2 * Resizable virtual memory filesystem for Linux.
4 * Copyright (C) 2000 Linus Torvalds.
6 * 2000-2001 Christoph Rohland
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
21 * This file is released under the GPL.
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
32 #include <linux/export.h>
33 #include <linux/swap.h>
34 #include <linux/uio.h>
35 #include <linux/khugepaged.h>
37 static struct vfsmount
*shm_mnt
;
41 * This virtual memory filesystem is heavily based on the ramfs. It
42 * extends ramfs by the ability to use swap and honor resource limits
43 * which makes it a completely usable filesystem.
46 #include <linux/xattr.h>
47 #include <linux/exportfs.h>
48 #include <linux/posix_acl.h>
49 #include <linux/posix_acl_xattr.h>
50 #include <linux/mman.h>
51 #include <linux/string.h>
52 #include <linux/slab.h>
53 #include <linux/backing-dev.h>
54 #include <linux/shmem_fs.h>
55 #include <linux/writeback.h>
56 #include <linux/blkdev.h>
57 #include <linux/pagevec.h>
58 #include <linux/percpu_counter.h>
59 #include <linux/falloc.h>
60 #include <linux/splice.h>
61 #include <linux/security.h>
62 #include <linux/swapops.h>
63 #include <linux/mempolicy.h>
64 #include <linux/namei.h>
65 #include <linux/ctype.h>
66 #include <linux/migrate.h>
67 #include <linux/highmem.h>
68 #include <linux/seq_file.h>
69 #include <linux/magic.h>
70 #include <linux/syscalls.h>
71 #include <linux/fcntl.h>
72 #include <uapi/linux/memfd.h>
74 #include <asm/uaccess.h>
75 #include <asm/pgtable.h>
79 #define BLOCKS_PER_PAGE (PAGE_SIZE/512)
80 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
82 /* Pretend that each entry is of this size in directory's i_size */
83 #define BOGO_DIRENT_SIZE 20
85 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
86 #define SHORT_SYMLINK_LEN 128
89 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
90 * inode->i_private (with i_mutex making sure that it has only one user at
91 * a time): we would prefer not to enlarge the shmem inode just for that.
94 wait_queue_head_t
*waitq
; /* faults into hole wait for punch to end */
95 pgoff_t start
; /* start of range currently being fallocated */
96 pgoff_t next
; /* the next page offset to be fallocated */
97 pgoff_t nr_falloced
; /* how many new pages have been fallocated */
98 pgoff_t nr_unswapped
; /* how often writepage refused to swap out */
102 static unsigned long shmem_default_max_blocks(void)
104 return totalram_pages
/ 2;
107 static unsigned long shmem_default_max_inodes(void)
109 return min(totalram_pages
- totalhigh_pages
, totalram_pages
/ 2);
113 static bool shmem_should_replace_page(struct page
*page
, gfp_t gfp
);
114 static int shmem_replace_page(struct page
**pagep
, gfp_t gfp
,
115 struct shmem_inode_info
*info
, pgoff_t index
);
116 static int shmem_getpage_gfp(struct inode
*inode
, pgoff_t index
,
117 struct page
**pagep
, enum sgp_type sgp
,
118 gfp_t gfp
, struct mm_struct
*fault_mm
, int *fault_type
);
120 int shmem_getpage(struct inode
*inode
, pgoff_t index
,
121 struct page
**pagep
, enum sgp_type sgp
)
123 return shmem_getpage_gfp(inode
, index
, pagep
, sgp
,
124 mapping_gfp_mask(inode
->i_mapping
), NULL
, NULL
);
127 static inline struct shmem_sb_info
*SHMEM_SB(struct super_block
*sb
)
129 return sb
->s_fs_info
;
133 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
134 * for shared memory and for shared anonymous (/dev/zero) mappings
135 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
136 * consistent with the pre-accounting of private mappings ...
138 static inline int shmem_acct_size(unsigned long flags
, loff_t size
)
140 return (flags
& VM_NORESERVE
) ?
141 0 : security_vm_enough_memory_mm(current
->mm
, VM_ACCT(size
));
144 static inline void shmem_unacct_size(unsigned long flags
, loff_t size
)
146 if (!(flags
& VM_NORESERVE
))
147 vm_unacct_memory(VM_ACCT(size
));
150 static inline int shmem_reacct_size(unsigned long flags
,
151 loff_t oldsize
, loff_t newsize
)
153 if (!(flags
& VM_NORESERVE
)) {
154 if (VM_ACCT(newsize
) > VM_ACCT(oldsize
))
155 return security_vm_enough_memory_mm(current
->mm
,
156 VM_ACCT(newsize
) - VM_ACCT(oldsize
));
157 else if (VM_ACCT(newsize
) < VM_ACCT(oldsize
))
158 vm_unacct_memory(VM_ACCT(oldsize
) - VM_ACCT(newsize
));
164 * ... whereas tmpfs objects are accounted incrementally as
165 * pages are allocated, in order to allow large sparse files.
166 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
167 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
169 static inline int shmem_acct_block(unsigned long flags
, long pages
)
171 if (!(flags
& VM_NORESERVE
))
174 return security_vm_enough_memory_mm(current
->mm
,
175 pages
* VM_ACCT(PAGE_SIZE
));
178 static inline void shmem_unacct_blocks(unsigned long flags
, long pages
)
180 if (flags
& VM_NORESERVE
)
181 vm_unacct_memory(pages
* VM_ACCT(PAGE_SIZE
));
184 static inline bool shmem_inode_acct_block(struct inode
*inode
, long pages
)
186 struct shmem_inode_info
*info
= SHMEM_I(inode
);
187 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
189 if (shmem_acct_block(info
->flags
, pages
))
192 if (sbinfo
->max_blocks
) {
193 if (percpu_counter_compare(&sbinfo
->used_blocks
,
194 sbinfo
->max_blocks
- pages
) > 0)
196 percpu_counter_add(&sbinfo
->used_blocks
, pages
);
202 shmem_unacct_blocks(info
->flags
, pages
);
206 static inline void shmem_inode_unacct_blocks(struct inode
*inode
, long pages
)
208 struct shmem_inode_info
*info
= SHMEM_I(inode
);
209 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
211 if (sbinfo
->max_blocks
)
212 percpu_counter_sub(&sbinfo
->used_blocks
, pages
);
213 shmem_unacct_blocks(info
->flags
, pages
);
216 static const struct super_operations shmem_ops
;
217 static const struct address_space_operations shmem_aops
;
218 static const struct file_operations shmem_file_operations
;
219 static const struct inode_operations shmem_inode_operations
;
220 static const struct inode_operations shmem_dir_inode_operations
;
221 static const struct inode_operations shmem_special_inode_operations
;
222 static const struct vm_operations_struct shmem_vm_ops
;
223 static struct file_system_type shmem_fs_type
;
225 static LIST_HEAD(shmem_swaplist
);
226 static DEFINE_MUTEX(shmem_swaplist_mutex
);
228 static int shmem_reserve_inode(struct super_block
*sb
)
230 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
231 if (sbinfo
->max_inodes
) {
232 spin_lock(&sbinfo
->stat_lock
);
233 if (!sbinfo
->free_inodes
) {
234 spin_unlock(&sbinfo
->stat_lock
);
237 sbinfo
->free_inodes
--;
238 spin_unlock(&sbinfo
->stat_lock
);
243 static void shmem_free_inode(struct super_block
*sb
)
245 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
246 if (sbinfo
->max_inodes
) {
247 spin_lock(&sbinfo
->stat_lock
);
248 sbinfo
->free_inodes
++;
249 spin_unlock(&sbinfo
->stat_lock
);
254 * shmem_recalc_inode - recalculate the block usage of an inode
255 * @inode: inode to recalc
257 * We have to calculate the free blocks since the mm can drop
258 * undirtied hole pages behind our back.
260 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
261 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
263 * It has to be called with the spinlock held.
265 static void shmem_recalc_inode(struct inode
*inode
)
267 struct shmem_inode_info
*info
= SHMEM_I(inode
);
270 freed
= info
->alloced
- info
->swapped
- inode
->i_mapping
->nrpages
;
272 info
->alloced
-= freed
;
273 inode
->i_blocks
-= freed
* BLOCKS_PER_PAGE
;
274 shmem_inode_unacct_blocks(inode
, freed
);
278 bool shmem_charge(struct inode
*inode
, long pages
)
280 struct shmem_inode_info
*info
= SHMEM_I(inode
);
283 if (!shmem_inode_acct_block(inode
, pages
))
286 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
287 inode
->i_mapping
->nrpages
+= pages
;
289 spin_lock_irqsave(&info
->lock
, flags
);
290 info
->alloced
+= pages
;
291 inode
->i_blocks
+= pages
* BLOCKS_PER_PAGE
;
292 shmem_recalc_inode(inode
);
293 spin_unlock_irqrestore(&info
->lock
, flags
);
298 void shmem_uncharge(struct inode
*inode
, long pages
)
300 struct shmem_inode_info
*info
= SHMEM_I(inode
);
303 /* nrpages adjustment done by __delete_from_page_cache() or caller */
305 spin_lock_irqsave(&info
->lock
, flags
);
306 info
->alloced
-= pages
;
307 inode
->i_blocks
-= pages
* BLOCKS_PER_PAGE
;
308 shmem_recalc_inode(inode
);
309 spin_unlock_irqrestore(&info
->lock
, flags
);
311 shmem_inode_unacct_blocks(inode
, pages
);
315 * Replace item expected in radix tree by a new item, while holding tree lock.
317 static int shmem_radix_tree_replace(struct address_space
*mapping
,
318 pgoff_t index
, void *expected
, void *replacement
)
323 VM_BUG_ON(!expected
);
324 VM_BUG_ON(!replacement
);
325 pslot
= radix_tree_lookup_slot(&mapping
->page_tree
, index
);
328 item
= radix_tree_deref_slot_protected(pslot
, &mapping
->tree_lock
);
329 if (item
!= expected
)
331 radix_tree_replace_slot(pslot
, replacement
);
336 * Sometimes, before we decide whether to proceed or to fail, we must check
337 * that an entry was not already brought back from swap by a racing thread.
339 * Checking page is not enough: by the time a SwapCache page is locked, it
340 * might be reused, and again be SwapCache, using the same swap as before.
342 static bool shmem_confirm_swap(struct address_space
*mapping
,
343 pgoff_t index
, swp_entry_t swap
)
348 item
= radix_tree_lookup(&mapping
->page_tree
, index
);
350 return item
== swp_to_radix_entry(swap
);
354 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
357 * disables huge pages for the mount;
359 * enables huge pages for the mount;
360 * SHMEM_HUGE_WITHIN_SIZE:
361 * only allocate huge pages if the page will be fully within i_size,
362 * also respect fadvise()/madvise() hints;
364 * only allocate huge pages if requested with fadvise()/madvise();
367 #define SHMEM_HUGE_NEVER 0
368 #define SHMEM_HUGE_ALWAYS 1
369 #define SHMEM_HUGE_WITHIN_SIZE 2
370 #define SHMEM_HUGE_ADVISE 3
374 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
377 * disables huge on shm_mnt and all mounts, for emergency use;
379 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
382 #define SHMEM_HUGE_DENY (-1)
383 #define SHMEM_HUGE_FORCE (-2)
385 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
386 /* ifdef here to avoid bloating shmem.o when not necessary */
388 int shmem_huge __read_mostly
;
390 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
391 static int shmem_parse_huge(const char *str
)
393 if (!strcmp(str
, "never"))
394 return SHMEM_HUGE_NEVER
;
395 if (!strcmp(str
, "always"))
396 return SHMEM_HUGE_ALWAYS
;
397 if (!strcmp(str
, "within_size"))
398 return SHMEM_HUGE_WITHIN_SIZE
;
399 if (!strcmp(str
, "advise"))
400 return SHMEM_HUGE_ADVISE
;
401 if (!strcmp(str
, "deny"))
402 return SHMEM_HUGE_DENY
;
403 if (!strcmp(str
, "force"))
404 return SHMEM_HUGE_FORCE
;
408 static const char *shmem_format_huge(int huge
)
411 case SHMEM_HUGE_NEVER
:
413 case SHMEM_HUGE_ALWAYS
:
415 case SHMEM_HUGE_WITHIN_SIZE
:
416 return "within_size";
417 case SHMEM_HUGE_ADVISE
:
419 case SHMEM_HUGE_DENY
:
421 case SHMEM_HUGE_FORCE
:
430 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info
*sbinfo
,
431 struct shrink_control
*sc
, unsigned long nr_to_split
)
433 LIST_HEAD(list
), *pos
, *next
;
434 LIST_HEAD(to_remove
);
436 struct shmem_inode_info
*info
;
438 unsigned long batch
= sc
? sc
->nr_to_scan
: 128;
439 int removed
= 0, split
= 0;
441 if (list_empty(&sbinfo
->shrinklist
))
444 spin_lock(&sbinfo
->shrinklist_lock
);
445 list_for_each_safe(pos
, next
, &sbinfo
->shrinklist
) {
446 info
= list_entry(pos
, struct shmem_inode_info
, shrinklist
);
449 inode
= igrab(&info
->vfs_inode
);
451 /* inode is about to be evicted */
453 list_del_init(&info
->shrinklist
);
458 /* Check if there's anything to gain */
459 if (round_up(inode
->i_size
, PAGE_SIZE
) ==
460 round_up(inode
->i_size
, HPAGE_PMD_SIZE
)) {
461 list_move(&info
->shrinklist
, &to_remove
);
466 list_move(&info
->shrinklist
, &list
);
471 spin_unlock(&sbinfo
->shrinklist_lock
);
473 list_for_each_safe(pos
, next
, &to_remove
) {
474 info
= list_entry(pos
, struct shmem_inode_info
, shrinklist
);
475 inode
= &info
->vfs_inode
;
476 list_del_init(&info
->shrinklist
);
480 list_for_each_safe(pos
, next
, &list
) {
483 info
= list_entry(pos
, struct shmem_inode_info
, shrinklist
);
484 inode
= &info
->vfs_inode
;
486 if (nr_to_split
&& split
>= nr_to_split
)
489 page
= find_get_page(inode
->i_mapping
,
490 (inode
->i_size
& HPAGE_PMD_MASK
) >> PAGE_SHIFT
);
494 /* No huge page at the end of the file: nothing to split */
495 if (!PageTransHuge(page
)) {
501 * Leave the inode on the list if we failed to lock
502 * the page at this time.
504 * Waiting for the lock may lead to deadlock in the
507 if (!trylock_page(page
)) {
512 ret
= split_huge_page(page
);
516 /* If split failed leave the inode on the list */
522 list_del_init(&info
->shrinklist
);
528 spin_lock(&sbinfo
->shrinklist_lock
);
529 list_splice_tail(&list
, &sbinfo
->shrinklist
);
530 sbinfo
->shrinklist_len
-= removed
;
531 spin_unlock(&sbinfo
->shrinklist_lock
);
536 static long shmem_unused_huge_scan(struct super_block
*sb
,
537 struct shrink_control
*sc
)
539 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
541 if (!READ_ONCE(sbinfo
->shrinklist_len
))
544 return shmem_unused_huge_shrink(sbinfo
, sc
, 0);
547 static long shmem_unused_huge_count(struct super_block
*sb
,
548 struct shrink_control
*sc
)
550 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
551 return READ_ONCE(sbinfo
->shrinklist_len
);
553 #else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
555 #define shmem_huge SHMEM_HUGE_DENY
557 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info
*sbinfo
,
558 struct shrink_control
*sc
, unsigned long nr_to_split
)
562 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
565 * Like add_to_page_cache_locked, but error if expected item has gone.
