_rotated_anon %lu\n", recent_rotated
[0]);
3254 seq_printf(m
, "recent_rotated_file %lu\n", recent_rotated
[1]);
3255 seq_printf(m
, "recent_scanned_anon %lu\n", recent_scanned
[0]);
3256 seq_printf(m
, "recent_scanned_file %lu\n", recent_scanned
[1]);
3263 static u64
mem_cgroup_swappiness_read(struct cgroup_subsys_state
*css
,
3266 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
3268 return mem_cgroup_swappiness(memcg
);
3271 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state
*css
,
3272 struct cftype
*cft
, u64 val
)
3274 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
3280 memcg
->swappiness
= val
;
3282 vm_swappiness
= val
;
3287 static void __mem_cgroup_threshold(struct mem_cgroup
*memcg
, bool swap
)
3289 struct mem_cgroup_threshold_ary
*t
;
3290 unsigned long usage
;
3295 t
= rcu_dereference(memcg
->thresholds
.primary
);
3297 t
= rcu_dereference(memcg
->memsw_thresholds
.primary
);
3302 usage
= mem_cgroup_usage(memcg
, swap
);
3305 * current_threshold points to threshold just below or equal to usage.
3306 * If it's not true, a threshold was crossed after last
3307 * call of __mem_cgroup_threshold().
3309 i
= t
->current_threshold
;
3312 * Iterate backward over array of thresholds starting from
3313 * current_threshold and check if a threshold is crossed.
3314 * If none of thresholds below usage is crossed, we read
3315 * only one element of the array here.
3317 for (; i
>= 0 && unlikely(t
->entries
[i
].threshold
> usage
); i
--)
3318 eventfd_signal(t
->entries
[i
].eventfd
, 1);
3320 /* i = current_threshold + 1 */
3324 * Iterate forward over array of thresholds starting from
3325 * current_threshold+1 and check if a threshold is crossed.
3326 * If none of thresholds above usage is crossed, we read
3327 * only one element of the array here.
3329 for (; i
< t
->size
&& unlikely(t
->entries
[i
].threshold
<= usage
); i
++)
3330 eventfd_signal(t
->entries
[i
].eventfd
, 1);
3332 /* Update current_threshold */
3333 t
->current_threshold
= i
- 1;
3338 static void mem_cgroup_threshold(struct mem_cgroup
*memcg
)
3341 __mem_cgroup_threshold(memcg
, false);
3342 if (do_memsw_account())
3343 __mem_cgroup_threshold(memcg
, true);
3345 memcg
= parent_mem_cgroup(memcg
);
3349 static int compare_thresholds(const void *a
, const void *b
)
3351 const struct mem_cgroup_threshold
*_a
= a
;
3352 const struct mem_cgroup_threshold
*_b
= b
;
3354 if (_a
->threshold
> _b
->threshold
)
3357 if (_a
->threshold
< _b
->threshold
)
3363 static int mem_cgroup_oom_notify_cb(struct mem_cgroup
*memcg
)
3365 struct mem_cgroup_eventfd_list
*ev
;
3367 spin_lock(&memcg_oom_lock
);
3369 list_for_each_entry(ev
, &memcg
->oom_notify
, list
)
3370 eventfd_signal(ev
->eventfd
, 1);
3372 spin_unlock(&memcg_oom_lock
);
3376 static void mem_cgroup_oom_notify(struct mem_cgroup
*memcg
)
3378 struct mem_cgroup
*iter
;
3380 for_each_mem_cgroup_tree(iter
, memcg
)
3381 mem_cgroup_oom_notify_cb(iter
);
3384 static int __mem_cgroup_usage_register_event(struct mem_cgroup
*memcg
,
3385 struct eventfd_ctx
*eventfd
, const char *args
, enum res_type type
)
3387 struct mem_cgroup_thresholds
*thresholds
;
3388 struct mem_cgroup_threshold_ary
*new;
3389 unsigned long threshold
;
3390 unsigned long usage
;
3393 ret
= page_counter_memparse(args
, "-1", &threshold
);
3397 mutex_lock(&memcg
->thresholds_lock
);
3400 thresholds
= &memcg
->thresholds
;
3401 usage
= mem_cgroup_usage(memcg
, false);
3402 } else if (type
== _MEMSWAP
) {
3403 thresholds
= &memcg
->memsw_thresholds
;
3404 usage
= mem_cgroup_usage(memcg
, true);
3408 /* Check if a threshold crossed before adding a new one */
3409 if (thresholds
->primary
)
3410 __mem_cgroup_threshold(memcg
, type
== _MEMSWAP
);
3412 size
= thresholds
->primary
? thresholds
->primary
->size
+ 1 : 1;
3414 /* Allocate memory for new array of thresholds */
3415 new = kmalloc(sizeof(*new) + size
* sizeof(struct mem_cgroup_threshold
),
3423 /* Copy thresholds (if any) to new array */
3424 if (thresholds
->primary
) {
3425 memcpy(new->entries
, thresholds
->primary
->entries
, (size
- 1) *
3426 sizeof(struct mem_cgroup_threshold
));
3429 /* Add new threshold */
3430 new->entries
[size
- 1].eventfd
= eventfd
;
3431 new->entries
[size
- 1].threshold
= threshold
;
3433 /* Sort thresholds. Registering of new threshold isn't time-critical */
3434 sort(new->entries
, size
, sizeof(struct mem_cgroup_threshold
),
3435 compare_thresholds
, NULL
);
3437 /* Find current threshold */
3438 new->current_threshold
= -1;
3439 for (i
= 0; i
< size
; i
++) {
3440 if (new->entries
[i
].threshold
<= usage
) {
3442 * new->current_threshold will not be used until
3443 * rcu_assign_pointer(), so it's safe to increment
3446 ++new->current_threshold
;
3451 /* Free old spare buffer and save old primary buffer as spare */
3452 kfree(thresholds
->spare
);
3453 thresholds
->spare
= thresholds
->primary
;
3455 rcu_assign_pointer(thresholds
->primary
, new);
3457 /* To be sure that nobody uses thresholds */
3461 mutex_unlock(&memcg
->thresholds_lock
);
3466 static int mem_cgroup_usage_register_event(struct mem_cgroup
*memcg
,
3467 struct eventfd_ctx
*eventfd
, const char *args
)
3469 return __mem_cgroup_usage_register_event(memcg
, eventfd
, args
, _MEM
);
3472 static int memsw_cgroup_usage_register_event(struct mem_cgroup
*memcg
,
3473 struct eventfd_ctx
*eventfd
, const char *args
)
3475 return __mem_cgroup_usage_register_event(memcg
, eventfd
, args
, _MEMSWAP
);
3478 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup
*memcg
,
3479 struct eventfd_ctx
*eventfd
, enum res_type type
)
3481 struct mem_cgroup_thresholds
*thresholds
;
3482 struct mem_cgroup_threshold_ary
*new;
3483 unsigned long usage
;
3486 mutex_lock(&memcg
->thresholds_lock
);
3489 thresholds
= &memcg
->thresholds
;
3490 usage
= mem_cgroup_usage(memcg
, false);
3491 } else if (type
== _MEMSWAP
) {
3492 thresholds
= &memcg
->memsw_thresholds
;
3493 usage
= mem_cgroup_usage(memcg
, true);
3497 if (!thresholds
->primary
)
3500 /* Check if a threshold crossed before removing */
3501 __mem_cgroup_threshold(memcg
, type
== _MEMSWAP
);
3503 /* Calculate new number of threshold */
3505 for (i
= 0; i
< thresholds
->primary
->size
; i
++) {
3506 if (thresholds
->primary
->entries
[i
].eventfd
!= eventfd
)
3510 new = thresholds
->spare
;
3512 /* Set thresholds array to NULL if we don't have thresholds */
3521 /* Copy thresholds and find current threshold */
3522 new->current_threshold
= -1;
3523 for (i
= 0, j
= 0; i
< thresholds
->primary
->size
; i
++) {
3524 if (thresholds
->primary
->entries
[i
].eventfd
== eventfd
)
3527 new->entries
[j
] = thresholds
->primary
->entries
[i
];
3528 if (new->entries
[j
].threshold
<= usage
) {
3530 * new->current_threshold will not be used
3531 * until rcu_assign_pointer(), so it's safe to increment
3534 ++new->current_threshold
;
3540 /* Swap primary and spare array */
3541 thresholds
->spare
= thresholds
->primary
;
3543 rcu_assign_pointer(thresholds
->primary
, new);
3545 /* To be sure that nobody uses thresholds */
3548 /* If all events are unregistered, free the spare array */
3550 kfree(thresholds
->spare
);
3551 thresholds
->spare
= NULL
;
3554 mutex_unlock(&memcg
->thresholds_lock
);
3557 static void mem_cgroup_usage_unregister_event(struct mem_cgroup
*memcg
,
3558 struct eventfd_ctx
*eventfd
)
3560 return __mem_cgroup_usage_unregister_event(memcg
, eventfd
, _MEM
);
3563 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup
*memcg
,
3564 struct eventfd_ctx
*eventfd
)
3566 return __mem_cgroup_usage_unregister_event(memcg
, eventfd
, _MEMSWAP
);
3569 static int mem_cgroup_oom_register_event(struct mem_cgroup
*memcg
,
3570 struct eventfd_ctx
*eventfd
, const char *args
)
3572 struct mem_cgroup_eventfd_list
*event
;
3574 event
= kmalloc(sizeof(*event
), GFP_KERNEL
);
3578 spin_lock(&memcg_oom_lock
);
3580 event
->eventfd
= eventfd
;
3581 list_add(&event
->list
, &memcg
->oom_notify
);
3583 /* already in OOM ? */
3584 if (memcg
->under_oom
)
3585 eventfd_signal(eventfd
, 1);
3586 spin_unlock(&memcg_oom_lock
);
3591 static void mem_cgroup_oom_unregister_event(struct mem_cgroup
*memcg
,
3592 struct eventfd_ctx
*eventfd
)
3594 struct mem_cgroup_eventfd_list
*ev
, *tmp
;
3596 spin_lock(&memcg_oom_lock
);
3598 list_for_each_entry_safe(ev
, tmp
, &memcg
->oom_notify
, list
) {
3599 if (ev
->eventfd
== eventfd
) {
3600 list_del(&ev
->list
);
3605 spin_unlock(&memcg_oom_lock
);
3608 static int mem_cgroup_oom_control_read(struct seq_file
*sf
, void *v
)
3610 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(sf
));
3612 seq_printf(sf
, "oom_kill_disable %d\n", memcg
->oom_kill_disable
);
3613 seq_printf(sf
, "under_oom %d\n", (bool)memcg
->under_oom
);
3617 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state
*css
,
3618 struct cftype
*cft
, u64 val
)
3620 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
3622 /* cannot set to root cgroup and only 0 and 1 are allowed */
3623 if (!css
->parent
|| !((val
== 0) || (val
== 1)))
3626 memcg
->oom_kill_disable
= val
;
3628 memcg_oom_recover(memcg
);
3633 #ifdef CONFIG_CGROUP_WRITEBACK
3635 struct list_head
*mem_cgroup_cgwb_list(struct mem_cgroup
*memcg
)
3637 return &memcg
->cgwb_list
;
3640 static int memcg_wb_domain_init(struct mem_cgroup
*memcg
, gfp_t gfp
)
3642 return wb_domain_init(&memcg
->cgwb_domain
, gfp
);
3645 static void memcg_wb_domain_exit(struct mem_cgroup
*memcg
)
3647 wb_domain_exit(&memcg
->cgwb_domain
);
3650 static void memcg_wb_domain_size_changed(struct mem_cgroup
*memcg
)
3652 wb_domain_size_changed(&memcg
->cgwb_domain
);
3655 struct wb_domain
*mem_cgroup_wb_domain(struct bdi_writeback
*wb
)
3657 struct mem_cgroup
*memcg
= mem_cgroup_from_css(wb
->memcg_css
);
3659 if (!memcg
->css
.parent
)
3662 return &memcg
->cgwb_domain
;
3666 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3667 * @wb: bdi_writeback in question
3668 * @pfilepages: out parameter for number of file pages
3669 * @pheadroom: out parameter for number of allocatable pages according to memcg
3670 * @pdirty: out parameter for number of dirty pages
3671 * @pwriteback: out parameter for number of pages under writeback
3673 * Determine the numbers of file, headroom, dirty, and writeback pages in
3674 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3675 * is a bit more involved.
