Linux 4.9.199
[linux/fpc-iii.git] / mm / shmem.c
blobac8a5fedc24542c4f95dfdae8495a80044c13d55
1 /*
2 * Resizable virtual memory filesystem for Linux.
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
21 * This file is released under the GPL.
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/export.h>
33 #include <linux/swap.h>
34 #include <linux/uio.h>
35 #include <linux/khugepaged.h>
37 static struct vfsmount *shm_mnt;
39 #ifdef CONFIG_SHMEM
41 * This virtual memory filesystem is heavily based on the ramfs. It
42 * extends ramfs by the ability to use swap and honor resource limits
43 * which makes it a completely usable filesystem.
46 #include <linux/xattr.h>
47 #include <linux/exportfs.h>
48 #include <linux/posix_acl.h>
49 #include <linux/posix_acl_xattr.h>
50 #include <linux/mman.h>
51 #include <linux/string.h>
52 #include <linux/slab.h>
53 #include <linux/backing-dev.h>
54 #include <linux/shmem_fs.h>
55 #include <linux/writeback.h>
56 #include <linux/blkdev.h>
57 #include <linux/pagevec.h>
58 #include <linux/percpu_counter.h>
59 #include <linux/falloc.h>
60 #include <linux/splice.h>
61 #include <linux/security.h>
62 #include <linux/swapops.h>
63 #include <linux/mempolicy.h>
64 #include <linux/namei.h>
65 #include <linux/ctype.h>
66 #include <linux/migrate.h>
67 #include <linux/highmem.h>
68 #include <linux/seq_file.h>
69 #include <linux/magic.h>
70 #include <linux/syscalls.h>
71 #include <linux/fcntl.h>
72 #include <uapi/linux/memfd.h>
74 #include <asm/uaccess.h>
75 #include <asm/pgtable.h>
77 #include "internal.h"
79 #define BLOCKS_PER_PAGE (PAGE_SIZE/512)
80 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
82 /* Pretend that each entry is of this size in directory's i_size */
83 #define BOGO_DIRENT_SIZE 20
85 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
86 #define SHORT_SYMLINK_LEN 128
89 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
90 * inode->i_private (with i_mutex making sure that it has only one user at
91 * a time): we would prefer not to enlarge the shmem inode just for that.
93 struct shmem_falloc {
94 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
95 pgoff_t start; /* start of range currently being fallocated */
96 pgoff_t next; /* the next page offset to be fallocated */
97 pgoff_t nr_falloced; /* how many new pages have been fallocated */
98 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
101 #ifdef CONFIG_TMPFS
102 static unsigned long shmem_default_max_blocks(void)
104 return totalram_pages / 2;
107 static unsigned long shmem_default_max_inodes(void)
109 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
111 #endif
113 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
114 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
115 struct shmem_inode_info *info, pgoff_t index);
116 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
117 struct page **pagep, enum sgp_type sgp,
118 gfp_t gfp, struct mm_struct *fault_mm, int *fault_type);
120 int shmem_getpage(struct inode *inode, pgoff_t index,
121 struct page **pagep, enum sgp_type sgp)
123 return shmem_getpage_gfp(inode, index, pagep, sgp,
124 mapping_gfp_mask(inode->i_mapping), NULL, NULL);
127 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
129 return sb->s_fs_info;
133 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
134 * for shared memory and for shared anonymous (/dev/zero) mappings
135 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
136 * consistent with the pre-accounting of private mappings ...
138 static inline int shmem_acct_size(unsigned long flags, loff_t size)
140 return (flags & VM_NORESERVE) ?
141 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
144 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
146 if (!(flags & VM_NORESERVE))
147 vm_unacct_memory(VM_ACCT(size));
150 static inline int shmem_reacct_size(unsigned long flags,
151 loff_t oldsize, loff_t newsize)
153 if (!(flags & VM_NORESERVE)) {
154 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
155 return security_vm_enough_memory_mm(current->mm,
156 VM_ACCT(newsize) - VM_ACCT(oldsize));
157 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
158 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
160 return 0;
164 * ... whereas tmpfs objects are accounted incrementally as
165 * pages are allocated, in order to allow large sparse files.
166 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
167 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
169 static inline int shmem_acct_block(unsigned long flags, long pages)
171 if (!(flags & VM_NORESERVE))
172 return 0;
174 return security_vm_enough_memory_mm(current->mm,
175 pages * VM_ACCT(PAGE_SIZE));
178 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
180 if (flags & VM_NORESERVE)
181 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
184 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
186 struct shmem_inode_info *info = SHMEM_I(inode);
187 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
189 if (shmem_acct_block(info->flags, pages))
190 return false;
192 if (sbinfo->max_blocks) {
193 if (percpu_counter_compare(&sbinfo->used_blocks,
194 sbinfo->max_blocks - pages) > 0)
195 goto unacct;
196 percpu_counter_add(&sbinfo->used_blocks, pages);
199 return true;
201 unacct:
202 shmem_unacct_blocks(info->flags, pages);
203 return false;
206 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
208 struct shmem_inode_info *info = SHMEM_I(inode);
209 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
211 if (sbinfo->max_blocks)
212 percpu_counter_sub(&sbinfo->used_blocks, pages);
213 shmem_unacct_blocks(info->flags, pages);
216 static const struct super_operations shmem_ops;
217 static const struct address_space_operations shmem_aops;
218 static const struct file_operations shmem_file_operations;
219 static const struct inode_operations shmem_inode_operations;
220 static const struct inode_operations shmem_dir_inode_operations;
221 static const struct inode_operations shmem_special_inode_operations;
222 static const struct vm_operations_struct shmem_vm_ops;
223 static struct file_system_type shmem_fs_type;
225 static LIST_HEAD(shmem_swaplist);
226 static DEFINE_MUTEX(shmem_swaplist_mutex);
228 static int shmem_reserve_inode(struct super_block *sb)
230 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
231 if (sbinfo->max_inodes) {
232 spin_lock(&sbinfo->stat_lock);
233 if (!sbinfo->free_inodes) {
234 spin_unlock(&sbinfo->stat_lock);
235 return -ENOSPC;
237 sbinfo->free_inodes--;
238 spin_unlock(&sbinfo->stat_lock);
240 return 0;
243 static void shmem_free_inode(struct super_block *sb)
245 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
246 if (sbinfo->max_inodes) {
247 spin_lock(&sbinfo->stat_lock);
248 sbinfo->free_inodes++;
249 spin_unlock(&sbinfo->stat_lock);
254 * shmem_recalc_inode - recalculate the block usage of an inode
255 * @inode: inode to recalc
257 * We have to calculate the free blocks since the mm can drop
258 * undirtied hole pages behind our back.
260 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
261 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
263 * It has to be called with the spinlock held.
265 static void shmem_recalc_inode(struct inode *inode)
267 struct shmem_inode_info *info = SHMEM_I(inode);
268 long freed;
270 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
271 if (freed > 0) {
272 info->alloced -= freed;
273 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
274 shmem_inode_unacct_blocks(inode, freed);
278 bool shmem_charge(struct inode *inode, long pages)
280 struct shmem_inode_info *info = SHMEM_I(inode);
281 unsigned long flags;
283 if (!shmem_inode_acct_block(inode, pages))
284 return false;
286 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
287 inode->i_mapping->nrpages += pages;
289 spin_lock_irqsave(&info->lock, flags);
290 info->alloced += pages;
291 inode->i_blocks += pages * BLOCKS_PER_PAGE;
292 shmem_recalc_inode(inode);
293 spin_unlock_irqrestore(&info->lock, flags);
295 return true;
298 void shmem_uncharge(struct inode *inode, long pages)
300 struct shmem_inode_info *info = SHMEM_I(inode);
301 unsigned long flags;
303 /* nrpages adjustment done by __delete_from_page_cache() or caller */
305 spin_lock_irqsave(&info->lock, flags);
306 info->alloced -= pages;
307 inode->i_blocks -= pages * BLOCKS_PER_PAGE;
308 shmem_recalc_inode(inode);
309 spin_unlock_irqrestore(&info->lock, flags);
311 shmem_inode_unacct_blocks(inode, pages);
315 * Replace item expected in radix tree by a new item, while holding tree lock.
317 static int shmem_radix_tree_replace(struct address_space *mapping,
318 pgoff_t index, void *expected, void *replacement)
320 void **pslot;
321 void *item;
323 VM_BUG_ON(!expected);
324 VM_BUG_ON(!replacement);
325 pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
326 if (!pslot)
327 return -ENOENT;
328 item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock);
329 if (item != expected)
330 return -ENOENT;
331 radix_tree_replace_slot(pslot, replacement);
332 return 0;
336 * Sometimes, before we decide whether to proceed or to fail, we must check
337 * that an entry was not already brought back from swap by a racing thread.
339 * Checking page is not enough: by the time a SwapCache page is locked, it
340 * might be reused, and again be SwapCache, using the same swap as before.
342 static bool shmem_confirm_swap(struct address_space *mapping,
343 pgoff_t index, swp_entry_t swap)
345 void *item;
347 rcu_read_lock();
348 item = radix_tree_lookup(&mapping->page_tree, index);
349 rcu_read_unlock();
350 return item == swp_to_radix_entry(swap);
354 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
356 * SHMEM_HUGE_NEVER:
357 * disables huge pages for the mount;
358 * SHMEM_HUGE_ALWAYS:
359 * enables huge pages for the mount;
360 * SHMEM_HUGE_WITHIN_SIZE:
361 * only allocate huge pages if the page will be fully within i_size,
362 * also respect fadvise()/madvise() hints;
363 * SHMEM_HUGE_ADVISE:
364 * only allocate huge pages if requested with fadvise()/madvise();
367 #define SHMEM_HUGE_NEVER 0
368 #define SHMEM_HUGE_ALWAYS 1
369 #define SHMEM_HUGE_WITHIN_SIZE 2
370 #define SHMEM_HUGE_ADVISE 3
373 * Special values.
374 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
376 * SHMEM_HUGE_DENY:
377 * disables huge on shm_mnt and all mounts, for emergency use;
378 * SHMEM_HUGE_FORCE:
379 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
382 #define SHMEM_HUGE_DENY (-1)
383 #define SHMEM_HUGE_FORCE (-2)
385 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
386 /* ifdef here to avoid bloating shmem.o when not necessary */
388 int shmem_huge __read_mostly;
390 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
391 static int shmem_parse_huge(const char *str)
393 if (!strcmp(str, "never"))
394 return SHMEM_HUGE_NEVER;
395 if (!strcmp(str, "always"))
396 return SHMEM_HUGE_ALWAYS;
397 if (!strcmp(str, "within_size"))
398 return SHMEM_HUGE_WITHIN_SIZE;
399 if (!strcmp(str, "advise"))
400 return SHMEM_HUGE_ADVISE;
401 if (!strcmp(str, "deny"))
402 return SHMEM_HUGE_DENY;
403 if (!strcmp(str, "force"))
404 return SHMEM_HUGE_FORCE;
405 return -EINVAL;
408 static const char *shmem_format_huge(int huge)
410 switch (huge) {
411 case SHMEM_HUGE_NEVER:
412 return "never";
413 case SHMEM_HUGE_ALWAYS:
414 return "always";
415 case SHMEM_HUGE_WITHIN_SIZE:
416 return "within_size";
417 case SHMEM_HUGE_ADVISE:
418 return "advise";
419 case SHMEM_HUGE_DENY:
420 return "deny";
421 case SHMEM_HUGE_FORCE:
422 return "force";
423 default:
424 VM_BUG_ON(1);
425 return "bad_val";
428 #endif
430 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
431 struct shrink_control *sc, unsigned long nr_to_split)
433 LIST_HEAD(list), *pos, *next;
434 LIST_HEAD(to_remove);
435 struct inode *inode;
436 struct shmem_inode_info *info;
437 struct page *page;
438 unsigned long batch = sc ? sc->nr_to_scan : 128;
439 int removed = 0, split = 0;
441 if (list_empty(&sbinfo->shrinklist))
442 return SHRINK_STOP;
444 spin_lock(&sbinfo->shrinklist_lock);
445 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
446 info = list_entry(pos, struct shmem_inode_info, shrinklist);
448 /* pin the inode */
449 inode = igrab(&info->vfs_inode);
451 /* inode is about to be evicted */
452 if (!inode) {
453 list_del_init(&info->shrinklist);
454 removed++;
455 goto next;
458 /* Check if there's anything to gain */
459 if (round_up(inode->i_size, PAGE_SIZE) ==
460 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
461 list_move(&info->shrinklist, &to_remove);
462 removed++;
463 goto next;
466 list_move(&info->shrinklist, &list);
467 next:
468 if (!--batch)
469 break;
471 spin_unlock(&sbinfo->shrinklist_lock);
473 list_for_each_safe(pos, next, &to_remove) {
474 info = list_entry(pos, struct shmem_inode_info, shrinklist);
475 inode = &info->vfs_inode;
476 list_del_init(&info->shrinklist);
477 iput(inode);
480 list_for_each_safe(pos, next, &list) {
481 int ret;
483 info = list_entry(pos, struct shmem_inode_info, shrinklist);
484 inode = &info->vfs_inode;
486 if (nr_to_split && split >= nr_to_split)
487 goto leave;
489 page = find_get_page(inode->i_mapping,
490 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
491 if (!page)
492 goto drop;
494 /* No huge page at the end of the file: nothing to split */
495 if (!PageTransHuge(page)) {
496 put_page(page);
497 goto drop;
501 * Leave the inode on the list if we failed to lock
502 * the page at this time.
504 * Waiting for the lock may lead to deadlock in the
505 * reclaim path.
507 if (!trylock_page(page)) {
508 put_page(page);
509 goto leave;
512 ret = split_huge_page(page);
513 unlock_page(page);
514 put_page(page);
516 /* If split failed leave the inode on the list */
517 if (ret)
518 goto leave;
520 split++;
521 drop:
522 list_del_init(&info->shrinklist);
523 removed++;
524 leave:
525 iput(inode);
528 spin_lock(&sbinfo->shrinklist_lock);
529 list_splice_tail(&list, &sbinfo->shrinklist);
530 sbinfo->shrinklist_len -= removed;
531 spin_unlock(&sbinfo->shrinklist_lock);
533 return split;
536 static long shmem_unused_huge_scan(struct super_block *sb,
537 struct shrink_control *sc)
539 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
541 if (!READ_ONCE(sbinfo->shrinklist_len))
542 return SHRINK_STOP;
544 return shmem_unused_huge_shrink(sbinfo, sc, 0);
547 static long shmem_unused_huge_count(struct super_block *sb,
548 struct shrink_control *sc)
550 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
551 return READ_ONCE(sbinfo->shrinklist_len);
553 #else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
555 #define shmem_huge SHMEM_HUGE_DENY
557 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
558 struct shrink_control *sc, unsigned long nr_to_split)
560 return 0;
562 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
565 * Like add_to_page_cache_locked, but error if expected item has gone.
