2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
12 * This handles all read/write requests to block devices
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/blk-cgroup.h>
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/block.h>
43 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap
);
44 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap
);
45 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete
);
46 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split
);
47 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug
);
49 DEFINE_IDA(blk_queue_ida
);
52 * For the allocated request tables
54 struct kmem_cache
*request_cachep
;
57 * For queue allocation
59 struct kmem_cache
*blk_requestq_cachep
;
62 * Controlling structure to kblockd
64 static struct workqueue_struct
*kblockd_workqueue
;
66 static void blk_clear_congested(struct request_list
*rl
, int sync
)
68 #ifdef CONFIG_CGROUP_WRITEBACK
69 clear_wb_congested(rl
->blkg
->wb_congested
, sync
);
72 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
73 * flip its congestion state for events on other blkcgs.
75 if (rl
== &rl
->q
->root_rl
)
76 clear_wb_congested(rl
->q
->backing_dev_info
.wb
.congested
, sync
);
80 static void blk_set_congested(struct request_list
*rl
, int sync
)
82 #ifdef CONFIG_CGROUP_WRITEBACK
83 set_wb_congested(rl
->blkg
->wb_congested
, sync
);
85 /* see blk_clear_congested() */
86 if (rl
== &rl
->q
->root_rl
)
87 set_wb_congested(rl
->q
->backing_dev_info
.wb
.congested
, sync
);
91 void blk_queue_congestion_threshold(struct request_queue
*q
)
95 nr
= q
->nr_requests
- (q
->nr_requests
/ 8) + 1;
96 if (nr
> q
->nr_requests
)
98 q
->nr_congestion_on
= nr
;
100 nr
= q
->nr_requests
- (q
->nr_requests
/ 8) - (q
->nr_requests
/ 16) - 1;
103 q
->nr_congestion_off
= nr
;
107 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
110 * Locates the passed device's request queue and returns the address of its
111 * backing_dev_info. This function can only be called if @bdev is opened
112 * and the return value is never NULL.
114 struct backing_dev_info
*blk_get_backing_dev_info(struct block_device
*bdev
)
116 struct request_queue
*q
= bdev_get_queue(bdev
);
118 return &q
->backing_dev_info
;
120 EXPORT_SYMBOL(blk_get_backing_dev_info
);
122 void blk_rq_init(struct request_queue
*q
, struct request
*rq
)
124 memset(rq
, 0, sizeof(*rq
));
126 INIT_LIST_HEAD(&rq
->queuelist
);
127 INIT_LIST_HEAD(&rq
->timeout_list
);
130 rq
->__sector
= (sector_t
) -1;
131 INIT_HLIST_NODE(&rq
->hash
);
132 RB_CLEAR_NODE(&rq
->rb_node
);
134 rq
->cmd_len
= BLK_MAX_CDB
;
136 rq
->start_time
= jiffies
;
137 set_start_time_ns(rq
);
140 EXPORT_SYMBOL(blk_rq_init
);
142 static void req_bio_endio(struct request
*rq
, struct bio
*bio
,
143 unsigned int nbytes
, int error
)
146 bio
->bi_error
= error
;
148 if (unlikely(rq
->cmd_flags
& REQ_QUIET
))
149 bio_set_flag(bio
, BIO_QUIET
);
151 bio_advance(bio
, nbytes
);
153 /* don't actually finish bio if it's part of flush sequence */
154 if (bio
->bi_iter
.bi_size
== 0 && !(rq
->cmd_flags
& REQ_FLUSH_SEQ
))
158 void blk_dump_rq_flags(struct request
*rq
, char *msg
)
162 printk(KERN_INFO
"%s: dev %s: type=%x, flags=%llx\n", msg
,
163 rq
->rq_disk
? rq
->rq_disk
->disk_name
: "?", rq
->cmd_type
,
164 (unsigned long long) rq
->cmd_flags
);
166 printk(KERN_INFO
" sector %llu, nr/cnr %u/%u\n",
167 (unsigned long long)blk_rq_pos(rq
),
168 blk_rq_sectors(rq
), blk_rq_cur_sectors(rq
));
169 printk(KERN_INFO
" bio %p, biotail %p, len %u\n",
170 rq
->bio
, rq
->biotail
, blk_rq_bytes(rq
));
172 if (rq
->cmd_type
== REQ_TYPE_BLOCK_PC
) {
173 printk(KERN_INFO
" cdb: ");
174 for (bit
= 0; bit
< BLK_MAX_CDB
; bit
++)
175 printk("%02x ", rq
->cmd
[bit
]);
179 EXPORT_SYMBOL(blk_dump_rq_flags
);
181 static void blk_delay_work(struct work_struct
*work
)
183 struct request_queue
*q
;
185 q
= container_of(work
, struct request_queue
, delay_work
.work
);
186 spin_lock_irq(q
->queue_lock
);
188 spin_unlock_irq(q
->queue_lock
);
192 * blk_delay_queue - restart queueing after defined interval
193 * @q: The &struct request_queue in question
194 * @msecs: Delay in msecs
197 * Sometimes queueing needs to be postponed for a little while, to allow
198 * resources to come back. This function will make sure that queueing is
199 * restarted around the specified time. Queue lock must be held.
201 void blk_delay_queue(struct request_queue
*q
, unsigned long msecs
)
203 if (likely(!blk_queue_dead(q
)))
204 queue_delayed_work(kblockd_workqueue
, &q
->delay_work
,
205 msecs_to_jiffies(msecs
));
207 EXPORT_SYMBOL(blk_delay_queue
);
210 * blk_start_queue_async - asynchronously restart a previously stopped queue
211 * @q: The &struct request_queue in question
214 * blk_start_queue_async() will clear the stop flag on the queue, and
215 * ensure that the request_fn for the queue is run from an async
218 void blk_start_queue_async(struct request_queue
*q
)
220 queue_flag_clear(QUEUE_FLAG_STOPPED
, q
);
221 blk_run_queue_async(q
);
223 EXPORT_SYMBOL(blk_start_queue_async
);
226 * blk_start_queue - restart a previously stopped queue
227 * @q: The &struct request_queue in question
230 * blk_start_queue() will clear the stop flag on the queue, and call
231 * the request_fn for the queue if it was in a stopped state when
232 * entered. Also see blk_stop_queue(). Queue lock must be held.
234 void blk_start_queue(struct request_queue
*q
)
236 WARN_ON(!in_interrupt() && !irqs_disabled());
238 queue_flag_clear(QUEUE_FLAG_STOPPED
, q
);
241 EXPORT_SYMBOL(blk_start_queue
);
244 * blk_stop_queue - stop a queue
245 * @q: The &struct request_queue in question
248 * The Linux block layer assumes that a block driver will consume all
249 * entries on the request queue when the request_fn strategy is called.
250 * Often this will not happen, because of hardware limitations (queue
251 * depth settings). If a device driver gets a 'queue full' response,
252 * or if it simply chooses not to queue more I/O at one point, it can
253 * call this function to prevent the request_fn from being called until
254 * the driver has signalled it's ready to go again. This happens by calling
255 * blk_start_queue() to restart queue operations. Queue lock must be held.
257 void blk_stop_queue(struct request_queue
*q
)
259 cancel_delayed_work(&q
->delay_work
);
260 queue_flag_set(QUEUE_FLAG_STOPPED
, q
);
262 EXPORT_SYMBOL(blk_stop_queue
);
265 * blk_sync_queue - cancel any pending callbacks on a queue
269 * The block layer may perform asynchronous callback activity
270 * on a queue, such as calling the unplug function after a timeout.
271 * A block device may call blk_sync_queue to ensure that any
272 * such activity is cancelled, thus allowing it to release resources
273 * that the callbacks might use. The caller must already have made sure
274 * that its ->make_request_fn will not re-add plugging prior to calling
277 * This function does not cancel any asynchronous activity arising
278 * out of elevator or throttling code. That would require elevator_exit()
279 * and blkcg_exit_queue() to be called with queue lock initialized.
282 void blk_sync_queue(struct request_queue
*q
)
284 del_timer_sync(&q
->timeout
);
285 cancel_work_sync(&q
->timeout_work
);
288 struct blk_mq_hw_ctx
*hctx
;
291 queue_for_each_hw_ctx(q
, hctx
, i
) {
292 cancel_work_sync(&hctx
->run_work
);
293 cancel_delayed_work_sync(&hctx
->delay_work
);
296 cancel_delayed_work_sync(&q
->delay_work
);
299 EXPORT_SYMBOL(blk_sync_queue
);
302 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
303 * @q: The queue to run
306 * Invoke request handling on a queue if there are any pending requests.
307 * May be used to restart request handling after a request has completed.
308 * This variant runs the queue whether or not the queue has been
309 * stopped. Must be called with the queue lock held and interrupts
310 * disabled. See also @blk_run_queue.
312 inline void __blk_run_queue_uncond(struct request_queue
*q
)
314 if (unlikely(blk_queue_dead(q
)))
318 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
319 * the queue lock internally. As a result multiple threads may be
320 * running such a request function concurrently. Keep track of the
321 * number of active request_fn invocations such that blk_drain_queue()
322 * can wait until all these request_fn calls have finished.
324 q
->request_fn_active
++;
326 q
->request_fn_active
--;
328 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond
);
331 * __blk_run_queue - run a single device queue
332 * @q: The queue to run
335 * See @blk_run_queue. This variant must be called with the queue lock
336 * held and interrupts disabled.
338 void __blk_run_queue(struct request_queue
*q
)
340 if (unlikely(blk_queue_stopped(q
)))
343 __blk_run_queue_uncond(q
);
345 EXPORT_SYMBOL(__blk_run_queue
);
348 * blk_run_queue_async - run a single device queue in workqueue context
349 * @q: The queue to run
352 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
353 * of us. The caller must hold the queue lock.
355 void blk_run_queue_async(struct request_queue
*q
)
357 if (likely(!blk_queue_stopped(q
) && !blk_queue_dead(q
)))
358 mod_delayed_work(kblockd_workqueue
, &q
->delay_work
, 0);
360 EXPORT_SYMBOL(blk_run_queue_async
);
363 * blk_run_queue - run a single device queue
364 * @q: The queue to run
367 * Invoke request handling on this queue, if it has pending work to do.
368 * May be used to restart queueing when a request has completed.
370 void blk_run_queue(struct request_queue
*q
)
374 spin_lock_irqsave(q
->queue_lock
, flags
);
376 spin_unlock_irqrestore(q
->queue_lock
, flags
);
378 EXPORT_SYMBOL(blk_run_queue
);
380 void blk_put_queue(struct request_queue
*q
)
382 kobject_put(&q
->kobj
);
384 EXPORT_SYMBOL(blk_put_queue
);
387 * __blk_drain_queue - drain requests from request_queue
389 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
391 * Drain requests from @q. If @drain_all is set, all requests are drained.
392 * If not, only ELVPRIV requests are drained. The caller is responsible
393 * for ensuring that no new requests which need to be drained are queued.
395 static void __blk_drain_queue(struct request_queue
*q
, bool drain_all
)
396 __releases(q
->queue_lock
)
397 __acquires(q
->queue_lock
)
401 lockdep_assert_held(q
->queue_lock
);
407 * The caller might be trying to drain @q before its
408 * elevator is initialized.
411 elv_drain_elevator(q
);
413 blkcg_drain_queue(q
);
416 * This function might be called on a queue which failed
417 * driver init after queue creation or is not yet fully
418 * active yet. Some drivers (e.g. fd and loop) get unhappy
419 * in such cases. Kick queue iff dispatch queue has
420 * something on it and @q has request_fn set.
422 if (!list_empty(&q
->queue_head
) && q
->request_fn
)
425 drain
|= q
->nr_rqs_elvpriv
;
426 drain
|= q
->request_fn_active
;
429 * Unfortunately, requests are queued at and tracked from
430 * multiple places and there's no single counter which can
431 * be drained. Check all the queues and counters.
434 struct blk_flush_queue
*fq
= blk_get_flush_queue(q
, NULL
);
435 drain
|= !list_empty(&q
->queue_head
);
436 for (i
= 0; i
< 2; i
++) {
437 drain
|= q
->nr_rqs
[i
];
438 drain
|= q
->in_flight
[i
];
440 drain
|= !list_empty(&fq
->flush_queue
[i
]);
447 spin_unlock_irq(q
->queue_lock
);
451 spin_lock_irq(q
->queue_lock
);
455 * With queue marked dead, any woken up waiter will fail the
456 * allocation path, so the wakeup chaining is lost and we're
457 * left with hung waiters. We need to wake up those waiters.
460 struct request_list
*rl
;
462 blk_queue_for_each_rl(rl
, q
)
463 for (i
= 0; i
< ARRAY_SIZE(rl
->wait
); i
++)
464 wake_up_all(&rl
->wait
[i
]);
469 * blk_queue_bypass_start - enter queue bypass mode
470 * @q: queue of interest
472 * In bypass mode, only the dispatch FIFO queue of @q is used. This
473 * function makes @q enter bypass mode and drains all requests which were
474 * throttled or issued before. On return, it's guaranteed that no request
475 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
476 * inside queue or RCU read lock.