3677 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3678 * headroom is calculated as the lowest headroom of itself and the
3679 * ancestors. Note that this doesn't consider the actual amount of
3680 * available memory in the system. The caller should further cap
3681 * *@pheadroom accordingly.
3683 void mem_cgroup_wb_stats(struct bdi_writeback
*wb
, unsigned long *pfilepages
,
3684 unsigned long *pheadroom
, unsigned long *pdirty
,
3685 unsigned long *pwriteback
)
3687 struct mem_cgroup
*memcg
= mem_cgroup_from_css(wb
->memcg_css
);
3688 struct mem_cgroup
*parent
;
3690 *pdirty
= mem_cgroup_read_stat(memcg
, MEM_CGROUP_STAT_DIRTY
);
3692 /* this should eventually include NR_UNSTABLE_NFS */
3693 *pwriteback
= mem_cgroup_read_stat(memcg
, MEM_CGROUP_STAT_WRITEBACK
);
3694 *pfilepages
= mem_cgroup_nr_lru_pages(memcg
, (1 << LRU_INACTIVE_FILE
) |
3695 (1 << LRU_ACTIVE_FILE
));
3696 *pheadroom
= PAGE_COUNTER_MAX
;
3698 while ((parent
= parent_mem_cgroup(memcg
))) {
3699 unsigned long ceiling
= min(memcg
->memory
.limit
, memcg
->high
);
3700 unsigned long used
= page_counter_read(&memcg
->memory
);
3702 *pheadroom
= min(*pheadroom
, ceiling
- min(ceiling
, used
));
3707 #else /* CONFIG_CGROUP_WRITEBACK */
3709 static int memcg_wb_domain_init(struct mem_cgroup
*memcg
, gfp_t gfp
)
3714 static void memcg_wb_domain_exit(struct mem_cgroup
*memcg
)
3718 static void memcg_wb_domain_size_changed(struct mem_cgroup
*memcg
)
3722 #endif /* CONFIG_CGROUP_WRITEBACK */
3725 * DO NOT USE IN NEW FILES.
3727 * "cgroup.event_control" implementation.
3729 * This is way over-engineered. It tries to support fully configurable
3730 * events for each user. Such level of flexibility is completely
3731 * unnecessary especially in the light of the planned unified hierarchy.
3733 * Please deprecate this and replace with something simpler if at all
3738 * Unregister event and free resources.
3740 * Gets called from workqueue.
3742 static void memcg_event_remove(struct work_struct
*work
)
3744 struct mem_cgroup_event
*event
=
3745 container_of(work
, struct mem_cgroup_event
, remove
);
3746 struct mem_cgroup
*memcg
= event
->memcg
;
3748 remove_wait_queue(event
->wqh
, &event
->wait
);
3750 event
->unregister_event(memcg
, event
->eventfd
);
3752 /* Notify userspace the event is going away. */
3753 eventfd_signal(event
->eventfd
, 1);
3755 eventfd_ctx_put(event
->eventfd
);
3757 css_put(&memcg
->css
);
3761 * Gets called on POLLHUP on eventfd when user closes it.
3763 * Called with wqh->lock held and interrupts disabled.
3765 static int memcg_event_wake(wait_queue_t
*wait
, unsigned mode
,
3766 int sync
, void *key
)
3768 struct mem_cgroup_event
*event
=
3769 container_of(wait
, struct mem_cgroup_event
, wait
);
3770 struct mem_cgroup
*memcg
= event
->memcg
;
3771 unsigned long flags
= (unsigned long)key
;
3773 if (flags
& POLLHUP
) {
3775 * If the event has been detached at cgroup removal, we
3776 * can simply return knowing the other side will cleanup
3779 * We can't race against event freeing since the other
3780 * side will require wqh->lock via remove_wait_queue(),
3783 spin_lock(&memcg
->event_list_lock
);
3784 if (!list_empty(&event
->list
)) {
3785 list_del_init(&event
->list
);
3787 * We are in atomic context, but cgroup_event_remove()
3788 * may sleep, so we have to call it in workqueue.
3790 schedule_work(&event
->remove
);
3792 spin_unlock(&memcg
->event_list_lock
);
3798 static void memcg_event_ptable_queue_proc(struct file
*file
,
3799 wait_queue_head_t
*wqh
, poll_table
*pt
)
3801 struct mem_cgroup_event
*event
=
3802 container_of(pt
, struct mem_cgroup_event
, pt
);
3805 add_wait_queue(wqh
, &event
->wait
);
3809 * DO NOT USE IN NEW FILES.
3811 * Parse input and register new cgroup event handler.
3813 * Input must be in format '<event_fd> <control_fd> <args>'.
3814 * Interpretation of args is defined by control file implementation.
3816 static ssize_t
memcg_write_event_control(struct kernfs_open_file
*of
,
3817 char *buf
, size_t nbytes
, loff_t off
)
3819 struct cgroup_subsys_state
*css
= of_css(of
);
3820 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
3821 struct mem_cgroup_event
*event
;
3822 struct cgroup_subsys_state
*cfile_css
;
3823 unsigned int efd
, cfd
;
3830 buf
= strstrip(buf
);
3832 efd
= simple_strtoul(buf
, &endp
, 10);
3837 cfd
= simple_strtoul(buf
, &endp
, 10);
3838 if ((*endp
!= ' ') && (*endp
!= '\0'))
3842 event
= kzalloc(sizeof(*event
), GFP_KERNEL
);
3846 event
->memcg
= memcg
;
3847 INIT_LIST_HEAD(&event
->list
);
3848 init_poll_funcptr(&event
->pt
, memcg_event_ptable_queue_proc
);
3849 init_waitqueue_func_entry(&event
->wait
, memcg_event_wake
);
3850 INIT_WORK(&event
->remove
, memcg_event_remove
);
3858 event
->eventfd
= eventfd_ctx_fileget(efile
.file
);
3859 if (IS_ERR(event
->eventfd
)) {
3860 ret
= PTR_ERR(event
->eventfd
);
3867 goto out_put_eventfd
;
3870 /* the process need read permission on control file */
3871 /* AV: shouldn't we check that it's been opened for read instead? */
3872 ret
= inode_permission(file_inode(cfile
.file
), MAY_READ
);
3877 * Determine the event callbacks and set them in @event. This used
3878 * to be done via struct cftype but cgroup core no longer knows
3879 * about these events. The following is crude but the whole thing
3880 * is for compatibility anyway.
3882 * DO NOT ADD NEW FILES.
3884 name
= cfile
.file
->f_path
.dentry
->d_name
.name
;
3886 if (!strcmp(name
, "memory.usage_in_bytes")) {
3887 event
->register_event
= mem_cgroup_usage_register_event
;
3888 event
->unregister_event
= mem_cgroup_usage_unregister_event
;
3889 } else if (!strcmp(name
, "memory.oom_control")) {
3890 event
->register_event
= mem_cgroup_oom_register_event
;
3891 event
->unregister_event
= mem_cgroup_oom_unregister_event
;
3892 } else if (!strcmp(name
, "memory.pressure_level")) {
3893 event
->register_event
= vmpressure_register_event
;
3894 event
->unregister_event
= vmpressure_unregister_event
;
3895 } else if (!strcmp(name
, "memory.memsw.usage_in_bytes")) {
3896 event
->register_event
= memsw_cgroup_usage_register_event
;
3897 event
->unregister_event
= memsw_cgroup_usage_unregister_event
;
3904 * Verify @cfile should belong to @css. Also, remaining events are
3905 * automatically removed on cgroup destruction but the removal is
3906 * asynchronous, so take an extra ref on @css.
