4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
6 #include <linux/ftrace_event.h>
7 #include <linux/ring_buffer.h>
8 #include <linux/trace_clock.h>
9 #include <linux/trace_seq.h>
10 #include <linux/spinlock.h>
11 #include <linux/irq_work.h>
12 #include <linux/debugfs.h>
13 #include <linux/uaccess.h>
14 #include <linux/hardirq.h>
15 #include <linux/kthread.h> /* for self test */
16 #include <linux/kmemcheck.h>
17 #include <linux/module.h>
18 #include <linux/percpu.h>
19 #include <linux/mutex.h>
20 #include <linux/delay.h>
21 #include <linux/slab.h>
22 #include <linux/init.h>
23 #include <linux/hash.h>
24 #include <linux/list.h>
25 #include <linux/cpu.h>
28 #include <asm/local.h>
30 static void update_pages_handler(struct work_struct
*work
);
33 * The ring buffer header is special. We must manually up keep it.
35 int ring_buffer_print_entry_header(struct trace_seq
*s
)
39 ret
= trace_seq_puts(s
, "# compressed entry header\n");
40 ret
= trace_seq_puts(s
, "\ttype_len : 5 bits\n");
41 ret
= trace_seq_puts(s
, "\ttime_delta : 27 bits\n");
42 ret
= trace_seq_puts(s
, "\tarray : 32 bits\n");
43 ret
= trace_seq_putc(s
, '\n');
44 ret
= trace_seq_printf(s
, "\tpadding : type == %d\n",
45 RINGBUF_TYPE_PADDING
);
46 ret
= trace_seq_printf(s
, "\ttime_extend : type == %d\n",
47 RINGBUF_TYPE_TIME_EXTEND
);
48 ret
= trace_seq_printf(s
, "\tdata max type_len == %d\n",
49 RINGBUF_TYPE_DATA_TYPE_LEN_MAX
);
55 * The ring buffer is made up of a list of pages. A separate list of pages is
56 * allocated for each CPU. A writer may only write to a buffer that is
57 * associated with the CPU it is currently executing on. A reader may read
58 * from any per cpu buffer.
60 * The reader is special. For each per cpu buffer, the reader has its own
61 * reader page. When a reader has read the entire reader page, this reader
62 * page is swapped with another page in the ring buffer.
64 * Now, as long as the writer is off the reader page, the reader can do what
65 * ever it wants with that page. The writer will never write to that page
66 * again (as long as it is out of the ring buffer).
68 * Here's some silly ASCII art.
71 * |reader| RING BUFFER
73 * +------+ +---+ +---+ +---+
82 * |reader| RING BUFFER
83 * |page |------------------v
84 * +------+ +---+ +---+ +---+
93 * |reader| RING BUFFER
94 * |page |------------------v
95 * +------+ +---+ +---+ +---+
100 * +------------------------------+
104 * |buffer| RING BUFFER
105 * |page |------------------v
106 * +------+ +---+ +---+ +---+
108 * | New +---+ +---+ +---+
111 * +------------------------------+
114 * After we make this swap, the reader can hand this page off to the splice
115 * code and be done with it. It can even allocate a new page if it needs to
116 * and swap that into the ring buffer.
118 * We will be using cmpxchg soon to make all this lockless.
123 * A fast way to enable or disable all ring buffers is to
124 * call tracing_on or tracing_off. Turning off the ring buffers
125 * prevents all ring buffers from being recorded to.
126 * Turning this switch on, makes it OK to write to the
127 * ring buffer, if the ring buffer is enabled itself.
129 * There's three layers that must be on in order to write
130 * to the ring buffer.
132 * 1) This global flag must be set.
133 * 2) The ring buffer must be enabled for recording.
134 * 3) The per cpu buffer must be enabled for recording.
136 * In case of an anomaly, this global flag has a bit set that
137 * will permantly disable all ring buffers.
141 * Global flag to disable all recording to ring buffers
142 * This has two bits: ON, DISABLED
146 * 0 0 : ring buffers are off
147 * 1 0 : ring buffers are on
148 * X 1 : ring buffers are permanently disabled
152 RB_BUFFERS_ON_BIT
= 0,
153 RB_BUFFERS_DISABLED_BIT
= 1,
157 RB_BUFFERS_ON
= 1 << RB_BUFFERS_ON_BIT
,
158 RB_BUFFERS_DISABLED
= 1 << RB_BUFFERS_DISABLED_BIT
,
161 static unsigned long ring_buffer_flags __read_mostly
= RB_BUFFERS_ON
;
163 /* Used for individual buffers (after the counter) */
164 #define RB_BUFFER_OFF (1 << 20)
166 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
169 * tracing_off_permanent - permanently disable ring buffers
171 * This function, once called, will disable all ring buffers
174 void tracing_off_permanent(void)
176 set_bit(RB_BUFFERS_DISABLED_BIT
, &ring_buffer_flags
);
179 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
180 #define RB_ALIGNMENT 4U
181 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
182 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
184 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
185 # define RB_FORCE_8BYTE_ALIGNMENT 0
186 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT
188 # define RB_FORCE_8BYTE_ALIGNMENT 1
189 # define RB_ARCH_ALIGNMENT 8U
192 #define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT)
194 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
195 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
198 RB_LEN_TIME_EXTEND
= 8,
199 RB_LEN_TIME_STAMP
= 16,
202 #define skip_time_extend(event) \
203 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
205 static inline int rb_null_event(struct ring_buffer_event
*event
)
207 return event
->type_len
== RINGBUF_TYPE_PADDING
&& !event
->time_delta
;
210 static void rb_event_set_padding(struct ring_buffer_event
*event
)
212 /* padding has a NULL time_delta */
213 event
->type_len
= RINGBUF_TYPE_PADDING
;
214 event
->time_delta
= 0;
218 rb_event_data_length(struct ring_buffer_event
*event
)
223 length
= event
->type_len
* RB_ALIGNMENT
;
225 length
= event
->array
[0];
226 return length
+ RB_EVNT_HDR_SIZE
;
230 * Return the length of the given event. Will return
231 * the length of the time extend if the event is a
234 static inline unsigned
235 rb_event_length(struct ring_buffer_event
*event
)
237 switch (event
->type_len
) {
238 case RINGBUF_TYPE_PADDING
:
239 if (rb_null_event(event
))
242 return event
->array
[0] + RB_EVNT_HDR_SIZE
;
244 case RINGBUF_TYPE_TIME_EXTEND
:
245 return RB_LEN_TIME_EXTEND
;
247 case RINGBUF_TYPE_TIME_STAMP
:
248 return RB_LEN_TIME_STAMP
;
250 case RINGBUF_TYPE_DATA
:
251 return rb_event_data_length(event
);
260 * Return total length of time extend and data,
261 * or just the event length for all other events.
263 static inline unsigned
264 rb_event_ts_length(struct ring_buffer_event
*event
)
268 if (event
->type_len
== RINGBUF_TYPE_TIME_EXTEND
) {
269 /* time extends include the data event after it */
270 len
= RB_LEN_TIME_EXTEND
;
271 event
= skip_time_extend(event
);
273 return len
+ rb_event_length(event
);
277 * ring_buffer_event_length - return the length of the event
278 * @event: the event to get the length of
280 * Returns the size of the data load of a data event.
