2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
19 #include <kvm/iodev.h>
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
53 #include <asm/processor.h>
55 #include <asm/ioctl.h>
56 #include <asm/uaccess.h>
57 #include <asm/pgtable.h>
59 #include "coalesced_mmio.h"
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/kvm.h>
66 /* Worst case buffer size needed for holding an integer. */
67 #define ITOA_MAX_LEN 12
69 MODULE_AUTHOR("Qumranet");
70 MODULE_LICENSE("GPL");
72 /* Architectures should define their poll value according to the halt latency */
73 static unsigned int halt_poll_ns
= KVM_HALT_POLL_NS_DEFAULT
;
74 module_param(halt_poll_ns
, uint
, S_IRUGO
| S_IWUSR
);
76 /* Default doubles per-vcpu halt_poll_ns. */
77 static unsigned int halt_poll_ns_grow
= 2;
78 module_param(halt_poll_ns_grow
, uint
, S_IRUGO
| S_IWUSR
);
80 /* Default resets per-vcpu halt_poll_ns . */
81 static unsigned int halt_poll_ns_shrink
;
82 module_param(halt_poll_ns_shrink
, uint
, S_IRUGO
| S_IWUSR
);
87 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
90 DEFINE_SPINLOCK(kvm_lock
);
91 static DEFINE_RAW_SPINLOCK(kvm_count_lock
);
94 static cpumask_var_t cpus_hardware_enabled
;
95 static int kvm_usage_count
;
96 static atomic_t hardware_enable_failed
;
98 struct kmem_cache
*kvm_vcpu_cache
;
99 EXPORT_SYMBOL_GPL(kvm_vcpu_cache
);
101 static __read_mostly
struct preempt_ops kvm_preempt_ops
;
103 struct dentry
*kvm_debugfs_dir
;
104 EXPORT_SYMBOL_GPL(kvm_debugfs_dir
);
106 static int kvm_debugfs_num_entries
;
107 static const struct file_operations
*stat_fops_per_vm
[];
109 static long kvm_vcpu_ioctl(struct file
*file
, unsigned int ioctl
,
111 #ifdef CONFIG_KVM_COMPAT
112 static long kvm_vcpu_compat_ioctl(struct file
*file
, unsigned int ioctl
,
115 static int hardware_enable_all(void);
116 static void hardware_disable_all(void);
118 static void kvm_io_bus_destroy(struct kvm_io_bus
*bus
);
120 static void kvm_release_pfn_dirty(kvm_pfn_t pfn
);
121 static void mark_page_dirty_in_slot(struct kvm_memory_slot
*memslot
, gfn_t gfn
);
123 __visible
bool kvm_rebooting
;
124 EXPORT_SYMBOL_GPL(kvm_rebooting
);
126 static bool largepages_enabled
= true;
128 __weak
void kvm_arch_mmu_notifier_invalidate_range(struct kvm
*kvm
,
129 unsigned long start
, unsigned long end
)
133 bool kvm_is_reserved_pfn(kvm_pfn_t pfn
)
136 return PageReserved(pfn_to_page(pfn
));
142 * Switches to specified vcpu, until a matching vcpu_put()
144 int vcpu_load(struct kvm_vcpu
*vcpu
)
148 if (mutex_lock_killable(&vcpu
->mutex
))
151 preempt_notifier_register(&vcpu
->preempt_notifier
);
152 kvm_arch_vcpu_load(vcpu
, cpu
);
156 EXPORT_SYMBOL_GPL(vcpu_load
);
158 void vcpu_put(struct kvm_vcpu
*vcpu
)
161 kvm_arch_vcpu_put(vcpu
);
162 preempt_notifier_unregister(&vcpu
->preempt_notifier
);
164 mutex_unlock(&vcpu
->mutex
);
166 EXPORT_SYMBOL_GPL(vcpu_put
);
168 static void ack_flush(void *_completed
)
172 bool kvm_make_all_cpus_request(struct kvm
*kvm
, unsigned int req
)
177 struct kvm_vcpu
*vcpu
;
179 zalloc_cpumask_var(&cpus
, GFP_ATOMIC
);
182 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
183 kvm_make_request(req
, vcpu
);
186 /* Set ->requests bit before we read ->mode. */
187 smp_mb__after_atomic();
189 if (cpus
!= NULL
&& cpu
!= -1 && cpu
!= me
&&
190 kvm_vcpu_exiting_guest_mode(vcpu
) != OUTSIDE_GUEST_MODE
)
191 cpumask_set_cpu(cpu
, cpus
);
193 if (unlikely(cpus
== NULL
))
194 smp_call_function_many(cpu_online_mask
, ack_flush
, NULL
, 1);
195 else if (!cpumask_empty(cpus
))
196 smp_call_function_many(cpus
, ack_flush
, NULL
, 1);
200 free_cpumask_var(cpus
);
204 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
205 void kvm_flush_remote_tlbs(struct kvm
*kvm
)
208 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
209 * kvm_make_all_cpus_request.
211 long dirty_count
= smp_load_acquire(&kvm
->tlbs_dirty
);
214 * We want to publish modifications to the page tables before reading
215 * mode. Pairs with a memory barrier in arch-specific code.
216 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
217 * and smp_mb in walk_shadow_page_lockless_begin/end.
218 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
220 * There is already an smp_mb__after_atomic() before
221 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
224 if (kvm_make_all_cpus_request(kvm
, KVM_REQ_TLB_FLUSH
))
225 ++kvm
->stat
.remote_tlb_flush
;
226 cmpxchg(&kvm
->tlbs_dirty
, dirty_count
, 0);
228 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs
);
231 void kvm_reload_remote_mmus(struct kvm
*kvm
)
233 kvm_make_all_cpus_request(kvm
, KVM_REQ_MMU_RELOAD
);
236 int kvm_vcpu_init(struct kvm_vcpu
*vcpu
, struct kvm
*kvm
, unsigned id
)
241 mutex_init(&vcpu
->mutex
);
246 init_swait_queue_head(&vcpu
->wq
);
247 kvm_async_pf_vcpu_init(vcpu
);
250 INIT_LIST_HEAD(&vcpu
->blocked_vcpu_list
);
252 page
= alloc_page(GFP_KERNEL
| __GFP_ZERO
);
257 vcpu
->run
= page_address(page
);
259 kvm_vcpu_set_in_spin_loop(vcpu
, false);
260 kvm_vcpu_set_dy_eligible(vcpu
, false);
261 vcpu
->preempted
= false;
263 r
= kvm_arch_vcpu_init(vcpu
);
269 free_page((unsigned long)vcpu
->run
);
273 EXPORT_SYMBOL_GPL(kvm_vcpu_init
);
275 void kvm_vcpu_uninit(struct kvm_vcpu
*vcpu
)
278 kvm_arch_vcpu_uninit(vcpu
);
279 free_page((unsigned long)vcpu
->run
);
281 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit
);
283 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
284 static inline struct kvm
*mmu_notifier_to_kvm(struct mmu_notifier
*mn
)
286 return container_of(mn
, struct kvm
, mmu_notifier
);
289 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier
*mn
,
290 struct mm_struct
*mm
,
291 unsigned long address
)
293 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
294 int need_tlb_flush
, idx
;
297 * When ->invalidate_page runs, the linux pte has been zapped
298 * already but the page is still allocated until
299 * ->invalidate_page returns. So if we increase the sequence
300 * here the kvm page fault will notice if the spte can't be
301 * established because the page is going to be freed. If
302 * instead the kvm page fault establishes the spte before
303 * ->invalidate_page runs, kvm_unmap_hva will release it
306 * The sequence increase only need to be seen at spin_unlock
307 * time, and not at spin_lock time.
309 * Increasing the sequence after the spin_unlock would be
310 * unsafe because the kvm page fault could then establish the
311 * pte after kvm_unmap_hva returned, without noticing the page
312 * is going to be freed.
314 idx
= srcu_read_lock(&kvm
->srcu
);
315 spin_lock(&kvm
->mmu_lock
);
317 kvm
->mmu_notifier_seq
++;
318 need_tlb_flush
= kvm_unmap_hva(kvm
, address
) | kvm
->tlbs_dirty
;
319 /* we've to flush the tlb before the pages can be freed */
321 kvm_flush_remote_tlbs(kvm
);
323 spin_unlock(&kvm
->mmu_lock
);
325 kvm_arch_mmu_notifier_invalidate_page(kvm
, address
);
327 srcu_read_unlock(&kvm
->srcu
, idx
);
330 static void kvm_mmu_notifier_change_pte(struct mmu_notifier
*mn
,
331 struct mm_struct
*mm
,
332 unsigned long address
,
335 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
338 idx
= srcu_read_lock(&kvm
->srcu
);
339 spin_lock(&kvm
->mmu_lock
);
340 kvm
->mmu_notifier_seq
++;
341 kvm_set_spte_hva(kvm
, address
, pte
);
342 spin_unlock(&kvm
->mmu_lock
);
343 srcu_read_unlock(&kvm
->srcu
, idx
);
346 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier
*mn
,
347 struct mm_struct
*mm
,
351 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
352 int need_tlb_flush
= 0, idx
;
354 idx
= srcu_read_lock(&kvm
->srcu
);
355 spin_lock(&kvm
->mmu_lock
);
357 * The count increase must become visible at unlock time as no
358 * spte can be established without taking the mmu_lock and
359 * count is also read inside the mmu_lock critical section.
361 kvm
->mmu_notifier_count
++;
362 need_tlb_flush
= kvm_unmap_hva_range(kvm
, start
, end
);
363 need_tlb_flush
|= kvm
->tlbs_dirty
;
364 /* we've to flush the tlb before the pages can be freed */
366 kvm_flush_remote_tlbs(kvm
);
368 spin_unlock(&kvm
->mmu_lock
);
370 kvm_arch_mmu_notifier_invalidate_range(kvm
, start
, end
);
372 srcu_read_unlock(&kvm
->srcu
, idx
);
375 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier
*mn
,
376 struct mm_struct
*mm
,
380 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
382 spin_lock(&kvm
->mmu_lock
);
384 * This sequence increase will notify the kvm page fault that
385 * the page that is going to be mapped in the spte could have
388 kvm
->mmu_notifier_seq
++;
391 * The above sequence increase must be visible before the
392 * below count decrease, which is ensured by the smp_wmb above
393 * in conjunction with the smp_rmb in mmu_notifier_retry().
395 kvm
->mmu_notifier_count
--;
396 spin_unlock(&kvm
->mmu_lock
);
398 BUG_ON(kvm
->mmu_notifier_count
< 0);
401 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier
*mn
,
402 struct mm_struct
*mm
,
406 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
409 idx
= srcu_read_lock(&kvm
->srcu
);
410 spin_lock(&kvm
->mmu_lock
);
412 young
= kvm_age_hva(kvm
, start
, end
);
414 kvm_flush_remote_tlbs(kvm
);
416 spin_unlock(&kvm
->mmu_lock
);
417 srcu_read_unlock(&kvm
->srcu
, idx
);
422 static int kvm_mmu_notifier_clear_young(struct mmu_notifier
*mn
,
423 struct mm_struct
*mm
,
427 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
430 idx
= srcu_read_lock(&kvm
->srcu
);
431 spin_lock(&kvm
->mmu_lock
);
433 * Even though we do not flush TLB, this will still adversely
434 * affect performance on pre-Haswell Intel EPT, where there is
435 * no EPT Access Bit to clear so that we have to tear down EPT
436 * tables instead. If we find this unacceptable, we can always
437 * add a parameter to kvm_age_hva so that it effectively doesn't
438 * do anything on clear_young.
440 * Also note that currently we never issue secondary TLB flushes
441 * from clear_young, leaving this job up to the regular system
442 * cadence. If we find this inaccurate, we might come up with a
443 * more sophisticated heuristic later.
445 young
= kvm_age_hva(kvm
, start
, end
);
446 spin_unlock(&kvm
->mmu_lock
);
447 srcu_read_unlock(&kvm
->srcu
, idx
);
452 static int kvm_mmu_notifier_test_young(struct mmu_notifier
*mn
,
453 struct mm_struct
*mm
,
454 unsigned long address
)
456 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
459 idx
= srcu_read_lock(&kvm
->srcu
);
460 spin_lock(&kvm
->mmu_lock
);
461 young
= kvm_test_age_hva(kvm
, address
);
462 spin_unlock(&kvm
->mmu_lock
);
463 srcu_read_unlock(&kvm
->srcu
, idx
);
468 static void kvm_mmu_notifier_release(struct mmu_notifier
*mn
,
469 struct mm_struct
*mm
)
471 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
474 idx
= srcu_read_lock(&kvm
->srcu
);
475 kvm_arch_flush_shadow_all(kvm
);
476 srcu_read_unlock(&kvm
->srcu
, idx
);
479 static const struct mmu_notifier_ops kvm_mmu_notifier_ops
= {
480 .invalidate_page
= kvm_mmu_notifier_invalidate_page
,
481 .invalidate_range_start
= kvm_mmu_notifier_invalidate_range_start
,
482 .invalidate_range_end
= kvm_mmu_notifier_invalidate_range_end
,
483 .clear_flush_young
= kvm_mmu_notifier_clear_flush_young
,
484 .clear_young
= kvm_mmu_notifier_clear_young
,
485 .test_young
= kvm_mmu_notifier_test_young
,
486 .change_pte
= kvm_mmu_notifier_change_pte
,
487 .release
= kvm_mmu_notifier_release
,
490 static int kvm_init_mmu_notifier(struct kvm
*kvm
)
492 kvm
->mmu_notifier
.ops
= &kvm_mmu_notifier_ops
;
493 return mmu_notifier_register(&kvm
->mmu_notifier
, current
->mm
);
496 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
498 static int kvm_init_mmu_notifier(struct kvm
*kvm
)
503 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
505 static struct kvm_memslots
*kvm_alloc_memslots(void)
508 struct kvm_memslots
*slots
;
510 slots
= kvm_kvzalloc(sizeof(struct kvm_memslots
));
515 * Init kvm generation close to the maximum to easily test the
516 * code of handling generation number wrap-around.
518 slots
->generation
= -150;
519 for (i
= 0; i
< KVM_MEM_SLOTS_NUM
; i
++)
520 slots
->id_to_index
[i
] = slots
->memslots
[i
].id
= i
;
525 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot
*memslot
)
527 if (!memslot
->dirty_bitmap
)
530 kvfree(memslot
->dirty_bitmap
);
531 memslot
->dirty_bitmap
= NULL
;
535 * Free any memory in @free but not in @dont.