3908 cfile_css
= css_tryget_online_from_dir(cfile
.file
->f_path
.dentry
->d_parent
,
3909 &memory_cgrp_subsys
);
3911 if (IS_ERR(cfile_css
))
3913 if (cfile_css
!= css
) {
3918 ret
= event
->register_event(memcg
, event
->eventfd
, buf
);
3922 efile
.file
->f_op
->poll(efile
.file
, &event
->pt
);
3924 spin_lock(&memcg
->event_list_lock
);
3925 list_add(&event
->list
, &memcg
->event_list
);
3926 spin_unlock(&memcg
->event_list_lock
);
3938 eventfd_ctx_put(event
->eventfd
);
3947 static struct cftype mem_cgroup_legacy_files
[] = {
3949 .name
= "usage_in_bytes",
3950 .private = MEMFILE_PRIVATE(_MEM
, RES_USAGE
),
3951 .read_u64
= mem_cgroup_read_u64
,
3954 .name
= "max_usage_in_bytes",
3955 .private = MEMFILE_PRIVATE(_MEM
, RES_MAX_USAGE
),
3956 .write
= mem_cgroup_reset
,
3957 .read_u64
= mem_cgroup_read_u64
,
3960 .name
= "limit_in_bytes",
3961 .private = MEMFILE_PRIVATE(_MEM
, RES_LIMIT
),
3962 .write
= mem_cgroup_write
,
3963 .read_u64
= mem_cgroup_read_u64
,
3966 .name
= "soft_limit_in_bytes",
3967 .private = MEMFILE_PRIVATE(_MEM
, RES_SOFT_LIMIT
),
3968 .write
= mem_cgroup_write
,
3969 .read_u64
= mem_cgroup_read_u64
,
3973 .private = MEMFILE_PRIVATE(_MEM
, RES_FAILCNT
),
3974 .write
= mem_cgroup_reset
,
3975 .read_u64
= mem_cgroup_read_u64
,
3979 .seq_show
= memcg_stat_show
,
3982 .name
= "force_empty",
3983 .write
= mem_cgroup_force_empty_write
,
3986 .name
= "use_hierarchy",
3987 .write_u64
= mem_cgroup_hierarchy_write
,
3988 .read_u64
= mem_cgroup_hierarchy_read
,
3991 .name
= "cgroup.event_control", /* XXX: for compat */
3992 .write
= memcg_write_event_control
,
3993 .flags
= CFTYPE_NO_PREFIX
| CFTYPE_WORLD_WRITABLE
,
3996 .name
= "swappiness",
3997 .read_u64
= mem_cgroup_swappiness_read
,
3998 .write_u64
= mem_cgroup_swappiness_write
,
4001 .name
= "move_charge_at_immigrate",
4002 .read_u64
= mem_cgroup_move_charge_read
,
4003 .write_u64
= mem_cgroup_move_charge_write
,
4006 .name
= "oom_control",
4007 .seq_show
= mem_cgroup_oom_control_read
,
4008 .write_u64
= mem_cgroup_oom_control_write
,
4009 .private = MEMFILE_PRIVATE(_OOM_TYPE
, OOM_CONTROL
),
4012 .name
= "pressure_level",
4016 .name
= "numa_stat",
4017 .seq_show
= memcg_numa_stat_show
,
4021 .name
= "kmem.limit_in_bytes",
4022 .private = MEMFILE_PRIVATE(_KMEM
, RES_LIMIT
),
4023 .write
= mem_cgroup_write
,
4024 .read_u64
= mem_cgroup_read_u64
,
4027 .name
= "kmem.usage_in_bytes",
4028 .private = MEMFILE_PRIVATE(_KMEM
, RES_USAGE
),
4029 .read_u64
= mem_cgroup_read_u64
,
4032 .name
= "kmem.failcnt",
4033 .private = MEMFILE_PRIVATE(_KMEM
, RES_FAILCNT
),
4034 .write
= mem_cgroup_reset
,
4035 .read_u64
= mem_cgroup_read_u64
,
4038 .name
= "kmem.max_usage_in_bytes",
4039 .private = MEMFILE_PRIVATE(_KMEM
, RES_MAX_USAGE
),
4040 .write
= mem_cgroup_reset
,
4041 .read_u64
= mem_cgroup_read_u64
,
4043 #ifdef CONFIG_SLABINFO
4045 .name
= "kmem.slabinfo",
4046 .seq_start
= slab_start
,
4047 .seq_next
= slab_next
,
4048 .seq_stop
= slab_stop
,
4049 .seq_show
= memcg_slab_show
,
4053 .name
= "kmem.tcp.limit_in_bytes",
4054 .private = MEMFILE_PRIVATE(_TCP
, RES_LIMIT
),
4055 .write
= mem_cgroup_write
,
4056 .read_u64
= mem_cgroup_read_u64
,
4059 .name
= "kmem.tcp.usage_in_bytes",
4060 .private = MEMFILE_PRIVATE(_TCP
, RES_USAGE
),
4061 .read_u64
= mem_cgroup_read_u64
,
4064 .name
= "kmem.tcp.failcnt",
4065 .private = MEMFILE_PRIVATE(_TCP
, RES_FAILCNT
),
4066 .write
= mem_cgroup_reset
,
4067 .read_u64
= mem_cgroup_read_u64
,
4070 .name
= "kmem.tcp.max_usage_in_bytes",
4071 .private = MEMFILE_PRIVATE(_TCP
, RES_MAX_USAGE
),
4072 .write
= mem_cgroup_reset
,
4073 .read_u64
= mem_cgroup_read_u64
,
4075 { }, /* terminate */
4079 * Private memory cgroup IDR
4081 * Swap-out records and page cache shadow entries need to store memcg
4082 * references in constrained space, so we maintain an ID space that is
4083 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4084 * memory-controlled cgroups to 64k.
4086 * However, there usually are many references to the oflline CSS after
4087 * the cgroup has been destroyed, such as page cache or reclaimable
4088 * slab objects, that don't need to hang on to the ID. We want to keep
4089 * those dead CSS from occupying IDs, or we might quickly exhaust the
4090 * relatively small ID space and prevent the creation of new cgroups
4091 * even when there are much fewer than 64k cgroups - possibly none.
4093 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4094 * be freed and recycled when it's no longer needed, which is usually
4095 * when the CSS is offlined.
4097 * The only exception to that are records of swapped out tmpfs/shmem
4098 * pages that need to be attributed to live ancestors on swapin. But
4099 * those references are manageable from userspace.
4102 static DEFINE_IDR(mem_cgroup_idr
);
4104 static void mem_cgroup_id_remove(struct mem_cgroup
*memcg
)
4106 if (memcg
->id
.id
> 0) {
4107 idr_remove(&mem_cgroup_idr
, memcg
->id
.id
);
4112 static void mem_cgroup_id_get_many(struct mem_cgroup
*memcg
, unsigned int n
)
4114 VM_BUG_ON(atomic_read(&memcg
->id
.ref
) <= 0);
4115 atomic_add(n
, &memcg
->id
.ref
);
4118 static void mem_cgroup_id_put_many(struct mem_cgroup
*memcg
, unsigned int n
)
4120 VM_BUG_ON(atomic_read(&memcg
->id
.ref
) < n
);
4121 if (atomic_sub_and_test(n
, &memcg
->id
.ref
)) {
4122 mem_cgroup_id_remove(memcg
);
4124 /* Memcg ID pins CSS */
4125 css_put(&memcg
->css
);
4129 static inline void mem_cgroup_id_get(struct mem_cgroup
*memcg
)
4131 mem_cgroup_id_get_many(memcg
, 1);
4134 static inline void mem_cgroup_id_put(struct mem_cgroup
*memcg
)
4136 mem_cgroup_id_put_many(memcg
, 1);
4140 * mem_cgroup_from_id - look up a memcg from a memcg id
4141 * @id: the memcg id to look up
4143 * Caller must hold rcu_read_lock().
4145 struct mem_cgroup
*mem_cgroup_from_id(unsigned short id
)
4147 WARN_ON_ONCE(!rcu_read_lock_held());
4148 return idr_find(&mem_cgroup_idr
, id
);
4151 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup
*memcg
, int node
)
4153 struct mem_cgroup_per_node
*pn
;
4156 * This routine is called against possible nodes.
4157 * But it's BUG to call kmalloc() against offline node.
4159 * TODO: this routine can waste much memory for nodes which will
4160 * never be onlined. It's better to use memory hotplug callback
4163 if (!node_state(node
, N_NORMAL_MEMORY
))
4165 pn
= kzalloc_node(sizeof(*pn
), GFP_KERNEL
, tmp
);
4169 lruvec_init(&pn
->lruvec
);
4170 pn
->usage_in_excess
= 0;
4171 pn
->on_tree
= false;
4174 memcg
->nodeinfo
[node
] = pn
;
4178 static void free_mem_cgroup_per_node_info(struct mem_cgroup
*memcg
, int node
)
4180 kfree(memcg
->nodeinfo
[node
]);
4183 static void __mem_cgroup_free(struct mem_cgroup
*memcg
)
4188 free_mem_cgroup_per_node_info(memcg
, node
);
4189 free_percpu(memcg
->stat
);
4193 static void mem_cgroup_free(struct mem_cgroup
*memcg
)
4195 memcg_wb_domain_exit(memcg
);
4196 __mem_cgroup_free(memcg
);
4199 static struct mem_cgroup
*mem_cgroup_alloc(void)
4201 struct mem_cgroup
*memcg
;
4205 size
= sizeof(struct mem_cgroup
);
4206 size
+= nr_node_ids
* sizeof(struct mem_cgroup_per_node
*);
4208 memcg
= kzalloc(size
, GFP_KERNEL
);
4212 memcg
->id
.id
= idr_alloc(&mem_cgroup_idr
, NULL
,
4213 1, MEM_CGROUP_ID_MAX
,
4215 if (memcg
->id
.id
< 0)
4218 memcg
->stat
= alloc_percpu(struct mem_cgroup_stat_cpu
);
4223 if (alloc_mem_cgroup_per_node_info(memcg
, node
))
4226 if (memcg_wb_domain_init(memcg
, GFP_KERNEL
))
4229 INIT_WORK(&memcg
->high_work
, high_work_func
);
4230 memcg
->last_scanned_node
= MAX_NUMNODES
;
4231 INIT_LIST_HEAD(&memcg
->oom_notify
);
4232 mutex_init(&memcg
->thresholds_lock
);
4233 spin_lock_init(&memcg
->move_lock
);
4234 vmpressure_init(&memcg
->vmpressure
);
4235 INIT_LIST_HEAD(&memcg
->event_list
);
4236 spin_lock_init(&memcg
->event_list_lock
);
4237 memcg
->socket_pressure
= jiffies
;
4239 memcg
->kmemcg_id
= -1;
4241 #ifdef CONFIG_CGROUP_WRITEBACK
4242 INIT_LIST_HEAD(&memcg
->cgwb_list
);
4244 idr_replace(&mem_cgroup_idr
, memcg
, memcg
->id
.id
);
4247 mem_cgroup_id_remove(memcg
);
4248 __mem_cgroup_free(memcg
);
4252 static struct cgroup_subsys_state
* __ref
4253 mem_cgroup_css_alloc(struct cgroup_subsys_state
*parent_css
)
4255 struct mem_cgroup
*parent
= mem_cgroup_from_css(parent_css
);
4256 struct mem_cgroup
*memcg
;
4257 long error
= -ENOMEM
;
4259 memcg
= mem_cgroup_alloc();
4261 return ERR_PTR(error
);
4263 memcg
->high
= PAGE_COUNTER_MAX
;
4264 memcg
->soft_limit
= PAGE_COUNTER_MAX
;
4266 memcg
->swappiness
= mem_cgroup_swappiness(parent
);
4267 memcg
->oom_kill_disable
= parent
->oom_kill_disable
;
4269 if (parent
&& parent
->use_hierarchy
) {
4270 memcg
->use_hierarchy
= true;
4271 page_counter_init(&memcg
->memory
, &parent
->memory
);
4272 page_counter_init(&memcg
->swap
, &parent
->swap
);
4273 page_counter_init(&memcg
->memsw
, &parent
->memsw
);
4274 page_counter_init(&memcg
->kmem
, &parent
->kmem
);
4275 page_counter_init(&memcg
->tcpmem
, &parent
->tcpmem
);
4277 page_counter_init(&memcg
->memory
, NULL
);
4278 page_counter_init(&memcg
->swap
, NULL
);
4279 page_counter_init(&memcg
->memsw
, NULL
);
4280 page_counter_init(&memcg
->kmem
, NULL
);
4281 page_counter_init(&memcg
->tcpmem
, NULL
);
4283 * Deeper hierachy with use_hierarchy == false doesn't make
4284 * much sense so let cgroup subsystem know about this
4285 * unfortunate state in our controller.
4287 if (parent
!= root_mem_cgroup
)
4288 memory_cgrp_subsys
.broken_hierarchy
= true;
4291 /* The following stuff does not apply to the root */
4293 root_mem_cgroup
= memcg
;
4297 error
= memcg_online_kmem(memcg
);
4301 if (cgroup_subsys_on_dfl(memory_cgrp_subsys
) && !cgroup_memory_nosocket
)
4302 static_branch_inc(&memcg_sockets_enabled_key
);
4306 mem_cgroup_id_remove(memcg
);
4307 mem_cgroup_free(memcg
);
4308 return ERR_PTR(-ENOMEM
);
4311 static int mem_cgroup_css_online(struct cgroup_subsys_state
*css
)
4313 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
4315 /* Online state pins memcg ID, memcg ID pins CSS */
4316 atomic_set(&memcg
->id
.ref
, 1);
4321 static void mem_cgroup_css_offline(struct cgroup_subsys_state
*css
)
4323 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
4324 struct mem_cgroup_event
*event
, *tmp
;
4327 * Unregister events and notify userspace.