281 * If the event is something other than a data event, it
282 * returns the size of the event itself. With the exception
283 * of a TIME EXTEND, where it still returns the size of the
284 * data load of the data event after it.
286 unsigned ring_buffer_event_length(struct ring_buffer_event
*event
)
290 if (event
->type_len
== RINGBUF_TYPE_TIME_EXTEND
)
291 event
= skip_time_extend(event
);
293 length
= rb_event_length(event
);
294 if (event
->type_len
> RINGBUF_TYPE_DATA_TYPE_LEN_MAX
)
296 length
-= RB_EVNT_HDR_SIZE
;
297 if (length
> RB_MAX_SMALL_DATA
+ sizeof(event
->array
[0]))
298 length
-= sizeof(event
->array
[0]);
301 EXPORT_SYMBOL_GPL(ring_buffer_event_length
);
303 /* inline for ring buffer fast paths */
305 rb_event_data(struct ring_buffer_event
*event
)
307 if (event
->type_len
== RINGBUF_TYPE_TIME_EXTEND
)
308 event
= skip_time_extend(event
);
309 BUG_ON(event
->type_len
> RINGBUF_TYPE_DATA_TYPE_LEN_MAX
);
310 /* If length is in len field, then array[0] has the data */
312 return (void *)&event
->array
[0];
313 /* Otherwise length is in array[0] and array[1] has the data */
314 return (void *)&event
->array
[1];
318 * ring_buffer_event_data - return the data of the event
319 * @event: the event to get the data from
321 void *ring_buffer_event_data(struct ring_buffer_event
*event
)
323 return rb_event_data(event
);
325 EXPORT_SYMBOL_GPL(ring_buffer_event_data
);
327 #define for_each_buffer_cpu(buffer, cpu) \
328 for_each_cpu(cpu, buffer->cpumask)
331 #define TS_MASK ((1ULL << TS_SHIFT) - 1)
332 #define TS_DELTA_TEST (~TS_MASK)
334 /* Flag when events were overwritten */
335 #define RB_MISSED_EVENTS (1 << 31)
336 /* Missed count stored at end */
337 #define RB_MISSED_STORED (1 << 30)
339 struct buffer_data_page
{
340 u64 time_stamp
; /* page time stamp */
341 local_t commit
; /* write committed index */
342 unsigned char data
[] RB_ALIGN_DATA
; /* data of buffer page */
346 * Note, the buffer_page list must be first. The buffer pages
347 * are allocated in cache lines, which means that each buffer
348 * page will be at the beginning of a cache line, and thus
349 * the least significant bits will be zero. We use this to
350 * add flags in the list struct pointers, to make the ring buffer
354 struct list_head list
; /* list of buffer pages */
355 local_t write
; /* index for next write */
356 unsigned read
; /* index for next read */
357 local_t entries
; /* entries on this page */
358 unsigned long real_end
; /* real end of data */
359 struct buffer_data_page
*page
; /* Actual data page */
363 * The buffer page counters, write and entries, must be reset
364 * atomically when crossing page boundaries. To synchronize this
365 * update, two counters are inserted into the number. One is
366 * the actual counter for the write position or count on the page.
368 * The other is a counter of updaters. Before an update happens
369 * the update partition of the counter is incremented. This will
370 * allow the updater to update the counter atomically.
372 * The counter is 20 bits, and the state data is 12.
374 #define RB_WRITE_MASK 0xfffff
375 #define RB_WRITE_INTCNT (1 << 20)
377 static void rb_init_page(struct buffer_data_page
*bpage
)
379 local_set(&bpage
->commit
, 0);
383 * ring_buffer_page_len - the size of data on the page.
384 * @page: The page to read
386 * Returns the amount of data on the page, including buffer page header.
388 size_t ring_buffer_page_len(void *page
)
390 return local_read(&((struct buffer_data_page
*)page
)->commit
)
395 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
398 static void free_buffer_page(struct buffer_page
*bpage
)
400 free_page((unsigned long)bpage
->page
);
405 * We need to fit the time_stamp delta into 27 bits.
407 static inline int test_time_stamp(u64 delta
)
409 if (delta
& TS_DELTA_TEST
)
414 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
416 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
417 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
419 int ring_buffer_print_page_header(struct trace_seq
*s
)
421 struct buffer_data_page field
;
424 ret
= trace_seq_printf(s
, "\tfield: u64 timestamp;\t"
425 "offset:0;\tsize:%u;\tsigned:%u;\n",
426 (unsigned int)sizeof(field
.time_stamp
),
427 (unsigned int)is_signed_type(u64
));
429 ret
= trace_seq_printf(s
, "\tfield: local_t commit;\t"
430 "offset:%u;\tsize:%u;\tsigned:%u;\n",
431 (unsigned int)offsetof(typeof(field
), commit
),
432 (unsigned int)sizeof(field
.commit
),
433 (unsigned int)is_signed_type(long));
435 ret
= trace_seq_printf(s
, "\tfield: int overwrite;\t"
436 "offset:%u;\tsize:%u;\tsigned:%u;\n",
437 (unsigned int)offsetof(typeof(field
), commit
),
439 (unsigned int)is_signed_type(long));
441 ret
= trace_seq_printf(s
, "\tfield: char data;\t"
442 "offset:%u;\tsize:%u;\tsigned:%u;\n",
443 (unsigned int)offsetof(typeof(field
), data
),
444 (unsigned int)BUF_PAGE_SIZE
,
445 (unsigned int)is_signed_type(char));
451 struct irq_work work
;
452 wait_queue_head_t waiters
;
453 bool waiters_pending
;
457 * head_page == tail_page && head == tail then buffer is empty.
459 struct ring_buffer_per_cpu
{
461 atomic_t record_disabled
;
462 struct ring_buffer
*buffer
;
463 raw_spinlock_t reader_lock
; /* serialize readers */
464 arch_spinlock_t lock
;
465 struct lock_class_key lock_key
;
466 unsigned int nr_pages
;
467 struct list_head
*pages
;
468 struct buffer_page
*head_page
; /* read from head */
469 struct buffer_page
*tail_page
; /* write to tail */
470 struct buffer_page
*commit_page
; /* committed pages */
471 struct buffer_page
*reader_page
;
472 unsigned long lost_events
;
473 unsigned long last_overrun
;
474 local_t entries_bytes
;
477 local_t commit_overrun
;
478 local_t dropped_events
;
482 unsigned long read_bytes
;
485 /* ring buffer pages to update, > 0 to add, < 0 to remove */
486 int nr_pages_to_update
;
487 struct list_head new_pages
; /* new pages to add */
488 struct work_struct update_pages_work
;
489 struct completion update_done
;
491 struct rb_irq_work irq_work
;
497 atomic_t record_disabled
;
498 atomic_t resize_disabled
;
499 cpumask_var_t cpumask
;
501 struct lock_class_key
*reader_lock_key
;
505 struct ring_buffer_per_cpu
**buffers
;
507 #ifdef CONFIG_HOTPLUG_CPU
508 struct notifier_block cpu_notify
;
512 struct rb_irq_work irq_work
;
515 struct ring_buffer_iter
{
516 struct ring_buffer_per_cpu
*cpu_buffer
;
518 struct buffer_page
*head_page
;
519 struct buffer_page
*cache_reader_page
;
520 unsigned long cache_read
;
525 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
527 * Schedules a delayed work to wake up any task that is blocked on the
528 * ring buffer waiters queue.