567 static int shmem_add_to_page_cache(struct page *page,
568 struct address_space *mapping,
569 pgoff_t index, void *expected)
571 int error, nr = hpage_nr_pages(page);
573 VM_BUG_ON_PAGE(PageTail(page), page);
574 VM_BUG_ON_PAGE(index != round_down(index, nr), page);
575 VM_BUG_ON_PAGE(!PageLocked(page), page);
576 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
577 VM_BUG_ON(expected && PageTransHuge(page));
579 page_ref_add(page, nr);
580 page->mapping = mapping;
581 page->index = index;
583 spin_lock_irq(&mapping->tree_lock);
584 if (PageTransHuge(page)) {
585 void __rcu **results;
586 pgoff_t idx;
587 int i;
589 error = 0;
590 if (radix_tree_gang_lookup_slot(&mapping->page_tree,
591 &results, &idx, index, 1) &&
592 idx < index + HPAGE_PMD_NR) {
593 error = -EEXIST;
596 if (!error) {
597 for (i = 0; i < HPAGE_PMD_NR; i++) {
598 error = radix_tree_insert(&mapping->page_tree,
599 index + i, page + i);
600 VM_BUG_ON(error);
602 count_vm_event(THP_FILE_ALLOC);
604 } else if (!expected) {
605 error = radix_tree_insert(&mapping->page_tree, index, page);
606 } else {
607 error = shmem_radix_tree_replace(mapping, index, expected,
608 page);
611 if (!error) {
612 mapping->nrpages += nr;
613 if (PageTransHuge(page))
614 __inc_node_page_state(page, NR_SHMEM_THPS);
615 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
616 __mod_node_page_state(page_pgdat(page), NR_SHMEM, nr);
617 spin_unlock_irq(&mapping->tree_lock);
618 } else {
619 page->mapping = NULL;
620 spin_unlock_irq(&mapping->tree_lock);
621 page_ref_sub(page, nr);
623 return error;
627 * Like delete_from_page_cache, but substitutes swap for page.
629 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
631 struct address_space *mapping = page->mapping;
632 int error;
634 VM_BUG_ON_PAGE(PageCompound(page), page);
636 spin_lock_irq(&mapping->tree_lock);
637 error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
638 page->mapping = NULL;
639 mapping->nrpages--;
640 __dec_node_page_state(page, NR_FILE_PAGES);
641 __dec_node_page_state(page, NR_SHMEM);
642 spin_unlock_irq(&mapping->tree_lock);
643 put_page(page);
644 BUG_ON(error);
648 * Remove swap entry from radix tree, free the swap and its page cache.
650 static int shmem_free_swap(struct address_space *mapping,
651 pgoff_t index, void *radswap)
653 void *old;
655 spin_lock_irq(&mapping->tree_lock);
656 old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
657 spin_unlock_irq(&mapping->tree_lock);
658 if (old != radswap)
659 return -ENOENT;
660 free_swap_and_cache(radix_to_swp_entry(radswap));
661 return 0;
665 * Determine (in bytes) how many of the shmem object's pages mapped by the
666 * given offsets are swapped out.
668 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
669 * as long as the inode doesn't go away and racy results are not a problem.
671 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
672 pgoff_t start, pgoff_t end)
674 struct radix_tree_iter iter;
675 void **slot;
676 struct page *page;
677 unsigned long swapped = 0;
679 rcu_read_lock();
681 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
682 if (iter.index >= end)
683 break;
685 page = radix_tree_deref_slot(slot);
687 if (radix_tree_deref_retry(page)) {
688 slot = radix_tree_iter_retry(&iter);
689 continue;
692 if (radix_tree_exceptional_entry(page))
693 swapped++;
695 if (need_resched()) {
696 cond_resched_rcu();
697 slot = radix_tree_iter_next(&iter);
701 rcu_read_unlock();
703 return swapped << PAGE_SHIFT;
707 * Determine (in bytes) how many of the shmem object's pages mapped by the
708 * given vma is swapped out.
710 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
711 * as long as the inode doesn't go away and racy results are not a problem.
713 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
715 struct inode *inode = file_inode(vma->vm_file);
716 struct shmem_inode_info *info = SHMEM_I(inode);
717 struct address_space *mapping = inode->i_mapping;
718 unsigned long swapped;
720 /* Be careful as we don't hold info->lock */
721 swapped = READ_ONCE(info->swapped);
724 * The easier cases are when the shmem object has nothing in swap, or
725 * the vma maps it whole. Then we can simply use the stats that we
726 * already track.
728 if (!swapped)
729 return 0;
731 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
732 return swapped << PAGE_SHIFT;
734 /* Here comes the more involved part */
735 return shmem_partial_swap_usage(mapping,
736 linear_page_index(vma, vma->vm_start),
737 linear_page_index(vma, vma->vm_end));
741 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
743 void shmem_unlock_mapping(struct address_space *mapping)
745 struct pagevec pvec;
746 pgoff_t indices[PAGEVEC_SIZE];
747 pgoff_t index = 0;
749 pagevec_init(&pvec, 0);
751 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
753 while (!mapping_unevictable(mapping)) {
755 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
756 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
758 pvec.nr = find_get_entries(mapping, index,
759 PAGEVEC_SIZE, pvec.pages, indices);
760 if (!pvec.nr)
761 break;
762 index = indices[pvec.nr - 1] + 1;
763 pagevec_remove_exceptionals(&pvec);
764 check_move_unevictable_pages(pvec.pages, pvec.nr);
765 pagevec_release(&pvec);
766 cond_resched();
771 * Remove range of pages and swap entries from radix tree, and free them.
772 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
774 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
775 bool unfalloc)
777 struct address_space *mapping = inode->i_mapping;
778 struct shmem_inode_info *info = SHMEM_I(inode);
779 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
780 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
781 unsigned int partial_start = lstart & (PAGE_SIZE - 1);
782 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
783 struct pagevec pvec;
784 pgoff_t indices[PAGEVEC_SIZE];
785 long nr_swaps_freed = 0;
786 pgoff_t index;
787 int i;
789 if (lend == -1)
790 end = -1; /* unsigned, so actually very big */
792 pagevec_init(&pvec, 0);
793 index = start;
794 while (index < end) {
795 pvec.nr = find_get_entries(mapping, index,
796 min(end - index, (pgoff_t)PAGEVEC_SIZE),
797 pvec.pages, indices);
798 if (!pvec.nr)
799 break;
800 for (i = 0; i < pagevec_count(&pvec); i++) {
801 struct page *page = pvec.pages[i];
803 index = indices[i];
804 if (index >= end)
805 break;
807 if (radix_tree_exceptional_entry(page)) {
808 if (unfalloc)
809 continue;
810 nr_swaps_freed += !shmem_free_swap(mapping,
811 index, page);
812 continue;
815 VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
817 if (!trylock_page(page))
818 continue;
820 if (PageTransTail(page)) {
821 /* Middle of THP: zero out the page */
822 clear_highpage(page);
823 unlock_page(page);
824 continue;
825 } else if (PageTransHuge(page)) {
826 if (index == round_down(end, HPAGE_PMD_NR)) {
828 * Range ends in the middle of THP:
829 * zero out the page
831 clear_highpage(page);
832 unlock_page(page);
833 continue;
835 index += HPAGE_PMD_NR - 1;
836 i += HPAGE_PMD_NR - 1;
839 if (!unfalloc || !PageUptodate(page)) {
840 VM_BUG_ON_PAGE(PageTail(page), page);
841 if (page_mapping(page) == mapping) {
842 VM_BUG_ON_PAGE(PageWriteback(page), page);
843 truncate_inode_page(mapping, page);
846 unlock_page(page);
848 pagevec_remove_exceptionals(&pvec);
849 pagevec_release(&pvec);
850 cond_resched();
851 index++;
854 if (partial_start) {
855 struct page *page = NULL;
856 shmem_getpage(inode, start - 1, &page, SGP_READ);
857 if (page) {
858 unsigned int top = PAGE_SIZE;
859 if (start > end) {
860 top = partial_end;
861 partial_end = 0;
863 zero_user_segment(page, partial_start, top);
864 set_page_dirty(page);
865 unlock_page(page);
866 put_page(page);
869 if (partial_end) {
870 struct page *page = NULL;
871 shmem_getpage(inode, end, &page, SGP_READ);
872 if (page) {
873 zero_user_segment(page, 0, partial_end);
874 set_page_dirty(page);
875 unlock_page(page);
876 put_page(page);
879 if (start >= end)
880 return;
882 index = start;
883 while (index < end) {
884 cond_resched();
886 pvec.nr = find_get_entries(mapping, index,
887 min(end - index, (pgoff_t)PAGEVEC_SIZE),
888 pvec.pages, indices);
889 if (!pvec.nr) {
890 /* If all gone or hole-punch or unfalloc, we're done */
891 if (index == start || end != -1)
892 break;
893 /* But if truncating, restart to make sure all gone */
894 index = start;
895 continue;
897 for (i = 0; i < pagevec_count(&pvec); i++) {
898 struct page *page = pvec.pages[i];
900 index = indices[i];
901 if (index >= end)
902 break;
904 if (radix_tree_exceptional_entry(page)) {
905 if (unfalloc)
906 continue;
907 if (shmem_free_swap(mapping, index, page)) {
908 /* Swap was replaced by page: retry */
909 index--;
910 break;
912 nr_swaps_freed++;
913 continue;
916 lock_page(page);
918 if (PageTransTail(page)) {
919 /* Middle of THP: zero out the page */
920 clear_highpage(page);
921 unlock_page(page);
923 * Partial thp truncate due 'start' in middle
924 * of THP: don't need to look on these pages
925 * again on !pvec.nr restart.
927 if (index != round_down(end, HPAGE_PMD_NR))
928 start++;
929 continue;
930 } else if (PageTransHuge(page)) {
931 if (index == round_down(end, HPAGE_PMD_NR)) {
933 * Range ends in the middle of THP:
934 * zero out the page
936 clear_highpage(page);
937 unlock_page(page);
938 continue;
940 index += HPAGE_PMD_NR - 1;
941 i += HPAGE_PMD_NR - 1;
944 if (!unfalloc || !PageUptodate(page)) {
945 VM_BUG_ON_PAGE(PageTail(page), page);
946 if (page_mapping(page) == mapping) {
947 VM_BUG_ON_PAGE(PageWriteback(page), page);
948 truncate_inode_page(mapping, page);
949 } else {
950 /* Page was replaced by swap: retry */
951 unlock_page(page);
952 index--;
953 break;
956 unlock_page(page);
958 pagevec_remove_exceptionals(&pvec);
959 pagevec_release(&pvec);
960 index++;
963 spin_lock_irq(&info->lock);
964 info->swapped -= nr_swaps_freed;
965 shmem_recalc_inode(inode);
966 spin_unlock_irq(&info->lock);
969 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
971 shmem_undo_range(inode, lstart, lend, false);
972 inode->i_ctime = inode->i_mtime = current_time(inode);
974 EXPORT_SYMBOL_GPL(shmem_truncate_range);
976 static int shmem_getattr(struct vfsmount *mnt, struct dentry *dentry,
977 struct kstat *stat)
979 struct inode *inode = dentry->d_inode;
980 struct shmem_inode_info *info = SHMEM_I(inode);
982 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
983 spin_lock_irq(&info->lock);
984 shmem_recalc_inode(inode);
985 spin_unlock_irq(&info->lock);
987 generic_fillattr(inode, stat);
988 return 0;
991 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
993 struct inode *inode = d_inode(dentry);
994 struct shmem_inode_info *info = SHMEM_I(inode);
995 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
996 int error;
998 error = setattr_prepare(dentry, attr);
999 if (error)
1000 return error;
1002 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1003 loff_t oldsize = inode->i_size;
1004 loff_t newsize = attr->ia_size;
1006 /* protected by i_mutex */
1007 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1008 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1009 return -EPERM;
1011 if (newsize != oldsize) {
1012 error = shmem_reacct_size(SHMEM_I(inode)->flags,
1013 oldsize, newsize);
1014 if (error)
1015 return error;
1016 i_size_write(inode, newsize);
1017 inode->i_ctime = inode->i_mtime = current_time(inode);
1019 if (newsize <= oldsize) {
1020 loff_t holebegin = round_up(newsize, PAGE_SIZE);
1021 if (oldsize > holebegin)
1022 unmap_mapping_range(inode->i_mapping,
1023 holebegin, 0, 1);
1024 if (info->alloced)
1025 shmem_truncate_range(inode,
1026 newsize, (loff_t)-1);
1027 /* unmap again to remove racily COWed private pages */
1028 if (oldsize > holebegin)
1029 unmap_mapping_range(inode->i_mapping,
1030 holebegin, 0, 1);
1033 * Part of the huge page can be beyond i_size: subject
1034 * to shrink under memory pressure.
1036 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
1037 spin_lock(&sbinfo->shrinklist_lock);
1039 * _careful to defend against unlocked access to
1040 * ->shrink_list in shmem_unused_huge_shrink()
1042 if (list_empty_careful(&info->shrinklist)) {
1043 list_add_tail(&info->shrinklist,
1044 &sbinfo->shrinklist);
1045 sbinfo->shrinklist_len++;
1047 spin_unlock(&sbinfo->shrinklist_lock);
1052 setattr_copy(inode, attr);
1053 if (attr->ia_valid & ATTR_MODE)
1054 error = posix_acl_chmod(inode, inode->i_mode);
1055 return error;
1058 static void shmem_evict_inode(struct inode *inode)
1060 struct shmem_inode_info *info = SHMEM_I(inode);
1061 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1063 if (inode->i_mapping->a_ops == &shmem_aops) {
1064 shmem_unacct_size(info->flags, inode->i_size);
1065 inode->i_size = 0;
1066 shmem_truncate_range(inode, 0, (loff_t)-1);
1067 if (!list_empty(&info->shrinklist)) {
1068 spin_lock(&sbinfo->shrinklist_lock);
1069 if (!list_empty(&info->shrinklist)) {
1070 list_del_init(&info->shrinklist);
1071 sbinfo->shrinklist_len--;
1073 spin_unlock(&sbinfo->shrinklist_lock);
1075 if (!list_empty(&info->swaplist)) {
1076 mutex_lock(&shmem_swaplist_mutex);
1077 list_del_init(&info->swaplist);
1078 mutex_unlock(&shmem_swaplist_mutex);
1082 simple_xattrs_free(&info->xattrs);
1083 WARN_ON(inode->i_blocks);
1084 shmem_free_inode(inode->i_sb);
1085 clear_inode(inode);
1089 * If swap found in inode, free it and move page from swapcache to filecache.
1091 static int shmem_unuse_inode(struct shmem_inode_info *info,
1092 swp_entry_t swap, struct page **pagep)
1094 struct address_space *mapping = info->vfs_inode.i_mapping;
1095 void *radswap;
1096 pgoff_t index;
1097 gfp_t gfp;
1098 int error = 0;
1100 radswap = swp_to_radix_entry(swap);
1101 index = radix_tree_locate_item(&mapping->page_tree, radswap);
1102 if (index == -1)
1103 return -EAGAIN; /* tell shmem_unuse we found nothing */
1106 * Move _head_ to start search for next from here.