4328 * Notify userspace about cgroup removing only after rmdir of cgroup
4329 * directory to avoid race between userspace and kernelspace.
4331 spin_lock(&memcg
->event_list_lock
);
4332 list_for_each_entry_safe(event
, tmp
, &memcg
->event_list
, list
) {
4333 list_del_init(&event
->list
);
4334 schedule_work(&event
->remove
);
4336 spin_unlock(&memcg
->event_list_lock
);
4338 memcg_offline_kmem(memcg
);
4339 wb_memcg_offline(memcg
);
4341 mem_cgroup_id_put(memcg
);
4344 static void mem_cgroup_css_released(struct cgroup_subsys_state
*css
)
4346 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
4348 invalidate_reclaim_iterators(memcg
);
4351 static void mem_cgroup_css_free(struct cgroup_subsys_state
*css
)
4353 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
4355 if (cgroup_subsys_on_dfl(memory_cgrp_subsys
) && !cgroup_memory_nosocket
)
4356 static_branch_dec(&memcg_sockets_enabled_key
);
4358 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
) && memcg
->tcpmem_active
)
4359 static_branch_dec(&memcg_sockets_enabled_key
);
4361 vmpressure_cleanup(&memcg
->vmpressure
);
4362 cancel_work_sync(&memcg
->high_work
);
4363 mem_cgroup_remove_from_trees(memcg
);
4364 memcg_free_kmem(memcg
);
4365 mem_cgroup_free(memcg
);
4369 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4370 * @css: the target css
4372 * Reset the states of the mem_cgroup associated with @css. This is
4373 * invoked when the userland requests disabling on the default hierarchy
4374 * but the memcg is pinned through dependency. The memcg should stop
4375 * applying policies and should revert to the vanilla state as it may be
4376 * made visible again.
4378 * The current implementation only resets the essential configurations.
4379 * This needs to be expanded to cover all the visible parts.
4381 static void mem_cgroup_css_reset(struct cgroup_subsys_state
*css
)
4383 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
4385 page_counter_limit(&memcg
->memory
, PAGE_COUNTER_MAX
);
4386 page_counter_limit(&memcg
->swap
, PAGE_COUNTER_MAX
);
4387 page_counter_limit(&memcg
->memsw
, PAGE_COUNTER_MAX
);
4388 page_counter_limit(&memcg
->kmem
, PAGE_COUNTER_MAX
);
4389 page_counter_limit(&memcg
->tcpmem
, PAGE_COUNTER_MAX
);
4391 memcg
->high
= PAGE_COUNTER_MAX
;
4392 memcg
->soft_limit
= PAGE_COUNTER_MAX
;
4393 memcg_wb_domain_size_changed(memcg
);
4397 /* Handlers for move charge at task migration. */
4398 static int mem_cgroup_do_precharge(unsigned long count
)
4402 /* Try a single bulk charge without reclaim first, kswapd may wake */
4403 ret
= try_charge(mc
.to
, GFP_KERNEL
& ~__GFP_DIRECT_RECLAIM
, count
);
4405 mc
.precharge
+= count
;
4409 /* Try charges one by one with reclaim, but do not retry */
4411 ret
= try_charge(mc
.to
, GFP_KERNEL
| __GFP_NORETRY
, 1);
4425 enum mc_target_type
{
4431 static struct page
*mc_handle_present_pte(struct vm_area_struct
*vma
,
4432 unsigned long addr
, pte_t ptent
)
4434 struct page
*page
= vm_normal_page(vma
, addr
, ptent
);
4436 if (!page
|| !page_mapped(page
))
4438 if (PageAnon(page
)) {
4439 if (!(mc
.flags
& MOVE_ANON
))
4442 if (!(mc
.flags
& MOVE_FILE
))
4445 if (!get_page_unless_zero(page
))
4452 static struct page
*mc_handle_swap_pte(struct vm_area_struct
*vma
,
4453 pte_t ptent
, swp_entry_t
*entry
)
4455 struct page
*page
= NULL
;
4456 swp_entry_t ent
= pte_to_swp_entry(ptent
);
4458 if (!(mc
.flags
& MOVE_ANON
) || non_swap_entry(ent
))
4461 * Because lookup_swap_cache() updates some statistics counter,
4462 * we call find_get_page() with swapper_space directly.
4464 page
= find_get_page(swap_address_space(ent
), swp_offset(ent
));
4465 if (do_memsw_account())
4466 entry
->val
= ent
.val
;
4471 static struct page
*mc_handle_swap_pte(struct vm_area_struct
*vma
,
4472 pte_t ptent
, swp_entry_t
*entry
)
4478 static struct page
*mc_handle_file_pte(struct vm_area_struct
*vma
,
4479 unsigned long addr
, pte_t ptent
, swp_entry_t
*entry
)
4481 struct page
*page
= NULL
;
4482 struct address_space
*mapping
;
4485 if (!vma
->vm_file
) /* anonymous vma */
4487 if (!(mc
.flags
& MOVE_FILE
))
4490 mapping
= vma
->vm_file
->f_mapping
;
4491 pgoff
= linear_page_index(vma
, addr
);
4493 /* page is moved even if it's not RSS of this task(page-faulted). */
4495 /* shmem/tmpfs may report page out on swap: account for that too. */
4496 if (shmem_mapping(mapping
)) {
4497 page
= find_get_entry(mapping
, pgoff
);
4498 if (radix_tree_exceptional_entry(page
)) {
4499 swp_entry_t swp
= radix_to_swp_entry(page
);
4500 if (do_memsw_account())
4502 page
= find_get_page(swap_address_space(swp
),
4506 page
= find_get_page(mapping
, pgoff
);
4508 page
= find_get_page(mapping
, pgoff
);
4514 * mem_cgroup_move_account - move account of the page
4516 * @compound: charge the page as compound or small page
4517 * @from: mem_cgroup which the page is moved from.
4518 * @to: mem_cgroup which the page is moved to. @from != @to.
4520 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4522 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4525 static int mem_cgroup_move_account(struct page
*page
,
4527 struct mem_cgroup
*from
,
4528 struct mem_cgroup
*to
)
4530 unsigned long flags
;
4531 unsigned int nr_pages
= compound
? hpage_nr_pages(page
) : 1;
4535 VM_BUG_ON(from
== to
);
4536 VM_BUG_ON_PAGE(PageLRU(page
), page
);
4537 VM_BUG_ON(compound
&& !PageTransHuge(page
));
4540 * Prevent mem_cgroup_migrate() from looking at
4541 * page->mem_cgroup of its source page while we change it.
4544 if (!trylock_page(page
))
4548 if (page
->mem_cgroup
!= from
)
4551 anon
= PageAnon(page
);
4553 spin_lock_irqsave(&from
->move_lock
, flags
);
4555 if (!anon
&& page_mapped(page
)) {
4556 __this_cpu_sub(from
->stat
->count
[MEM_CGROUP_STAT_FILE_MAPPED
],
4558 __this_cpu_add(to
->stat
->count
[MEM_CGROUP_STAT_FILE_MAPPED
],
4563 * move_lock grabbed above and caller set from->moving_account, so
4564 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4565 * So mapping should be stable for dirty pages.
4567 if (!anon
&& PageDirty(page
)) {
4568 struct address_space
*mapping
= page_mapping(page
);
4570 if (mapping_cap_account_dirty(mapping
)) {
4571 __this_cpu_sub(from
->stat
->count
[MEM_CGROUP_STAT_DIRTY
],
4573 __this_cpu_add(to
->stat
->count
[MEM_CGROUP_STAT_DIRTY
],
4578 if (PageWriteback(page
)) {
4579 __this_cpu_sub(from
->stat
->count
[MEM_CGROUP_STAT_WRITEBACK
],
4581 __this_cpu_add(to
->stat
->count
[MEM_CGROUP_STAT_WRITEBACK
],
4586 * It is safe to change page->mem_cgroup here because the page
4587 * is referenced, charged, and isolated - we can't race with
4588 * uncharging, charging, migration, or LRU putback.
4591 /* caller should have done css_get */
4592 page
->mem_cgroup
= to
;
4593 spin_unlock_irqrestore(&from
->move_lock
, flags
);
4597 local_irq_disable();
4598 mem_cgroup_charge_statistics(to
, page
, compound
, nr_pages
);
4599 memcg_check_events(to
, page
);
4600 mem_cgroup_charge_statistics(from
, page
, compound
, -nr_pages
);
4601 memcg_check_events(from
, page
);
4610 * get_mctgt_type - get target type of moving charge
4611 * @vma: the vma the pte to be checked belongs
4612 * @addr: the address corresponding to the pte to be checked
4613 * @ptent: the pte to be checked
4614 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4617 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4618 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4619 * move charge. if @target is not NULL, the page is stored in target->page
4620 * with extra refcnt got(Callers should handle it).
4621 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4622 * target for charge migration. if @target is not NULL, the entry is stored
4625 * Called with pte lock held.
4628 static enum mc_target_type
get_mctgt_type(struct vm_area_struct
*vma
,
4629 unsigned long addr
, pte_t ptent
, union mc_target
*target
)
4631 struct page
*page
= NULL
;
4632 enum mc_target_type ret
= MC_TARGET_NONE
;
4633 swp_entry_t ent
= { .val
= 0 };
4635 if (pte_present(ptent
))
4636 page
= mc_handle_present_pte(vma
, addr
, ptent
);
4637 else if (is_swap_pte(ptent
))
4638 page
= mc_handle_swap_pte(vma
, ptent
, &ent
);
4639 else if (pte_none(ptent
))
4640 page
= mc_handle_file_pte(vma
, addr
, ptent
, &ent
);
4642 if (!page
&& !ent
.val
)
4646 * Do only loose check w/o serialization.
4647 * mem_cgroup_move_account() checks the page is valid or
4648 * not under LRU exclusion.
4650 if (page
->mem_cgroup
== mc
.from
) {
4651 ret
= MC_TARGET_PAGE
;
4653 target
->page
= page
;
4655 if (!ret
|| !target
)
4658 /* There is a swap entry and a page doesn't exist or isn't charged */
4659 if (ent
.val
&& !ret
&&
4660 mem_cgroup_id(mc
.from
) == lookup_swap_cgroup_id(ent
)) {
4661 ret
= MC_TARGET_SWAP
;
4668 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4670 * We don't consider swapping or file mapped pages because THP does not
4671 * support them for now.
4672 * Caller should make sure that pmd_trans_huge(pmd) is true.