478 void blk_queue_bypass_start(struct request_queue
*q
)
480 spin_lock_irq(q
->queue_lock
);
482 queue_flag_set(QUEUE_FLAG_BYPASS
, q
);
483 spin_unlock_irq(q
->queue_lock
);
486 * Queues start drained. Skip actual draining till init is
487 * complete. This avoids lenghty delays during queue init which
488 * can happen many times during boot.
490 if (blk_queue_init_done(q
)) {
491 spin_lock_irq(q
->queue_lock
);
492 __blk_drain_queue(q
, false);
493 spin_unlock_irq(q
->queue_lock
);
495 /* ensure blk_queue_bypass() is %true inside RCU read lock */
499 EXPORT_SYMBOL_GPL(blk_queue_bypass_start
);
502 * blk_queue_bypass_end - leave queue bypass mode
503 * @q: queue of interest
505 * Leave bypass mode and restore the normal queueing behavior.
507 void blk_queue_bypass_end(struct request_queue
*q
)
509 spin_lock_irq(q
->queue_lock
);
510 if (!--q
->bypass_depth
)
511 queue_flag_clear(QUEUE_FLAG_BYPASS
, q
);
512 WARN_ON_ONCE(q
->bypass_depth
< 0);
513 spin_unlock_irq(q
->queue_lock
);
515 EXPORT_SYMBOL_GPL(blk_queue_bypass_end
);
517 void blk_set_queue_dying(struct request_queue
*q
)
519 spin_lock_irq(q
->queue_lock
);
520 queue_flag_set(QUEUE_FLAG_DYING
, q
);
521 spin_unlock_irq(q
->queue_lock
);
524 blk_mq_wake_waiters(q
);
526 struct request_list
*rl
;
528 blk_queue_for_each_rl(rl
, q
) {
530 wake_up_all(&rl
->wait
[BLK_RW_SYNC
]);
531 wake_up_all(&rl
->wait
[BLK_RW_ASYNC
]);
536 EXPORT_SYMBOL_GPL(blk_set_queue_dying
);
539 * blk_cleanup_queue - shutdown a request queue
540 * @q: request queue to shutdown
542 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
543 * put it. All future requests will be failed immediately with -ENODEV.
545 void blk_cleanup_queue(struct request_queue
*q
)
547 spinlock_t
*lock
= q
->queue_lock
;
549 /* mark @q DYING, no new request or merges will be allowed afterwards */
550 mutex_lock(&q
->sysfs_lock
);
551 blk_set_queue_dying(q
);
555 * A dying queue is permanently in bypass mode till released. Note
556 * that, unlike blk_queue_bypass_start(), we aren't performing
557 * synchronize_rcu() after entering bypass mode to avoid the delay
558 * as some drivers create and destroy a lot of queues while
559 * probing. This is still safe because blk_release_queue() will be
560 * called only after the queue refcnt drops to zero and nothing,
561 * RCU or not, would be traversing the queue by then.
564 queue_flag_set(QUEUE_FLAG_BYPASS
, q
);
566 queue_flag_set(QUEUE_FLAG_NOMERGES
, q
);
567 queue_flag_set(QUEUE_FLAG_NOXMERGES
, q
);
568 queue_flag_set(QUEUE_FLAG_DYING
, q
);
569 spin_unlock_irq(lock
);
570 mutex_unlock(&q
->sysfs_lock
);
573 * Drain all requests queued before DYING marking. Set DEAD flag to
574 * prevent that q->request_fn() gets invoked after draining finished.
579 __blk_drain_queue(q
, true);
580 queue_flag_set(QUEUE_FLAG_DEAD
, q
);
581 spin_unlock_irq(lock
);
583 /* for synchronous bio-based driver finish in-flight integrity i/o */
584 blk_flush_integrity();
586 /* @q won't process any more request, flush async actions */
587 del_timer_sync(&q
->backing_dev_info
.laptop_mode_wb_timer
);
591 blk_mq_free_queue(q
);
592 percpu_ref_exit(&q
->q_usage_counter
);
595 if (q
->queue_lock
!= &q
->__queue_lock
)
596 q
->queue_lock
= &q
->__queue_lock
;
597 spin_unlock_irq(lock
);
599 bdi_unregister(&q
->backing_dev_info
);
601 /* @q is and will stay empty, shutdown and put */
604 EXPORT_SYMBOL(blk_cleanup_queue
);
606 /* Allocate memory local to the request queue */
607 static void *alloc_request_struct(gfp_t gfp_mask
, void *data
)
609 int nid
= (int)(long)data
;
610 return kmem_cache_alloc_node(request_cachep
, gfp_mask
, nid
);
613 static void free_request_struct(void *element
, void *unused
)
615 kmem_cache_free(request_cachep
, element
);
618 int blk_init_rl(struct request_list
*rl
, struct request_queue
*q
,
621 if (unlikely(rl
->rq_pool
))
625 rl
->count
[BLK_RW_SYNC
] = rl
->count
[BLK_RW_ASYNC
] = 0;
626 rl
->starved
[BLK_RW_SYNC
] = rl
->starved
[BLK_RW_ASYNC
] = 0;
627 init_waitqueue_head(&rl
->wait
[BLK_RW_SYNC
]);
628 init_waitqueue_head(&rl
->wait
[BLK_RW_ASYNC
]);
630 rl
->rq_pool
= mempool_create_node(BLKDEV_MIN_RQ
, alloc_request_struct
,
632 (void *)(long)q
->node
, gfp_mask
,
640 void blk_exit_rl(struct request_list
*rl
)
643 mempool_destroy(rl
->rq_pool
);
646 struct request_queue
*blk_alloc_queue(gfp_t gfp_mask
)
648 return blk_alloc_queue_node(gfp_mask
, NUMA_NO_NODE
);
650 EXPORT_SYMBOL(blk_alloc_queue
);
652 int blk_queue_enter(struct request_queue
*q
, bool nowait
)
656 if (percpu_ref_tryget_live(&q
->q_usage_counter
))
662 wait_event(q
->mq_freeze_wq
,
663 !atomic_read(&q
->mq_freeze_depth
) ||
665 if (blk_queue_dying(q
))
670 void blk_queue_exit(struct request_queue
*q
)
672 percpu_ref_put(&q
->q_usage_counter
);
675 static void blk_queue_usage_counter_release(struct percpu_ref
*ref
)
677 struct request_queue
*q
=
678 container_of(ref
, struct request_queue
, q_usage_counter
);
680 wake_up_all(&q
->mq_freeze_wq
);
683 static void blk_rq_timed_out_timer(unsigned long data
)
685 struct request_queue
*q
= (struct request_queue
*)data
;
687 kblockd_schedule_work(&q
->timeout_work
);
690 struct request_queue
*blk_alloc_queue_node(gfp_t gfp_mask
, int node_id
)
692 struct request_queue
*q
;
695 q
= kmem_cache_alloc_node(blk_requestq_cachep
,
696 gfp_mask
| __GFP_ZERO
, node_id
);
700 q
->id
= ida_simple_get(&blk_queue_ida
, 0, 0, gfp_mask
);
704 q
->bio_split
= bioset_create(BIO_POOL_SIZE
, 0);
708 q
->backing_dev_info
.ra_pages
=
709 (VM_MAX_READAHEAD
* 1024) / PAGE_SIZE
;
710 q
->backing_dev_info
.capabilities
= BDI_CAP_CGROUP_WRITEBACK
;
711 q
->backing_dev_info
.name
= "block";
714 err
= bdi_init(&q
->backing_dev_info
);
718 setup_timer(&q
->backing_dev_info
.laptop_mode_wb_timer
,
719 laptop_mode_timer_fn
, (unsigned long) q
);
720 setup_timer(&q
->timeout
, blk_rq_timed_out_timer
, (unsigned long) q
);
721 INIT_WORK(&q
->timeout_work
, NULL
);
722 INIT_LIST_HEAD(&q
->queue_head
);
723 INIT_LIST_HEAD(&q
->timeout_list
);
724 INIT_LIST_HEAD(&q
->icq_list
);
725 #ifdef CONFIG_BLK_CGROUP
726 INIT_LIST_HEAD(&q
->blkg_list
);
728 INIT_DELAYED_WORK(&q
->delay_work
, blk_delay_work
);
730 kobject_init(&q
->kobj
, &blk_queue_ktype
);
732 mutex_init(&q
->sysfs_lock
);
733 spin_lock_init(&q
->__queue_lock
);
736 * By default initialize queue_lock to internal lock and driver can
737 * override it later if need be.
739 q
->queue_lock
= &q
->__queue_lock
;
742 * A queue starts its life with bypass turned on to avoid
743 * unnecessary bypass on/off overhead and nasty surprises during
744 * init. The initial bypass will be finished when the queue is
745 * registered by blk_register_queue().
748 __set_bit(QUEUE_FLAG_BYPASS
, &q
->queue_flags
);
750 init_waitqueue_head(&q
->mq_freeze_wq
);
753 * Init percpu_ref in atomic mode so that it's faster to shutdown.
754 * See blk_register_queue() for details.
756 if (percpu_ref_init(&q
->q_usage_counter
,
757 blk_queue_usage_counter_release
,
758 PERCPU_REF_INIT_ATOMIC
, GFP_KERNEL
))
761 if (blkcg_init_queue(q
))
767 percpu_ref_exit(&q
->q_usage_counter
);
769 bdi_destroy(&q
->backing_dev_info
);
771 bioset_free(q
->bio_split
);
773 ida_simple_remove(&blk_queue_ida
, q
->id
);
775 kmem_cache_free(blk_requestq_cachep
, q
);
778 EXPORT_SYMBOL(blk_alloc_queue_node
);
781 * blk_init_queue - prepare a request queue for use with a block device
782 * @rfn: The function to be called to process requests that have been
783 * placed on the queue.
784 * @lock: Request queue spin lock
787 * If a block device wishes to use the standard request handling procedures,
788 * which sorts requests and coalesces adjacent requests, then it must
789 * call blk_init_queue(). The function @rfn will be called when there
790 * are requests on the queue that need to be processed. If the device
791 * supports plugging, then @rfn may not be called immediately when requests
792 * are available on the queue, but may be called at some time later instead.
793 * Plugged queues are generally unplugged when a buffer belonging to one
794 * of the requests on the queue is needed, or due to memory pressure.
796 * @rfn is not required, or even expected, to remove all requests off the
797 * queue, but only as many as it can handle at a time. If it does leave
798 * requests on the queue, it is responsible for arranging that the requests
799 * get dealt with eventually.
801 * The queue spin lock must be held while manipulating the requests on the
802 * request queue; this lock will be taken also from interrupt context, so irq
803 * disabling is needed for it.
805 * Function returns a pointer to the initialized request queue, or %NULL if
809 * blk_init_queue() must be paired with a blk_cleanup_queue() call
810 * when the block device is deactivated (such as at module unload).
813 struct request_queue
*blk_init_queue(request_fn_proc
*rfn
, spinlock_t
*lock
)
815 return blk_init_queue_node(rfn
, lock
, NUMA_NO_NODE
);
817 EXPORT_SYMBOL(blk_init_queue
);
819 struct request_queue
*
820 blk_init_queue_node(request_fn_proc
*rfn
, spinlock_t
*lock
, int node_id
)
822 struct request_queue
*uninit_q
, *q
;
824 uninit_q
= blk_alloc_queue_node(GFP_KERNEL
, node_id
);
828 q
= blk_init_allocated_queue(uninit_q
, rfn
, lock
);
830 blk_cleanup_queue(uninit_q
);
834 EXPORT_SYMBOL(blk_init_queue_node
);
836 static blk_qc_t
blk_queue_bio(struct request_queue
*q
, struct bio
*bio
);
838 struct request_queue
*
839 blk_init_allocated_queue(struct request_queue
*q
, request_fn_proc
*rfn
,
845 q
->fq
= blk_alloc_flush_queue(q
, NUMA_NO_NODE
, 0);
849 if (blk_init_rl(&q
->root_rl
, q
, GFP_KERNEL
))
852 INIT_WORK(&q
->timeout_work
, blk_timeout_work
);
854 q
->prep_rq_fn
= NULL
;
855 q
->unprep_rq_fn
= NULL
;
856 q
->queue_flags
|= QUEUE_FLAG_DEFAULT
;
858 /* Override internal queue lock with supplied lock pointer */
860 q
->queue_lock
= lock
;
863 * This also sets hw/phys segments, boundary and size
865 blk_queue_make_request(q
, blk_queue_bio
);
867 q
->sg_reserved_size
= INT_MAX
;
869 /* Protect q->elevator from elevator_change */
870 mutex_lock(&q
->sysfs_lock
);
873 if (elevator_init(q
, NULL
)) {
874 mutex_unlock(&q
->sysfs_lock
);
878 mutex_unlock(&q
->sysfs_lock
);
883 blk_free_flush_queue(q
->fq
);
886 EXPORT_SYMBOL(blk_init_allocated_queue
);
888 bool blk_get_queue(struct request_queue
*q
)
890 if (likely(!blk_queue_dying(q
))) {
897 EXPORT_SYMBOL(blk_get_queue
);
899 static inline void blk_free_request(struct request_list
*rl
, struct request
*rq
)
901 if (rq
->cmd_flags
& REQ_ELVPRIV
) {
902 elv_put_request(rl
->q
, rq
);
904 put_io_context(rq
->elv
.icq
->ioc
);
907 mempool_free(rq
, rl
->rq_pool
);
911 * ioc_batching returns true if the ioc is a valid batching request and
912 * should be given priority access to a request.