537 static void kvm_free_memslot(struct kvm
*kvm
, struct kvm_memory_slot
*free
,
538 struct kvm_memory_slot
*dont
)
540 if (!dont
|| free
->dirty_bitmap
!= dont
->dirty_bitmap
)
541 kvm_destroy_dirty_bitmap(free
);
543 kvm_arch_free_memslot(kvm
, free
, dont
);
548 static void kvm_free_memslots(struct kvm
*kvm
, struct kvm_memslots
*slots
)
550 struct kvm_memory_slot
*memslot
;
555 kvm_for_each_memslot(memslot
, slots
)
556 kvm_free_memslot(kvm
, memslot
, NULL
);
561 static void kvm_destroy_vm_debugfs(struct kvm
*kvm
)
565 if (!kvm
->debugfs_dentry
)
568 debugfs_remove_recursive(kvm
->debugfs_dentry
);
570 if (kvm
->debugfs_stat_data
) {
571 for (i
= 0; i
< kvm_debugfs_num_entries
; i
++)
572 kfree(kvm
->debugfs_stat_data
[i
]);
573 kfree(kvm
->debugfs_stat_data
);
577 static int kvm_create_vm_debugfs(struct kvm
*kvm
, int fd
)
579 char dir_name
[ITOA_MAX_LEN
* 2];
580 struct kvm_stat_data
*stat_data
;
581 struct kvm_stats_debugfs_item
*p
;
583 if (!debugfs_initialized())
586 snprintf(dir_name
, sizeof(dir_name
), "%d-%d", task_pid_nr(current
), fd
);
587 kvm
->debugfs_dentry
= debugfs_create_dir(dir_name
,
589 if (!kvm
->debugfs_dentry
)
592 kvm
->debugfs_stat_data
= kcalloc(kvm_debugfs_num_entries
,
593 sizeof(*kvm
->debugfs_stat_data
),
595 if (!kvm
->debugfs_stat_data
)
598 for (p
= debugfs_entries
; p
->name
; p
++) {
599 stat_data
= kzalloc(sizeof(*stat_data
), GFP_KERNEL
);
603 stat_data
->kvm
= kvm
;
604 stat_data
->offset
= p
->offset
;
605 kvm
->debugfs_stat_data
[p
- debugfs_entries
] = stat_data
;
606 if (!debugfs_create_file(p
->name
, 0444,
609 stat_fops_per_vm
[p
->kind
]))
615 static struct kvm
*kvm_create_vm(unsigned long type
)
618 struct kvm
*kvm
= kvm_arch_alloc_vm();
621 return ERR_PTR(-ENOMEM
);
623 spin_lock_init(&kvm
->mmu_lock
);
624 atomic_inc(¤t
->mm
->mm_count
);
625 kvm
->mm
= current
->mm
;
626 kvm_eventfd_init(kvm
);
627 mutex_init(&kvm
->lock
);
628 mutex_init(&kvm
->irq_lock
);
629 mutex_init(&kvm
->slots_lock
);
630 atomic_set(&kvm
->users_count
, 1);
631 INIT_LIST_HEAD(&kvm
->devices
);
633 r
= kvm_arch_init_vm(kvm
, type
);
635 goto out_err_no_disable
;
637 r
= hardware_enable_all();
639 goto out_err_no_disable
;
641 #ifdef CONFIG_HAVE_KVM_IRQFD
642 INIT_HLIST_HEAD(&kvm
->irq_ack_notifier_list
);
645 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM
> SHRT_MAX
);
648 for (i
= 0; i
< KVM_ADDRESS_SPACE_NUM
; i
++) {
649 kvm
->memslots
[i
] = kvm_alloc_memslots();
650 if (!kvm
->memslots
[i
])
651 goto out_err_no_srcu
;
654 if (init_srcu_struct(&kvm
->srcu
))
655 goto out_err_no_srcu
;
656 if (init_srcu_struct(&kvm
->irq_srcu
))
657 goto out_err_no_irq_srcu
;
658 for (i
= 0; i
< KVM_NR_BUSES
; i
++) {
659 kvm
->buses
[i
] = kzalloc(sizeof(struct kvm_io_bus
),
665 r
= kvm_init_mmu_notifier(kvm
);
669 spin_lock(&kvm_lock
);
670 list_add(&kvm
->vm_list
, &vm_list
);
671 spin_unlock(&kvm_lock
);
673 preempt_notifier_inc();
678 cleanup_srcu_struct(&kvm
->irq_srcu
);
680 cleanup_srcu_struct(&kvm
->srcu
);
682 hardware_disable_all();
684 for (i
= 0; i
< KVM_NR_BUSES
; i
++)
685 kfree(kvm
->buses
[i
]);
686 for (i
= 0; i
< KVM_ADDRESS_SPACE_NUM
; i
++)
687 kvm_free_memslots(kvm
, kvm
->memslots
[i
]);
688 kvm_arch_free_vm(kvm
);
694 * Avoid using vmalloc for a small buffer.
695 * Should not be used when the size is statically known.
697 void *kvm_kvzalloc(unsigned long size
)
699 if (size
> PAGE_SIZE
)
700 return vzalloc(size
);
702 return kzalloc(size
, GFP_KERNEL
);
705 static void kvm_destroy_devices(struct kvm
*kvm
)
707 struct kvm_device
*dev
, *tmp
;
710 * We do not need to take the kvm->lock here, because nobody else
711 * has a reference to the struct kvm at this point and therefore
712 * cannot access the devices list anyhow.
714 list_for_each_entry_safe(dev
, tmp
, &kvm
->devices
, vm_node
) {
715 list_del(&dev
->vm_node
);
716 dev
->ops
->destroy(dev
);
720 static void kvm_destroy_vm(struct kvm
*kvm
)
723 struct mm_struct
*mm
= kvm
->mm
;
725 kvm_destroy_vm_debugfs(kvm
);
726 kvm_arch_sync_events(kvm
);
727 spin_lock(&kvm_lock
);
728 list_del(&kvm
->vm_list
);
729 spin_unlock(&kvm_lock
);
730 kvm_free_irq_routing(kvm
);
731 for (i
= 0; i
< KVM_NR_BUSES
; i
++) {
733 kvm_io_bus_destroy(kvm
->buses
[i
]);
734 kvm
->buses
[i
] = NULL
;
736 kvm_coalesced_mmio_free(kvm
);
737 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
738 mmu_notifier_unregister(&kvm
->mmu_notifier
, kvm
->mm
);
740 kvm_arch_flush_shadow_all(kvm
);
742 kvm_arch_destroy_vm(kvm
);
743 kvm_destroy_devices(kvm
);
744 for (i
= 0; i
< KVM_ADDRESS_SPACE_NUM
; i
++)
745 kvm_free_memslots(kvm
, kvm
->memslots
[i
]);
746 cleanup_srcu_struct(&kvm
->irq_srcu
);
747 cleanup_srcu_struct(&kvm
->srcu
);
748 kvm_arch_free_vm(kvm
);
749 preempt_notifier_dec();
750 hardware_disable_all();
754 void kvm_get_kvm(struct kvm
*kvm
)
756 atomic_inc(&kvm
->users_count
);
758 EXPORT_SYMBOL_GPL(kvm_get_kvm
);
760 void kvm_put_kvm(struct kvm
*kvm
)
762 if (atomic_dec_and_test(&kvm
->users_count
))
765 EXPORT_SYMBOL_GPL(kvm_put_kvm
);
768 static int kvm_vm_release(struct inode
*inode
, struct file
*filp
)
770 struct kvm
*kvm
= filp
->private_data
;
772 kvm_irqfd_release(kvm
);
779 * Allocation size is twice as large as the actual dirty bitmap size.
780 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
782 static int kvm_create_dirty_bitmap(struct kvm_memory_slot
*memslot
)
784 unsigned long dirty_bytes
= 2 * kvm_dirty_bitmap_bytes(memslot
);
786 memslot
->dirty_bitmap
= kvm_kvzalloc(dirty_bytes
);
787 if (!memslot
->dirty_bitmap
)
794 * Insert memslot and re-sort memslots based on their GFN,
795 * so binary search could be used to lookup GFN.
796 * Sorting algorithm takes advantage of having initially
797 * sorted array and known changed memslot position.
799 static void update_memslots(struct kvm_memslots
*slots
,
800 struct kvm_memory_slot
*new)
803 int i
= slots
->id_to_index
[id
];
804 struct kvm_memory_slot
*mslots
= slots
->memslots
;
806 WARN_ON(mslots
[i
].id
!= id
);
808 WARN_ON(!mslots
[i
].npages
);
809 if (mslots
[i
].npages
)
812 if (!mslots
[i
].npages
)
816 while (i
< KVM_MEM_SLOTS_NUM
- 1 &&
817 new->base_gfn
<= mslots
[i
+ 1].base_gfn
) {
818 if (!mslots
[i
+ 1].npages
)
820 mslots
[i
] = mslots
[i
+ 1];
821 slots
->id_to_index
[mslots
[i
].id
] = i
;
826 * The ">=" is needed when creating a slot with base_gfn == 0,
827 * so that it moves before all those with base_gfn == npages == 0.
829 * On the other hand, if new->npages is zero, the above loop has
830 * already left i pointing to the beginning of the empty part of
831 * mslots, and the ">=" would move the hole backwards in this
832 * case---which is wrong. So skip the loop when deleting a slot.
836 new->base_gfn
>= mslots
[i
- 1].base_gfn
) {
837 mslots
[i
] = mslots
[i
- 1];
838 slots
->id_to_index
[mslots
[i
].id
] = i
;
842 WARN_ON_ONCE(i
!= slots
->used_slots
);
845 slots
->id_to_index
[mslots
[i
].id
] = i
;
848 static int check_memory_region_flags(const struct kvm_userspace_memory_region
*mem
)
850 u32 valid_flags
= KVM_MEM_LOG_DIRTY_PAGES
;
852 #ifdef __KVM_HAVE_READONLY_MEM
853 valid_flags
|= KVM_MEM_READONLY
;
856 if (mem
->flags
& ~valid_flags
)
862 static struct kvm_memslots
*install_new_memslots(struct kvm
*kvm
,
863 int as_id
, struct kvm_memslots
*slots
)
865 struct kvm_memslots
*old_memslots
= __kvm_memslots(kvm
, as_id
);
868 * Set the low bit in the generation, which disables SPTE caching
869 * until the end of synchronize_srcu_expedited.
871 WARN_ON(old_memslots
->generation
& 1);
872 slots
->generation
= old_memslots
->generation
+ 1;
874 rcu_assign_pointer(kvm
->memslots
[as_id
], slots
);
875 synchronize_srcu_expedited(&kvm
->srcu
);
878 * Increment the new memslot generation a second time. This prevents
879 * vm exits that race with memslot updates from caching a memslot
880 * generation that will (potentially) be valid forever.
884 kvm_arch_memslots_updated(kvm
, slots
);
890 * Allocate some memory and give it an address in the guest physical address
893 * Discontiguous memory is allowed, mostly for framebuffers.
895 * Must be called holding kvm->slots_lock for write.
897 int __kvm_set_memory_region(struct kvm
*kvm
,
898 const struct kvm_userspace_memory_region
*mem
)
902 unsigned long npages
;
903 struct kvm_memory_slot
*slot
;
904 struct kvm_memory_slot old
, new;
905 struct kvm_memslots
*slots
= NULL
, *old_memslots
;
907 enum kvm_mr_change change
;
909 r
= check_memory_region_flags(mem
);
914 as_id
= mem
->slot
>> 16;
917 /* General sanity checks */
918 if (mem
->memory_size
& (PAGE_SIZE
- 1))
920 if (mem
->guest_phys_addr
& (PAGE_SIZE
- 1))
922 /* We can read the guest memory with __xxx_user() later on. */
923 if ((id
< KVM_USER_MEM_SLOTS
) &&
924 ((mem
->userspace_addr
& (PAGE_SIZE
- 1)) ||
925 !access_ok(VERIFY_WRITE
,
926 (void __user
*)(unsigned long)mem
->userspace_addr
,
929 if (as_id
>= KVM_ADDRESS_SPACE_NUM
|| id
>= KVM_MEM_SLOTS_NUM
)
931 if (mem
->guest_phys_addr
+ mem
->memory_size
< mem
->guest_phys_addr
)
934 slot
= id_to_memslot(__kvm_memslots(kvm
, as_id
), id
);
935 base_gfn
= mem
->guest_phys_addr
>> PAGE_SHIFT
;
936 npages
= mem
->memory_size
>> PAGE_SHIFT
;
938 if (npages
> KVM_MEM_MAX_NR_PAGES
)
944 new.base_gfn
= base_gfn
;
946 new.flags
= mem
->flags
;
950 change
= KVM_MR_CREATE
;
951 else { /* Modify an existing slot. */
952 if ((mem
->userspace_addr
!= old
.userspace_addr
) ||
953 (npages
!= old
.npages
) ||
954 ((new.flags
^ old
.flags
) & KVM_MEM_READONLY
))
957 if (base_gfn
!= old
.base_gfn
)
958 change
= KVM_MR_MOVE
;
959 else if (new.flags
!= old
.flags
)
960 change
= KVM_MR_FLAGS_ONLY
;
961 else { /* Nothing to change. */
970 change
= KVM_MR_DELETE
;
975 if ((change
== KVM_MR_CREATE
) || (change
== KVM_MR_MOVE
)) {
976 /* Check for overlaps */
978 kvm_for_each_memslot(slot
, __kvm_memslots(kvm
, as_id
)) {
981 if (!((base_gfn
+ npages
<= slot
->base_gfn
) ||
982 (base_gfn
>= slot
->base_gfn
+ slot
->npages
)))
987 /* Free page dirty bitmap if unneeded */
988 if (!(new.flags
& KVM_MEM_LOG_DIRTY_PAGES
))
989 new.dirty_bitmap
= NULL
;
992 if (change
== KVM_MR_CREATE
) {
993 new.userspace_addr
= mem
->userspace_addr
;
995 if (kvm_arch_create_memslot(kvm
, &new, npages
))
999 /* Allocate page dirty bitmap if needed */
1000 if ((new.flags
& KVM_MEM_LOG_DIRTY_PAGES
) && !new.dirty_bitmap
) {
1001 if (kvm_create_dirty_bitmap(&new) < 0)
1005 slots
= kvm_kvzalloc(sizeof(struct kvm_memslots
));
1008 memcpy(slots
, __kvm_memslots(kvm
, as_id
), sizeof(struct kvm_memslots
));
1010 if ((change
== KVM_MR_DELETE
) || (change
== KVM_MR_MOVE
)) {
1011 slot
= id_to_memslot(slots
, id
);
1012 slot
->flags
|= KVM_MEMSLOT_INVALID
;
1014 old_memslots
= install_new_memslots(kvm
, as_id
, slots
);
1016 /* slot was deleted or moved, clear iommu mapping */
1017 kvm_iommu_unmap_pages(kvm
, &old
);
1018 /* From this point no new shadow pages pointing to a deleted,
1019 * or moved, memslot will be created.