567 static int shmem_add_to_page_cache(struct page
*page
,
568 struct address_space
*mapping
,
569 pgoff_t index
, void *expected
)
571 int error
, nr
= hpage_nr_pages(page
);
573 VM_BUG_ON_PAGE(PageTail(page
), page
);
574 VM_BUG_ON_PAGE(index
!= round_down(index
, nr
), page
);
575 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
576 VM_BUG_ON_PAGE(!PageSwapBacked(page
), page
);
577 VM_BUG_ON(expected
&& PageTransHuge(page
));
579 page_ref_add(page
, nr
);
580 page
->mapping
= mapping
;
583 spin_lock_irq(&mapping
->tree_lock
);
584 if (PageTransHuge(page
)) {
585 void __rcu
**results
;
590 if (radix_tree_gang_lookup_slot(&mapping
->page_tree
,
591 &results
, &idx
, index
, 1) &&
592 idx
< index
+ HPAGE_PMD_NR
) {
597 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
598 error
= radix_tree_insert(&mapping
->page_tree
,
599 index
+ i
, page
+ i
);
602 count_vm_event(THP_FILE_ALLOC
);
604 } else if (!expected
) {
605 error
= radix_tree_insert(&mapping
->page_tree
, index
, page
);
607 error
= shmem_radix_tree_replace(mapping
, index
, expected
,
612 mapping
->nrpages
+= nr
;
613 if (PageTransHuge(page
))
614 __inc_node_page_state(page
, NR_SHMEM_THPS
);
615 __mod_node_page_state(page_pgdat(page
), NR_FILE_PAGES
, nr
);
616 __mod_node_page_state(page_pgdat(page
), NR_SHMEM
, nr
);
617 spin_unlock_irq(&mapping
->tree_lock
);
619 page
->mapping
= NULL
;
620 spin_unlock_irq(&mapping
->tree_lock
);
621 page_ref_sub(page
, nr
);
627 * Like delete_from_page_cache, but substitutes swap for page.
629 static void shmem_delete_from_page_cache(struct page
*page
, void *radswap
)
631 struct address_space
*mapping
= page
->mapping
;
634 VM_BUG_ON_PAGE(PageCompound(page
), page
);
636 spin_lock_irq(&mapping
->tree_lock
);
637 error
= shmem_radix_tree_replace(mapping
, page
->index
, page
, radswap
);
638 page
->mapping
= NULL
;
640 __dec_node_page_state(page
, NR_FILE_PAGES
);
641 __dec_node_page_state(page
, NR_SHMEM
);
642 spin_unlock_irq(&mapping
->tree_lock
);
648 * Remove swap entry from radix tree, free the swap and its page cache.
650 static int shmem_free_swap(struct address_space
*mapping
,
651 pgoff_t index
, void *radswap
)
655 spin_lock_irq(&mapping
->tree_lock
);
656 old
= radix_tree_delete_item(&mapping
->page_tree
, index
, radswap
);
657 spin_unlock_irq(&mapping
->tree_lock
);
660 free_swap_and_cache(radix_to_swp_entry(radswap
));
665 * Determine (in bytes) how many of the shmem object's pages mapped by the
666 * given offsets are swapped out.
668 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
669 * as long as the inode doesn't go away and racy results are not a problem.
671 unsigned long shmem_partial_swap_usage(struct address_space
*mapping
,
672 pgoff_t start
, pgoff_t end
)
674 struct radix_tree_iter iter
;
677 unsigned long swapped
= 0;
681 radix_tree_for_each_slot(slot
, &mapping
->page_tree
, &iter
, start
) {
682 if (iter
.index
>= end
)
685 page
= radix_tree_deref_slot(slot
);
687 if (radix_tree_deref_retry(page
)) {
688 slot
= radix_tree_iter_retry(&iter
);
692 if (radix_tree_exceptional_entry(page
))
695 if (need_resched()) {
697 slot
= radix_tree_iter_next(&iter
);
703 return swapped
<< PAGE_SHIFT
;
707 * Determine (in bytes) how many of the shmem object's pages mapped by the
708 * given vma is swapped out.
710 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
711 * as long as the inode doesn't go away and racy results are not a problem.
713 unsigned long shmem_swap_usage(struct vm_area_struct
*vma
)
715 struct inode
*inode
= file_inode(vma
->vm_file
);
716 struct shmem_inode_info
*info
= SHMEM_I(inode
);
717 struct address_space
*mapping
= inode
->i_mapping
;
718 unsigned long swapped
;
720 /* Be careful as we don't hold info->lock */
721 swapped
= READ_ONCE(info
->swapped
);
724 * The easier cases are when the shmem object has nothing in swap, or
725 * the vma maps it whole. Then we can simply use the stats that we
731 if (!vma
->vm_pgoff
&& vma
->vm_end
- vma
->vm_start
>= inode
->i_size
)
732 return swapped
<< PAGE_SHIFT
;
734 /* Here comes the more involved part */
735 return shmem_partial_swap_usage(mapping
,
736 linear_page_index(vma
, vma
->vm_start
),
737 linear_page_index(vma
, vma
->vm_end
));
741 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
743 void shmem_unlock_mapping(struct address_space
*mapping
)
746 pgoff_t indices
[PAGEVEC_SIZE
];
749 pagevec_init(&pvec
, 0);
751 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
753 while (!mapping_unevictable(mapping
)) {
755 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
756 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
758 pvec
.nr
= find_get_entries(mapping
, index
,
759 PAGEVEC_SIZE
, pvec
.pages
, indices
);
762 index
= indices
[pvec
.nr
- 1] + 1;
763 pagevec_remove_exceptionals(&pvec
);
764 check_move_unevictable_pages(pvec
.pages
, pvec
.nr
);
765 pagevec_release(&pvec
);
771 * Remove range of pages and swap entries from radix tree, and free them.
772 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
774 static void shmem_undo_range(struct inode
*inode
, loff_t lstart
, loff_t lend
,
777 struct address_space
*mapping
= inode
->i_mapping
;
778 struct shmem_inode_info
*info
= SHMEM_I(inode
);
779 pgoff_t start
= (lstart
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
780 pgoff_t end
= (lend
+ 1) >> PAGE_SHIFT
;
781 unsigned int partial_start
= lstart
& (PAGE_SIZE
- 1);
782 unsigned int partial_end
= (lend
+ 1) & (PAGE_SIZE
- 1);
784 pgoff_t indices
[PAGEVEC_SIZE
];
785 long nr_swaps_freed
= 0;
790 end
= -1; /* unsigned, so actually very big */
792 pagevec_init(&pvec
, 0);
794 while (index
< end
) {
795 pvec
.nr
= find_get_entries(mapping
, index
,
796 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
),
797 pvec
.pages
, indices
);
800 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
801 struct page
*page
= pvec
.pages
[i
];
807 if (radix_tree_exceptional_entry(page
)) {
810 nr_swaps_freed
+= !shmem_free_swap(mapping
,
815 VM_BUG_ON_PAGE(page_to_pgoff(page
) != index
, page
);
817 if (!trylock_page(page
))
820 if (PageTransTail(page
)) {
821 /* Middle of THP: zero out the page */
822 clear_highpage(page
);
825 } else if (PageTransHuge(page
)) {
826 if (index
== round_down(end
, HPAGE_PMD_NR
)) {
828 * Range ends in the middle of THP:
831 clear_highpage(page
);
835 index
+= HPAGE_PMD_NR
- 1;
836 i
+= HPAGE_PMD_NR
- 1;
839 if (!unfalloc
|| !PageUptodate(page
)) {
840 VM_BUG_ON_PAGE(PageTail(page
), page
);
841 if (page_mapping(page
) == mapping
) {
842 VM_BUG_ON_PAGE(PageWriteback(page
), page
);
843 truncate_inode_page(mapping
, page
);
848 pagevec_remove_exceptionals(&pvec
);
849 pagevec_release(&pvec
);
855 struct page
*page
= NULL
;
856 shmem_getpage(inode
, start
- 1, &page
, SGP_READ
);
858 unsigned int top
= PAGE_SIZE
;
863 zero_user_segment(page
, partial_start
, top
);
864 set_page_dirty(page
);
870 struct page
*page
= NULL
;
871 shmem_getpage(inode
, end
, &page
, SGP_READ
);
873 zero_user_segment(page
, 0, partial_end
);
874 set_page_dirty(page
);
883 while (index
< end
) {
886 pvec
.nr
= find_get_entries(mapping
, index
,
887 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
),
888 pvec
.pages
, indices
);
890 /* If all gone or hole-punch or unfalloc, we're done */
891 if (index
== start
|| end
!= -1)
893 /* But if truncating, restart to make sure all gone */
897 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
898 struct page
*page
= pvec
.pages
[i
];
904 if (radix_tree_exceptional_entry(page
)) {
907 if (shmem_free_swap(mapping
, index
, page
)) {
908 /* Swap was replaced by page: retry */
918 if (PageTransTail(page
)) {
919 /* Middle of THP: zero out the page */
920 clear_highpage(page
);
923 * Partial thp truncate due 'start' in middle
924 * of THP: don't need to look on these pages
925 * again on !pvec.nr restart.
927 if (index
!= round_down(end
, HPAGE_PMD_NR
))
930 } else if (PageTransHuge(page
)) {
931 if (index
== round_down(end
, HPAGE_PMD_NR
)) {
933 * Range ends in the middle of THP:
936 clear_highpage(page
);
940 index
+= HPAGE_PMD_NR
- 1;
941 i
+= HPAGE_PMD_NR
- 1;
944 if (!unfalloc
|| !PageUptodate(page
)) {
945 VM_BUG_ON_PAGE(PageTail(page
), page
);
946 if (page_mapping(page
) == mapping
) {
947 VM_BUG_ON_PAGE(PageWriteback(page
), page
);
948 truncate_inode_page(mapping
, page
);
950 /* Page was replaced by swap: retry */
958 pagevec_remove_exceptionals(&pvec
);
959 pagevec_release(&pvec
);
963 spin_lock_irq(&info
->lock
);
964 info
->swapped
-= nr_swaps_freed
;
965 shmem_recalc_inode(inode
);
966 spin_unlock_irq(&info
->lock
);
969 void shmem_truncate_range(struct inode
*inode
, loff_t lstart
, loff_t lend
)
971 shmem_undo_range(inode
, lstart
, lend
, false);
972 inode
->i_ctime
= inode
->i_mtime
= current_time(inode
);
974 EXPORT_SYMBOL_GPL(shmem_truncate_range
);
976 static int shmem_getattr(struct vfsmount
*mnt
, struct dentry
*dentry
,
979 struct inode
*inode
= dentry
->d_inode
;
980 struct shmem_inode_info
*info
= SHMEM_I(inode
);
982 if (info
->alloced
- info
->swapped
!= inode
->i_mapping
->nrpages
) {
983 spin_lock_irq(&info
->lock
);
984 shmem_recalc_inode(inode
);
985 spin_unlock_irq(&info
->lock
);
987 generic_fillattr(inode
, stat
);
991 static int shmem_setattr(struct dentry
*dentry
, struct iattr
*attr
)
993 struct inode
*inode
= d_inode(dentry
);
994 struct shmem_inode_info
*info
= SHMEM_I(inode
);
995 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
998 error
= setattr_prepare(dentry
, attr
);
1002 if (S_ISREG(inode
->i_mode
) && (attr
->ia_valid
& ATTR_SIZE
)) {
1003 loff_t oldsize
= inode
->i_size
;
1004 loff_t newsize
= attr
->ia_size
;
1006 /* protected by i_mutex */
1007 if ((newsize
< oldsize
&& (info
->seals
& F_SEAL_SHRINK
)) ||
1008 (newsize
> oldsize
&& (info
->seals
& F_SEAL_GROW
)))
1011 if (newsize
!= oldsize
) {
1012 error
= shmem_reacct_size(SHMEM_I(inode
)->flags
,
1016 i_size_write(inode
, newsize
);
1017 inode
->i_ctime
= inode
->i_mtime
= current_time(inode
);
1019 if (newsize
<= oldsize
) {
1020 loff_t holebegin
= round_up(newsize
, PAGE_SIZE
);
1021 if (oldsize
> holebegin
)
1022 unmap_mapping_range(inode
->i_mapping
,
1025 shmem_truncate_range(inode
,
1026 newsize
, (loff_t
)-1);
1027 /* unmap again to remove racily COWed private pages */
1028 if (oldsize
> holebegin
)
1029 unmap_mapping_range(inode
->i_mapping
,
1033 * Part of the huge page can be beyond i_size: subject
1034 * to shrink under memory pressure.
1036 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
)) {
1037 spin_lock(&sbinfo
->shrinklist_lock
);
1039 * _careful to defend against unlocked access to
1040 * ->shrink_list in shmem_unused_huge_shrink()
1042 if (list_empty_careful(&info
->shrinklist
)) {
1043 list_add_tail(&info
->shrinklist
,
1044 &sbinfo
->shrinklist
);
1045 sbinfo
->shrinklist_len
++;
1047 spin_unlock(&sbinfo
->shrinklist_lock
);
1052 setattr_copy(inode
, attr
);
1053 if (attr
->ia_valid
& ATTR_MODE
)
1054 error
= posix_acl_chmod(inode
, inode
->i_mode
);
1058 static void shmem_evict_inode(struct inode
*inode
)
1060 struct shmem_inode_info
*info
= SHMEM_I(inode
);
1061 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
1063 if (inode
->i_mapping
->a_ops
== &shmem_aops
) {
1064 shmem_unacct_size(info
->flags
, inode
->i_size
);
1066 shmem_truncate_range(inode
, 0, (loff_t
)-1);
1067 if (!list_empty(&info
->shrinklist
)) {
1068 spin_lock(&sbinfo
->shrinklist_lock
);
1069 if (!list_empty(&info
->shrinklist
)) {
1070 list_del_init(&info
->shrinklist
);
1071 sbinfo
->shrinklist_len
--;
1073 spin_unlock(&sbinfo
->shrinklist_lock
);
1075 if (!list_empty(&info
->swaplist
)) {
1076 mutex_lock(&shmem_swaplist_mutex
);
1077 list_del_init(&info
->swaplist
);
1078 mutex_unlock(&shmem_swaplist_mutex
);
1082 simple_xattrs_free(&info
->xattrs
);
1083 WARN_ON(inode
->i_blocks
);
1084 shmem_free_inode(inode
->i_sb
);
1089 * If swap found in inode, free it and move page from swapcache to filecache.
1091 static int shmem_unuse_inode(struct shmem_inode_info
*info
,
1092 swp_entry_t swap
, struct page
**pagep
)
1094 struct address_space
*mapping
= info
->vfs_inode
.i_mapping
;
1100 radswap
= swp_to_radix_entry(swap
);
1101 index
= radix_tree_locate_item(&mapping
->page_tree
, radswap
);
1103 return -EAGAIN
; /* tell shmem_unuse we found nothing */
1106 * Move _head_ to start search for next from here.
1107 * But be careful: shmem_evict_inode checks list_empty without taking
1108 * mutex, and there's an instant in list_move_tail when info->swaplist
1109 * would appear empty, if it were the only one on shmem_swaplist.