914 static inline int ioc_batching(struct request_queue
*q
, struct io_context
*ioc
)
920 * Make sure the process is able to allocate at least 1 request
921 * even if the batch times out, otherwise we could theoretically
924 return ioc
->nr_batch_requests
== q
->nr_batching
||
925 (ioc
->nr_batch_requests
> 0
926 && time_before(jiffies
, ioc
->last_waited
+ BLK_BATCH_TIME
));
930 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
931 * will cause the process to be a "batcher" on all queues in the system. This
932 * is the behaviour we want though - once it gets a wakeup it should be given
935 static void ioc_set_batching(struct request_queue
*q
, struct io_context
*ioc
)
937 if (!ioc
|| ioc_batching(q
, ioc
))
940 ioc
->nr_batch_requests
= q
->nr_batching
;
941 ioc
->last_waited
= jiffies
;
944 static void __freed_request(struct request_list
*rl
, int sync
)
946 struct request_queue
*q
= rl
->q
;
948 if (rl
->count
[sync
] < queue_congestion_off_threshold(q
))
949 blk_clear_congested(rl
, sync
);
951 if (rl
->count
[sync
] + 1 <= q
->nr_requests
) {
952 if (waitqueue_active(&rl
->wait
[sync
]))
953 wake_up(&rl
->wait
[sync
]);
955 blk_clear_rl_full(rl
, sync
);
960 * A request has just been released. Account for it, update the full and
961 * congestion status, wake up any waiters. Called under q->queue_lock.
963 static void freed_request(struct request_list
*rl
, int op
, unsigned int flags
)
965 struct request_queue
*q
= rl
->q
;
966 int sync
= rw_is_sync(op
, flags
);
970 if (flags
& REQ_ELVPRIV
)
973 __freed_request(rl
, sync
);
975 if (unlikely(rl
->starved
[sync
^ 1]))
976 __freed_request(rl
, sync
^ 1);
979 int blk_update_nr_requests(struct request_queue
*q
, unsigned int nr
)
981 struct request_list
*rl
;
982 int on_thresh
, off_thresh
;
984 spin_lock_irq(q
->queue_lock
);
986 blk_queue_congestion_threshold(q
);
987 on_thresh
= queue_congestion_on_threshold(q
);
988 off_thresh
= queue_congestion_off_threshold(q
);
990 blk_queue_for_each_rl(rl
, q
) {
991 if (rl
->count
[BLK_RW_SYNC
] >= on_thresh
)
992 blk_set_congested(rl
, BLK_RW_SYNC
);
993 else if (rl
->count
[BLK_RW_SYNC
] < off_thresh
)
994 blk_clear_congested(rl
, BLK_RW_SYNC
);
996 if (rl
->count
[BLK_RW_ASYNC
] >= on_thresh
)
997 blk_set_congested(rl
, BLK_RW_ASYNC
);
998 else if (rl
->count
[BLK_RW_ASYNC
] < off_thresh
)
999 blk_clear_congested(rl
, BLK_RW_ASYNC
);
1001 if (rl
->count
[BLK_RW_SYNC
] >= q
->nr_requests
) {
1002 blk_set_rl_full(rl
, BLK_RW_SYNC
);
1004 blk_clear_rl_full(rl
, BLK_RW_SYNC
);
1005 wake_up(&rl
->wait
[BLK_RW_SYNC
]);
1008 if (rl
->count
[BLK_RW_ASYNC
] >= q
->nr_requests
) {
1009 blk_set_rl_full(rl
, BLK_RW_ASYNC
);
1011 blk_clear_rl_full(rl
, BLK_RW_ASYNC
);
1012 wake_up(&rl
->wait
[BLK_RW_ASYNC
]);
1016 spin_unlock_irq(q
->queue_lock
);
1021 * Determine if elevator data should be initialized when allocating the
1022 * request associated with @bio.
1024 static bool blk_rq_should_init_elevator(struct bio
*bio
)
1030 * Flush requests do not use the elevator so skip initialization.
1031 * This allows a request to share the flush and elevator data.
1033 if (bio
->bi_opf
& (REQ_PREFLUSH
| REQ_FUA
))
1040 * rq_ioc - determine io_context for request allocation
1041 * @bio: request being allocated is for this bio (can be %NULL)
1043 * Determine io_context to use for request allocation for @bio. May return
1044 * %NULL if %current->io_context doesn't exist.
1046 static struct io_context
*rq_ioc(struct bio
*bio
)
1048 #ifdef CONFIG_BLK_CGROUP
1049 if (bio
&& bio
->bi_ioc
)
1052 return current
->io_context
;
1056 * __get_request - get a free request
1057 * @rl: request list to allocate from
1058 * @op: REQ_OP_READ/REQ_OP_WRITE
1059 * @op_flags: rq_flag_bits
1060 * @bio: bio to allocate request for (can be %NULL)
1061 * @gfp_mask: allocation mask
1063 * Get a free request from @q. This function may fail under memory
1064 * pressure or if @q is dead.
1066 * Must be called with @q->queue_lock held and,
1067 * Returns ERR_PTR on failure, with @q->queue_lock held.
1068 * Returns request pointer on success, with @q->queue_lock *not held*.
1070 static struct request
*__get_request(struct request_list
*rl
, int op
,
1071 int op_flags
, struct bio
*bio
,
1074 struct request_queue
*q
= rl
->q
;
1076 struct elevator_type
*et
= q
->elevator
->type
;
1077 struct io_context
*ioc
= rq_ioc(bio
);
1078 struct io_cq
*icq
= NULL
;
1079 const bool is_sync
= rw_is_sync(op
, op_flags
) != 0;
1082 if (unlikely(blk_queue_dying(q
)))
1083 return ERR_PTR(-ENODEV
);
1085 may_queue
= elv_may_queue(q
, op
, op_flags
);
1086 if (may_queue
== ELV_MQUEUE_NO
)
1089 if (rl
->count
[is_sync
]+1 >= queue_congestion_on_threshold(q
)) {
1090 if (rl
->count
[is_sync
]+1 >= q
->nr_requests
) {
1092 * The queue will fill after this allocation, so set
1093 * it as full, and mark this process as "batching".
1094 * This process will be allowed to complete a batch of
1095 * requests, others will be blocked.
1097 if (!blk_rl_full(rl
, is_sync
)) {
1098 ioc_set_batching(q
, ioc
);
1099 blk_set_rl_full(rl
, is_sync
);
1101 if (may_queue
!= ELV_MQUEUE_MUST
1102 && !ioc_batching(q
, ioc
)) {
1104 * The queue is full and the allocating
1105 * process is not a "batcher", and not
1106 * exempted by the IO scheduler
1108 return ERR_PTR(-ENOMEM
);
1112 blk_set_congested(rl
, is_sync
);
1116 * Only allow batching queuers to allocate up to 50% over the defined
1117 * limit of requests, otherwise we could have thousands of requests
1118 * allocated with any setting of ->nr_requests
1120 if (rl
->count
[is_sync
] >= (3 * q
->nr_requests
/ 2))
1121 return ERR_PTR(-ENOMEM
);
1123 q
->nr_rqs
[is_sync
]++;
1124 rl
->count
[is_sync
]++;
1125 rl
->starved
[is_sync
] = 0;
1128 * Decide whether the new request will be managed by elevator. If
1129 * so, mark @op_flags and increment elvpriv. Non-zero elvpriv will
1130 * prevent the current elevator from being destroyed until the new
1131 * request is freed. This guarantees icq's won't be destroyed and
1132 * makes creating new ones safe.
1134 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1135 * it will be created after releasing queue_lock.
1137 if (blk_rq_should_init_elevator(bio
) && !blk_queue_bypass(q
)) {
1138 op_flags
|= REQ_ELVPRIV
;
1139 q
->nr_rqs_elvpriv
++;
1140 if (et
->icq_cache
&& ioc
)
1141 icq
= ioc_lookup_icq(ioc
, q
);
1144 if (blk_queue_io_stat(q
))
1145 op_flags
|= REQ_IO_STAT
;
1146 spin_unlock_irq(q
->queue_lock
);
1148 /* allocate and init request */
1149 rq
= mempool_alloc(rl
->rq_pool
, gfp_mask
);
1154 blk_rq_set_rl(rq
, rl
);
1155 req_set_op_attrs(rq
, op
, op_flags
| REQ_ALLOCED
);
1158 if (op_flags
& REQ_ELVPRIV
) {
1159 if (unlikely(et
->icq_cache
&& !icq
)) {
1161 icq
= ioc_create_icq(ioc
, q
, gfp_mask
);
1167 if (unlikely(elv_set_request(q
, rq
, bio
, gfp_mask
)))
1170 /* @rq->elv.icq holds io_context until @rq is freed */
1172 get_io_context(icq
->ioc
);
1176 * ioc may be NULL here, and ioc_batching will be false. That's
1177 * OK, if the queue is under the request limit then requests need
1178 * not count toward the nr_batch_requests limit. There will always
1179 * be some limit enforced by BLK_BATCH_TIME.
1181 if (ioc_batching(q
, ioc
))
1182 ioc
->nr_batch_requests
--;
1184 trace_block_getrq(q
, bio
, op
);
1189 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1190 * and may fail indefinitely under memory pressure and thus
1191 * shouldn't stall IO. Treat this request as !elvpriv. This will
1192 * disturb iosched and blkcg but weird is bettern than dead.
1194 printk_ratelimited(KERN_WARNING
"%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1195 __func__
, dev_name(q
->backing_dev_info
.dev
));
1197 rq
->cmd_flags
&= ~REQ_ELVPRIV
;
1200 spin_lock_irq(q
->queue_lock
);
1201 q
->nr_rqs_elvpriv
--;
1202 spin_unlock_irq(q
->queue_lock
);
1207 * Allocation failed presumably due to memory. Undo anything we
1208 * might have messed up.
1210 * Allocating task should really be put onto the front of the wait
1211 * queue, but this is pretty rare.
1213 spin_lock_irq(q
->queue_lock
);
1214 freed_request(rl
, op
, op_flags
);
1217 * in the very unlikely event that allocation failed and no
1218 * requests for this direction was pending, mark us starved so that
1219 * freeing of a request in the other direction will notice
1220 * us. another possible fix would be to split the rq mempool into
1224 if (unlikely(rl
->count
[is_sync
] == 0))
1225 rl
->starved
[is_sync
] = 1;
1226 return ERR_PTR(-ENOMEM
);
1230 * get_request - get a free request
1231 * @q: request_queue to allocate request from
1232 * @op: REQ_OP_READ/REQ_OP_WRITE
1233 * @op_flags: rq_flag_bits
1234 * @bio: bio to allocate request for (can be %NULL)
1235 * @gfp_mask: allocation mask
1237 * Get a free request from @q. If %__GFP_DIRECT_RECLAIM is set in @gfp_mask,
1238 * this function keeps retrying under memory pressure and fails iff @q is dead.
1240 * Must be called with @q->queue_lock held and,
1241 * Returns ERR_PTR on failure, with @q->queue_lock held.
1242 * Returns request pointer on success, with @q->queue_lock *not held*.
1244 static struct request
*get_request(struct request_queue
*q
, int op
,
1245 int op_flags
, struct bio
*bio
,
1248 const bool is_sync
= rw_is_sync(op
, op_flags
) != 0;
1250 struct request_list
*rl
;
1253 rl
= blk_get_rl(q
, bio
); /* transferred to @rq on success */
1255 rq
= __get_request(rl
, op
, op_flags
, bio
, gfp_mask
);
1259 if (!gfpflags_allow_blocking(gfp_mask
) || unlikely(blk_queue_dying(q
))) {
1264 /* wait on @rl and retry */
1265 prepare_to_wait_exclusive(&rl
->wait
[is_sync
], &wait
,
1266 TASK_UNINTERRUPTIBLE
);
1268 trace_block_sleeprq(q
, bio
, op
);
1270 spin_unlock_irq(q
->queue_lock
);
1274 * After sleeping, we become a "batching" process and will be able
1275 * to allocate at least one request, and up to a big batch of them
1276 * for a small period time. See ioc_batching, ioc_set_batching
1278 ioc_set_batching(q
, current
->io_context
);
1280 spin_lock_irq(q
->queue_lock
);
1281 finish_wait(&rl
->wait
[is_sync
], &wait
);
1286 static struct request
*blk_old_get_request(struct request_queue
*q
, int rw
,
1291 BUG_ON(rw
!= READ
&& rw
!= WRITE
);
1293 /* create ioc upfront */
1294 create_io_context(gfp_mask
, q
->node
);
1296 spin_lock_irq(q
->queue_lock
);
1297 rq
= get_request(q
, rw
, 0, NULL
, gfp_mask
);
1299 spin_unlock_irq(q
->queue_lock
);
1303 /* q->queue_lock is unlocked at this point */
1305 rq
->__sector
= (sector_t
) -1;
1306 rq
->bio
= rq
->biotail
= NULL
;
1310 struct request
*blk_get_request(struct request_queue
*q
, int rw
, gfp_t gfp_mask
)
1313 return blk_mq_alloc_request(q
, rw
,
1314 (gfp_mask
& __GFP_DIRECT_RECLAIM
) ?