1021 * validation of sp->gfn happens in:
1022 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1023 * - kvm_is_visible_gfn (mmu_check_roots)
1025 kvm_arch_flush_shadow_memslot(kvm
, slot
);
1028 * We can re-use the old_memslots from above, the only difference
1029 * from the currently installed memslots is the invalid flag. This
1030 * will get overwritten by update_memslots anyway.
1032 slots
= old_memslots
;
1035 r
= kvm_arch_prepare_memory_region(kvm
, &new, mem
, change
);
1039 /* actual memory is freed via old in kvm_free_memslot below */
1040 if (change
== KVM_MR_DELETE
) {
1041 new.dirty_bitmap
= NULL
;
1042 memset(&new.arch
, 0, sizeof(new.arch
));
1045 update_memslots(slots
, &new);
1046 old_memslots
= install_new_memslots(kvm
, as_id
, slots
);
1048 kvm_arch_commit_memory_region(kvm
, mem
, &old
, &new, change
);
1050 kvm_free_memslot(kvm
, &old
, &new);
1051 kvfree(old_memslots
);
1054 * IOMMU mapping: New slots need to be mapped. Old slots need to be
1055 * un-mapped and re-mapped if their base changes. Since base change
1056 * unmapping is handled above with slot deletion, mapping alone is
1057 * needed here. Anything else the iommu might care about for existing
1058 * slots (size changes, userspace addr changes and read-only flag
1059 * changes) is disallowed above, so any other attribute changes getting
1060 * here can be skipped.
1062 if (as_id
== 0 && (change
== KVM_MR_CREATE
|| change
== KVM_MR_MOVE
)) {
1063 r
= kvm_iommu_map_pages(kvm
, &new);
1072 kvm_free_memslot(kvm
, &new, &old
);
1076 EXPORT_SYMBOL_GPL(__kvm_set_memory_region
);
1078 int kvm_set_memory_region(struct kvm
*kvm
,
1079 const struct kvm_userspace_memory_region
*mem
)
1083 mutex_lock(&kvm
->slots_lock
);
1084 r
= __kvm_set_memory_region(kvm
, mem
);
1085 mutex_unlock(&kvm
->slots_lock
);
1088 EXPORT_SYMBOL_GPL(kvm_set_memory_region
);
1090 static int kvm_vm_ioctl_set_memory_region(struct kvm
*kvm
,
1091 struct kvm_userspace_memory_region
*mem
)
1093 if ((u16
)mem
->slot
>= KVM_USER_MEM_SLOTS
)
1096 return kvm_set_memory_region(kvm
, mem
);
1099 int kvm_get_dirty_log(struct kvm
*kvm
,
1100 struct kvm_dirty_log
*log
, int *is_dirty
)
1102 struct kvm_memslots
*slots
;
1103 struct kvm_memory_slot
*memslot
;
1104 int r
, i
, as_id
, id
;
1106 unsigned long any
= 0;
1109 as_id
= log
->slot
>> 16;
1110 id
= (u16
)log
->slot
;
1111 if (as_id
>= KVM_ADDRESS_SPACE_NUM
|| id
>= KVM_USER_MEM_SLOTS
)
1114 slots
= __kvm_memslots(kvm
, as_id
);
1115 memslot
= id_to_memslot(slots
, id
);
1117 if (!memslot
->dirty_bitmap
)
1120 n
= kvm_dirty_bitmap_bytes(memslot
);
1122 for (i
= 0; !any
&& i
< n
/sizeof(long); ++i
)
1123 any
= memslot
->dirty_bitmap
[i
];
1126 if (copy_to_user(log
->dirty_bitmap
, memslot
->dirty_bitmap
, n
))
1136 EXPORT_SYMBOL_GPL(kvm_get_dirty_log
);
1138 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1140 * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1141 * are dirty write protect them for next write.
1142 * @kvm: pointer to kvm instance
1143 * @log: slot id and address to which we copy the log
1144 * @is_dirty: flag set if any page is dirty
1146 * We need to keep it in mind that VCPU threads can write to the bitmap
1147 * concurrently. So, to avoid losing track of dirty pages we keep the
1150 * 1. Take a snapshot of the bit and clear it if needed.
1151 * 2. Write protect the corresponding page.
1152 * 3. Copy the snapshot to the userspace.
1153 * 4. Upon return caller flushes TLB's if needed.
1155 * Between 2 and 4, the guest may write to the page using the remaining TLB
1156 * entry. This is not a problem because the page is reported dirty using
1157 * the snapshot taken before and step 4 ensures that writes done after
1158 * exiting to userspace will be logged for the next call.
1161 int kvm_get_dirty_log_protect(struct kvm
*kvm
,
1162 struct kvm_dirty_log
*log
, bool *is_dirty
)
1164 struct kvm_memslots
*slots
;
1165 struct kvm_memory_slot
*memslot
;
1166 int r
, i
, as_id
, id
;
1168 unsigned long *dirty_bitmap
;
1169 unsigned long *dirty_bitmap_buffer
;
1172 as_id
= log
->slot
>> 16;
1173 id
= (u16
)log
->slot
;
1174 if (as_id
>= KVM_ADDRESS_SPACE_NUM
|| id
>= KVM_USER_MEM_SLOTS
)
1177 slots
= __kvm_memslots(kvm
, as_id
);
1178 memslot
= id_to_memslot(slots
, id
);
1180 dirty_bitmap
= memslot
->dirty_bitmap
;
1185 n
= kvm_dirty_bitmap_bytes(memslot
);
1187 dirty_bitmap_buffer
= dirty_bitmap
+ n
/ sizeof(long);
1188 memset(dirty_bitmap_buffer
, 0, n
);
1190 spin_lock(&kvm
->mmu_lock
);
1192 for (i
= 0; i
< n
/ sizeof(long); i
++) {
1196 if (!dirty_bitmap
[i
])
1201 mask
= xchg(&dirty_bitmap
[i
], 0);
1202 dirty_bitmap_buffer
[i
] = mask
;
1205 offset
= i
* BITS_PER_LONG
;
1206 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm
, memslot
,
1211 spin_unlock(&kvm
->mmu_lock
);
1214 if (copy_to_user(log
->dirty_bitmap
, dirty_bitmap_buffer
, n
))
1221 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect
);
1224 bool kvm_largepages_enabled(void)
1226 return largepages_enabled
;
1229 void kvm_disable_largepages(void)
1231 largepages_enabled
= false;
1233 EXPORT_SYMBOL_GPL(kvm_disable_largepages
);
1235 struct kvm_memory_slot
*gfn_to_memslot(struct kvm
*kvm
, gfn_t gfn
)
1237 return __gfn_to_memslot(kvm_memslots(kvm
), gfn
);
1239 EXPORT_SYMBOL_GPL(gfn_to_memslot
);
1241 struct kvm_memory_slot
*kvm_vcpu_gfn_to_memslot(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
1243 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu
), gfn
);
1246 bool kvm_is_visible_gfn(struct kvm
*kvm
, gfn_t gfn
)
1248 struct kvm_memory_slot
*memslot
= gfn_to_memslot(kvm
, gfn
);
1250 if (!memslot
|| memslot
->id
>= KVM_USER_MEM_SLOTS
||
1251 memslot
->flags
& KVM_MEMSLOT_INVALID
)
1256 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn
);
1258 unsigned long kvm_host_page_size(struct kvm
*kvm
, gfn_t gfn
)
1260 struct vm_area_struct
*vma
;
1261 unsigned long addr
, size
;
1265 addr
= gfn_to_hva(kvm
, gfn
);
1266 if (kvm_is_error_hva(addr
))
1269 down_read(¤t
->mm
->mmap_sem
);
1270 vma
= find_vma(current
->mm
, addr
);
1274 size
= vma_kernel_pagesize(vma
);
1277 up_read(¤t
->mm
->mmap_sem
);
1282 static bool memslot_is_readonly(struct kvm_memory_slot
*slot
)
1284 return slot
->flags
& KVM_MEM_READONLY
;
1287 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot
*slot
, gfn_t gfn
,
1288 gfn_t
*nr_pages
, bool write
)
1290 if (!slot
|| slot
->flags
& KVM_MEMSLOT_INVALID
)
1291 return KVM_HVA_ERR_BAD
;
1293 if (memslot_is_readonly(slot
) && write
)
1294 return KVM_HVA_ERR_RO_BAD
;
1297 *nr_pages
= slot
->npages
- (gfn
- slot
->base_gfn
);
1299 return __gfn_to_hva_memslot(slot
, gfn
);
1302 static unsigned long gfn_to_hva_many(struct kvm_memory_slot
*slot
, gfn_t gfn
,
1305 return __gfn_to_hva_many(slot
, gfn
, nr_pages
, true);
1308 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot
*slot
,
1311 return gfn_to_hva_many(slot
, gfn
, NULL
);
1313 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot
);
1315 unsigned long gfn_to_hva(struct kvm
*kvm
, gfn_t gfn
)
1317 return gfn_to_hva_many(gfn_to_memslot(kvm
, gfn
), gfn
, NULL
);
1319 EXPORT_SYMBOL_GPL(gfn_to_hva
);
1321 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
1323 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu
, gfn
), gfn
, NULL
);
1325 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva
);
1328 * If writable is set to false, the hva returned by this function is only
1329 * allowed to be read.
1331 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot
*slot
,
1332 gfn_t gfn
, bool *writable
)
1334 unsigned long hva
= __gfn_to_hva_many(slot
, gfn
, NULL
, false);
1336 if (!kvm_is_error_hva(hva
) && writable
)
1337 *writable
= !memslot_is_readonly(slot
);
1342 unsigned long gfn_to_hva_prot(struct kvm
*kvm
, gfn_t gfn
, bool *writable
)
1344 struct kvm_memory_slot
*slot
= gfn_to_memslot(kvm
, gfn
);
1346 return gfn_to_hva_memslot_prot(slot
, gfn
, writable
);
1349 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu
*vcpu
, gfn_t gfn
, bool *writable
)
1351 struct kvm_memory_slot
*slot
= kvm_vcpu_gfn_to_memslot(vcpu
, gfn
);
1353 return gfn_to_hva_memslot_prot(slot
, gfn
, writable
);
1356 static int get_user_page_nowait(unsigned long start
, int write
,
1359 int flags
= FOLL_NOWAIT
| FOLL_HWPOISON
;
1362 flags
|= FOLL_WRITE
;
1364 return get_user_pages(start
, 1, flags
, page
, NULL
);
1367 static inline int check_user_page_hwpoison(unsigned long addr
)
1369 int rc
, flags
= FOLL_HWPOISON
| FOLL_WRITE
;
1371 rc
= get_user_pages(addr
, 1, flags
, NULL
, NULL
);
1372 return rc
== -EHWPOISON
;
1376 * The atomic path to get the writable pfn which will be stored in @pfn,
1377 * true indicates success, otherwise false is returned.
1379 static bool hva_to_pfn_fast(unsigned long addr
, bool atomic
, bool *async
,
1380 bool write_fault
, bool *writable
, kvm_pfn_t
*pfn
)
1382 struct page
*page
[1];
1385 if (!(async
|| atomic
))
1389 * Fast pin a writable pfn only if it is a write fault request
1390 * or the caller allows to map a writable pfn for a read fault
1393 if (!(write_fault
|| writable
))
1396 npages
= __get_user_pages_fast(addr
, 1, 1, page
);
1398 *pfn
= page_to_pfn(page
[0]);
1409 * The slow path to get the pfn of the specified host virtual address,
1410 * 1 indicates success, -errno is returned if error is detected.
1412 static int hva_to_pfn_slow(unsigned long addr
, bool *async
, bool write_fault
,
1413 bool *writable
, kvm_pfn_t
*pfn
)
1415 struct page
*page
[1];
1421 *writable
= write_fault
;
1424 down_read(¤t
->mm
->mmap_sem
);
1425 npages
= get_user_page_nowait(addr
, write_fault
, page
);
1426 up_read(¤t
->mm
->mmap_sem
);
1428 unsigned int flags
= FOLL_TOUCH
| FOLL_HWPOISON
;
1431 flags
|= FOLL_WRITE
;
1433 npages
= __get_user_pages_unlocked(current
, current
->mm
, addr
, 1,
1439 /* map read fault as writable if possible */
1440 if (unlikely(!write_fault
) && writable
) {
1441 struct page
*wpage
[1];
1443 npages
= __get_user_pages_fast(addr
, 1, 1, wpage
);
1452 *pfn
= page_to_pfn(page
[0]);
1456 static bool vma_is_valid(struct vm_area_struct
*vma
, bool write_fault
)
1458 if (unlikely(!(vma
->vm_flags
& VM_READ
)))
1461 if (write_fault
&& (unlikely(!(vma
->vm_flags
& VM_WRITE
))))
1467 static int hva_to_pfn_remapped(struct vm_area_struct
*vma
,
1468 unsigned long addr
, bool *async
,
1469 bool write_fault
, bool *writable
,
1475 r
= follow_pfn(vma
, addr
, &pfn
);
1478 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1479 * not call the fault handler, so do it here.
1481 bool unlocked
= false;
1482 r
= fixup_user_fault(current
, current
->mm
, addr
,
1483 (write_fault
? FAULT_FLAG_WRITE
: 0),
1490 r
= follow_pfn(vma
, addr
, &pfn
);
1500 * Get a reference here because callers of *hva_to_pfn* and
1501 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1502 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP
1503 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1504 * simply do nothing for reserved pfns.