1107 * But be careful: shmem_evict_inode checks list_empty without taking
1108 * mutex, and there's an instant in list_move_tail when info->swaplist
1109 * would appear empty, if it were the only one on shmem_swaplist.
1111 if (shmem_swaplist.next != &info->swaplist)
1112 list_move_tail(&shmem_swaplist, &info->swaplist);
1114 gfp = mapping_gfp_mask(mapping);
1115 if (shmem_should_replace_page(*pagep, gfp)) {
1116 mutex_unlock(&shmem_swaplist_mutex);
1117 error = shmem_replace_page(pagep, gfp, info, index);
1118 mutex_lock(&shmem_swaplist_mutex);
1120 * We needed to drop mutex to make that restrictive page
1121 * allocation, but the inode might have been freed while we
1122 * dropped it: although a racing shmem_evict_inode() cannot
1123 * complete without emptying the radix_tree, our page lock
1124 * on this swapcache page is not enough to prevent that -
1125 * free_swap_and_cache() of our swap entry will only
1126 * trylock_page(), removing swap from radix_tree whatever.
1128 * We must not proceed to shmem_add_to_page_cache() if the
1129 * inode has been freed, but of course we cannot rely on
1130 * inode or mapping or info to check that. However, we can
1131 * safely check if our swap entry is still in use (and here
1132 * it can't have got reused for another page): if it's still
1133 * in use, then the inode cannot have been freed yet, and we
1134 * can safely proceed (if it's no longer in use, that tells
1135 * nothing about the inode, but we don't need to unuse swap).
1137 if (!page_swapcount(*pagep))
1138 error = -ENOENT;
1142 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
1143 * but also to hold up shmem_evict_inode(): so inode cannot be freed
1144 * beneath us (pagelock doesn't help until the page is in pagecache).
1146 if (!error)
1147 error = shmem_add_to_page_cache(*pagep, mapping, index,
1148 radswap);
1149 if (error != -ENOMEM) {
1151 * Truncation and eviction use free_swap_and_cache(), which
1152 * only does trylock page: if we raced, best clean up here.
1154 delete_from_swap_cache(*pagep);
1155 set_page_dirty(*pagep);
1156 if (!error) {
1157 spin_lock_irq(&info->lock);
1158 info->swapped--;
1159 spin_unlock_irq(&info->lock);
1160 swap_free(swap);
1163 return error;
1167 * Search through swapped inodes to find and replace swap by page.
1169 int shmem_unuse(swp_entry_t swap, struct page *page)
1171 struct list_head *this, *next;
1172 struct shmem_inode_info *info;
1173 struct mem_cgroup *memcg;
1174 int error = 0;
1177 * There's a faint possibility that swap page was replaced before
1178 * caller locked it: caller will come back later with the right page.
1180 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
1181 goto out;
1184 * Charge page using GFP_KERNEL while we can wait, before taking
1185 * the shmem_swaplist_mutex which might hold up shmem_writepage().
1186 * Charged back to the user (not to caller) when swap account is used.
1188 error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg,
1189 false);
1190 if (error)
1191 goto out;
1192 /* No radix_tree_preload: swap entry keeps a place for page in tree */
1193 error = -EAGAIN;
1195 mutex_lock(&shmem_swaplist_mutex);
1196 list_for_each_safe(this, next, &shmem_swaplist) {
1197 info = list_entry(this, struct shmem_inode_info, swaplist);
1198 if (info->swapped)
1199 error = shmem_unuse_inode(info, swap, &page);
1200 else
1201 list_del_init(&info->swaplist);
1202 cond_resched();
1203 if (error != -EAGAIN)
1204 break;
1205 /* found nothing in this: move on to search the next */
1207 mutex_unlock(&shmem_swaplist_mutex);
1209 if (error) {
1210 if (error != -ENOMEM)
1211 error = 0;
1212 mem_cgroup_cancel_charge(page, memcg, false);
1213 } else
1214 mem_cgroup_commit_charge(page, memcg, true, false);
1215 out:
1216 unlock_page(page);
1217 put_page(page);
1218 return error;
1222 * Move the page from the page cache to the swap cache.
1224 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1226 struct shmem_inode_info *info;
1227 struct address_space *mapping;
1228 struct inode *inode;
1229 swp_entry_t swap;
1230 pgoff_t index;
1232 VM_BUG_ON_PAGE(PageCompound(page), page);
1233 BUG_ON(!PageLocked(page));
1234 mapping = page->mapping;
1235 index = page->index;
1236 inode = mapping->host;
1237 info = SHMEM_I(inode);
1238 if (info->flags & VM_LOCKED)
1239 goto redirty;
1240 if (!total_swap_pages)
1241 goto redirty;
1244 * Our capabilities prevent regular writeback or sync from ever calling
1245 * shmem_writepage; but a stacking filesystem might use ->writepage of
1246 * its underlying filesystem, in which case tmpfs should write out to
1247 * swap only in response to memory pressure, and not for the writeback
1248 * threads or sync.
1250 if (!wbc->for_reclaim) {
1251 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1252 goto redirty;
1256 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1257 * value into swapfile.c, the only way we can correctly account for a
1258 * fallocated page arriving here is now to initialize it and write it.
1260 * That's okay for a page already fallocated earlier, but if we have
1261 * not yet completed the fallocation, then (a) we want to keep track
1262 * of this page in case we have to undo it, and (b) it may not be a
1263 * good idea to continue anyway, once we're pushing into swap. So
1264 * reactivate the page, and let shmem_fallocate() quit when too many.
1266 if (!PageUptodate(page)) {
1267 if (inode->i_private) {
1268 struct shmem_falloc *shmem_falloc;
1269 spin_lock(&inode->i_lock);
1270 shmem_falloc = inode->i_private;
1271 if (shmem_falloc &&
1272 !shmem_falloc->waitq &&
1273 index >= shmem_falloc->start &&
1274 index < shmem_falloc->next)
1275 shmem_falloc->nr_unswapped++;
1276 else
1277 shmem_falloc = NULL;
1278 spin_unlock(&inode->i_lock);
1279 if (shmem_falloc)
1280 goto redirty;
1282 clear_highpage(page);
1283 flush_dcache_page(page);
1284 SetPageUptodate(page);
1287 swap = get_swap_page();
1288 if (!swap.val)
1289 goto redirty;
1291 if (mem_cgroup_try_charge_swap(page, swap))
1292 goto free_swap;
1295 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1296 * if it's not already there. Do it now before the page is
1297 * moved to swap cache, when its pagelock no longer protects
1298 * the inode from eviction. But don't unlock the mutex until
1299 * we've incremented swapped, because shmem_unuse_inode() will
1300 * prune a !swapped inode from the swaplist under this mutex.
1302 mutex_lock(&shmem_swaplist_mutex);
1303 if (list_empty(&info->swaplist))
1304 list_add_tail(&info->swaplist, &shmem_swaplist);
1306 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1307 spin_lock_irq(&info->lock);
1308 shmem_recalc_inode(inode);
1309 info->swapped++;
1310 spin_unlock_irq(&info->lock);
1312 swap_shmem_alloc(swap);
1313 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1315 mutex_unlock(&shmem_swaplist_mutex);
1316 BUG_ON(page_mapped(page));
1317 swap_writepage(page, wbc);
1318 return 0;
1321 mutex_unlock(&shmem_swaplist_mutex);
1322 free_swap:
1323 swapcache_free(swap);
1324 redirty:
1325 set_page_dirty(page);
1326 if (wbc->for_reclaim)
1327 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1328 unlock_page(page);
1329 return 0;
1332 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1333 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1335 char buffer[64];
1337 if (!mpol || mpol->mode == MPOL_DEFAULT)
1338 return; /* show nothing */
1340 mpol_to_str(buffer, sizeof(buffer), mpol);
1342 seq_printf(seq, ",mpol=%s", buffer);
1345 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1347 struct mempolicy *mpol = NULL;
1348 if (sbinfo->mpol) {
1349 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1350 mpol = sbinfo->mpol;
1351 mpol_get(mpol);
1352 spin_unlock(&sbinfo->stat_lock);
1354 return mpol;
1356 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1357 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1360 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1362 return NULL;
1364 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1365 #ifndef CONFIG_NUMA
1366 #define vm_policy vm_private_data
1367 #endif
1369 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1370 struct shmem_inode_info *info, pgoff_t index)
1372 /* Create a pseudo vma that just contains the policy */
1373 vma->vm_start = 0;
1374 /* Bias interleave by inode number to distribute better across nodes */
1375 vma->vm_pgoff = index + info->vfs_inode.i_ino;
1376 vma->vm_ops = NULL;
1377 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1380 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1382 /* Drop reference taken by mpol_shared_policy_lookup() */
1383 mpol_cond_put(vma->vm_policy);
1386 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1387 struct shmem_inode_info *info, pgoff_t index)
1389 struct vm_area_struct pvma;
1390 struct page *page;
1392 shmem_pseudo_vma_init(&pvma, info, index);
1393 page = swapin_readahead(swap, gfp, &pvma, 0);
1394 shmem_pseudo_vma_destroy(&pvma);
1396 return page;
1399 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1400 struct shmem_inode_info *info, pgoff_t index)
1402 struct vm_area_struct pvma;
1403 struct inode *inode = &info->vfs_inode;
1404 struct address_space *mapping = inode->i_mapping;
1405 pgoff_t idx, hindex;
1406 void __rcu **results;
1407 struct page *page;
1409 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1410 return NULL;
1412 hindex = round_down(index, HPAGE_PMD_NR);
1413 rcu_read_lock();
1414 if (radix_tree_gang_lookup_slot(&mapping->page_tree, &results, &idx,
1415 hindex, 1) && idx < hindex + HPAGE_PMD_NR) {
1416 rcu_read_unlock();
1417 return NULL;
1419 rcu_read_unlock();
1421 shmem_pseudo_vma_init(&pvma, info, hindex);
1422 page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1423 HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1424 shmem_pseudo_vma_destroy(&pvma);
1425 if (page)
1426 prep_transhuge_page(page);
1427 return page;
1430 static struct page *shmem_alloc_page(gfp_t gfp,
1431 struct shmem_inode_info *info, pgoff_t index)
1433 struct vm_area_struct pvma;
1434 struct page *page;
1436 shmem_pseudo_vma_init(&pvma, info, index);
1437 page = alloc_page_vma(gfp, &pvma, 0);
1438 shmem_pseudo_vma_destroy(&pvma);
1440 return page;
1443 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1444 struct inode *inode,
1445 pgoff_t index, bool huge)
1447 struct shmem_inode_info *info = SHMEM_I(inode);
1448 struct page *page;
1449 int nr;
1450 int err = -ENOSPC;
1452 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1453 huge = false;
1454 nr = huge ? HPAGE_PMD_NR : 1;
1456 if (!shmem_inode_acct_block(inode, nr))
1457 goto failed;
1459 if (huge)
1460 page = shmem_alloc_hugepage(gfp, info, index);
1461 else
1462 page = shmem_alloc_page(gfp, info, index);
1463 if (page) {
1464 __SetPageLocked(page);
1465 __SetPageSwapBacked(page);
1466 return page;
1469 err = -ENOMEM;
1470 shmem_inode_unacct_blocks(inode, nr);
1471 failed:
1472 return ERR_PTR(err);
1476 * When a page is moved from swapcache to shmem filecache (either by the
1477 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1478 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1479 * ignorance of the mapping it belongs to. If that mapping has special
1480 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1481 * we may need to copy to a suitable page before moving to filecache.
1483 * In a future release, this may well be extended to respect cpuset and
1484 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1485 * but for now it is a simple matter of zone.
1487 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1489 return page_zonenum(page) > gfp_zone(gfp);
1492 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1493 struct shmem_inode_info *info, pgoff_t index)
1495 struct page *oldpage, *newpage;
1496 struct address_space *swap_mapping;
1497 swp_entry_t entry;
1498 pgoff_t swap_index;
1499 int error;
1501 oldpage = *pagep;
1502 entry.val = page_private(oldpage);
1503 swap_index = swp_offset(entry);
1504 swap_mapping = page_mapping(oldpage);
1507 * We have arrived here because our zones are constrained, so don't
1508 * limit chance of success by further cpuset and node constraints.
1510 gfp &= ~GFP_CONSTRAINT_MASK;
1511 newpage = shmem_alloc_page(gfp, info, index);
1512 if (!newpage)
1513 return -ENOMEM;
1515 get_page(newpage);
1516 copy_highpage(newpage, oldpage);
1517 flush_dcache_page(newpage);
1519 __SetPageLocked(newpage);
1520 __SetPageSwapBacked(newpage);
1521 SetPageUptodate(newpage);
1522 set_page_private(newpage, entry.val);
1523 SetPageSwapCache(newpage);
1526 * Our caller will very soon move newpage out of swapcache, but it's
1527 * a nice clean interface for us to replace oldpage by newpage there.
1529 spin_lock_irq(&swap_mapping->tree_lock);
1530 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1531 newpage);
1532 if (!error) {
1533 __inc_node_page_state(newpage, NR_FILE_PAGES);
1534 __dec_node_page_state(oldpage, NR_FILE_PAGES);
1536 spin_unlock_irq(&swap_mapping->tree_lock);
1538 if (unlikely(error)) {
1540 * Is this possible? I think not, now that our callers check
1541 * both PageSwapCache and page_private after getting page lock;
1542 * but be defensive. Reverse old to newpage for clear and free.
1544 oldpage = newpage;
1545 } else {
1546 mem_cgroup_migrate(oldpage, newpage);
1547 lru_cache_add_anon(newpage);
1548 *pagep = newpage;
1551 ClearPageSwapCache(oldpage);
1552 set_page_private(oldpage, 0);
1554 unlock_page(oldpage);
1555 put_page(oldpage);
1556 put_page(oldpage);
1557 return error;
1561 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1563 * If we allocate a new one we do not mark it dirty. That's up to the
1564 * vm. If we swap it in we mark it dirty since we also free the swap
1565 * entry since a page cannot live in both the swap and page cache.
1567 * fault_mm and fault_type are only supplied by shmem_fault:
1568 * otherwise they are NULL.