530 static void rb_wake_up_waiters(struct irq_work
*work
)
532 struct rb_irq_work
*rbwork
= container_of(work
, struct rb_irq_work
, work
);
534 wake_up_all(&rbwork
->waiters
);
538 * ring_buffer_wait - wait for input to the ring buffer
539 * @buffer: buffer to wait on
540 * @cpu: the cpu buffer to wait on
542 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
543 * as data is added to any of the @buffer's cpu buffers. Otherwise
544 * it will wait for data to be added to a specific cpu buffer.
546 int ring_buffer_wait(struct ring_buffer
*buffer
, int cpu
)
548 struct ring_buffer_per_cpu
*cpu_buffer
;
550 struct rb_irq_work
*work
;
553 * Depending on what the caller is waiting for, either any
554 * data in any cpu buffer, or a specific buffer, put the
555 * caller on the appropriate wait queue.
557 if (cpu
== RING_BUFFER_ALL_CPUS
)
558 work
= &buffer
->irq_work
;
560 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
562 cpu_buffer
= buffer
->buffers
[cpu
];
563 work
= &cpu_buffer
->irq_work
;
567 prepare_to_wait(&work
->waiters
, &wait
, TASK_INTERRUPTIBLE
);
570 * The events can happen in critical sections where
571 * checking a work queue can cause deadlocks.
572 * After adding a task to the queue, this flag is set
573 * only to notify events to try to wake up the queue
576 * We don't clear it even if the buffer is no longer
577 * empty. The flag only causes the next event to run
578 * irq_work to do the work queue wake up. The worse
579 * that can happen if we race with !trace_empty() is that
580 * an event will cause an irq_work to try to wake up
583 * There's no reason to protect this flag either, as
584 * the work queue and irq_work logic will do the necessary
585 * synchronization for the wake ups. The only thing
586 * that is necessary is that the wake up happens after
587 * a task has been queued. It's OK for spurious wake ups.
589 work
->waiters_pending
= true;
591 if ((cpu
== RING_BUFFER_ALL_CPUS
&& ring_buffer_empty(buffer
)) ||
592 (cpu
!= RING_BUFFER_ALL_CPUS
&& ring_buffer_empty_cpu(buffer
, cpu
)))
595 finish_wait(&work
->waiters
, &wait
);
600 * ring_buffer_poll_wait - poll on buffer input
601 * @buffer: buffer to wait on
602 * @cpu: the cpu buffer to wait on
603 * @filp: the file descriptor
604 * @poll_table: The poll descriptor
606 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
607 * as data is added to any of the @buffer's cpu buffers. Otherwise
608 * it will wait for data to be added to a specific cpu buffer.
610 * Returns POLLIN | POLLRDNORM if data exists in the buffers,
613 int ring_buffer_poll_wait(struct ring_buffer
*buffer
, int cpu
,
614 struct file
*filp
, poll_table
*poll_table
)
616 struct ring_buffer_per_cpu
*cpu_buffer
;
617 struct rb_irq_work
*work
;
619 if (cpu
== RING_BUFFER_ALL_CPUS
)
620 work
= &buffer
->irq_work
;
622 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
625 cpu_buffer
= buffer
->buffers
[cpu
];
626 work
= &cpu_buffer
->irq_work
;
629 poll_wait(filp
, &work
->waiters
, poll_table
);
630 work
->waiters_pending
= true;
632 * There's a tight race between setting the waiters_pending and
633 * checking if the ring buffer is empty. Once the waiters_pending bit
634 * is set, the next event will wake the task up, but we can get stuck
635 * if there's only a single event in.
637 * FIXME: Ideally, we need a memory barrier on the writer side as well,
638 * but adding a memory barrier to all events will cause too much of a
639 * performance hit in the fast path. We only need a memory barrier when
640 * the buffer goes from empty to having content. But as this race is
641 * extremely small, and it's not a problem if another event comes in, we
646 if ((cpu
== RING_BUFFER_ALL_CPUS
&& !ring_buffer_empty(buffer
)) ||
647 (cpu
!= RING_BUFFER_ALL_CPUS
&& !ring_buffer_empty_cpu(buffer
, cpu
)))
648 return POLLIN
| POLLRDNORM
;
652 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
653 #define RB_WARN_ON(b, cond) \
655 int _____ret = unlikely(cond); \
657 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
658 struct ring_buffer_per_cpu *__b = \
660 atomic_inc(&__b->buffer->record_disabled); \
662 atomic_inc(&b->record_disabled); \
668 /* Up this if you want to test the TIME_EXTENTS and normalization */
669 #define DEBUG_SHIFT 0
671 static inline u64
rb_time_stamp(struct ring_buffer
*buffer
)
673 /* shift to debug/test normalization and TIME_EXTENTS */
674 return buffer
->clock() << DEBUG_SHIFT
;
677 u64
ring_buffer_time_stamp(struct ring_buffer
*buffer
, int cpu
)
681 preempt_disable_notrace();
682 time
= rb_time_stamp(buffer
);
683 preempt_enable_no_resched_notrace();
687 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp
);
689 void ring_buffer_normalize_time_stamp(struct ring_buffer
*buffer
,
692 /* Just stupid testing the normalize function and deltas */
695 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp
);
698 * Making the ring buffer lockless makes things tricky.
699 * Although writes only happen on the CPU that they are on,
700 * and they only need to worry about interrupts. Reads can
703 * The reader page is always off the ring buffer, but when the
704 * reader finishes with a page, it needs to swap its page with
705 * a new one from the buffer. The reader needs to take from
706 * the head (writes go to the tail). But if a writer is in overwrite
707 * mode and wraps, it must push the head page forward.
709 * Here lies the problem.
711 * The reader must be careful to replace only the head page, and
712 * not another one. As described at the top of the file in the
713 * ASCII art, the reader sets its old page to point to the next
714 * page after head. It then sets the page after head to point to
715 * the old reader page. But if the writer moves the head page
716 * during this operation, the reader could end up with the tail.
718 * We use cmpxchg to help prevent this race. We also do something
719 * special with the page before head. We set the LSB to 1.
721 * When the writer must push the page forward, it will clear the
722 * bit that points to the head page, move the head, and then set
723 * the bit that points to the new head page.