1506 * Whoever called remap_pfn_range is also going to call e.g.
1507 * unmap_mapping_range before the underlying pages are freed,
1508 * causing a call to our MMU notifier.
1517 * Pin guest page in memory and return its pfn.
1518 * @addr: host virtual address which maps memory to the guest
1519 * @atomic: whether this function can sleep
1520 * @async: whether this function need to wait IO complete if the
1521 * host page is not in the memory
1522 * @write_fault: whether we should get a writable host page
1523 * @writable: whether it allows to map a writable host page for !@write_fault
1525 * The function will map a writable host page for these two cases:
1526 * 1): @write_fault = true
1527 * 2): @write_fault = false && @writable, @writable will tell the caller
1528 * whether the mapping is writable.
1530 static kvm_pfn_t
hva_to_pfn(unsigned long addr
, bool atomic
, bool *async
,
1531 bool write_fault
, bool *writable
)
1533 struct vm_area_struct
*vma
;
1537 /* we can do it either atomically or asynchronously, not both */
1538 BUG_ON(atomic
&& async
);
1540 if (hva_to_pfn_fast(addr
, atomic
, async
, write_fault
, writable
, &pfn
))
1544 return KVM_PFN_ERR_FAULT
;
1546 npages
= hva_to_pfn_slow(addr
, async
, write_fault
, writable
, &pfn
);
1550 down_read(¤t
->mm
->mmap_sem
);
1551 if (npages
== -EHWPOISON
||
1552 (!async
&& check_user_page_hwpoison(addr
))) {
1553 pfn
= KVM_PFN_ERR_HWPOISON
;
1558 vma
= find_vma_intersection(current
->mm
, addr
, addr
+ 1);
1561 pfn
= KVM_PFN_ERR_FAULT
;
1562 else if (vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)) {
1563 r
= hva_to_pfn_remapped(vma
, addr
, async
, write_fault
, writable
, &pfn
);
1567 pfn
= KVM_PFN_ERR_FAULT
;
1569 if (async
&& vma_is_valid(vma
, write_fault
))
1571 pfn
= KVM_PFN_ERR_FAULT
;
1574 up_read(¤t
->mm
->mmap_sem
);
1578 kvm_pfn_t
__gfn_to_pfn_memslot(struct kvm_memory_slot
*slot
, gfn_t gfn
,
1579 bool atomic
, bool *async
, bool write_fault
,
1582 unsigned long addr
= __gfn_to_hva_many(slot
, gfn
, NULL
, write_fault
);
1584 if (addr
== KVM_HVA_ERR_RO_BAD
) {
1587 return KVM_PFN_ERR_RO_FAULT
;
1590 if (kvm_is_error_hva(addr
)) {
1593 return KVM_PFN_NOSLOT
;
1596 /* Do not map writable pfn in the readonly memslot. */
1597 if (writable
&& memslot_is_readonly(slot
)) {
1602 return hva_to_pfn(addr
, atomic
, async
, write_fault
,
1605 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot
);
1607 kvm_pfn_t
gfn_to_pfn_prot(struct kvm
*kvm
, gfn_t gfn
, bool write_fault
,
1610 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm
, gfn
), gfn
, false, NULL
,
1611 write_fault
, writable
);
1613 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot
);
1615 kvm_pfn_t
gfn_to_pfn_memslot(struct kvm_memory_slot
*slot
, gfn_t gfn
)
1617 return __gfn_to_pfn_memslot(slot
, gfn
, false, NULL
, true, NULL
);
1619 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot
);
1621 kvm_pfn_t
gfn_to_pfn_memslot_atomic(struct kvm_memory_slot
*slot
, gfn_t gfn
)
1623 return __gfn_to_pfn_memslot(slot
, gfn
, true, NULL
, true, NULL
);
1625 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic
);
1627 kvm_pfn_t
gfn_to_pfn_atomic(struct kvm
*kvm
, gfn_t gfn
)
1629 return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm
, gfn
), gfn
);
1631 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic
);
1633 kvm_pfn_t
kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
1635 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu
, gfn
), gfn
);
1637 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic
);
1639 kvm_pfn_t
gfn_to_pfn(struct kvm
*kvm
, gfn_t gfn
)
1641 return gfn_to_pfn_memslot(gfn_to_memslot(kvm
, gfn
), gfn
);
1643 EXPORT_SYMBOL_GPL(gfn_to_pfn
);
1645 kvm_pfn_t
kvm_vcpu_gfn_to_pfn(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
1647 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu
, gfn
), gfn
);
1649 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn
);
1651 int gfn_to_page_many_atomic(struct kvm_memory_slot
*slot
, gfn_t gfn
,
1652 struct page
**pages
, int nr_pages
)
1657 addr
= gfn_to_hva_many(slot
, gfn
, &entry
);
1658 if (kvm_is_error_hva(addr
))
1661 if (entry
< nr_pages
)
1664 return __get_user_pages_fast(addr
, nr_pages
, 1, pages
);
1666 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic
);
1668 static struct page
*kvm_pfn_to_page(kvm_pfn_t pfn
)
1670 if (is_error_noslot_pfn(pfn
))
1671 return KVM_ERR_PTR_BAD_PAGE
;
1673 if (kvm_is_reserved_pfn(pfn
)) {
1675 return KVM_ERR_PTR_BAD_PAGE
;
1678 return pfn_to_page(pfn
);
1681 struct page
*gfn_to_page(struct kvm
*kvm
, gfn_t gfn
)
1685 pfn
= gfn_to_pfn(kvm
, gfn
);
1687 return kvm_pfn_to_page(pfn
);
1689 EXPORT_SYMBOL_GPL(gfn_to_page
);
1691 struct page
*kvm_vcpu_gfn_to_page(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
1695 pfn
= kvm_vcpu_gfn_to_pfn(vcpu
, gfn
);
1697 return kvm_pfn_to_page(pfn
);
1699 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page
);
1701 void kvm_release_page_clean(struct page
*page
)
1703 WARN_ON(is_error_page(page
));
1705 kvm_release_pfn_clean(page_to_pfn(page
));
1707 EXPORT_SYMBOL_GPL(kvm_release_page_clean
);
1709 void kvm_release_pfn_clean(kvm_pfn_t pfn
)
1711 if (!is_error_noslot_pfn(pfn
) && !kvm_is_reserved_pfn(pfn
))
1712 put_page(pfn_to_page(pfn
));
1714 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean
);
1716 void kvm_release_page_dirty(struct page
*page
)
1718 WARN_ON(is_error_page(page
));
1720 kvm_release_pfn_dirty(page_to_pfn(page
));
1722 EXPORT_SYMBOL_GPL(kvm_release_page_dirty
);
1724 static void kvm_release_pfn_dirty(kvm_pfn_t pfn
)
1726 kvm_set_pfn_dirty(pfn
);
1727 kvm_release_pfn_clean(pfn
);
1730 void kvm_set_pfn_dirty(kvm_pfn_t pfn
)
1732 if (!kvm_is_reserved_pfn(pfn
)) {
1733 struct page
*page
= pfn_to_page(pfn
);
1735 if (!PageReserved(page
))
1739 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty
);
1741 void kvm_set_pfn_accessed(kvm_pfn_t pfn
)
1743 if (!kvm_is_reserved_pfn(pfn
))
1744 mark_page_accessed(pfn_to_page(pfn
));
1746 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed
);
1748 void kvm_get_pfn(kvm_pfn_t pfn
)
1750 if (!kvm_is_reserved_pfn(pfn
))
1751 get_page(pfn_to_page(pfn
));
1753 EXPORT_SYMBOL_GPL(kvm_get_pfn
);
1755 static int next_segment(unsigned long len
, int offset
)
1757 if (len
> PAGE_SIZE
- offset
)
1758 return PAGE_SIZE
- offset
;
1763 static int __kvm_read_guest_page(struct kvm_memory_slot
*slot
, gfn_t gfn
,
1764 void *data
, int offset
, int len
)
1769 addr
= gfn_to_hva_memslot_prot(slot
, gfn
, NULL
);
1770 if (kvm_is_error_hva(addr
))
1772 r
= __copy_from_user(data
, (void __user
*)addr
+ offset
, len
);
1778 int kvm_read_guest_page(struct kvm
*kvm
, gfn_t gfn
, void *data
, int offset
,
1781 struct kvm_memory_slot
*slot
= gfn_to_memslot(kvm
, gfn
);
1783 return __kvm_read_guest_page(slot
, gfn
, data
, offset
, len
);
1785 EXPORT_SYMBOL_GPL(kvm_read_guest_page
);
1787 int kvm_vcpu_read_guest_page(struct kvm_vcpu
*vcpu
, gfn_t gfn
, void *data
,
1788 int offset
, int len
)
1790 struct kvm_memory_slot
*slot
= kvm_vcpu_gfn_to_memslot(vcpu
, gfn
);
1792 return __kvm_read_guest_page(slot
, gfn
, data
, offset
, len
);
1794 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page
);
1796 int kvm_read_guest(struct kvm
*kvm
, gpa_t gpa
, void *data
, unsigned long len
)
1798 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1800 int offset
= offset_in_page(gpa
);
1803 while ((seg
= next_segment(len
, offset
)) != 0) {
1804 ret
= kvm_read_guest_page(kvm
, gfn
, data
, offset
, seg
);
1814 EXPORT_SYMBOL_GPL(kvm_read_guest
);
1816 int kvm_vcpu_read_guest(struct kvm_vcpu
*vcpu
, gpa_t gpa
, void *data
, unsigned long len
)
1818 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1820 int offset
= offset_in_page(gpa
);
1823 while ((seg
= next_segment(len
, offset
)) != 0) {
1824 ret
= kvm_vcpu_read_guest_page(vcpu
, gfn
, data
, offset
, seg
);
1834 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest
);
1836 static int __kvm_read_guest_atomic(struct kvm_memory_slot
*slot
, gfn_t gfn
,
1837 void *data
, int offset
, unsigned long len
)
1842 addr
= gfn_to_hva_memslot_prot(slot
, gfn
, NULL
);
1843 if (kvm_is_error_hva(addr
))
1845 pagefault_disable();
1846 r
= __copy_from_user_inatomic(data
, (void __user
*)addr
+ offset
, len
);
1853 int kvm_read_guest_atomic(struct kvm
*kvm
, gpa_t gpa
, void *data
,
1856 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1857 struct kvm_memory_slot
*slot
= gfn_to_memslot(kvm
, gfn
);
1858 int offset
= offset_in_page(gpa
);
1860 return __kvm_read_guest_atomic(slot
, gfn
, data
, offset
, len
);
1862 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic
);
1864 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
1865 void *data
, unsigned long len
)
1867 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1868 struct kvm_memory_slot
*slot
= kvm_vcpu_gfn_to_memslot(vcpu
, gfn
);
1869 int offset
= offset_in_page(gpa
);
1871 return __kvm_read_guest_atomic(slot
, gfn
, data
, offset
, len
);
1873 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic
);
1875 static int __kvm_write_guest_page(struct kvm_memory_slot
*memslot
, gfn_t gfn
,
1876 const void *data
, int offset
, int len
)
1881 addr
= gfn_to_hva_memslot(memslot
, gfn
);
1882 if (kvm_is_error_hva(addr
))
1884 r
= __copy_to_user((void __user
*)addr
+ offset
, data
, len
);
1887 mark_page_dirty_in_slot(memslot
, gfn
);
1891 int kvm_write_guest_page(struct kvm
*kvm
, gfn_t gfn
,
1892 const void *data
, int offset
, int len
)
1894 struct kvm_memory_slot
*slot
= gfn_to_memslot(kvm
, gfn
);
1896 return __kvm_write_guest_page(slot
, gfn
, data
, offset
, len
);
1898 EXPORT_SYMBOL_GPL(kvm_write_guest_page
);
1900 int kvm_vcpu_write_guest_page(struct kvm_vcpu
*vcpu
, gfn_t gfn
,
1901 const void *data
, int offset
, int len
)
1903 struct kvm_memory_slot
*slot
= kvm_vcpu_gfn_to_memslot(vcpu
, gfn
);
1905 return __kvm_write_guest_page(slot
, gfn
, data
, offset
, len
);
1907 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page
);
1909 int kvm_write_guest(struct kvm
*kvm
, gpa_t gpa
, const void *data
,
1912 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1914 int offset
= offset_in_page(gpa
);
1917 while ((seg
= next_segment(len
, offset
)) != 0) {
1918 ret
= kvm_write_guest_page(kvm
, gfn
, data
, offset
, seg
);
1928 EXPORT_SYMBOL_GPL(kvm_write_guest
);
1930 int kvm_vcpu_write_guest(struct kvm_vcpu
*vcpu
, gpa_t gpa
, const void *data
,
1933 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1935 int offset
= offset_in_page(gpa
);
1938 while ((seg
= next_segment(len
, offset
)) != 0) {
1939 ret
= kvm_vcpu_write_guest_page(vcpu
, gfn
, data
, offset
, seg
);
1949 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest
);
1951 int kvm_gfn_to_hva_cache_init(struct kvm
*kvm
, struct gfn_to_hva_cache
*ghc
,
1952 gpa_t gpa
, unsigned long len
)
1954 struct kvm_memslots
*slots
= kvm_memslots(kvm
);
1955 int offset
= offset_in_page(gpa
);
1956 gfn_t start_gfn
= gpa
>> PAGE_SHIFT
;
1957 gfn_t end_gfn
= (gpa
+ len
- 1) >> PAGE_SHIFT
;
1958 gfn_t nr_pages_needed
= end_gfn
- start_gfn
+ 1;
1959 gfn_t nr_pages_avail
;
1962 ghc
->generation
= slots
->generation
;
1964 ghc
->memslot
= gfn_to_memslot(kvm
, start_gfn
);
1965 ghc
->hva
= gfn_to_hva_many(ghc
->memslot
, start_gfn
, NULL
);
1966 if (!kvm_is_error_hva(ghc
->hva
) && nr_pages_needed
<= 1) {
1970 * If the requested region crosses two memslots, we still
1971 * verify that the entire region is valid here.