1570 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1571 struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1572 struct mm_struct *fault_mm, int *fault_type)
1574 struct address_space *mapping = inode->i_mapping;
1575 struct shmem_inode_info *info = SHMEM_I(inode);
1576 struct shmem_sb_info *sbinfo;
1577 struct mm_struct *charge_mm;
1578 struct mem_cgroup *memcg;
1579 struct page *page;
1580 swp_entry_t swap;
1581 enum sgp_type sgp_huge = sgp;
1582 pgoff_t hindex = index;
1583 int error;
1584 int once = 0;
1585 int alloced = 0;
1587 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1588 return -EFBIG;
1589 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1590 sgp = SGP_CACHE;
1591 repeat:
1592 swap.val = 0;
1593 page = find_lock_entry(mapping, index);
1594 if (radix_tree_exceptional_entry(page)) {
1595 swap = radix_to_swp_entry(page);
1596 page = NULL;
1599 if (sgp <= SGP_CACHE &&
1600 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1601 error = -EINVAL;
1602 goto unlock;
1605 if (page && sgp == SGP_WRITE)
1606 mark_page_accessed(page);
1608 /* fallocated page? */
1609 if (page && !PageUptodate(page)) {
1610 if (sgp != SGP_READ)
1611 goto clear;
1612 unlock_page(page);
1613 put_page(page);
1614 page = NULL;
1616 if (page || (sgp == SGP_READ && !swap.val)) {
1617 *pagep = page;
1618 return 0;
1622 * Fast cache lookup did not find it:
1623 * bring it back from swap or allocate.
1625 sbinfo = SHMEM_SB(inode->i_sb);
1626 charge_mm = fault_mm ? : current->mm;
1628 if (swap.val) {
1629 /* Look it up and read it in.. */
1630 page = lookup_swap_cache(swap);
1631 if (!page) {
1632 /* Or update major stats only when swapin succeeds?? */
1633 if (fault_type) {
1634 *fault_type |= VM_FAULT_MAJOR;
1635 count_vm_event(PGMAJFAULT);
1636 mem_cgroup_count_vm_event(fault_mm, PGMAJFAULT);
1638 /* Here we actually start the io */
1639 page = shmem_swapin(swap, gfp, info, index);
1640 if (!page) {
1641 error = -ENOMEM;
1642 goto failed;
1646 /* We have to do this with page locked to prevent races */
1647 lock_page(page);
1648 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1649 !shmem_confirm_swap(mapping, index, swap)) {
1650 error = -EEXIST; /* try again */
1651 goto unlock;
1653 if (!PageUptodate(page)) {
1654 error = -EIO;
1655 goto failed;
1657 wait_on_page_writeback(page);
1659 if (shmem_should_replace_page(page, gfp)) {
1660 error = shmem_replace_page(&page, gfp, info, index);
1661 if (error)
1662 goto failed;
1665 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1666 false);
1667 if (!error) {
1668 error = shmem_add_to_page_cache(page, mapping, index,
1669 swp_to_radix_entry(swap));
1671 * We already confirmed swap under page lock, and make
1672 * no memory allocation here, so usually no possibility
1673 * of error; but free_swap_and_cache() only trylocks a
1674 * page, so it is just possible that the entry has been
1675 * truncated or holepunched since swap was confirmed.
1676 * shmem_undo_range() will have done some of the
1677 * unaccounting, now delete_from_swap_cache() will do
1678 * the rest.
1679 * Reset swap.val? No, leave it so "failed" goes back to
1680 * "repeat": reading a hole and writing should succeed.
1682 if (error) {
1683 mem_cgroup_cancel_charge(page, memcg, false);
1684 delete_from_swap_cache(page);
1687 if (error)
1688 goto failed;
1690 mem_cgroup_commit_charge(page, memcg, true, false);
1692 spin_lock_irq(&info->lock);
1693 info->swapped--;
1694 shmem_recalc_inode(inode);
1695 spin_unlock_irq(&info->lock);
1697 if (sgp == SGP_WRITE)
1698 mark_page_accessed(page);
1700 delete_from_swap_cache(page);
1701 set_page_dirty(page);
1702 swap_free(swap);
1704 } else {
1705 /* shmem_symlink() */
1706 if (mapping->a_ops != &shmem_aops)
1707 goto alloc_nohuge;
1708 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1709 goto alloc_nohuge;
1710 if (shmem_huge == SHMEM_HUGE_FORCE)
1711 goto alloc_huge;
1712 switch (sbinfo->huge) {
1713 loff_t i_size;
1714 pgoff_t off;
1715 case SHMEM_HUGE_NEVER:
1716 goto alloc_nohuge;
1717 case SHMEM_HUGE_WITHIN_SIZE:
1718 off = round_up(index, HPAGE_PMD_NR);
1719 i_size = round_up(i_size_read(inode), PAGE_SIZE);
1720 if (i_size >= HPAGE_PMD_SIZE &&
1721 i_size >> PAGE_SHIFT >= off)
1722 goto alloc_huge;
1723 /* fallthrough */
1724 case SHMEM_HUGE_ADVISE:
1725 if (sgp_huge == SGP_HUGE)
1726 goto alloc_huge;
1727 /* TODO: implement fadvise() hints */
1728 goto alloc_nohuge;
1731 alloc_huge:
1732 page = shmem_alloc_and_acct_page(gfp, inode, index, true);
1733 if (IS_ERR(page)) {
1734 alloc_nohuge: page = shmem_alloc_and_acct_page(gfp, inode,
1735 index, false);
1737 if (IS_ERR(page)) {
1738 int retry = 5;
1739 error = PTR_ERR(page);
1740 page = NULL;
1741 if (error != -ENOSPC)
1742 goto failed;
1744 * Try to reclaim some spece by splitting a huge page
1745 * beyond i_size on the filesystem.
1747 while (retry--) {
1748 int ret;
1749 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1750 if (ret == SHRINK_STOP)
1751 break;
1752 if (ret)
1753 goto alloc_nohuge;
1755 goto failed;
1758 if (PageTransHuge(page))
1759 hindex = round_down(index, HPAGE_PMD_NR);
1760 else
1761 hindex = index;
1763 if (sgp == SGP_WRITE)
1764 __SetPageReferenced(page);
1766 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1767 PageTransHuge(page));
1768 if (error)
1769 goto unacct;
1770 error = radix_tree_maybe_preload_order(gfp & GFP_RECLAIM_MASK,
1771 compound_order(page));
1772 if (!error) {
1773 error = shmem_add_to_page_cache(page, mapping, hindex,
1774 NULL);
1775 radix_tree_preload_end();
1777 if (error) {
1778 mem_cgroup_cancel_charge(page, memcg,
1779 PageTransHuge(page));
1780 goto unacct;
1782 mem_cgroup_commit_charge(page, memcg, false,
1783 PageTransHuge(page));
1784 lru_cache_add_anon(page);
1786 spin_lock_irq(&info->lock);
1787 info->alloced += 1 << compound_order(page);
1788 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1789 shmem_recalc_inode(inode);
1790 spin_unlock_irq(&info->lock);
1791 alloced = true;
1793 if (PageTransHuge(page) &&
1794 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1795 hindex + HPAGE_PMD_NR - 1) {
1797 * Part of the huge page is beyond i_size: subject
1798 * to shrink under memory pressure.
1800 spin_lock(&sbinfo->shrinklist_lock);
1802 * _careful to defend against unlocked access to
1803 * ->shrink_list in shmem_unused_huge_shrink()
1805 if (list_empty_careful(&info->shrinklist)) {
1806 list_add_tail(&info->shrinklist,
1807 &sbinfo->shrinklist);
1808 sbinfo->shrinklist_len++;
1810 spin_unlock(&sbinfo->shrinklist_lock);
1814 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1816 if (sgp == SGP_FALLOC)
1817 sgp = SGP_WRITE;
1818 clear:
1820 * Let SGP_WRITE caller clear ends if write does not fill page;
1821 * but SGP_FALLOC on a page fallocated earlier must initialize
1822 * it now, lest undo on failure cancel our earlier guarantee.
1824 if (sgp != SGP_WRITE && !PageUptodate(page)) {
1825 struct page *head = compound_head(page);
1826 int i;
1828 for (i = 0; i < (1 << compound_order(head)); i++) {
1829 clear_highpage(head + i);
1830 flush_dcache_page(head + i);
1832 SetPageUptodate(head);
1836 /* Perhaps the file has been truncated since we checked */
1837 if (sgp <= SGP_CACHE &&
1838 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1839 if (alloced) {
1840 ClearPageDirty(page);
1841 delete_from_page_cache(page);
1842 spin_lock_irq(&info->lock);
1843 shmem_recalc_inode(inode);
1844 spin_unlock_irq(&info->lock);
1846 error = -EINVAL;
1847 goto unlock;
1849 *pagep = page + index - hindex;
1850 return 0;
1853 * Error recovery.
1855 unacct:
1856 shmem_inode_unacct_blocks(inode, 1 << compound_order(page));
1858 if (PageTransHuge(page)) {
1859 unlock_page(page);
1860 put_page(page);
1861 goto alloc_nohuge;
1863 failed:
1864 if (swap.val && !shmem_confirm_swap(mapping, index, swap))
1865 error = -EEXIST;
1866 unlock:
1867 if (page) {
1868 unlock_page(page);
1869 put_page(page);
1871 if (error == -ENOSPC && !once++) {
1872 spin_lock_irq(&info->lock);
1873 shmem_recalc_inode(inode);
1874 spin_unlock_irq(&info->lock);
1875 goto repeat;
1877 if (error == -EEXIST) /* from above or from radix_tree_insert */
1878 goto repeat;
1879 return error;
1883 * This is like autoremove_wake_function, but it removes the wait queue
1884 * entry unconditionally - even if something else had already woken the
1885 * target.
1887 static int synchronous_wake_function(wait_queue_t *wait, unsigned mode, int sync, void *key)
1889 int ret = default_wake_function(wait, mode, sync, key);
1890 list_del_init(&wait->task_list);
1891 return ret;
1894 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1896 struct inode *inode = file_inode(vma->vm_file);
1897 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
1898 enum sgp_type sgp;
1899 int error;
1900 int ret = VM_FAULT_LOCKED;
1903 * Trinity finds that probing a hole which tmpfs is punching can
1904 * prevent the hole-punch from ever completing: which in turn
1905 * locks writers out with its hold on i_mutex. So refrain from
1906 * faulting pages into the hole while it's being punched. Although
1907 * shmem_undo_range() does remove the additions, it may be unable to
1908 * keep up, as each new page needs its own unmap_mapping_range() call,
1909 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1911 * It does not matter if we sometimes reach this check just before the
1912 * hole-punch begins, so that one fault then races with the punch:
1913 * we just need to make racing faults a rare case.
1915 * The implementation below would be much simpler if we just used a
1916 * standard mutex or completion: but we cannot take i_mutex in fault,
1917 * and bloating every shmem inode for this unlikely case would be sad.
1919 if (unlikely(inode->i_private)) {
1920 struct shmem_falloc *shmem_falloc;
1922 spin_lock(&inode->i_lock);
1923 shmem_falloc = inode->i_private;
1924 if (shmem_falloc &&
1925 shmem_falloc->waitq &&
1926 vmf->pgoff >= shmem_falloc->start &&
1927 vmf->pgoff < shmem_falloc->next) {
1928 wait_queue_head_t *shmem_falloc_waitq;
1929 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
1931 ret = VM_FAULT_NOPAGE;
1932 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1933 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1934 /* It's polite to up mmap_sem if we can */
1935 up_read(&vma->vm_mm->mmap_sem);
1936 ret = VM_FAULT_RETRY;
1939 shmem_falloc_waitq = shmem_falloc->waitq;
1940 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1941 TASK_UNINTERRUPTIBLE);
1942 spin_unlock(&inode->i_lock);
1943 schedule();
1946 * shmem_falloc_waitq points into the shmem_fallocate()
1947 * stack of the hole-punching task: shmem_falloc_waitq
1948 * is usually invalid by the time we reach here, but
1949 * finish_wait() does not dereference it in that case;
1950 * though i_lock needed lest racing with wake_up_all().
1952 spin_lock(&inode->i_lock);
1953 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1954 spin_unlock(&inode->i_lock);
1955 return ret;
1957 spin_unlock(&inode->i_lock);
1960 sgp = SGP_CACHE;
1961 if (vma->vm_flags & VM_HUGEPAGE)
1962 sgp = SGP_HUGE;
1963 else if (vma->vm_flags & VM_NOHUGEPAGE)
1964 sgp = SGP_NOHUGE;
1966 error = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
1967 gfp, vma->vm_mm, &ret);
1968 if (error)
1969 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1970 return ret;
1973 unsigned long shmem_get_unmapped_area(struct file *file,
1974 unsigned long uaddr, unsigned long len,
1975 unsigned long pgoff, unsigned long flags)
1977 unsigned long (*get_area)(struct file *,
1978 unsigned long, unsigned long, unsigned long, unsigned long);
1979 unsigned long addr;
1980 unsigned long offset;
1981 unsigned long inflated_len;
1982 unsigned long inflated_addr;
1983 unsigned long inflated_offset;
1985 if (len > TASK_SIZE)
1986 return -ENOMEM;
1988 get_area = current->mm->get_unmapped_area;
1989 addr = get_area(file, uaddr, len, pgoff, flags);
1991 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1992 return addr;
1993 if (IS_ERR_VALUE(addr))
1994 return addr;
1995 if (addr & ~PAGE_MASK)
1996 return addr;
1997 if (addr > TASK_SIZE - len)
1998 return addr;
2000 if (shmem_huge == SHMEM_HUGE_DENY)
2001 return addr;
2002 if (len < HPAGE_PMD_SIZE)
2003 return addr;
2004 if (flags & MAP_FIXED)
2005 return addr;
2007 * Our priority is to support MAP_SHARED mapped hugely;
2008 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2009 * But if caller specified an address hint, respect that as before.
2011 if (uaddr)
2012 return addr;
2014 if (shmem_huge != SHMEM_HUGE_FORCE) {
2015 struct super_block *sb;
2017 if (file) {
2018 VM_BUG_ON(file->f_op != &shmem_file_operations);
2019 sb = file_inode(file)->i_sb;
2020 } else {
2022 * Called directly from mm/mmap.c, or drivers/char/mem.c
2023 * for "/dev/zero", to create a shared anonymous object.