1111 if (shmem_swaplist
.next
!= &info
->swaplist
)
1112 list_move_tail(&shmem_swaplist
, &info
->swaplist
);
1114 gfp
= mapping_gfp_mask(mapping
);
1115 if (shmem_should_replace_page(*pagep
, gfp
)) {
1116 mutex_unlock(&shmem_swaplist_mutex
);
1117 error
= shmem_replace_page(pagep
, gfp
, info
, index
);
1118 mutex_lock(&shmem_swaplist_mutex
);
1120 * We needed to drop mutex to make that restrictive page
1121 * allocation, but the inode might have been freed while we
1122 * dropped it: although a racing shmem_evict_inode() cannot
1123 * complete without emptying the radix_tree, our page lock
1124 * on this swapcache page is not enough to prevent that -
1125 * free_swap_and_cache() of our swap entry will only
1126 * trylock_page(), removing swap from radix_tree whatever.
1128 * We must not proceed to shmem_add_to_page_cache() if the
1129 * inode has been freed, but of course we cannot rely on
1130 * inode or mapping or info to check that. However, we can
1131 * safely check if our swap entry is still in use (and here
1132 * it can't have got reused for another page): if it's still
1133 * in use, then the inode cannot have been freed yet, and we
1134 * can safely proceed (if it's no longer in use, that tells
1135 * nothing about the inode, but we don't need to unuse swap).
1137 if (!page_swapcount(*pagep
))
1142 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
1143 * but also to hold up shmem_evict_inode(): so inode cannot be freed
1144 * beneath us (pagelock doesn't help until the page is in pagecache).
1147 error
= shmem_add_to_page_cache(*pagep
, mapping
, index
,
1149 if (error
!= -ENOMEM
) {
1151 * Truncation and eviction use free_swap_and_cache(), which
1152 * only does trylock page: if we raced, best clean up here.
1154 delete_from_swap_cache(*pagep
);
1155 set_page_dirty(*pagep
);
1157 spin_lock_irq(&info
->lock
);
1159 spin_unlock_irq(&info
->lock
);
1167 * Search through swapped inodes to find and replace swap by page.
1169 int shmem_unuse(swp_entry_t swap
, struct page
*page
)
1171 struct list_head
*this, *next
;
1172 struct shmem_inode_info
*info
;
1173 struct mem_cgroup
*memcg
;
1177 * There's a faint possibility that swap page was replaced before
1178 * caller locked it: caller will come back later with the right page.
1180 if (unlikely(!PageSwapCache(page
) || page_private(page
) != swap
.val
))
1184 * Charge page using GFP_KERNEL while we can wait, before taking
1185 * the shmem_swaplist_mutex which might hold up shmem_writepage().
1186 * Charged back to the user (not to caller) when swap account is used.
1188 error
= mem_cgroup_try_charge(page
, current
->mm
, GFP_KERNEL
, &memcg
,
1192 /* No radix_tree_preload: swap entry keeps a place for page in tree */
1195 mutex_lock(&shmem_swaplist_mutex
);
1196 list_for_each_safe(this, next
, &shmem_swaplist
) {
1197 info
= list_entry(this, struct shmem_inode_info
, swaplist
);
1199 error
= shmem_unuse_inode(info
, swap
, &page
);
1201 list_del_init(&info
->swaplist
);
1203 if (error
!= -EAGAIN
)
1205 /* found nothing in this: move on to search the next */
1207 mutex_unlock(&shmem_swaplist_mutex
);
1210 if (error
!= -ENOMEM
)
1212 mem_cgroup_cancel_charge(page
, memcg
, false);
1214 mem_cgroup_commit_charge(page
, memcg
, true, false);
1222 * Move the page from the page cache to the swap cache.
1224 static int shmem_writepage(struct page
*page
, struct writeback_control
*wbc
)
1226 struct shmem_inode_info
*info
;
1227 struct address_space
*mapping
;
1228 struct inode
*inode
;
1232 VM_BUG_ON_PAGE(PageCompound(page
), page
);
1233 BUG_ON(!PageLocked(page
));
1234 mapping
= page
->mapping
;
1235 index
= page
->index
;
1236 inode
= mapping
->host
;
1237 info
= SHMEM_I(inode
);
1238 if (info
->flags
& VM_LOCKED
)
1240 if (!total_swap_pages
)
1244 * Our capabilities prevent regular writeback or sync from ever calling
1245 * shmem_writepage; but a stacking filesystem might use ->writepage of
1246 * its underlying filesystem, in which case tmpfs should write out to
1247 * swap only in response to memory pressure, and not for the writeback
1250 if (!wbc
->for_reclaim
) {
1251 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1256 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1257 * value into swapfile.c, the only way we can correctly account for a
1258 * fallocated page arriving here is now to initialize it and write it.
1260 * That's okay for a page already fallocated earlier, but if we have
1261 * not yet completed the fallocation, then (a) we want to keep track
1262 * of this page in case we have to undo it, and (b) it may not be a
1263 * good idea to continue anyway, once we're pushing into swap. So
1264 * reactivate the page, and let shmem_fallocate() quit when too many.
1266 if (!PageUptodate(page
)) {
1267 if (inode
->i_private
) {
1268 struct shmem_falloc
*shmem_falloc
;
1269 spin_lock(&inode
->i_lock
);
1270 shmem_falloc
= inode
->i_private
;
1272 !shmem_falloc
->waitq
&&
1273 index
>= shmem_falloc
->start
&&
1274 index
< shmem_falloc
->next
)
1275 shmem_falloc
->nr_unswapped
++;
1277 shmem_falloc
= NULL
;
1278 spin_unlock(&inode
->i_lock
);
1282 clear_highpage(page
);
1283 flush_dcache_page(page
);
1284 SetPageUptodate(page
);
1287 swap
= get_swap_page();
1291 if (mem_cgroup_try_charge_swap(page
, swap
))
1295 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1296 * if it's not already there. Do it now before the page is
1297 * moved to swap cache, when its pagelock no longer protects
1298 * the inode from eviction. But don't unlock the mutex until
1299 * we've incremented swapped, because shmem_unuse_inode() will
1300 * prune a !swapped inode from the swaplist under this mutex.
1302 mutex_lock(&shmem_swaplist_mutex
);
1303 if (list_empty(&info
->swaplist
))
1304 list_add_tail(&info
->swaplist
, &shmem_swaplist
);
1306 if (add_to_swap_cache(page
, swap
, GFP_ATOMIC
) == 0) {
1307 spin_lock_irq(&info
->lock
);
1308 shmem_recalc_inode(inode
);
1310 spin_unlock_irq(&info
->lock
);
1312 swap_shmem_alloc(swap
);
1313 shmem_delete_from_page_cache(page
, swp_to_radix_entry(swap
));
1315 mutex_unlock(&shmem_swaplist_mutex
);
1316 BUG_ON(page_mapped(page
));
1317 swap_writepage(page
, wbc
);
1321 mutex_unlock(&shmem_swaplist_mutex
);
1323 swapcache_free(swap
);
1325 set_page_dirty(page
);
1326 if (wbc
->for_reclaim
)
1327 return AOP_WRITEPAGE_ACTIVATE
; /* Return with page locked */
1332 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1333 static void shmem_show_mpol(struct seq_file
*seq
, struct mempolicy
*mpol
)
1337 if (!mpol
|| mpol
->mode
== MPOL_DEFAULT
)
1338 return; /* show nothing */
1340 mpol_to_str(buffer
, sizeof(buffer
), mpol
);
1342 seq_printf(seq
, ",mpol=%s", buffer
);
1345 static struct mempolicy
*shmem_get_sbmpol(struct shmem_sb_info
*sbinfo
)
1347 struct mempolicy
*mpol
= NULL
;
1349 spin_lock(&sbinfo
->stat_lock
); /* prevent replace/use races */
1350 mpol
= sbinfo
->mpol
;
1352 spin_unlock(&sbinfo
->stat_lock
);
1356 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1357 static inline void shmem_show_mpol(struct seq_file
*seq
, struct mempolicy
*mpol
)
1360 static inline struct mempolicy
*shmem_get_sbmpol(struct shmem_sb_info
*sbinfo
)
1364 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1366 #define vm_policy vm_private_data
1369 static void shmem_pseudo_vma_init(struct vm_area_struct
*vma
,
1370 struct shmem_inode_info
*info
, pgoff_t index
)
1372 /* Create a pseudo vma that just contains the policy */
1374 /* Bias interleave by inode number to distribute better across nodes */
1375 vma
->vm_pgoff
= index
+ info
->vfs_inode
.i_ino
;
1377 vma
->vm_policy
= mpol_shared_policy_lookup(&info
->policy
, index
);
1380 static void shmem_pseudo_vma_destroy(struct vm_area_struct
*vma
)
1382 /* Drop reference taken by mpol_shared_policy_lookup() */
1383 mpol_cond_put(vma
->vm_policy
);
1386 static struct page
*shmem_swapin(swp_entry_t swap
, gfp_t gfp
,
1387 struct shmem_inode_info
*info
, pgoff_t index
)
1389 struct vm_area_struct pvma
;
1392 shmem_pseudo_vma_init(&pvma
, info
, index
);
1393 page
= swapin_readahead(swap
, gfp
, &pvma
, 0);
1394 shmem_pseudo_vma_destroy(&pvma
);
1399 static struct page
*shmem_alloc_hugepage(gfp_t gfp
,
1400 struct shmem_inode_info
*info
, pgoff_t index
)
1402 struct vm_area_struct pvma
;
1403 struct inode
*inode
= &info
->vfs_inode
;
1404 struct address_space
*mapping
= inode
->i_mapping
;
1405 pgoff_t idx
, hindex
;
1406 void __rcu
**results
;
1409 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
))
1412 hindex
= round_down(index
, HPAGE_PMD_NR
);
1414 if (radix_tree_gang_lookup_slot(&mapping
->page_tree
, &results
, &idx
,
1415 hindex
, 1) && idx
< hindex
+ HPAGE_PMD_NR
) {
1421 shmem_pseudo_vma_init(&pvma
, info
, hindex
);
1422 page
= alloc_pages_vma(gfp
| __GFP_COMP
| __GFP_NORETRY
| __GFP_NOWARN
,
1423 HPAGE_PMD_ORDER
, &pvma
, 0, numa_node_id(), true);
1424 shmem_pseudo_vma_destroy(&pvma
);
1426 prep_transhuge_page(page
);
1430 static struct page
*shmem_alloc_page(gfp_t gfp
,
1431 struct shmem_inode_info
*info
, pgoff_t index
)
1433 struct vm_area_struct pvma
;
1436 shmem_pseudo_vma_init(&pvma
, info
, index
);
1437 page
= alloc_page_vma(gfp
, &pvma
, 0);
1438 shmem_pseudo_vma_destroy(&pvma
);
1443 static struct page
*shmem_alloc_and_acct_page(gfp_t gfp
,
1444 struct inode
*inode
,
1445 pgoff_t index
, bool huge
)
1447 struct shmem_inode_info
*info
= SHMEM_I(inode
);
1452 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
))
1454 nr
= huge
? HPAGE_PMD_NR
: 1;
1456 if (!shmem_inode_acct_block(inode
, nr
))
1460 page
= shmem_alloc_hugepage(gfp
, info
, index
);
1462 page
= shmem_alloc_page(gfp
, info
, index
);
1464 __SetPageLocked(page
);
1465 __SetPageSwapBacked(page
);
1470 shmem_inode_unacct_blocks(inode
, nr
);
1472 return ERR_PTR(err
);
1476 * When a page is moved from swapcache to shmem filecache (either by the
1477 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1478 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1479 * ignorance of the mapping it belongs to. If that mapping has special
1480 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1481 * we may need to copy to a suitable page before moving to filecache.
1483 * In a future release, this may well be extended to respect cpuset and
1484 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1485 * but for now it is a simple matter of zone.
1487 static bool shmem_should_replace_page(struct page
*page
, gfp_t gfp
)
1489 return page_zonenum(page
) > gfp_zone(gfp
);
1492 static int shmem_replace_page(struct page
**pagep
, gfp_t gfp
,
1493 struct shmem_inode_info
*info
, pgoff_t index
)
1495 struct page
*oldpage
, *newpage
;
1496 struct address_space
*swap_mapping
;
1502 entry
.val
= page_private(oldpage
);
1503 swap_index
= swp_offset(entry
);
1504 swap_mapping
= page_mapping(oldpage
);
1507 * We have arrived here because our zones are constrained, so don't
1508 * limit chance of success by further cpuset and node constraints.
1510 gfp
&= ~GFP_CONSTRAINT_MASK
;
1511 newpage
= shmem_alloc_page(gfp
, info
, index
);
1516 copy_highpage(newpage
, oldpage
);
1517 flush_dcache_page(newpage
);
1519 __SetPageLocked(newpage
);
1520 __SetPageSwapBacked(newpage
);
1521 SetPageUptodate(newpage
);
1522 set_page_private(newpage
, entry
.val
);
1523 SetPageSwapCache(newpage
);
1526 * Our caller will very soon move newpage out of swapcache, but it's
1527 * a nice clean interface for us to replace oldpage by newpage there.
1529 spin_lock_irq(&swap_mapping
->tree_lock
);
1530 error
= shmem_radix_tree_replace(swap_mapping
, swap_index
, oldpage
,
1533 __inc_node_page_state(newpage
, NR_FILE_PAGES
);
1534 __dec_node_page_state(oldpage
, NR_FILE_PAGES
);
1536 spin_unlock_irq(&swap_mapping
->tree_lock
);
1538 if (unlikely(error
)) {
1540 * Is this possible? I think not, now that our callers check
1541 * both PageSwapCache and page_private after getting page lock;
1542 * but be defensive. Reverse old to newpage for clear and free.
1546 mem_cgroup_migrate(oldpage
, newpage
);
1547 lru_cache_add_anon(newpage
);
1551 ClearPageSwapCache(oldpage
);
1552 set_page_private(oldpage
, 0);
1554 unlock_page(oldpage
);
1561 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1563 * If we allocate a new one we do not mark it dirty. That's up to the
1564 * vm. If we swap it in we mark it dirty since we also free the swap
1565 * entry since a page cannot live in both the swap and page cache.
1567 * fault_mm and fault_type are only supplied by shmem_fault:
1568 * otherwise they are NULL.
1570 static int shmem_getpage_gfp(struct inode
*inode
, pgoff_t index
,
1571 struct page
**pagep
, enum sgp_type sgp
, gfp_t gfp
,
1572 struct mm_struct
*fault_mm
, int *fault_type
)
1574 struct address_space
*mapping
= inode
->i_mapping
;
1575 struct shmem_inode_info
*info
= SHMEM_I(inode
);
1576 struct shmem_sb_info
*sbinfo
;
1577 struct mm_struct
*charge_mm
;
1578 struct mem_cgroup
*memcg
;
1581 enum sgp_type sgp_huge
= sgp
;
1582 pgoff_t hindex
= index
;
1587 if (index
> (MAX_LFS_FILESIZE
>> PAGE_SHIFT
))
1589 if (sgp
== SGP_NOHUGE
|| sgp
== SGP_HUGE
)
1593 page
= find_lock_entry(mapping
, index
);
1594 if (radix_tree_exceptional_entry(page
)) {
1595 swap
= radix_to_swp_entry(page
);
1599 if (sgp
<= SGP_CACHE
&&
1600 ((loff_t
)index
<< PAGE_SHIFT
) >= i_size_read(inode
)) {
1605 if (page
&& sgp
== SGP_WRITE
)
1606 mark_page_accessed(page
);
1608 /* fallocated page? */
1609 if (page
&& !PageUptodate(page
)) {
1610 if (sgp
!= SGP_READ
)
1616 if (page
|| (sgp
== SGP_READ
&& !swap
.val
)) {
1622 * Fast cache lookup did not find it:
1623 * bring it back from swap or allocate.