725 * We also don't want an interrupt coming in and moving the head
726 * page on another writer. Thus we use the second LSB to catch
729 * head->list->prev->next bit 1 bit 0
732 * Points to head page 0 1
735 * Note we can not trust the prev pointer of the head page, because:
737 * +----+ +-----+ +-----+
738 * | |------>| T |---X--->| N |
740 * +----+ +-----+ +-----+
743 * +----------| R |----------+ |
747 * Key: ---X--> HEAD flag set in pointer
752 * (see __rb_reserve_next() to see where this happens)
754 * What the above shows is that the reader just swapped out
755 * the reader page with a page in the buffer, but before it
756 * could make the new header point back to the new page added
757 * it was preempted by a writer. The writer moved forward onto
758 * the new page added by the reader and is about to move forward
761 * You can see, it is legitimate for the previous pointer of
762 * the head (or any page) not to point back to itself. But only
766 #define RB_PAGE_NORMAL 0UL
767 #define RB_PAGE_HEAD 1UL
768 #define RB_PAGE_UPDATE 2UL
771 #define RB_FLAG_MASK 3UL
773 /* PAGE_MOVED is not part of the mask */
774 #define RB_PAGE_MOVED 4UL
777 * rb_list_head - remove any bit
779 static struct list_head
*rb_list_head(struct list_head
*list
)
781 unsigned long val
= (unsigned long)list
;
783 return (struct list_head
*)(val
& ~RB_FLAG_MASK
);
787 * rb_is_head_page - test if the given page is the head page
789 * Because the reader may move the head_page pointer, we can
790 * not trust what the head page is (it may be pointing to
791 * the reader page). But if the next page is a header page,
792 * its flags will be non zero.
795 rb_is_head_page(struct ring_buffer_per_cpu
*cpu_buffer
,
796 struct buffer_page
*page
, struct list_head
*list
)
800 val
= (unsigned long)list
->next
;
802 if ((val
& ~RB_FLAG_MASK
) != (unsigned long)&page
->list
)
803 return RB_PAGE_MOVED
;
805 return val
& RB_FLAG_MASK
;
811 * The unique thing about the reader page, is that, if the
812 * writer is ever on it, the previous pointer never points
813 * back to the reader page.
815 static int rb_is_reader_page(struct buffer_page
*page
)
817 struct list_head
*list
= page
->list
.prev
;
819 return rb_list_head(list
->next
) != &page
->list
;
823 * rb_set_list_to_head - set a list_head to be pointing to head.
825 static void rb_set_list_to_head(struct ring_buffer_per_cpu
*cpu_buffer
,
826 struct list_head
*list
)
830 ptr
= (unsigned long *)&list
->next
;
831 *ptr
|= RB_PAGE_HEAD
;
832 *ptr
&= ~RB_PAGE_UPDATE
;
836 * rb_head_page_activate - sets up head page
838 static void rb_head_page_activate(struct ring_buffer_per_cpu
*cpu_buffer
)
840 struct buffer_page
*head
;
842 head
= cpu_buffer
->head_page
;
847 * Set the previous list pointer to have the HEAD flag.
849 rb_set_list_to_head(cpu_buffer
, head
->list
.prev
);
852 static void rb_list_head_clear(struct list_head
*list
)
854 unsigned long *ptr
= (unsigned long *)&list
->next
;
856 *ptr
&= ~RB_FLAG_MASK
;
860 * rb_head_page_dactivate - clears head page ptr (for free list)
863 rb_head_page_deactivate(struct ring_buffer_per_cpu
*cpu_buffer
)
865 struct list_head
*hd
;
867 /* Go through the whole list and clear any pointers found. */
868 rb_list_head_clear(cpu_buffer
->pages
);
870 list_for_each(hd
, cpu_buffer
->pages
)
871 rb_list_head_clear(hd
);
874 static int rb_head_page_set(struct ring_buffer_per_cpu
*cpu_buffer
,
875 struct buffer_page
*head
,
876 struct buffer_page
*prev
,
877 int old_flag
, int new_flag
)
879 struct list_head
*list
;
880 unsigned long val
= (unsigned long)&head
->list
;
885 val
&= ~RB_FLAG_MASK
;
887 ret
= cmpxchg((unsigned long *)&list
->next
,
888 val
| old_flag
, val
| new_flag
);
890 /* check if the reader took the page */
891 if ((ret
& ~RB_FLAG_MASK
) != val
)
892 return RB_PAGE_MOVED
;
894 return ret
& RB_FLAG_MASK
;
897 static int rb_head_page_set_update(struct ring_buffer_per_cpu
*cpu_buffer
,
898 struct buffer_page
*head
,
899 struct buffer_page
*prev
,
902 return rb_head_page_set(cpu_buffer
, head
, prev
,
903 old_flag
, RB_PAGE_UPDATE
);
906 static int rb_head_page_set_head(struct ring_buffer_per_cpu
*cpu_buffer
,
907 struct buffer_page
*head
,
908 struct buffer_page
*prev
,
911 return rb_head_page_set(cpu_buffer
, head
, prev
,
912 old_flag
, RB_PAGE_HEAD
);
915 static int rb_head_page_set_normal(struct ring_buffer_per_cpu
*cpu_buffer
,
916 struct buffer_page
*head
,
917 struct buffer_page
*prev
,
920 return rb_head_page_set(cpu_buffer
, head
, prev
,
921 old_flag
, RB_PAGE_NORMAL
);
924 static inline void rb_inc_page(struct ring_buffer_per_cpu
*cpu_buffer
,
925 struct buffer_page
**bpage
)
927 struct list_head
*p
= rb_list_head((*bpage
)->list
.next
);
929 *bpage
= list_entry(p
, struct buffer_page
, list
);
932 static struct buffer_page
*
933 rb_set_head_page(struct ring_buffer_per_cpu
*cpu_buffer
)
935 struct buffer_page
*head
;
936 struct buffer_page
*page
;
937 struct list_head
*list
;
940 if (RB_WARN_ON(cpu_buffer
, !cpu_buffer
->head_page
))
944 list
= cpu_buffer
->pages
;
945 if (RB_WARN_ON(cpu_buffer
, rb_list_head(list
->prev
->next
) != list
))
948 page
= head
= cpu_buffer
->head_page
;
950 * It is possible that the writer moves the header behind
951 * where we started, and we miss in one loop.
952 * A second loop should grab the header, but we'll do
953 * three loops just because I'm paranoid.
955 for (i
= 0; i
< 3; i
++) {
957 if (rb_is_head_page(cpu_buffer
, page
, page
->list
.prev
)) {
958 cpu_buffer
->head_page
= page
;
961 rb_inc_page(cpu_buffer
, &page
);
962 } while (page
!= head
);
965 RB_WARN_ON(cpu_buffer
, 1);
970 static int rb_head_page_replace(struct buffer_page
*old
,
971 struct buffer_page
*new)
973 unsigned long *ptr
= (unsigned long *)&old
->list
.prev
->next
;
977 val
= *ptr
& ~RB_FLAG_MASK
;
980 ret
= cmpxchg(ptr
, val
, (unsigned long)&new->list
);
986 * rb_tail_page_update - move the tail page forward
988 * Returns 1 if moved tail page, 0 if someone else did.
990 static int rb_tail_page_update(struct ring_buffer_per_cpu
*cpu_buffer
,
991 struct buffer_page
*tail_page
,
992 struct buffer_page
*next_page
)
994 struct buffer_page
*old_tail
;
995 unsigned long old_entries
;
996 unsigned long old_write
;
1000 * The tail page now needs to be moved forward.
