Linux 4.9.199
[linux/fpc-iii.git] / virt / kvm / kvm_main.c
blobc72586a094edb5ee23d44e3bfa2ca0a88d197c18
1 /*
2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
19 #include <kvm/iodev.h>
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/ioctl.h>
56 #include <asm/uaccess.h>
57 #include <asm/pgtable.h>
59 #include "coalesced_mmio.h"
60 #include "async_pf.h"
61 #include "vfio.h"
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/kvm.h>
66 /* Worst case buffer size needed for holding an integer. */
67 #define ITOA_MAX_LEN 12
69 MODULE_AUTHOR("Qumranet");
70 MODULE_LICENSE("GPL");
72 /* Architectures should define their poll value according to the halt latency */
73 static unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
74 module_param(halt_poll_ns, uint, S_IRUGO | S_IWUSR);
76 /* Default doubles per-vcpu halt_poll_ns. */
77 static unsigned int halt_poll_ns_grow = 2;
78 module_param(halt_poll_ns_grow, uint, S_IRUGO | S_IWUSR);
80 /* Default resets per-vcpu halt_poll_ns . */
81 static unsigned int halt_poll_ns_shrink;
82 module_param(halt_poll_ns_shrink, uint, S_IRUGO | S_IWUSR);
85 * Ordering of locks:
87 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
90 DEFINE_SPINLOCK(kvm_lock);
91 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
92 LIST_HEAD(vm_list);
94 static cpumask_var_t cpus_hardware_enabled;
95 static int kvm_usage_count;
96 static atomic_t hardware_enable_failed;
98 struct kmem_cache *kvm_vcpu_cache;
99 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
101 static __read_mostly struct preempt_ops kvm_preempt_ops;
103 struct dentry *kvm_debugfs_dir;
104 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
106 static int kvm_debugfs_num_entries;
107 static const struct file_operations *stat_fops_per_vm[];
109 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
110 unsigned long arg);
111 #ifdef CONFIG_KVM_COMPAT
112 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
113 unsigned long arg);
114 #endif
115 static int hardware_enable_all(void);
116 static void hardware_disable_all(void);
118 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
120 static void kvm_release_pfn_dirty(kvm_pfn_t pfn);
121 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
123 __visible bool kvm_rebooting;
124 EXPORT_SYMBOL_GPL(kvm_rebooting);
126 static bool largepages_enabled = true;
128 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
129 unsigned long start, unsigned long end)
133 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
135 if (pfn_valid(pfn))
136 return PageReserved(pfn_to_page(pfn));
138 return true;
142 * Switches to specified vcpu, until a matching vcpu_put()
144 int vcpu_load(struct kvm_vcpu *vcpu)
146 int cpu;
148 if (mutex_lock_killable(&vcpu->mutex))
149 return -EINTR;
150 cpu = get_cpu();
151 preempt_notifier_register(&vcpu->preempt_notifier);
152 kvm_arch_vcpu_load(vcpu, cpu);
153 put_cpu();
154 return 0;
156 EXPORT_SYMBOL_GPL(vcpu_load);
158 void vcpu_put(struct kvm_vcpu *vcpu)
160 preempt_disable();
161 kvm_arch_vcpu_put(vcpu);
162 preempt_notifier_unregister(&vcpu->preempt_notifier);
163 preempt_enable();
164 mutex_unlock(&vcpu->mutex);
166 EXPORT_SYMBOL_GPL(vcpu_put);
168 static void ack_flush(void *_completed)
172 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
174 int i, cpu, me;
175 cpumask_var_t cpus;
176 bool called = true;
177 struct kvm_vcpu *vcpu;
179 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
181 me = get_cpu();
182 kvm_for_each_vcpu(i, vcpu, kvm) {
183 kvm_make_request(req, vcpu);
184 cpu = vcpu->cpu;
186 /* Set ->requests bit before we read ->mode. */
187 smp_mb__after_atomic();
189 if (cpus != NULL && cpu != -1 && cpu != me &&
190 kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
191 cpumask_set_cpu(cpu, cpus);
193 if (unlikely(cpus == NULL))
194 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
195 else if (!cpumask_empty(cpus))
196 smp_call_function_many(cpus, ack_flush, NULL, 1);
197 else
198 called = false;
199 put_cpu();
200 free_cpumask_var(cpus);
201 return called;
204 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
205 void kvm_flush_remote_tlbs(struct kvm *kvm)
208 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
209 * kvm_make_all_cpus_request.
211 long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
214 * We want to publish modifications to the page tables before reading
215 * mode. Pairs with a memory barrier in arch-specific code.
216 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
217 * and smp_mb in walk_shadow_page_lockless_begin/end.
218 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
220 * There is already an smp_mb__after_atomic() before
221 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
222 * barrier here.
224 if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
225 ++kvm->stat.remote_tlb_flush;
226 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
228 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
229 #endif
231 void kvm_reload_remote_mmus(struct kvm *kvm)
233 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
236 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
238 struct page *page;
239 int r;
241 mutex_init(&vcpu->mutex);
242 vcpu->cpu = -1;
243 vcpu->kvm = kvm;
244 vcpu->vcpu_id = id;
245 vcpu->pid = NULL;
246 init_swait_queue_head(&vcpu->wq);
247 kvm_async_pf_vcpu_init(vcpu);
249 vcpu->pre_pcpu = -1;
250 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
252 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
253 if (!page) {
254 r = -ENOMEM;
255 goto fail;
257 vcpu->run = page_address(page);
259 kvm_vcpu_set_in_spin_loop(vcpu, false);
260 kvm_vcpu_set_dy_eligible(vcpu, false);
261 vcpu->preempted = false;
263 r = kvm_arch_vcpu_init(vcpu);
264 if (r < 0)
265 goto fail_free_run;
266 return 0;
268 fail_free_run:
269 free_page((unsigned long)vcpu->run);
270 fail:
271 return r;
273 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
275 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
277 put_pid(vcpu->pid);
278 kvm_arch_vcpu_uninit(vcpu);
279 free_page((unsigned long)vcpu->run);
281 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
283 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
284 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
286 return container_of(mn, struct kvm, mmu_notifier);
289 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
290 struct mm_struct *mm,
291 unsigned long address)
293 struct kvm *kvm = mmu_notifier_to_kvm(mn);
294 int need_tlb_flush, idx;
297 * When ->invalidate_page runs, the linux pte has been zapped
298 * already but the page is still allocated until
299 * ->invalidate_page returns. So if we increase the sequence
300 * here the kvm page fault will notice if the spte can't be
301 * established because the page is going to be freed. If
302 * instead the kvm page fault establishes the spte before
303 * ->invalidate_page runs, kvm_unmap_hva will release it
304 * before returning.
306 * The sequence increase only need to be seen at spin_unlock
307 * time, and not at spin_lock time.
309 * Increasing the sequence after the spin_unlock would be
310 * unsafe because the kvm page fault could then establish the
311 * pte after kvm_unmap_hva returned, without noticing the page
312 * is going to be freed.
314 idx = srcu_read_lock(&kvm->srcu);
315 spin_lock(&kvm->mmu_lock);
317 kvm->mmu_notifier_seq++;
318 need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
319 /* we've to flush the tlb before the pages can be freed */
320 if (need_tlb_flush)
321 kvm_flush_remote_tlbs(kvm);
323 spin_unlock(&kvm->mmu_lock);
325 kvm_arch_mmu_notifier_invalidate_page(kvm, address);
327 srcu_read_unlock(&kvm->srcu, idx);
330 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
331 struct mm_struct *mm,
332 unsigned long address,
333 pte_t pte)
335 struct kvm *kvm = mmu_notifier_to_kvm(mn);
336 int idx;
338 idx = srcu_read_lock(&kvm->srcu);
339 spin_lock(&kvm->mmu_lock);
340 kvm->mmu_notifier_seq++;
341 kvm_set_spte_hva(kvm, address, pte);
342 spin_unlock(&kvm->mmu_lock);
343 srcu_read_unlock(&kvm->srcu, idx);
346 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
347 struct mm_struct *mm,
348 unsigned long start,
349 unsigned long end)
351 struct kvm *kvm = mmu_notifier_to_kvm(mn);
352 int need_tlb_flush = 0, idx;
354 idx = srcu_read_lock(&kvm->srcu);
355 spin_lock(&kvm->mmu_lock);
357 * The count increase must become visible at unlock time as no
358 * spte can be established without taking the mmu_lock and
359 * count is also read inside the mmu_lock critical section.
361 kvm->mmu_notifier_count++;
362 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
363 need_tlb_flush |= kvm->tlbs_dirty;
364 /* we've to flush the tlb before the pages can be freed */
365 if (need_tlb_flush)
366 kvm_flush_remote_tlbs(kvm);
368 spin_unlock(&kvm->mmu_lock);
370 kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
372 srcu_read_unlock(&kvm->srcu, idx);
375 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
376 struct mm_struct *mm,
377 unsigned long start,
378 unsigned long end)
380 struct kvm *kvm = mmu_notifier_to_kvm(mn);
382 spin_lock(&kvm->mmu_lock);
384 * This sequence increase will notify the kvm page fault that
385 * the page that is going to be mapped in the spte could have
386 * been freed.
388 kvm->mmu_notifier_seq++;
389 smp_wmb();
391 * The above sequence increase must be visible before the
392 * below count decrease, which is ensured by the smp_wmb above
393 * in conjunction with the smp_rmb in mmu_notifier_retry().
395 kvm->mmu_notifier_count--;
396 spin_unlock(&kvm->mmu_lock);
398 BUG_ON(kvm->mmu_notifier_count < 0);
401 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
402 struct mm_struct *mm,
403 unsigned long start,
404 unsigned long end)
406 struct kvm *kvm = mmu_notifier_to_kvm(mn);
407 int young, idx;
409 idx = srcu_read_lock(&kvm->srcu);
410 spin_lock(&kvm->mmu_lock);
412 young = kvm_age_hva(kvm, start, end);
413 if (young)
414 kvm_flush_remote_tlbs(kvm);
416 spin_unlock(&kvm->mmu_lock);
417 srcu_read_unlock(&kvm->srcu, idx);
419 return young;
422 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
423 struct mm_struct *mm,
424 unsigned long start,
425 unsigned long end)
427 struct kvm *kvm = mmu_notifier_to_kvm(mn);
428 int young, idx;
430 idx = srcu_read_lock(&kvm->srcu);
431 spin_lock(&kvm->mmu_lock);
433 * Even though we do not flush TLB, this will still adversely
434 * affect performance on pre-Haswell Intel EPT, where there is
435 * no EPT Access Bit to clear so that we have to tear down EPT
436 * tables instead. If we find this unacceptable, we can always
437 * add a parameter to kvm_age_hva so that it effectively doesn't
438 * do anything on clear_young.
440 * Also note that currently we never issue secondary TLB flushes
441 * from clear_young, leaving this job up to the regular system
442 * cadence. If we find this inaccurate, we might come up with a
443 * more sophisticated heuristic later.
445 young = kvm_age_hva(kvm, start, end);
446 spin_unlock(&kvm->mmu_lock);
447 srcu_read_unlock(&kvm->srcu, idx);
449 return young;
452 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
453 struct mm_struct *mm,
454 unsigned long address)
456 struct kvm *kvm = mmu_notifier_to_kvm(mn);
457 int young, idx;
459 idx = srcu_read_lock(&kvm->srcu);
460 spin_lock(&kvm->mmu_lock);
461 young = kvm_test_age_hva(kvm, address);
462 spin_unlock(&kvm->mmu_lock);
463 srcu_read_unlock(&kvm->srcu, idx);
465 return young;
468 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
469 struct mm_struct *mm)
471 struct kvm *kvm = mmu_notifier_to_kvm(mn);
472 int idx;
474 idx = srcu_read_lock(&kvm->srcu);
475 kvm_arch_flush_shadow_all(kvm);
476 srcu_read_unlock(&kvm->srcu, idx);
479 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
480 .invalidate_page = kvm_mmu_notifier_invalidate_page,
481 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
482 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
483 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
484 .clear_young = kvm_mmu_notifier_clear_young,
485 .test_young = kvm_mmu_notifier_test_young,
486 .change_pte = kvm_mmu_notifier_change_pte,
487 .release = kvm_mmu_notifier_release,
490 static int kvm_init_mmu_notifier(struct kvm *kvm)
492 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
493 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
496 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
498 static int kvm_init_mmu_notifier(struct kvm *kvm)
500 return 0;
503 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
505 static struct kvm_memslots *kvm_alloc_memslots(void)
507 int i;
508 struct kvm_memslots *slots;
510 slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
511 if (!slots)
512 return NULL;
515 * Init kvm generation close to the maximum to easily test the
516 * code of handling generation number wrap-around.