1315 0 : BLK_MQ_REQ_NOWAIT
);
1317 return blk_old_get_request(q
, rw
, gfp_mask
);
1319 EXPORT_SYMBOL(blk_get_request
);
1322 * blk_rq_set_block_pc - initialize a request to type BLOCK_PC
1323 * @rq: request to be initialized
1326 void blk_rq_set_block_pc(struct request
*rq
)
1328 rq
->cmd_type
= REQ_TYPE_BLOCK_PC
;
1329 memset(rq
->__cmd
, 0, sizeof(rq
->__cmd
));
1331 EXPORT_SYMBOL(blk_rq_set_block_pc
);
1334 * blk_requeue_request - put a request back on queue
1335 * @q: request queue where request should be inserted
1336 * @rq: request to be inserted
1339 * Drivers often keep queueing requests until the hardware cannot accept
1340 * more, when that condition happens we need to put the request back
1341 * on the queue. Must be called with queue lock held.
1343 void blk_requeue_request(struct request_queue
*q
, struct request
*rq
)
1345 blk_delete_timer(rq
);
1346 blk_clear_rq_complete(rq
);
1347 trace_block_rq_requeue(q
, rq
);
1349 if (rq
->cmd_flags
& REQ_QUEUED
)
1350 blk_queue_end_tag(q
, rq
);
1352 BUG_ON(blk_queued_rq(rq
));
1354 elv_requeue_request(q
, rq
);
1356 EXPORT_SYMBOL(blk_requeue_request
);
1358 static void add_acct_request(struct request_queue
*q
, struct request
*rq
,
1361 blk_account_io_start(rq
, true);
1362 __elv_add_request(q
, rq
, where
);
1365 static void part_round_stats_single(int cpu
, struct hd_struct
*part
,
1370 if (now
== part
->stamp
)
1373 inflight
= part_in_flight(part
);
1375 __part_stat_add(cpu
, part
, time_in_queue
,
1376 inflight
* (now
- part
->stamp
));
1377 __part_stat_add(cpu
, part
, io_ticks
, (now
- part
->stamp
));
1383 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1384 * @cpu: cpu number for stats access
1385 * @part: target partition
1387 * The average IO queue length and utilisation statistics are maintained
1388 * by observing the current state of the queue length and the amount of
1389 * time it has been in this state for.
1391 * Normally, that accounting is done on IO completion, but that can result
1392 * in more than a second's worth of IO being accounted for within any one
1393 * second, leading to >100% utilisation. To deal with that, we call this
1394 * function to do a round-off before returning the results when reading
1395 * /proc/diskstats. This accounts immediately for all queue usage up to
1396 * the current jiffies and restarts the counters again.
1398 void part_round_stats(int cpu
, struct hd_struct
*part
)
1400 unsigned long now
= jiffies
;
1403 part_round_stats_single(cpu
, &part_to_disk(part
)->part0
, now
);
1404 part_round_stats_single(cpu
, part
, now
);
1406 EXPORT_SYMBOL_GPL(part_round_stats
);
1409 static void blk_pm_put_request(struct request
*rq
)
1411 if (rq
->q
->dev
&& !(rq
->cmd_flags
& REQ_PM
) && !--rq
->q
->nr_pending
)
1412 pm_runtime_mark_last_busy(rq
->q
->dev
);
1415 static inline void blk_pm_put_request(struct request
*rq
) {}
1419 * queue lock must be held
1421 void __blk_put_request(struct request_queue
*q
, struct request
*req
)
1427 blk_mq_free_request(req
);
1431 blk_pm_put_request(req
);
1433 elv_completed_request(q
, req
);
1435 /* this is a bio leak */
1436 WARN_ON(req
->bio
!= NULL
);
1439 * Request may not have originated from ll_rw_blk. if not,
1440 * it didn't come out of our reserved rq pools
1442 if (req
->cmd_flags
& REQ_ALLOCED
) {
1443 unsigned int flags
= req
->cmd_flags
;
1444 int op
= req_op(req
);
1445 struct request_list
*rl
= blk_rq_rl(req
);
1447 BUG_ON(!list_empty(&req
->queuelist
));
1448 BUG_ON(ELV_ON_HASH(req
));
1450 blk_free_request(rl
, req
);
1451 freed_request(rl
, op
, flags
);
1455 EXPORT_SYMBOL_GPL(__blk_put_request
);
1457 void blk_put_request(struct request
*req
)
1459 struct request_queue
*q
= req
->q
;
1462 blk_mq_free_request(req
);
1464 unsigned long flags
;
1466 spin_lock_irqsave(q
->queue_lock
, flags
);
1467 __blk_put_request(q
, req
);
1468 spin_unlock_irqrestore(q
->queue_lock
, flags
);
1471 EXPORT_SYMBOL(blk_put_request
);
1474 * blk_add_request_payload - add a payload to a request
1475 * @rq: request to update
1476 * @page: page backing the payload
1477 * @offset: offset in page
1478 * @len: length of the payload.
1480 * This allows to later add a payload to an already submitted request by
1481 * a block driver. The driver needs to take care of freeing the payload
1484 * Note that this is a quite horrible hack and nothing but handling of
1485 * discard requests should ever use it.
1487 void blk_add_request_payload(struct request
*rq
, struct page
*page
,
1488 int offset
, unsigned int len
)
1490 struct bio
*bio
= rq
->bio
;
1492 bio
->bi_io_vec
->bv_page
= page
;
1493 bio
->bi_io_vec
->bv_offset
= offset
;
1494 bio
->bi_io_vec
->bv_len
= len
;
1496 bio
->bi_iter
.bi_size
= len
;
1498 bio
->bi_phys_segments
= 1;
1500 rq
->__data_len
= rq
->resid_len
= len
;
1501 rq
->nr_phys_segments
= 1;
1503 EXPORT_SYMBOL_GPL(blk_add_request_payload
);
1505 bool bio_attempt_back_merge(struct request_queue
*q
, struct request
*req
,
1508 const int ff
= bio
->bi_opf
& REQ_FAILFAST_MASK
;
1510 if (!ll_back_merge_fn(q
, req
, bio
))
1513 trace_block_bio_backmerge(q
, req
, bio
);
1515 if ((req
->cmd_flags
& REQ_FAILFAST_MASK
) != ff
)
1516 blk_rq_set_mixed_merge(req
);
1518 req
->biotail
->bi_next
= bio
;
1520 req
->__data_len
+= bio
->bi_iter
.bi_size
;
1521 req
->ioprio
= ioprio_best(req
->ioprio
, bio_prio(bio
));
1523 blk_account_io_start(req
, false);
1527 bool bio_attempt_front_merge(struct request_queue
*q
, struct request
*req
,
1530 const int ff
= bio
->bi_opf
& REQ_FAILFAST_MASK
;
1532 if (!ll_front_merge_fn(q
, req
, bio
))
1535 trace_block_bio_frontmerge(q
, req
, bio
);
1537 if ((req
->cmd_flags
& REQ_FAILFAST_MASK
) != ff
)
1538 blk_rq_set_mixed_merge(req
);
1540 bio
->bi_next
= req
->bio
;
1543 req
->__sector
= bio
->bi_iter
.bi_sector
;
1544 req
->__data_len
+= bio
->bi_iter
.bi_size
;
1545 req
->ioprio
= ioprio_best(req
->ioprio
, bio_prio(bio
));
1547 blk_account_io_start(req
, false);
1552 * blk_attempt_plug_merge - try to merge with %current's plugged list
1553 * @q: request_queue new bio is being queued at
1554 * @bio: new bio being queued
1555 * @request_count: out parameter for number of traversed plugged requests
1556 * @same_queue_rq: pointer to &struct request that gets filled in when
1557 * another request associated with @q is found on the plug list
1558 * (optional, may be %NULL)
1560 * Determine whether @bio being queued on @q can be merged with a request
1561 * on %current's plugged list. Returns %true if merge was successful,
1564 * Plugging coalesces IOs from the same issuer for the same purpose without
1565 * going through @q->queue_lock. As such it's more of an issuing mechanism
1566 * than scheduling, and the request, while may have elvpriv data, is not
1567 * added on the elevator at this point. In addition, we don't have
1568 * reliable access to the elevator outside queue lock. Only check basic
1569 * merging parameters without querying the elevator.
1571 * Caller must ensure !blk_queue_nomerges(q) beforehand.
1573 bool blk_attempt_plug_merge(struct request_queue
*q
, struct bio
*bio
,
1574 unsigned int *request_count
,
1575 struct request
**same_queue_rq
)
1577 struct blk_plug
*plug
;
1580 struct list_head
*plug_list
;
1582 plug
= current
->plug
;
1588 plug_list
= &plug
->mq_list
;
1590 plug_list
= &plug
->list
;
1592 list_for_each_entry_reverse(rq
, plug_list
, queuelist
) {
1598 * Only blk-mq multiple hardware queues case checks the
1599 * rq in the same queue, there should be only one such
1603 *same_queue_rq
= rq
;
1606 if (rq
->q
!= q
|| !blk_rq_merge_ok(rq
, bio
))
1609 el_ret
= blk_try_merge(rq
, bio
);
1610 if (el_ret
== ELEVATOR_BACK_MERGE
) {
1611 ret
= bio_attempt_back_merge(q
, rq
, bio
);
1614 } else if (el_ret
== ELEVATOR_FRONT_MERGE
) {
1615 ret
= bio_attempt_front_merge(q
, rq
, bio
);
1624 unsigned int blk_plug_queued_count(struct request_queue
*q
)
1626 struct blk_plug
*plug
;
1628 struct list_head
*plug_list
;
1629 unsigned int ret
= 0;
1631 plug
= current
->plug
;
1636 plug_list
= &plug
->mq_list
;
1638 plug_list
= &plug
->list
;
1640 list_for_each_entry(rq
, plug_list
, queuelist
) {
1648 void init_request_from_bio(struct request
*req
, struct bio
*bio
)
1650 req
->cmd_type
= REQ_TYPE_FS
;
1652 req
->cmd_flags
|= bio
->bi_opf
& REQ_COMMON_MASK
;
1653 if (bio
->bi_opf
& REQ_RAHEAD
)
1654 req
->cmd_flags
|= REQ_FAILFAST_MASK
;
1657 req
->__sector
= bio
->bi_iter
.bi_sector
;
1658 req
->ioprio
= bio_prio(bio
);
1659 blk_rq_bio_prep(req
->q
, req
, bio
);
1662 static blk_qc_t
blk_queue_bio(struct request_queue
*q
, struct bio
*bio
)
1664 const bool sync
= !!(bio
->bi_opf
& REQ_SYNC
);
1665 struct blk_plug
*plug
;
1666 int el_ret
, rw_flags
= 0, where
= ELEVATOR_INSERT_SORT
;
1667 struct request
*req
;
1668 unsigned int request_count
= 0;
1671 * low level driver can indicate that it wants pages above a
1672 * certain limit bounced to low memory (ie for highmem, or even
1673 * ISA dma in theory)
1675 blk_queue_bounce(q
, &bio
);
1677 blk_queue_split(q
, &bio
, q
->bio_split
);
1679 if (bio_integrity_enabled(bio
) && bio_integrity_prep(bio
)) {
1680 bio
->bi_error
= -EIO
;
1682 return BLK_QC_T_NONE
;
1685 if (bio
->bi_opf
& (REQ_PREFLUSH
| REQ_FUA
)) {
1686 spin_lock_irq(q
->queue_lock
);
1687 where
= ELEVATOR_INSERT_FLUSH
;
1692 * Check if we can merge with the plugged list before grabbing
1695 if (!blk_queue_nomerges(q
)) {
1696 if (blk_attempt_plug_merge(q
, bio
, &request_count
, NULL
))
1697 return BLK_QC_T_NONE
;
1699 request_count
= blk_plug_queued_count(q
);
1701 spin_lock_irq(q
->queue_lock
);
1703 el_ret
= elv_merge(q
, &req
, bio
);
1704 if (el_ret
== ELEVATOR_BACK_MERGE
) {
1705 if (bio_attempt_back_merge(q
, req
, bio
)) {
1706 elv_bio_merged(q
, req
, bio
);
1707 if (!attempt_back_merge(q
, req
))
1708 elv_merged_request(q
, req
, el_ret
);
1711 } else if (el_ret
== ELEVATOR_FRONT_MERGE
) {
1712 if (bio_attempt_front_merge(q
, req
, bio
)) {
1713 elv_bio_merged(q
, req
, bio
);
1714 if (!attempt_front_merge(q
, req
))
1715 elv_merged_request(q
, req
, el_ret
);
1722 * This sync check and mask will be re-done in init_request_from_bio(),
1723 * but we need to set it earlier to expose the sync flag to the
1724 * rq allocator and io schedulers.
1727 rw_flags
|= REQ_SYNC
;
1730 * Add in META/PRIO flags, if set, before we get to the IO scheduler
1732 rw_flags
|= (bio
->bi_opf
& (REQ_META
| REQ_PRIO
));
1735 * Grab a free request. This is might sleep but can not fail.
1736 * Returns with the queue unlocked.
1738 req
= get_request(q
, bio_data_dir(bio
), rw_flags
, bio
, GFP_NOIO
);
1740 bio
->bi_error
= PTR_ERR(req
);
1746 * After dropping the lock and possibly sleeping here, our request
1747 * may now be mergeable after it had proven unmergeable (above).