1002 * We need to reset the tail page, but without messing
1003 * with possible erasing of data brought in by interrupts
1004 * that have moved the tail page and are currently on it.
1006 * We add a counter to the write field to denote this.
1008 old_write
= local_add_return(RB_WRITE_INTCNT
, &next_page
->write
);
1009 old_entries
= local_add_return(RB_WRITE_INTCNT
, &next_page
->entries
);
1012 * Just make sure we have seen our old_write and synchronize
1013 * with any interrupts that come in.
1018 * If the tail page is still the same as what we think
1019 * it is, then it is up to us to update the tail
1022 if (tail_page
== cpu_buffer
->tail_page
) {
1023 /* Zero the write counter */
1024 unsigned long val
= old_write
& ~RB_WRITE_MASK
;
1025 unsigned long eval
= old_entries
& ~RB_WRITE_MASK
;
1028 * This will only succeed if an interrupt did
1029 * not come in and change it. In which case, we
1030 * do not want to modify it.
1032 * We add (void) to let the compiler know that we do not care
1033 * about the return value of these functions. We use the
1034 * cmpxchg to only update if an interrupt did not already
1035 * do it for us. If the cmpxchg fails, we don't care.
1037 (void)local_cmpxchg(&next_page
->write
, old_write
, val
);
1038 (void)local_cmpxchg(&next_page
->entries
, old_entries
, eval
);
1041 * No need to worry about races with clearing out the commit.
1042 * it only can increment when a commit takes place. But that
1043 * only happens in the outer most nested commit.
1045 local_set(&next_page
->page
->commit
, 0);
1047 old_tail
= cmpxchg(&cpu_buffer
->tail_page
,
1048 tail_page
, next_page
);
1050 if (old_tail
== tail_page
)
1057 static int rb_check_bpage(struct ring_buffer_per_cpu
*cpu_buffer
,
1058 struct buffer_page
*bpage
)
1060 unsigned long val
= (unsigned long)bpage
;
1062 if (RB_WARN_ON(cpu_buffer
, val
& RB_FLAG_MASK
))
1069 * rb_check_list - make sure a pointer to a list has the last bits zero
1071 static int rb_check_list(struct ring_buffer_per_cpu
*cpu_buffer
,
1072 struct list_head
*list
)
1074 if (RB_WARN_ON(cpu_buffer
, rb_list_head(list
->prev
) != list
->prev
))
1076 if (RB_WARN_ON(cpu_buffer
, rb_list_head(list
->next
) != list
->next
))
1082 * rb_check_pages - integrity check of buffer pages
1083 * @cpu_buffer: CPU buffer with pages to test
1085 * As a safety measure we check to make sure the data pages have not
1088 static int rb_check_pages(struct ring_buffer_per_cpu
*cpu_buffer
)
1090 struct list_head
*head
= cpu_buffer
->pages
;
1091 struct buffer_page
*bpage
, *tmp
;
1093 /* Reset the head page if it exists */
1094 if (cpu_buffer
->head_page
)
1095 rb_set_head_page(cpu_buffer
);
1097 rb_head_page_deactivate(cpu_buffer
);
1099 if (RB_WARN_ON(cpu_buffer
, head
->next
->prev
!= head
))
1101 if (RB_WARN_ON(cpu_buffer
, head
->prev
->next
!= head
))
1104 if (rb_check_list(cpu_buffer
, head
))
1107 list_for_each_entry_safe(bpage
, tmp
, head
, list
) {
1108 if (RB_WARN_ON(cpu_buffer
,
1109 bpage
->list
.next
->prev
!= &bpage
->list
))
1111 if (RB_WARN_ON(cpu_buffer
,
1112 bpage
->list
.prev
->next
!= &bpage
->list
))
1114 if (rb_check_list(cpu_buffer
, &bpage
->list
))
1118 rb_head_page_activate(cpu_buffer
);
1123 static int __rb_allocate_pages(int nr_pages
, struct list_head
*pages
, int cpu
)
1126 struct buffer_page
*bpage
, *tmp
;
1128 for (i
= 0; i
< nr_pages
; i
++) {
1131 * __GFP_NORETRY flag makes sure that the allocation fails
1132 * gracefully without invoking oom-killer and the system is
1135 bpage
= kzalloc_node(ALIGN(sizeof(*bpage
), cache_line_size()),
1136 GFP_KERNEL
| __GFP_NORETRY
,
1141 list_add(&bpage
->list
, pages
);
1143 page
= alloc_pages_node(cpu_to_node(cpu
),
1144 GFP_KERNEL
| __GFP_NORETRY
, 0);
1147 bpage
->page
= page_address(page
);
1148 rb_init_page(bpage
->page
);
1154 list_for_each_entry_safe(bpage
, tmp
, pages
, list
) {
1155 list_del_init(&bpage
->list
);
1156 free_buffer_page(bpage
);
1162 static int rb_allocate_pages(struct ring_buffer_per_cpu
*cpu_buffer
,
1169 if (__rb_allocate_pages(nr_pages
, &pages
, cpu_buffer
->cpu
))
1173 * The ring buffer page list is a circular list that does not
1174 * start and end with a list head. All page list items point to
1177 cpu_buffer
->pages
= pages
.next
;
1180 cpu_buffer
->nr_pages
= nr_pages
;
1182 rb_check_pages(cpu_buffer
);
1187 static struct ring_buffer_per_cpu
*
1188 rb_allocate_cpu_buffer(struct ring_buffer
*buffer
, int nr_pages
, int cpu
)
1190 struct ring_buffer_per_cpu
*cpu_buffer
;
1191 struct buffer_page
*bpage
;
1195 cpu_buffer
= kzalloc_node(ALIGN(sizeof(*cpu_buffer
), cache_line_size()),
1196 GFP_KERNEL
, cpu_to_node(cpu
));
1200 cpu_buffer
->cpu
= cpu
;
1201 cpu_buffer
->buffer
= buffer
;
1202 raw_spin_lock_init(&cpu_buffer
->reader_lock
);
1203 lockdep_set_class(&cpu_buffer
->reader_lock
, buffer
->reader_lock_key
);
1204 cpu_buffer
->lock
= (arch_spinlock_t
)__ARCH_SPIN_LOCK_UNLOCKED
;
1205 INIT_WORK(&cpu_buffer
->update_pages_work
, update_pages_handler
);
1206 init_completion(&cpu_buffer
->update_done
);
1207 init_irq_work(&cpu_buffer
->irq_work
.work
, rb_wake_up_waiters
);
1208 init_waitqueue_head(&cpu_buffer
->irq_work
.waiters
);
1210 bpage
= kzalloc_node(ALIGN(sizeof(*bpage
), cache_line_size()),
1211 GFP_KERNEL
, cpu_to_node(cpu
));
1213 goto fail_free_buffer
;
1215 rb_check_bpage(cpu_buffer
, bpage
);
1217 cpu_buffer
->reader_page
= bpage
;
1218 page
= alloc_pages_node(cpu_to_node(cpu
), GFP_KERNEL
, 0);
1220 goto fail_free_reader
;
1221 bpage
->page
= page_address(page
);
1222 rb_init_page(bpage
->page
);
1224 INIT_LIST_HEAD(&cpu_buffer
->reader_page
->list
);
1225 INIT_LIST_HEAD(&cpu_buffer
->new_pages
);
1227 ret
= rb_allocate_pages(cpu_buffer
, nr_pages
);
1229 goto fail_free_reader
;
1231 cpu_buffer
->head_page
1232 = list_entry(cpu_buffer
->pages
, struct buffer_page
, list
);
1233 cpu_buffer
->tail_page
= cpu_buffer
->commit_page
= cpu_buffer
->head_page
;
1235 rb_head_page_activate(cpu_buffer
);
1240 free_buffer_page(cpu_buffer
->reader_page
);
1247 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu
*cpu_buffer
)
1249 struct list_head
*head
= cpu_buffer
->pages
;
1250 struct buffer_page
*bpage
, *tmp
;
1252 free_buffer_page(cpu_buffer
->reader_page
);
1254 rb_head_page_deactivate(cpu_buffer
);
1257 list_for_each_entry_safe(bpage
, tmp
, head
, list
) {
1258 list_del_init(&bpage
->list
);
1259 free_buffer_page(bpage
);
1261 bpage
= list_entry(head
, struct buffer_page
, list
);
1262 free_buffer_page(bpage
);
1268 #ifdef CONFIG_HOTPLUG_CPU
1269 static int rb_cpu_notify(struct notifier_block
*self
,
1270 unsigned long action
, void *hcpu
);
1274 * __ring_buffer_alloc - allocate a new ring_buffer
1275 * @size: the size in bytes per cpu that is needed.