4674 static enum mc_target_type
get_mctgt_type_thp(struct vm_area_struct
*vma
,
4675 unsigned long addr
, pmd_t pmd
, union mc_target
*target
)
4677 struct page
*page
= NULL
;
4678 enum mc_target_type ret
= MC_TARGET_NONE
;
4680 page
= pmd_page(pmd
);
4681 VM_BUG_ON_PAGE(!page
|| !PageHead(page
), page
);
4682 if (!(mc
.flags
& MOVE_ANON
))
4684 if (page
->mem_cgroup
== mc
.from
) {
4685 ret
= MC_TARGET_PAGE
;
4688 target
->page
= page
;
4694 static inline enum mc_target_type
get_mctgt_type_thp(struct vm_area_struct
*vma
,
4695 unsigned long addr
, pmd_t pmd
, union mc_target
*target
)
4697 return MC_TARGET_NONE
;
4701 static int mem_cgroup_count_precharge_pte_range(pmd_t
*pmd
,
4702 unsigned long addr
, unsigned long end
,
4703 struct mm_walk
*walk
)
4705 struct vm_area_struct
*vma
= walk
->vma
;
4709 ptl
= pmd_trans_huge_lock(pmd
, vma
);
4711 if (get_mctgt_type_thp(vma
, addr
, *pmd
, NULL
) == MC_TARGET_PAGE
)
4712 mc
.precharge
+= HPAGE_PMD_NR
;
4717 if (pmd_trans_unstable(pmd
))
4719 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
4720 for (; addr
!= end
; pte
++, addr
+= PAGE_SIZE
)
4721 if (get_mctgt_type(vma
, addr
, *pte
, NULL
))
4722 mc
.precharge
++; /* increment precharge temporarily */
4723 pte_unmap_unlock(pte
- 1, ptl
);
4729 static unsigned long mem_cgroup_count_precharge(struct mm_struct
*mm
)
4731 unsigned long precharge
;
4733 struct mm_walk mem_cgroup_count_precharge_walk
= {
4734 .pmd_entry
= mem_cgroup_count_precharge_pte_range
,
4737 down_read(&mm
->mmap_sem
);
4738 walk_page_range(0, mm
->highest_vm_end
,
4739 &mem_cgroup_count_precharge_walk
);
4740 up_read(&mm
->mmap_sem
);
4742 precharge
= mc
.precharge
;
4748 static int mem_cgroup_precharge_mc(struct mm_struct
*mm
)
4750 unsigned long precharge
= mem_cgroup_count_precharge(mm
);
4752 VM_BUG_ON(mc
.moving_task
);
4753 mc
.moving_task
= current
;
4754 return mem_cgroup_do_precharge(precharge
);
4757 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4758 static void __mem_cgroup_clear_mc(void)
4760 struct mem_cgroup
*from
= mc
.from
;
4761 struct mem_cgroup
*to
= mc
.to
;
4763 /* we must uncharge all the leftover precharges from mc.to */
4765 cancel_charge(mc
.to
, mc
.precharge
);
4769 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4770 * we must uncharge here.
4772 if (mc
.moved_charge
) {
4773 cancel_charge(mc
.from
, mc
.moved_charge
);
4774 mc
.moved_charge
= 0;
4776 /* we must fixup refcnts and charges */
4777 if (mc
.moved_swap
) {
4778 /* uncharge swap account from the old cgroup */
4779 if (!mem_cgroup_is_root(mc
.from
))
4780 page_counter_uncharge(&mc
.from
->memsw
, mc
.moved_swap
);
4782 mem_cgroup_id_put_many(mc
.from
, mc
.moved_swap
);
4785 * we charged both to->memory and to->memsw, so we
4786 * should uncharge to->memory.
4788 if (!mem_cgroup_is_root(mc
.to
))
4789 page_counter_uncharge(&mc
.to
->memory
, mc
.moved_swap
);
4791 mem_cgroup_id_get_many(mc
.to
, mc
.moved_swap
);
4792 css_put_many(&mc
.to
->css
, mc
.moved_swap
);
4796 memcg_oom_recover(from
);
4797 memcg_oom_recover(to
);
4798 wake_up_all(&mc
.waitq
);
4801 static void mem_cgroup_clear_mc(void)
4803 struct mm_struct
*mm
= mc
.mm
;
4806 * we must clear moving_task before waking up waiters at the end of
4809 mc
.moving_task
= NULL
;
4810 __mem_cgroup_clear_mc();
4811 spin_lock(&mc
.lock
);
4815 spin_unlock(&mc
.lock
);
4820 static int mem_cgroup_can_attach(struct cgroup_taskset
*tset
)
4822 struct cgroup_subsys_state
*css
;
4823 struct mem_cgroup
*memcg
= NULL
; /* unneeded init to make gcc happy */
4824 struct mem_cgroup
*from
;
4825 struct task_struct
*leader
, *p
;
4826 struct mm_struct
*mm
;
4827 unsigned long move_flags
;
4830 /* charge immigration isn't supported on the default hierarchy */
4831 if (cgroup_subsys_on_dfl(memory_cgrp_subsys
))
4835 * Multi-process migrations only happen on the default hierarchy
4836 * where charge immigration is not used. Perform charge
4837 * immigration if @tset contains a leader and whine if there are
4841 cgroup_taskset_for_each_leader(leader
, css
, tset
) {
4844 memcg
= mem_cgroup_from_css(css
);
4850 * We are now commited to this value whatever it is. Changes in this
4851 * tunable will only affect upcoming migrations, not the current one.
4852 * So we need to save it, and keep it going.
4854 move_flags
= READ_ONCE(memcg
->move_charge_at_immigrate
);
4858 from
= mem_cgroup_from_task(p
);
4860 VM_BUG_ON(from
== memcg
);
4862 mm
= get_task_mm(p
);
4865 /* We move charges only when we move a owner of the mm */
4866 if (mm
->owner
== p
) {
4869 VM_BUG_ON(mc
.precharge
);
4870 VM_BUG_ON(mc
.moved_charge
);
4871 VM_BUG_ON(mc
.moved_swap
);
4873 spin_lock(&mc
.lock
);
4877 mc
.flags
= move_flags
;
4878 spin_unlock(&mc
.lock
);
4879 /* We set mc.moving_task later */
4881 ret
= mem_cgroup_precharge_mc(mm
);
4883 mem_cgroup_clear_mc();
4890 static void mem_cgroup_cancel_attach(struct cgroup_taskset
*tset
)
4893 mem_cgroup_clear_mc();
4896 static int mem_cgroup_move_charge_pte_range(pmd_t
*pmd
,
4897 unsigned long addr
, unsigned long end
,
4898 struct mm_walk
*walk
)
4901 struct vm_area_struct
*vma
= walk
->vma
;
4904 enum mc_target_type target_type
;
4905 union mc_target target
;
4908 ptl
= pmd_trans_huge_lock(pmd
, vma
);
4910 if (mc
.precharge
< HPAGE_PMD_NR
) {
4914 target_type
= get_mctgt_type_thp(vma
, addr
, *pmd
, &target
);
4915 if (target_type
== MC_TARGET_PAGE
) {
4917 if (!isolate_lru_page(page
)) {
4918 if (!mem_cgroup_move_account(page
, true,
4920 mc
.precharge
-= HPAGE_PMD_NR
;
4921 mc
.moved_charge
+= HPAGE_PMD_NR
;
4923 putback_lru_page(page
);
4931 if (pmd_trans_unstable(pmd
))
4934 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
4935 for (; addr
!= end
; addr
+= PAGE_SIZE
) {
4936 pte_t ptent
= *(pte
++);
4942 switch (get_mctgt_type(vma
, addr
, ptent
, &target
)) {
4943 case MC_TARGET_PAGE
:
4946 * We can have a part of the split pmd here. Moving it
4947 * can be done but it would be too convoluted so simply
4948 * ignore such a partial THP and keep it in original
4949 * memcg. There should be somebody mapping the head.
4951 if (PageTransCompound(page
))
4953 if (isolate_lru_page(page
))
4955 if (!mem_cgroup_move_account(page
, false,
4958 /* we uncharge from mc.from later. */
4961 putback_lru_page(page
);
4962 put
: /* get_mctgt_type() gets the page */
4965 case MC_TARGET_SWAP
:
4967 if (!mem_cgroup_move_swap_account(ent
, mc
.from
, mc
.to
)) {
4969 /* we fixup refcnts and charges later. */
4977 pte_unmap_unlock(pte
- 1, ptl
);
4982 * We have consumed all precharges we got in can_attach().
4983 * We try charge one by one, but don't do any additional
4984 * charges to mc.to if we have failed in charge once in attach()
4987 ret
= mem_cgroup_do_precharge(1);
4995 static void mem_cgroup_move_charge(void)
4997 struct mm_walk mem_cgroup_move_charge_walk
= {
4998 .pmd_entry
= mem_cgroup_move_charge_pte_range
,
5002 lru_add_drain_all();
5004 * Signal lock_page_memcg() to take the memcg's move_lock
5005 * while we're moving its pages to another memcg. Then wait
5006 * for already started RCU-only updates to finish.
5008 atomic_inc(&mc
.from
->moving_account
);
5011 if (unlikely(!down_read_trylock(&mc
.mm
->mmap_sem
))) {
5013 * Someone who are holding the mmap_sem might be waiting in
5014 * waitq. So we cancel all extra charges, wake up all waiters,
5015 * and retry. Because we cancel precharges, we might not be able
5016 * to move enough charges, but moving charge is a best-effort
5017 * feature anyway, so it wouldn't be a big problem.
5019 __mem_cgroup_clear_mc();
5024 * When we have consumed all precharges and failed in doing
5025 * additional charge, the page walk just aborts.
5027 walk_page_range(0, mc
.mm
->highest_vm_end
, &mem_cgroup_move_charge_walk
);
5029 up_read(&mc
.mm
->mmap_sem
);
5030 atomic_dec(&mc
.from
->moving_account
);
5033 static void mem_cgroup_move_task(void)
5036 mem_cgroup_move_charge();
5037 mem_cgroup_clear_mc();
5040 #else /* !CONFIG_MMU */
5041 static int mem_cgroup_can_attach(struct cgroup_taskset
*tset
)
5045 static void mem_cgroup_cancel_attach(struct cgroup_taskset
*tset
)
5048 static void mem_cgroup_move_task(void)
5054 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5055 * to verify whether we're attached to the default hierarchy on each mount
5058 static void mem_cgroup_bind(struct cgroup_subsys_state
*root_css
)
5061 * use_hierarchy is forced on the default hierarchy. cgroup core
5062 * guarantees that @root doesn't have any children, so turning it
5063 * on for the root memcg is enough.