1748 * We don't worry about that case for efficiency. It won't happen
1749 * often, and the elevators are able to handle it.
1751 init_request_from_bio(req
, bio
);
1753 if (test_bit(QUEUE_FLAG_SAME_COMP
, &q
->queue_flags
))
1754 req
->cpu
= raw_smp_processor_id();
1756 plug
= current
->plug
;
1759 * If this is the first request added after a plug, fire
1763 trace_block_plug(q
);
1765 if (request_count
>= BLK_MAX_REQUEST_COUNT
) {
1766 blk_flush_plug_list(plug
, false);
1767 trace_block_plug(q
);
1770 list_add_tail(&req
->queuelist
, &plug
->list
);
1771 blk_account_io_start(req
, true);
1773 spin_lock_irq(q
->queue_lock
);
1774 add_acct_request(q
, req
, where
);
1777 spin_unlock_irq(q
->queue_lock
);
1780 return BLK_QC_T_NONE
;
1784 * If bio->bi_dev is a partition, remap the location
1786 static inline void blk_partition_remap(struct bio
*bio
)
1788 struct block_device
*bdev
= bio
->bi_bdev
;
1790 if (bio_sectors(bio
) && bdev
!= bdev
->bd_contains
) {
1791 struct hd_struct
*p
= bdev
->bd_part
;
1793 bio
->bi_iter
.bi_sector
+= p
->start_sect
;
1794 bio
->bi_bdev
= bdev
->bd_contains
;
1796 trace_block_bio_remap(bdev_get_queue(bio
->bi_bdev
), bio
,
1798 bio
->bi_iter
.bi_sector
- p
->start_sect
);
1802 static void handle_bad_sector(struct bio
*bio
)
1804 char b
[BDEVNAME_SIZE
];
1806 printk(KERN_INFO
"attempt to access beyond end of device\n");
1807 printk(KERN_INFO
"%s: rw=%d, want=%Lu, limit=%Lu\n",
1808 bdevname(bio
->bi_bdev
, b
),
1810 (unsigned long long)bio_end_sector(bio
),
1811 (long long)(i_size_read(bio
->bi_bdev
->bd_inode
) >> 9));
1814 #ifdef CONFIG_FAIL_MAKE_REQUEST
1816 static DECLARE_FAULT_ATTR(fail_make_request
);
1818 static int __init
setup_fail_make_request(char *str
)
1820 return setup_fault_attr(&fail_make_request
, str
);
1822 __setup("fail_make_request=", setup_fail_make_request
);
1824 static bool should_fail_request(struct hd_struct
*part
, unsigned int bytes
)
1826 return part
->make_it_fail
&& should_fail(&fail_make_request
, bytes
);
1829 static int __init
fail_make_request_debugfs(void)
1831 struct dentry
*dir
= fault_create_debugfs_attr("fail_make_request",
1832 NULL
, &fail_make_request
);
1834 return PTR_ERR_OR_ZERO(dir
);
1837 late_initcall(fail_make_request_debugfs
);
1839 #else /* CONFIG_FAIL_MAKE_REQUEST */
1841 static inline bool should_fail_request(struct hd_struct
*part
,
1847 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1850 * Check whether this bio extends beyond the end of the device.
1852 static inline int bio_check_eod(struct bio
*bio
, unsigned int nr_sectors
)
1859 /* Test device or partition size, when known. */
1860 maxsector
= i_size_read(bio
->bi_bdev
->bd_inode
) >> 9;
1862 sector_t sector
= bio
->bi_iter
.bi_sector
;
1864 if (maxsector
< nr_sectors
|| maxsector
- nr_sectors
< sector
) {
1866 * This may well happen - the kernel calls bread()
1867 * without checking the size of the device, e.g., when
1868 * mounting a device.
1870 handle_bad_sector(bio
);
1878 static noinline_for_stack
bool
1879 generic_make_request_checks(struct bio
*bio
)
1881 struct request_queue
*q
;
1882 int nr_sectors
= bio_sectors(bio
);
1884 char b
[BDEVNAME_SIZE
];
1885 struct hd_struct
*part
;
1889 if (bio_check_eod(bio
, nr_sectors
))
1892 q
= bdev_get_queue(bio
->bi_bdev
);
1895 "generic_make_request: Trying to access "
1896 "nonexistent block-device %s (%Lu)\n",
1897 bdevname(bio
->bi_bdev
, b
),
1898 (long long) bio
->bi_iter
.bi_sector
);
1902 part
= bio
->bi_bdev
->bd_part
;
1903 if (should_fail_request(part
, bio
->bi_iter
.bi_size
) ||
1904 should_fail_request(&part_to_disk(part
)->part0
,
1905 bio
->bi_iter
.bi_size
))
1909 * If this device has partitions, remap block n
1910 * of partition p to block n+start(p) of the disk.
1912 blk_partition_remap(bio
);
1914 if (bio_check_eod(bio
, nr_sectors
))
1918 * Filter flush bio's early so that make_request based
1919 * drivers without flush support don't have to worry
1922 if ((bio
->bi_opf
& (REQ_PREFLUSH
| REQ_FUA
)) &&
1923 !test_bit(QUEUE_FLAG_WC
, &q
->queue_flags
)) {
1924 bio
->bi_opf
&= ~(REQ_PREFLUSH
| REQ_FUA
);
1931 switch (bio_op(bio
)) {
1932 case REQ_OP_DISCARD
:
1933 if (!blk_queue_discard(q
))
1936 case REQ_OP_SECURE_ERASE
:
1937 if (!blk_queue_secure_erase(q
))
1940 case REQ_OP_WRITE_SAME
:
1941 if (!bdev_write_same(bio
->bi_bdev
))
1949 * Various block parts want %current->io_context and lazy ioc
1950 * allocation ends up trading a lot of pain for a small amount of
1951 * memory. Just allocate it upfront. This may fail and block
1952 * layer knows how to live with it.
1954 create_io_context(GFP_ATOMIC
, q
->node
);
1956 if (!blkcg_bio_issue_check(q
, bio
))
1959 trace_block_bio_queue(q
, bio
);
1965 bio
->bi_error
= err
;
1971 * generic_make_request - hand a buffer to its device driver for I/O
1972 * @bio: The bio describing the location in memory and on the device.
1974 * generic_make_request() is used to make I/O requests of block
1975 * devices. It is passed a &struct bio, which describes the I/O that needs
1978 * generic_make_request() does not return any status. The
1979 * success/failure status of the request, along with notification of
1980 * completion, is delivered asynchronously through the bio->bi_end_io
1981 * function described (one day) else where.
1983 * The caller of generic_make_request must make sure that bi_io_vec
1984 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1985 * set to describe the device address, and the
1986 * bi_end_io and optionally bi_private are set to describe how
1987 * completion notification should be signaled.
1989 * generic_make_request and the drivers it calls may use bi_next if this
1990 * bio happens to be merged with someone else, and may resubmit the bio to
1991 * a lower device by calling into generic_make_request recursively, which
1992 * means the bio should NOT be touched after the call to ->make_request_fn.
1994 blk_qc_t
generic_make_request(struct bio
*bio
)
1997 * bio_list_on_stack[0] contains bios submitted by the current
1999 * bio_list_on_stack[1] contains bios that were submitted before
2000 * the current make_request_fn, but that haven't been processed
2003 struct bio_list bio_list_on_stack
[2];
2004 blk_qc_t ret
= BLK_QC_T_NONE
;
2006 if (!generic_make_request_checks(bio
))
2010 * We only want one ->make_request_fn to be active at a time, else
2011 * stack usage with stacked devices could be a problem. So use
2012 * current->bio_list to keep a list of requests submited by a
2013 * make_request_fn function. current->bio_list is also used as a
2014 * flag to say if generic_make_request is currently active in this
2015 * task or not. If it is NULL, then no make_request is active. If
2016 * it is non-NULL, then a make_request is active, and new requests
2017 * should be added at the tail
2019 if (current
->bio_list
) {
2020 bio_list_add(¤t
->bio_list
[0], bio
);
2024 /* following loop may be a bit non-obvious, and so deserves some
2026 * Before entering the loop, bio->bi_next is NULL (as all callers
2027 * ensure that) so we have a list with a single bio.
2028 * We pretend that we have just taken it off a longer list, so
2029 * we assign bio_list to a pointer to the bio_list_on_stack,
2030 * thus initialising the bio_list of new bios to be
2031 * added. ->make_request() may indeed add some more bios
2032 * through a recursive call to generic_make_request. If it
2033 * did, we find a non-NULL value in bio_list and re-enter the loop
2034 * from the top. In this case we really did just take the bio
2035 * of the top of the list (no pretending) and so remove it from
2036 * bio_list, and call into ->make_request() again.
2038 BUG_ON(bio
->bi_next
);
2039 bio_list_init(&bio_list_on_stack
[0]);
2040 current
->bio_list
= bio_list_on_stack
;
2042 struct request_queue
*q
= bdev_get_queue(bio
->bi_bdev
);
2044 if (likely(blk_queue_enter(q
, false) == 0)) {
2045 struct bio_list lower
, same
;
2047 /* Create a fresh bio_list for all subordinate requests */
2048 bio_list_on_stack
[1] = bio_list_on_stack
[0];
2049 bio_list_init(&bio_list_on_stack
[0]);
2050 ret
= q
->make_request_fn(q
, bio
);
2054 /* sort new bios into those for a lower level
2055 * and those for the same level
2057 bio_list_init(&lower
);
2058 bio_list_init(&same
);
2059 while ((bio
= bio_list_pop(&bio_list_on_stack
[0])) != NULL
)
2060 if (q
== bdev_get_queue(bio
->bi_bdev
))
2061 bio_list_add(&same
, bio
);
2063 bio_list_add(&lower
, bio
);
2064 /* now assemble so we handle the lowest level first */
2065 bio_list_merge(&bio_list_on_stack
[0], &lower
);
2066 bio_list_merge(&bio_list_on_stack
[0], &same
);
2067 bio_list_merge(&bio_list_on_stack
[0], &bio_list_on_stack
[1]);
2071 bio
= bio_list_pop(&bio_list_on_stack
[0]);
2073 current
->bio_list
= NULL
; /* deactivate */
2078 EXPORT_SYMBOL(generic_make_request
);
2081 * submit_bio - submit a bio to the block device layer for I/O
2082 * @bio: The &struct bio which describes the I/O
2084 * submit_bio() is very similar in purpose to generic_make_request(), and
2085 * uses that function to do most of the work. Both are fairly rough
2086 * interfaces; @bio must be presetup and ready for I/O.
2089 blk_qc_t
submit_bio(struct bio
*bio
)
2092 * If it's a regular read/write or a barrier with data attached,
2093 * go through the normal accounting stuff before submission.
2095 if (bio_has_data(bio
)) {
2098 if (unlikely(bio_op(bio
) == REQ_OP_WRITE_SAME
))
2099 count
= bdev_logical_block_size(bio
->bi_bdev
) >> 9;
2101 count
= bio_sectors(bio
);
2103 if (op_is_write(bio_op(bio
))) {
2104 count_vm_events(PGPGOUT
, count
);
2106 task_io_account_read(bio
->bi_iter
.bi_size
);
2107 count_vm_events(PGPGIN
, count
);
2110 if (unlikely(block_dump
)) {
2111 char b
[BDEVNAME_SIZE
];
2112 printk(KERN_DEBUG
"%s(%d): %s block %Lu on %s (%u sectors)\n",
2113 current
->comm
, task_pid_nr(current
),
2114 op_is_write(bio_op(bio
)) ? "WRITE" : "READ",
2115 (unsigned long long)bio
->bi_iter
.bi_sector
,
2116 bdevname(bio
->bi_bdev
, b
),
2121 return generic_make_request(bio
);
2123 EXPORT_SYMBOL(submit_bio
);
2126 * blk_cloned_rq_check_limits - Helper function to check a cloned request
2127 * for new the queue limits
2129 * @rq: the request being checked
2132 * @rq may have been made based on weaker limitations of upper-level queues
2133 * in request stacking drivers, and it may violate the limitation of @q.
2134 * Since the block layer and the underlying device driver trust @rq
2135 * after it is inserted to @q, it should be checked against @q before
2136 * the insertion using this generic function.
2138 * Request stacking drivers like request-based dm may change the queue
2139 * limits when retrying requests on other queues. Those requests need
2140 * to be checked against the new queue limits again during dispatch.
2142 static int blk_cloned_rq_check_limits(struct request_queue
*q
,
2145 if (blk_rq_sectors(rq
) > blk_queue_get_max_sectors(q
, req_op(rq
))) {
2146 printk(KERN_ERR
"%s: over max size limit.\n", __func__
);
2151 * queue's settings related to segment counting like q->bounce_pfn
2152 * may differ from that of other stacking queues.