1276 * @flags: attributes to set for the ring buffer.
1278 * Currently the only flag that is available is the RB_FL_OVERWRITE
1279 * flag. This flag means that the buffer will overwrite old data
1280 * when the buffer wraps. If this flag is not set, the buffer will
1281 * drop data when the tail hits the head.
1283 struct ring_buffer
*__ring_buffer_alloc(unsigned long size
, unsigned flags
,
1284 struct lock_class_key
*key
)
1286 struct ring_buffer
*buffer
;
1290 /* keep it in its own cache line */
1291 buffer
= kzalloc(ALIGN(sizeof(*buffer
), cache_line_size()),
1296 if (!alloc_cpumask_var(&buffer
->cpumask
, GFP_KERNEL
))
1297 goto fail_free_buffer
;
1299 nr_pages
= DIV_ROUND_UP(size
, BUF_PAGE_SIZE
);
1300 buffer
->flags
= flags
;
1301 buffer
->clock
= trace_clock_local
;
1302 buffer
->reader_lock_key
= key
;
1304 init_irq_work(&buffer
->irq_work
.work
, rb_wake_up_waiters
);
1305 init_waitqueue_head(&buffer
->irq_work
.waiters
);
1307 /* need at least two pages */
1312 * In case of non-hotplug cpu, if the ring-buffer is allocated
1313 * in early initcall, it will not be notified of secondary cpus.
1314 * In that off case, we need to allocate for all possible cpus.
1316 #ifdef CONFIG_HOTPLUG_CPU
1318 cpumask_copy(buffer
->cpumask
, cpu_online_mask
);
1320 cpumask_copy(buffer
->cpumask
, cpu_possible_mask
);
1322 buffer
->cpus
= nr_cpu_ids
;
1324 bsize
= sizeof(void *) * nr_cpu_ids
;
1325 buffer
->buffers
= kzalloc(ALIGN(bsize
, cache_line_size()),
1327 if (!buffer
->buffers
)
1328 goto fail_free_cpumask
;
1330 for_each_buffer_cpu(buffer
, cpu
) {
1331 buffer
->buffers
[cpu
] =
1332 rb_allocate_cpu_buffer(buffer
, nr_pages
, cpu
);
1333 if (!buffer
->buffers
[cpu
])
1334 goto fail_free_buffers
;
1337 #ifdef CONFIG_HOTPLUG_CPU
1338 buffer
->cpu_notify
.notifier_call
= rb_cpu_notify
;
1339 buffer
->cpu_notify
.priority
= 0;
1340 register_cpu_notifier(&buffer
->cpu_notify
);
1344 mutex_init(&buffer
->mutex
);
1349 for_each_buffer_cpu(buffer
, cpu
) {
1350 if (buffer
->buffers
[cpu
])
1351 rb_free_cpu_buffer(buffer
->buffers
[cpu
]);
1353 kfree(buffer
->buffers
);
1356 free_cpumask_var(buffer
->cpumask
);
1363 EXPORT_SYMBOL_GPL(__ring_buffer_alloc
);
1366 * ring_buffer_free - free a ring buffer.
1367 * @buffer: the buffer to free.
1370 ring_buffer_free(struct ring_buffer
*buffer
)
1376 #ifdef CONFIG_HOTPLUG_CPU
1377 unregister_cpu_notifier(&buffer
->cpu_notify
);
1380 for_each_buffer_cpu(buffer
, cpu
)
1381 rb_free_cpu_buffer(buffer
->buffers
[cpu
]);
1385 kfree(buffer
->buffers
);
1386 free_cpumask_var(buffer
->cpumask
);
1390 EXPORT_SYMBOL_GPL(ring_buffer_free
);
1392 void ring_buffer_set_clock(struct ring_buffer
*buffer
,
1395 buffer
->clock
= clock
;
1398 static void rb_reset_cpu(struct ring_buffer_per_cpu
*cpu_buffer
);
1400 static inline unsigned long rb_page_entries(struct buffer_page
*bpage
)
1402 return local_read(&bpage
->entries
) & RB_WRITE_MASK
;
1405 static inline unsigned long rb_page_write(struct buffer_page
*bpage
)
1407 return local_read(&bpage
->write
) & RB_WRITE_MASK
;
1411 rb_remove_pages(struct ring_buffer_per_cpu
*cpu_buffer
, unsigned int nr_pages
)
1413 struct list_head
*tail_page
, *to_remove
, *next_page
;
1414 struct buffer_page
*to_remove_page
, *tmp_iter_page
;
1415 struct buffer_page
*last_page
, *first_page
;
1416 unsigned int nr_removed
;
1417 unsigned long head_bit
;
1422 raw_spin_lock_irq(&cpu_buffer
->reader_lock
);
1423 atomic_inc(&cpu_buffer
->record_disabled
);
1425 * We don't race with the readers since we have acquired the reader
1426 * lock. We also don't race with writers after disabling recording.
1427 * This makes it easy to figure out the first and the last page to be
1428 * removed from the list. We unlink all the pages in between including
1429 * the first and last pages. This is done in a busy loop so that we
1430 * lose the least number of traces.
1431 * The pages are freed after we restart recording and unlock readers.