518 slots->generation = -150;
519 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
520 slots->id_to_index[i] = slots->memslots[i].id = i;
522 return slots;
525 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
527 if (!memslot->dirty_bitmap)
528 return;
530 kvfree(memslot->dirty_bitmap);
531 memslot->dirty_bitmap = NULL;
535 * Free any memory in @free but not in @dont.
537 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
538 struct kvm_memory_slot *dont)
540 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
541 kvm_destroy_dirty_bitmap(free);
543 kvm_arch_free_memslot(kvm, free, dont);
545 free->npages = 0;
548 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
550 struct kvm_memory_slot *memslot;
552 if (!slots)
553 return;
555 kvm_for_each_memslot(memslot, slots)
556 kvm_free_memslot(kvm, memslot, NULL);
558 kvfree(slots);
561 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
563 int i;
565 if (!kvm->debugfs_dentry)
566 return;
568 debugfs_remove_recursive(kvm->debugfs_dentry);
570 if (kvm->debugfs_stat_data) {
571 for (i = 0; i < kvm_debugfs_num_entries; i++)
572 kfree(kvm->debugfs_stat_data[i]);
573 kfree(kvm->debugfs_stat_data);
577 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
579 char dir_name[ITOA_MAX_LEN * 2];
580 struct kvm_stat_data *stat_data;
581 struct kvm_stats_debugfs_item *p;
583 if (!debugfs_initialized())
584 return 0;
586 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
587 kvm->debugfs_dentry = debugfs_create_dir(dir_name,
588 kvm_debugfs_dir);
589 if (!kvm->debugfs_dentry)
590 return -ENOMEM;
592 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
593 sizeof(*kvm->debugfs_stat_data),
594 GFP_KERNEL);
595 if (!kvm->debugfs_stat_data)
596 return -ENOMEM;
598 for (p = debugfs_entries; p->name; p++) {
599 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL);
600 if (!stat_data)
601 return -ENOMEM;
603 stat_data->kvm = kvm;
604 stat_data->offset = p->offset;
605 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
606 if (!debugfs_create_file(p->name, 0444,
607 kvm->debugfs_dentry,
608 stat_data,
609 stat_fops_per_vm[p->kind]))
610 return -ENOMEM;
612 return 0;
615 static struct kvm *kvm_create_vm(unsigned long type)
617 int r, i;
618 struct kvm *kvm = kvm_arch_alloc_vm();
620 if (!kvm)
621 return ERR_PTR(-ENOMEM);
623 spin_lock_init(&kvm->mmu_lock);
624 atomic_inc(&current->mm->mm_count);
625 kvm->mm = current->mm;
626 kvm_eventfd_init(kvm);
627 mutex_init(&kvm->lock);
628 mutex_init(&kvm->irq_lock);
629 mutex_init(&kvm->slots_lock);
630 atomic_set(&kvm->users_count, 1);
631 INIT_LIST_HEAD(&kvm->devices);
633 r = kvm_arch_init_vm(kvm, type);
634 if (r)
635 goto out_err_no_disable;
637 r = hardware_enable_all();
638 if (r)
639 goto out_err_no_disable;
641 #ifdef CONFIG_HAVE_KVM_IRQFD
642 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
643 #endif
645 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
647 r = -ENOMEM;
648 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
649 kvm->memslots[i] = kvm_alloc_memslots();
650 if (!kvm->memslots[i])
651 goto out_err_no_srcu;
654 if (init_srcu_struct(&kvm->srcu))
655 goto out_err_no_srcu;
656 if (init_srcu_struct(&kvm->irq_srcu))
657 goto out_err_no_irq_srcu;
658 for (i = 0; i < KVM_NR_BUSES; i++) {
659 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
660 GFP_KERNEL);
661 if (!kvm->buses[i])
662 goto out_err;
665 r = kvm_init_mmu_notifier(kvm);
666 if (r)
667 goto out_err;
669 spin_lock(&kvm_lock);
670 list_add(&kvm->vm_list, &vm_list);
671 spin_unlock(&kvm_lock);
673 preempt_notifier_inc();
675 return kvm;
677 out_err:
678 cleanup_srcu_struct(&kvm->irq_srcu);
679 out_err_no_irq_srcu:
680 cleanup_srcu_struct(&kvm->srcu);
681 out_err_no_srcu:
682 hardware_disable_all();
683 out_err_no_disable:
684 for (i = 0; i < KVM_NR_BUSES; i++)
685 kfree(kvm->buses[i]);
686 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
687 kvm_free_memslots(kvm, kvm->memslots[i]);
688 kvm_arch_free_vm(kvm);
689 mmdrop(current->mm);
690 return ERR_PTR(r);
694 * Avoid using vmalloc for a small buffer.
695 * Should not be used when the size is statically known.
697 void *kvm_kvzalloc(unsigned long size)
699 if (size > PAGE_SIZE)
700 return vzalloc(size);
701 else
702 return kzalloc(size, GFP_KERNEL);
705 static void kvm_destroy_devices(struct kvm *kvm)
707 struct kvm_device *dev, *tmp;
710 * We do not need to take the kvm->lock here, because nobody else
711 * has a reference to the struct kvm at this point and therefore
712 * cannot access the devices list anyhow.
714 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
715 list_del(&dev->vm_node);
716 dev->ops->destroy(dev);
720 static void kvm_destroy_vm(struct kvm *kvm)
722 int i;
723 struct mm_struct *mm = kvm->mm;
725 kvm_destroy_vm_debugfs(kvm);
726 kvm_arch_sync_events(kvm);
727 spin_lock(&kvm_lock);
728 list_del(&kvm->vm_list);
729 spin_unlock(&kvm_lock);
730 kvm_free_irq_routing(kvm);
731 for (i = 0; i < KVM_NR_BUSES; i++) {
732 if (kvm->buses[i])
733 kvm_io_bus_destroy(kvm->buses[i]);
734 kvm->buses[i] = NULL;
736 kvm_coalesced_mmio_free(kvm);
737 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
738 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
739 #else
740 kvm_arch_flush_shadow_all(kvm);
741 #endif
742 kvm_arch_destroy_vm(kvm);
743 kvm_destroy_devices(kvm);
744 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
745 kvm_free_memslots(kvm, kvm->memslots[i]);
746 cleanup_srcu_struct(&kvm->irq_srcu);
747 cleanup_srcu_struct(&kvm->srcu);
748 kvm_arch_free_vm(kvm);
749 preempt_notifier_dec();
750 hardware_disable_all();
751 mmdrop(mm);
754 void kvm_get_kvm(struct kvm *kvm)
756 atomic_inc(&kvm->users_count);
758 EXPORT_SYMBOL_GPL(kvm_get_kvm);
760 void kvm_put_kvm(struct kvm *kvm)
762 if (atomic_dec_and_test(&kvm->users_count))
763 kvm_destroy_vm(kvm);
765 EXPORT_SYMBOL_GPL(kvm_put_kvm);
768 static int kvm_vm_release(struct inode *inode, struct file *filp)
770 struct kvm *kvm = filp->private_data;
772 kvm_irqfd_release(kvm);
774 kvm_put_kvm(kvm);
775 return 0;
779 * Allocation size is twice as large as the actual dirty bitmap size.
780 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
782 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
784 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
786 memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
787 if (!memslot->dirty_bitmap)
788 return -ENOMEM;
790 return 0;
794 * Insert memslot and re-sort memslots based on their GFN,
795 * so binary search could be used to lookup GFN.
796 * Sorting algorithm takes advantage of having initially
797 * sorted array and known changed memslot position.
799 static void update_memslots(struct kvm_memslots *slots,
800 struct kvm_memory_slot *new)
802 int id = new->id;
803 int i = slots->id_to_index[id];
804 struct kvm_memory_slot *mslots = slots->memslots;
806 WARN_ON(mslots[i].id != id);
807 if (!new->npages) {
808 WARN_ON(!mslots[i].npages);
809 if (mslots[i].npages)
810 slots->used_slots--;
811 } else {
812 if (!mslots[i].npages)
813 slots->used_slots++;
816 while (i < KVM_MEM_SLOTS_NUM - 1 &&
817 new->base_gfn <= mslots[i + 1].base_gfn) {
818 if (!mslots[i + 1].npages)
819 break;
820 mslots[i] = mslots[i + 1];
821 slots->id_to_index[mslots[i].id] = i;
822 i++;
826 * The ">=" is needed when creating a slot with base_gfn == 0,
827 * so that it moves before all those with base_gfn == npages == 0.
829 * On the other hand, if new->npages is zero, the above loop has
830 * already left i pointing to the beginning of the empty part of
831 * mslots, and the ">=" would move the hole backwards in this
832 * case---which is wrong. So skip the loop when deleting a slot.
834 if (new->npages) {
835 while (i > 0 &&
836 new->base_gfn >= mslots[i - 1].base_gfn) {
837 mslots[i] = mslots[i - 1];
838 slots->id_to_index[mslots[i].id] = i;
839 i--;
841 } else
842 WARN_ON_ONCE(i != slots->used_slots);
844 mslots[i] = *new;
845 slots->id_to_index[mslots[i].id] = i;
848 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
850 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
852 #ifdef __KVM_HAVE_READONLY_MEM
853 valid_flags |= KVM_MEM_READONLY;
854 #endif
856 if (mem->flags & ~valid_flags)
857 return -EINVAL;
859 return 0;
862 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
863 int as_id, struct kvm_memslots *slots)
865 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
868 * Set the low bit in the generation, which disables SPTE caching
869 * until the end of synchronize_srcu_expedited.
871 WARN_ON(old_memslots->generation & 1);
872 slots->generation = old_memslots->generation + 1;
874 rcu_assign_pointer(kvm->memslots[as_id], slots);
875 synchronize_srcu_expedited(&kvm->srcu);
878 * Increment the new memslot generation a second time. This prevents
879 * vm exits that race with memslot updates from caching a memslot
880 * generation that will (potentially) be valid forever.
882 slots->generation++;
884 kvm_arch_memslots_updated(kvm, slots);
886 return old_memslots;
890 * Allocate some memory and give it an address in the guest physical address
891 * space.
893 * Discontiguous memory is allowed, mostly for framebuffers.
895 * Must be called holding kvm->slots_lock for write.
897 int __kvm_set_memory_region(struct kvm *kvm,
898 const struct kvm_userspace_memory_region *mem)
900 int r;
901 gfn_t base_gfn;
902 unsigned long npages;
903 struct kvm_memory_slot *slot;
904 struct kvm_memory_slot old, new;
905 struct kvm_memslots *slots = NULL, *old_memslots;
906 int as_id, id;
907 enum kvm_mr_change change;
909 r = check_memory_region_flags(mem);
910 if (r)
911 goto out;
913 r = -EINVAL;
914 as_id = mem->slot >> 16;
915 id = (u16)mem->slot;
917 /* General sanity checks */
918 if (mem->memory_size & (PAGE_SIZE - 1))
919 goto out;
920 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
921 goto out;
922 /* We can read the guest memory with __xxx_user() later on. */
923 if ((id < KVM_USER_MEM_SLOTS) &&
924 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
925 !access_ok(VERIFY_WRITE,
926 (void __user *)(unsigned long)mem->userspace_addr,
927 mem->memory_size)))
928 goto out;
929 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
930 goto out;
931 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
932 goto out;
934 slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
935 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
936 npages = mem->memory_size >> PAGE_SHIFT;
938 if (npages > KVM_MEM_MAX_NR_PAGES)
939 goto out;
941 new = old = *slot;
943 new.id = id;
944 new.base_gfn = base_gfn;
945 new.npages = npages;
946 new.flags = mem->flags;
948 if (npages) {
949 if (!old.npages)
950 change = KVM_MR_CREATE;
951 else { /* Modify an existing slot. */
952 if ((mem->userspace_addr != old.userspace_addr) ||
953 (npages != old.npages) ||
954 ((new.flags ^ old.flags) & KVM_MEM_READONLY))
955 goto out;
957 if (base_gfn != old.base_gfn)
958 change = KVM_MR_MOVE;
959 else if (new.flags != old.flags)
960 change = KVM_MR_FLAGS_ONLY;
961 else { /* Nothing to change. */
962 r = 0;
963 goto out;
966 } else {
967 if (!old.npages)
968 goto out;
970 change = KVM_MR_DELETE;
971 new.base_gfn = 0;
972 new.flags = 0;
975 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
976 /* Check for overlaps */
977 r = -EEXIST;
978 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
979 if (slot->id == id)
980 continue;
981 if (!((base_gfn + npages <= slot->base_gfn) ||
982 (base_gfn >= slot->base_gfn + slot->npages)))
983 goto out;
987 /* Free page dirty bitmap if unneeded */
988 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
989 new.dirty_bitmap = NULL;
991 r = -ENOMEM;
992 if (change == KVM_MR_CREATE) {
993 new.userspace_addr = mem->userspace_addr;
995 if (kvm_arch_create_memslot(kvm, &new, npages))
996 goto out_free;
999 /* Allocate page dirty bitmap if needed */
1000 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1001 if (kvm_create_dirty_bitmap(&new) < 0)
1002 goto out_free;
1005 slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
1006 if (!slots)
1007 goto out_free;
1008 memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1010 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1011 slot = id_to_memslot(slots, id);
1012 slot->flags |= KVM_MEMSLOT_INVALID;
1014 old_memslots = install_new_memslots(kvm, as_id, slots);
1016 /* slot was deleted or moved, clear iommu mapping */
1017 kvm_iommu_unmap_pages(kvm, &old);
1018 /* From this point no new shadow pages pointing to a deleted,
1019 * or moved, memslot will be created.