2153 * Recalculate it to check the request correctly on this queue's
2156 blk_recalc_rq_segments(rq
);
2157 if (rq
->nr_phys_segments
> queue_max_segments(q
)) {
2158 printk(KERN_ERR
"%s: over max segments limit.\n", __func__
);
2166 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2167 * @q: the queue to submit the request
2168 * @rq: the request being queued
2170 int blk_insert_cloned_request(struct request_queue
*q
, struct request
*rq
)
2172 unsigned long flags
;
2173 int where
= ELEVATOR_INSERT_BACK
;
2175 if (blk_cloned_rq_check_limits(q
, rq
))
2179 should_fail_request(&rq
->rq_disk
->part0
, blk_rq_bytes(rq
)))
2183 if (blk_queue_io_stat(q
))
2184 blk_account_io_start(rq
, true);
2185 blk_mq_insert_request(rq
, false, true, false);
2189 spin_lock_irqsave(q
->queue_lock
, flags
);
2190 if (unlikely(blk_queue_dying(q
))) {
2191 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2196 * Submitting request must be dequeued before calling this function
2197 * because it will be linked to another request_queue
2199 BUG_ON(blk_queued_rq(rq
));
2201 if (rq
->cmd_flags
& (REQ_PREFLUSH
| REQ_FUA
))
2202 where
= ELEVATOR_INSERT_FLUSH
;
2204 add_acct_request(q
, rq
, where
);
2205 if (where
== ELEVATOR_INSERT_FLUSH
)
2207 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2211 EXPORT_SYMBOL_GPL(blk_insert_cloned_request
);
2214 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2215 * @rq: request to examine
2218 * A request could be merge of IOs which require different failure
2219 * handling. This function determines the number of bytes which
2220 * can be failed from the beginning of the request without
2221 * crossing into area which need to be retried further.
2224 * The number of bytes to fail.
2227 * queue_lock must be held.
2229 unsigned int blk_rq_err_bytes(const struct request
*rq
)
2231 unsigned int ff
= rq
->cmd_flags
& REQ_FAILFAST_MASK
;
2232 unsigned int bytes
= 0;
2235 if (!(rq
->cmd_flags
& REQ_MIXED_MERGE
))
2236 return blk_rq_bytes(rq
);
2239 * Currently the only 'mixing' which can happen is between
2240 * different fastfail types. We can safely fail portions
2241 * which have all the failfast bits that the first one has -
2242 * the ones which are at least as eager to fail as the first
2245 for (bio
= rq
->bio
; bio
; bio
= bio
->bi_next
) {
2246 if ((bio
->bi_opf
& ff
) != ff
)
2248 bytes
+= bio
->bi_iter
.bi_size
;
2251 /* this could lead to infinite loop */
2252 BUG_ON(blk_rq_bytes(rq
) && !bytes
);
2255 EXPORT_SYMBOL_GPL(blk_rq_err_bytes
);
2257 void blk_account_io_completion(struct request
*req
, unsigned int bytes
)
2259 if (blk_do_io_stat(req
)) {
2260 const int rw
= rq_data_dir(req
);
2261 struct hd_struct
*part
;
2264 cpu
= part_stat_lock();
2266 part_stat_add(cpu
, part
, sectors
[rw
], bytes
>> 9);
2271 void blk_account_io_done(struct request
*req
)
2274 * Account IO completion. flush_rq isn't accounted as a
2275 * normal IO on queueing nor completion. Accounting the
2276 * containing request is enough.
2278 if (blk_do_io_stat(req
) && !(req
->cmd_flags
& REQ_FLUSH_SEQ
)) {
2279 unsigned long duration
= jiffies
- req
->start_time
;
2280 const int rw
= rq_data_dir(req
);
2281 struct hd_struct
*part
;
2284 cpu
= part_stat_lock();
2287 part_stat_inc(cpu
, part
, ios
[rw
]);
2288 part_stat_add(cpu
, part
, ticks
[rw
], duration
);
2289 part_round_stats(cpu
, part
);
2290 part_dec_in_flight(part
, rw
);
2292 hd_struct_put(part
);
2299 * Don't process normal requests when queue is suspended
2300 * or in the process of suspending/resuming
2302 static struct request
*blk_pm_peek_request(struct request_queue
*q
,
2305 if (q
->dev
&& (q
->rpm_status
== RPM_SUSPENDED
||
2306 (q
->rpm_status
!= RPM_ACTIVE
&& !(rq
->cmd_flags
& REQ_PM
))))
2312 static inline struct request
*blk_pm_peek_request(struct request_queue
*q
,
2319 void blk_account_io_start(struct request
*rq
, bool new_io
)
2321 struct hd_struct
*part
;
2322 int rw
= rq_data_dir(rq
);
2325 if (!blk_do_io_stat(rq
))
2328 cpu
= part_stat_lock();
2332 part_stat_inc(cpu
, part
, merges
[rw
]);
2334 part
= disk_map_sector_rcu(rq
->rq_disk
, blk_rq_pos(rq
));
2335 if (!hd_struct_try_get(part
)) {
2337 * The partition is already being removed,
2338 * the request will be accounted on the disk only
2340 * We take a reference on disk->part0 although that
2341 * partition will never be deleted, so we can treat
2342 * it as any other partition.
2344 part
= &rq
->rq_disk
->part0
;
2345 hd_struct_get(part
);
2347 part_round_stats(cpu
, part
);
2348 part_inc_in_flight(part
, rw
);
2356 * blk_peek_request - peek at the top of a request queue
2357 * @q: request queue to peek at
2360 * Return the request at the top of @q. The returned request
2361 * should be started using blk_start_request() before LLD starts
2365 * Pointer to the request at the top of @q if available. Null
2369 * queue_lock must be held.
2371 struct request
*blk_peek_request(struct request_queue
*q
)
2376 while ((rq
= __elv_next_request(q
)) != NULL
) {
2378 rq
= blk_pm_peek_request(q
, rq
);
2382 if (!(rq
->cmd_flags
& REQ_STARTED
)) {
2384 * This is the first time the device driver
2385 * sees this request (possibly after
2386 * requeueing). Notify IO scheduler.
2388 if (rq
->cmd_flags
& REQ_SORTED
)
2389 elv_activate_rq(q
, rq
);
2392 * just mark as started even if we don't start
2393 * it, a request that has been delayed should
2394 * not be passed by new incoming requests
2396 rq
->cmd_flags
|= REQ_STARTED
;
2397 trace_block_rq_issue(q
, rq
);
2400 if (!q
->boundary_rq
|| q
->boundary_rq
== rq
) {
2401 q
->end_sector
= rq_end_sector(rq
);
2402 q
->boundary_rq
= NULL
;
2405 if (rq
->cmd_flags
& REQ_DONTPREP
)
2408 if (q
->dma_drain_size
&& blk_rq_bytes(rq
)) {
2410 * make sure space for the drain appears we
2411 * know we can do this because max_hw_segments
2412 * has been adjusted to be one fewer than the
2415 rq
->nr_phys_segments
++;
2421 ret
= q
->prep_rq_fn(q
, rq
);
2422 if (ret
== BLKPREP_OK
) {
2424 } else if (ret
== BLKPREP_DEFER
) {
2426 * the request may have been (partially) prepped.
2427 * we need to keep this request in the front to
2428 * avoid resource deadlock. REQ_STARTED will
2429 * prevent other fs requests from passing this one.
2431 if (q
->dma_drain_size
&& blk_rq_bytes(rq
) &&
2432 !(rq
->cmd_flags
& REQ_DONTPREP
)) {
2434 * remove the space for the drain we added
2435 * so that we don't add it again
2437 --rq
->nr_phys_segments
;
2442 } else if (ret
== BLKPREP_KILL
|| ret
== BLKPREP_INVALID
) {
2443 int err
= (ret
== BLKPREP_INVALID
) ? -EREMOTEIO
: -EIO
;
2445 rq
->cmd_flags
|= REQ_QUIET
;
2447 * Mark this request as started so we don't trigger
2448 * any debug logic in the end I/O path.
2450 blk_start_request(rq
);
2451 __blk_end_request_all(rq
, err
);
2453 printk(KERN_ERR
"%s: bad return=%d\n", __func__
, ret
);
2460 EXPORT_SYMBOL(blk_peek_request
);
2462 void blk_dequeue_request(struct request
*rq
)
2464 struct request_queue
*q
= rq
->q
;
2466 BUG_ON(list_empty(&rq
->queuelist
));
2467 BUG_ON(ELV_ON_HASH(rq
));
2469 list_del_init(&rq
->queuelist
);
2472 * the time frame between a request being removed from the lists
2473 * and to it is freed is accounted as io that is in progress at
2476 if (blk_account_rq(rq
)) {
2477 q
->in_flight
[rq_is_sync(rq
)]++;
2478 set_io_start_time_ns(rq
);
2483 * blk_start_request - start request processing on the driver
2484 * @req: request to dequeue
2487 * Dequeue @req and start timeout timer on it. This hands off the
2488 * request to the driver.
2490 * Block internal functions which don't want to start timer should
2491 * call blk_dequeue_request().
2494 * queue_lock must be held.
2496 void blk_start_request(struct request
*req
)
2498 blk_dequeue_request(req
);
2501 * We are now handing the request to the hardware, initialize
2502 * resid_len to full count and add the timeout handler.
2504 req
->resid_len
= blk_rq_bytes(req
);
2505 if (unlikely(blk_bidi_rq(req
)))
2506 req
->next_rq
->resid_len
= blk_rq_bytes(req
->next_rq
);
2508 BUG_ON(test_bit(REQ_ATOM_COMPLETE
, &req
->atomic_flags
));
2511 EXPORT_SYMBOL(blk_start_request
);
2514 * blk_fetch_request - fetch a request from a request queue
2515 * @q: request queue to fetch a request from
2518 * Return the request at the top of @q. The request is started on
2519 * return and LLD can start processing it immediately.
2522 * Pointer to the request at the top of @q if available. Null
2526 * queue_lock must be held.
2528 struct request
*blk_fetch_request(struct request_queue
*q
)
2532 rq
= blk_peek_request(q
);
2534 blk_start_request(rq
);
2537 EXPORT_SYMBOL(blk_fetch_request
);
2540 * blk_update_request - Special helper function for request stacking drivers
2541 * @req: the request being processed
2542 * @error: %0 for success, < %0 for error
2543 * @nr_bytes: number of bytes to complete @req
2546 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2547 * the request structure even if @req doesn't have leftover.
2548 * If @req has leftover, sets it up for the next range of segments.
2550 * This special helper function is only for request stacking drivers
2551 * (e.g. request-based dm) so that they can handle partial completion.
2552 * Actual device drivers should use blk_end_request instead.
2554 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2555 * %false return from this function.
2558 * %false - this request doesn't have any more data
2559 * %true - this request has more data
2561 bool blk_update_request(struct request
*req
, int error
, unsigned int nr_bytes
)
2565 trace_block_rq_complete(req
->q
, req
, nr_bytes
);
2571 * For fs requests, rq is just carrier of independent bio's
2572 * and each partial completion should be handled separately.
2573 * Reset per-request error on each partial completion.
2575 * TODO: tj: This is too subtle. It would be better to let
2576 * low level drivers do what they see fit.
2578 if (req
->cmd_type
== REQ_TYPE_FS
)
2581 if (error
&& req
->cmd_type
== REQ_TYPE_FS
&&
2582 !(req
->cmd_flags
& REQ_QUIET
)) {
2587 error_type
= "recoverable transport";
2590 error_type
= "critical target";
2593 error_type
= "critical nexus";
2596 error_type
= "timeout";
2599 error_type
= "critical space allocation";
2602 error_type
= "critical medium";
2609 printk_ratelimited(KERN_ERR
"%s: %s error, dev %s, sector %llu\n",
2610 __func__
, error_type
, req
->rq_disk
?
2611 req
->rq_disk
->disk_name
: "?",
2612 (unsigned long long)blk_rq_pos(req
));
2616 blk_account_io_completion(req
, nr_bytes
);
2620 struct bio
*bio
= req
->bio
;
2621 unsigned bio_bytes
= min(bio
->bi_iter
.bi_size
, nr_bytes
);
2623 if (bio_bytes
== bio
->bi_iter
.bi_size
)
2624 req
->bio
= bio
->bi_next
;
2626 req_bio_endio(req
, bio
, bio_bytes
, error
);
2628 total_bytes
+= bio_bytes
;
2629 nr_bytes
-= bio_bytes
;
2640 * Reset counters so that the request stacking driver
2641 * can find how many bytes remain in the request
2644 req
->__data_len
= 0;
2648 req
->__data_len
-= total_bytes
;
2650 /* update sector only for requests with clear definition of sector */
2651 if (req
->cmd_type
== REQ_TYPE_FS
)
2652 req
->__sector
+= total_bytes
>> 9;
2654 /* mixed attributes always follow the first bio */
2655 if (req
->cmd_flags
& REQ_MIXED_MERGE
) {
2656 req
->cmd_flags
&= ~REQ_FAILFAST_MASK
;
2657 req
->cmd_flags
|= req
->bio
->bi_opf
& REQ_FAILFAST_MASK
;
2661 * If total number of sectors is less than the first segment
2662 * size, something has gone terribly wrong.