5065 if (cgroup_subsys_on_dfl(memory_cgrp_subsys
))
5066 root_mem_cgroup
->use_hierarchy
= true;
5068 root_mem_cgroup
->use_hierarchy
= false;
5071 static u64
memory_current_read(struct cgroup_subsys_state
*css
,
5074 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
5076 return (u64
)page_counter_read(&memcg
->memory
) * PAGE_SIZE
;
5079 static int memory_low_show(struct seq_file
*m
, void *v
)
5081 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
5082 unsigned long low
= READ_ONCE(memcg
->low
);
5084 if (low
== PAGE_COUNTER_MAX
)
5085 seq_puts(m
, "max\n");
5087 seq_printf(m
, "%llu\n", (u64
)low
* PAGE_SIZE
);
5092 static ssize_t
memory_low_write(struct kernfs_open_file
*of
,
5093 char *buf
, size_t nbytes
, loff_t off
)
5095 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
5099 buf
= strstrip(buf
);
5100 err
= page_counter_memparse(buf
, "max", &low
);
5109 static int memory_high_show(struct seq_file
*m
, void *v
)
5111 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
5112 unsigned long high
= READ_ONCE(memcg
->high
);
5114 if (high
== PAGE_COUNTER_MAX
)
5115 seq_puts(m
, "max\n");
5117 seq_printf(m
, "%llu\n", (u64
)high
* PAGE_SIZE
);
5122 static ssize_t
memory_high_write(struct kernfs_open_file
*of
,
5123 char *buf
, size_t nbytes
, loff_t off
)
5125 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
5126 unsigned long nr_pages
;
5130 buf
= strstrip(buf
);
5131 err
= page_counter_memparse(buf
, "max", &high
);
5137 nr_pages
= page_counter_read(&memcg
->memory
);
5138 if (nr_pages
> high
)
5139 try_to_free_mem_cgroup_pages(memcg
, nr_pages
- high
,
5142 memcg_wb_domain_size_changed(memcg
);
5146 static int memory_max_show(struct seq_file
*m
, void *v
)
5148 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
5149 unsigned long max
= READ_ONCE(memcg
->memory
.limit
);
5151 if (max
== PAGE_COUNTER_MAX
)
5152 seq_puts(m
, "max\n");
5154 seq_printf(m
, "%llu\n", (u64
)max
* PAGE_SIZE
);
5159 static ssize_t
memory_max_write(struct kernfs_open_file
*of
,
5160 char *buf
, size_t nbytes
, loff_t off
)
5162 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
5163 unsigned int nr_reclaims
= MEM_CGROUP_RECLAIM_RETRIES
;
5164 bool drained
= false;
5168 buf
= strstrip(buf
);
5169 err
= page_counter_memparse(buf
, "max", &max
);
5173 xchg(&memcg
->memory
.limit
, max
);
5176 unsigned long nr_pages
= page_counter_read(&memcg
->memory
);
5178 if (nr_pages
<= max
)
5181 if (signal_pending(current
)) {
5187 drain_all_stock(memcg
);
5193 if (!try_to_free_mem_cgroup_pages(memcg
, nr_pages
- max
,
5199 mem_cgroup_events(memcg
, MEMCG_OOM
, 1);
5200 if (!mem_cgroup_out_of_memory(memcg
, GFP_KERNEL
, 0))
5204 memcg_wb_domain_size_changed(memcg
);
5208 static int memory_events_show(struct seq_file
*m
, void *v
)
5210 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
5212 seq_printf(m
, "low %lu\n", mem_cgroup_read_events(memcg
, MEMCG_LOW
));
5213 seq_printf(m
, "high %lu\n", mem_cgroup_read_events(memcg
, MEMCG_HIGH
));
5214 seq_printf(m
, "max %lu\n", mem_cgroup_read_events(memcg
, MEMCG_MAX
));
5215 seq_printf(m
, "oom %lu\n", mem_cgroup_read_events(memcg
, MEMCG_OOM
));
5220 static int memory_stat_show(struct seq_file
*m
, void *v
)
5222 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
5223 unsigned long stat
[MEMCG_NR_STAT
];
5224 unsigned long events
[MEMCG_NR_EVENTS
];
5228 * Provide statistics on the state of the memory subsystem as
5229 * well as cumulative event counters that show past behavior.
5231 * This list is ordered following a combination of these gradients:
5232 * 1) generic big picture -> specifics and details
5233 * 2) reflecting userspace activity -> reflecting kernel heuristics
5235 * Current memory state:
5238 tree_stat(memcg
, stat
);
5239 tree_events(memcg
, events
);
5241 seq_printf(m
, "anon %llu\n",
5242 (u64
)stat
[MEM_CGROUP_STAT_RSS
] * PAGE_SIZE
);
5243 seq_printf(m
, "file %llu\n",
5244 (u64
)stat
[MEM_CGROUP_STAT_CACHE
] * PAGE_SIZE
);
5245 seq_printf(m
, "kernel_stack %llu\n",
5246 (u64
)stat
[MEMCG_KERNEL_STACK_KB
] * 1024);
5247 seq_printf(m
, "slab %llu\n",
5248 (u64
)(stat
[MEMCG_SLAB_RECLAIMABLE
] +
5249 stat
[MEMCG_SLAB_UNRECLAIMABLE
]) * PAGE_SIZE
);
5250 seq_printf(m
, "sock %llu\n",
5251 (u64
)stat
[MEMCG_SOCK
] * PAGE_SIZE
);
5253 seq_printf(m
, "file_mapped %llu\n",
5254 (u64
)stat
[MEM_CGROUP_STAT_FILE_MAPPED
] * PAGE_SIZE
);
5255 seq_printf(m
, "file_dirty %llu\n",
5256 (u64
)stat
[MEM_CGROUP_STAT_DIRTY
] * PAGE_SIZE
);
5257 seq_printf(m
, "file_writeback %llu\n",
5258 (u64
)stat
[MEM_CGROUP_STAT_WRITEBACK
] * PAGE_SIZE
);
5260 for (i
= 0; i
< NR_LRU_LISTS
; i
++) {
5261 struct mem_cgroup
*mi
;
5262 unsigned long val
= 0;
5264 for_each_mem_cgroup_tree(mi
, memcg
)
5265 val
+= mem_cgroup_nr_lru_pages(mi
, BIT(i
));
5266 seq_printf(m
, "%s %llu\n",
5267 mem_cgroup_lru_names
[i
], (u64
)val
* PAGE_SIZE
);
5270 seq_printf(m
, "slab_reclaimable %llu\n",
5271 (u64
)stat
[MEMCG_SLAB_RECLAIMABLE
] * PAGE_SIZE
);
5272 seq_printf(m
, "slab_unreclaimable %llu\n",
5273 (u64
)stat
[MEMCG_SLAB_UNRECLAIMABLE
] * PAGE_SIZE
);
5275 /* Accumulated memory events */
5277 seq_printf(m
, "pgfault %lu\n",
5278 events
[MEM_CGROUP_EVENTS_PGFAULT
]);
5279 seq_printf(m
, "pgmajfault %lu\n",
5280 events
[MEM_CGROUP_EVENTS_PGMAJFAULT
]);
5285 static struct cftype memory_files
[] = {
5288 .flags
= CFTYPE_NOT_ON_ROOT
,
5289 .read_u64
= memory_current_read
,
5293 .flags
= CFTYPE_NOT_ON_ROOT
,
5294 .seq_show
= memory_low_show
,
5295 .write
= memory_low_write
,
5299 .flags
= CFTYPE_NOT_ON_ROOT
,
5300 .seq_show
= memory_high_show
,
5301 .write
= memory_high_write
,
5305 .flags
= CFTYPE_NOT_ON_ROOT
,
5306 .seq_show
= memory_max_show
,
5307 .write
= memory_max_write
,
5311 .flags
= CFTYPE_NOT_ON_ROOT
,
5312 .file_offset
= offsetof(struct mem_cgroup
, events_file
),
5313 .seq_show
= memory_events_show
,
5317 .flags
= CFTYPE_NOT_ON_ROOT
,
5318 .seq_show
= memory_stat_show
,
5323 struct cgroup_subsys memory_cgrp_subsys
= {
5324 .css_alloc
= mem_cgroup_css_alloc
,
5325 .css_online
= mem_cgroup_css_online
,
5326 .css_offline
= mem_cgroup_css_offline
,
5327 .css_released
= mem_cgroup_css_released
,
5328 .css_free
= mem_cgroup_css_free
,
5329 .css_reset
= mem_cgroup_css_reset
,
5330 .can_attach
= mem_cgroup_can_attach
,
5331 .cancel_attach
= mem_cgroup_cancel_attach
,
5332 .post_attach
= mem_cgroup_move_task
,
5333 .bind
= mem_cgroup_bind
,
5334 .dfl_cftypes
= memory_files
,
5335 .legacy_cftypes
= mem_cgroup_legacy_files
,
5340 * mem_cgroup_low - check if memory consumption is below the normal range
5341 * @root: the highest ancestor to consider
5342 * @memcg: the memory cgroup to check
5344 * Returns %true if memory consumption of @memcg, and that of all
5345 * configurable ancestors up to @root, is below the normal range.
5347 bool mem_cgroup_low(struct mem_cgroup
*root
, struct mem_cgroup
*memcg
)
5349 if (mem_cgroup_disabled())
5353 * The toplevel group doesn't have a configurable range, so
5354 * it's never low when looked at directly, and it is not
5355 * considered an ancestor when assessing the hierarchy.
5358 if (memcg
== root_mem_cgroup
)
5361 if (page_counter_read(&memcg
->memory
) >= memcg
->low
)
5364 while (memcg
!= root
) {
5365 memcg
= parent_mem_cgroup(memcg
);
5367 if (memcg
== root_mem_cgroup
)
5370 if (page_counter_read(&memcg
->memory
) >= memcg
->low
)
5377 * mem_cgroup_try_charge - try charging a page
5378 * @page: page to charge
5379 * @mm: mm context of the victim
5380 * @gfp_mask: reclaim mode
5381 * @memcgp: charged memcg return
5382 * @compound: charge the page as compound or small page
5384 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5385 * pages according to @gfp_mask if necessary.
5387 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5388 * Otherwise, an error code is returned.
5390 * After page->mapping has been set up, the caller must finalize the
5391 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5392 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5394 int mem_cgroup_try_charge(struct page
*page
, struct mm_struct
*mm
,
5395 gfp_t gfp_mask
, struct mem_cgroup
**memcgp
,
5398 struct mem_cgroup
*memcg
= NULL
;
5399 unsigned int nr_pages
= compound
? hpage_nr_pages(page
) : 1;
5402 if (mem_cgroup_disabled())
5405 if (PageSwapCache(page
)) {
5407 * Every swap fault against a single page tries to charge the
5408 * page, bail as early as possible. shmem_unuse() encounters
5409 * already charged pages, too. The USED bit is protected by
5410 * the page lock, which serializes swap cache removal, which
5411 * in turn serializes uncharging.
5413 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
5414 if (page
->mem_cgroup
)
5417 if (do_swap_account
) {
5418 swp_entry_t ent
= { .val
= page_private(page
), };
5419 unsigned short id
= lookup_swap_cgroup_id(ent
);
5422 memcg
= mem_cgroup_from_id(id
);
5423 if (memcg
&& !css_tryget_online(&memcg
->css
))
5430 memcg
= get_mem_cgroup_from_mm(mm
);
5432 ret
= try_charge(memcg
, gfp_mask
, nr_pages
);
5434 css_put(&memcg
->css
);
5441 * mem_cgroup_commit_charge - commit a page charge
5442 * @page: page to charge
5443 * @memcg: memcg to charge the page to
5444 * @lrucare: page might be on LRU already
5445 * @compound: charge the page as compound or small page
5447 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5448 * after page->mapping has been set up. This must happen atomically
5449 * as part of the page instantiation, i.e. under the page table lock
5450 * for anonymous pages, under the page lock for page and swap cache.