1973 while (start_gfn
<= end_gfn
) {
1974 ghc
->memslot
= gfn_to_memslot(kvm
, start_gfn
);
1975 ghc
->hva
= gfn_to_hva_many(ghc
->memslot
, start_gfn
,
1977 if (kvm_is_error_hva(ghc
->hva
))
1979 start_gfn
+= nr_pages_avail
;
1981 /* Use the slow path for cross page reads and writes. */
1982 ghc
->memslot
= NULL
;
1986 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init
);
1988 int kvm_write_guest_cached(struct kvm
*kvm
, struct gfn_to_hva_cache
*ghc
,
1989 void *data
, unsigned long len
)
1991 struct kvm_memslots
*slots
= kvm_memslots(kvm
);
1994 BUG_ON(len
> ghc
->len
);
1996 if (slots
->generation
!= ghc
->generation
)
1997 kvm_gfn_to_hva_cache_init(kvm
, ghc
, ghc
->gpa
, ghc
->len
);
1999 if (unlikely(!ghc
->memslot
))
2000 return kvm_write_guest(kvm
, ghc
->gpa
, data
, len
);
2002 if (kvm_is_error_hva(ghc
->hva
))
2005 r
= __copy_to_user((void __user
*)ghc
->hva
, data
, len
);
2008 mark_page_dirty_in_slot(ghc
->memslot
, ghc
->gpa
>> PAGE_SHIFT
);
2012 EXPORT_SYMBOL_GPL(kvm_write_guest_cached
);
2014 int kvm_read_guest_cached(struct kvm
*kvm
, struct gfn_to_hva_cache
*ghc
,
2015 void *data
, unsigned long len
)
2017 struct kvm_memslots
*slots
= kvm_memslots(kvm
);
2020 BUG_ON(len
> ghc
->len
);
2022 if (slots
->generation
!= ghc
->generation
)
2023 kvm_gfn_to_hva_cache_init(kvm
, ghc
, ghc
->gpa
, ghc
->len
);
2025 if (unlikely(!ghc
->memslot
))
2026 return kvm_read_guest(kvm
, ghc
->gpa
, data
, len
);
2028 if (kvm_is_error_hva(ghc
->hva
))
2031 r
= __copy_from_user(data
, (void __user
*)ghc
->hva
, len
);
2037 EXPORT_SYMBOL_GPL(kvm_read_guest_cached
);
2039 int kvm_clear_guest_page(struct kvm
*kvm
, gfn_t gfn
, int offset
, int len
)
2041 const void *zero_page
= (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2043 return kvm_write_guest_page(kvm
, gfn
, zero_page
, offset
, len
);
2045 EXPORT_SYMBOL_GPL(kvm_clear_guest_page
);
2047 int kvm_clear_guest(struct kvm
*kvm
, gpa_t gpa
, unsigned long len
)
2049 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
2051 int offset
= offset_in_page(gpa
);
2054 while ((seg
= next_segment(len
, offset
)) != 0) {
2055 ret
= kvm_clear_guest_page(kvm
, gfn
, offset
, seg
);
2064 EXPORT_SYMBOL_GPL(kvm_clear_guest
);
2066 static void mark_page_dirty_in_slot(struct kvm_memory_slot
*memslot
,
2069 if (memslot
&& memslot
->dirty_bitmap
) {
2070 unsigned long rel_gfn
= gfn
- memslot
->base_gfn
;
2072 set_bit_le(rel_gfn
, memslot
->dirty_bitmap
);
2076 void mark_page_dirty(struct kvm
*kvm
, gfn_t gfn
)
2078 struct kvm_memory_slot
*memslot
;
2080 memslot
= gfn_to_memslot(kvm
, gfn
);
2081 mark_page_dirty_in_slot(memslot
, gfn
);
2083 EXPORT_SYMBOL_GPL(mark_page_dirty
);
2085 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
2087 struct kvm_memory_slot
*memslot
;
2089 memslot
= kvm_vcpu_gfn_to_memslot(vcpu
, gfn
);
2090 mark_page_dirty_in_slot(memslot
, gfn
);
2092 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty
);
2094 static void grow_halt_poll_ns(struct kvm_vcpu
*vcpu
)
2096 unsigned int old
, val
, grow
;
2098 old
= val
= vcpu
->halt_poll_ns
;
2099 grow
= READ_ONCE(halt_poll_ns_grow
);
2101 if (val
== 0 && grow
)
2106 if (val
> halt_poll_ns
)
2109 vcpu
->halt_poll_ns
= val
;
2110 trace_kvm_halt_poll_ns_grow(vcpu
->vcpu_id
, val
, old
);
2113 static void shrink_halt_poll_ns(struct kvm_vcpu
*vcpu
)
2115 unsigned int old
, val
, shrink
;
2117 old
= val
= vcpu
->halt_poll_ns
;
2118 shrink
= READ_ONCE(halt_poll_ns_shrink
);
2124 vcpu
->halt_poll_ns
= val
;
2125 trace_kvm_halt_poll_ns_shrink(vcpu
->vcpu_id
, val
, old
);
2128 static int kvm_vcpu_check_block(struct kvm_vcpu
*vcpu
)
2130 if (kvm_arch_vcpu_runnable(vcpu
)) {
2131 kvm_make_request(KVM_REQ_UNHALT
, vcpu
);
2134 if (kvm_cpu_has_pending_timer(vcpu
))
2136 if (signal_pending(current
))
2143 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2145 void kvm_vcpu_block(struct kvm_vcpu
*vcpu
)
2148 DECLARE_SWAITQUEUE(wait
);
2149 bool waited
= false;
2152 start
= cur
= ktime_get();
2153 if (vcpu
->halt_poll_ns
) {
2154 ktime_t stop
= ktime_add_ns(ktime_get(), vcpu
->halt_poll_ns
);
2156 ++vcpu
->stat
.halt_attempted_poll
;
2159 * This sets KVM_REQ_UNHALT if an interrupt
2162 if (kvm_vcpu_check_block(vcpu
) < 0) {
2163 ++vcpu
->stat
.halt_successful_poll
;
2164 if (!vcpu_valid_wakeup(vcpu
))
2165 ++vcpu
->stat
.halt_poll_invalid
;
2169 } while (single_task_running() && ktime_before(cur
, stop
));
2172 kvm_arch_vcpu_blocking(vcpu
);
2175 prepare_to_swait(&vcpu
->wq
, &wait
, TASK_INTERRUPTIBLE
);
2177 if (kvm_vcpu_check_block(vcpu
) < 0)
2184 finish_swait(&vcpu
->wq
, &wait
);
2187 kvm_arch_vcpu_unblocking(vcpu
);
2189 block_ns
= ktime_to_ns(cur
) - ktime_to_ns(start
);
2191 if (!vcpu_valid_wakeup(vcpu
))
2192 shrink_halt_poll_ns(vcpu
);
2193 else if (halt_poll_ns
) {
2194 if (block_ns
<= vcpu
->halt_poll_ns
)
2196 /* we had a long block, shrink polling */
2197 else if (vcpu
->halt_poll_ns
&& block_ns
> halt_poll_ns
)
2198 shrink_halt_poll_ns(vcpu
);
2199 /* we had a short halt and our poll time is too small */
2200 else if (vcpu
->halt_poll_ns
< halt_poll_ns
&&
2201 block_ns
< halt_poll_ns
)
2202 grow_halt_poll_ns(vcpu
);
2204 vcpu
->halt_poll_ns
= 0;
2206 trace_kvm_vcpu_wakeup(block_ns
, waited
, vcpu_valid_wakeup(vcpu
));
2207 kvm_arch_vcpu_block_finish(vcpu
);
2209 EXPORT_SYMBOL_GPL(kvm_vcpu_block
);
2212 void kvm_vcpu_wake_up(struct kvm_vcpu
*vcpu
)
2214 struct swait_queue_head
*wqp
;
2216 wqp
= kvm_arch_vcpu_wq(vcpu
);
2217 if (swait_active(wqp
)) {
2219 ++vcpu
->stat
.halt_wakeup
;
2223 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up
);
2226 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2228 void kvm_vcpu_kick(struct kvm_vcpu
*vcpu
)
2231 int cpu
= vcpu
->cpu
;
2233 kvm_vcpu_wake_up(vcpu
);
2235 if (cpu
!= me
&& (unsigned)cpu
< nr_cpu_ids
&& cpu_online(cpu
))
2236 if (kvm_arch_vcpu_should_kick(vcpu
))
2237 smp_send_reschedule(cpu
);
2240 EXPORT_SYMBOL_GPL(kvm_vcpu_kick
);
2241 #endif /* !CONFIG_S390 */
2243 int kvm_vcpu_yield_to(struct kvm_vcpu
*target
)
2246 struct task_struct
*task
= NULL
;
2250 pid
= rcu_dereference(target
->pid
);
2252 task
= get_pid_task(pid
, PIDTYPE_PID
);
2256 ret
= yield_to(task
, 1);
2257 put_task_struct(task
);
2261 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to
);
2264 * Helper that checks whether a VCPU is eligible for directed yield.
2265 * Most eligible candidate to yield is decided by following heuristics:
2267 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2268 * (preempted lock holder), indicated by @in_spin_loop.
2269 * Set at the beiginning and cleared at the end of interception/PLE handler.
2271 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2272 * chance last time (mostly it has become eligible now since we have probably
2273 * yielded to lockholder in last iteration. This is done by toggling
2274 * @dy_eligible each time a VCPU checked for eligibility.)
2276 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2277 * to preempted lock-holder could result in wrong VCPU selection and CPU
2278 * burning. Giving priority for a potential lock-holder increases lock
2281 * Since algorithm is based on heuristics, accessing another VCPU data without
2282 * locking does not harm. It may result in trying to yield to same VCPU, fail
2283 * and continue with next VCPU and so on.
2285 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu
*vcpu
)
2287 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2290 eligible
= !vcpu
->spin_loop
.in_spin_loop
||
2291 vcpu
->spin_loop
.dy_eligible
;
2293 if (vcpu
->spin_loop
.in_spin_loop
)
2294 kvm_vcpu_set_dy_eligible(vcpu
, !vcpu
->spin_loop
.dy_eligible
);
2302 void kvm_vcpu_on_spin(struct kvm_vcpu
*me
)
2304 struct kvm
*kvm
= me
->kvm
;
2305 struct kvm_vcpu
*vcpu
;
2306 int last_boosted_vcpu
= me
->kvm
->last_boosted_vcpu
;
2312 kvm_vcpu_set_in_spin_loop(me
, true);
2314 * We boost the priority of a VCPU that is runnable but not
2315 * currently running, because it got preempted by something
2316 * else and called schedule in __vcpu_run. Hopefully that
2317 * VCPU is holding the lock that we need and will release it.
2318 * We approximate round-robin by starting at the last boosted VCPU.
2320 for (pass
= 0; pass
< 2 && !yielded
&& try; pass
++) {
2321 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
2322 if (!pass
&& i
<= last_boosted_vcpu
) {
2323 i
= last_boosted_vcpu
;
2325 } else if (pass
&& i
> last_boosted_vcpu
)
2327 if (!ACCESS_ONCE(vcpu
->preempted
))
2331 if (swait_active(&vcpu
->wq
) && !kvm_arch_vcpu_runnable(vcpu
))
2333 if (!kvm_vcpu_eligible_for_directed_yield(vcpu
))
2336 yielded
= kvm_vcpu_yield_to(vcpu
);
2338 kvm
->last_boosted_vcpu
= i
;
2340 } else if (yielded
< 0) {
2347 kvm_vcpu_set_in_spin_loop(me
, false);
2349 /* Ensure vcpu is not eligible during next spinloop */
2350 kvm_vcpu_set_dy_eligible(me
, false);
2352 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin
);
2354 static int kvm_vcpu_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
2356 struct kvm_vcpu
*vcpu
= vma
->vm_file
->private_data
;
2359 if (vmf
->pgoff
== 0)
2360 page
= virt_to_page(vcpu
->run
);
2362 else if (vmf
->pgoff
== KVM_PIO_PAGE_OFFSET
)
2363 page
= virt_to_page(vcpu
->arch
.pio_data
);
2365 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2366 else if (vmf
->pgoff
== KVM_COALESCED_MMIO_PAGE_OFFSET
)
2367 page
= virt_to_page(vcpu
->kvm
->coalesced_mmio_ring
);
2370 return kvm_arch_vcpu_fault(vcpu
, vmf
);
2376 static const struct vm_operations_struct kvm_vcpu_vm_ops
= {
2377 .fault
= kvm_vcpu_fault
,
2380 static int kvm_vcpu_mmap(struct file
*file
, struct vm_area_struct
*vma
)
2382 vma
->vm_ops
= &kvm_vcpu_vm_ops
;
2386 static int kvm_vcpu_release(struct inode
*inode
, struct file
*filp
)
2388 struct kvm_vcpu
*vcpu
= filp
->private_data
;
2390 debugfs_remove_recursive(vcpu
->debugfs_dentry
);
2391 kvm_put_kvm(vcpu
->kvm
);
2395 static struct file_operations kvm_vcpu_fops
= {
2396 .release
= kvm_vcpu_release
,
2397 .unlocked_ioctl
= kvm_vcpu_ioctl
,
2398 #ifdef CONFIG_KVM_COMPAT
2399 .compat_ioctl
= kvm_vcpu_compat_ioctl
,
2401 .mmap
= kvm_vcpu_mmap
,
2402 .llseek
= noop_llseek
,
2406 * Allocates an inode for the vcpu.
2408 static int create_vcpu_fd(struct kvm_vcpu
*vcpu
)
2410 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops
, vcpu
, O_RDWR
| O_CLOEXEC
);
2413 static int kvm_create_vcpu_debugfs(struct kvm_vcpu
*vcpu
)
2415 char dir_name
[ITOA_MAX_LEN
* 2];
2418 if (!kvm_arch_has_vcpu_debugfs())
2421 if (!debugfs_initialized())
2424 snprintf(dir_name
, sizeof(dir_name
), "vcpu%d", vcpu
->vcpu_id
);
2425 vcpu
->debugfs_dentry
= debugfs_create_dir(dir_name
,
2426 vcpu
->kvm
->debugfs_dentry
);
2427 if (!vcpu
->debugfs_dentry
)
2430 ret
= kvm_arch_create_vcpu_debugfs(vcpu
);
2432 debugfs_remove_recursive(vcpu
->debugfs_dentry
);
2440 * Creates some virtual cpus. Good luck creating more than one.