1021 * validation of sp->gfn happens in:
1022 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1023 * - kvm_is_visible_gfn (mmu_check_roots)
1025 kvm_arch_flush_shadow_memslot(kvm, slot);
1028 * We can re-use the old_memslots from above, the only difference
1029 * from the currently installed memslots is the invalid flag. This
1030 * will get overwritten by update_memslots anyway.
1032 slots = old_memslots;
1035 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1036 if (r)
1037 goto out_slots;
1039 /* actual memory is freed via old in kvm_free_memslot below */
1040 if (change == KVM_MR_DELETE) {
1041 new.dirty_bitmap = NULL;
1042 memset(&new.arch, 0, sizeof(new.arch));
1045 update_memslots(slots, &new);
1046 old_memslots = install_new_memslots(kvm, as_id, slots);
1048 kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1050 kvm_free_memslot(kvm, &old, &new);
1051 kvfree(old_memslots);
1054 * IOMMU mapping: New slots need to be mapped. Old slots need to be
1055 * un-mapped and re-mapped if their base changes. Since base change
1056 * unmapping is handled above with slot deletion, mapping alone is
1057 * needed here. Anything else the iommu might care about for existing
1058 * slots (size changes, userspace addr changes and read-only flag
1059 * changes) is disallowed above, so any other attribute changes getting
1060 * here can be skipped.
1062 if (as_id == 0 && (change == KVM_MR_CREATE || change == KVM_MR_MOVE)) {
1063 r = kvm_iommu_map_pages(kvm, &new);
1064 return r;
1067 return 0;
1069 out_slots:
1070 kvfree(slots);
1071 out_free:
1072 kvm_free_memslot(kvm, &new, &old);
1073 out:
1074 return r;
1076 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1078 int kvm_set_memory_region(struct kvm *kvm,
1079 const struct kvm_userspace_memory_region *mem)
1081 int r;
1083 mutex_lock(&kvm->slots_lock);
1084 r = __kvm_set_memory_region(kvm, mem);
1085 mutex_unlock(&kvm->slots_lock);
1086 return r;
1088 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1090 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1091 struct kvm_userspace_memory_region *mem)
1093 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1094 return -EINVAL;
1096 return kvm_set_memory_region(kvm, mem);
1099 int kvm_get_dirty_log(struct kvm *kvm,
1100 struct kvm_dirty_log *log, int *is_dirty)
1102 struct kvm_memslots *slots;
1103 struct kvm_memory_slot *memslot;
1104 int r, i, as_id, id;
1105 unsigned long n;
1106 unsigned long any = 0;
1108 r = -EINVAL;
1109 as_id = log->slot >> 16;
1110 id = (u16)log->slot;
1111 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1112 goto out;
1114 slots = __kvm_memslots(kvm, as_id);
1115 memslot = id_to_memslot(slots, id);
1116 r = -ENOENT;
1117 if (!memslot->dirty_bitmap)
1118 goto out;
1120 n = kvm_dirty_bitmap_bytes(memslot);
1122 for (i = 0; !any && i < n/sizeof(long); ++i)
1123 any = memslot->dirty_bitmap[i];
1125 r = -EFAULT;
1126 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1127 goto out;
1129 if (any)
1130 *is_dirty = 1;
1132 r = 0;
1133 out:
1134 return r;
1136 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1138 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1140 * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1141 * are dirty write protect them for next write.
1142 * @kvm: pointer to kvm instance
1143 * @log: slot id and address to which we copy the log
1144 * @is_dirty: flag set if any page is dirty
1146 * We need to keep it in mind that VCPU threads can write to the bitmap
1147 * concurrently. So, to avoid losing track of dirty pages we keep the
1148 * following order:
1150 * 1. Take a snapshot of the bit and clear it if needed.
1151 * 2. Write protect the corresponding page.
1152 * 3. Copy the snapshot to the userspace.
1153 * 4. Upon return caller flushes TLB's if needed.
1155 * Between 2 and 4, the guest may write to the page using the remaining TLB
1156 * entry. This is not a problem because the page is reported dirty using
1157 * the snapshot taken before and step 4 ensures that writes done after
1158 * exiting to userspace will be logged for the next call.
1161 int kvm_get_dirty_log_protect(struct kvm *kvm,
1162 struct kvm_dirty_log *log, bool *is_dirty)
1164 struct kvm_memslots *slots;
1165 struct kvm_memory_slot *memslot;
1166 int r, i, as_id, id;
1167 unsigned long n;
1168 unsigned long *dirty_bitmap;
1169 unsigned long *dirty_bitmap_buffer;
1171 r = -EINVAL;
1172 as_id = log->slot >> 16;
1173 id = (u16)log->slot;
1174 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1175 goto out;
1177 slots = __kvm_memslots(kvm, as_id);
1178 memslot = id_to_memslot(slots, id);
1180 dirty_bitmap = memslot->dirty_bitmap;
1181 r = -ENOENT;
1182 if (!dirty_bitmap)
1183 goto out;
1185 n = kvm_dirty_bitmap_bytes(memslot);
1187 dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1188 memset(dirty_bitmap_buffer, 0, n);
1190 spin_lock(&kvm->mmu_lock);
1191 *is_dirty = false;
1192 for (i = 0; i < n / sizeof(long); i++) {
1193 unsigned long mask;
1194 gfn_t offset;
1196 if (!dirty_bitmap[i])
1197 continue;
1199 *is_dirty = true;
1201 mask = xchg(&dirty_bitmap[i], 0);
1202 dirty_bitmap_buffer[i] = mask;
1204 if (mask) {
1205 offset = i * BITS_PER_LONG;
1206 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1207 offset, mask);
1211 spin_unlock(&kvm->mmu_lock);
1213 r = -EFAULT;
1214 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1215 goto out;
1217 r = 0;
1218 out:
1219 return r;
1221 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1222 #endif
1224 bool kvm_largepages_enabled(void)
1226 return largepages_enabled;
1229 void kvm_disable_largepages(void)
1231 largepages_enabled = false;
1233 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1235 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1237 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1239 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1241 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1243 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1246 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1248 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1250 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1251 memslot->flags & KVM_MEMSLOT_INVALID)
1252 return false;
1254 return true;
1256 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1258 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1260 struct vm_area_struct *vma;
1261 unsigned long addr, size;
1263 size = PAGE_SIZE;
1265 addr = gfn_to_hva(kvm, gfn);
1266 if (kvm_is_error_hva(addr))
1267 return PAGE_SIZE;
1269 down_read(&current->mm->mmap_sem);
1270 vma = find_vma(current->mm, addr);
1271 if (!vma)
1272 goto out;
1274 size = vma_kernel_pagesize(vma);
1276 out:
1277 up_read(&current->mm->mmap_sem);
1279 return size;
1282 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1284 return slot->flags & KVM_MEM_READONLY;
1287 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1288 gfn_t *nr_pages, bool write)
1290 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1291 return KVM_HVA_ERR_BAD;
1293 if (memslot_is_readonly(slot) && write)
1294 return KVM_HVA_ERR_RO_BAD;
1296 if (nr_pages)
1297 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1299 return __gfn_to_hva_memslot(slot, gfn);
1302 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1303 gfn_t *nr_pages)
1305 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1308 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1309 gfn_t gfn)
1311 return gfn_to_hva_many(slot, gfn, NULL);
1313 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1315 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1317 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1319 EXPORT_SYMBOL_GPL(gfn_to_hva);
1321 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1323 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1325 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1328 * If writable is set to false, the hva returned by this function is only
1329 * allowed to be read.
1331 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1332 gfn_t gfn, bool *writable)
1334 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1336 if (!kvm_is_error_hva(hva) && writable)
1337 *writable = !memslot_is_readonly(slot);
1339 return hva;
1342 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1344 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1346 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1349 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1351 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1353 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1356 static int get_user_page_nowait(unsigned long start, int write,
1357 struct page **page)
1359 int flags = FOLL_NOWAIT | FOLL_HWPOISON;
1361 if (write)
1362 flags |= FOLL_WRITE;
1364 return get_user_pages(start, 1, flags, page, NULL);
1367 static inline int check_user_page_hwpoison(unsigned long addr)
1369 int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1371 rc = get_user_pages(addr, 1, flags, NULL, NULL);
1372 return rc == -EHWPOISON;
1376 * The atomic path to get the writable pfn which will be stored in @pfn,
1377 * true indicates success, otherwise false is returned.
1379 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1380 bool write_fault, bool *writable, kvm_pfn_t *pfn)
1382 struct page *page[1];
1383 int npages;
1385 if (!(async || atomic))
1386 return false;
1389 * Fast pin a writable pfn only if it is a write fault request
1390 * or the caller allows to map a writable pfn for a read fault
1391 * request.
1393 if (!(write_fault || writable))
1394 return false;
1396 npages = __get_user_pages_fast(addr, 1, 1, page);
1397 if (npages == 1) {
1398 *pfn = page_to_pfn(page[0]);
1400 if (writable)
1401 *writable = true;
1402 return true;
1405 return false;
1409 * The slow path to get the pfn of the specified host virtual address,
1410 * 1 indicates success, -errno is returned if error is detected.
1412 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1413 bool *writable, kvm_pfn_t *pfn)
1415 struct page *page[1];
1416 int npages = 0;
1418 might_sleep();
1420 if (writable)
1421 *writable = write_fault;
1423 if (async) {
1424 down_read(&current->mm->mmap_sem);
1425 npages = get_user_page_nowait(addr, write_fault, page);
1426 up_read(&current->mm->mmap_sem);
1427 } else {
1428 unsigned int flags = FOLL_TOUCH | FOLL_HWPOISON;
1430 if (write_fault)
1431 flags |= FOLL_WRITE;
1433 npages = __get_user_pages_unlocked(current, current->mm, addr, 1,
1434 page, flags);
1436 if (npages != 1)
1437 return npages;
1439 /* map read fault as writable if possible */
1440 if (unlikely(!write_fault) && writable) {
1441 struct page *wpage[1];
1443 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1444 if (npages == 1) {
1445 *writable = true;
1446 put_page(page[0]);
1447 page[0] = wpage[0];
1450 npages = 1;
1452 *pfn = page_to_pfn(page[0]);
1453 return npages;
1456 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1458 if (unlikely(!(vma->vm_flags & VM_READ)))
1459 return false;
1461 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1462 return false;
1464 return true;
1467 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1468 unsigned long addr, bool *async,
1469 bool write_fault, bool *writable,
1470 kvm_pfn_t *p_pfn)
1472 unsigned long pfn;
1473 int r;
1475 r = follow_pfn(vma, addr, &pfn);
1476 if (r) {
1478 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1479 * not call the fault handler, so do it here.