5452 * In addition, the page must not be on the LRU during the commit, to
5453 * prevent racing with task migration. If it might be, use @lrucare.
5455 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5457 void mem_cgroup_commit_charge(struct page
*page
, struct mem_cgroup
*memcg
,
5458 bool lrucare
, bool compound
)
5460 unsigned int nr_pages
= compound
? hpage_nr_pages(page
) : 1;
5462 VM_BUG_ON_PAGE(!page
->mapping
, page
);
5463 VM_BUG_ON_PAGE(PageLRU(page
) && !lrucare
, page
);
5465 if (mem_cgroup_disabled())
5468 * Swap faults will attempt to charge the same page multiple
5469 * times. But reuse_swap_page() might have removed the page
5470 * from swapcache already, so we can't check PageSwapCache().
5475 commit_charge(page
, memcg
, lrucare
);
5477 local_irq_disable();
5478 mem_cgroup_charge_statistics(memcg
, page
, compound
, nr_pages
);
5479 memcg_check_events(memcg
, page
);
5482 if (do_memsw_account() && PageSwapCache(page
)) {
5483 swp_entry_t entry
= { .val
= page_private(page
) };
5485 * The swap entry might not get freed for a long time,
5486 * let's not wait for it. The page already received a
5487 * memory+swap charge, drop the swap entry duplicate.
5489 mem_cgroup_uncharge_swap(entry
);
5494 * mem_cgroup_cancel_charge - cancel a page charge
5495 * @page: page to charge
5496 * @memcg: memcg to charge the page to
5497 * @compound: charge the page as compound or small page
5499 * Cancel a charge transaction started by mem_cgroup_try_charge().
5501 void mem_cgroup_cancel_charge(struct page
*page
, struct mem_cgroup
*memcg
,
5504 unsigned int nr_pages
= compound
? hpage_nr_pages(page
) : 1;
5506 if (mem_cgroup_disabled())
5509 * Swap faults will attempt to charge the same page multiple
5510 * times. But reuse_swap_page() might have removed the page
5511 * from swapcache already, so we can't check PageSwapCache().
5516 cancel_charge(memcg
, nr_pages
);
5519 static void uncharge_batch(struct mem_cgroup
*memcg
, unsigned long pgpgout
,
5520 unsigned long nr_anon
, unsigned long nr_file
,
5521 unsigned long nr_huge
, unsigned long nr_kmem
,
5522 struct page
*dummy_page
)
5524 unsigned long nr_pages
= nr_anon
+ nr_file
+ nr_kmem
;
5525 unsigned long flags
;
5527 if (!mem_cgroup_is_root(memcg
)) {
5528 page_counter_uncharge(&memcg
->memory
, nr_pages
);
5529 if (do_memsw_account())
5530 page_counter_uncharge(&memcg
->memsw
, nr_pages
);
5531 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
) && nr_kmem
)
5532 page_counter_uncharge(&memcg
->kmem
, nr_kmem
);
5533 memcg_oom_recover(memcg
);
5536 local_irq_save(flags
);
5537 __this_cpu_sub(memcg
->stat
->count
[MEM_CGROUP_STAT_RSS
], nr_anon
);
5538 __this_cpu_sub(memcg
->stat
->count
[MEM_CGROUP_STAT_CACHE
], nr_file
);
5539 __this_cpu_sub(memcg
->stat
->count
[MEM_CGROUP_STAT_RSS_HUGE
], nr_huge
);
5540 __this_cpu_add(memcg
->stat
->events
[MEM_CGROUP_EVENTS_PGPGOUT
], pgpgout
);
5541 __this_cpu_add(memcg
->stat
->nr_page_events
, nr_pages
);
5542 memcg_check_events(memcg
, dummy_page
);
5543 local_irq_restore(flags
);
5545 if (!mem_cgroup_is_root(memcg
))
5546 css_put_many(&memcg
->css
, nr_pages
);
5549 static void uncharge_list(struct list_head
*page_list
)
5551 struct mem_cgroup
*memcg
= NULL
;
5552 unsigned long nr_anon
= 0;
5553 unsigned long nr_file
= 0;
5554 unsigned long nr_huge
= 0;
5555 unsigned long nr_kmem
= 0;
5556 unsigned long pgpgout
= 0;
5557 struct list_head
*next
;
5561 * Note that the list can be a single page->lru; hence the
5562 * do-while loop instead of a simple list_for_each_entry().
5564 next
= page_list
->next
;
5566 page
= list_entry(next
, struct page
, lru
);
5567 next
= page
->lru
.next
;
5569 VM_BUG_ON_PAGE(PageLRU(page
), page
);
5570 VM_BUG_ON_PAGE(!PageHWPoison(page
) && page_count(page
), page
);
5572 if (!page
->mem_cgroup
)
5576 * Nobody should be changing or seriously looking at
5577 * page->mem_cgroup at this point, we have fully
5578 * exclusive access to the page.
5581 if (memcg
!= page
->mem_cgroup
) {
5583 uncharge_batch(memcg
, pgpgout
, nr_anon
, nr_file
,
5584 nr_huge
, nr_kmem
, page
);
5585 pgpgout
= nr_anon
= nr_file
=
5586 nr_huge
= nr_kmem
= 0;
5588 memcg
= page
->mem_cgroup
;
5591 if (!PageKmemcg(page
)) {
5592 unsigned int nr_pages
= 1;
5594 if (PageTransHuge(page
)) {
5595 nr_pages
<<= compound_order(page
);
5596 nr_huge
+= nr_pages
;
5599 nr_anon
+= nr_pages
;
5601 nr_file
+= nr_pages
;
5604 nr_kmem
+= 1 << compound_order(page
);
5605 __ClearPageKmemcg(page
);
5608 page
->mem_cgroup
= NULL
;
5609 } while (next
!= page_list
);
5612 uncharge_batch(memcg
, pgpgout
, nr_anon
, nr_file
,
5613 nr_huge
, nr_kmem
, page
);
5617 * mem_cgroup_uncharge - uncharge a page
5618 * @page: page to uncharge
5620 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5621 * mem_cgroup_commit_charge().
5623 void mem_cgroup_uncharge(struct page
*page
)
5625 if (mem_cgroup_disabled())
5628 /* Don't touch page->lru of any random page, pre-check: */
5629 if (!page
->mem_cgroup
)
5632 INIT_LIST_HEAD(&page
->lru
);
5633 uncharge_list(&page
->lru
);
5637 * mem_cgroup_uncharge_list - uncharge a list of page
5638 * @page_list: list of pages to uncharge
5640 * Uncharge a list of pages previously charged with
5641 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5643 void mem_cgroup_uncharge_list(struct list_head
*page_list
)
5645 if (mem_cgroup_disabled())
5648 if (!list_empty(page_list
))
5649 uncharge_list(page_list
);
5653 * mem_cgroup_migrate - charge a page's replacement
5654 * @oldpage: currently circulating page
5655 * @newpage: replacement page
5657 * Charge @newpage as a replacement page for @oldpage. @oldpage will
5658 * be uncharged upon free.
5660 * Both pages must be locked, @newpage->mapping must be set up.
5662 void mem_cgroup_migrate(struct page
*oldpage
, struct page
*newpage
)
5664 struct mem_cgroup
*memcg
;
5665 unsigned int nr_pages
;
5667 unsigned long flags
;
5669 VM_BUG_ON_PAGE(!PageLocked(oldpage
), oldpage
);
5670 VM_BUG_ON_PAGE(!PageLocked(newpage
), newpage
);
5671 VM_BUG_ON_PAGE(PageAnon(oldpage
) != PageAnon(newpage
), newpage
);
5672 VM_BUG_ON_PAGE(PageTransHuge(oldpage
) != PageTransHuge(newpage
),
5675 if (mem_cgroup_disabled())
5678 /* Page cache replacement: new page already charged? */
5679 if (newpage
->mem_cgroup
)
5682 /* Swapcache readahead pages can get replaced before being charged */
5683 memcg
= oldpage
->mem_cgroup
;
5687 /* Force-charge the new page. The old one will be freed soon */
5688 compound
= PageTransHuge(newpage
);
5689 nr_pages
= compound
? hpage_nr_pages(newpage
) : 1;
5691 page_counter_charge(&memcg
->memory
, nr_pages
);
5692 if (do_memsw_account())
5693 page_counter_charge(&memcg
->memsw
, nr_pages
);
5694 css_get_many(&memcg
->css
, nr_pages
);
5696 commit_charge(newpage
, memcg
, false);
5698 local_irq_save(flags
);
5699 mem_cgroup_charge_statistics(memcg
, newpage
, compound
, nr_pages
);
5700 memcg_check_events(memcg
, newpage
);
5701 local_irq_restore(flags
);
5704 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key
);
5705 EXPORT_SYMBOL(memcg_sockets_enabled_key
);
5707 void mem_cgroup_sk_alloc(struct sock
*sk
)
5709 struct mem_cgroup
*memcg
;
5711 if (!mem_cgroup_sockets_enabled
)
5715 * Socket cloning can throw us here with sk_memcg already
5716 * filled. It won't however, necessarily happen from
5717 * process context. So the test for root memcg given
5718 * the current task's memcg won't help us in this case.
5720 * Respecting the original socket's memcg is a better
5721 * decision in this case.
5724 BUG_ON(mem_cgroup_is_root(sk
->sk_memcg
));
5725 css_get(&sk
->sk_memcg
->css
);
5730 memcg
= mem_cgroup_from_task(current
);
5731 if (memcg
== root_mem_cgroup
)
5733 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
) && !memcg
->tcpmem_active
)
5735 if (css_tryget_online(&memcg
->css
))
5736 sk
->sk_memcg
= memcg
;
5741 void mem_cgroup_sk_free(struct sock
*sk
)
5744 css_put(&sk
->sk_memcg
->css
);
5748 * mem_cgroup_charge_skmem - charge socket memory
5749 * @memcg: memcg to charge
5750 * @nr_pages: number of pages to charge
5752 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5753 * @memcg's configured limit, %false if the charge had to be forced.
5755 bool mem_cgroup_charge_skmem(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
5757 gfp_t gfp_mask
= GFP_KERNEL
;
5759 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
)) {
5760 struct page_counter
*fail
;
5762 if (page_counter_try_charge(&memcg
->tcpmem
, nr_pages
, &fail
)) {
5763 memcg
->tcpmem_pressure
= 0;
5766 page_counter_charge(&memcg
->tcpmem
, nr_pages
);
5767 memcg
->tcpmem_pressure
= 1;
5771 /* Don't block in the packet receive path */
5773 gfp_mask
= GFP_NOWAIT
;
5775 this_cpu_add(memcg
->stat
->count
[MEMCG_SOCK
], nr_pages
);
5777 if (try_charge(memcg
, gfp_mask
, nr_pages
) == 0)
5780 try_charge(memcg
, gfp_mask
|__GFP_NOFAIL
, nr_pages
);
5785 * mem_cgroup_uncharge_skmem - uncharge socket memory
5786 * @memcg - memcg to uncharge
5787 * @nr_pages - number of pages to uncharge
5789 void mem_cgroup_uncharge_skmem(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
5791 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
)) {
5792 page_counter_uncharge(&memcg
->tcpmem
, nr_pages
);
5796 this_cpu_sub(memcg
->stat
->count
[MEMCG_SOCK
], nr_pages
);
5798 page_counter_uncharge(&memcg
->memory
, nr_pages
);
5799 css_put_many(&memcg
->css
, nr_pages
);
5802 static int __init
cgroup_memory(char *s
)
5806 while ((token
= strsep(&s
, ",")) != NULL
) {
5809 if (!strcmp(token
, "nosocket"))
5810 cgroup_memory_nosocket
= true;
5811 if (!strcmp(token
, "nokmem"))
5812 cgroup_memory_nokmem
= true;
5816 __setup("cgroup.memory=", cgroup_memory
);
5819 * subsys_initcall() for memory controller.