1625 sbinfo
= SHMEM_SB(inode
->i_sb
);
1626 charge_mm
= fault_mm
? : current
->mm
;
1629 /* Look it up and read it in.. */
1630 page
= lookup_swap_cache(swap
);
1632 /* Or update major stats only when swapin succeeds?? */
1634 *fault_type
|= VM_FAULT_MAJOR
;
1635 count_vm_event(PGMAJFAULT
);
1636 mem_cgroup_count_vm_event(fault_mm
, PGMAJFAULT
);
1638 /* Here we actually start the io */
1639 page
= shmem_swapin(swap
, gfp
, info
, index
);
1646 /* We have to do this with page locked to prevent races */
1648 if (!PageSwapCache(page
) || page_private(page
) != swap
.val
||
1649 !shmem_confirm_swap(mapping
, index
, swap
)) {
1650 error
= -EEXIST
; /* try again */
1653 if (!PageUptodate(page
)) {
1657 wait_on_page_writeback(page
);
1659 if (shmem_should_replace_page(page
, gfp
)) {
1660 error
= shmem_replace_page(&page
, gfp
, info
, index
);
1665 error
= mem_cgroup_try_charge(page
, charge_mm
, gfp
, &memcg
,
1668 error
= shmem_add_to_page_cache(page
, mapping
, index
,
1669 swp_to_radix_entry(swap
));
1671 * We already confirmed swap under page lock, and make
1672 * no memory allocation here, so usually no possibility
1673 * of error; but free_swap_and_cache() only trylocks a
1674 * page, so it is just possible that the entry has been
1675 * truncated or holepunched since swap was confirmed.
1676 * shmem_undo_range() will have done some of the
1677 * unaccounting, now delete_from_swap_cache() will do
1679 * Reset swap.val? No, leave it so "failed" goes back to
1680 * "repeat": reading a hole and writing should succeed.
1683 mem_cgroup_cancel_charge(page
, memcg
, false);
1684 delete_from_swap_cache(page
);
1690 mem_cgroup_commit_charge(page
, memcg
, true, false);
1692 spin_lock_irq(&info
->lock
);
1694 shmem_recalc_inode(inode
);
1695 spin_unlock_irq(&info
->lock
);
1697 if (sgp
== SGP_WRITE
)
1698 mark_page_accessed(page
);
1700 delete_from_swap_cache(page
);
1701 set_page_dirty(page
);
1705 /* shmem_symlink() */
1706 if (mapping
->a_ops
!= &shmem_aops
)
1708 if (shmem_huge
== SHMEM_HUGE_DENY
|| sgp_huge
== SGP_NOHUGE
)
1710 if (shmem_huge
== SHMEM_HUGE_FORCE
)
1712 switch (sbinfo
->huge
) {
1715 case SHMEM_HUGE_NEVER
:
1717 case SHMEM_HUGE_WITHIN_SIZE
:
1718 off
= round_up(index
, HPAGE_PMD_NR
);
1719 i_size
= round_up(i_size_read(inode
), PAGE_SIZE
);
1720 if (i_size
>= HPAGE_PMD_SIZE
&&
1721 i_size
>> PAGE_SHIFT
>= off
)
1724 case SHMEM_HUGE_ADVISE
:
1725 if (sgp_huge
== SGP_HUGE
)
1727 /* TODO: implement fadvise() hints */
1732 page
= shmem_alloc_and_acct_page(gfp
, inode
, index
, true);
1734 alloc_nohuge
: page
= shmem_alloc_and_acct_page(gfp
, inode
,
1739 error
= PTR_ERR(page
);
1741 if (error
!= -ENOSPC
)
1744 * Try to reclaim some spece by splitting a huge page
1745 * beyond i_size on the filesystem.
1749 ret
= shmem_unused_huge_shrink(sbinfo
, NULL
, 1);
1750 if (ret
== SHRINK_STOP
)
1758 if (PageTransHuge(page
))
1759 hindex
= round_down(index
, HPAGE_PMD_NR
);
1763 if (sgp
== SGP_WRITE
)
1764 __SetPageReferenced(page
);
1766 error
= mem_cgroup_try_charge(page
, charge_mm
, gfp
, &memcg
,
1767 PageTransHuge(page
));
1770 error
= radix_tree_maybe_preload_order(gfp
& GFP_RECLAIM_MASK
,
1771 compound_order(page
));
1773 error
= shmem_add_to_page_cache(page
, mapping
, hindex
,
1775 radix_tree_preload_end();
1778 mem_cgroup_cancel_charge(page
, memcg
,
1779 PageTransHuge(page
));
1782 mem_cgroup_commit_charge(page
, memcg
, false,
1783 PageTransHuge(page
));
1784 lru_cache_add_anon(page
);
1786 spin_lock_irq(&info
->lock
);
1787 info
->alloced
+= 1 << compound_order(page
);
1788 inode
->i_blocks
+= BLOCKS_PER_PAGE
<< compound_order(page
);
1789 shmem_recalc_inode(inode
);
1790 spin_unlock_irq(&info
->lock
);
1793 if (PageTransHuge(page
) &&
1794 DIV_ROUND_UP(i_size_read(inode
), PAGE_SIZE
) <
1795 hindex
+ HPAGE_PMD_NR
- 1) {
1797 * Part of the huge page is beyond i_size: subject
1798 * to shrink under memory pressure.
1800 spin_lock(&sbinfo
->shrinklist_lock
);
1802 * _careful to defend against unlocked access to
1803 * ->shrink_list in shmem_unused_huge_shrink()
1805 if (list_empty_careful(&info
->shrinklist
)) {
1806 list_add_tail(&info
->shrinklist
,
1807 &sbinfo
->shrinklist
);
1808 sbinfo
->shrinklist_len
++;
1810 spin_unlock(&sbinfo
->shrinklist_lock
);
1814 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1816 if (sgp
== SGP_FALLOC
)
1820 * Let SGP_WRITE caller clear ends if write does not fill page;
1821 * but SGP_FALLOC on a page fallocated earlier must initialize
1822 * it now, lest undo on failure cancel our earlier guarantee.
1824 if (sgp
!= SGP_WRITE
&& !PageUptodate(page
)) {
1825 struct page
*head
= compound_head(page
);
1828 for (i
= 0; i
< (1 << compound_order(head
)); i
++) {
1829 clear_highpage(head
+ i
);
1830 flush_dcache_page(head
+ i
);
1832 SetPageUptodate(head
);
1836 /* Perhaps the file has been truncated since we checked */
1837 if (sgp
<= SGP_CACHE
&&
1838 ((loff_t
)index
<< PAGE_SHIFT
) >= i_size_read(inode
)) {
1840 ClearPageDirty(page
);
1841 delete_from_page_cache(page
);
1842 spin_lock_irq(&info
->lock
);
1843 shmem_recalc_inode(inode
);
1844 spin_unlock_irq(&info
->lock
);
1849 *pagep
= page
+ index
- hindex
;
1856 shmem_inode_unacct_blocks(inode
, 1 << compound_order(page
));
1858 if (PageTransHuge(page
)) {
1864 if (swap
.val
&& !shmem_confirm_swap(mapping
, index
, swap
))
1871 if (error
== -ENOSPC
&& !once
++) {
1872 spin_lock_irq(&info
->lock
);
1873 shmem_recalc_inode(inode
);
1874 spin_unlock_irq(&info
->lock
);
1877 if (error
== -EEXIST
) /* from above or from radix_tree_insert */
1883 * This is like autoremove_wake_function, but it removes the wait queue
1884 * entry unconditionally - even if something else had already woken the
1887 static int synchronous_wake_function(wait_queue_t
*wait
, unsigned mode
, int sync
, void *key
)
1889 int ret
= default_wake_function(wait
, mode
, sync
, key
);
1890 list_del_init(&wait
->task_list
);
1894 static int shmem_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
1896 struct inode
*inode
= file_inode(vma
->vm_file
);
1897 gfp_t gfp
= mapping_gfp_mask(inode
->i_mapping
);
1900 int ret
= VM_FAULT_LOCKED
;
1903 * Trinity finds that probing a hole which tmpfs is punching can
1904 * prevent the hole-punch from ever completing: which in turn
1905 * locks writers out with its hold on i_mutex. So refrain from
1906 * faulting pages into the hole while it's being punched. Although
1907 * shmem_undo_range() does remove the additions, it may be unable to
1908 * keep up, as each new page needs its own unmap_mapping_range() call,
1909 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1911 * It does not matter if we sometimes reach this check just before the
1912 * hole-punch begins, so that one fault then races with the punch:
1913 * we just need to make racing faults a rare case.
1915 * The implementation below would be much simpler if we just used a
1916 * standard mutex or completion: but we cannot take i_mutex in fault,
1917 * and bloating every shmem inode for this unlikely case would be sad.
1919 if (unlikely(inode
->i_private
)) {
1920 struct shmem_falloc
*shmem_falloc
;
1922 spin_lock(&inode
->i_lock
);
1923 shmem_falloc
= inode
->i_private
;
1925 shmem_falloc
->waitq
&&
1926 vmf
->pgoff
>= shmem_falloc
->start
&&
1927 vmf
->pgoff
< shmem_falloc
->next
) {
1928 wait_queue_head_t
*shmem_falloc_waitq
;
1929 DEFINE_WAIT_FUNC(shmem_fault_wait
, synchronous_wake_function
);
1931 ret
= VM_FAULT_NOPAGE
;
1932 if ((vmf
->flags
& FAULT_FLAG_ALLOW_RETRY
) &&
1933 !(vmf
->flags
& FAULT_FLAG_RETRY_NOWAIT
)) {
1934 /* It's polite to up mmap_sem if we can */
1935 up_read(&vma
->vm_mm
->mmap_sem
);
1936 ret
= VM_FAULT_RETRY
;
1939 shmem_falloc_waitq
= shmem_falloc
->waitq
;
1940 prepare_to_wait(shmem_falloc_waitq
, &shmem_fault_wait
,
1941 TASK_UNINTERRUPTIBLE
);
1942 spin_unlock(&inode
->i_lock
);
1946 * shmem_falloc_waitq points into the shmem_fallocate()
1947 * stack of the hole-punching task: shmem_falloc_waitq
1948 * is usually invalid by the time we reach here, but
1949 * finish_wait() does not dereference it in that case;
1950 * though i_lock needed lest racing with wake_up_all().
1952 spin_lock(&inode
->i_lock
);
1953 finish_wait(shmem_falloc_waitq
, &shmem_fault_wait
);
1954 spin_unlock(&inode
->i_lock
);
1957 spin_unlock(&inode
->i_lock
);
1961 if (vma
->vm_flags
& VM_HUGEPAGE
)
1963 else if (vma
->vm_flags
& VM_NOHUGEPAGE
)
1966 error
= shmem_getpage_gfp(inode
, vmf
->pgoff
, &vmf
->page
, sgp
,
1967 gfp
, vma
->vm_mm
, &ret
);
1969 return ((error
== -ENOMEM
) ? VM_FAULT_OOM
: VM_FAULT_SIGBUS
);
1973 unsigned long shmem_get_unmapped_area(struct file
*file
,
1974 unsigned long uaddr
, unsigned long len
,
1975 unsigned long pgoff
, unsigned long flags
)
1977 unsigned long (*get_area
)(struct file
*,
1978 unsigned long, unsigned long, unsigned long, unsigned long);
1980 unsigned long offset
;
1981 unsigned long inflated_len
;
1982 unsigned long inflated_addr
;
1983 unsigned long inflated_offset
;
1985 if (len
> TASK_SIZE
)
1988 get_area
= current
->mm
->get_unmapped_area
;
1989 addr
= get_area(file
, uaddr
, len
, pgoff
, flags
);
1991 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
))
1993 if (IS_ERR_VALUE(addr
))
1995 if (addr
& ~PAGE_MASK
)
1997 if (addr
> TASK_SIZE
- len
)
2000 if (shmem_huge
== SHMEM_HUGE_DENY
)
2002 if (len
< HPAGE_PMD_SIZE
)
2004 if (flags
& MAP_FIXED
)
2007 * Our priority is to support MAP_SHARED mapped hugely;
2008 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2009 * But if caller specified an address hint, respect that as before.
2014 if (shmem_huge
!= SHMEM_HUGE_FORCE
) {
2015 struct super_block
*sb
;
2018 VM_BUG_ON(file
->f_op
!= &shmem_file_operations
);
2019 sb
= file_inode(file
)->i_sb
;
2022 * Called directly from mm/mmap.c, or drivers/char/mem.c
2023 * for "/dev/zero", to create a shared anonymous object.