2025 if (IS_ERR(shm_mnt))
2026 return addr;
2027 sb = shm_mnt->mnt_sb;
2029 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2030 return addr;
2033 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2034 if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2035 return addr;
2036 if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2037 return addr;
2039 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2040 if (inflated_len > TASK_SIZE)
2041 return addr;
2042 if (inflated_len < len)
2043 return addr;
2045 inflated_addr = get_area(NULL, 0, inflated_len, 0, flags);
2046 if (IS_ERR_VALUE(inflated_addr))
2047 return addr;
2048 if (inflated_addr & ~PAGE_MASK)
2049 return addr;
2051 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2052 inflated_addr += offset - inflated_offset;
2053 if (inflated_offset > offset)
2054 inflated_addr += HPAGE_PMD_SIZE;
2056 if (inflated_addr > TASK_SIZE - len)
2057 return addr;
2058 return inflated_addr;
2061 #ifdef CONFIG_NUMA
2062 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2064 struct inode *inode = file_inode(vma->vm_file);
2065 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2068 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2069 unsigned long addr)
2071 struct inode *inode = file_inode(vma->vm_file);
2072 pgoff_t index;
2074 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2075 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2077 #endif
2079 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2081 struct inode *inode = file_inode(file);
2082 struct shmem_inode_info *info = SHMEM_I(inode);
2083 int retval = -ENOMEM;
2085 spin_lock_irq(&info->lock);
2086 if (lock && !(info->flags & VM_LOCKED)) {
2087 if (!user_shm_lock(inode->i_size, user))
2088 goto out_nomem;
2089 info->flags |= VM_LOCKED;
2090 mapping_set_unevictable(file->f_mapping);
2092 if (!lock && (info->flags & VM_LOCKED) && user) {
2093 user_shm_unlock(inode->i_size, user);
2094 info->flags &= ~VM_LOCKED;
2095 mapping_clear_unevictable(file->f_mapping);
2097 retval = 0;
2099 out_nomem:
2100 spin_unlock_irq(&info->lock);
2101 return retval;
2104 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2106 file_accessed(file);
2107 vma->vm_ops = &shmem_vm_ops;
2108 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
2109 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2110 (vma->vm_end & HPAGE_PMD_MASK)) {
2111 khugepaged_enter(vma, vma->vm_flags);
2113 return 0;
2116 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2117 umode_t mode, dev_t dev, unsigned long flags)
2119 struct inode *inode;
2120 struct shmem_inode_info *info;
2121 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2123 if (shmem_reserve_inode(sb))
2124 return NULL;
2126 inode = new_inode(sb);
2127 if (inode) {
2128 inode->i_ino = get_next_ino();
2129 inode_init_owner(inode, dir, mode);
2130 inode->i_blocks = 0;
2131 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2132 inode->i_generation = get_seconds();
2133 info = SHMEM_I(inode);
2134 memset(info, 0, (char *)inode - (char *)info);
2135 spin_lock_init(&info->lock);
2136 info->seals = F_SEAL_SEAL;
2137 info->flags = flags & VM_NORESERVE;
2138 INIT_LIST_HEAD(&info->shrinklist);
2139 INIT_LIST_HEAD(&info->swaplist);
2140 simple_xattrs_init(&info->xattrs);
2141 cache_no_acl(inode);
2143 switch (mode & S_IFMT) {
2144 default:
2145 inode->i_op = &shmem_special_inode_operations;
2146 init_special_inode(inode, mode, dev);
2147 break;
2148 case S_IFREG:
2149 inode->i_mapping->a_ops = &shmem_aops;
2150 inode->i_op = &shmem_inode_operations;
2151 inode->i_fop = &shmem_file_operations;
2152 mpol_shared_policy_init(&info->policy,
2153 shmem_get_sbmpol(sbinfo));
2154 break;
2155 case S_IFDIR:
2156 inc_nlink(inode);
2157 /* Some things misbehave if size == 0 on a directory */
2158 inode->i_size = 2 * BOGO_DIRENT_SIZE;
2159 inode->i_op = &shmem_dir_inode_operations;
2160 inode->i_fop = &simple_dir_operations;
2161 break;
2162 case S_IFLNK:
2164 * Must not load anything in the rbtree,
2165 * mpol_free_shared_policy will not be called.
2167 mpol_shared_policy_init(&info->policy, NULL);
2168 break;
2171 lockdep_annotate_inode_mutex_key(inode);
2172 } else
2173 shmem_free_inode(sb);
2174 return inode;
2177 bool shmem_mapping(struct address_space *mapping)
2179 if (!mapping->host)
2180 return false;
2182 return mapping->host->i_sb->s_op == &shmem_ops;
2185 #ifdef CONFIG_TMPFS
2186 static const struct inode_operations shmem_symlink_inode_operations;
2187 static const struct inode_operations shmem_short_symlink_operations;
2189 #ifdef CONFIG_TMPFS_XATTR
2190 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2191 #else
2192 #define shmem_initxattrs NULL
2193 #endif
2195 static int
2196 shmem_write_begin(struct file *file, struct address_space *mapping,
2197 loff_t pos, unsigned len, unsigned flags,
2198 struct page **pagep, void **fsdata)
2200 struct inode *inode = mapping->host;
2201 struct shmem_inode_info *info = SHMEM_I(inode);
2202 pgoff_t index = pos >> PAGE_SHIFT;
2204 /* i_mutex is held by caller */
2205 if (unlikely(info->seals)) {
2206 if (info->seals & F_SEAL_WRITE)
2207 return -EPERM;
2208 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2209 return -EPERM;
2212 return shmem_getpage(inode, index, pagep, SGP_WRITE);
2215 static int
2216 shmem_write_end(struct file *file, struct address_space *mapping,
2217 loff_t pos, unsigned len, unsigned copied,
2218 struct page *page, void *fsdata)
2220 struct inode *inode = mapping->host;
2222 if (pos + copied > inode->i_size)
2223 i_size_write(inode, pos + copied);
2225 if (!PageUptodate(page)) {
2226 struct page *head = compound_head(page);
2227 if (PageTransCompound(page)) {
2228 int i;
2230 for (i = 0; i < HPAGE_PMD_NR; i++) {
2231 if (head + i == page)
2232 continue;
2233 clear_highpage(head + i);
2234 flush_dcache_page(head + i);
2237 if (copied < PAGE_SIZE) {
2238 unsigned from = pos & (PAGE_SIZE - 1);
2239 zero_user_segments(page, 0, from,
2240 from + copied, PAGE_SIZE);
2242 SetPageUptodate(head);
2244 set_page_dirty(page);
2245 unlock_page(page);
2246 put_page(page);
2248 return copied;
2251 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2253 struct file *file = iocb->ki_filp;
2254 struct inode *inode = file_inode(file);
2255 struct address_space *mapping = inode->i_mapping;
2256 pgoff_t index;
2257 unsigned long offset;
2258 enum sgp_type sgp = SGP_READ;
2259 int error = 0;
2260 ssize_t retval = 0;
2261 loff_t *ppos = &iocb->ki_pos;
2264 * Might this read be for a stacking filesystem? Then when reading
2265 * holes of a sparse file, we actually need to allocate those pages,
2266 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2268 if (!iter_is_iovec(to))
2269 sgp = SGP_CACHE;
2271 index = *ppos >> PAGE_SHIFT;
2272 offset = *ppos & ~PAGE_MASK;
2274 for (;;) {
2275 struct page *page = NULL;
2276 pgoff_t end_index;
2277 unsigned long nr, ret;
2278 loff_t i_size = i_size_read(inode);
2280 end_index = i_size >> PAGE_SHIFT;
2281 if (index > end_index)
2282 break;
2283 if (index == end_index) {
2284 nr = i_size & ~PAGE_MASK;
2285 if (nr <= offset)
2286 break;
2289 error = shmem_getpage(inode, index, &page, sgp);
2290 if (error) {
2291 if (error == -EINVAL)
2292 error = 0;
2293 break;
2295 if (page) {
2296 if (sgp == SGP_CACHE)
2297 set_page_dirty(page);
2298 unlock_page(page);
2302 * We must evaluate after, since reads (unlike writes)
2303 * are called without i_mutex protection against truncate
2305 nr = PAGE_SIZE;
2306 i_size = i_size_read(inode);
2307 end_index = i_size >> PAGE_SHIFT;
2308 if (index == end_index) {
2309 nr = i_size & ~PAGE_MASK;
2310 if (nr <= offset) {
2311 if (page)
2312 put_page(page);
2313 break;
2316 nr -= offset;
2318 if (page) {
2320 * If users can be writing to this page using arbitrary
2321 * virtual addresses, take care about potential aliasing
2322 * before reading the page on the kernel side.
2324 if (mapping_writably_mapped(mapping))
2325 flush_dcache_page(page);
2327 * Mark the page accessed if we read the beginning.
2329 if (!offset)
2330 mark_page_accessed(page);
2331 } else {
2332 page = ZERO_PAGE(0);
2333 get_page(page);
2337 * Ok, we have the page, and it's up-to-date, so
2338 * now we can copy it to user space...
2340 ret = copy_page_to_iter(page, offset, nr, to);
2341 retval += ret;
2342 offset += ret;
2343 index += offset >> PAGE_SHIFT;
2344 offset &= ~PAGE_MASK;
2346 put_page(page);
2347 if (!iov_iter_count(to))
2348 break;
2349 if (ret < nr) {
2350 error = -EFAULT;
2351 break;
2353 cond_resched();
2356 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2357 file_accessed(file);
2358 return retval ? retval : error;
2362 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
2364 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2365 pgoff_t index, pgoff_t end, int whence)
2367 struct page *page;
2368 struct pagevec pvec;
2369 pgoff_t indices[PAGEVEC_SIZE];
2370 bool done = false;
2371 int i;
2373 pagevec_init(&pvec, 0);
2374 pvec.nr = 1; /* start small: we may be there already */
2375 while (!done) {
2376 pvec.nr = find_get_entries(mapping, index,
2377 pvec.nr, pvec.pages, indices);
2378 if (!pvec.nr) {
2379 if (whence == SEEK_DATA)
2380 index = end;
2381 break;
2383 for (i = 0; i < pvec.nr; i++, index++) {
2384 if (index < indices[i]) {
2385 if (whence == SEEK_HOLE) {
2386 done = true;
2387 break;
2389 index = indices[i];
2391 page = pvec.pages[i];
2392 if (page && !radix_tree_exceptional_entry(page)) {
2393 if (!PageUptodate(page))
2394 page = NULL;
2396 if (index >= end ||
2397 (page && whence == SEEK_DATA) ||
2398 (!page && whence == SEEK_HOLE)) {
2399 done = true;
2400 break;
2403 pagevec_remove_exceptionals(&pvec);
2404 pagevec_release(&pvec);
2405 pvec.nr = PAGEVEC_SIZE;
2406 cond_resched();
2408 return index;
2411 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2413 struct address_space *mapping = file->f_mapping;
2414 struct inode *inode = mapping->host;
2415 pgoff_t start, end;
2416 loff_t new_offset;
2418 if (whence != SEEK_DATA && whence != SEEK_HOLE)
2419 return generic_file_llseek_size(file, offset, whence,
2420 MAX_LFS_FILESIZE, i_size_read(inode));
2421 inode_lock(inode);
2422 /* We're holding i_mutex so we can access i_size directly */
2424 if (offset < 0 || offset >= inode->i_size)
2425 offset = -ENXIO;
2426 else {
2427 start = offset >> PAGE_SHIFT;
2428 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2429 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2430 new_offset <<= PAGE_SHIFT;
2431 if (new_offset > offset) {
2432 if (new_offset < inode->i_size)
2433 offset = new_offset;
2434 else if (whence == SEEK_DATA)
2435 offset = -ENXIO;
2436 else
2437 offset = inode->i_size;
2441 if (offset >= 0)
2442 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2443 inode_unlock(inode);
2444 return offset;
2448 * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
2449 * so reuse a tag which we firmly believe is never set or cleared on shmem.
2451 #define SHMEM_TAG_PINNED PAGECACHE_TAG_TOWRITE
2452 #define LAST_SCAN 4 /* about 150ms max */
2454 static void shmem_tag_pins(struct address_space *mapping)
2456 struct radix_tree_iter iter;
2457 void **slot;
2458 pgoff_t start;
2459 struct page *page;
2460 unsigned int tagged = 0;
2462 lru_add_drain();
2463 start = 0;
2465 spin_lock_irq(&mapping->tree_lock);
2466 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
2467 page = radix_tree_deref_slot(slot);
2468 if (!page || radix_tree_exception(page)) {
2469 if (radix_tree_deref_retry(page)) {
2470 slot = radix_tree_iter_retry(&iter);
2471 continue;
2473 } else if (page_count(page) - page_mapcount(page) > 1) {
2474 radix_tree_tag_set(&mapping->page_tree, iter.index,
2475 SHMEM_TAG_PINNED);
2478 if (++tagged % 1024)
2479 continue;
2481 slot = radix_tree_iter_next(&iter);
2482 spin_unlock_irq(&mapping->tree_lock);
2483 cond_resched();
2484 spin_lock_irq(&mapping->tree_lock);
2486 spin_unlock_irq(&mapping->tree_lock);
2490 * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
2491 * via get_user_pages(), drivers might have some pending I/O without any active
2492 * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
2493 * and see whether it has an elevated ref-count. If so, we tag them and wait for
2494 * them to be dropped.
2495 * The caller must guarantee that no new user will acquire writable references
2496 * to those pages to avoid races.
2498 static int shmem_wait_for_pins(struct address_space *mapping)
2500 struct radix_tree_iter iter;
2501 void **slot;
2502 pgoff_t start;
2503 struct page *page;
2504 int error, scan;
2506 shmem_tag_pins(mapping);
2508 error = 0;
2509 for (scan = 0; scan <= LAST_SCAN; scan++) {
2510 if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED))
2511 break;
2513 if (!scan)
2514 lru_add_drain_all();
2515 else if (schedule_timeout_killable((HZ << scan) / 200))
2516 scan = LAST_SCAN;
2518 start = 0;
2519 rcu_read_lock();
2520 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter,
2521 start, SHMEM_TAG_PINNED) {
2523 page = radix_tree_deref_slot(slot);
2524 if (radix_tree_exception(page)) {
2525 if (radix_tree_deref_retry(page)) {
2526 slot = radix_tree_iter_retry(&iter);
2527 continue;
2530 page = NULL;
2533 if (page &&
2534 page_count(page) - page_mapcount(page) != 1) {
2535 if (scan < LAST_SCAN)
2536 goto continue_resched;
2539 * On the last scan, we clean up all those tags
2540 * we inserted; but make a note that we still
2541 * found pages pinned.
2543 error = -EBUSY;
2546 spin_lock_irq(&mapping->tree_lock);
2547 radix_tree_tag_clear(&mapping->page_tree,
2548 iter.index, SHMEM_TAG_PINNED);
2549 spin_unlock_irq(&mapping->tree_lock);
2550 continue_resched:
2551 if (need_resched()) {
2552 cond_resched_rcu();
2553 slot = radix_tree_iter_next(&iter);
2556 rcu_read_unlock();
2559 return error;
2562 #define F_ALL_SEALS (F_SEAL_SEAL | \
2563 F_SEAL_SHRINK | \
2564 F_SEAL_GROW | \
2565 F_SEAL_WRITE)
2567 int shmem_add_seals(struct file *file, unsigned int seals)
2569 struct inode *inode = file_inode(file);
2570 struct shmem_inode_info *info = SHMEM_I(inode);
2571 int error;
2574 * SEALING
2575 * Sealing allows multiple parties to share a shmem-file but restrict
2576 * access to a specific subset of file operations. Seals can only be
2577 * added, but never removed. This way, mutually untrusted parties can
2578 * share common memory regions with a well-defined policy. A malicious
2579 * peer can thus never perform unwanted operations on a shared object.
2581 * Seals are only supported on special shmem-files and always affect
2582 * the whole underlying inode. Once a seal is set, it may prevent some
2583 * kinds of access to the file. Currently, the following seals are
2584 * defined:
2585 * SEAL_SEAL: Prevent further seals from being set on this file
2586 * SEAL_SHRINK: Prevent the file from shrinking
2587 * SEAL_GROW: Prevent the file from growing
2588 * SEAL_WRITE: Prevent write access to the file
2590 * As we don't require any trust relationship between two parties, we
2591 * must prevent seals from being removed. Therefore, sealing a file
2592 * only adds a given set of seals to the file, it never touches
2593 * existing seals. Furthermore, the "setting seals"-operation can be
2594 * sealed itself, which basically prevents any further seal from being
2595 * added.