1481 bool unlocked = false;
1482 r = fixup_user_fault(current, current->mm, addr,
1483 (write_fault ? FAULT_FLAG_WRITE : 0),
1484 &unlocked);
1485 if (unlocked)
1486 return -EAGAIN;
1487 if (r)
1488 return r;
1490 r = follow_pfn(vma, addr, &pfn);
1491 if (r)
1492 return r;
1496 if (writable)
1497 *writable = true;
1500 * Get a reference here because callers of *hva_to_pfn* and
1501 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1502 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP
1503 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1504 * simply do nothing for reserved pfns.
1506 * Whoever called remap_pfn_range is also going to call e.g.
1507 * unmap_mapping_range before the underlying pages are freed,
1508 * causing a call to our MMU notifier.
1510 kvm_get_pfn(pfn);
1512 *p_pfn = pfn;
1513 return 0;
1517 * Pin guest page in memory and return its pfn.
1518 * @addr: host virtual address which maps memory to the guest
1519 * @atomic: whether this function can sleep
1520 * @async: whether this function need to wait IO complete if the
1521 * host page is not in the memory
1522 * @write_fault: whether we should get a writable host page
1523 * @writable: whether it allows to map a writable host page for !@write_fault
1525 * The function will map a writable host page for these two cases:
1526 * 1): @write_fault = true
1527 * 2): @write_fault = false && @writable, @writable will tell the caller
1528 * whether the mapping is writable.
1530 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1531 bool write_fault, bool *writable)
1533 struct vm_area_struct *vma;
1534 kvm_pfn_t pfn = 0;
1535 int npages, r;
1537 /* we can do it either atomically or asynchronously, not both */
1538 BUG_ON(atomic && async);
1540 if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1541 return pfn;
1543 if (atomic)
1544 return KVM_PFN_ERR_FAULT;
1546 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1547 if (npages == 1)
1548 return pfn;
1550 down_read(&current->mm->mmap_sem);
1551 if (npages == -EHWPOISON ||
1552 (!async && check_user_page_hwpoison(addr))) {
1553 pfn = KVM_PFN_ERR_HWPOISON;
1554 goto exit;
1557 retry:
1558 vma = find_vma_intersection(current->mm, addr, addr + 1);
1560 if (vma == NULL)
1561 pfn = KVM_PFN_ERR_FAULT;
1562 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1563 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
1564 if (r == -EAGAIN)
1565 goto retry;
1566 if (r < 0)
1567 pfn = KVM_PFN_ERR_FAULT;
1568 } else {
1569 if (async && vma_is_valid(vma, write_fault))
1570 *async = true;
1571 pfn = KVM_PFN_ERR_FAULT;
1573 exit:
1574 up_read(&current->mm->mmap_sem);
1575 return pfn;
1578 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1579 bool atomic, bool *async, bool write_fault,
1580 bool *writable)
1582 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1584 if (addr == KVM_HVA_ERR_RO_BAD) {
1585 if (writable)
1586 *writable = false;
1587 return KVM_PFN_ERR_RO_FAULT;
1590 if (kvm_is_error_hva(addr)) {
1591 if (writable)
1592 *writable = false;
1593 return KVM_PFN_NOSLOT;
1596 /* Do not map writable pfn in the readonly memslot. */
1597 if (writable && memslot_is_readonly(slot)) {
1598 *writable = false;
1599 writable = NULL;
1602 return hva_to_pfn(addr, atomic, async, write_fault,
1603 writable);
1605 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1607 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1608 bool *writable)
1610 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1611 write_fault, writable);
1613 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1615 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1617 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1619 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1621 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1623 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1625 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1627 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1629 return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1631 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1633 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1635 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1637 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1639 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1641 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1643 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1645 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1647 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1649 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1651 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1652 struct page **pages, int nr_pages)
1654 unsigned long addr;
1655 gfn_t entry;
1657 addr = gfn_to_hva_many(slot, gfn, &entry);
1658 if (kvm_is_error_hva(addr))
1659 return -1;
1661 if (entry < nr_pages)
1662 return 0;
1664 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1666 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1668 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1670 if (is_error_noslot_pfn(pfn))
1671 return KVM_ERR_PTR_BAD_PAGE;
1673 if (kvm_is_reserved_pfn(pfn)) {
1674 WARN_ON(1);
1675 return KVM_ERR_PTR_BAD_PAGE;
1678 return pfn_to_page(pfn);
1681 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1683 kvm_pfn_t pfn;
1685 pfn = gfn_to_pfn(kvm, gfn);
1687 return kvm_pfn_to_page(pfn);
1689 EXPORT_SYMBOL_GPL(gfn_to_page);
1691 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1693 kvm_pfn_t pfn;
1695 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1697 return kvm_pfn_to_page(pfn);
1699 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1701 void kvm_release_page_clean(struct page *page)
1703 WARN_ON(is_error_page(page));
1705 kvm_release_pfn_clean(page_to_pfn(page));
1707 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1709 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1711 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1712 put_page(pfn_to_page(pfn));
1714 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1716 void kvm_release_page_dirty(struct page *page)
1718 WARN_ON(is_error_page(page));
1720 kvm_release_pfn_dirty(page_to_pfn(page));
1722 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1724 static void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1726 kvm_set_pfn_dirty(pfn);
1727 kvm_release_pfn_clean(pfn);
1730 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1732 if (!kvm_is_reserved_pfn(pfn)) {
1733 struct page *page = pfn_to_page(pfn);
1735 if (!PageReserved(page))
1736 SetPageDirty(page);
1739 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1741 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1743 if (!kvm_is_reserved_pfn(pfn))
1744 mark_page_accessed(pfn_to_page(pfn));
1746 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1748 void kvm_get_pfn(kvm_pfn_t pfn)
1750 if (!kvm_is_reserved_pfn(pfn))
1751 get_page(pfn_to_page(pfn));
1753 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1755 static int next_segment(unsigned long len, int offset)
1757 if (len > PAGE_SIZE - offset)
1758 return PAGE_SIZE - offset;
1759 else
1760 return len;
1763 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1764 void *data, int offset, int len)
1766 int r;
1767 unsigned long addr;
1769 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1770 if (kvm_is_error_hva(addr))
1771 return -EFAULT;
1772 r = __copy_from_user(data, (void __user *)addr + offset, len);
1773 if (r)
1774 return -EFAULT;
1775 return 0;
1778 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1779 int len)
1781 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1783 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1785 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1787 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1788 int offset, int len)
1790 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1792 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1794 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1796 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1798 gfn_t gfn = gpa >> PAGE_SHIFT;
1799 int seg;
1800 int offset = offset_in_page(gpa);
1801 int ret;
1803 while ((seg = next_segment(len, offset)) != 0) {
1804 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1805 if (ret < 0)
1806 return ret;
1807 offset = 0;
1808 len -= seg;
1809 data += seg;
1810 ++gfn;
1812 return 0;
1814 EXPORT_SYMBOL_GPL(kvm_read_guest);
1816 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1818 gfn_t gfn = gpa >> PAGE_SHIFT;
1819 int seg;
1820 int offset = offset_in_page(gpa);
1821 int ret;
1823 while ((seg = next_segment(len, offset)) != 0) {
1824 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1825 if (ret < 0)
1826 return ret;
1827 offset = 0;
1828 len -= seg;
1829 data += seg;
1830 ++gfn;
1832 return 0;
1834 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1836 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1837 void *data, int offset, unsigned long len)
1839 int r;
1840 unsigned long addr;
1842 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1843 if (kvm_is_error_hva(addr))
1844 return -EFAULT;
1845 pagefault_disable();
1846 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1847 pagefault_enable();
1848 if (r)
1849 return -EFAULT;
1850 return 0;
1853 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1854 unsigned long len)
1856 gfn_t gfn = gpa >> PAGE_SHIFT;
1857 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1858 int offset = offset_in_page(gpa);
1860 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1862 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1864 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1865 void *data, unsigned long len)
1867 gfn_t gfn = gpa >> PAGE_SHIFT;
1868 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1869 int offset = offset_in_page(gpa);
1871 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1873 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1875 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1876 const void *data, int offset, int len)
1878 int r;
1879 unsigned long addr;
1881 addr = gfn_to_hva_memslot(memslot, gfn);
1882 if (kvm_is_error_hva(addr))
1883 return -EFAULT;
1884 r = __copy_to_user((void __user *)addr + offset, data, len);
1885 if (r)
1886 return -EFAULT;
1887 mark_page_dirty_in_slot(memslot, gfn);
1888 return 0;
1891 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1892 const void *data, int offset, int len)
1894 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1896 return __kvm_write_guest_page(slot, gfn, data, offset, len);
1898 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1900 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1901 const void *data, int offset, int len)
1903 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1905 return __kvm_write_guest_page(slot, gfn, data, offset, len);
1907 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1909 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1910 unsigned long len)
1912 gfn_t gfn = gpa >> PAGE_SHIFT;
1913 int seg;
1914 int offset = offset_in_page(gpa);
1915 int ret;
1917 while ((seg = next_segment(len, offset)) != 0) {
1918 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1919 if (ret < 0)
1920 return ret;
1921 offset = 0;
1922 len -= seg;
1923 data += seg;
1924 ++gfn;
1926 return 0;
1928 EXPORT_SYMBOL_GPL(kvm_write_guest);
1930 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1931 unsigned long len)
1933 gfn_t gfn = gpa >> PAGE_SHIFT;
1934 int seg;
1935 int offset = offset_in_page(gpa);
1936 int ret;
1938 while ((seg = next_segment(len, offset)) != 0) {
1939 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1940 if (ret < 0)
1941 return ret;
1942 offset = 0;
1943 len -= seg;
1944 data += seg;
1945 ++gfn;
1947 return 0;
1949 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1951 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1952 gpa_t gpa, unsigned long len)
1954 struct kvm_memslots *slots = kvm_memslots(kvm);
1955 int offset = offset_in_page(gpa);
1956 gfn_t start_gfn = gpa >> PAGE_SHIFT;
1957 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1958 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1959 gfn_t nr_pages_avail;
1961 ghc->gpa = gpa;
1962 ghc->generation = slots->generation;
1963 ghc->len = len;
1964 ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1965 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1966 if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1967 ghc->hva += offset;
1968 } else {
1970 * If the requested region crosses two memslots, we still
1971 * verify that the entire region is valid here.
1973 while (start_gfn <= end_gfn) {
1974 ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1975 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1976 &nr_pages_avail);
1977 if (kvm_is_error_hva(ghc->hva))
1978 return -EFAULT;
1979 start_gfn += nr_pages_avail;
1981 /* Use the slow path for cross page reads and writes. */
1982 ghc->memslot = NULL;
1984 return 0;
1986 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1988 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1989 void *data, unsigned long len)
1991 struct kvm_memslots *slots = kvm_memslots(kvm);
1992 int r;
1994 BUG_ON(len > ghc->len);
1996 if (slots->generation != ghc->generation)
1997 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1999 if (unlikely(!ghc->memslot))
2000 return kvm_write_guest(kvm, ghc->gpa, data, len);
2002 if (kvm_is_error_hva(ghc->hva))
2003 return -EFAULT;
2005 r = __copy_to_user((void __user *)ghc->hva, data, len);
2006 if (r)
2007 return -EFAULT;
2008 mark_page_dirty_in_slot(ghc->memslot, ghc->gpa >> PAGE_SHIFT);
2010 return 0;
2012 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2014 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2015 void *data, unsigned long len)
2017 struct kvm_memslots *slots = kvm_memslots(kvm);
2018 int r;
2020 BUG_ON(len > ghc->len);
2022 if (slots->generation != ghc->generation)
2023 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
2025 if (unlikely(!ghc->memslot))
2026 return kvm_read_guest(kvm, ghc->gpa, data, len);
2028 if (kvm_is_error_hva(ghc->hva))
2029 return -EFAULT;
2031 r = __copy_from_user(data, (void __user *)ghc->hva, len);
2032 if (r)
2033 return -EFAULT;
2035 return 0;
2037 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2039 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2041 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2043 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2045 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2047 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2049 gfn_t gfn = gpa >> PAGE_SHIFT;
2050 int seg;
2051 int offset = offset_in_page(gpa);
2052 int ret;
2054 while ((seg = next_segment(len, offset)) != 0) {
2055 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2056 if (ret < 0)
2057 return ret;
2058 offset = 0;
2059 len -= seg;
2060 ++gfn;
2062 return 0;
2064 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2066 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2067 gfn_t gfn)
2069 if (memslot && memslot->dirty_bitmap) {
2070 unsigned long rel_gfn = gfn - memslot->base_gfn;
2072 set_bit_le(rel_gfn, memslot->dirty_bitmap);
2076 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2078 struct kvm_memory_slot *memslot;
2080 memslot = gfn_to_memslot(kvm, gfn);
2081 mark_page_dirty_in_slot(memslot, gfn);
2083 EXPORT_SYMBOL_GPL(mark_page_dirty);
2085 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2087 struct kvm_memory_slot *memslot;
2089 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2090 mark_page_dirty_in_slot(memslot, gfn);
2092 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2094 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2096 unsigned int old, val, grow;
2098 old = val = vcpu->halt_poll_ns;
2099 grow = READ_ONCE(halt_poll_ns_grow);
2100 /* 10us base */
2101 if (val == 0 && grow)
2102 val = 10000;
2103 else
2104 val *= grow;
2106 if (val > halt_poll_ns)
2107 val = halt_poll_ns;
2109 vcpu->halt_poll_ns = val;
2110 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2113 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2115 unsigned int old, val, shrink;
2117 old = val = vcpu->halt_poll_ns;
2118 shrink = READ_ONCE(halt_poll_ns_shrink);
2119 if (shrink == 0)
2120 val = 0;
2121 else
2122 val /= shrink;
2124 vcpu->halt_poll_ns = val;
2125 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2128 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2130 if (kvm_arch_vcpu_runnable(vcpu)) {
2131 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2132 return -EINTR;
2134 if (kvm_cpu_has_pending_timer(vcpu))
2135 return -EINTR;
2136 if (signal_pending(current))
2137 return -EINTR;
2139 return 0;
2143 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2145 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2147 ktime_t start, cur;
2148 DECLARE_SWAITQUEUE(wait);
2149 bool waited = false;
2150 u64 block_ns;
2152 start = cur = ktime_get();
2153 if (vcpu->halt_poll_ns) {
2154 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2156 ++vcpu->stat.halt_attempted_poll;
2157 do {
2159 * This sets KVM_REQ_UNHALT if an interrupt
2160 * arrives.