2025 if (IS_ERR(shm_mnt
))
2027 sb
= shm_mnt
->mnt_sb
;
2029 if (SHMEM_SB(sb
)->huge
== SHMEM_HUGE_NEVER
)
2033 offset
= (pgoff
<< PAGE_SHIFT
) & (HPAGE_PMD_SIZE
-1);
2034 if (offset
&& offset
+ len
< 2 * HPAGE_PMD_SIZE
)
2036 if ((addr
& (HPAGE_PMD_SIZE
-1)) == offset
)
2039 inflated_len
= len
+ HPAGE_PMD_SIZE
- PAGE_SIZE
;
2040 if (inflated_len
> TASK_SIZE
)
2042 if (inflated_len
< len
)
2045 inflated_addr
= get_area(NULL
, 0, inflated_len
, 0, flags
);
2046 if (IS_ERR_VALUE(inflated_addr
))
2048 if (inflated_addr
& ~PAGE_MASK
)
2051 inflated_offset
= inflated_addr
& (HPAGE_PMD_SIZE
-1);
2052 inflated_addr
+= offset
- inflated_offset
;
2053 if (inflated_offset
> offset
)
2054 inflated_addr
+= HPAGE_PMD_SIZE
;
2056 if (inflated_addr
> TASK_SIZE
- len
)
2058 return inflated_addr
;
2062 static int shmem_set_policy(struct vm_area_struct
*vma
, struct mempolicy
*mpol
)
2064 struct inode
*inode
= file_inode(vma
->vm_file
);
2065 return mpol_set_shared_policy(&SHMEM_I(inode
)->policy
, vma
, mpol
);
2068 static struct mempolicy
*shmem_get_policy(struct vm_area_struct
*vma
,
2071 struct inode
*inode
= file_inode(vma
->vm_file
);
2074 index
= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
) + vma
->vm_pgoff
;
2075 return mpol_shared_policy_lookup(&SHMEM_I(inode
)->policy
, index
);
2079 int shmem_lock(struct file
*file
, int lock
, struct user_struct
*user
)
2081 struct inode
*inode
= file_inode(file
);
2082 struct shmem_inode_info
*info
= SHMEM_I(inode
);
2083 int retval
= -ENOMEM
;
2085 spin_lock_irq(&info
->lock
);
2086 if (lock
&& !(info
->flags
& VM_LOCKED
)) {
2087 if (!user_shm_lock(inode
->i_size
, user
))
2089 info
->flags
|= VM_LOCKED
;
2090 mapping_set_unevictable(file
->f_mapping
);
2092 if (!lock
&& (info
->flags
& VM_LOCKED
) && user
) {
2093 user_shm_unlock(inode
->i_size
, user
);
2094 info
->flags
&= ~VM_LOCKED
;
2095 mapping_clear_unevictable(file
->f_mapping
);
2100 spin_unlock_irq(&info
->lock
);
2104 static int shmem_mmap(struct file
*file
, struct vm_area_struct
*vma
)
2106 file_accessed(file
);
2107 vma
->vm_ops
= &shmem_vm_ops
;
2108 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
) &&
2109 ((vma
->vm_start
+ ~HPAGE_PMD_MASK
) & HPAGE_PMD_MASK
) <
2110 (vma
->vm_end
& HPAGE_PMD_MASK
)) {
2111 khugepaged_enter(vma
, vma
->vm_flags
);
2116 static struct inode
*shmem_get_inode(struct super_block
*sb
, const struct inode
*dir
,
2117 umode_t mode
, dev_t dev
, unsigned long flags
)
2119 struct inode
*inode
;
2120 struct shmem_inode_info
*info
;
2121 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
2123 if (shmem_reserve_inode(sb
))
2126 inode
= new_inode(sb
);
2128 inode
->i_ino
= get_next_ino();
2129 inode_init_owner(inode
, dir
, mode
);
2130 inode
->i_blocks
= 0;
2131 inode
->i_atime
= inode
->i_mtime
= inode
->i_ctime
= current_time(inode
);
2132 inode
->i_generation
= get_seconds();
2133 info
= SHMEM_I(inode
);
2134 memset(info
, 0, (char *)inode
- (char *)info
);
2135 spin_lock_init(&info
->lock
);
2136 info
->seals
= F_SEAL_SEAL
;
2137 info
->flags
= flags
& VM_NORESERVE
;
2138 INIT_LIST_HEAD(&info
->shrinklist
);
2139 INIT_LIST_HEAD(&info
->swaplist
);
2140 simple_xattrs_init(&info
->xattrs
);
2141 cache_no_acl(inode
);
2143 switch (mode
& S_IFMT
) {
2145 inode
->i_op
= &shmem_special_inode_operations
;
2146 init_special_inode(inode
, mode
, dev
);
2149 inode
->i_mapping
->a_ops
= &shmem_aops
;
2150 inode
->i_op
= &shmem_inode_operations
;
2151 inode
->i_fop
= &shmem_file_operations
;
2152 mpol_shared_policy_init(&info
->policy
,
2153 shmem_get_sbmpol(sbinfo
));
2157 /* Some things misbehave if size == 0 on a directory */
2158 inode
->i_size
= 2 * BOGO_DIRENT_SIZE
;
2159 inode
->i_op
= &shmem_dir_inode_operations
;
2160 inode
->i_fop
= &simple_dir_operations
;
2164 * Must not load anything in the rbtree,
2165 * mpol_free_shared_policy will not be called.
2167 mpol_shared_policy_init(&info
->policy
, NULL
);
2171 lockdep_annotate_inode_mutex_key(inode
);
2173 shmem_free_inode(sb
);
2177 bool shmem_mapping(struct address_space
*mapping
)
2182 return mapping
->host
->i_sb
->s_op
== &shmem_ops
;
2186 static const struct inode_operations shmem_symlink_inode_operations
;
2187 static const struct inode_operations shmem_short_symlink_operations
;
2189 #ifdef CONFIG_TMPFS_XATTR
2190 static int shmem_initxattrs(struct inode
*, const struct xattr
*, void *);
2192 #define shmem_initxattrs NULL
2196 shmem_write_begin(struct file
*file
, struct address_space
*mapping
,
2197 loff_t pos
, unsigned len
, unsigned flags
,
2198 struct page
**pagep
, void **fsdata
)
2200 struct inode
*inode
= mapping
->host
;
2201 struct shmem_inode_info
*info
= SHMEM_I(inode
);
2202 pgoff_t index
= pos
>> PAGE_SHIFT
;
2204 /* i_mutex is held by caller */
2205 if (unlikely(info
->seals
)) {
2206 if (info
->seals
& F_SEAL_WRITE
)
2208 if ((info
->seals
& F_SEAL_GROW
) && pos
+ len
> inode
->i_size
)
2212 return shmem_getpage(inode
, index
, pagep
, SGP_WRITE
);
2216 shmem_write_end(struct file
*file
, struct address_space
*mapping
,
2217 loff_t pos
, unsigned len
, unsigned copied
,
2218 struct page
*page
, void *fsdata
)
2220 struct inode
*inode
= mapping
->host
;
2222 if (pos
+ copied
> inode
->i_size
)
2223 i_size_write(inode
, pos
+ copied
);
2225 if (!PageUptodate(page
)) {
2226 struct page
*head
= compound_head(page
);
2227 if (PageTransCompound(page
)) {
2230 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
2231 if (head
+ i
== page
)
2233 clear_highpage(head
+ i
);
2234 flush_dcache_page(head
+ i
);
2237 if (copied
< PAGE_SIZE
) {
2238 unsigned from
= pos
& (PAGE_SIZE
- 1);
2239 zero_user_segments(page
, 0, from
,
2240 from
+ copied
, PAGE_SIZE
);
2242 SetPageUptodate(head
);
2244 set_page_dirty(page
);
2251 static ssize_t
shmem_file_read_iter(struct kiocb
*iocb
, struct iov_iter
*to
)
2253 struct file
*file
= iocb
->ki_filp
;
2254 struct inode
*inode
= file_inode(file
);
2255 struct address_space
*mapping
= inode
->i_mapping
;
2257 unsigned long offset
;
2258 enum sgp_type sgp
= SGP_READ
;
2261 loff_t
*ppos
= &iocb
->ki_pos
;
2264 * Might this read be for a stacking filesystem? Then when reading
2265 * holes of a sparse file, we actually need to allocate those pages,
2266 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2268 if (!iter_is_iovec(to
))
2271 index
= *ppos
>> PAGE_SHIFT
;
2272 offset
= *ppos
& ~PAGE_MASK
;
2275 struct page
*page
= NULL
;
2277 unsigned long nr
, ret
;
2278 loff_t i_size
= i_size_read(inode
);
2280 end_index
= i_size
>> PAGE_SHIFT
;
2281 if (index
> end_index
)
2283 if (index
== end_index
) {
2284 nr
= i_size
& ~PAGE_MASK
;
2289 error
= shmem_getpage(inode
, index
, &page
, sgp
);
2291 if (error
== -EINVAL
)
2296 if (sgp
== SGP_CACHE
)
2297 set_page_dirty(page
);
2302 * We must evaluate after, since reads (unlike writes)
2303 * are called without i_mutex protection against truncate
2306 i_size
= i_size_read(inode
);
2307 end_index
= i_size
>> PAGE_SHIFT
;
2308 if (index
== end_index
) {
2309 nr
= i_size
& ~PAGE_MASK
;
2320 * If users can be writing to this page using arbitrary
2321 * virtual addresses, take care about potential aliasing
2322 * before reading the page on the kernel side.
2324 if (mapping_writably_mapped(mapping
))
2325 flush_dcache_page(page
);
2327 * Mark the page accessed if we read the beginning.
2330 mark_page_accessed(page
);
2332 page
= ZERO_PAGE(0);
2337 * Ok, we have the page, and it's up-to-date, so
2338 * now we can copy it to user space...
2340 ret
= copy_page_to_iter(page
, offset
, nr
, to
);
2343 index
+= offset
>> PAGE_SHIFT
;
2344 offset
&= ~PAGE_MASK
;
2347 if (!iov_iter_count(to
))
2356 *ppos
= ((loff_t
) index
<< PAGE_SHIFT
) + offset
;
2357 file_accessed(file
);
2358 return retval
? retval
: error
;
2362 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
2364 static pgoff_t
shmem_seek_hole_data(struct address_space
*mapping
,
2365 pgoff_t index
, pgoff_t end
, int whence
)
2368 struct pagevec pvec
;
2369 pgoff_t indices
[PAGEVEC_SIZE
];
2373 pagevec_init(&pvec
, 0);
2374 pvec
.nr
= 1; /* start small: we may be there already */
2376 pvec
.nr
= find_get_entries(mapping
, index
,
2377 pvec
.nr
, pvec
.pages
, indices
);
2379 if (whence
== SEEK_DATA
)
2383 for (i
= 0; i
< pvec
.nr
; i
++, index
++) {
2384 if (index
< indices
[i
]) {
2385 if (whence
== SEEK_HOLE
) {
2391 page
= pvec
.pages
[i
];
2392 if (page
&& !radix_tree_exceptional_entry(page
)) {
2393 if (!PageUptodate(page
))
2397 (page
&& whence
== SEEK_DATA
) ||
2398 (!page
&& whence
== SEEK_HOLE
)) {
2403 pagevec_remove_exceptionals(&pvec
);
2404 pagevec_release(&pvec
);
2405 pvec
.nr
= PAGEVEC_SIZE
;
2411 static loff_t
shmem_file_llseek(struct file
*file
, loff_t offset
, int whence
)
2413 struct address_space
*mapping
= file
->f_mapping
;
2414 struct inode
*inode
= mapping
->host
;
2418 if (whence
!= SEEK_DATA
&& whence
!= SEEK_HOLE
)
2419 return generic_file_llseek_size(file
, offset
, whence
,
2420 MAX_LFS_FILESIZE
, i_size_read(inode
));
2422 /* We're holding i_mutex so we can access i_size directly */
2424 if (offset
< 0 || offset
>= inode
->i_size
)
2427 start
= offset
>> PAGE_SHIFT
;
2428 end
= (inode
->i_size
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2429 new_offset
= shmem_seek_hole_data(mapping
, start
, end
, whence
);
2430 new_offset
<<= PAGE_SHIFT
;
2431 if (new_offset
> offset
) {
2432 if (new_offset
< inode
->i_size
)
2433 offset
= new_offset
;
2434 else if (whence
== SEEK_DATA
)
2437 offset
= inode
->i_size
;
2442 offset
= vfs_setpos(file
, offset
, MAX_LFS_FILESIZE
);
2443 inode_unlock(inode
);
2448 * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
2449 * so reuse a tag which we firmly believe is never set or cleared on shmem.
2451 #define SHMEM_TAG_PINNED PAGECACHE_TAG_TOWRITE
2452 #define LAST_SCAN 4 /* about 150ms max */
2454 static void shmem_tag_pins(struct address_space
*mapping
)
2456 struct radix_tree_iter iter
;
2460 unsigned int tagged
= 0;
2465 spin_lock_irq(&mapping
->tree_lock
);
2466 radix_tree_for_each_slot(slot
, &mapping
->page_tree
, &iter
, start
) {
2467 page
= radix_tree_deref_slot(slot
);
2468 if (!page
|| radix_tree_exception(page
)) {
2469 if (radix_tree_deref_retry(page
)) {
2470 slot
= radix_tree_iter_retry(&iter
);
2473 } else if (page_count(page
) - page_mapcount(page
) > 1) {
2474 radix_tree_tag_set(&mapping
->page_tree
, iter
.index
,
2478 if (++tagged
% 1024)
2481 slot
= radix_tree_iter_next(&iter
);
2482 spin_unlock_irq(&mapping
->tree_lock
);
2484 spin_lock_irq(&mapping
->tree_lock
);
2486 spin_unlock_irq(&mapping
->tree_lock
);
2490 * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
2491 * via get_user_pages(), drivers might have some pending I/O without any active
2492 * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
2493 * and see whether it has an elevated ref-count. If so, we tag them and wait for
2494 * them to be dropped.
2495 * The caller must guarantee that no new user will acquire writable references
2496 * to those pages to avoid races.
2498 static int shmem_wait_for_pins(struct address_space
*mapping
)
2500 struct radix_tree_iter iter
;
2506 shmem_tag_pins(mapping
);
2509 for (scan
= 0; scan
<= LAST_SCAN
; scan
++) {
2510 if (!radix_tree_tagged(&mapping
->page_tree
, SHMEM_TAG_PINNED
))
2514 lru_add_drain_all();
2515 else if (schedule_timeout_killable((HZ
<< scan
) / 200))
2520 radix_tree_for_each_tagged(slot
, &mapping
->page_tree
, &iter
,
2521 start
, SHMEM_TAG_PINNED
) {
2523 page
= radix_tree_deref_slot(slot
);
2524 if (radix_tree_exception(page
)) {
2525 if (radix_tree_deref_retry(page
)) {
2526 slot
= radix_tree_iter_retry(&iter
);
2534 page_count(page
) - page_mapcount(page
) != 1) {
2535 if (scan
< LAST_SCAN
)
2536 goto continue_resched
;
2539 * On the last scan, we clean up all those tags
2540 * we inserted; but make a note that we still
2541 * found pages pinned.
2546 spin_lock_irq(&mapping
->tree_lock
);
2547 radix_tree_tag_clear(&mapping
->page_tree
,
2548 iter
.index
, SHMEM_TAG_PINNED
);
2549 spin_unlock_irq(&mapping
->tree_lock
);
2551 if (need_resched()) {
2553 slot
= radix_tree_iter_next(&iter
);
2562 #define F_ALL_SEALS (F_SEAL_SEAL | \
2567 int shmem_add_seals(struct file
*file
, unsigned int seals
)
2569 struct inode
*inode
= file_inode(file
);
2570 struct shmem_inode_info
*info
= SHMEM_I(inode
);
2575 * Sealing allows multiple parties to share a shmem-file but restrict
2576 * access to a specific subset of file operations. Seals can only be
2577 * added, but never removed. This way, mutually untrusted parties can
2578 * share common memory regions with a well-defined policy. A malicious
2579 * peer can thus never perform unwanted operations on a shared object.