2664 if (blk_rq_bytes(req
) < blk_rq_cur_bytes(req
)) {
2665 blk_dump_rq_flags(req
, "request botched");
2666 req
->__data_len
= blk_rq_cur_bytes(req
);
2669 /* recalculate the number of segments */
2670 blk_recalc_rq_segments(req
);
2674 EXPORT_SYMBOL_GPL(blk_update_request
);
2676 static bool blk_update_bidi_request(struct request
*rq
, int error
,
2677 unsigned int nr_bytes
,
2678 unsigned int bidi_bytes
)
2680 if (blk_update_request(rq
, error
, nr_bytes
))
2683 /* Bidi request must be completed as a whole */
2684 if (unlikely(blk_bidi_rq(rq
)) &&
2685 blk_update_request(rq
->next_rq
, error
, bidi_bytes
))
2688 if (blk_queue_add_random(rq
->q
))
2689 add_disk_randomness(rq
->rq_disk
);
2695 * blk_unprep_request - unprepare a request
2698 * This function makes a request ready for complete resubmission (or
2699 * completion). It happens only after all error handling is complete,
2700 * so represents the appropriate moment to deallocate any resources
2701 * that were allocated to the request in the prep_rq_fn. The queue
2702 * lock is held when calling this.
2704 void blk_unprep_request(struct request
*req
)
2706 struct request_queue
*q
= req
->q
;
2708 req
->cmd_flags
&= ~REQ_DONTPREP
;
2709 if (q
->unprep_rq_fn
)
2710 q
->unprep_rq_fn(q
, req
);
2712 EXPORT_SYMBOL_GPL(blk_unprep_request
);
2715 * queue lock must be held
2717 void blk_finish_request(struct request
*req
, int error
)
2719 if (req
->cmd_flags
& REQ_QUEUED
)
2720 blk_queue_end_tag(req
->q
, req
);
2722 BUG_ON(blk_queued_rq(req
));
2724 if (unlikely(laptop_mode
) && req
->cmd_type
== REQ_TYPE_FS
)
2725 laptop_io_completion(&req
->q
->backing_dev_info
);
2727 blk_delete_timer(req
);
2729 if (req
->cmd_flags
& REQ_DONTPREP
)
2730 blk_unprep_request(req
);
2732 blk_account_io_done(req
);
2735 req
->end_io(req
, error
);
2737 if (blk_bidi_rq(req
))
2738 __blk_put_request(req
->next_rq
->q
, req
->next_rq
);
2740 __blk_put_request(req
->q
, req
);
2743 EXPORT_SYMBOL(blk_finish_request
);
2746 * blk_end_bidi_request - Complete a bidi request
2747 * @rq: the request to complete
2748 * @error: %0 for success, < %0 for error
2749 * @nr_bytes: number of bytes to complete @rq
2750 * @bidi_bytes: number of bytes to complete @rq->next_rq
2753 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2754 * Drivers that supports bidi can safely call this member for any
2755 * type of request, bidi or uni. In the later case @bidi_bytes is
2759 * %false - we are done with this request
2760 * %true - still buffers pending for this request
2762 static bool blk_end_bidi_request(struct request
*rq
, int error
,
2763 unsigned int nr_bytes
, unsigned int bidi_bytes
)
2765 struct request_queue
*q
= rq
->q
;
2766 unsigned long flags
;
2768 if (blk_update_bidi_request(rq
, error
, nr_bytes
, bidi_bytes
))
2771 spin_lock_irqsave(q
->queue_lock
, flags
);
2772 blk_finish_request(rq
, error
);
2773 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2779 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2780 * @rq: the request to complete
2781 * @error: %0 for success, < %0 for error
2782 * @nr_bytes: number of bytes to complete @rq
2783 * @bidi_bytes: number of bytes to complete @rq->next_rq
2786 * Identical to blk_end_bidi_request() except that queue lock is
2787 * assumed to be locked on entry and remains so on return.
2790 * %false - we are done with this request
2791 * %true - still buffers pending for this request
2793 bool __blk_end_bidi_request(struct request
*rq
, int error
,
2794 unsigned int nr_bytes
, unsigned int bidi_bytes
)
2796 if (blk_update_bidi_request(rq
, error
, nr_bytes
, bidi_bytes
))
2799 blk_finish_request(rq
, error
);
2805 * blk_end_request - Helper function for drivers to complete the request.
2806 * @rq: the request being processed
2807 * @error: %0 for success, < %0 for error
2808 * @nr_bytes: number of bytes to complete
2811 * Ends I/O on a number of bytes attached to @rq.
2812 * If @rq has leftover, sets it up for the next range of segments.
2815 * %false - we are done with this request
2816 * %true - still buffers pending for this request
2818 bool blk_end_request(struct request
*rq
, int error
, unsigned int nr_bytes
)
2820 return blk_end_bidi_request(rq
, error
, nr_bytes
, 0);
2822 EXPORT_SYMBOL(blk_end_request
);
2825 * blk_end_request_all - Helper function for drives to finish the request.
2826 * @rq: the request to finish
2827 * @error: %0 for success, < %0 for error
2830 * Completely finish @rq.
2832 void blk_end_request_all(struct request
*rq
, int error
)
2835 unsigned int bidi_bytes
= 0;
2837 if (unlikely(blk_bidi_rq(rq
)))
2838 bidi_bytes
= blk_rq_bytes(rq
->next_rq
);
2840 pending
= blk_end_bidi_request(rq
, error
, blk_rq_bytes(rq
), bidi_bytes
);
2843 EXPORT_SYMBOL(blk_end_request_all
);
2846 * blk_end_request_cur - Helper function to finish the current request chunk.
2847 * @rq: the request to finish the current chunk for
2848 * @error: %0 for success, < %0 for error
2851 * Complete the current consecutively mapped chunk from @rq.
2854 * %false - we are done with this request
2855 * %true - still buffers pending for this request
2857 bool blk_end_request_cur(struct request
*rq
, int error
)
2859 return blk_end_request(rq
, error
, blk_rq_cur_bytes(rq
));
2861 EXPORT_SYMBOL(blk_end_request_cur
);
2864 * blk_end_request_err - Finish a request till the next failure boundary.
2865 * @rq: the request to finish till the next failure boundary for
2866 * @error: must be negative errno
2869 * Complete @rq till the next failure boundary.
2872 * %false - we are done with this request
2873 * %true - still buffers pending for this request
2875 bool blk_end_request_err(struct request
*rq
, int error
)
2877 WARN_ON(error
>= 0);
2878 return blk_end_request(rq
, error
, blk_rq_err_bytes(rq
));
2880 EXPORT_SYMBOL_GPL(blk_end_request_err
);
2883 * __blk_end_request - Helper function for drivers to complete the request.
2884 * @rq: the request being processed
2885 * @error: %0 for success, < %0 for error
2886 * @nr_bytes: number of bytes to complete
2889 * Must be called with queue lock held unlike blk_end_request().
2892 * %false - we are done with this request
2893 * %true - still buffers pending for this request
2895 bool __blk_end_request(struct request
*rq
, int error
, unsigned int nr_bytes
)
2897 return __blk_end_bidi_request(rq
, error
, nr_bytes
, 0);
2899 EXPORT_SYMBOL(__blk_end_request
);
2902 * __blk_end_request_all - Helper function for drives to finish the request.
2903 * @rq: the request to finish
2904 * @error: %0 for success, < %0 for error
2907 * Completely finish @rq. Must be called with queue lock held.
2909 void __blk_end_request_all(struct request
*rq
, int error
)
2912 unsigned int bidi_bytes
= 0;
2914 if (unlikely(blk_bidi_rq(rq
)))
2915 bidi_bytes
= blk_rq_bytes(rq
->next_rq
);
2917 pending
= __blk_end_bidi_request(rq
, error
, blk_rq_bytes(rq
), bidi_bytes
);
2920 EXPORT_SYMBOL(__blk_end_request_all
);
2923 * __blk_end_request_cur - Helper function to finish the current request chunk.
2924 * @rq: the request to finish the current chunk for
2925 * @error: %0 for success, < %0 for error
2928 * Complete the current consecutively mapped chunk from @rq. Must
2929 * be called with queue lock held.
2932 * %false - we are done with this request
2933 * %true - still buffers pending for this request
2935 bool __blk_end_request_cur(struct request
*rq
, int error
)
2937 return __blk_end_request(rq
, error
, blk_rq_cur_bytes(rq
));
2939 EXPORT_SYMBOL(__blk_end_request_cur
);
2942 * __blk_end_request_err - Finish a request till the next failure boundary.
2943 * @rq: the request to finish till the next failure boundary for
2944 * @error: must be negative errno
2947 * Complete @rq till the next failure boundary. Must be called
2948 * with queue lock held.
2951 * %false - we are done with this request
2952 * %true - still buffers pending for this request
2954 bool __blk_end_request_err(struct request
*rq
, int error
)
2956 WARN_ON(error
>= 0);
2957 return __blk_end_request(rq
, error
, blk_rq_err_bytes(rq
));
2959 EXPORT_SYMBOL_GPL(__blk_end_request_err
);
2961 void blk_rq_bio_prep(struct request_queue
*q
, struct request
*rq
,
2964 req_set_op(rq
, bio_op(bio
));
2966 if (bio_has_data(bio
))
2967 rq
->nr_phys_segments
= bio_phys_segments(q
, bio
);
2969 rq
->__data_len
= bio
->bi_iter
.bi_size
;
2970 rq
->bio
= rq
->biotail
= bio
;
2973 rq
->rq_disk
= bio
->bi_bdev
->bd_disk
;
2976 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2978 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2979 * @rq: the request to be flushed
2982 * Flush all pages in @rq.
2984 void rq_flush_dcache_pages(struct request
*rq
)
2986 struct req_iterator iter
;
2987 struct bio_vec bvec
;
2989 rq_for_each_segment(bvec
, rq
, iter
)
2990 flush_dcache_page(bvec
.bv_page
);
2992 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages
);
2996 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2997 * @q : the queue of the device being checked
3000 * Check if underlying low-level drivers of a device are busy.
3001 * If the drivers want to export their busy state, they must set own
3002 * exporting function using blk_queue_lld_busy() first.
3004 * Basically, this function is used only by request stacking drivers
3005 * to stop dispatching requests to underlying devices when underlying
3006 * devices are busy. This behavior helps more I/O merging on the queue
3007 * of the request stacking driver and prevents I/O throughput regression
3008 * on burst I/O load.
3011 * 0 - Not busy (The request stacking driver should dispatch request)
3012 * 1 - Busy (The request stacking driver should stop dispatching request)
3014 int blk_lld_busy(struct request_queue
*q
)
3017 return q
->lld_busy_fn(q
);
3021 EXPORT_SYMBOL_GPL(blk_lld_busy
);
3024 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3025 * @rq: the clone request to be cleaned up
3028 * Free all bios in @rq for a cloned request.
3030 void blk_rq_unprep_clone(struct request
*rq
)
3034 while ((bio
= rq
->bio
) != NULL
) {
3035 rq
->bio
= bio
->bi_next
;
3040 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone
);
3043 * Copy attributes of the original request to the clone request.
3044 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3046 static void __blk_rq_prep_clone(struct request
*dst
, struct request
*src
)
3048 dst
->cpu
= src
->cpu
;
3049 req_set_op_attrs(dst
, req_op(src
),
3050 (src
->cmd_flags
& REQ_CLONE_MASK
) | REQ_NOMERGE
);
3051 dst
->cmd_type
= src
->cmd_type
;
3052 dst
->__sector
= blk_rq_pos(src
);
3053 dst
->__data_len
= blk_rq_bytes(src
);
3054 dst
->nr_phys_segments
= src
->nr_phys_segments
;
3055 dst
->ioprio
= src
->ioprio
;
3056 dst
->extra_len
= src
->extra_len
;
3060 * blk_rq_prep_clone - Helper function to setup clone request
3061 * @rq: the request to be setup
3062 * @rq_src: original request to be cloned
3063 * @bs: bio_set that bios for clone are allocated from
3064 * @gfp_mask: memory allocation mask for bio
3065 * @bio_ctr: setup function to be called for each clone bio.
3066 * Returns %0 for success, non %0 for failure.
3067 * @data: private data to be passed to @bio_ctr
3070 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3071 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3072 * are not copied, and copying such parts is the caller's responsibility.
3073 * Also, pages which the original bios are pointing to are not copied
3074 * and the cloned bios just point same pages.
3075 * So cloned bios must be completed before original bios, which means
3076 * the caller must complete @rq before @rq_src.
3078 int blk_rq_prep_clone(struct request
*rq
, struct request
*rq_src
,
3079 struct bio_set
*bs
, gfp_t gfp_mask
,
3080 int (*bio_ctr
)(struct bio
*, struct bio
*, void *),
3083 struct bio
*bio
, *bio_src
;
3088 __rq_for_each_bio(bio_src
, rq_src
) {
3089 bio
= bio_clone_fast(bio_src
, gfp_mask
, bs
);
3093 if (bio_ctr
&& bio_ctr(bio
, bio_src
, data
))
3097 rq
->biotail
->bi_next
= bio
;
3100 rq
->bio
= rq
->biotail
= bio
;
3103 __blk_rq_prep_clone(rq
, rq_src
);
3110 blk_rq_unprep_clone(rq
);
3114 EXPORT_SYMBOL_GPL(blk_rq_prep_clone
);
3116 int kblockd_schedule_work(struct work_struct
*work
)
3118 return queue_work(kblockd_workqueue
, work
);
3120 EXPORT_SYMBOL(kblockd_schedule_work
);
3122 int kblockd_schedule_work_on(int cpu
, struct work_struct
*work
)
3124 return queue_work_on(cpu
, kblockd_workqueue
, work
);
3126 EXPORT_SYMBOL(kblockd_schedule_work_on
);
3128 int kblockd_schedule_delayed_work(struct delayed_work
*dwork
,
3129 unsigned long delay
)
3131 return queue_delayed_work(kblockd_workqueue
, dwork
, delay
);
3133 EXPORT_SYMBOL(kblockd_schedule_delayed_work
);
3135 int kblockd_schedule_delayed_work_on(int cpu
, struct delayed_work
*dwork
,
3136 unsigned long delay
)
3138 return queue_delayed_work_on(cpu
, kblockd_workqueue
, dwork
, delay
);
3140 EXPORT_SYMBOL(kblockd_schedule_delayed_work_on
);
3143 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3144 * @plug: The &struct blk_plug that needs to be initialized
3147 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3148 * pending I/O should the task end up blocking between blk_start_plug() and
3149 * blk_finish_plug(). This is important from a performance perspective, but
3150 * also ensures that we don't deadlock. For instance, if the task is blocking
3151 * for a memory allocation, memory reclaim could end up wanting to free a
3152 * page belonging to that request that is currently residing in our private
3153 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3154 * this kind of deadlock.