2162 if (kvm_vcpu_check_block(vcpu) < 0) {
2163 ++vcpu->stat.halt_successful_poll;
2164 if (!vcpu_valid_wakeup(vcpu))
2165 ++vcpu->stat.halt_poll_invalid;
2166 goto out;
2168 cur = ktime_get();
2169 } while (single_task_running() && ktime_before(cur, stop));
2172 kvm_arch_vcpu_blocking(vcpu);
2174 for (;;) {
2175 prepare_to_swait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2177 if (kvm_vcpu_check_block(vcpu) < 0)
2178 break;
2180 waited = true;
2181 schedule();
2184 finish_swait(&vcpu->wq, &wait);
2185 cur = ktime_get();
2187 kvm_arch_vcpu_unblocking(vcpu);
2188 out:
2189 block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2191 if (!vcpu_valid_wakeup(vcpu))
2192 shrink_halt_poll_ns(vcpu);
2193 else if (halt_poll_ns) {
2194 if (block_ns <= vcpu->halt_poll_ns)
2196 /* we had a long block, shrink polling */
2197 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2198 shrink_halt_poll_ns(vcpu);
2199 /* we had a short halt and our poll time is too small */
2200 else if (vcpu->halt_poll_ns < halt_poll_ns &&
2201 block_ns < halt_poll_ns)
2202 grow_halt_poll_ns(vcpu);
2203 } else
2204 vcpu->halt_poll_ns = 0;
2206 trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2207 kvm_arch_vcpu_block_finish(vcpu);
2209 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2211 #ifndef CONFIG_S390
2212 void kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2214 struct swait_queue_head *wqp;
2216 wqp = kvm_arch_vcpu_wq(vcpu);
2217 if (swait_active(wqp)) {
2218 swake_up(wqp);
2219 ++vcpu->stat.halt_wakeup;
2223 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2226 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2228 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2230 int me;
2231 int cpu = vcpu->cpu;
2233 kvm_vcpu_wake_up(vcpu);
2234 me = get_cpu();
2235 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2236 if (kvm_arch_vcpu_should_kick(vcpu))
2237 smp_send_reschedule(cpu);
2238 put_cpu();
2240 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2241 #endif /* !CONFIG_S390 */
2243 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2245 struct pid *pid;
2246 struct task_struct *task = NULL;
2247 int ret = 0;
2249 rcu_read_lock();
2250 pid = rcu_dereference(target->pid);
2251 if (pid)
2252 task = get_pid_task(pid, PIDTYPE_PID);
2253 rcu_read_unlock();
2254 if (!task)
2255 return ret;
2256 ret = yield_to(task, 1);
2257 put_task_struct(task);
2259 return ret;
2261 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2264 * Helper that checks whether a VCPU is eligible for directed yield.
2265 * Most eligible candidate to yield is decided by following heuristics:
2267 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2268 * (preempted lock holder), indicated by @in_spin_loop.
2269 * Set at the beiginning and cleared at the end of interception/PLE handler.
2271 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2272 * chance last time (mostly it has become eligible now since we have probably
2273 * yielded to lockholder in last iteration. This is done by toggling
2274 * @dy_eligible each time a VCPU checked for eligibility.)
2276 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2277 * to preempted lock-holder could result in wrong VCPU selection and CPU
2278 * burning. Giving priority for a potential lock-holder increases lock
2279 * progress.
2281 * Since algorithm is based on heuristics, accessing another VCPU data without
2282 * locking does not harm. It may result in trying to yield to same VCPU, fail
2283 * and continue with next VCPU and so on.
2285 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2287 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2288 bool eligible;
2290 eligible = !vcpu->spin_loop.in_spin_loop ||
2291 vcpu->spin_loop.dy_eligible;
2293 if (vcpu->spin_loop.in_spin_loop)
2294 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2296 return eligible;
2297 #else
2298 return true;
2299 #endif
2302 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
2304 struct kvm *kvm = me->kvm;
2305 struct kvm_vcpu *vcpu;
2306 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2307 int yielded = 0;
2308 int try = 3;
2309 int pass;
2310 int i;
2312 kvm_vcpu_set_in_spin_loop(me, true);
2314 * We boost the priority of a VCPU that is runnable but not
2315 * currently running, because it got preempted by something
2316 * else and called schedule in __vcpu_run. Hopefully that
2317 * VCPU is holding the lock that we need and will release it.
2318 * We approximate round-robin by starting at the last boosted VCPU.
2320 for (pass = 0; pass < 2 && !yielded && try; pass++) {
2321 kvm_for_each_vcpu(i, vcpu, kvm) {
2322 if (!pass && i <= last_boosted_vcpu) {
2323 i = last_boosted_vcpu;
2324 continue;
2325 } else if (pass && i > last_boosted_vcpu)
2326 break;
2327 if (!ACCESS_ONCE(vcpu->preempted))
2328 continue;
2329 if (vcpu == me)
2330 continue;
2331 if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2332 continue;
2333 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2334 continue;
2336 yielded = kvm_vcpu_yield_to(vcpu);
2337 if (yielded > 0) {
2338 kvm->last_boosted_vcpu = i;
2339 break;
2340 } else if (yielded < 0) {
2341 try--;
2342 if (!try)
2343 break;
2347 kvm_vcpu_set_in_spin_loop(me, false);
2349 /* Ensure vcpu is not eligible during next spinloop */
2350 kvm_vcpu_set_dy_eligible(me, false);
2352 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2354 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2356 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
2357 struct page *page;
2359 if (vmf->pgoff == 0)
2360 page = virt_to_page(vcpu->run);
2361 #ifdef CONFIG_X86
2362 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2363 page = virt_to_page(vcpu->arch.pio_data);
2364 #endif
2365 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2366 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2367 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2368 #endif
2369 else
2370 return kvm_arch_vcpu_fault(vcpu, vmf);
2371 get_page(page);
2372 vmf->page = page;
2373 return 0;
2376 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2377 .fault = kvm_vcpu_fault,
2380 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2382 vma->vm_ops = &kvm_vcpu_vm_ops;
2383 return 0;
2386 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2388 struct kvm_vcpu *vcpu = filp->private_data;
2390 debugfs_remove_recursive(vcpu->debugfs_dentry);
2391 kvm_put_kvm(vcpu->kvm);
2392 return 0;
2395 static struct file_operations kvm_vcpu_fops = {
2396 .release = kvm_vcpu_release,
2397 .unlocked_ioctl = kvm_vcpu_ioctl,
2398 #ifdef CONFIG_KVM_COMPAT
2399 .compat_ioctl = kvm_vcpu_compat_ioctl,
2400 #endif
2401 .mmap = kvm_vcpu_mmap,
2402 .llseek = noop_llseek,
2406 * Allocates an inode for the vcpu.
2408 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2410 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2413 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2415 char dir_name[ITOA_MAX_LEN * 2];
2416 int ret;
2418 if (!kvm_arch_has_vcpu_debugfs())
2419 return 0;
2421 if (!debugfs_initialized())
2422 return 0;
2424 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2425 vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2426 vcpu->kvm->debugfs_dentry);
2427 if (!vcpu->debugfs_dentry)
2428 return -ENOMEM;
2430 ret = kvm_arch_create_vcpu_debugfs(vcpu);
2431 if (ret < 0) {
2432 debugfs_remove_recursive(vcpu->debugfs_dentry);
2433 return ret;
2436 return 0;
2440 * Creates some virtual cpus. Good luck creating more than one.
2442 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2444 int r;
2445 struct kvm_vcpu *vcpu;
2447 if (id >= KVM_MAX_VCPU_ID)
2448 return -EINVAL;
2450 mutex_lock(&kvm->lock);
2451 if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2452 mutex_unlock(&kvm->lock);
2453 return -EINVAL;
2456 kvm->created_vcpus++;
2457 mutex_unlock(&kvm->lock);
2459 vcpu = kvm_arch_vcpu_create(kvm, id);
2460 if (IS_ERR(vcpu)) {
2461 r = PTR_ERR(vcpu);
2462 goto vcpu_decrement;
2465 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2467 r = kvm_arch_vcpu_setup(vcpu);
2468 if (r)
2469 goto vcpu_destroy;
2471 r = kvm_create_vcpu_debugfs(vcpu);
2472 if (r)
2473 goto vcpu_destroy;
2475 mutex_lock(&kvm->lock);
2476 if (kvm_get_vcpu_by_id(kvm, id)) {
2477 r = -EEXIST;
2478 goto unlock_vcpu_destroy;
2481 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2483 /* Now it's all set up, let userspace reach it */
2484 kvm_get_kvm(kvm);
2485 r = create_vcpu_fd(vcpu);
2486 if (r < 0) {
2487 kvm_put_kvm(kvm);
2488 goto unlock_vcpu_destroy;
2491 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2494 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus
2495 * before kvm->online_vcpu's incremented value.
2497 smp_wmb();
2498 atomic_inc(&kvm->online_vcpus);
2500 mutex_unlock(&kvm->lock);
2501 kvm_arch_vcpu_postcreate(vcpu);
2502 return r;
2504 unlock_vcpu_destroy:
2505 mutex_unlock(&kvm->lock);
2506 debugfs_remove_recursive(vcpu->debugfs_dentry);
2507 vcpu_destroy:
2508 kvm_arch_vcpu_destroy(vcpu);
2509 vcpu_decrement:
2510 mutex_lock(&kvm->lock);
2511 kvm->created_vcpus--;
2512 mutex_unlock(&kvm->lock);
2513 return r;
2516 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2518 if (sigset) {
2519 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2520 vcpu->sigset_active = 1;
2521 vcpu->sigset = *sigset;
2522 } else
2523 vcpu->sigset_active = 0;
2524 return 0;
2527 static long kvm_vcpu_ioctl(struct file *filp,
2528 unsigned int ioctl, unsigned long arg)
2530 struct kvm_vcpu *vcpu = filp->private_data;
2531 void __user *argp = (void __user *)arg;
2532 int r;
2533 struct kvm_fpu *fpu = NULL;
2534 struct kvm_sregs *kvm_sregs = NULL;
2536 if (vcpu->kvm->mm != current->mm)
2537 return -EIO;
2539 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2540 return -EINVAL;
2542 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2544 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2545 * so vcpu_load() would break it.