2597 * Semantics of sealing are only defined on volatile files. Only
2598 * anonymous shmem files support sealing. More importantly, seals are
2599 * never written to disk. Therefore, there's no plan to support it on
2600 * other file types.
2603 if (file->f_op != &shmem_file_operations)
2604 return -EINVAL;
2605 if (!(file->f_mode & FMODE_WRITE))
2606 return -EPERM;
2607 if (seals & ~(unsigned int)F_ALL_SEALS)
2608 return -EINVAL;
2610 inode_lock(inode);
2612 if (info->seals & F_SEAL_SEAL) {
2613 error = -EPERM;
2614 goto unlock;
2617 if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) {
2618 error = mapping_deny_writable(file->f_mapping);
2619 if (error)
2620 goto unlock;
2622 error = shmem_wait_for_pins(file->f_mapping);
2623 if (error) {
2624 mapping_allow_writable(file->f_mapping);
2625 goto unlock;
2629 info->seals |= seals;
2630 error = 0;
2632 unlock:
2633 inode_unlock(inode);
2634 return error;
2636 EXPORT_SYMBOL_GPL(shmem_add_seals);
2638 int shmem_get_seals(struct file *file)
2640 if (file->f_op != &shmem_file_operations)
2641 return -EINVAL;
2643 return SHMEM_I(file_inode(file))->seals;
2645 EXPORT_SYMBOL_GPL(shmem_get_seals);
2647 long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2649 long error;
2651 switch (cmd) {
2652 case F_ADD_SEALS:
2653 /* disallow upper 32bit */
2654 if (arg > UINT_MAX)
2655 return -EINVAL;
2657 error = shmem_add_seals(file, arg);
2658 break;
2659 case F_GET_SEALS:
2660 error = shmem_get_seals(file);
2661 break;
2662 default:
2663 error = -EINVAL;
2664 break;
2667 return error;
2670 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2671 loff_t len)
2673 struct inode *inode = file_inode(file);
2674 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2675 struct shmem_inode_info *info = SHMEM_I(inode);
2676 struct shmem_falloc shmem_falloc;
2677 pgoff_t start, index, end;
2678 int error;
2680 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2681 return -EOPNOTSUPP;
2683 inode_lock(inode);
2685 if (mode & FALLOC_FL_PUNCH_HOLE) {
2686 struct address_space *mapping = file->f_mapping;
2687 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2688 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2689 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2691 /* protected by i_mutex */
2692 if (info->seals & F_SEAL_WRITE) {
2693 error = -EPERM;
2694 goto out;
2697 shmem_falloc.waitq = &shmem_falloc_waitq;
2698 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2699 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2700 spin_lock(&inode->i_lock);
2701 inode->i_private = &shmem_falloc;
2702 spin_unlock(&inode->i_lock);
2704 if ((u64)unmap_end > (u64)unmap_start)
2705 unmap_mapping_range(mapping, unmap_start,
2706 1 + unmap_end - unmap_start, 0);
2707 shmem_truncate_range(inode, offset, offset + len - 1);
2708 /* No need to unmap again: hole-punching leaves COWed pages */
2710 spin_lock(&inode->i_lock);
2711 inode->i_private = NULL;
2712 wake_up_all(&shmem_falloc_waitq);
2713 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.task_list));
2714 spin_unlock(&inode->i_lock);
2715 error = 0;
2716 goto out;
2719 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2720 error = inode_newsize_ok(inode, offset + len);
2721 if (error)
2722 goto out;
2724 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2725 error = -EPERM;
2726 goto out;
2729 start = offset >> PAGE_SHIFT;
2730 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2731 /* Try to avoid a swapstorm if len is impossible to satisfy */
2732 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2733 error = -ENOSPC;
2734 goto out;
2737 shmem_falloc.waitq = NULL;
2738 shmem_falloc.start = start;
2739 shmem_falloc.next = start;
2740 shmem_falloc.nr_falloced = 0;
2741 shmem_falloc.nr_unswapped = 0;
2742 spin_lock(&inode->i_lock);
2743 inode->i_private = &shmem_falloc;
2744 spin_unlock(&inode->i_lock);
2746 for (index = start; index < end; index++) {
2747 struct page *page;
2750 * Good, the fallocate(2) manpage permits EINTR: we may have
2751 * been interrupted because we are using up too much memory.
2753 if (signal_pending(current))
2754 error = -EINTR;
2755 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2756 error = -ENOMEM;
2757 else
2758 error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2759 if (error) {
2760 /* Remove the !PageUptodate pages we added */
2761 if (index > start) {
2762 shmem_undo_range(inode,
2763 (loff_t)start << PAGE_SHIFT,
2764 ((loff_t)index << PAGE_SHIFT) - 1, true);
2766 goto undone;
2770 * Inform shmem_writepage() how far we have reached.
2771 * No need for lock or barrier: we have the page lock.
2773 shmem_falloc.next++;
2774 if (!PageUptodate(page))
2775 shmem_falloc.nr_falloced++;
2778 * If !PageUptodate, leave it that way so that freeable pages
2779 * can be recognized if we need to rollback on error later.
2780 * But set_page_dirty so that memory pressure will swap rather
2781 * than free the pages we are allocating (and SGP_CACHE pages
2782 * might still be clean: we now need to mark those dirty too).
2784 set_page_dirty(page);
2785 unlock_page(page);
2786 put_page(page);
2787 cond_resched();
2790 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2791 i_size_write(inode, offset + len);
2792 inode->i_ctime = current_time(inode);
2793 undone:
2794 spin_lock(&inode->i_lock);
2795 inode->i_private = NULL;
2796 spin_unlock(&inode->i_lock);
2797 out:
2798 inode_unlock(inode);
2799 return error;
2802 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2804 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2806 buf->f_type = TMPFS_MAGIC;
2807 buf->f_bsize = PAGE_SIZE;
2808 buf->f_namelen = NAME_MAX;
2809 if (sbinfo->max_blocks) {
2810 buf->f_blocks = sbinfo->max_blocks;
2811 buf->f_bavail =
2812 buf->f_bfree = sbinfo->max_blocks -
2813 percpu_counter_sum(&sbinfo->used_blocks);
2815 if (sbinfo->max_inodes) {
2816 buf->f_files = sbinfo->max_inodes;
2817 buf->f_ffree = sbinfo->free_inodes;
2819 /* else leave those fields 0 like simple_statfs */
2820 return 0;
2824 * File creation. Allocate an inode, and we're done..
2826 static int
2827 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2829 struct inode *inode;
2830 int error = -ENOSPC;
2832 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2833 if (inode) {
2834 error = simple_acl_create(dir, inode);
2835 if (error)
2836 goto out_iput;
2837 error = security_inode_init_security(inode, dir,
2838 &dentry->d_name,
2839 shmem_initxattrs, NULL);
2840 if (error && error != -EOPNOTSUPP)
2841 goto out_iput;
2843 error = 0;
2844 dir->i_size += BOGO_DIRENT_SIZE;
2845 dir->i_ctime = dir->i_mtime = current_time(dir);
2846 d_instantiate(dentry, inode);
2847 dget(dentry); /* Extra count - pin the dentry in core */
2849 return error;
2850 out_iput:
2851 iput(inode);
2852 return error;
2855 static int
2856 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2858 struct inode *inode;
2859 int error = -ENOSPC;
2861 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2862 if (inode) {
2863 error = security_inode_init_security(inode, dir,
2864 NULL,
2865 shmem_initxattrs, NULL);
2866 if (error && error != -EOPNOTSUPP)
2867 goto out_iput;
2868 error = simple_acl_create(dir, inode);
2869 if (error)
2870 goto out_iput;
2871 d_tmpfile(dentry, inode);
2873 return error;
2874 out_iput:
2875 iput(inode);
2876 return error;
2879 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2881 int error;
2883 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2884 return error;
2885 inc_nlink(dir);
2886 return 0;
2889 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2890 bool excl)
2892 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2896 * Link a file..
2898 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2900 struct inode *inode = d_inode(old_dentry);
2901 int ret = 0;
2904 * No ordinary (disk based) filesystem counts links as inodes;
2905 * but each new link needs a new dentry, pinning lowmem, and
2906 * tmpfs dentries cannot be pruned until they are unlinked.
2907 * But if an O_TMPFILE file is linked into the tmpfs, the
2908 * first link must skip that, to get the accounting right.
2910 if (inode->i_nlink) {
2911 ret = shmem_reserve_inode(inode->i_sb);
2912 if (ret)
2913 goto out;
2916 dir->i_size += BOGO_DIRENT_SIZE;
2917 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2918 inc_nlink(inode);
2919 ihold(inode); /* New dentry reference */
2920 dget(dentry); /* Extra pinning count for the created dentry */
2921 d_instantiate(dentry, inode);
2922 out:
2923 return ret;
2926 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2928 struct inode *inode = d_inode(dentry);
2930 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2931 shmem_free_inode(inode->i_sb);
2933 dir->i_size -= BOGO_DIRENT_SIZE;
2934 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2935 drop_nlink(inode);
2936 dput(dentry); /* Undo the count from "create" - this does all the work */
2937 return 0;
2940 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2942 if (!simple_empty(dentry))
2943 return -ENOTEMPTY;
2945 drop_nlink(d_inode(dentry));
2946 drop_nlink(dir);
2947 return shmem_unlink(dir, dentry);
2950 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2952 bool old_is_dir = d_is_dir(old_dentry);
2953 bool new_is_dir = d_is_dir(new_dentry);
2955 if (old_dir != new_dir && old_is_dir != new_is_dir) {
2956 if (old_is_dir) {
2957 drop_nlink(old_dir);
2958 inc_nlink(new_dir);
2959 } else {
2960 drop_nlink(new_dir);
2961 inc_nlink(old_dir);
2964 old_dir->i_ctime = old_dir->i_mtime =
2965 new_dir->i_ctime = new_dir->i_mtime =
2966 d_inode(old_dentry)->i_ctime =
2967 d_inode(new_dentry)->i_ctime = current_time(old_dir);
2969 return 0;
2972 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
2974 struct dentry *whiteout;
2975 int error;
2977 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2978 if (!whiteout)
2979 return -ENOMEM;
2981 error = shmem_mknod(old_dir, whiteout,
2982 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2983 dput(whiteout);
2984 if (error)
2985 return error;
2988 * Cheat and hash the whiteout while the old dentry is still in
2989 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2991 * d_lookup() will consistently find one of them at this point,
2992 * not sure which one, but that isn't even important.
2994 d_rehash(whiteout);
2995 return 0;
2999 * The VFS layer already does all the dentry stuff for rename,
3000 * we just have to decrement the usage count for the target if
3001 * it exists so that the VFS layer correctly free's it when it
3002 * gets overwritten.
3004 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
3006 struct inode *inode = d_inode(old_dentry);
3007 int they_are_dirs = S_ISDIR(inode->i_mode);
3009 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3010 return -EINVAL;
3012 if (flags & RENAME_EXCHANGE)
3013 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3015 if (!simple_empty(new_dentry))
3016 return -ENOTEMPTY;
3018 if (flags & RENAME_WHITEOUT) {
3019 int error;
3021 error = shmem_whiteout(old_dir, old_dentry);
3022 if (error)
3023 return error;
3026 if (d_really_is_positive(new_dentry)) {
3027 (void) shmem_unlink(new_dir, new_dentry);
3028 if (they_are_dirs) {
3029 drop_nlink(d_inode(new_dentry));
3030 drop_nlink(old_dir);
3032 } else if (they_are_dirs) {
3033 drop_nlink(old_dir);
3034 inc_nlink(new_dir);
3037 old_dir->i_size -= BOGO_DIRENT_SIZE;
3038 new_dir->i_size += BOGO_DIRENT_SIZE;
3039 old_dir->i_ctime = old_dir->i_mtime =
3040 new_dir->i_ctime = new_dir->i_mtime =
3041 inode->i_ctime = current_time(old_dir);
3042 return 0;
3045 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3047 int error;
3048 int len;
3049 struct inode *inode;
3050 struct page *page;
3051 struct shmem_inode_info *info;
3053 len = strlen(symname) + 1;
3054 if (len > PAGE_SIZE)
3055 return -ENAMETOOLONG;
3057 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
3058 if (!inode)
3059 return -ENOSPC;
3061 error = security_inode_init_security(inode, dir, &dentry->d_name,
3062 shmem_initxattrs, NULL);
3063 if (error) {
3064 if (error != -EOPNOTSUPP) {
3065 iput(inode);
3066 return error;
3068 error = 0;
3071 info = SHMEM_I(inode);
3072 inode->i_size = len-1;
3073 if (len <= SHORT_SYMLINK_LEN) {
3074 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3075 if (!inode->i_link) {
3076 iput(inode);
3077 return -ENOMEM;
3079 inode->i_op = &shmem_short_symlink_operations;
3080 } else {
3081 inode_nohighmem(inode);
3082 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3083 if (error) {
3084 iput(inode);
3085 return error;
3087 inode->i_mapping->a_ops = &shmem_aops;
3088 inode->i_op = &shmem_symlink_inode_operations;
3089 memcpy(page_address(page), symname, len);
3090 SetPageUptodate(page);
3091 set_page_dirty(page);
3092 unlock_page(page);
3093 put_page(page);
3095 dir->i_size += BOGO_DIRENT_SIZE;
3096 dir->i_ctime = dir->i_mtime = current_time(dir);
3097 d_instantiate(dentry, inode);
3098 dget(dentry);
3099 return 0;
3102 static void shmem_put_link(void *arg)
3104 mark_page_accessed(arg);
3105 put_page(arg);
3108 static const char *shmem_get_link(struct dentry *dentry,
3109 struct inode *inode,
3110 struct delayed_call *done)
3112 struct page *page = NULL;
3113 int error;
3114 if (!dentry) {
3115 page = find_get_page(inode->i_mapping, 0);
3116 if (!page)
3117 return ERR_PTR(-ECHILD);
3118 if (!PageUptodate(page)) {
3119 put_page(page);
3120 return ERR_PTR(-ECHILD);
3122 } else {
3123 error = shmem_getpage(inode, 0, &page, SGP_READ);
3124 if (error)
3125 return ERR_PTR(error);
3126 unlock_page(page);
3128 set_delayed_call(done, shmem_put_link, page);
3129 return page_address(page);
3132 #ifdef CONFIG_TMPFS_XATTR
3134 * Superblocks without xattr inode operations may get some security.* xattr
3135 * support from the LSM "for free". As soon as we have any other xattrs
3136 * like ACLs, we also need to implement the security.* handlers at
3137 * filesystem level, though.
3141 * Callback for security_inode_init_security() for acquiring xattrs.