2442 static int kvm_vm_ioctl_create_vcpu(struct kvm
*kvm
, u32 id
)
2445 struct kvm_vcpu
*vcpu
;
2447 if (id
>= KVM_MAX_VCPU_ID
)
2450 mutex_lock(&kvm
->lock
);
2451 if (kvm
->created_vcpus
== KVM_MAX_VCPUS
) {
2452 mutex_unlock(&kvm
->lock
);
2456 kvm
->created_vcpus
++;
2457 mutex_unlock(&kvm
->lock
);
2459 vcpu
= kvm_arch_vcpu_create(kvm
, id
);
2462 goto vcpu_decrement
;
2465 preempt_notifier_init(&vcpu
->preempt_notifier
, &kvm_preempt_ops
);
2467 r
= kvm_arch_vcpu_setup(vcpu
);
2471 r
= kvm_create_vcpu_debugfs(vcpu
);
2475 mutex_lock(&kvm
->lock
);
2476 if (kvm_get_vcpu_by_id(kvm
, id
)) {
2478 goto unlock_vcpu_destroy
;
2481 BUG_ON(kvm
->vcpus
[atomic_read(&kvm
->online_vcpus
)]);
2483 /* Now it's all set up, let userspace reach it */
2485 r
= create_vcpu_fd(vcpu
);
2488 goto unlock_vcpu_destroy
;
2491 kvm
->vcpus
[atomic_read(&kvm
->online_vcpus
)] = vcpu
;
2494 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus
2495 * before kvm->online_vcpu's incremented value.
2498 atomic_inc(&kvm
->online_vcpus
);
2500 mutex_unlock(&kvm
->lock
);
2501 kvm_arch_vcpu_postcreate(vcpu
);
2504 unlock_vcpu_destroy
:
2505 mutex_unlock(&kvm
->lock
);
2506 debugfs_remove_recursive(vcpu
->debugfs_dentry
);
2508 kvm_arch_vcpu_destroy(vcpu
);
2510 mutex_lock(&kvm
->lock
);
2511 kvm
->created_vcpus
--;
2512 mutex_unlock(&kvm
->lock
);
2516 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu
*vcpu
, sigset_t
*sigset
)
2519 sigdelsetmask(sigset
, sigmask(SIGKILL
)|sigmask(SIGSTOP
));
2520 vcpu
->sigset_active
= 1;
2521 vcpu
->sigset
= *sigset
;
2523 vcpu
->sigset_active
= 0;
2527 static long kvm_vcpu_ioctl(struct file
*filp
,
2528 unsigned int ioctl
, unsigned long arg
)
2530 struct kvm_vcpu
*vcpu
= filp
->private_data
;
2531 void __user
*argp
= (void __user
*)arg
;
2533 struct kvm_fpu
*fpu
= NULL
;
2534 struct kvm_sregs
*kvm_sregs
= NULL
;
2536 if (vcpu
->kvm
->mm
!= current
->mm
)
2539 if (unlikely(_IOC_TYPE(ioctl
) != KVMIO
))
2542 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2544 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2545 * so vcpu_load() would break it.
2547 if (ioctl
== KVM_S390_INTERRUPT
|| ioctl
== KVM_S390_IRQ
|| ioctl
== KVM_INTERRUPT
)
2548 return kvm_arch_vcpu_ioctl(filp
, ioctl
, arg
);
2552 r
= vcpu_load(vcpu
);
2560 if (unlikely(vcpu
->pid
!= current
->pids
[PIDTYPE_PID
].pid
)) {
2561 /* The thread running this VCPU changed. */
2562 struct pid
*oldpid
= vcpu
->pid
;
2563 struct pid
*newpid
= get_task_pid(current
, PIDTYPE_PID
);
2565 rcu_assign_pointer(vcpu
->pid
, newpid
);
2570 r
= kvm_arch_vcpu_ioctl_run(vcpu
, vcpu
->run
);
2571 trace_kvm_userspace_exit(vcpu
->run
->exit_reason
, r
);
2573 case KVM_GET_REGS
: {
2574 struct kvm_regs
*kvm_regs
;
2577 kvm_regs
= kzalloc(sizeof(struct kvm_regs
), GFP_KERNEL
);
2580 r
= kvm_arch_vcpu_ioctl_get_regs(vcpu
, kvm_regs
);
2584 if (copy_to_user(argp
, kvm_regs
, sizeof(struct kvm_regs
)))
2591 case KVM_SET_REGS
: {
2592 struct kvm_regs
*kvm_regs
;
2595 kvm_regs
= memdup_user(argp
, sizeof(*kvm_regs
));
2596 if (IS_ERR(kvm_regs
)) {
2597 r
= PTR_ERR(kvm_regs
);
2600 r
= kvm_arch_vcpu_ioctl_set_regs(vcpu
, kvm_regs
);
2604 case KVM_GET_SREGS
: {
2605 kvm_sregs
= kzalloc(sizeof(struct kvm_sregs
), GFP_KERNEL
);
2609 r
= kvm_arch_vcpu_ioctl_get_sregs(vcpu
, kvm_sregs
);
2613 if (copy_to_user(argp
, kvm_sregs
, sizeof(struct kvm_sregs
)))
2618 case KVM_SET_SREGS
: {
2619 kvm_sregs
= memdup_user(argp
, sizeof(*kvm_sregs
));
2620 if (IS_ERR(kvm_sregs
)) {
2621 r
= PTR_ERR(kvm_sregs
);
2625 r
= kvm_arch_vcpu_ioctl_set_sregs(vcpu
, kvm_sregs
);
2628 case KVM_GET_MP_STATE
: {
2629 struct kvm_mp_state mp_state
;
2631 r
= kvm_arch_vcpu_ioctl_get_mpstate(vcpu
, &mp_state
);
2635 if (copy_to_user(argp
, &mp_state
, sizeof(mp_state
)))
2640 case KVM_SET_MP_STATE
: {
2641 struct kvm_mp_state mp_state
;
2644 if (copy_from_user(&mp_state
, argp
, sizeof(mp_state
)))
2646 r
= kvm_arch_vcpu_ioctl_set_mpstate(vcpu
, &mp_state
);
2649 case KVM_TRANSLATE
: {
2650 struct kvm_translation tr
;
2653 if (copy_from_user(&tr
, argp
, sizeof(tr
)))
2655 r
= kvm_arch_vcpu_ioctl_translate(vcpu
, &tr
);
2659 if (copy_to_user(argp
, &tr
, sizeof(tr
)))
2664 case KVM_SET_GUEST_DEBUG
: {
2665 struct kvm_guest_debug dbg
;
2668 if (copy_from_user(&dbg
, argp
, sizeof(dbg
)))
2670 r
= kvm_arch_vcpu_ioctl_set_guest_debug(vcpu
, &dbg
);
2673 case KVM_SET_SIGNAL_MASK
: {
2674 struct kvm_signal_mask __user
*sigmask_arg
= argp
;
2675 struct kvm_signal_mask kvm_sigmask
;
2676 sigset_t sigset
, *p
;
2681 if (copy_from_user(&kvm_sigmask
, argp
,
2682 sizeof(kvm_sigmask
)))
2685 if (kvm_sigmask
.len
!= sizeof(sigset
))
2688 if (copy_from_user(&sigset
, sigmask_arg
->sigset
,
2693 r
= kvm_vcpu_ioctl_set_sigmask(vcpu
, p
);
2697 fpu
= kzalloc(sizeof(struct kvm_fpu
), GFP_KERNEL
);
2701 r
= kvm_arch_vcpu_ioctl_get_fpu(vcpu
, fpu
);
2705 if (copy_to_user(argp
, fpu
, sizeof(struct kvm_fpu
)))
2711 fpu
= memdup_user(argp
, sizeof(*fpu
));
2717 r
= kvm_arch_vcpu_ioctl_set_fpu(vcpu
, fpu
);
2721 r
= kvm_arch_vcpu_ioctl(filp
, ioctl
, arg
);
2730 #ifdef CONFIG_KVM_COMPAT
2731 static long kvm_vcpu_compat_ioctl(struct file
*filp
,
2732 unsigned int ioctl
, unsigned long arg
)
2734 struct kvm_vcpu
*vcpu
= filp
->private_data
;
2735 void __user
*argp
= compat_ptr(arg
);
2738 if (vcpu
->kvm
->mm
!= current
->mm
)
2742 case KVM_SET_SIGNAL_MASK
: {
2743 struct kvm_signal_mask __user
*sigmask_arg
= argp
;
2744 struct kvm_signal_mask kvm_sigmask
;
2745 compat_sigset_t csigset
;
2750 if (copy_from_user(&kvm_sigmask
, argp
,
2751 sizeof(kvm_sigmask
)))
2754 if (kvm_sigmask
.len
!= sizeof(csigset
))
2757 if (copy_from_user(&csigset
, sigmask_arg
->sigset
,
2760 sigset_from_compat(&sigset
, &csigset
);
2761 r
= kvm_vcpu_ioctl_set_sigmask(vcpu
, &sigset
);
2763 r
= kvm_vcpu_ioctl_set_sigmask(vcpu
, NULL
);
2767 r
= kvm_vcpu_ioctl(filp
, ioctl
, arg
);
2775 static int kvm_device_ioctl_attr(struct kvm_device
*dev
,
2776 int (*accessor
)(struct kvm_device
*dev
,
2777 struct kvm_device_attr
*attr
),
2780 struct kvm_device_attr attr
;
2785 if (copy_from_user(&attr
, (void __user
*)arg
, sizeof(attr
)))
2788 return accessor(dev
, &attr
);
2791 static long kvm_device_ioctl(struct file
*filp
, unsigned int ioctl
,
2794 struct kvm_device
*dev
= filp
->private_data
;
2796 if (dev
->kvm
->mm
!= current
->mm
)
2800 case KVM_SET_DEVICE_ATTR
:
2801 return kvm_device_ioctl_attr(dev
, dev
->ops
->set_attr
, arg
);
2802 case KVM_GET_DEVICE_ATTR
:
2803 return kvm_device_ioctl_attr(dev
, dev
->ops
->get_attr
, arg
);
2804 case KVM_HAS_DEVICE_ATTR
:
2805 return kvm_device_ioctl_attr(dev
, dev
->ops
->has_attr
, arg
);
2807 if (dev
->ops
->ioctl
)
2808 return dev
->ops
->ioctl(dev
, ioctl
, arg
);
2814 static int kvm_device_release(struct inode
*inode
, struct file
*filp
)
2816 struct kvm_device
*dev
= filp
->private_data
;
2817 struct kvm
*kvm
= dev
->kvm
;
2823 static const struct file_operations kvm_device_fops
= {
2824 .unlocked_ioctl
= kvm_device_ioctl
,
2825 #ifdef CONFIG_KVM_COMPAT
2826 .compat_ioctl
= kvm_device_ioctl
,
2828 .release
= kvm_device_release
,
2831 struct kvm_device
*kvm_device_from_filp(struct file
*filp
)
2833 if (filp
->f_op
!= &kvm_device_fops
)
2836 return filp
->private_data
;
2839 static struct kvm_device_ops
*kvm_device_ops_table
[KVM_DEV_TYPE_MAX
] = {
2840 #ifdef CONFIG_KVM_MPIC
2841 [KVM_DEV_TYPE_FSL_MPIC_20
] = &kvm_mpic_ops
,
2842 [KVM_DEV_TYPE_FSL_MPIC_42
] = &kvm_mpic_ops
,
2845 #ifdef CONFIG_KVM_XICS
2846 [KVM_DEV_TYPE_XICS
] = &kvm_xics_ops
,
2850 int kvm_register_device_ops(struct kvm_device_ops
*ops
, u32 type
)
2852 if (type
>= ARRAY_SIZE(kvm_device_ops_table
))
2855 if (kvm_device_ops_table
[type
] != NULL
)
2858 kvm_device_ops_table
[type
] = ops
;
2862 void kvm_unregister_device_ops(u32 type
)
2864 if (kvm_device_ops_table
[type
] != NULL
)
2865 kvm_device_ops_table
[type
] = NULL
;
2868 static int kvm_ioctl_create_device(struct kvm
*kvm
,
2869 struct kvm_create_device
*cd
)
2871 struct kvm_device_ops
*ops
= NULL
;
2872 struct kvm_device
*dev
;
2873 bool test
= cd
->flags
& KVM_CREATE_DEVICE_TEST
;
2876 if (cd
->type
>= ARRAY_SIZE(kvm_device_ops_table
))
2879 ops
= kvm_device_ops_table
[cd
->type
];
2886 dev
= kzalloc(sizeof(*dev
), GFP_KERNEL
);
2893 mutex_lock(&kvm
->lock
);
2894 ret
= ops
->create(dev
, cd
->type
);
2896 mutex_unlock(&kvm
->lock
);
2900 list_add(&dev
->vm_node
, &kvm
->devices
);
2901 mutex_unlock(&kvm
->lock
);
2907 ret
= anon_inode_getfd(ops
->name
, &kvm_device_fops
, dev
, O_RDWR
| O_CLOEXEC
);
2910 mutex_lock(&kvm
->lock
);
2911 list_del(&dev
->vm_node
);
2912 mutex_unlock(&kvm
->lock
);
2921 static long kvm_vm_ioctl_check_extension_generic(struct kvm
*kvm
, long arg
)
2924 case KVM_CAP_USER_MEMORY
:
2925 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS
:
2926 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
:
2927 case KVM_CAP_INTERNAL_ERROR_DATA
:
2928 #ifdef CONFIG_HAVE_KVM_MSI
2929 case KVM_CAP_SIGNAL_MSI
:
2931 #ifdef CONFIG_HAVE_KVM_IRQFD
2933 case KVM_CAP_IRQFD_RESAMPLE
:
2935 case KVM_CAP_IOEVENTFD_ANY_LENGTH
:
2936 case KVM_CAP_CHECK_EXTENSION_VM
:
2938 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2939 case KVM_CAP_IRQ_ROUTING
:
2940 return KVM_MAX_IRQ_ROUTES
;
2942 #if KVM_ADDRESS_SPACE_NUM > 1
2943 case KVM_CAP_MULTI_ADDRESS_SPACE
:
2944 return KVM_ADDRESS_SPACE_NUM
;
2946 case KVM_CAP_MAX_VCPU_ID
:
2947 return KVM_MAX_VCPU_ID
;
2951 return kvm_vm_ioctl_check_extension(kvm
, arg
);
2954 static long kvm_vm_ioctl(struct file
*filp
,
2955 unsigned int ioctl
, unsigned long arg
)
2957 struct kvm
*kvm
= filp
->private_data
;
2958 void __user
*argp
= (void __user
*)arg
;
2961 if (kvm
->mm
!= current
->mm
)
2964 case KVM_CREATE_VCPU
:
2965 r
= kvm_vm_ioctl_create_vcpu(kvm
, arg
);
2967 case KVM_SET_USER_MEMORY_REGION
: {
2968 struct kvm_userspace_memory_region kvm_userspace_mem
;
2971 if (copy_from_user(&kvm_userspace_mem
, argp
,
2972 sizeof(kvm_userspace_mem