1433 tail_page
= &cpu_buffer
->tail_page
->list
;
1436 * tail page might be on reader page, we remove the next page
1437 * from the ring buffer
1439 if (cpu_buffer
->tail_page
== cpu_buffer
->reader_page
)
1440 tail_page
= rb_list_head(tail_page
->next
);
1441 to_remove
= tail_page
;
1443 /* start of pages to remove */
1444 first_page
= list_entry(rb_list_head(to_remove
->next
),
1445 struct buffer_page
, list
);
1447 for (nr_removed
= 0; nr_removed
< nr_pages
; nr_removed
++) {
1448 to_remove
= rb_list_head(to_remove
)->next
;
1449 head_bit
|= (unsigned long)to_remove
& RB_PAGE_HEAD
;
1452 next_page
= rb_list_head(to_remove
)->next
;
1455 * Now we remove all pages between tail_page and next_page.
1456 * Make sure that we have head_bit value preserved for the
1459 tail_page
->next
= (struct list_head
*)((unsigned long)next_page
|
1461 next_page
= rb_list_head(next_page
);
1462 next_page
->prev
= tail_page
;
1464 /* make sure pages points to a valid page in the ring buffer */
1465 cpu_buffer
->pages
= next_page
;
1467 /* update head page */
1469 cpu_buffer
->head_page
= list_entry(next_page
,
1470 struct buffer_page
, list
);
1473 * change read pointer to make sure any read iterators reset
1476 cpu_buffer
->read
= 0;
1478 /* pages are removed, resume tracing and then free the pages */
1479 atomic_dec(&cpu_buffer
->record_disabled
);
1480 raw_spin_unlock_irq(&cpu_buffer
->reader_lock
);
1482 RB_WARN_ON(cpu_buffer
, list_empty(cpu_buffer
->pages
));
1484 /* last buffer page to remove */
1485 last_page
= list_entry(rb_list_head(to_remove
), struct buffer_page
,
1487 tmp_iter_page
= first_page
;
1490 to_remove_page
= tmp_iter_page
;
1491 rb_inc_page(cpu_buffer
, &tmp_iter_page
);
1493 /* update the counters */
1494 page_entries
= rb_page_entries(to_remove_page
);
1497 * If something was added to this page, it was full
1498 * since it is not the tail page. So we deduct the
1499 * bytes consumed in ring buffer from here.
1500 * Increment overrun to account for the lost events.
1502 local_add(page_entries
, &cpu_buffer
->overrun
);
1503 local_sub(BUF_PAGE_SIZE
, &cpu_buffer
->entries_bytes
);
1507 * We have already removed references to this list item, just
1508 * free up the buffer_page and its page
1510 free_buffer_page(to_remove_page
);
1513 } while (to_remove_page
!= last_page
);
1515 RB_WARN_ON(cpu_buffer
, nr_removed
);
1517 return nr_removed
== 0;
1521 rb_insert_pages(struct ring_buffer_per_cpu
*cpu_buffer
)
1523 struct list_head
*pages
= &cpu_buffer
->new_pages
;
1524 int retries
, success
;
1526 raw_spin_lock_irq(&cpu_buffer
->reader_lock
);
1528 * We are holding the reader lock, so the reader page won't be swapped
1529 * in the ring buffer. Now we are racing with the writer trying to
1530 * move head page and the tail page.
1531 * We are going to adapt the reader page update process where:
1532 * 1. We first splice the start and end of list of new pages between
1533 * the head page and its previous page.
1534 * 2. We cmpxchg the prev_page->next to point from head page to the
1535 * start of new pages list.
1536 * 3. Finally, we update the head->prev to the end of new list.
1538 * We will try this process 10 times, to make sure that we don't keep
1544 struct list_head
*head_page
, *prev_page
, *r
;
1545 struct list_head
*last_page
, *first_page
;
1546 struct list_head
*head_page_with_bit
;
1548 head_page
= &rb_set_head_page(cpu_buffer
)->list
;
1551 prev_page
= head_page
->prev
;
1553 first_page
= pages
->next
;
1554 last_page
= pages
->prev
;
1556 head_page_with_bit
= (struct list_head
*)
1557 ((unsigned long)head_page
| RB_PAGE_HEAD
);
1559 last_page
->next
= head_page_with_bit
;
1560 first_page
->prev
= prev_page
;
1562 r
= cmpxchg(&prev_page
->next
, head_page_with_bit
, first_page
);
1564 if (r
== head_page_with_bit
) {
1566 * yay, we replaced the page pointer to our new list,
1567 * now, we just have to update to head page's prev
1568 * pointer to point to end of list
1570 head_page
->prev
= last_page
;
1577 INIT_LIST_HEAD(pages
);
1579 * If we weren't successful in adding in new pages, warn and stop
1582 RB_WARN_ON(cpu_buffer
, !success
);
1583 raw_spin_unlock_irq(&cpu_buffer
->reader_lock
);
1585 /* free pages if they weren't inserted */
1587 struct buffer_page
*bpage
, *tmp
;
1588 list_for_each_entry_safe(bpage
, tmp
, &cpu_buffer
->new_pages
,
1590 list_del_init(&bpage
->list
);
1591 free_buffer_page(bpage
);
1597 static void rb_update_pages(struct ring_buffer_per_cpu
*cpu_buffer
)
1601 if (cpu_buffer
->nr_pages_to_update
> 0)
1602 success
= rb_insert_pages(cpu_buffer
);
1604 success
= rb_remove_pages(cpu_buffer
,
1605 -cpu_buffer
->nr_pages_to_update
);
1608 cpu_buffer
->nr_pages
+= cpu_buffer
->nr_pages_to_update
;
1611 static void update_pages_handler(struct work_struct
*work
)
1613 struct ring_buffer_per_cpu
*cpu_buffer
= container_of(work
,
1614 struct ring_buffer_per_cpu
, update_pages_work
);
1615 rb_update_pages(cpu_buffer
);
1616 complete(&cpu_buffer
->update_done
);
1620 * ring_buffer_resize - resize the ring buffer
1621 * @buffer: the buffer to resize.
1622 * @size: the new size.
1623 * @cpu_id: the cpu buffer to resize
1625 * Minimum size is 2 * BUF_PAGE_SIZE.
1627 * Returns 0 on success and < 0 on failure.
1629 int ring_buffer_resize(struct ring_buffer
*buffer
, unsigned long size
,
1632 struct ring_buffer_per_cpu
*cpu_buffer
;
1637 * Always succeed at resizing a non-existent buffer:
1642 /* Make sure the requested buffer exists */
1643 if (cpu_id
!= RING_BUFFER_ALL_CPUS
&&
1644 !cpumask_test_cpu(cpu_id
, buffer
->cpumask
))
1647 size
= DIV_ROUND_UP(size
, BUF_PAGE_SIZE
);
1648 size
*= BUF_PAGE_SIZE
;
1650 /* we need a minimum of two pages */
1651 if (size
< BUF_PAGE_SIZE
* 2)
1652 size
= BUF_PAGE_SIZE
* 2;
1654 nr_pages
= DIV_ROUND_UP(size
, BUF_PAGE_SIZE
);
1657 * Don't succeed if resizing is disabled, as a reader might be
1658 * manipulating the ring buffer and is expecting a sane state while
1661 if (atomic_read(&buffer
->resize_disabled
))
1664 /* prevent another thread from changing buffer sizes */
1665 mutex_lock(&buffer
->mutex
);
1667 if (cpu_id
== RING_BUFFER_ALL_CPUS
) {
1668 /* calculate the pages to update */
1669 for_each_buffer_cpu(buffer
, cpu
) {
1670 cpu_buffer
= buffer
->buffers
[cpu
];
1672 cpu_buffer
->nr_pages_to_update
= nr_pages
-
1673 cpu_buffer
->nr_pages
;
1675 * nothing more to do for removing pages or no update
1677 if (cpu_buffer
->nr_pages_to_update
<= 0)
1680 * to add pages, make sure all new pages can be
1681 * allocated without receiving ENOMEM
1683 INIT_LIST_HEAD(&cpu_buffer
->new_pages
);
1684 if (__rb_allocate_pages(cpu_buffer
->nr_pages_to_update
,
1685 &cpu_buffer
->new_pages
, cpu
)) {
1686 /* not enough memory for new pages */
1694 * Fire off all the required work handlers
1695 * We can't schedule on offline CPUs, but it's not necessary
1696 * since we can change their buffer sizes without any race.