2581 * Seals are only supported on special shmem-files and always affect
2582 * the whole underlying inode. Once a seal is set, it may prevent some
2583 * kinds of access to the file. Currently, the following seals are
2585 * SEAL_SEAL: Prevent further seals from being set on this file
2586 * SEAL_SHRINK: Prevent the file from shrinking
2587 * SEAL_GROW: Prevent the file from growing
2588 * SEAL_WRITE: Prevent write access to the file
2590 * As we don't require any trust relationship between two parties, we
2591 * must prevent seals from being removed. Therefore, sealing a file
2592 * only adds a given set of seals to the file, it never touches
2593 * existing seals. Furthermore, the "setting seals"-operation can be
2594 * sealed itself, which basically prevents any further seal from being
2597 * Semantics of sealing are only defined on volatile files. Only
2598 * anonymous shmem files support sealing. More importantly, seals are
2599 * never written to disk. Therefore, there's no plan to support it on
2603 if (file
->f_op
!= &shmem_file_operations
)
2605 if (!(file
->f_mode
& FMODE_WRITE
))
2607 if (seals
& ~(unsigned int)F_ALL_SEALS
)
2612 if (info
->seals
& F_SEAL_SEAL
) {
2617 if ((seals
& F_SEAL_WRITE
) && !(info
->seals
& F_SEAL_WRITE
)) {
2618 error
= mapping_deny_writable(file
->f_mapping
);
2622 error
= shmem_wait_for_pins(file
->f_mapping
);
2624 mapping_allow_writable(file
->f_mapping
);
2629 info
->seals
|= seals
;
2633 inode_unlock(inode
);
2636 EXPORT_SYMBOL_GPL(shmem_add_seals
);
2638 int shmem_get_seals(struct file
*file
)
2640 if (file
->f_op
!= &shmem_file_operations
)
2643 return SHMEM_I(file_inode(file
))->seals
;
2645 EXPORT_SYMBOL_GPL(shmem_get_seals
);
2647 long shmem_fcntl(struct file
*file
, unsigned int cmd
, unsigned long arg
)
2653 /* disallow upper 32bit */
2657 error
= shmem_add_seals(file
, arg
);
2660 error
= shmem_get_seals(file
);
2670 static long shmem_fallocate(struct file
*file
, int mode
, loff_t offset
,
2673 struct inode
*inode
= file_inode(file
);
2674 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
2675 struct shmem_inode_info
*info
= SHMEM_I(inode
);
2676 struct shmem_falloc shmem_falloc
;
2677 pgoff_t start
, index
, end
;
2680 if (mode
& ~(FALLOC_FL_KEEP_SIZE
| FALLOC_FL_PUNCH_HOLE
))
2685 if (mode
& FALLOC_FL_PUNCH_HOLE
) {
2686 struct address_space
*mapping
= file
->f_mapping
;
2687 loff_t unmap_start
= round_up(offset
, PAGE_SIZE
);
2688 loff_t unmap_end
= round_down(offset
+ len
, PAGE_SIZE
) - 1;
2689 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq
);
2691 /* protected by i_mutex */
2692 if (info
->seals
& F_SEAL_WRITE
) {
2697 shmem_falloc
.waitq
= &shmem_falloc_waitq
;
2698 shmem_falloc
.start
= unmap_start
>> PAGE_SHIFT
;
2699 shmem_falloc
.next
= (unmap_end
+ 1) >> PAGE_SHIFT
;
2700 spin_lock(&inode
->i_lock
);
2701 inode
->i_private
= &shmem_falloc
;
2702 spin_unlock(&inode
->i_lock
);
2704 if ((u64
)unmap_end
> (u64
)unmap_start
)
2705 unmap_mapping_range(mapping
, unmap_start
,
2706 1 + unmap_end
- unmap_start
, 0);
2707 shmem_truncate_range(inode
, offset
, offset
+ len
- 1);
2708 /* No need to unmap again: hole-punching leaves COWed pages */
2710 spin_lock(&inode
->i_lock
);
2711 inode
->i_private
= NULL
;
2712 wake_up_all(&shmem_falloc_waitq
);
2713 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq
.task_list
));
2714 spin_unlock(&inode
->i_lock
);
2719 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2720 error
= inode_newsize_ok(inode
, offset
+ len
);
2724 if ((info
->seals
& F_SEAL_GROW
) && offset
+ len
> inode
->i_size
) {
2729 start
= offset
>> PAGE_SHIFT
;
2730 end
= (offset
+ len
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2731 /* Try to avoid a swapstorm if len is impossible to satisfy */
2732 if (sbinfo
->max_blocks
&& end
- start
> sbinfo
->max_blocks
) {
2737 shmem_falloc
.waitq
= NULL
;
2738 shmem_falloc
.start
= start
;
2739 shmem_falloc
.next
= start
;
2740 shmem_falloc
.nr_falloced
= 0;
2741 shmem_falloc
.nr_unswapped
= 0;
2742 spin_lock(&inode
->i_lock
);
2743 inode
->i_private
= &shmem_falloc
;
2744 spin_unlock(&inode
->i_lock
);
2746 for (index
= start
; index
< end
; index
++) {
2750 * Good, the fallocate(2) manpage permits EINTR: we may have
2751 * been interrupted because we are using up too much memory.
2753 if (signal_pending(current
))
2755 else if (shmem_falloc
.nr_unswapped
> shmem_falloc
.nr_falloced
)
2758 error
= shmem_getpage(inode
, index
, &page
, SGP_FALLOC
);
2760 /* Remove the !PageUptodate pages we added */
2761 if (index
> start
) {
2762 shmem_undo_range(inode
,
2763 (loff_t
)start
<< PAGE_SHIFT
,
2764 ((loff_t
)index
<< PAGE_SHIFT
) - 1, true);
2770 * Inform shmem_writepage() how far we have reached.
2771 * No need for lock or barrier: we have the page lock.
2773 shmem_falloc
.next
++;
2774 if (!PageUptodate(page
))
2775 shmem_falloc
.nr_falloced
++;
2778 * If !PageUptodate, leave it that way so that freeable pages
2779 * can be recognized if we need to rollback on error later.
2780 * But set_page_dirty so that memory pressure will swap rather
2781 * than free the pages we are allocating (and SGP_CACHE pages
2782 * might still be clean: we now need to mark those dirty too).
2784 set_page_dirty(page
);
2790 if (!(mode
& FALLOC_FL_KEEP_SIZE
) && offset
+ len
> inode
->i_size
)
2791 i_size_write(inode
, offset
+ len
);
2792 inode
->i_ctime
= current_time(inode
);
2794 spin_lock(&inode
->i_lock
);
2795 inode
->i_private
= NULL
;
2796 spin_unlock(&inode
->i_lock
);
2798 inode_unlock(inode
);
2802 static int shmem_statfs(struct dentry
*dentry
, struct kstatfs
*buf
)
2804 struct shmem_sb_info
*sbinfo
= SHMEM_SB(dentry
->d_sb
);
2806 buf
->f_type
= TMPFS_MAGIC
;
2807 buf
->f_bsize
= PAGE_SIZE
;
2808 buf
->f_namelen
= NAME_MAX
;
2809 if (sbinfo
->max_blocks
) {
2810 buf
->f_blocks
= sbinfo
->max_blocks
;
2812 buf
->f_bfree
= sbinfo
->max_blocks
-
2813 percpu_counter_sum(&sbinfo
->used_blocks
);
2815 if (sbinfo
->max_inodes
) {
2816 buf
->f_files
= sbinfo
->max_inodes
;
2817 buf
->f_ffree
= sbinfo
->free_inodes
;
2819 /* else leave those fields 0 like simple_statfs */
2824 * File creation. Allocate an inode, and we're done..
2827 shmem_mknod(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
, dev_t dev
)
2829 struct inode
*inode
;
2830 int error
= -ENOSPC
;
2832 inode
= shmem_get_inode(dir
->i_sb
, dir
, mode
, dev
, VM_NORESERVE
);
2834 error
= simple_acl_create(dir
, inode
);
2837 error
= security_inode_init_security(inode
, dir
,
2839 shmem_initxattrs
, NULL
);
2840 if (error
&& error
!= -EOPNOTSUPP
)
2844 dir
->i_size
+= BOGO_DIRENT_SIZE
;
2845 dir
->i_ctime
= dir
->i_mtime
= current_time(dir
);
2846 d_instantiate(dentry
, inode
);
2847 dget(dentry
); /* Extra count - pin the dentry in core */
2856 shmem_tmpfile(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
2858 struct inode
*inode
;
2859 int error
= -ENOSPC
;
2861 inode
= shmem_get_inode(dir
->i_sb
, dir
, mode
, 0, VM_NORESERVE
);
2863 error
= security_inode_init_security(inode
, dir
,
2865 shmem_initxattrs
, NULL
);
2866 if (error
&& error
!= -EOPNOTSUPP
)
2868 error
= simple_acl_create(dir
, inode
);
2871 d_tmpfile(dentry
, inode
);
2879 static int shmem_mkdir(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
2883 if ((error
= shmem_mknod(dir
, dentry
, mode
| S_IFDIR
, 0)))
2889 static int shmem_create(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
,
2892 return shmem_mknod(dir
, dentry
, mode
| S_IFREG
, 0);
2898 static int shmem_link(struct dentry
*old_dentry
, struct inode
*dir
, struct dentry
*dentry
)
2900 struct inode
*inode
= d_inode(old_dentry
);
2904 * No ordinary (disk based) filesystem counts links as inodes;
2905 * but each new link needs a new dentry, pinning lowmem, and
2906 * tmpfs dentries cannot be pruned until they are unlinked.
2907 * But if an O_TMPFILE file is linked into the tmpfs, the
2908 * first link must skip that, to get the accounting right.
2910 if (inode
->i_nlink
) {
2911 ret
= shmem_reserve_inode(inode
->i_sb
);
2916 dir
->i_size
+= BOGO_DIRENT_SIZE
;
2917 inode
->i_ctime
= dir
->i_ctime
= dir
->i_mtime
= current_time(inode
);
2919 ihold(inode
); /* New dentry reference */
2920 dget(dentry
); /* Extra pinning count for the created dentry */
2921 d_instantiate(dentry
, inode
);
2926 static int shmem_unlink(struct inode
*dir
, struct dentry
*dentry
)
2928 struct inode
*inode
= d_inode(dentry
);
2930 if (inode
->i_nlink
> 1 && !S_ISDIR(inode
->i_mode
))
2931 shmem_free_inode(inode
->i_sb
);
2933 dir
->i_size
-= BOGO_DIRENT_SIZE
;
2934 inode
->i_ctime
= dir
->i_ctime
= dir
->i_mtime
= current_time(inode
);
2936 dput(dentry
); /* Undo the count from "create" - this does all the work */
2940 static int shmem_rmdir(struct inode
*dir
, struct dentry
*dentry
)
2942 if (!simple_empty(dentry
))
2945 drop_nlink(d_inode(dentry
));
2947 return shmem_unlink(dir
, dentry
);
2950 static int shmem_exchange(struct inode
*old_dir
, struct dentry
*old_dentry
, struct inode
*new_dir
, struct dentry
*new_dentry
)
2952 bool old_is_dir
= d_is_dir(old_dentry
);
2953 bool new_is_dir
= d_is_dir(new_dentry
);
2955 if (old_dir
!= new_dir
&& old_is_dir
!= new_is_dir
) {
2957 drop_nlink(old_dir
);
2960 drop_nlink(new_dir
);
2964 old_dir
->i_ctime
= old_dir
->i_mtime
=
2965 new_dir
->i_ctime
= new_dir
->i_mtime
=
2966 d_inode(old_dentry
)->i_ctime
=
2967 d_inode(new_dentry
)->i_ctime
= current_time(old_dir
);
2972 static int shmem_whiteout(struct inode
*old_dir
, struct dentry
*old_dentry
)
2974 struct dentry
*whiteout
;
2977 whiteout
= d_alloc(old_dentry
->d_parent
, &old_dentry
->d_name
);
2981 error
= shmem_mknod(old_dir
, whiteout
,
2982 S_IFCHR
| WHITEOUT_MODE
, WHITEOUT_DEV
);
2988 * Cheat and hash the whiteout while the old dentry is still in
2989 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2991 * d_lookup() will consistently find one of them at this point,
2992 * not sure which one, but that isn't even important.
2999 * The VFS layer already does all the dentry stuff for rename,
3000 * we just have to decrement the usage count for the target if
3001 * it exists so that the VFS layer correctly free's it when it
3004 static int shmem_rename2(struct inode
*old_dir
, struct dentry
*old_dentry
, struct inode
*new_dir
, struct dentry
*new_dentry
, unsigned int flags
)
3006 struct inode
*inode
= d_inode(old_dentry
);
3007 int they_are_dirs
= S_ISDIR(inode
->i_mode
);
3009 if (flags
& ~(RENAME_NOREPLACE
| RENAME_EXCHANGE
| RENAME_WHITEOUT
))
3012 if (flags
& RENAME_EXCHANGE
)
3013 return shmem_exchange(old_dir
, old_dentry
, new_dir
, new_dentry
);
3015 if (!simple_empty(new_dentry
))
3018 if (flags
& RENAME_WHITEOUT
) {
3021 error
= shmem_whiteout(old_dir
, old_dentry
);
3026 if (d_really_is_positive(new_dentry
)) {
3027 (void) shmem_unlink(new_dir
, new_dentry
);
3028 if (they_are_dirs
) {
3029 drop_nlink(d_inode(new_dentry
));
3030 drop_nlink(old_dir
);
3032 } else if (they_are_dirs
) {
3033 drop_nlink(old_dir
);
3037 old_dir
->i_size
-= BOGO_DIRENT_SIZE
;
3038 new_dir
->i_size
+= BOGO_DIRENT_SIZE
;
3039 old_dir
->i_ctime
= old_dir
->i_mtime
=
3040 new_dir
->i_ctime
= new_dir
->i_mtime
=
3041 inode
->i_ctime
= current_time(old_dir
);
3045 static int shmem_symlink(struct inode
*dir
, struct dentry
*dentry
, const char *symname
)
3049 struct inode
*inode
;
3051 struct shmem_inode_info
*info
;
3053 len
= strlen(symname
) + 1;
3054 if (len
> PAGE_SIZE
)
3055 return -ENAMETOOLONG
;
3057 inode
= shmem_get_inode(dir
->i_sb
, dir
, S_IFLNK
|S_IRWXUGO
, 0, VM_NORESERVE
);
3061 error
= security_inode_init_security(inode
, dir
, &dentry
->d_name
,
3062 shmem_initxattrs
, NULL
);
3064 if (error
!= -EOPNOTSUPP
) {
3071 info
= SHMEM_I(inode
);
3072 inode
->i_size
= len
-1;
3073 if (len
<= SHORT_SYMLINK_LEN
) {
3074 inode
->i_link
= kmemdup(symname
, len
, GFP_KERNEL
);
3075 if (!inode
->i_link
) {
3079 inode
->i_op
= &shmem_short_symlink_operations
;
3081 inode_nohighmem(inode
);
3082 error
= shmem_getpage(inode
, 0, &page
, SGP_WRITE
);
3087 inode
->i_mapping
->a_ops
= &shmem_aops
;
3088 inode
->i_op
= &shmem_symlink_inode_operations
;
3089 memcpy(page_address(page
), symname
, len
);
3090 SetPageUptodate(page
);
3091 set_page_dirty(page
);
3095 dir
->i_size
+= BOGO_DIRENT_SIZE
;
3096 dir
->i_ctime
= dir
->i_mtime
= current_time(dir
);
3097 d_instantiate(dentry
, inode
);
3102 static void shmem_put_link(void *arg
)
3104 mark_page_accessed(arg
);
3108 static const char *shmem_get_link(struct dentry
*dentry
,
3109 struct inode
*inode
,
3110 struct delayed_call
*done
)
3112 struct page
*page
= NULL
;
3115 page
= find_get_page(inode
->i_mapping
, 0);
3117 return ERR_PTR(-ECHILD
);
3118 if (!PageUptodate(page
)) {
3120 return ERR_PTR(-ECHILD
);
3123 error
= shmem_getpage(inode
, 0, &page
, SGP_READ
);
3125 return ERR_PTR(error
);
3128 set_delayed_call(done
, shmem_put_link
, page
);
3129 return page_address(page
);
3132 #ifdef CONFIG_TMPFS_XATTR
3134 * Superblocks without xattr inode operations may get some security.* xattr
3135 * support from the LSM "for free". As soon as we have any other xattrs
3136 * like ACLs, we also need to implement the security.* handlers at
3137 * filesystem level, though.
3141 * Callback for security_inode_init_security() for acquiring xattrs.