5821 * Some parts like hotcpu_notifier() have to be initialized from this context
5822 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5823 * everything that doesn't depend on a specific mem_cgroup structure should
5824 * be initialized from here.
5826 static int __init
mem_cgroup_init(void)
5832 * Kmem cache creation is mostly done with the slab_mutex held,
5833 * so use a special workqueue to avoid stalling all worker
5834 * threads in case lots of cgroups are created simultaneously.
5836 memcg_kmem_cache_create_wq
=
5837 alloc_ordered_workqueue("memcg_kmem_cache_create", 0);
5838 BUG_ON(!memcg_kmem_cache_create_wq
);
5841 hotcpu_notifier(memcg_cpu_hotplug_callback
, 0);
5843 for_each_possible_cpu(cpu
)
5844 INIT_WORK(&per_cpu_ptr(&memcg_stock
, cpu
)->work
,
5847 for_each_node(node
) {
5848 struct mem_cgroup_tree_per_node
*rtpn
;
5850 rtpn
= kzalloc_node(sizeof(*rtpn
), GFP_KERNEL
,
5851 node_online(node
) ? node
: NUMA_NO_NODE
);
5853 rtpn
->rb_root
= RB_ROOT
;
5854 spin_lock_init(&rtpn
->lock
);
5855 soft_limit_tree
.rb_tree_per_node
[node
] = rtpn
;
5860 subsys_initcall(mem_cgroup_init
);
5862 #ifdef CONFIG_MEMCG_SWAP
5863 static struct mem_cgroup
*mem_cgroup_id_get_online(struct mem_cgroup
*memcg
)
5865 while (!atomic_inc_not_zero(&memcg
->id
.ref
)) {
5867 * The root cgroup cannot be destroyed, so it's refcount must
5870 if (WARN_ON_ONCE(memcg
== root_mem_cgroup
)) {
5874 memcg
= parent_mem_cgroup(memcg
);
5876 memcg
= root_mem_cgroup
;
5882 * mem_cgroup_swapout - transfer a memsw charge to swap
5883 * @page: page whose memsw charge to transfer
5884 * @entry: swap entry to move the charge to
5886 * Transfer the memsw charge of @page to @entry.
5888 void mem_cgroup_swapout(struct page
*page
, swp_entry_t entry
)
5890 struct mem_cgroup
*memcg
, *swap_memcg
;
5891 unsigned short oldid
;
5893 VM_BUG_ON_PAGE(PageLRU(page
), page
);
5894 VM_BUG_ON_PAGE(page_count(page
), page
);
5896 if (!do_memsw_account())
5899 memcg
= page
->mem_cgroup
;
5901 /* Readahead page, never charged */
5906 * In case the memcg owning these pages has been offlined and doesn't
5907 * have an ID allocated to it anymore, charge the closest online
5908 * ancestor for the swap instead and transfer the memory+swap charge.
5910 swap_memcg
= mem_cgroup_id_get_online(memcg
);
5911 oldid
= swap_cgroup_record(entry
, mem_cgroup_id(swap_memcg
));
5912 VM_BUG_ON_PAGE(oldid
, page
);
5913 mem_cgroup_swap_statistics(swap_memcg
, true);
5915 page
->mem_cgroup
= NULL
;
5917 if (!mem_cgroup_is_root(memcg
))
5918 page_counter_uncharge(&memcg
->memory
, 1);
5920 if (memcg
!= swap_memcg
) {
5921 if (!mem_cgroup_is_root(swap_memcg
))
5922 page_counter_charge(&swap_memcg
->memsw
, 1);
5923 page_counter_uncharge(&memcg
->memsw
, 1);
5927 * Interrupts should be disabled here because the caller holds the
5928 * mapping->tree_lock lock which is taken with interrupts-off. It is
5929 * important here to have the interrupts disabled because it is the
5930 * only synchronisation we have for udpating the per-CPU variables.
5932 VM_BUG_ON(!irqs_disabled());
5933 mem_cgroup_charge_statistics(memcg
, page
, false, -1);
5934 memcg_check_events(memcg
, page
);
5936 if (!mem_cgroup_is_root(memcg
))
5937 css_put(&memcg
->css
);
5941 * mem_cgroup_try_charge_swap - try charging a swap entry
5942 * @page: page being added to swap
5943 * @entry: swap entry to charge
5945 * Try to charge @entry to the memcg that @page belongs to.
5947 * Returns 0 on success, -ENOMEM on failure.
5949 int mem_cgroup_try_charge_swap(struct page
*page
, swp_entry_t entry
)
5951 struct mem_cgroup
*memcg
;
5952 struct page_counter
*counter
;
5953 unsigned short oldid
;
5955 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
) || !do_swap_account
)
5958 memcg
= page
->mem_cgroup
;
5960 /* Readahead page, never charged */
5964 memcg
= mem_cgroup_id_get_online(memcg
);
5966 if (!mem_cgroup_is_root(memcg
) &&
5967 !page_counter_try_charge(&memcg
->swap
, 1, &counter
)) {
5968 mem_cgroup_id_put(memcg
);
5972 oldid
= swap_cgroup_record(entry
, mem_cgroup_id(memcg
));
5973 VM_BUG_ON_PAGE(oldid
, page
);
5974 mem_cgroup_swap_statistics(memcg
, true);
5980 * mem_cgroup_uncharge_swap - uncharge a swap entry
5981 * @entry: swap entry to uncharge
5983 * Drop the swap charge associated with @entry.
5985 void mem_cgroup_uncharge_swap(swp_entry_t entry
)
5987 struct mem_cgroup
*memcg
;
5990 if (!do_swap_account
)
5993 id
= swap_cgroup_record(entry
, 0);
5995 memcg
= mem_cgroup_from_id(id
);
5997 if (!mem_cgroup_is_root(memcg
)) {
5998 if (cgroup_subsys_on_dfl(memory_cgrp_subsys
))
5999 page_counter_uncharge(&memcg
->swap
, 1);
6001 page_counter_uncharge(&memcg
->memsw
, 1);
6003 mem_cgroup_swap_statistics(memcg
, false);
6004 mem_cgroup_id_put(memcg
);
6009 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup
*memcg
)
6011 long nr_swap_pages
= get_nr_swap_pages();
6013 if (!do_swap_account
|| !cgroup_subsys_on_dfl(memory_cgrp_subsys
))
6014 return nr_swap_pages
;
6015 for (; memcg
!= root_mem_cgroup
; memcg
= parent_mem_cgroup(memcg
))
6016 nr_swap_pages
= min_t(long, nr_swap_pages
,
6017 READ_ONCE(memcg
->swap
.limit
) -
6018 page_counter_read(&memcg
->swap
));
6019 return nr_swap_pages
;
6022 bool mem_cgroup_swap_full(struct page
*page
)
6024 struct mem_cgroup
*memcg
;
6026 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
6030 if (!do_swap_account
|| !cgroup_subsys_on_dfl(memory_cgrp_subsys
))
6033 memcg
= page
->mem_cgroup
;
6037 for (; memcg
!= root_mem_cgroup
; memcg
= parent_mem_cgroup(memcg
))
6038 if (page_counter_read(&memcg
->swap
) * 2 >= memcg
->swap
.limit
)
6044 /* for remember boot option*/
6045 #ifdef CONFIG_MEMCG_SWAP_ENABLED
6046 static int really_do_swap_account __initdata
= 1;
6048 static int really_do_swap_account __initdata
;
6051 static int __init
enable_swap_account(char *s
)
6053 if (!strcmp(s
, "1"))
6054 really_do_swap_account
= 1;
6055 else if (!strcmp(s
, "0"))
6056 really_do_swap_account
= 0;
6059 __setup("swapaccount=", enable_swap_account
);
6061 static u64
swap_current_read(struct cgroup_subsys_state
*css
,
6064 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
6066 return (u64
)page_counter_read(&memcg
->swap
) * PAGE_SIZE
;
6069 static int swap_max_show(struct seq_file
*m
, void *v
)
6071 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
6072 unsigned long max
= READ_ONCE(memcg
->swap
.limit
);
6074 if (max
== PAGE_COUNTER_MAX
)
6075 seq_puts(m
, "max\n");
6077 seq_printf(m
, "%llu\n", (u64
)max
* PAGE_SIZE
);
6082 static ssize_t
swap_max_write(struct kernfs_open_file
*of
,
6083 char *buf
, size_t nbytes
, loff_t off
)
6085 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
6089 buf
= strstrip(buf
);
6090 err
= page_counter_memparse(buf
, "max", &max
);
6094 mutex_lock(&memcg_limit_mutex
);
6095 err
= page_counter_limit(&memcg
->swap
, max
);
6096 mutex_unlock(&memcg_limit_mutex
);
6103 static struct cftype swap_files
[] = {
6105 .name
= "swap.current",
6106 .flags
= CFTYPE_NOT_ON_ROOT
,
6107 .read_u64
= swap_current_read
,
6111 .flags
= CFTYPE_NOT_ON_ROOT
,
6112 .seq_show
= swap_max_show
,
6113 .write
= swap_max_write
,
6118 static struct cftype memsw_cgroup_files
[] = {
6120 .name
= "memsw.usage_in_bytes",
6121 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_USAGE
),
6122 .read_u64
= mem_cgroup_read_u64
,
6125 .name
= "memsw.max_usage_in_bytes",
6126 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_MAX_USAGE
),
6127 .write
= mem_cgroup_reset
,
6128 .read_u64
= mem_cgroup_read_u64
,
6131 .name
= "memsw.limit_in_bytes",
6132 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_LIMIT
),
6133 .write
= mem_cgroup_write
,
6134 .read_u64
= mem_cgroup_read_u64
,
6137 .name
= "memsw.failcnt",
6138 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_FAILCNT
),
6139 .write
= mem_cgroup_reset
,
6140 .read_u64
= mem_cgroup_read_u64
,
6142 { }, /* terminate */
6145 static int __init
mem_cgroup_swap_init(void)
6147 if (!mem_cgroup_disabled() && really_do_swap_account
) {
6148 do_swap_account
= 1;
6149 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys
,
6151 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys
,
6152 memsw_cgroup_files
));
6156 subsys_initcall(mem_cgroup_swap_init
);
6158 #endif /* CONFIG_MEMCG_SWAP */