2547 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
2548 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2549 #endif
2552 r = vcpu_load(vcpu);
2553 if (r)
2554 return r;
2555 switch (ioctl) {
2556 case KVM_RUN:
2557 r = -EINVAL;
2558 if (arg)
2559 goto out;
2560 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
2561 /* The thread running this VCPU changed. */
2562 struct pid *oldpid = vcpu->pid;
2563 struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2565 rcu_assign_pointer(vcpu->pid, newpid);
2566 if (oldpid)
2567 synchronize_rcu();
2568 put_pid(oldpid);
2570 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2571 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2572 break;
2573 case KVM_GET_REGS: {
2574 struct kvm_regs *kvm_regs;
2576 r = -ENOMEM;
2577 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2578 if (!kvm_regs)
2579 goto out;
2580 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2581 if (r)
2582 goto out_free1;
2583 r = -EFAULT;
2584 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2585 goto out_free1;
2586 r = 0;
2587 out_free1:
2588 kfree(kvm_regs);
2589 break;
2591 case KVM_SET_REGS: {
2592 struct kvm_regs *kvm_regs;
2594 r = -ENOMEM;
2595 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2596 if (IS_ERR(kvm_regs)) {
2597 r = PTR_ERR(kvm_regs);
2598 goto out;
2600 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2601 kfree(kvm_regs);
2602 break;
2604 case KVM_GET_SREGS: {
2605 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2606 r = -ENOMEM;
2607 if (!kvm_sregs)
2608 goto out;
2609 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2610 if (r)
2611 goto out;
2612 r = -EFAULT;
2613 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2614 goto out;
2615 r = 0;
2616 break;
2618 case KVM_SET_SREGS: {
2619 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2620 if (IS_ERR(kvm_sregs)) {
2621 r = PTR_ERR(kvm_sregs);
2622 kvm_sregs = NULL;
2623 goto out;
2625 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2626 break;
2628 case KVM_GET_MP_STATE: {
2629 struct kvm_mp_state mp_state;
2631 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2632 if (r)
2633 goto out;
2634 r = -EFAULT;
2635 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2636 goto out;
2637 r = 0;
2638 break;
2640 case KVM_SET_MP_STATE: {
2641 struct kvm_mp_state mp_state;
2643 r = -EFAULT;
2644 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2645 goto out;
2646 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2647 break;
2649 case KVM_TRANSLATE: {
2650 struct kvm_translation tr;
2652 r = -EFAULT;
2653 if (copy_from_user(&tr, argp, sizeof(tr)))
2654 goto out;
2655 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2656 if (r)
2657 goto out;
2658 r = -EFAULT;
2659 if (copy_to_user(argp, &tr, sizeof(tr)))
2660 goto out;
2661 r = 0;
2662 break;
2664 case KVM_SET_GUEST_DEBUG: {
2665 struct kvm_guest_debug dbg;
2667 r = -EFAULT;
2668 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2669 goto out;
2670 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2671 break;
2673 case KVM_SET_SIGNAL_MASK: {
2674 struct kvm_signal_mask __user *sigmask_arg = argp;
2675 struct kvm_signal_mask kvm_sigmask;
2676 sigset_t sigset, *p;
2678 p = NULL;
2679 if (argp) {
2680 r = -EFAULT;
2681 if (copy_from_user(&kvm_sigmask, argp,
2682 sizeof(kvm_sigmask)))
2683 goto out;
2684 r = -EINVAL;
2685 if (kvm_sigmask.len != sizeof(sigset))
2686 goto out;
2687 r = -EFAULT;
2688 if (copy_from_user(&sigset, sigmask_arg->sigset,
2689 sizeof(sigset)))
2690 goto out;
2691 p = &sigset;
2693 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2694 break;
2696 case KVM_GET_FPU: {
2697 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2698 r = -ENOMEM;
2699 if (!fpu)
2700 goto out;
2701 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2702 if (r)
2703 goto out;
2704 r = -EFAULT;
2705 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2706 goto out;
2707 r = 0;
2708 break;
2710 case KVM_SET_FPU: {
2711 fpu = memdup_user(argp, sizeof(*fpu));
2712 if (IS_ERR(fpu)) {
2713 r = PTR_ERR(fpu);
2714 fpu = NULL;
2715 goto out;
2717 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2718 break;
2720 default:
2721 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2723 out:
2724 vcpu_put(vcpu);
2725 kfree(fpu);
2726 kfree(kvm_sregs);
2727 return r;
2730 #ifdef CONFIG_KVM_COMPAT
2731 static long kvm_vcpu_compat_ioctl(struct file *filp,
2732 unsigned int ioctl, unsigned long arg)
2734 struct kvm_vcpu *vcpu = filp->private_data;
2735 void __user *argp = compat_ptr(arg);
2736 int r;
2738 if (vcpu->kvm->mm != current->mm)
2739 return -EIO;
2741 switch (ioctl) {
2742 case KVM_SET_SIGNAL_MASK: {
2743 struct kvm_signal_mask __user *sigmask_arg = argp;
2744 struct kvm_signal_mask kvm_sigmask;
2745 compat_sigset_t csigset;
2746 sigset_t sigset;
2748 if (argp) {
2749 r = -EFAULT;
2750 if (copy_from_user(&kvm_sigmask, argp,
2751 sizeof(kvm_sigmask)))
2752 goto out;
2753 r = -EINVAL;
2754 if (kvm_sigmask.len != sizeof(csigset))
2755 goto out;
2756 r = -EFAULT;
2757 if (copy_from_user(&csigset, sigmask_arg->sigset,
2758 sizeof(csigset)))
2759 goto out;
2760 sigset_from_compat(&sigset, &csigset);
2761 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2762 } else
2763 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2764 break;
2766 default:
2767 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2770 out:
2771 return r;
2773 #endif
2775 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2776 int (*accessor)(struct kvm_device *dev,
2777 struct kvm_device_attr *attr),
2778 unsigned long arg)
2780 struct kvm_device_attr attr;
2782 if (!accessor)
2783 return -EPERM;
2785 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2786 return -EFAULT;
2788 return accessor(dev, &attr);
2791 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2792 unsigned long arg)
2794 struct kvm_device *dev = filp->private_data;
2796 if (dev->kvm->mm != current->mm)
2797 return -EIO;
2799 switch (ioctl) {
2800 case KVM_SET_DEVICE_ATTR:
2801 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2802 case KVM_GET_DEVICE_ATTR:
2803 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2804 case KVM_HAS_DEVICE_ATTR:
2805 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2806 default:
2807 if (dev->ops->ioctl)
2808 return dev->ops->ioctl(dev, ioctl, arg);
2810 return -ENOTTY;
2814 static int kvm_device_release(struct inode *inode, struct file *filp)
2816 struct kvm_device *dev = filp->private_data;
2817 struct kvm *kvm = dev->kvm;
2819 kvm_put_kvm(kvm);
2820 return 0;
2823 static const struct file_operations kvm_device_fops = {
2824 .unlocked_ioctl = kvm_device_ioctl,
2825 #ifdef CONFIG_KVM_COMPAT
2826 .compat_ioctl = kvm_device_ioctl,
2827 #endif
2828 .release = kvm_device_release,
2831 struct kvm_device *kvm_device_from_filp(struct file *filp)
2833 if (filp->f_op != &kvm_device_fops)
2834 return NULL;
2836 return filp->private_data;
2839 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2840 #ifdef CONFIG_KVM_MPIC
2841 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
2842 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
2843 #endif
2845 #ifdef CONFIG_KVM_XICS
2846 [KVM_DEV_TYPE_XICS] = &kvm_xics_ops,
2847 #endif
2850 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2852 if (type >= ARRAY_SIZE(kvm_device_ops_table))
2853 return -ENOSPC;
2855 if (kvm_device_ops_table[type] != NULL)
2856 return -EEXIST;
2858 kvm_device_ops_table[type] = ops;
2859 return 0;
2862 void kvm_unregister_device_ops(u32 type)
2864 if (kvm_device_ops_table[type] != NULL)
2865 kvm_device_ops_table[type] = NULL;
2868 static int kvm_ioctl_create_device(struct kvm *kvm,
2869 struct kvm_create_device *cd)
2871 struct kvm_device_ops *ops = NULL;
2872 struct kvm_device *dev;
2873 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2874 int ret;
2876 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2877 return -ENODEV;
2879 ops = kvm_device_ops_table[cd->type];
2880 if (ops == NULL)
2881 return -ENODEV;
2883 if (test)
2884 return 0;
2886 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2887 if (!dev)
2888 return -ENOMEM;
2890 dev->ops = ops;
2891 dev->kvm = kvm;
2893 mutex_lock(&kvm->lock);
2894 ret = ops->create(dev, cd->type);
2895 if (ret < 0) {
2896 mutex_unlock(&kvm->lock);
2897 kfree(dev);
2898 return ret;
2900 list_add(&dev->vm_node, &kvm->devices);
2901 mutex_unlock(&kvm->lock);
2903 if (ops->init)
2904 ops->init(dev);
2906 kvm_get_kvm(kvm);
2907 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2908 if (ret < 0) {
2909 kvm_put_kvm(kvm);
2910 mutex_lock(&kvm->lock);
2911 list_del(&dev->vm_node);
2912 mutex_unlock(&kvm->lock);
2913 ops->destroy(dev);
2914 return ret;
2917 cd->fd = ret;
2918 return 0;
2921 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2923 switch (arg) {
2924 case KVM_CAP_USER_MEMORY:
2925 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2926 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2927 case KVM_CAP_INTERNAL_ERROR_DATA:
2928 #ifdef CONFIG_HAVE_KVM_MSI
2929 case KVM_CAP_SIGNAL_MSI:
2930 #endif
2931 #ifdef CONFIG_HAVE_KVM_IRQFD
2932 case KVM_CAP_IRQFD:
2933 case KVM_CAP_IRQFD_RESAMPLE:
2934 #endif
2935 case KVM_CAP_IOEVENTFD_ANY_LENGTH:
2936 case KVM_CAP_CHECK_EXTENSION_VM:
2937 return 1;
2938 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2939 case KVM_CAP_IRQ_ROUTING:
2940 return KVM_MAX_IRQ_ROUTES;
2941 #endif
2942 #if KVM_ADDRESS_SPACE_NUM > 1
2943 case KVM_CAP_MULTI_ADDRESS_SPACE:
2944 return KVM_ADDRESS_SPACE_NUM;
2945 #endif
2946 case KVM_CAP_MAX_VCPU_ID:
2947 return KVM_MAX_VCPU_ID;
2948 default:
2949 break;
2951 return kvm_vm_ioctl_check_extension(kvm, arg);
2954 static long kvm_vm_ioctl(struct file *filp,
2955 unsigned int ioctl, unsigned long arg)
2957 struct kvm *kvm = filp->private_data;
2958 void __user *argp = (void __user *)arg;
2959 int r;
2961 if (kvm->mm != current->mm)
2962 return -EIO;
2963 switch (ioctl) {
2964 case KVM_CREATE_VCPU:
2965 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2966 break;
2967 case KVM_SET_USER_MEMORY_REGION: {
2968 struct kvm_userspace_memory_region kvm_userspace_mem;
2970 r = -EFAULT;
2971 if (copy_from_user(&kvm_userspace_mem, argp,
2972 sizeof(kvm_userspace_mem)))
2973 goto out;
2975 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2976 break;
2978 case KVM_GET_DIRTY_LOG: {
2979 struct kvm_dirty_log log;
2981 r = -EFAULT;
2982 if (copy_from_user(&log, argp, sizeof(log)))
2983 goto out;
2984 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2985 break;
2987 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2988 case KVM_REGISTER_COALESCED_MMIO: {
2989 struct kvm_coalesced_mmio_zone zone;
2991 r = -EFAULT;
2992 if (copy_from_user(&zone, argp, sizeof(zone)))
2993 goto out;
2994 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2995 break;
2997 case KVM_UNREGISTER_COALESCED_MMIO: {
2998 struct kvm_coalesced_mmio_zone zone;
3000 r = -EFAULT;
3001 if (copy_from_user(&zone, argp, sizeof(zone)))
3002 goto out;
3003 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3004 break;
3006 #endif
3007 case KVM_IRQFD: {
3008 struct kvm_irqfd data;
3010 r = -EFAULT;
3011 if (copy_from_user(&data, argp, sizeof(data)))
3012 goto out;