)))
2975 r
= kvm_vm_ioctl_set_memory_region(kvm
, &kvm_userspace_mem
);
2978 case KVM_GET_DIRTY_LOG
: {
2979 struct kvm_dirty_log log
;
2982 if (copy_from_user(&log
, argp
, sizeof(log
)))
2984 r
= kvm_vm_ioctl_get_dirty_log(kvm
, &log
);
2987 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2988 case KVM_REGISTER_COALESCED_MMIO
: {
2989 struct kvm_coalesced_mmio_zone zone
;
2992 if (copy_from_user(&zone
, argp
, sizeof(zone
)))
2994 r
= kvm_vm_ioctl_register_coalesced_mmio(kvm
, &zone
);
2997 case KVM_UNREGISTER_COALESCED_MMIO
: {
2998 struct kvm_coalesced_mmio_zone zone
;
3001 if (copy_from_user(&zone
, argp
, sizeof(zone
)))
3003 r
= kvm_vm_ioctl_unregister_coalesced_mmio(kvm
, &zone
);
3008 struct kvm_irqfd data
;
3011 if (copy_from_user(&data
, argp
, sizeof(data
)))
3013 r
= kvm_irqfd(kvm
, &data
);
3016 case KVM_IOEVENTFD
: {
3017 struct kvm_ioeventfd data
;
3020 if (copy_from_user(&data
, argp
, sizeof(data
)))
3022 r
= kvm_ioeventfd(kvm
, &data
);
3025 #ifdef CONFIG_HAVE_KVM_MSI
3026 case KVM_SIGNAL_MSI
: {
3030 if (copy_from_user(&msi
, argp
, sizeof(msi
)))
3032 r
= kvm_send_userspace_msi(kvm
, &msi
);
3036 #ifdef __KVM_HAVE_IRQ_LINE
3037 case KVM_IRQ_LINE_STATUS
:
3038 case KVM_IRQ_LINE
: {
3039 struct kvm_irq_level irq_event
;
3042 if (copy_from_user(&irq_event
, argp
, sizeof(irq_event
)))
3045 r
= kvm_vm_ioctl_irq_line(kvm
, &irq_event
,
3046 ioctl
== KVM_IRQ_LINE_STATUS
);
3051 if (ioctl
== KVM_IRQ_LINE_STATUS
) {
3052 if (copy_to_user(argp
, &irq_event
, sizeof(irq_event
)))
3060 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3061 case KVM_SET_GSI_ROUTING
: {
3062 struct kvm_irq_routing routing
;
3063 struct kvm_irq_routing __user
*urouting
;
3064 struct kvm_irq_routing_entry
*entries
= NULL
;
3067 if (copy_from_user(&routing
, argp
, sizeof(routing
)))
3070 if (routing
.nr
> KVM_MAX_IRQ_ROUTES
)
3076 entries
= vmalloc(routing
.nr
* sizeof(*entries
));
3081 if (copy_from_user(entries
, urouting
->entries
,
3082 routing
.nr
* sizeof(*entries
)))
3083 goto out_free_irq_routing
;
3085 r
= kvm_set_irq_routing(kvm
, entries
, routing
.nr
,
3087 out_free_irq_routing
:
3091 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3092 case KVM_CREATE_DEVICE
: {
3093 struct kvm_create_device cd
;
3096 if (copy_from_user(&cd
, argp
, sizeof(cd
)))
3099 r
= kvm_ioctl_create_device(kvm
, &cd
);
3104 if (copy_to_user(argp
, &cd
, sizeof(cd
)))
3110 case KVM_CHECK_EXTENSION
:
3111 r
= kvm_vm_ioctl_check_extension_generic(kvm
, arg
);
3114 r
= kvm_arch_vm_ioctl(filp
, ioctl
, arg
);
3120 #ifdef CONFIG_KVM_COMPAT
3121 struct compat_kvm_dirty_log
{
3125 compat_uptr_t dirty_bitmap
; /* one bit per page */
3130 static long kvm_vm_compat_ioctl(struct file
*filp
,
3131 unsigned int ioctl
, unsigned long arg
)
3133 struct kvm
*kvm
= filp
->private_data
;
3136 if (kvm
->mm
!= current
->mm
)
3139 case KVM_GET_DIRTY_LOG
: {
3140 struct compat_kvm_dirty_log compat_log
;
3141 struct kvm_dirty_log log
;
3144 if (copy_from_user(&compat_log
, (void __user
*)arg
,
3145 sizeof(compat_log
)))
3147 log
.slot
= compat_log
.slot
;
3148 log
.padding1
= compat_log
.padding1
;
3149 log
.padding2
= compat_log
.padding2
;
3150 log
.dirty_bitmap
= compat_ptr(compat_log
.dirty_bitmap
);
3152 r
= kvm_vm_ioctl_get_dirty_log(kvm
, &log
);
3156 r
= kvm_vm_ioctl(filp
, ioctl
, arg
);
3164 static struct file_operations kvm_vm_fops
= {
3165 .release
= kvm_vm_release
,
3166 .unlocked_ioctl
= kvm_vm_ioctl
,
3167 #ifdef CONFIG_KVM_COMPAT
3168 .compat_ioctl
= kvm_vm_compat_ioctl
,
3170 .llseek
= noop_llseek
,
3173 static int kvm_dev_ioctl_create_vm(unsigned long type
)
3179 kvm
= kvm_create_vm(type
);
3181 return PTR_ERR(kvm
);
3182 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
3183 r
= kvm_coalesced_mmio_init(kvm
);
3189 r
= get_unused_fd_flags(O_CLOEXEC
);
3194 file
= anon_inode_getfile("kvm-vm", &kvm_vm_fops
, kvm
, O_RDWR
);
3198 return PTR_ERR(file
);
3201 if (kvm_create_vm_debugfs(kvm
, r
) < 0) {
3207 fd_install(r
, file
);
3211 static long kvm_dev_ioctl(struct file
*filp
,
3212 unsigned int ioctl
, unsigned long arg
)
3217 case KVM_GET_API_VERSION
:
3220 r
= KVM_API_VERSION
;
3223 r
= kvm_dev_ioctl_create_vm(arg
);
3225 case KVM_CHECK_EXTENSION
:
3226 r
= kvm_vm_ioctl_check_extension_generic(NULL
, arg
);
3228 case KVM_GET_VCPU_MMAP_SIZE
:
3231 r
= PAGE_SIZE
; /* struct kvm_run */
3233 r
+= PAGE_SIZE
; /* pio data page */
3235 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
3236 r
+= PAGE_SIZE
; /* coalesced mmio ring page */
3239 case KVM_TRACE_ENABLE
:
3240 case KVM_TRACE_PAUSE
:
3241 case KVM_TRACE_DISABLE
:
3245 return kvm_arch_dev_ioctl(filp
, ioctl
, arg
);
3251 static struct file_operations kvm_chardev_ops
= {
3252 .unlocked_ioctl
= kvm_dev_ioctl
,
3253 .compat_ioctl
= kvm_dev_ioctl
,
3254 .llseek
= noop_llseek
,
3257 static struct miscdevice kvm_dev
= {
3263 static void hardware_enable_nolock(void *junk
)
3265 int cpu
= raw_smp_processor_id();
3268 if (cpumask_test_cpu(cpu
, cpus_hardware_enabled
))
3271 cpumask_set_cpu(cpu
, cpus_hardware_enabled
);
3273 r
= kvm_arch_hardware_enable();
3276 cpumask_clear_cpu(cpu
, cpus_hardware_enabled
);
3277 atomic_inc(&hardware_enable_failed
);
3278 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu
);
3282 static int kvm_starting_cpu(unsigned int cpu
)
3284 raw_spin_lock(&kvm_count_lock
);
3285 if (kvm_usage_count
)
3286 hardware_enable_nolock(NULL
);
3287 raw_spin_unlock(&kvm_count_lock
);
3291 static void hardware_disable_nolock(void *junk
)
3293 int cpu
= raw_smp_processor_id();
3295 if (!cpumask_test_cpu(cpu
, cpus_hardware_enabled
))
3297 cpumask_clear_cpu(cpu
, cpus_hardware_enabled
);
3298 kvm_arch_hardware_disable();
3301 static int kvm_dying_cpu(unsigned int cpu
)
3303 raw_spin_lock(&kvm_count_lock
);
3304 if (kvm_usage_count
)
3305 hardware_disable_nolock(NULL
);
3306 raw_spin_unlock(&kvm_count_lock
);
3310 static void hardware_disable_all_nolock(void)
3312 BUG_ON(!kvm_usage_count
);
3315 if (!kvm_usage_count
)
3316 on_each_cpu(hardware_disable_nolock
, NULL
, 1);
3319 static void hardware_disable_all(void)
3321 raw_spin_lock(&kvm_count_lock
);
3322 hardware_disable_all_nolock();
3323 raw_spin_unlock(&kvm_count_lock
);
3326 static int hardware_enable_all(void)
3330 raw_spin_lock(&kvm_count_lock
);
3333 if (kvm_usage_count
== 1) {
3334 atomic_set(&hardware_enable_failed
, 0);
3335 on_each_cpu(hardware_enable_nolock
, NULL
, 1);
3337 if (atomic_read(&hardware_enable_failed
)) {
3338 hardware_disable_all_nolock();
3343 raw_spin_unlock(&kvm_count_lock
);
3348 static int kvm_reboot(struct notifier_block
*notifier
, unsigned long val
,
3352 * Some (well, at least mine) BIOSes hang on reboot if
3355 * And Intel TXT required VMX off for all cpu when system shutdown.
3357 pr_info("kvm: exiting hardware virtualization\n");
3358 kvm_rebooting
= true;
3359 on_each_cpu(hardware_disable_nolock
, NULL
, 1);
3363 static struct notifier_block kvm_reboot_notifier
= {
3364 .notifier_call
= kvm_reboot
,
3368 static void kvm_io_bus_destroy(struct kvm_io_bus
*bus
)
3372 for (i
= 0; i
< bus
->dev_count
; i
++) {
3373 struct kvm_io_device
*pos
= bus
->range
[i
].dev
;
3375 kvm_iodevice_destructor(pos
);
3380 static inline int kvm_io_bus_cmp(const struct kvm_io_range
*r1
,
3381 const struct kvm_io_range
*r2
)
3383 gpa_t addr1
= r1
->addr
;
3384 gpa_t addr2
= r2
->addr
;
3389 /* If r2->len == 0, match the exact address. If r2->len != 0,
3390 * accept any overlapping write. Any order is acceptable for
3391 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3392 * we process all of them.
3405 static int kvm_io_bus_sort_cmp(const void *p1
, const void *p2
)
3407 return kvm_io_bus_cmp(p1
, p2
);
3410 static int kvm_io_bus_insert_dev(struct kvm_io_bus
*bus
, struct kvm_io_device
*dev
,
3411 gpa_t addr
, int len
)
3413 bus
->range
[bus
->dev_count
++] = (struct kvm_io_range
) {
3419 sort(bus
->range
, bus
->dev_count
, sizeof(struct kvm_io_range
),
3420 kvm_io_bus_sort_cmp
, NULL
);
3425 static int kvm_io_bus_get_first_dev(struct kvm_io_bus
*bus
,
3426 gpa_t addr
, int len
)
3428 struct kvm_io_range
*range
, key
;
3431 key
= (struct kvm_io_range
) {
3436 range
= bsearch(&key
, bus
->range
, bus
->dev_count
,
3437 sizeof(struct kvm_io_range
), kvm_io_bus_sort_cmp
);
3441 off
= range
- bus
->range
;
3443 while (off
> 0 && kvm_io_bus_cmp(&key
, &bus
->range
[off
-1]) == 0)
3449 static int __kvm_io_bus_write(struct kvm_vcpu
*vcpu
, struct kvm_io_bus
*bus
,
3450 struct kvm_io_range
*range
, const void *val
)
3454 idx
= kvm_io_bus_get_first_dev(bus
, range
->addr
, range
->len
);
3458 while (idx
< bus
->dev_count
&&
3459 kvm_io_bus_cmp(range
, &bus
->range
[idx
]) == 0) {
3460 if (!kvm_iodevice_write(vcpu
, bus
->range
[idx
].dev
, range
->addr
,
3469 /* kvm_io_bus_write - called under kvm->slots_lock */
3470 int kvm_io_bus_write(struct kvm_vcpu
*vcpu
, enum kvm_bus bus_idx
, gpa_t addr
,
3471 int len
, const void *val
)
3473 struct kvm_io_bus
*bus
;
3474 struct kvm_io_range range
;
3477 range
= (struct kvm_io_range
) {
3482 bus
= srcu_dereference(vcpu
->kvm
->buses
[bus_idx
], &vcpu
->kvm
->srcu
);
3485 r
= __kvm_io_bus_write(vcpu
, bus
, &range
, val
);
3486 return r
< 0 ? r
: 0;
3489 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3490 int kvm_io_bus_write_cookie(struct kvm_vcpu
*vcpu
, enum kvm_bus bus_idx
,
3491 gpa_t addr
, int len
, const void *val
, long cookie
)
3493 struct kvm_io_bus
*bus
;
3494 struct kvm_io_range range
;
3496 range
= (struct kvm_io_range
) {
3501 bus
= srcu_dereference(vcpu
->kvm
->buses
[bus_idx
], &vcpu
->kvm
->srcu
);
3505 /* First try the device referenced by cookie. */
3506 if ((cookie
>= 0) && (cookie
< bus
->dev_count
) &&
3507 (kvm_io_bus_cmp(&range
, &bus
->range
[cookie
]) == 0))
3508 if (!kvm_iodevice_write(vcpu
, bus
->range
[cookie
].dev
, addr
, len
,
3513 * cookie contained garbage; fall back to search and return the
3514 * correct cookie value.