3143 static int shmem_initxattrs(struct inode
*inode
,
3144 const struct xattr
*xattr_array
,
3147 struct shmem_inode_info
*info
= SHMEM_I(inode
);
3148 const struct xattr
*xattr
;
3149 struct simple_xattr
*new_xattr
;
3152 for (xattr
= xattr_array
; xattr
->name
!= NULL
; xattr
++) {
3153 new_xattr
= simple_xattr_alloc(xattr
->value
, xattr
->value_len
);
3157 len
= strlen(xattr
->name
) + 1;
3158 new_xattr
->name
= kmalloc(XATTR_SECURITY_PREFIX_LEN
+ len
,
3160 if (!new_xattr
->name
) {
3165 memcpy(new_xattr
->name
, XATTR_SECURITY_PREFIX
,
3166 XATTR_SECURITY_PREFIX_LEN
);
3167 memcpy(new_xattr
->name
+ XATTR_SECURITY_PREFIX_LEN
,
3170 simple_xattr_list_add(&info
->xattrs
, new_xattr
);
3176 static int shmem_xattr_handler_get(const struct xattr_handler
*handler
,
3177 struct dentry
*unused
, struct inode
*inode
,
3178 const char *name
, void *buffer
, size_t size
)
3180 struct shmem_inode_info
*info
= SHMEM_I(inode
);
3182 name
= xattr_full_name(handler
, name
);
3183 return simple_xattr_get(&info
->xattrs
, name
, buffer
, size
);
3186 static int shmem_xattr_handler_set(const struct xattr_handler
*handler
,
3187 struct dentry
*unused
, struct inode
*inode
,
3188 const char *name
, const void *value
,
3189 size_t size
, int flags
)
3191 struct shmem_inode_info
*info
= SHMEM_I(inode
);
3193 name
= xattr_full_name(handler
, name
);
3194 return simple_xattr_set(&info
->xattrs
, name
, value
, size
, flags
);
3197 static const struct xattr_handler shmem_security_xattr_handler
= {
3198 .prefix
= XATTR_SECURITY_PREFIX
,
3199 .get
= shmem_xattr_handler_get
,
3200 .set
= shmem_xattr_handler_set
,
3203 static const struct xattr_handler shmem_trusted_xattr_handler
= {
3204 .prefix
= XATTR_TRUSTED_PREFIX
,
3205 .get
= shmem_xattr_handler_get
,
3206 .set
= shmem_xattr_handler_set
,
3209 static const struct xattr_handler
*shmem_xattr_handlers
[] = {
3210 #ifdef CONFIG_TMPFS_POSIX_ACL
3211 &posix_acl_access_xattr_handler
,
3212 &posix_acl_default_xattr_handler
,
3214 &shmem_security_xattr_handler
,
3215 &shmem_trusted_xattr_handler
,
3219 static ssize_t
shmem_listxattr(struct dentry
*dentry
, char *buffer
, size_t size
)
3221 struct shmem_inode_info
*info
= SHMEM_I(d_inode(dentry
));
3222 return simple_xattr_list(d_inode(dentry
), &info
->xattrs
, buffer
, size
);
3224 #endif /* CONFIG_TMPFS_XATTR */
3226 static const struct inode_operations shmem_short_symlink_operations
= {
3227 .readlink
= generic_readlink
,
3228 .get_link
= simple_get_link
,
3229 #ifdef CONFIG_TMPFS_XATTR
3230 .listxattr
= shmem_listxattr
,
3234 static const struct inode_operations shmem_symlink_inode_operations
= {
3235 .readlink
= generic_readlink
,
3236 .get_link
= shmem_get_link
,
3237 #ifdef CONFIG_TMPFS_XATTR
3238 .listxattr
= shmem_listxattr
,
3242 static struct dentry
*shmem_get_parent(struct dentry
*child
)
3244 return ERR_PTR(-ESTALE
);
3247 static int shmem_match(struct inode
*ino
, void *vfh
)
3251 inum
= (inum
<< 32) | fh
[1];
3252 return ino
->i_ino
== inum
&& fh
[0] == ino
->i_generation
;
3255 static struct dentry
*shmem_fh_to_dentry(struct super_block
*sb
,
3256 struct fid
*fid
, int fh_len
, int fh_type
)
3258 struct inode
*inode
;
3259 struct dentry
*dentry
= NULL
;
3266 inum
= (inum
<< 32) | fid
->raw
[1];
3268 inode
= ilookup5(sb
, (unsigned long)(inum
+ fid
->raw
[0]),
3269 shmem_match
, fid
->raw
);
3271 dentry
= d_find_alias(inode
);
3278 static int shmem_encode_fh(struct inode
*inode
, __u32
*fh
, int *len
,
3279 struct inode
*parent
)
3283 return FILEID_INVALID
;
3286 if (inode_unhashed(inode
)) {
3287 /* Unfortunately insert_inode_hash is not idempotent,
3288 * so as we hash inodes here rather than at creation
3289 * time, we need a lock to ensure we only try
3292 static DEFINE_SPINLOCK(lock
);
3294 if (inode_unhashed(inode
))
3295 __insert_inode_hash(inode
,
3296 inode
->i_ino
+ inode
->i_generation
);
3300 fh
[0] = inode
->i_generation
;
3301 fh
[1] = inode
->i_ino
;
3302 fh
[2] = ((__u64
)inode
->i_ino
) >> 32;
3308 static const struct export_operations shmem_export_ops
= {
3309 .get_parent
= shmem_get_parent
,
3310 .encode_fh
= shmem_encode_fh
,
3311 .fh_to_dentry
= shmem_fh_to_dentry
,
3314 static int shmem_parse_options(char *options
, struct shmem_sb_info
*sbinfo
,
3317 char *this_char
, *value
, *rest
;
3318 struct mempolicy
*mpol
= NULL
;
3322 while (options
!= NULL
) {
3323 this_char
= options
;
3326 * NUL-terminate this option: unfortunately,
3327 * mount options form a comma-separated list,
3328 * but mpol's nodelist may also contain commas.
3330 options
= strchr(options
, ',');
3331 if (options
== NULL
)
3334 if (!isdigit(*options
)) {
3341 if ((value
= strchr(this_char
,'=')) != NULL
) {
3344 pr_err("tmpfs: No value for mount option '%s'\n",
3349 if (!strcmp(this_char
,"size")) {
3350 unsigned long long size
;
3351 size
= memparse(value
,&rest
);
3353 size
<<= PAGE_SHIFT
;
3354 size
*= totalram_pages
;
3360 sbinfo
->max_blocks
=
3361 DIV_ROUND_UP(size
, PAGE_SIZE
);
3362 } else if (!strcmp(this_char
,"nr_blocks")) {
3363 sbinfo
->max_blocks
= memparse(value
, &rest
);
3366 } else if (!strcmp(this_char
,"nr_inodes")) {
3367 sbinfo
->max_inodes
= memparse(value
, &rest
);
3370 } else if (!strcmp(this_char
,"mode")) {
3373 sbinfo
->mode
= simple_strtoul(value
, &rest
, 8) & 07777;
3376 } else if (!strcmp(this_char
,"uid")) {
3379 uid
= simple_strtoul(value
, &rest
, 0);
3382 sbinfo
->uid
= make_kuid(current_user_ns(), uid
);
3383 if (!uid_valid(sbinfo
->uid
))
3385 } else if (!strcmp(this_char
,"gid")) {
3388 gid
= simple_strtoul(value
, &rest
, 0);
3391 sbinfo
->gid
= make_kgid(current_user_ns(), gid
);
3392 if (!gid_valid(sbinfo
->gid
))
3394 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3395 } else if (!strcmp(this_char
, "huge")) {
3397 huge
= shmem_parse_huge(value
);
3400 if (!has_transparent_hugepage() &&
3401 huge
!= SHMEM_HUGE_NEVER
)
3403 sbinfo
->huge
= huge
;
3406 } else if (!strcmp(this_char
,"mpol")) {
3409 if (mpol_parse_str(value
, &mpol
))
3413 pr_err("tmpfs: Bad mount option %s\n", this_char
);
3417 sbinfo
->mpol
= mpol
;
3421 pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
3429 static int shmem_remount_fs(struct super_block
*sb
, int *flags
, char *data
)
3431 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
3432 struct shmem_sb_info config
= *sbinfo
;
3433 unsigned long inodes
;
3434 int error
= -EINVAL
;
3437 if (shmem_parse_options(data
, &config
, true))
3440 spin_lock(&sbinfo
->stat_lock
);
3441 inodes
= sbinfo
->max_inodes
- sbinfo
->free_inodes
;
3442 if (percpu_counter_compare(&sbinfo
->used_blocks
, config
.max_blocks
) > 0)
3444 if (config
.max_inodes
< inodes
)
3447 * Those tests disallow limited->unlimited while any are in use;
3448 * but we must separately disallow unlimited->limited, because
3449 * in that case we have no record of how much is already in use.
3451 if (config
.max_blocks
&& !sbinfo
->max_blocks
)
3453 if (config
.max_inodes
&& !sbinfo
->max_inodes
)
3457 sbinfo
->huge
= config
.huge
;
3458 sbinfo
->max_blocks
= config
.max_blocks
;
3459 sbinfo
->max_inodes
= config
.max_inodes
;
3460 sbinfo
->free_inodes
= config
.max_inodes
- inodes
;
3463 * Preserve previous mempolicy unless mpol remount option was specified.
3466 mpol_put(sbinfo
->mpol
);
3467 sbinfo
->mpol
= config
.mpol
; /* transfers initial ref */
3470 spin_unlock(&sbinfo
->stat_lock
);
3474 static int shmem_show_options(struct seq_file
*seq
, struct dentry
*root
)
3476 struct shmem_sb_info
*sbinfo
= SHMEM_SB(root
->d_sb
);
3478 if (sbinfo
->max_blocks
!= shmem_default_max_blocks())
3479 seq_printf(seq
, ",size=%luk",
3480 sbinfo
->max_blocks
<< (PAGE_SHIFT
- 10));
3481 if (sbinfo
->max_inodes
!= shmem_default_max_inodes())
3482 seq_printf(seq
, ",nr_inodes=%lu", sbinfo
->max_inodes
);
3483 if (sbinfo
->mode
!= (S_IRWXUGO
| S_ISVTX
))
3484 seq_printf(seq
, ",mode=%03ho", sbinfo
->mode
);
3485 if (!uid_eq(sbinfo
->uid
, GLOBAL_ROOT_UID
))
3486 seq_printf(seq
, ",uid=%u",
3487 from_kuid_munged(&init_user_ns
, sbinfo
->uid
));
3488 if (!gid_eq(sbinfo
->gid
, GLOBAL_ROOT_GID
))
3489 seq_printf(seq
, ",gid=%u",
3490 from_kgid_munged(&init_user_ns
, sbinfo
->gid
));
3491 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3492 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3494 seq_printf(seq
, ",huge=%s", shmem_format_huge(sbinfo
->huge
));
3496 shmem_show_mpol(seq
, sbinfo
->mpol
);
3500 #define MFD_NAME_PREFIX "memfd:"
3501 #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
3502 #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
3504 #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING)
3506 SYSCALL_DEFINE2(memfd_create
,
3507 const char __user
*, uname
,
3508 unsigned int, flags
)
3510 struct shmem_inode_info
*info
;
3516 if (flags
& ~(unsigned int)MFD_ALL_FLAGS
)
3519 /* length includes terminating zero */
3520 len
= strnlen_user(uname
, MFD_NAME_MAX_LEN
+ 1);
3523 if (len
> MFD_NAME_MAX_LEN
+ 1)
3526 name
= kmalloc(len
+ MFD_NAME_PREFIX_LEN
, GFP_TEMPORARY
);
3530 strcpy(name
, MFD_NAME_PREFIX
);
3531 if (copy_from_user(&name
[MFD_NAME_PREFIX_LEN
], uname
, len
)) {
3536 /* terminating-zero may have changed after strnlen_user() returned */
3537 if (name
[len
+ MFD_NAME_PREFIX_LEN
- 1]) {
3542 fd
= get_unused_fd_flags((flags
& MFD_CLOEXEC
) ? O_CLOEXEC
: 0);
3548 file
= shmem_file_setup(name
, 0, VM_NORESERVE
);
3550 error
= PTR_ERR(file
);
3553 info
= SHMEM_I(file_inode(file
));
3554 file
->f_mode
|= FMODE_LSEEK
| FMODE_PREAD
| FMODE_PWRITE
;
3555 file
->f_flags
|= O_RDWR
| O_LARGEFILE
;
3556 if (flags
& MFD_ALLOW_SEALING
)
3557 info
->seals
&= ~F_SEAL_SEAL
;
3559 fd_install(fd
, file
);
3570 #endif /* CONFIG_TMPFS */
3572 static void shmem_put_super(struct super_block
*sb
)
3574 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
3576 percpu_counter_destroy(&sbinfo
->used_blocks
);
3577 mpol_put(sbinfo
->mpol
);
3579 sb
->s_fs_info
= NULL
;
3582 int shmem_fill_super(struct super_block
*sb
, void *data
, int silent
)
3584 struct inode
*inode
;
3585 struct shmem_sb_info
*sbinfo
;
3588 /* Round up to L1_CACHE_BYTES to resist false sharing */
3589 sbinfo
= kzalloc(max((int)sizeof(struct shmem_sb_info
),
3590 L1_CACHE_BYTES
), GFP_KERNEL
);
3594 sbinfo
->mode
= S_IRWXUGO
| S_ISVTX
;
3595 sbinfo
->uid
= current_fsuid();
3596 sbinfo
->gid
= current_fsgid();
3597 sb
->s_fs_info
= sbinfo
;
3601 * Per default we only allow half of the physical ram per
3602 * tmpfs instance, limiting inodes to one per page of lowmem;
3603 * but the internal instance is left unlimited.