3143 static int shmem_initxattrs(struct inode *inode,
3144 const struct xattr *xattr_array,
3145 void *fs_info)
3147 struct shmem_inode_info *info = SHMEM_I(inode);
3148 const struct xattr *xattr;
3149 struct simple_xattr *new_xattr;
3150 size_t len;
3152 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3153 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3154 if (!new_xattr)
3155 return -ENOMEM;
3157 len = strlen(xattr->name) + 1;
3158 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3159 GFP_KERNEL);
3160 if (!new_xattr->name) {
3161 kfree(new_xattr);
3162 return -ENOMEM;
3165 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3166 XATTR_SECURITY_PREFIX_LEN);
3167 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3168 xattr->name, len);
3170 simple_xattr_list_add(&info->xattrs, new_xattr);
3173 return 0;
3176 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3177 struct dentry *unused, struct inode *inode,
3178 const char *name, void *buffer, size_t size)
3180 struct shmem_inode_info *info = SHMEM_I(inode);
3182 name = xattr_full_name(handler, name);
3183 return simple_xattr_get(&info->xattrs, name, buffer, size);
3186 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3187 struct dentry *unused, struct inode *inode,
3188 const char *name, const void *value,
3189 size_t size, int flags)
3191 struct shmem_inode_info *info = SHMEM_I(inode);
3193 name = xattr_full_name(handler, name);
3194 return simple_xattr_set(&info->xattrs, name, value, size, flags);
3197 static const struct xattr_handler shmem_security_xattr_handler = {
3198 .prefix = XATTR_SECURITY_PREFIX,
3199 .get = shmem_xattr_handler_get,
3200 .set = shmem_xattr_handler_set,
3203 static const struct xattr_handler shmem_trusted_xattr_handler = {
3204 .prefix = XATTR_TRUSTED_PREFIX,
3205 .get = shmem_xattr_handler_get,
3206 .set = shmem_xattr_handler_set,
3209 static const struct xattr_handler *shmem_xattr_handlers[] = {
3210 #ifdef CONFIG_TMPFS_POSIX_ACL
3211 &posix_acl_access_xattr_handler,
3212 &posix_acl_default_xattr_handler,
3213 #endif
3214 &shmem_security_xattr_handler,
3215 &shmem_trusted_xattr_handler,
3216 NULL
3219 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3221 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3222 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3224 #endif /* CONFIG_TMPFS_XATTR */
3226 static const struct inode_operations shmem_short_symlink_operations = {
3227 .readlink = generic_readlink,
3228 .get_link = simple_get_link,
3229 #ifdef CONFIG_TMPFS_XATTR
3230 .listxattr = shmem_listxattr,
3231 #endif
3234 static const struct inode_operations shmem_symlink_inode_operations = {
3235 .readlink = generic_readlink,
3236 .get_link = shmem_get_link,
3237 #ifdef CONFIG_TMPFS_XATTR
3238 .listxattr = shmem_listxattr,
3239 #endif
3242 static struct dentry *shmem_get_parent(struct dentry *child)
3244 return ERR_PTR(-ESTALE);
3247 static int shmem_match(struct inode *ino, void *vfh)
3249 __u32 *fh = vfh;
3250 __u64 inum = fh[2];
3251 inum = (inum << 32) | fh[1];
3252 return ino->i_ino == inum && fh[0] == ino->i_generation;
3255 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3256 struct fid *fid, int fh_len, int fh_type)
3258 struct inode *inode;
3259 struct dentry *dentry = NULL;
3260 u64 inum;
3262 if (fh_len < 3)
3263 return NULL;
3265 inum = fid->raw[2];
3266 inum = (inum << 32) | fid->raw[1];
3268 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3269 shmem_match, fid->raw);
3270 if (inode) {
3271 dentry = d_find_alias(inode);
3272 iput(inode);
3275 return dentry;
3278 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3279 struct inode *parent)
3281 if (*len < 3) {
3282 *len = 3;
3283 return FILEID_INVALID;
3286 if (inode_unhashed(inode)) {
3287 /* Unfortunately insert_inode_hash is not idempotent,
3288 * so as we hash inodes here rather than at creation
3289 * time, we need a lock to ensure we only try
3290 * to do it once
3292 static DEFINE_SPINLOCK(lock);
3293 spin_lock(&lock);
3294 if (inode_unhashed(inode))
3295 __insert_inode_hash(inode,
3296 inode->i_ino + inode->i_generation);
3297 spin_unlock(&lock);
3300 fh[0] = inode->i_generation;
3301 fh[1] = inode->i_ino;
3302 fh[2] = ((__u64)inode->i_ino) >> 32;
3304 *len = 3;
3305 return 1;
3308 static const struct export_operations shmem_export_ops = {
3309 .get_parent = shmem_get_parent,
3310 .encode_fh = shmem_encode_fh,
3311 .fh_to_dentry = shmem_fh_to_dentry,
3314 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
3315 bool remount)
3317 char *this_char, *value, *rest;
3318 struct mempolicy *mpol = NULL;
3319 uid_t uid;
3320 gid_t gid;
3322 while (options != NULL) {
3323 this_char = options;
3324 for (;;) {
3326 * NUL-terminate this option: unfortunately,
3327 * mount options form a comma-separated list,
3328 * but mpol's nodelist may also contain commas.
3330 options = strchr(options, ',');
3331 if (options == NULL)
3332 break;
3333 options++;
3334 if (!isdigit(*options)) {
3335 options[-1] = '\0';
3336 break;
3339 if (!*this_char)
3340 continue;
3341 if ((value = strchr(this_char,'=')) != NULL) {
3342 *value++ = 0;
3343 } else {
3344 pr_err("tmpfs: No value for mount option '%s'\n",
3345 this_char);
3346 goto error;
3349 if (!strcmp(this_char,"size")) {
3350 unsigned long long size;
3351 size = memparse(value,&rest);
3352 if (*rest == '%') {
3353 size <<= PAGE_SHIFT;
3354 size *= totalram_pages;
3355 do_div(size, 100);
3356 rest++;
3358 if (*rest)
3359 goto bad_val;
3360 sbinfo->max_blocks =
3361 DIV_ROUND_UP(size, PAGE_SIZE);
3362 } else if (!strcmp(this_char,"nr_blocks")) {
3363 sbinfo->max_blocks = memparse(value, &rest);
3364 if (*rest)
3365 goto bad_val;
3366 } else if (!strcmp(this_char,"nr_inodes")) {
3367 sbinfo->max_inodes = memparse(value, &rest);
3368 if (*rest)
3369 goto bad_val;
3370 } else if (!strcmp(this_char,"mode")) {
3371 if (remount)
3372 continue;
3373 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
3374 if (*rest)
3375 goto bad_val;
3376 } else if (!strcmp(this_char,"uid")) {
3377 if (remount)
3378 continue;
3379 uid = simple_strtoul(value, &rest, 0);
3380 if (*rest)
3381 goto bad_val;
3382 sbinfo->uid = make_kuid(current_user_ns(), uid);
3383 if (!uid_valid(sbinfo->uid))
3384 goto bad_val;
3385 } else if (!strcmp(this_char,"gid")) {
3386 if (remount)
3387 continue;
3388 gid = simple_strtoul(value, &rest, 0);
3389 if (*rest)
3390 goto bad_val;
3391 sbinfo->gid = make_kgid(current_user_ns(), gid);
3392 if (!gid_valid(sbinfo->gid))
3393 goto bad_val;
3394 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3395 } else if (!strcmp(this_char, "huge")) {
3396 int huge;
3397 huge = shmem_parse_huge(value);
3398 if (huge < 0)
3399 goto bad_val;
3400 if (!has_transparent_hugepage() &&
3401 huge != SHMEM_HUGE_NEVER)
3402 goto bad_val;
3403 sbinfo->huge = huge;
3404 #endif
3405 #ifdef CONFIG_NUMA
3406 } else if (!strcmp(this_char,"mpol")) {
3407 mpol_put(mpol);
3408 mpol = NULL;
3409 if (mpol_parse_str(value, &mpol))
3410 goto bad_val;
3411 #endif
3412 } else {
3413 pr_err("tmpfs: Bad mount option %s\n", this_char);
3414 goto error;
3417 sbinfo->mpol = mpol;
3418 return 0;
3420 bad_val:
3421 pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
3422 value, this_char);
3423 error:
3424 mpol_put(mpol);
3425 return 1;
3429 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
3431 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3432 struct shmem_sb_info config = *sbinfo;
3433 unsigned long inodes;
3434 int error = -EINVAL;
3436 config.mpol = NULL;
3437 if (shmem_parse_options(data, &config, true))
3438 return error;
3440 spin_lock(&sbinfo->stat_lock);
3441 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3442 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
3443 goto out;
3444 if (config.max_inodes < inodes)
3445 goto out;
3447 * Those tests disallow limited->unlimited while any are in use;
3448 * but we must separately disallow unlimited->limited, because
3449 * in that case we have no record of how much is already in use.
3451 if (config.max_blocks && !sbinfo->max_blocks)
3452 goto out;
3453 if (config.max_inodes && !sbinfo->max_inodes)
3454 goto out;
3456 error = 0;
3457 sbinfo->huge = config.huge;
3458 sbinfo->max_blocks = config.max_blocks;
3459 sbinfo->max_inodes = config.max_inodes;
3460 sbinfo->free_inodes = config.max_inodes - inodes;
3463 * Preserve previous mempolicy unless mpol remount option was specified.
3465 if (config.mpol) {
3466 mpol_put(sbinfo->mpol);
3467 sbinfo->mpol = config.mpol; /* transfers initial ref */
3469 out:
3470 spin_unlock(&sbinfo->stat_lock);
3471 return error;
3474 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3476 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3478 if (sbinfo->max_blocks != shmem_default_max_blocks())
3479 seq_printf(seq, ",size=%luk",
3480 sbinfo->max_blocks << (PAGE_SHIFT - 10));
3481 if (sbinfo->max_inodes != shmem_default_max_inodes())
3482 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3483 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
3484 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3485 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3486 seq_printf(seq, ",uid=%u",
3487 from_kuid_munged(&init_user_ns, sbinfo->uid));
3488 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3489 seq_printf(seq, ",gid=%u",
3490 from_kgid_munged(&init_user_ns, sbinfo->gid));
3491 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3492 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3493 if (sbinfo->huge)
3494 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3495 #endif
3496 shmem_show_mpol(seq, sbinfo->mpol);
3497 return 0;
3500 #define MFD_NAME_PREFIX "memfd:"
3501 #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
3502 #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
3504 #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING)
3506 SYSCALL_DEFINE2(memfd_create,
3507 const char __user *, uname,
3508 unsigned int, flags)
3510 struct shmem_inode_info *info;
3511 struct file *file;
3512 int fd, error;
3513 char *name;
3514 long len;
3516 if (flags & ~(unsigned int)MFD_ALL_FLAGS)
3517 return -EINVAL;
3519 /* length includes terminating zero */
3520 len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
3521 if (len <= 0)
3522 return -EFAULT;
3523 if (len > MFD_NAME_MAX_LEN + 1)
3524 return -EINVAL;
3526 name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_TEMPORARY);
3527 if (!name)
3528 return -ENOMEM;
3530 strcpy(name, MFD_NAME_PREFIX);
3531 if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
3532 error = -EFAULT;
3533 goto err_name;
3536 /* terminating-zero may have changed after strnlen_user() returned */
3537 if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
3538 error = -EFAULT;
3539 goto err_name;
3542 fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
3543 if (fd < 0) {
3544 error = fd;
3545 goto err_name;
3548 file = shmem_file_setup(name, 0, VM_NORESERVE);
3549 if (IS_ERR(file)) {
3550 error = PTR_ERR(file);
3551 goto err_fd;
3553 info = SHMEM_I(file_inode(file));
3554 file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
3555 file->f_flags |= O_RDWR | O_LARGEFILE;
3556 if (flags & MFD_ALLOW_SEALING)
3557 info->seals &= ~F_SEAL_SEAL;
3559 fd_install(fd, file);
3560 kfree(name);
3561 return fd;
3563 err_fd:
3564 put_unused_fd(fd);
3565 err_name:
3566 kfree(name);
3567 return error;
3570 #endif /* CONFIG_TMPFS */
3572 static void shmem_put_super(struct super_block *sb)
3574 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3576 percpu_counter_destroy(&sbinfo->used_blocks);
3577 mpol_put(sbinfo->mpol);
3578 kfree(sbinfo);
3579 sb->s_fs_info = NULL;
3582 int shmem_fill_super(struct super_block *sb, void *data, int silent)
3584 struct inode *inode;
3585 struct shmem_sb_info *sbinfo;
3586 int err = -ENOMEM;
3588 /* Round up to L1_CACHE_BYTES to resist false sharing */
3589 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3590 L1_CACHE_BYTES), GFP_KERNEL);
3591 if (!sbinfo)
3592 return -ENOMEM;
3594 sbinfo->mode = S_IRWXUGO | S_ISVTX;
3595 sbinfo->uid = current_fsuid();
3596 sbinfo->gid = current_fsgid();
3597 sb->s_fs_info = sbinfo;
3599 #ifdef CONFIG_TMPFS
3601 * Per default we only allow half of the physical ram per
3602 * tmpfs instance, limiting inodes to one per page of lowmem;
3603 * but the internal instance is left unlimited.