3156 void blk_start_plug(struct blk_plug
*plug
)
3158 struct task_struct
*tsk
= current
;
3161 * If this is a nested plug, don't actually assign it.
3166 INIT_LIST_HEAD(&plug
->list
);
3167 INIT_LIST_HEAD(&plug
->mq_list
);
3168 INIT_LIST_HEAD(&plug
->cb_list
);
3170 * Store ordering should not be needed here, since a potential
3171 * preempt will imply a full memory barrier
3175 EXPORT_SYMBOL(blk_start_plug
);
3177 static int plug_rq_cmp(void *priv
, struct list_head
*a
, struct list_head
*b
)
3179 struct request
*rqa
= container_of(a
, struct request
, queuelist
);
3180 struct request
*rqb
= container_of(b
, struct request
, queuelist
);
3182 return !(rqa
->q
< rqb
->q
||
3183 (rqa
->q
== rqb
->q
&& blk_rq_pos(rqa
) < blk_rq_pos(rqb
)));
3187 * If 'from_schedule' is true, then postpone the dispatch of requests
3188 * until a safe kblockd context. We due this to avoid accidental big
3189 * additional stack usage in driver dispatch, in places where the originally
3190 * plugger did not intend it.
3192 static void queue_unplugged(struct request_queue
*q
, unsigned int depth
,
3194 __releases(q
->queue_lock
)
3196 trace_block_unplug(q
, depth
, !from_schedule
);
3199 blk_run_queue_async(q
);
3202 spin_unlock(q
->queue_lock
);
3205 static void flush_plug_callbacks(struct blk_plug
*plug
, bool from_schedule
)
3207 LIST_HEAD(callbacks
);
3209 while (!list_empty(&plug
->cb_list
)) {
3210 list_splice_init(&plug
->cb_list
, &callbacks
);
3212 while (!list_empty(&callbacks
)) {
3213 struct blk_plug_cb
*cb
= list_first_entry(&callbacks
,
3216 list_del(&cb
->list
);
3217 cb
->callback(cb
, from_schedule
);
3222 struct blk_plug_cb
*blk_check_plugged(blk_plug_cb_fn unplug
, void *data
,
3225 struct blk_plug
*plug
= current
->plug
;
3226 struct blk_plug_cb
*cb
;
3231 list_for_each_entry(cb
, &plug
->cb_list
, list
)
3232 if (cb
->callback
== unplug
&& cb
->data
== data
)
3235 /* Not currently on the callback list */
3236 BUG_ON(size
< sizeof(*cb
));
3237 cb
= kzalloc(size
, GFP_ATOMIC
);
3240 cb
->callback
= unplug
;
3241 list_add(&cb
->list
, &plug
->cb_list
);
3245 EXPORT_SYMBOL(blk_check_plugged
);
3247 void blk_flush_plug_list(struct blk_plug
*plug
, bool from_schedule
)
3249 struct request_queue
*q
;
3250 unsigned long flags
;
3255 flush_plug_callbacks(plug
, from_schedule
);
3257 if (!list_empty(&plug
->mq_list
))
3258 blk_mq_flush_plug_list(plug
, from_schedule
);
3260 if (list_empty(&plug
->list
))
3263 list_splice_init(&plug
->list
, &list
);
3265 list_sort(NULL
, &list
, plug_rq_cmp
);
3271 * Save and disable interrupts here, to avoid doing it for every
3272 * queue lock we have to take.
3274 local_irq_save(flags
);
3275 while (!list_empty(&list
)) {
3276 rq
= list_entry_rq(list
.next
);
3277 list_del_init(&rq
->queuelist
);
3281 * This drops the queue lock
3284 queue_unplugged(q
, depth
, from_schedule
);
3287 spin_lock(q
->queue_lock
);
3291 * Short-circuit if @q is dead
3293 if (unlikely(blk_queue_dying(q
))) {
3294 __blk_end_request_all(rq
, -ENODEV
);
3299 * rq is already accounted, so use raw insert
3301 if (rq
->cmd_flags
& (REQ_PREFLUSH
| REQ_FUA
))
3302 __elv_add_request(q
, rq
, ELEVATOR_INSERT_FLUSH
);
3304 __elv_add_request(q
, rq
, ELEVATOR_INSERT_SORT_MERGE
);
3310 * This drops the queue lock
3313 queue_unplugged(q
, depth
, from_schedule
);
3315 local_irq_restore(flags
);
3318 void blk_finish_plug(struct blk_plug
*plug
)
3320 if (plug
!= current
->plug
)
3322 blk_flush_plug_list(plug
, false);
3324 current
->plug
= NULL
;
3326 EXPORT_SYMBOL(blk_finish_plug
);
3328 bool blk_poll(struct request_queue
*q
, blk_qc_t cookie
)
3330 struct blk_plug
*plug
;
3332 unsigned int queue_num
;
3333 struct blk_mq_hw_ctx
*hctx
;
3335 if (!q
->mq_ops
|| !q
->mq_ops
->poll
|| !blk_qc_t_valid(cookie
) ||
3336 !test_bit(QUEUE_FLAG_POLL
, &q
->queue_flags
))
3339 queue_num
= blk_qc_t_to_queue_num(cookie
);
3340 hctx
= q
->queue_hw_ctx
[queue_num
];
3341 hctx
->poll_considered
++;
3343 plug
= current
->plug
;
3345 blk_flush_plug_list(plug
, false);
3347 state
= current
->state
;
3348 while (!need_resched()) {
3351 hctx
->poll_invoked
++;
3353 ret
= q
->mq_ops
->poll(hctx
, blk_qc_t_to_tag(cookie
));
3355 hctx
->poll_success
++;
3356 set_current_state(TASK_RUNNING
);
3360 if (signal_pending_state(state
, current
))
3361 set_current_state(TASK_RUNNING
);
3363 if (current
->state
== TASK_RUNNING
)
3372 EXPORT_SYMBOL_GPL(blk_poll
);
3376 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3377 * @q: the queue of the device
3378 * @dev: the device the queue belongs to
3381 * Initialize runtime-PM-related fields for @q and start auto suspend for
3382 * @dev. Drivers that want to take advantage of request-based runtime PM
3383 * should call this function after @dev has been initialized, and its
3384 * request queue @q has been allocated, and runtime PM for it can not happen
3385 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3386 * cases, driver should call this function before any I/O has taken place.
3388 * This function takes care of setting up using auto suspend for the device,
3389 * the autosuspend delay is set to -1 to make runtime suspend impossible
3390 * until an updated value is either set by user or by driver. Drivers do
3391 * not need to touch other autosuspend settings.
3393 * The block layer runtime PM is request based, so only works for drivers
3394 * that use request as their IO unit instead of those directly use bio's.
3396 void blk_pm_runtime_init(struct request_queue
*q
, struct device
*dev
)
3399 q
->rpm_status
= RPM_ACTIVE
;
3400 pm_runtime_set_autosuspend_delay(q
->dev
, -1);
3401 pm_runtime_use_autosuspend(q
->dev
);
3403 EXPORT_SYMBOL(blk_pm_runtime_init
);
3406 * blk_pre_runtime_suspend - Pre runtime suspend check
3407 * @q: the queue of the device
3410 * This function will check if runtime suspend is allowed for the device
3411 * by examining if there are any requests pending in the queue. If there
3412 * are requests pending, the device can not be runtime suspended; otherwise,
3413 * the queue's status will be updated to SUSPENDING and the driver can
3414 * proceed to suspend the device.
3416 * For the not allowed case, we mark last busy for the device so that
3417 * runtime PM core will try to autosuspend it some time later.
3419 * This function should be called near the start of the device's
3420 * runtime_suspend callback.
3423 * 0 - OK to runtime suspend the device
3424 * -EBUSY - Device should not be runtime suspended
3426 int blk_pre_runtime_suspend(struct request_queue
*q
)
3433 spin_lock_irq(q
->queue_lock
);
3434 if (q
->nr_pending
) {
3436 pm_runtime_mark_last_busy(q
->dev
);
3438 q
->rpm_status
= RPM_SUSPENDING
;
3440 spin_unlock_irq(q
->queue_lock
);
3443 EXPORT_SYMBOL(blk_pre_runtime_suspend
);
3446 * blk_post_runtime_suspend - Post runtime suspend processing
3447 * @q: the queue of the device
3448 * @err: return value of the device's runtime_suspend function
3451 * Update the queue's runtime status according to the return value of the
3452 * device's runtime suspend function and mark last busy for the device so
3453 * that PM core will try to auto suspend the device at a later time.
3455 * This function should be called near the end of the device's
3456 * runtime_suspend callback.
3458 void blk_post_runtime_suspend(struct request_queue
*q
, int err
)
3463 spin_lock_irq(q
->queue_lock
);
3465 q
->rpm_status
= RPM_SUSPENDED
;
3467 q
->rpm_status
= RPM_ACTIVE
;
3468 pm_runtime_mark_last_busy(q
->dev
);
3470 spin_unlock_irq(q
->queue_lock
);
3472 EXPORT_SYMBOL(blk_post_runtime_suspend
);
3475 * blk_pre_runtime_resume - Pre runtime resume processing
3476 * @q: the queue of the device
3479 * Update the queue's runtime status to RESUMING in preparation for the
3480 * runtime resume of the device.
3482 * This function should be called near the start of the device's
3483 * runtime_resume callback.
3485 void blk_pre_runtime_resume(struct request_queue
*q
)
3490 spin_lock_irq(q
->queue_lock
);
3491 q
->rpm_status
= RPM_RESUMING
;
3492 spin_unlock_irq(q
->queue_lock
);
3494 EXPORT_SYMBOL(blk_pre_runtime_resume
);
3497 * blk_post_runtime_resume - Post runtime resume processing
3498 * @q: the queue of the device
3499 * @err: return value of the device's runtime_resume function
3502 * Update the queue's runtime status according to the return value of the
3503 * device's runtime_resume function. If it is successfully resumed, process
3504 * the requests that are queued into the device's queue when it is resuming
3505 * and then mark last busy and initiate autosuspend for it.
3507 * This function should be called near the end of the device's
3508 * runtime_resume callback.
3510 void blk_post_runtime_resume(struct request_queue
*q
, int err
)
3515 spin_lock_irq(q
->queue_lock
);
3517 q
->rpm_status
= RPM_ACTIVE
;
3519 pm_runtime_mark_last_busy(q
->dev
);
3520 pm_request_autosuspend(q
->dev
);
3522 q
->rpm_status
= RPM_SUSPENDED
;
3524 spin_unlock_irq(q
->queue_lock
);
3526 EXPORT_SYMBOL(blk_post_runtime_resume
);
3529 * blk_set_runtime_active - Force runtime status of the queue to be active
3530 * @q: the queue of the device
3532 * If the device is left runtime suspended during system suspend the resume
3533 * hook typically resumes the device and corrects runtime status
3534 * accordingly. However, that does not affect the queue runtime PM status
3535 * which is still "suspended". This prevents processing requests from the
3538 * This function can be used in driver's resume hook to correct queue
3539 * runtime PM status and re-enable peeking requests from the queue. It
3540 * should be called before first request is added to the queue.
3542 void blk_set_runtime_active(struct request_queue
*q
)
3544 spin_lock_irq(q
->queue_lock
);
3545 q
->rpm_status
= RPM_ACTIVE
;
3546 pm_runtime_mark_last_busy(q
->dev
);
3547 pm_request_autosuspend(q
->dev
);
3548 spin_unlock_irq(q
->queue_lock
);
3550 EXPORT_SYMBOL(blk_set_runtime_active
);
3553 int __init
blk_dev_init(void)
3555 BUILD_BUG_ON(__REQ_NR_BITS
> 8 *
3556 FIELD_SIZEOF(struct request
, cmd_flags
));
3558 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3559 kblockd_workqueue
= alloc_workqueue("kblockd",
3560 WQ_MEM_RECLAIM
| WQ_HIGHPRI
, 0);
3561 if (!kblockd_workqueue
)
3562 panic("Failed to create kblockd\n");
3564 request_cachep
= kmem_cache_create("blkdev_requests",
3565 sizeof(struct request
), 0, SLAB_PANIC
, NULL
);
3567 blk_requestq_cachep
= kmem_cache_create("request_queue",
3568 sizeof(struct request_queue
), 0, SLAB_PANIC
, NULL
);