3013 r = kvm_irqfd(kvm, &data);
3014 break;
3016 case KVM_IOEVENTFD: {
3017 struct kvm_ioeventfd data;
3019 r = -EFAULT;
3020 if (copy_from_user(&data, argp, sizeof(data)))
3021 goto out;
3022 r = kvm_ioeventfd(kvm, &data);
3023 break;
3025 #ifdef CONFIG_HAVE_KVM_MSI
3026 case KVM_SIGNAL_MSI: {
3027 struct kvm_msi msi;
3029 r = -EFAULT;
3030 if (copy_from_user(&msi, argp, sizeof(msi)))
3031 goto out;
3032 r = kvm_send_userspace_msi(kvm, &msi);
3033 break;
3035 #endif
3036 #ifdef __KVM_HAVE_IRQ_LINE
3037 case KVM_IRQ_LINE_STATUS:
3038 case KVM_IRQ_LINE: {
3039 struct kvm_irq_level irq_event;
3041 r = -EFAULT;
3042 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3043 goto out;
3045 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3046 ioctl == KVM_IRQ_LINE_STATUS);
3047 if (r)
3048 goto out;
3050 r = -EFAULT;
3051 if (ioctl == KVM_IRQ_LINE_STATUS) {
3052 if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3053 goto out;
3056 r = 0;
3057 break;
3059 #endif
3060 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3061 case KVM_SET_GSI_ROUTING: {
3062 struct kvm_irq_routing routing;
3063 struct kvm_irq_routing __user *urouting;
3064 struct kvm_irq_routing_entry *entries = NULL;
3066 r = -EFAULT;
3067 if (copy_from_user(&routing, argp, sizeof(routing)))
3068 goto out;
3069 r = -EINVAL;
3070 if (routing.nr > KVM_MAX_IRQ_ROUTES)
3071 goto out;
3072 if (routing.flags)
3073 goto out;
3074 if (routing.nr) {
3075 r = -ENOMEM;
3076 entries = vmalloc(routing.nr * sizeof(*entries));
3077 if (!entries)
3078 goto out;
3079 r = -EFAULT;
3080 urouting = argp;
3081 if (copy_from_user(entries, urouting->entries,
3082 routing.nr * sizeof(*entries)))
3083 goto out_free_irq_routing;
3085 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3086 routing.flags);
3087 out_free_irq_routing:
3088 vfree(entries);
3089 break;
3091 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3092 case KVM_CREATE_DEVICE: {
3093 struct kvm_create_device cd;
3095 r = -EFAULT;
3096 if (copy_from_user(&cd, argp, sizeof(cd)))
3097 goto out;
3099 r = kvm_ioctl_create_device(kvm, &cd);
3100 if (r)
3101 goto out;
3103 r = -EFAULT;
3104 if (copy_to_user(argp, &cd, sizeof(cd)))
3105 goto out;
3107 r = 0;
3108 break;
3110 case KVM_CHECK_EXTENSION:
3111 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3112 break;
3113 default:
3114 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3116 out:
3117 return r;
3120 #ifdef CONFIG_KVM_COMPAT
3121 struct compat_kvm_dirty_log {
3122 __u32 slot;
3123 __u32 padding1;
3124 union {
3125 compat_uptr_t dirty_bitmap; /* one bit per page */
3126 __u64 padding2;
3130 static long kvm_vm_compat_ioctl(struct file *filp,
3131 unsigned int ioctl, unsigned long arg)
3133 struct kvm *kvm = filp->private_data;
3134 int r;
3136 if (kvm->mm != current->mm)
3137 return -EIO;
3138 switch (ioctl) {
3139 case KVM_GET_DIRTY_LOG: {
3140 struct compat_kvm_dirty_log compat_log;
3141 struct kvm_dirty_log log;
3143 r = -EFAULT;
3144 if (copy_from_user(&compat_log, (void __user *)arg,
3145 sizeof(compat_log)))
3146 goto out;
3147 log.slot = compat_log.slot;
3148 log.padding1 = compat_log.padding1;
3149 log.padding2 = compat_log.padding2;
3150 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3152 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3153 break;
3155 default:
3156 r = kvm_vm_ioctl(filp, ioctl, arg);
3159 out:
3160 return r;
3162 #endif
3164 static struct file_operations kvm_vm_fops = {
3165 .release = kvm_vm_release,
3166 .unlocked_ioctl = kvm_vm_ioctl,
3167 #ifdef CONFIG_KVM_COMPAT
3168 .compat_ioctl = kvm_vm_compat_ioctl,
3169 #endif
3170 .llseek = noop_llseek,
3173 static int kvm_dev_ioctl_create_vm(unsigned long type)
3175 int r;
3176 struct kvm *kvm;
3177 struct file *file;
3179 kvm = kvm_create_vm(type);
3180 if (IS_ERR(kvm))
3181 return PTR_ERR(kvm);
3182 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
3183 r = kvm_coalesced_mmio_init(kvm);
3184 if (r < 0) {
3185 kvm_put_kvm(kvm);
3186 return r;
3188 #endif
3189 r = get_unused_fd_flags(O_CLOEXEC);
3190 if (r < 0) {
3191 kvm_put_kvm(kvm);
3192 return r;
3194 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3195 if (IS_ERR(file)) {
3196 put_unused_fd(r);
3197 kvm_put_kvm(kvm);
3198 return PTR_ERR(file);
3201 if (kvm_create_vm_debugfs(kvm, r) < 0) {
3202 put_unused_fd(r);
3203 fput(file);
3204 return -ENOMEM;
3207 fd_install(r, file);
3208 return r;
3211 static long kvm_dev_ioctl(struct file *filp,
3212 unsigned int ioctl, unsigned long arg)
3214 long r = -EINVAL;
3216 switch (ioctl) {
3217 case KVM_GET_API_VERSION:
3218 if (arg)
3219 goto out;
3220 r = KVM_API_VERSION;
3221 break;
3222 case KVM_CREATE_VM:
3223 r = kvm_dev_ioctl_create_vm(arg);
3224 break;
3225 case KVM_CHECK_EXTENSION:
3226 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3227 break;
3228 case KVM_GET_VCPU_MMAP_SIZE:
3229 if (arg)
3230 goto out;
3231 r = PAGE_SIZE; /* struct kvm_run */
3232 #ifdef CONFIG_X86
3233 r += PAGE_SIZE; /* pio data page */
3234 #endif
3235 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
3236 r += PAGE_SIZE; /* coalesced mmio ring page */
3237 #endif
3238 break;
3239 case KVM_TRACE_ENABLE:
3240 case KVM_TRACE_PAUSE:
3241 case KVM_TRACE_DISABLE:
3242 r = -EOPNOTSUPP;
3243 break;
3244 default:
3245 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3247 out:
3248 return r;
3251 static struct file_operations kvm_chardev_ops = {
3252 .unlocked_ioctl = kvm_dev_ioctl,
3253 .compat_ioctl = kvm_dev_ioctl,
3254 .llseek = noop_llseek,
3257 static struct miscdevice kvm_dev = {
3258 KVM_MINOR,
3259 "kvm",
3260 &kvm_chardev_ops,
3263 static void hardware_enable_nolock(void *junk)
3265 int cpu = raw_smp_processor_id();
3266 int r;
3268 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3269 return;
3271 cpumask_set_cpu(cpu, cpus_hardware_enabled);
3273 r = kvm_arch_hardware_enable();
3275 if (r) {
3276 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3277 atomic_inc(&hardware_enable_failed);
3278 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3282 static int kvm_starting_cpu(unsigned int cpu)
3284 raw_spin_lock(&kvm_count_lock);
3285 if (kvm_usage_count)
3286 hardware_enable_nolock(NULL);
3287 raw_spin_unlock(&kvm_count_lock);
3288 return 0;
3291 static void hardware_disable_nolock(void *junk)
3293 int cpu = raw_smp_processor_id();
3295 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3296 return;
3297 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3298 kvm_arch_hardware_disable();
3301 static int kvm_dying_cpu(unsigned int cpu)
3303 raw_spin_lock(&kvm_count_lock);
3304 if (kvm_usage_count)
3305 hardware_disable_nolock(NULL);
3306 raw_spin_unlock(&kvm_count_lock);
3307 return 0;
3310 static void hardware_disable_all_nolock(void)
3312 BUG_ON(!kvm_usage_count);
3314 kvm_usage_count--;
3315 if (!kvm_usage_count)
3316 on_each_cpu(hardware_disable_nolock, NULL, 1);
3319 static void hardware_disable_all(void)
3321 raw_spin_lock(&kvm_count_lock);
3322 hardware_disable_all_nolock();
3323 raw_spin_unlock(&kvm_count_lock);
3326 static int hardware_enable_all(void)
3328 int r = 0;
3330 raw_spin_lock(&kvm_count_lock);
3332 kvm_usage_count++;
3333 if (kvm_usage_count == 1) {
3334 atomic_set(&hardware_enable_failed, 0);
3335 on_each_cpu(hardware_enable_nolock, NULL, 1);
3337 if (atomic_read(&hardware_enable_failed)) {
3338 hardware_disable_all_nolock();
3339 r = -EBUSY;
3343 raw_spin_unlock(&kvm_count_lock);
3345 return r;
3348 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3349 void *v)
3352 * Some (well, at least mine) BIOSes hang on reboot if
3353 * in vmx root mode.
3355 * And Intel TXT required VMX off for all cpu when system shutdown.
3357 pr_info("kvm: exiting hardware virtualization\n");
3358 kvm_rebooting = true;
3359 on_each_cpu(hardware_disable_nolock, NULL, 1);
3360 return NOTIFY_OK;
3363 static struct notifier_block kvm_reboot_notifier = {
3364 .notifier_call = kvm_reboot,
3365 .priority = 0,
3368 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3370 int i;
3372 for (i = 0; i < bus->dev_count; i++) {
3373 struct kvm_io_device *pos = bus->range[i].dev;
3375 kvm_iodevice_destructor(pos);
3377 kfree(bus);
3380 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3381 const struct kvm_io_range *r2)
3383 gpa_t addr1 = r1->addr;
3384 gpa_t addr2 = r2->addr;
3386 if (addr1 < addr2)
3387 return -1;
3389 /* If r2->len == 0, match the exact address. If r2->len != 0,
3390 * accept any overlapping write. Any order is acceptable for
3391 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3392 * we process all of them.
3394 if (r2->len) {
3395 addr1 += r1->len;
3396 addr2 += r2->len;
3399 if (addr1 > addr2)
3400 return 1;
3402 return 0;
3405 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3407 return kvm_io_bus_cmp(p1, p2);
3410 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
3411 gpa_t addr, int len)
3413 bus->range[bus->dev_count++] = (struct kvm_io_range) {
3414 .addr = addr,
3415 .len = len,
3416 .dev = dev,
3419 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
3420 kvm_io_bus_sort_cmp, NULL);
3422 return 0;
3425 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3426 gpa_t addr, int len)
3428 struct kvm_io_range *range, key;
3429 int off;
3431 key = (struct kvm_io_range) {
3432 .addr = addr,
3433 .len = len,
3436 range = bsearch(&key, bus->range, bus->dev_count,
3437 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3438 if (range == NULL)
3439 return -ENOENT;
3441 off = range - bus->range;
3443 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3444 off--;
3446 return off;
3449 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3450 struct kvm_io_range *range, const void *val)
3452 int idx;
3454 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3455 if (idx < 0)
3456 return -EOPNOTSUPP;
3458 while (idx < bus->dev_count &&
3459 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3460 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3461 range->len, val))
3462 return idx;
3463 idx++;
3466 return -EOPNOTSUPP;
3469 /* kvm_io_bus_write - called under kvm->slots_lock */
3470 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3471 int len, const void *val)
3473 struct kvm_io_bus *bus;
3474 struct kvm_io_range range;
3475 int r;
3477 range = (struct kvm_io_range) {
3478 .addr = addr,
3479 .len = len,
3482 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3483 if (!bus)
3484 return -ENOMEM;
3485 r = __kvm_io_bus_write(vcpu, bus, &range, val);
3486 return r < 0 ? r : 0;
3489 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3490 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3491 gpa_t addr, int len, const void *val, long cookie)
3493 struct kvm_io_bus *bus;
3494 struct kvm_io_range range;
3496 range = (struct kvm_io_range) {
3497 .addr = addr,
3498 .len = len,
3501 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3502 if (!bus)
3503 return -ENOMEM;
3505 /* First try the device referenced by cookie. */
3506 if ((cookie >= 0) && (cookie < bus->dev_count) &&
3507 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3508 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3509 val))
3510 return cookie;
3513 * cookie contained garbage; fall back to search and return the
3514 * correct cookie value.