3605 if (!(sb
->s_flags
& MS_KERNMOUNT
)) {
3606 sbinfo
->max_blocks
= shmem_default_max_blocks();
3607 sbinfo
->max_inodes
= shmem_default_max_inodes();
3608 if (shmem_parse_options(data
, sbinfo
, false)) {
3613 sb
->s_flags
|= MS_NOUSER
;
3615 sb
->s_export_op
= &shmem_export_ops
;
3616 sb
->s_flags
|= MS_NOSEC
;
3618 sb
->s_flags
|= MS_NOUSER
;
3621 spin_lock_init(&sbinfo
->stat_lock
);
3622 if (percpu_counter_init(&sbinfo
->used_blocks
, 0, GFP_KERNEL
))
3624 sbinfo
->free_inodes
= sbinfo
->max_inodes
;
3625 spin_lock_init(&sbinfo
->shrinklist_lock
);
3626 INIT_LIST_HEAD(&sbinfo
->shrinklist
);
3628 sb
->s_maxbytes
= MAX_LFS_FILESIZE
;
3629 sb
->s_blocksize
= PAGE_SIZE
;
3630 sb
->s_blocksize_bits
= PAGE_SHIFT
;
3631 sb
->s_magic
= TMPFS_MAGIC
;
3632 sb
->s_op
= &shmem_ops
;
3633 sb
->s_time_gran
= 1;
3634 #ifdef CONFIG_TMPFS_XATTR
3635 sb
->s_xattr
= shmem_xattr_handlers
;
3637 #ifdef CONFIG_TMPFS_POSIX_ACL
3638 sb
->s_flags
|= MS_POSIXACL
;
3641 inode
= shmem_get_inode(sb
, NULL
, S_IFDIR
| sbinfo
->mode
, 0, VM_NORESERVE
);
3644 inode
->i_uid
= sbinfo
->uid
;
3645 inode
->i_gid
= sbinfo
->gid
;
3646 sb
->s_root
= d_make_root(inode
);
3652 shmem_put_super(sb
);
3656 static struct kmem_cache
*shmem_inode_cachep
;
3658 static struct inode
*shmem_alloc_inode(struct super_block
*sb
)
3660 struct shmem_inode_info
*info
;
3661 info
= kmem_cache_alloc(shmem_inode_cachep
, GFP_KERNEL
);
3664 return &info
->vfs_inode
;
3667 static void shmem_destroy_callback(struct rcu_head
*head
)
3669 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
3670 if (S_ISLNK(inode
->i_mode
))
3671 kfree(inode
->i_link
);
3672 kmem_cache_free(shmem_inode_cachep
, SHMEM_I(inode
));
3675 static void shmem_destroy_inode(struct inode
*inode
)
3677 if (S_ISREG(inode
->i_mode
))
3678 mpol_free_shared_policy(&SHMEM_I(inode
)->policy
);
3679 call_rcu(&inode
->i_rcu
, shmem_destroy_callback
);
3682 static void shmem_init_inode(void *foo
)
3684 struct shmem_inode_info
*info
= foo
;
3685 inode_init_once(&info
->vfs_inode
);
3688 static int shmem_init_inodecache(void)
3690 shmem_inode_cachep
= kmem_cache_create("shmem_inode_cache",
3691 sizeof(struct shmem_inode_info
),
3692 0, SLAB_PANIC
|SLAB_ACCOUNT
, shmem_init_inode
);
3696 static void shmem_destroy_inodecache(void)
3698 kmem_cache_destroy(shmem_inode_cachep
);
3701 static const struct address_space_operations shmem_aops
= {
3702 .writepage
= shmem_writepage
,
3703 .set_page_dirty
= __set_page_dirty_no_writeback
,
3705 .write_begin
= shmem_write_begin
,
3706 .write_end
= shmem_write_end
,
3708 #ifdef CONFIG_MIGRATION
3709 .migratepage
= migrate_page
,
3711 .error_remove_page
= generic_error_remove_page
,
3714 static const struct file_operations shmem_file_operations
= {
3716 .get_unmapped_area
= shmem_get_unmapped_area
,
3718 .llseek
= shmem_file_llseek
,
3719 .read_iter
= shmem_file_read_iter
,
3720 .write_iter
= generic_file_write_iter
,
3721 .fsync
= noop_fsync
,
3722 .splice_read
= generic_file_splice_read
,
3723 .splice_write
= iter_file_splice_write
,
3724 .fallocate
= shmem_fallocate
,
3728 static const struct inode_operations shmem_inode_operations
= {
3729 .getattr
= shmem_getattr
,
3730 .setattr
= shmem_setattr
,
3731 #ifdef CONFIG_TMPFS_XATTR
3732 .listxattr
= shmem_listxattr
,
3733 .set_acl
= simple_set_acl
,
3737 static const struct inode_operations shmem_dir_inode_operations
= {
3739 .create
= shmem_create
,
3740 .lookup
= simple_lookup
,
3742 .unlink
= shmem_unlink
,
3743 .symlink
= shmem_symlink
,
3744 .mkdir
= shmem_mkdir
,
3745 .rmdir
= shmem_rmdir
,
3746 .mknod
= shmem_mknod
,
3747 .rename
= shmem_rename2
,
3748 .tmpfile
= shmem_tmpfile
,
3750 #ifdef CONFIG_TMPFS_XATTR
3751 .listxattr
= shmem_listxattr
,
3753 #ifdef CONFIG_TMPFS_POSIX_ACL
3754 .setattr
= shmem_setattr
,
3755 .set_acl
= simple_set_acl
,
3759 static const struct inode_operations shmem_special_inode_operations
= {
3760 #ifdef CONFIG_TMPFS_XATTR
3761 .listxattr
= shmem_listxattr
,
3763 #ifdef CONFIG_TMPFS_POSIX_ACL
3764 .setattr
= shmem_setattr
,
3765 .set_acl
= simple_set_acl
,
3769 static const struct super_operations shmem_ops
= {
3770 .alloc_inode
= shmem_alloc_inode
,
3771 .destroy_inode
= shmem_destroy_inode
,
3773 .statfs
= shmem_statfs
,
3774 .remount_fs
= shmem_remount_fs
,
3775 .show_options
= shmem_show_options
,
3777 .evict_inode
= shmem_evict_inode
,
3778 .drop_inode
= generic_delete_inode
,
3779 .put_super
= shmem_put_super
,
3780 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3781 .nr_cached_objects
= shmem_unused_huge_count
,
3782 .free_cached_objects
= shmem_unused_huge_scan
,
3786 static const struct vm_operations_struct shmem_vm_ops
= {
3787 .fault
= shmem_fault
,
3788 .map_pages
= filemap_map_pages
,
3790 .set_policy
= shmem_set_policy
,
3791 .get_policy
= shmem_get_policy
,
3795 static struct dentry
*shmem_mount(struct file_system_type
*fs_type
,
3796 int flags
, const char *dev_name
, void *data
)
3798 return mount_nodev(fs_type
, flags
, data
, shmem_fill_super
);
3801 static struct file_system_type shmem_fs_type
= {
3802 .owner
= THIS_MODULE
,
3804 .mount
= shmem_mount
,
3805 .kill_sb
= kill_litter_super
,
3806 .fs_flags
= FS_USERNS_MOUNT
,
3809 int __init
shmem_init(void)
3813 /* If rootfs called this, don't re-init */
3814 if (shmem_inode_cachep
)
3817 error
= shmem_init_inodecache();
3821 error
= register_filesystem(&shmem_fs_type
);
3823 pr_err("Could not register tmpfs\n");
3827 shm_mnt
= kern_mount(&shmem_fs_type
);
3828 if (IS_ERR(shm_mnt
)) {
3829 error
= PTR_ERR(shm_mnt
);
3830 pr_err("Could not kern_mount tmpfs\n");
3834 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3835 if (has_transparent_hugepage() && shmem_huge
> SHMEM_HUGE_DENY
)
3836 SHMEM_SB(shm_mnt
->mnt_sb
)->huge
= shmem_huge
;
3838 shmem_huge
= 0; /* just in case it was patched */
3843 unregister_filesystem(&shmem_fs_type
);
3845 shmem_destroy_inodecache();
3847 shm_mnt
= ERR_PTR(error
);
3851 #if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
3852 static ssize_t
shmem_enabled_show(struct kobject
*kobj
,
3853 struct kobj_attribute
*attr
, char *buf
)
3857 SHMEM_HUGE_WITHIN_SIZE
,
3865 for (i
= 0, count
= 0; i
< ARRAY_SIZE(values
); i
++) {
3866 const char *fmt
= shmem_huge
== values
[i
] ? "[%s] " : "%s ";
3868 count
+= sprintf(buf
+ count
, fmt
,
3869 shmem_format_huge(values
[i
]));
3871 buf
[count
- 1] = '\n';
3875 static ssize_t
shmem_enabled_store(struct kobject
*kobj
,
3876 struct kobj_attribute
*attr
, const char *buf
, size_t count
)
3881 if (count
+ 1 > sizeof(tmp
))
3883 memcpy(tmp
, buf
, count
);
3885 if (count
&& tmp
[count
- 1] == '\n')
3886 tmp
[count
- 1] = '\0';
3888 huge
= shmem_parse_huge(tmp
);
3889 if (huge
== -EINVAL
)
3891 if (!has_transparent_hugepage() &&
3892 huge
!= SHMEM_HUGE_NEVER
&& huge
!= SHMEM_HUGE_DENY
)
3896 if (shmem_huge
> SHMEM_HUGE_DENY
)
3897 SHMEM_SB(shm_mnt
->mnt_sb
)->huge
= shmem_huge
;
3901 struct kobj_attribute shmem_enabled_attr
=
3902 __ATTR(shmem_enabled
, 0644, shmem_enabled_show
, shmem_enabled_store
);
3903 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
3905 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3906 bool shmem_huge_enabled(struct vm_area_struct
*vma
)
3908 struct inode
*inode
= file_inode(vma
->vm_file
);
3909 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
3913 if (shmem_huge
== SHMEM_HUGE_FORCE
)
3915 if (shmem_huge
== SHMEM_HUGE_DENY
)
3917 switch (sbinfo
->huge
) {
3918 case SHMEM_HUGE_NEVER
:
3920 case SHMEM_HUGE_ALWAYS
:
3922 case SHMEM_HUGE_WITHIN_SIZE
:
3923 off
= round_up(vma
->vm_pgoff
, HPAGE_PMD_NR
);
3924 i_size
= round_up(i_size_read(inode
), PAGE_SIZE
);
3925 if (i_size
>= HPAGE_PMD_SIZE
&&
3926 i_size
>> PAGE_SHIFT
>= off
)
3928 case SHMEM_HUGE_ADVISE
:
3929 /* TODO: implement fadvise() hints */
3930 return (vma
->vm_flags
& VM_HUGEPAGE
);
3936 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
3938 #else /* !CONFIG_SHMEM */
3941 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3943 * This is intended for small system where the benefits of the full
3944 * shmem code (swap-backed and resource-limited) are outweighed by
3945 * their complexity. On systems without swap this code should be
3946 * effectively equivalent, but much lighter weight.
3949 static struct file_system_type shmem_fs_type
= {
3951 .mount
= ramfs_mount
,
3952 .kill_sb
= kill_litter_super
,
3953 .fs_flags
= FS_USERNS_MOUNT
,
3956 int __init
shmem_init(void)
3958 BUG_ON(register_filesystem(&shmem_fs_type
) != 0);
3960 shm_mnt
= kern_mount(&shmem_fs_type
);
3961 BUG_ON(IS_ERR(shm_mnt
));
3966 int shmem_unuse(swp_entry_t swap
, struct page
*page
)
3971 int shmem_lock(struct file
*file
, int lock
, struct user_struct
*user
)
3976 void shmem_unlock_mapping(struct address_space
*mapping
)
3981 unsigned long shmem_get_unmapped_area(struct file
*file
,
3982 unsigned long addr
, unsigned long len
,
3983 unsigned long pgoff
, unsigned long flags
)
3985 return current
->mm
->get_unmapped_area(file
, addr
, len
, pgoff
, flags
);
3989 void shmem_truncate_range(struct inode
*inode
, loff_t lstart
, loff_t lend
)
3991 truncate_inode_pages_range(inode
->i_mapping
, lstart
, lend
);
3993 EXPORT_SYMBOL_GPL(shmem_truncate_range
);
3995 #define shmem_vm_ops generic_file_vm_ops
3996 #define shmem_file_operations ramfs_file_operations
3997 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
3998 #define shmem_acct_size(flags, size) 0
3999 #define shmem_unacct_size(flags, size) do {} while (0)
4001 #endif /* CONFIG_SHMEM */
4005 static const struct dentry_operations anon_ops
= {
4006 .d_dname
= simple_dname
4009 static struct file
*__shmem_file_setup(const char *name
, loff_t size
,
4010 unsigned long flags
, unsigned int i_flags
)
4013 struct inode
*inode
;
4015 struct super_block
*sb
;
4018 if (IS_ERR(shm_mnt
))
4019 return ERR_CAST(shm_mnt
);
4021 if (size
< 0 || size
> MAX_LFS_FILESIZE
)
4022 return ERR_PTR(-EINVAL
);
4024 if (shmem_acct_size(flags
, size
))
4025 return ERR_PTR(-ENOMEM
);
4027 res
= ERR_PTR(-ENOMEM
);
4029 this.len
= strlen(name
);
4030 this.hash
= 0; /* will go */
4031 sb
= shm_mnt
->mnt_sb
;
4032 path
.mnt
= mntget(shm_mnt
);
4033 path
.dentry
= d_alloc_pseudo(sb
, &this);
4036 d_set_d_op(path
.dentry
, &anon_ops
);
4038 res
= ERR_PTR(-ENOSPC
);
4039 inode
= shmem_get_inode(sb
, NULL
, S_IFREG
| S_IRWXUGO
, 0, flags
);
4043 inode
->i_flags
|= i_flags
;
4044 d_instantiate(path
.dentry
, inode
);
4045 inode
->i_size
= size
;
4046 clear_nlink(inode
); /* It is unlinked */
4047 res
= ERR_PTR(ramfs_nommu_expand_for_mapping(inode
, size
));
4051 res
= alloc_file(&path
, FMODE_WRITE
| FMODE_READ
,
4052 &shmem_file_operations
);
4059 shmem_unacct_size(flags
, size
);
4066 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4067 * kernel internal. There will be NO LSM permission checks against the
4068 * underlying inode. So users of this interface must do LSM checks at a
4069 * higher layer. The users are the big_key and shm implementations. LSM
4070 * checks are provided at the key or shm level rather than the inode.
4071 * @name: name for dentry (to be seen in /proc/<pid>/maps
4072 * @size: size to be set for the file
4073 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4075 struct file
*shmem_kernel_file_setup(const char *name
, loff_t size
, unsigned long flags
)
4077 return __shmem_file_setup(name
, size
, flags
, S_PRIVATE
);
4081 * shmem_file_setup - get an unlinked file living in tmpfs
4082 * @name: name for dentry (to be seen in /proc/<pid>/maps
4083 * @size: size to be set for the file
4084 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4086 struct file
*shmem_file_setup(const char *name
, loff_t size
, unsigned long flags
)
4088 return __shmem_file_setup(name
, size
, flags
, 0);
4090 EXPORT_SYMBOL_GPL(shmem_file_setup
);
4093 * shmem_zero_setup - setup a shared anonymous mapping
4094 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4096 int shmem_zero_setup(struct vm_area_struct
*vma
)
4099 loff_t size
= vma
->vm_end
- vma
->vm_start
;
4102 * Cloning a new file under mmap_sem leads to a lock ordering conflict
4103 * between XFS directory reading and selinux: since this file is only
4104 * accessible to the user through its mapping, use S_PRIVATE flag to
4105 * bypass file security, in the same way as shmem_kernel_file_setup().
4107 file
= __shmem_file_setup("dev/zero", size
, vma
->vm_flags
, S_PRIVATE
);
4109 return PTR_ERR(file
);
4113 vma
->vm_file
= file
;
4114 vma
->vm_ops
= &shmem_vm_ops
;
4116 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
) &&
4117 ((vma
->vm_start
+ ~HPAGE_PMD_MASK
) & HPAGE_PMD_MASK
) <
4118 (vma
->vm_end
& HPAGE_PMD_MASK
)) {
4119 khugepaged_enter(vma
, vma
->vm_flags
);
4126 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4127 * @mapping: the page's address_space
4128 * @index: the page index
4129 * @gfp: the page allocator flags to use if allocating
4131 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4132 * with any new page allocations done using the specified allocation flags.
4133 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4134 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4135 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4137 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4138 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4140 struct page
*shmem_read_mapping_page_gfp(struct address_space
*mapping
,
4141 pgoff_t index
, gfp_t gfp
)
4144 struct inode
*inode
= mapping
->host
;
4148 BUG_ON(mapping
->a_ops
!= &shmem_aops
);
4149 error
= shmem_getpage_gfp(inode
, index
, &page
, SGP_CACHE
,
4152 page
= ERR_PTR(error
);
4158 * The tiny !SHMEM case uses ramfs without swap
4160 return read_cache_page_gfp(mapping
, index
, gfp
);
4163 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp
);