3516 return __kvm_io_bus_write(vcpu
, bus
, &range
, val
);
3519 static int __kvm_io_bus_read(struct kvm_vcpu
*vcpu
, struct kvm_io_bus
*bus
,
3520 struct kvm_io_range
*range
, void *val
)
3524 idx
= kvm_io_bus_get_first_dev(bus
, range
->addr
, range
->len
);
3528 while (idx
< bus
->dev_count
&&
3529 kvm_io_bus_cmp(range
, &bus
->range
[idx
]) == 0) {
3530 if (!kvm_iodevice_read(vcpu
, bus
->range
[idx
].dev
, range
->addr
,
3538 EXPORT_SYMBOL_GPL(kvm_io_bus_write
);
3540 /* kvm_io_bus_read - called under kvm->slots_lock */
3541 int kvm_io_bus_read(struct kvm_vcpu
*vcpu
, enum kvm_bus bus_idx
, gpa_t addr
,
3544 struct kvm_io_bus
*bus
;
3545 struct kvm_io_range range
;
3548 range
= (struct kvm_io_range
) {
3553 bus
= srcu_dereference(vcpu
->kvm
->buses
[bus_idx
], &vcpu
->kvm
->srcu
);
3556 r
= __kvm_io_bus_read(vcpu
, bus
, &range
, val
);
3557 return r
< 0 ? r
: 0;
3561 /* Caller must hold slots_lock. */
3562 int kvm_io_bus_register_dev(struct kvm
*kvm
, enum kvm_bus bus_idx
, gpa_t addr
,
3563 int len
, struct kvm_io_device
*dev
)
3565 struct kvm_io_bus
*new_bus
, *bus
;
3567 bus
= kvm
->buses
[bus_idx
];
3571 /* exclude ioeventfd which is limited by maximum fd */
3572 if (bus
->dev_count
- bus
->ioeventfd_count
> NR_IOBUS_DEVS
- 1)
3575 new_bus
= kmalloc(sizeof(*bus
) + ((bus
->dev_count
+ 1) *
3576 sizeof(struct kvm_io_range
)), GFP_KERNEL
);
3579 memcpy(new_bus
, bus
, sizeof(*bus
) + (bus
->dev_count
*
3580 sizeof(struct kvm_io_range
)));
3581 kvm_io_bus_insert_dev(new_bus
, dev
, addr
, len
);
3582 rcu_assign_pointer(kvm
->buses
[bus_idx
], new_bus
);
3583 synchronize_srcu_expedited(&kvm
->srcu
);
3589 /* Caller must hold slots_lock. */
3590 void kvm_io_bus_unregister_dev(struct kvm
*kvm
, enum kvm_bus bus_idx
,
3591 struct kvm_io_device
*dev
)
3594 struct kvm_io_bus
*new_bus
, *bus
;
3596 bus
= kvm
->buses
[bus_idx
];
3600 for (i
= 0; i
< bus
->dev_count
; i
++)
3601 if (bus
->range
[i
].dev
== dev
) {
3605 if (i
== bus
->dev_count
)
3608 new_bus
= kmalloc(sizeof(*bus
) + ((bus
->dev_count
- 1) *
3609 sizeof(struct kvm_io_range
)), GFP_KERNEL
);
3611 pr_err("kvm: failed to shrink bus, removing it completely\n");
3615 memcpy(new_bus
, bus
, sizeof(*bus
) + i
* sizeof(struct kvm_io_range
));
3616 new_bus
->dev_count
--;
3617 memcpy(new_bus
->range
+ i
, bus
->range
+ i
+ 1,
3618 (new_bus
->dev_count
- i
) * sizeof(struct kvm_io_range
));
3621 rcu_assign_pointer(kvm
->buses
[bus_idx
], new_bus
);
3622 synchronize_srcu_expedited(&kvm
->srcu
);
3627 struct kvm_io_device
*kvm_io_bus_get_dev(struct kvm
*kvm
, enum kvm_bus bus_idx
,
3630 struct kvm_io_bus
*bus
;
3631 int dev_idx
, srcu_idx
;
3632 struct kvm_io_device
*iodev
= NULL
;
3634 srcu_idx
= srcu_read_lock(&kvm
->srcu
);
3636 bus
= srcu_dereference(kvm
->buses
[bus_idx
], &kvm
->srcu
);
3640 dev_idx
= kvm_io_bus_get_first_dev(bus
, addr
, 1);
3644 iodev
= bus
->range
[dev_idx
].dev
;
3647 srcu_read_unlock(&kvm
->srcu
, srcu_idx
);
3651 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev
);
3653 static int kvm_debugfs_open(struct inode
*inode
, struct file
*file
,
3654 int (*get
)(void *, u64
*), int (*set
)(void *, u64
),
3657 struct kvm_stat_data
*stat_data
= (struct kvm_stat_data
*)
3660 /* The debugfs files are a reference to the kvm struct which
3661 * is still valid when kvm_destroy_vm is called.
3662 * To avoid the race between open and the removal of the debugfs
3663 * directory we test against the users count.
3665 if (!atomic_add_unless(&stat_data
->kvm
->users_count
, 1, 0))
3668 if (simple_attr_open(inode
, file
, get
, set
, fmt
)) {
3669 kvm_put_kvm(stat_data
->kvm
);
3676 static int kvm_debugfs_release(struct inode
*inode
, struct file
*file
)
3678 struct kvm_stat_data
*stat_data
= (struct kvm_stat_data
*)
3681 simple_attr_release(inode
, file
);
3682 kvm_put_kvm(stat_data
->kvm
);
3687 static int vm_stat_get_per_vm(void *data
, u64
*val
)
3689 struct kvm_stat_data
*stat_data
= (struct kvm_stat_data
*)data
;
3691 *val
= *(ulong
*)((void *)stat_data
->kvm
+ stat_data
->offset
);
3696 static int vm_stat_get_per_vm_open(struct inode
*inode
, struct file
*file
)
3698 __simple_attr_check_format("%llu\n", 0ull);
3699 return kvm_debugfs_open(inode
, file
, vm_stat_get_per_vm
,
3703 static const struct file_operations vm_stat_get_per_vm_fops
= {
3704 .owner
= THIS_MODULE
,
3705 .open
= vm_stat_get_per_vm_open
,
3706 .release
= kvm_debugfs_release
,
3707 .read
= simple_attr_read
,
3708 .write
= simple_attr_write
,
3709 .llseek
= generic_file_llseek
,
3712 static int vcpu_stat_get_per_vm(void *data
, u64
*val
)
3715 struct kvm_stat_data
*stat_data
= (struct kvm_stat_data
*)data
;
3716 struct kvm_vcpu
*vcpu
;
3720 kvm_for_each_vcpu(i
, vcpu
, stat_data
->kvm
)
3721 *val
+= *(u64
*)((void *)vcpu
+ stat_data
->offset
);
3726 static int vcpu_stat_get_per_vm_open(struct inode
*inode
, struct file
*file
)
3728 __simple_attr_check_format("%llu\n", 0ull);
3729 return kvm_debugfs_open(inode
, file
, vcpu_stat_get_per_vm
,
3733 static const struct file_operations vcpu_stat_get_per_vm_fops
= {
3734 .owner
= THIS_MODULE
,
3735 .open
= vcpu_stat_get_per_vm_open
,
3736 .release
= kvm_debugfs_release
,
3737 .read
= simple_attr_read
,
3738 .write
= simple_attr_write
,
3739 .llseek
= generic_file_llseek
,
3742 static const struct file_operations
*stat_fops_per_vm
[] = {
3743 [KVM_STAT_VCPU
] = &vcpu_stat_get_per_vm_fops
,
3744 [KVM_STAT_VM
] = &vm_stat_get_per_vm_fops
,
3747 static int vm_stat_get(void *_offset
, u64
*val
)
3749 unsigned offset
= (long)_offset
;
3751 struct kvm_stat_data stat_tmp
= {.offset
= offset
};
3755 spin_lock(&kvm_lock
);
3756 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
3758 vm_stat_get_per_vm((void *)&stat_tmp
, &tmp_val
);
3761 spin_unlock(&kvm_lock
);
3765 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops
, vm_stat_get
, NULL
, "%llu\n");
3767 static int vcpu_stat_get(void *_offset
, u64
*val
)
3769 unsigned offset
= (long)_offset
;
3771 struct kvm_stat_data stat_tmp
= {.offset
= offset
};
3775 spin_lock(&kvm_lock
);
3776 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
3778 vcpu_stat_get_per_vm((void *)&stat_tmp
, &tmp_val
);
3781 spin_unlock(&kvm_lock
);
3785 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops
, vcpu_stat_get
, NULL
, "%llu\n");
3787 static const struct file_operations
*stat_fops
[] = {
3788 [KVM_STAT_VCPU
] = &vcpu_stat_fops
,
3789 [KVM_STAT_VM
] = &vm_stat_fops
,
3792 static int kvm_init_debug(void)
3795 struct kvm_stats_debugfs_item
*p
;
3797 kvm_debugfs_dir
= debugfs_create_dir("kvm", NULL
);
3798 if (kvm_debugfs_dir
== NULL
)
3801 kvm_debugfs_num_entries
= 0;
3802 for (p
= debugfs_entries
; p
->name
; ++p
, kvm_debugfs_num_entries
++) {
3803 if (!debugfs_create_file(p
->name
, 0444, kvm_debugfs_dir
,
3804 (void *)(long)p
->offset
,
3805 stat_fops
[p
->kind
]))
3812 debugfs_remove_recursive(kvm_debugfs_dir
);
3817 static int kvm_suspend(void)
3819 if (kvm_usage_count
)
3820 hardware_disable_nolock(NULL
);
3824 static void kvm_resume(void)
3826 if (kvm_usage_count
) {
3827 WARN_ON(raw_spin_is_locked(&kvm_count_lock
));
3828 hardware_enable_nolock(NULL
);
3832 static struct syscore_ops kvm_syscore_ops
= {
3833 .suspend
= kvm_suspend
,
3834 .resume
= kvm_resume
,
3838 struct kvm_vcpu
*preempt_notifier_to_vcpu(struct preempt_notifier
*pn
)
3840 return container_of(pn
, struct kvm_vcpu
, preempt_notifier
);
3843 static void kvm_sched_in(struct preempt_notifier
*pn
, int cpu
)
3845 struct kvm_vcpu
*vcpu
= preempt_notifier_to_vcpu(pn
);
3847 if (vcpu
->preempted
)
3848 vcpu
->preempted
= false;
3850 kvm_arch_sched_in(vcpu
, cpu
);
3852 kvm_arch_vcpu_load(vcpu
, cpu
);
3855 static void kvm_sched_out(struct preempt_notifier
*pn
,
3856 struct task_struct
*next
)
3858 struct kvm_vcpu
*vcpu
= preempt_notifier_to_vcpu(pn
);
3860 if (current
->state
== TASK_RUNNING
)
3861 vcpu
->preempted
= true;
3862 kvm_arch_vcpu_put(vcpu
);
3865 int kvm_init(void *opaque
, unsigned vcpu_size
, unsigned vcpu_align
,
3866 struct module
*module
)
3871 r
= kvm_arch_init(opaque
);
3876 * kvm_arch_init makes sure there's at most one caller
3877 * for architectures that support multiple implementations,
3878 * like intel and amd on x86.
3879 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3880 * conflicts in case kvm is already setup for another implementation.
3882 r
= kvm_irqfd_init();
3886 if (!zalloc_cpumask_var(&cpus_hardware_enabled
, GFP_KERNEL
)) {
3891 r
= kvm_arch_hardware_setup();
3895 for_each_online_cpu(cpu
) {
3896 smp_call_function_single(cpu
,
3897 kvm_arch_check_processor_compat
,
3903 r
= cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING
, "AP_KVM_STARTING",
3904 kvm_starting_cpu
, kvm_dying_cpu
);
3907 register_reboot_notifier(&kvm_reboot_notifier
);
3909 /* A kmem cache lets us meet the alignment requirements of fx_save. */
3911 vcpu_align
= __alignof__(struct kvm_vcpu
);
3912 kvm_vcpu_cache
= kmem_cache_create("kvm_vcpu", vcpu_size
, vcpu_align
,
3913 SLAB_ACCOUNT
, NULL
);
3914 if (!kvm_vcpu_cache
) {
3919 r
= kvm_async_pf_init();
3923 kvm_chardev_ops
.owner
= module
;
3924 kvm_vm_fops
.owner
= module
;
3925 kvm_vcpu_fops
.owner
= module
;
3927 r
= misc_register(&kvm_dev
);
3929 pr_err("kvm: misc device register failed\n");
3933 register_syscore_ops(&kvm_syscore_ops
);
3935 kvm_preempt_ops
.sched_in
= kvm_sched_in
;
3936 kvm_preempt_ops
.sched_out
= kvm_sched_out
;
3938 r
= kvm_init_debug();
3940 pr_err("kvm: create debugfs files failed\n");
3944 r
= kvm_vfio_ops_init();
3950 unregister_syscore_ops(&kvm_syscore_ops
);
3951 misc_deregister(&kvm_dev
);
3953 kvm_async_pf_deinit();
3955 kmem_cache_destroy(kvm_vcpu_cache
);
3957 unregister_reboot_notifier(&kvm_reboot_notifier
);
3958 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING
);
3961 kvm_arch_hardware_unsetup();
3963 free_cpumask_var(cpus_hardware_enabled
);
3971 EXPORT_SYMBOL_GPL(kvm_init
);
3975 debugfs_remove_recursive(kvm_debugfs_dir
);
3976 misc_deregister(&kvm_dev
);
3977 kmem_cache_destroy(kvm_vcpu_cache
);
3978 kvm_async_pf_deinit();
3979 unregister_syscore_ops(&kvm_syscore_ops
);
3980 unregister_reboot_notifier(&kvm_reboot_notifier
);
3981 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING
);
3982 on_each_cpu(hardware_disable_nolock
, NULL
, 1);
3983 kvm_arch_hardware_unsetup();
3986 free_cpumask_var(cpus_hardware_enabled
);
3987 kvm_vfio_ops_exit();
3989 EXPORT_SYMBOL_GPL(kvm_exit
);