3516 return __kvm_io_bus_write(vcpu, bus, &range, val);
3519 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3520 struct kvm_io_range *range, void *val)
3522 int idx;
3524 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3525 if (idx < 0)
3526 return -EOPNOTSUPP;
3528 while (idx < bus->dev_count &&
3529 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3530 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3531 range->len, val))
3532 return idx;
3533 idx++;
3536 return -EOPNOTSUPP;
3538 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3540 /* kvm_io_bus_read - called under kvm->slots_lock */
3541 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3542 int len, void *val)
3544 struct kvm_io_bus *bus;
3545 struct kvm_io_range range;
3546 int r;
3548 range = (struct kvm_io_range) {
3549 .addr = addr,
3550 .len = len,
3553 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3554 if (!bus)
3555 return -ENOMEM;
3556 r = __kvm_io_bus_read(vcpu, bus, &range, val);
3557 return r < 0 ? r : 0;
3561 /* Caller must hold slots_lock. */
3562 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3563 int len, struct kvm_io_device *dev)
3565 struct kvm_io_bus *new_bus, *bus;
3567 bus = kvm->buses[bus_idx];
3568 if (!bus)
3569 return -ENOMEM;
3571 /* exclude ioeventfd which is limited by maximum fd */
3572 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3573 return -ENOSPC;
3575 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3576 sizeof(struct kvm_io_range)), GFP_KERNEL);
3577 if (!new_bus)
3578 return -ENOMEM;
3579 memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3580 sizeof(struct kvm_io_range)));
3581 kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3582 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3583 synchronize_srcu_expedited(&kvm->srcu);
3584 kfree(bus);
3586 return 0;
3589 /* Caller must hold slots_lock. */
3590 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3591 struct kvm_io_device *dev)
3593 int i;
3594 struct kvm_io_bus *new_bus, *bus;
3596 bus = kvm->buses[bus_idx];
3597 if (!bus)
3598 return;
3600 for (i = 0; i < bus->dev_count; i++)
3601 if (bus->range[i].dev == dev) {
3602 break;
3605 if (i == bus->dev_count)
3606 return;
3608 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3609 sizeof(struct kvm_io_range)), GFP_KERNEL);
3610 if (!new_bus) {
3611 pr_err("kvm: failed to shrink bus, removing it completely\n");
3612 goto broken;
3615 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3616 new_bus->dev_count--;
3617 memcpy(new_bus->range + i, bus->range + i + 1,
3618 (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3620 broken:
3621 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3622 synchronize_srcu_expedited(&kvm->srcu);
3623 kfree(bus);
3624 return;
3627 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3628 gpa_t addr)
3630 struct kvm_io_bus *bus;
3631 int dev_idx, srcu_idx;
3632 struct kvm_io_device *iodev = NULL;
3634 srcu_idx = srcu_read_lock(&kvm->srcu);
3636 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3637 if (!bus)
3638 goto out_unlock;
3640 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3641 if (dev_idx < 0)
3642 goto out_unlock;
3644 iodev = bus->range[dev_idx].dev;
3646 out_unlock:
3647 srcu_read_unlock(&kvm->srcu, srcu_idx);
3649 return iodev;
3651 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3653 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3654 int (*get)(void *, u64 *), int (*set)(void *, u64),
3655 const char *fmt)
3657 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3658 inode->i_private;
3660 /* The debugfs files are a reference to the kvm struct which
3661 * is still valid when kvm_destroy_vm is called.
3662 * To avoid the race between open and the removal of the debugfs
3663 * directory we test against the users count.
3665 if (!atomic_add_unless(&stat_data->kvm->users_count, 1, 0))
3666 return -ENOENT;
3668 if (simple_attr_open(inode, file, get, set, fmt)) {
3669 kvm_put_kvm(stat_data->kvm);
3670 return -ENOMEM;
3673 return 0;
3676 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3678 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3679 inode->i_private;
3681 simple_attr_release(inode, file);
3682 kvm_put_kvm(stat_data->kvm);
3684 return 0;
3687 static int vm_stat_get_per_vm(void *data, u64 *val)
3689 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3691 *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
3693 return 0;
3696 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3698 __simple_attr_check_format("%llu\n", 0ull);
3699 return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3700 NULL, "%llu\n");
3703 static const struct file_operations vm_stat_get_per_vm_fops = {
3704 .owner = THIS_MODULE,
3705 .open = vm_stat_get_per_vm_open,
3706 .release = kvm_debugfs_release,
3707 .read = simple_attr_read,
3708 .write = simple_attr_write,
3709 .llseek = generic_file_llseek,
3712 static int vcpu_stat_get_per_vm(void *data, u64 *val)
3714 int i;
3715 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3716 struct kvm_vcpu *vcpu;
3718 *val = 0;
3720 kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3721 *val += *(u64 *)((void *)vcpu + stat_data->offset);
3723 return 0;
3726 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
3728 __simple_attr_check_format("%llu\n", 0ull);
3729 return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
3730 NULL, "%llu\n");
3733 static const struct file_operations vcpu_stat_get_per_vm_fops = {
3734 .owner = THIS_MODULE,
3735 .open = vcpu_stat_get_per_vm_open,
3736 .release = kvm_debugfs_release,
3737 .read = simple_attr_read,
3738 .write = simple_attr_write,
3739 .llseek = generic_file_llseek,
3742 static const struct file_operations *stat_fops_per_vm[] = {
3743 [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
3744 [KVM_STAT_VM] = &vm_stat_get_per_vm_fops,
3747 static int vm_stat_get(void *_offset, u64 *val)
3749 unsigned offset = (long)_offset;
3750 struct kvm *kvm;
3751 struct kvm_stat_data stat_tmp = {.offset = offset};
3752 u64 tmp_val;
3754 *val = 0;
3755 spin_lock(&kvm_lock);
3756 list_for_each_entry(kvm, &vm_list, vm_list) {
3757 stat_tmp.kvm = kvm;
3758 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3759 *val += tmp_val;
3761 spin_unlock(&kvm_lock);
3762 return 0;
3765 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
3767 static int vcpu_stat_get(void *_offset, u64 *val)
3769 unsigned offset = (long)_offset;
3770 struct kvm *kvm;
3771 struct kvm_stat_data stat_tmp = {.offset = offset};
3772 u64 tmp_val;
3774 *val = 0;
3775 spin_lock(&kvm_lock);
3776 list_for_each_entry(kvm, &vm_list, vm_list) {
3777 stat_tmp.kvm = kvm;
3778 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3779 *val += tmp_val;
3781 spin_unlock(&kvm_lock);
3782 return 0;
3785 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
3787 static const struct file_operations *stat_fops[] = {
3788 [KVM_STAT_VCPU] = &vcpu_stat_fops,
3789 [KVM_STAT_VM] = &vm_stat_fops,
3792 static int kvm_init_debug(void)
3794 int r = -EEXIST;
3795 struct kvm_stats_debugfs_item *p;
3797 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3798 if (kvm_debugfs_dir == NULL)
3799 goto out;
3801 kvm_debugfs_num_entries = 0;
3802 for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
3803 if (!debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
3804 (void *)(long)p->offset,
3805 stat_fops[p->kind]))
3806 goto out_dir;
3809 return 0;
3811 out_dir:
3812 debugfs_remove_recursive(kvm_debugfs_dir);
3813 out:
3814 return r;
3817 static int kvm_suspend(void)
3819 if (kvm_usage_count)
3820 hardware_disable_nolock(NULL);
3821 return 0;
3824 static void kvm_resume(void)
3826 if (kvm_usage_count) {
3827 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3828 hardware_enable_nolock(NULL);
3832 static struct syscore_ops kvm_syscore_ops = {
3833 .suspend = kvm_suspend,
3834 .resume = kvm_resume,
3837 static inline
3838 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3840 return container_of(pn, struct kvm_vcpu, preempt_notifier);
3843 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3845 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3847 if (vcpu->preempted)
3848 vcpu->preempted = false;
3850 kvm_arch_sched_in(vcpu, cpu);
3852 kvm_arch_vcpu_load(vcpu, cpu);
3855 static void kvm_sched_out(struct preempt_notifier *pn,
3856 struct task_struct *next)
3858 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3860 if (current->state == TASK_RUNNING)
3861 vcpu->preempted = true;
3862 kvm_arch_vcpu_put(vcpu);
3865 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3866 struct module *module)
3868 int r;
3869 int cpu;
3871 r = kvm_arch_init(opaque);
3872 if (r)
3873 goto out_fail;
3876 * kvm_arch_init makes sure there's at most one caller
3877 * for architectures that support multiple implementations,
3878 * like intel and amd on x86.
3879 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3880 * conflicts in case kvm is already setup for another implementation.
3882 r = kvm_irqfd_init();
3883 if (r)
3884 goto out_irqfd;
3886 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3887 r = -ENOMEM;
3888 goto out_free_0;
3891 r = kvm_arch_hardware_setup();
3892 if (r < 0)
3893 goto out_free_0a;
3895 for_each_online_cpu(cpu) {
3896 smp_call_function_single(cpu,
3897 kvm_arch_check_processor_compat,
3898 &r, 1);
3899 if (r < 0)
3900 goto out_free_1;
3903 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "AP_KVM_STARTING",
3904 kvm_starting_cpu, kvm_dying_cpu);
3905 if (r)
3906 goto out_free_2;
3907 register_reboot_notifier(&kvm_reboot_notifier);
3909 /* A kmem cache lets us meet the alignment requirements of fx_save. */
3910 if (!vcpu_align)
3911 vcpu_align = __alignof__(struct kvm_vcpu);
3912 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3913 SLAB_ACCOUNT, NULL);
3914 if (!kvm_vcpu_cache) {
3915 r = -ENOMEM;
3916 goto out_free_3;
3919 r = kvm_async_pf_init();
3920 if (r)
3921 goto out_free;
3923 kvm_chardev_ops.owner = module;
3924 kvm_vm_fops.owner = module;
3925 kvm_vcpu_fops.owner = module;
3927 r = misc_register(&kvm_dev);
3928 if (r) {
3929 pr_err("kvm: misc device register failed\n");
3930 goto out_unreg;
3933 register_syscore_ops(&kvm_syscore_ops);
3935 kvm_preempt_ops.sched_in = kvm_sched_in;
3936 kvm_preempt_ops.sched_out = kvm_sched_out;
3938 r = kvm_init_debug();
3939 if (r) {
3940 pr_err("kvm: create debugfs files failed\n");
3941 goto out_undebugfs;
3944 r = kvm_vfio_ops_init();
3945 WARN_ON(r);
3947 return 0;
3949 out_undebugfs:
3950 unregister_syscore_ops(&kvm_syscore_ops);
3951 misc_deregister(&kvm_dev);
3952 out_unreg:
3953 kvm_async_pf_deinit();
3954 out_free:
3955 kmem_cache_destroy(kvm_vcpu_cache);
3956 out_free_3:
3957 unregister_reboot_notifier(&kvm_reboot_notifier);
3958 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
3959 out_free_2:
3960 out_free_1:
3961 kvm_arch_hardware_unsetup();
3962 out_free_0a:
3963 free_cpumask_var(cpus_hardware_enabled);
3964 out_free_0:
3965 kvm_irqfd_exit();
3966 out_irqfd:
3967 kvm_arch_exit();
3968 out_fail:
3969 return r;
3971 EXPORT_SYMBOL_GPL(kvm_init);
3973 void kvm_exit(void)
3975 debugfs_remove_recursive(kvm_debugfs_dir);
3976 misc_deregister(&kvm_dev);
3977 kmem_cache_destroy(kvm_vcpu_cache);
3978 kvm_async_pf_deinit();
3979 unregister_syscore_ops(&kvm_syscore_ops);
3980 unregister_reboot_notifier(&kvm_reboot_notifier);
3981 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
3982 on_each_cpu(hardware_disable_nolock, NULL, 1);
3983 kvm_arch_hardware_unsetup();
3984 kvm_arch_exit();
3985 kvm_irqfd_exit();
3986 free_cpumask_var(cpus_hardware_enabled);
3987 kvm_vfio_ops_exit();
3989 EXPORT_SYMBOL_GPL(kvm_exit);