3605 if (!(sb->s_flags & MS_KERNMOUNT)) {
3606 sbinfo->max_blocks = shmem_default_max_blocks();
3607 sbinfo->max_inodes = shmem_default_max_inodes();
3608 if (shmem_parse_options(data, sbinfo, false)) {
3609 err = -EINVAL;
3610 goto failed;
3612 } else {
3613 sb->s_flags |= MS_NOUSER;
3615 sb->s_export_op = &shmem_export_ops;
3616 sb->s_flags |= MS_NOSEC;
3617 #else
3618 sb->s_flags |= MS_NOUSER;
3619 #endif
3621 spin_lock_init(&sbinfo->stat_lock);
3622 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3623 goto failed;
3624 sbinfo->free_inodes = sbinfo->max_inodes;
3625 spin_lock_init(&sbinfo->shrinklist_lock);
3626 INIT_LIST_HEAD(&sbinfo->shrinklist);
3628 sb->s_maxbytes = MAX_LFS_FILESIZE;
3629 sb->s_blocksize = PAGE_SIZE;
3630 sb->s_blocksize_bits = PAGE_SHIFT;
3631 sb->s_magic = TMPFS_MAGIC;
3632 sb->s_op = &shmem_ops;
3633 sb->s_time_gran = 1;
3634 #ifdef CONFIG_TMPFS_XATTR
3635 sb->s_xattr = shmem_xattr_handlers;
3636 #endif
3637 #ifdef CONFIG_TMPFS_POSIX_ACL
3638 sb->s_flags |= MS_POSIXACL;
3639 #endif
3641 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3642 if (!inode)
3643 goto failed;
3644 inode->i_uid = sbinfo->uid;
3645 inode->i_gid = sbinfo->gid;
3646 sb->s_root = d_make_root(inode);
3647 if (!sb->s_root)
3648 goto failed;
3649 return 0;
3651 failed:
3652 shmem_put_super(sb);
3653 return err;
3656 static struct kmem_cache *shmem_inode_cachep;
3658 static struct inode *shmem_alloc_inode(struct super_block *sb)
3660 struct shmem_inode_info *info;
3661 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3662 if (!info)
3663 return NULL;
3664 return &info->vfs_inode;
3667 static void shmem_destroy_callback(struct rcu_head *head)
3669 struct inode *inode = container_of(head, struct inode, i_rcu);
3670 if (S_ISLNK(inode->i_mode))
3671 kfree(inode->i_link);
3672 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3675 static void shmem_destroy_inode(struct inode *inode)
3677 if (S_ISREG(inode->i_mode))
3678 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3679 call_rcu(&inode->i_rcu, shmem_destroy_callback);
3682 static void shmem_init_inode(void *foo)
3684 struct shmem_inode_info *info = foo;
3685 inode_init_once(&info->vfs_inode);
3688 static int shmem_init_inodecache(void)
3690 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3691 sizeof(struct shmem_inode_info),
3692 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3693 return 0;
3696 static void shmem_destroy_inodecache(void)
3698 kmem_cache_destroy(shmem_inode_cachep);
3701 static const struct address_space_operations shmem_aops = {
3702 .writepage = shmem_writepage,
3703 .set_page_dirty = __set_page_dirty_no_writeback,
3704 #ifdef CONFIG_TMPFS
3705 .write_begin = shmem_write_begin,
3706 .write_end = shmem_write_end,
3707 #endif
3708 #ifdef CONFIG_MIGRATION
3709 .migratepage = migrate_page,
3710 #endif
3711 .error_remove_page = generic_error_remove_page,
3714 static const struct file_operations shmem_file_operations = {
3715 .mmap = shmem_mmap,
3716 .get_unmapped_area = shmem_get_unmapped_area,
3717 #ifdef CONFIG_TMPFS
3718 .llseek = shmem_file_llseek,
3719 .read_iter = shmem_file_read_iter,
3720 .write_iter = generic_file_write_iter,
3721 .fsync = noop_fsync,
3722 .splice_read = generic_file_splice_read,
3723 .splice_write = iter_file_splice_write,
3724 .fallocate = shmem_fallocate,
3725 #endif
3728 static const struct inode_operations shmem_inode_operations = {
3729 .getattr = shmem_getattr,
3730 .setattr = shmem_setattr,
3731 #ifdef CONFIG_TMPFS_XATTR
3732 .listxattr = shmem_listxattr,
3733 .set_acl = simple_set_acl,
3734 #endif
3737 static const struct inode_operations shmem_dir_inode_operations = {
3738 #ifdef CONFIG_TMPFS
3739 .create = shmem_create,
3740 .lookup = simple_lookup,
3741 .link = shmem_link,
3742 .unlink = shmem_unlink,
3743 .symlink = shmem_symlink,
3744 .mkdir = shmem_mkdir,
3745 .rmdir = shmem_rmdir,
3746 .mknod = shmem_mknod,
3747 .rename = shmem_rename2,
3748 .tmpfile = shmem_tmpfile,
3749 #endif
3750 #ifdef CONFIG_TMPFS_XATTR
3751 .listxattr = shmem_listxattr,
3752 #endif
3753 #ifdef CONFIG_TMPFS_POSIX_ACL
3754 .setattr = shmem_setattr,
3755 .set_acl = simple_set_acl,
3756 #endif
3759 static const struct inode_operations shmem_special_inode_operations = {
3760 #ifdef CONFIG_TMPFS_XATTR
3761 .listxattr = shmem_listxattr,
3762 #endif
3763 #ifdef CONFIG_TMPFS_POSIX_ACL
3764 .setattr = shmem_setattr,
3765 .set_acl = simple_set_acl,
3766 #endif
3769 static const struct super_operations shmem_ops = {
3770 .alloc_inode = shmem_alloc_inode,
3771 .destroy_inode = shmem_destroy_inode,
3772 #ifdef CONFIG_TMPFS
3773 .statfs = shmem_statfs,
3774 .remount_fs = shmem_remount_fs,
3775 .show_options = shmem_show_options,
3776 #endif
3777 .evict_inode = shmem_evict_inode,
3778 .drop_inode = generic_delete_inode,
3779 .put_super = shmem_put_super,
3780 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3781 .nr_cached_objects = shmem_unused_huge_count,
3782 .free_cached_objects = shmem_unused_huge_scan,
3783 #endif
3786 static const struct vm_operations_struct shmem_vm_ops = {
3787 .fault = shmem_fault,
3788 .map_pages = filemap_map_pages,
3789 #ifdef CONFIG_NUMA
3790 .set_policy = shmem_set_policy,
3791 .get_policy = shmem_get_policy,
3792 #endif
3795 static struct dentry *shmem_mount(struct file_system_type *fs_type,
3796 int flags, const char *dev_name, void *data)
3798 return mount_nodev(fs_type, flags, data, shmem_fill_super);
3801 static struct file_system_type shmem_fs_type = {
3802 .owner = THIS_MODULE,
3803 .name = "tmpfs",
3804 .mount = shmem_mount,
3805 .kill_sb = kill_litter_super,
3806 .fs_flags = FS_USERNS_MOUNT,
3809 int __init shmem_init(void)
3811 int error;
3813 /* If rootfs called this, don't re-init */
3814 if (shmem_inode_cachep)
3815 return 0;
3817 error = shmem_init_inodecache();
3818 if (error)
3819 goto out3;
3821 error = register_filesystem(&shmem_fs_type);
3822 if (error) {
3823 pr_err("Could not register tmpfs\n");
3824 goto out2;
3827 shm_mnt = kern_mount(&shmem_fs_type);
3828 if (IS_ERR(shm_mnt)) {
3829 error = PTR_ERR(shm_mnt);
3830 pr_err("Could not kern_mount tmpfs\n");
3831 goto out1;
3834 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3835 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3836 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3837 else
3838 shmem_huge = 0; /* just in case it was patched */
3839 #endif
3840 return 0;
3842 out1:
3843 unregister_filesystem(&shmem_fs_type);
3844 out2:
3845 shmem_destroy_inodecache();
3846 out3:
3847 shm_mnt = ERR_PTR(error);
3848 return error;
3851 #if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
3852 static ssize_t shmem_enabled_show(struct kobject *kobj,
3853 struct kobj_attribute *attr, char *buf)
3855 int values[] = {
3856 SHMEM_HUGE_ALWAYS,
3857 SHMEM_HUGE_WITHIN_SIZE,
3858 SHMEM_HUGE_ADVISE,
3859 SHMEM_HUGE_NEVER,
3860 SHMEM_HUGE_DENY,
3861 SHMEM_HUGE_FORCE,
3863 int i, count;
3865 for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
3866 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
3868 count += sprintf(buf + count, fmt,
3869 shmem_format_huge(values[i]));
3871 buf[count - 1] = '\n';
3872 return count;
3875 static ssize_t shmem_enabled_store(struct kobject *kobj,
3876 struct kobj_attribute *attr, const char *buf, size_t count)
3878 char tmp[16];
3879 int huge;
3881 if (count + 1 > sizeof(tmp))
3882 return -EINVAL;
3883 memcpy(tmp, buf, count);
3884 tmp[count] = '\0';
3885 if (count && tmp[count - 1] == '\n')
3886 tmp[count - 1] = '\0';
3888 huge = shmem_parse_huge(tmp);
3889 if (huge == -EINVAL)
3890 return -EINVAL;
3891 if (!has_transparent_hugepage() &&
3892 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3893 return -EINVAL;
3895 shmem_huge = huge;
3896 if (shmem_huge > SHMEM_HUGE_DENY)
3897 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3898 return count;
3901 struct kobj_attribute shmem_enabled_attr =
3902 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3903 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
3905 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3906 bool shmem_huge_enabled(struct vm_area_struct *vma)
3908 struct inode *inode = file_inode(vma->vm_file);
3909 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3910 loff_t i_size;
3911 pgoff_t off;
3913 if (shmem_huge == SHMEM_HUGE_FORCE)
3914 return true;
3915 if (shmem_huge == SHMEM_HUGE_DENY)
3916 return false;
3917 switch (sbinfo->huge) {
3918 case SHMEM_HUGE_NEVER:
3919 return false;
3920 case SHMEM_HUGE_ALWAYS:
3921 return true;
3922 case SHMEM_HUGE_WITHIN_SIZE:
3923 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
3924 i_size = round_up(i_size_read(inode), PAGE_SIZE);
3925 if (i_size >= HPAGE_PMD_SIZE &&
3926 i_size >> PAGE_SHIFT >= off)
3927 return true;
3928 case SHMEM_HUGE_ADVISE:
3929 /* TODO: implement fadvise() hints */
3930 return (vma->vm_flags & VM_HUGEPAGE);
3931 default:
3932 VM_BUG_ON(1);
3933 return false;
3936 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
3938 #else /* !CONFIG_SHMEM */
3941 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3943 * This is intended for small system where the benefits of the full
3944 * shmem code (swap-backed and resource-limited) are outweighed by
3945 * their complexity. On systems without swap this code should be
3946 * effectively equivalent, but much lighter weight.
3949 static struct file_system_type shmem_fs_type = {
3950 .name = "tmpfs",
3951 .mount = ramfs_mount,
3952 .kill_sb = kill_litter_super,
3953 .fs_flags = FS_USERNS_MOUNT,
3956 int __init shmem_init(void)
3958 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
3960 shm_mnt = kern_mount(&shmem_fs_type);
3961 BUG_ON(IS_ERR(shm_mnt));
3963 return 0;
3966 int shmem_unuse(swp_entry_t swap, struct page *page)
3968 return 0;
3971 int shmem_lock(struct file *file, int lock, struct user_struct *user)
3973 return 0;
3976 void shmem_unlock_mapping(struct address_space *mapping)
3980 #ifdef CONFIG_MMU
3981 unsigned long shmem_get_unmapped_area(struct file *file,
3982 unsigned long addr, unsigned long len,
3983 unsigned long pgoff, unsigned long flags)
3985 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
3987 #endif
3989 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
3991 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
3993 EXPORT_SYMBOL_GPL(shmem_truncate_range);
3995 #define shmem_vm_ops generic_file_vm_ops
3996 #define shmem_file_operations ramfs_file_operations
3997 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
3998 #define shmem_acct_size(flags, size) 0
3999 #define shmem_unacct_size(flags, size) do {} while (0)
4001 #endif /* CONFIG_SHMEM */
4003 /* common code */
4005 static const struct dentry_operations anon_ops = {
4006 .d_dname = simple_dname
4009 static struct file *__shmem_file_setup(const char *name, loff_t size,
4010 unsigned long flags, unsigned int i_flags)
4012 struct file *res;
4013 struct inode *inode;
4014 struct path path;
4015 struct super_block *sb;
4016 struct qstr this;
4018 if (IS_ERR(shm_mnt))
4019 return ERR_CAST(shm_mnt);
4021 if (size < 0 || size > MAX_LFS_FILESIZE)
4022 return ERR_PTR(-EINVAL);
4024 if (shmem_acct_size(flags, size))
4025 return ERR_PTR(-ENOMEM);
4027 res = ERR_PTR(-ENOMEM);
4028 this.name = name;
4029 this.len = strlen(name);
4030 this.hash = 0; /* will go */
4031 sb = shm_mnt->mnt_sb;
4032 path.mnt = mntget(shm_mnt);
4033 path.dentry = d_alloc_pseudo(sb, &this);
4034 if (!path.dentry)
4035 goto put_memory;
4036 d_set_d_op(path.dentry, &anon_ops);
4038 res = ERR_PTR(-ENOSPC);
4039 inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
4040 if (!inode)
4041 goto put_memory;
4043 inode->i_flags |= i_flags;
4044 d_instantiate(path.dentry, inode);
4045 inode->i_size = size;
4046 clear_nlink(inode); /* It is unlinked */
4047 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4048 if (IS_ERR(res))
4049 goto put_path;
4051 res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
4052 &shmem_file_operations);
4053 if (IS_ERR(res))
4054 goto put_path;
4056 return res;
4058 put_memory:
4059 shmem_unacct_size(flags, size);
4060 put_path:
4061 path_put(&path);
4062 return res;
4066 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4067 * kernel internal. There will be NO LSM permission checks against the
4068 * underlying inode. So users of this interface must do LSM checks at a
4069 * higher layer. The users are the big_key and shm implementations. LSM
4070 * checks are provided at the key or shm level rather than the inode.
4071 * @name: name for dentry (to be seen in /proc/<pid>/maps
4072 * @size: size to be set for the file
4073 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4075 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4077 return __shmem_file_setup(name, size, flags, S_PRIVATE);
4081 * shmem_file_setup - get an unlinked file living in tmpfs
4082 * @name: name for dentry (to be seen in /proc/<pid>/maps
4083 * @size: size to be set for the file
4084 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4086 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4088 return __shmem_file_setup(name, size, flags, 0);
4090 EXPORT_SYMBOL_GPL(shmem_file_setup);
4093 * shmem_zero_setup - setup a shared anonymous mapping
4094 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4096 int shmem_zero_setup(struct vm_area_struct *vma)
4098 struct file *file;
4099 loff_t size = vma->vm_end - vma->vm_start;
4102 * Cloning a new file under mmap_sem leads to a lock ordering conflict
4103 * between XFS directory reading and selinux: since this file is only
4104 * accessible to the user through its mapping, use S_PRIVATE flag to
4105 * bypass file security, in the same way as shmem_kernel_file_setup().
4107 file = __shmem_file_setup("dev/zero", size, vma->vm_flags, S_PRIVATE);
4108 if (IS_ERR(file))
4109 return PTR_ERR(file);
4111 if (vma->vm_file)
4112 fput(vma->vm_file);
4113 vma->vm_file = file;
4114 vma->vm_ops = &shmem_vm_ops;
4116 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
4117 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4118 (vma->vm_end & HPAGE_PMD_MASK)) {
4119 khugepaged_enter(vma, vma->vm_flags);
4122 return 0;
4126 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4127 * @mapping: the page's address_space
4128 * @index: the page index
4129 * @gfp: the page allocator flags to use if allocating
4131 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4132 * with any new page allocations done using the specified allocation flags.
4133 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4134 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4135 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4137 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4138 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4140 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4141 pgoff_t index, gfp_t gfp)
4143 #ifdef CONFIG_SHMEM
4144 struct inode *inode = mapping->host;
4145 struct page *page;
4146 int error;
4148 BUG_ON(mapping->a_ops != &shmem_aops);
4149 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4150 gfp, NULL, NULL);
4151 if (error)
4152 page = ERR_PTR(error);
4153 else
4154 unlock_page(page);
4155 return page;
4156 #else
4158 * The tiny !SHMEM case uses ramfs without swap
4160 return read_cache_page_gfp(mapping, index, gfp);
4161 #endif
4163 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);