1698 for_each_buffer_cpu(buffer
, cpu
) {
1699 cpu_buffer
= buffer
->buffers
[cpu
];
1700 if (!cpu_buffer
->nr_pages_to_update
)
1703 /* The update must run on the CPU that is being updated. */
1705 if (cpu
== smp_processor_id() || !cpu_online(cpu
)) {
1706 rb_update_pages(cpu_buffer
);
1707 cpu_buffer
->nr_pages_to_update
= 0;
1710 * Can not disable preemption for schedule_work_on()
1714 schedule_work_on(cpu
,
1715 &cpu_buffer
->update_pages_work
);
1721 /* wait for all the updates to complete */
1722 for_each_buffer_cpu(buffer
, cpu
) {
1723 cpu_buffer
= buffer
->buffers
[cpu
];
1724 if (!cpu_buffer
->nr_pages_to_update
)
1727 if (cpu_online(cpu
))
1728 wait_for_completion(&cpu_buffer
->update_done
);
1729 cpu_buffer
->nr_pages_to_update
= 0;
1734 /* Make sure this CPU has been intitialized */
1735 if (!cpumask_test_cpu(cpu_id
, buffer
->cpumask
))
1738 cpu_buffer
= buffer
->buffers
[cpu_id
];
1740 if (nr_pages
== cpu_buffer
->nr_pages
)
1743 cpu_buffer
->nr_pages_to_update
= nr_pages
-
1744 cpu_buffer
->nr_pages
;
1746 INIT_LIST_HEAD(&cpu_buffer
->new_pages
);
1747 if (cpu_buffer
->nr_pages_to_update
> 0 &&
1748 __rb_allocate_pages(cpu_buffer
->nr_pages_to_update
,
1749 &cpu_buffer
->new_pages
, cpu_id
)) {
1757 /* The update must run on the CPU that is being updated. */
1758 if (cpu_id
== smp_processor_id() || !cpu_online(cpu_id
))
1759 rb_update_pages(cpu_buffer
);
1762 * Can not disable preemption for schedule_work_on()
1766 schedule_work_on(cpu_id
,
1767 &cpu_buffer
->update_pages_work
);
1768 wait_for_completion(&cpu_buffer
->update_done
);
1773 cpu_buffer
->nr_pages_to_update
= 0;
1779 * The ring buffer resize can happen with the ring buffer
1780 * enabled, so that the update disturbs the tracing as little
1781 * as possible. But if the buffer is disabled, we do not need
1782 * to worry about that, and we can take the time to verify
1783 * that the buffer is not corrupt.
1785 if (atomic_read(&buffer
->record_disabled
)) {
1786 atomic_inc(&buffer
->record_disabled
);
1788 * Even though the buffer was disabled, we must make sure
1789 * that it is truly disabled before calling rb_check_pages.
1790 * There could have been a race between checking
1791 * record_disable and incrementing it.
1793 synchronize_sched();
1794 for_each_buffer_cpu(buffer
, cpu
) {
1795 cpu_buffer
= buffer
->buffers
[cpu
];
1796 rb_check_pages(cpu_buffer
);
1798 atomic_dec(&buffer
->record_disabled
);
1801 mutex_unlock(&buffer
->mutex
);
1805 for_each_buffer_cpu(buffer
, cpu
) {
1806 struct buffer_page
*bpage
, *tmp
;
1808 cpu_buffer
= buffer
->buffers
[cpu
];
1809 cpu_buffer
->nr_pages_to_update
= 0;
1811 if (list_empty(&cpu_buffer
->new_pages
))
1814 list_for_each_entry_safe(bpage
, tmp
, &cpu_buffer
->new_pages
,
1816 list_del_init(&bpage
->list
);
1817 free_buffer_page(bpage
);
1820 mutex_unlock(&buffer
->mutex
);
1823 EXPORT_SYMBOL_GPL(ring_buffer_resize
);
1825 void ring_buffer_change_overwrite(struct ring_buffer
*buffer
, int val
)
1827 mutex_lock(&buffer
->mutex
);
1829 buffer
->flags
|= RB_FL_OVERWRITE
;
1831 buffer
->flags
&= ~RB_FL_OVERWRITE
;
1832 mutex_unlock(&buffer
->mutex
);
1834 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite
);
1836 static inline void *
1837 __rb_data_page_index(struct buffer_data_page
*bpage
, unsigned index
)
1839 return bpage
->data
+ index
;
1842 static inline void *__rb_page_index(struct buffer_page
*bpage
, unsigned index
)
1844 return bpage
->page
->data
+ index
;
1847 static inline struct ring_buffer_event
*
1848 rb_reader_event(struct ring_buffer_per_cpu
*cpu_buffer
)
1850 return __rb_page_index(cpu_buffer
->reader_page
,
1851 cpu_buffer
->reader_page
->read
);
1854 static inline struct ring_buffer_event
*
1855 rb_iter_head_event(struct ring_buffer_iter
*iter
)
1857 return __rb_page_index(iter
->head_page
, iter
->head
);
1860 static inline unsigned rb_page_commit(struct buffer_page
*bpage
)
1862 return local_read(&bpage
->page
->commit
);
1865 /* Size is determined by what has been committed */
1866 static inline unsigned rb_page_size(struct buffer_page
*bpage
)
1868 return rb_page_commit(bpage
);
1871 static inline unsigned
1872 rb_commit_index(struct ring_buffer_per_cpu
*cpu_buffer
)
1874 return rb_page_commit(cpu_buffer
->commit_page
);
1877 static inline unsigned
1878 rb_event_index(struct ring_buffer_event
*event
)
1880 unsigned long addr
= (unsigned long)event
;
1882 return (addr
& ~PAGE_MASK
) - BUF_PAGE_HDR_SIZE
;
1886 rb_event_is_commit(struct ring_buffer_per_cpu
*cpu_buffer
,
1887 struct ring_buffer_event
*event
)
1889 unsigned long addr
= (unsigned long)event
;
1890 unsigned long index
;
1892 index
= rb_event_index(event
);
1895 return cpu_buffer
->commit_page
->page
== (void *)addr
&&
1896 rb_commit_index(cpu_buffer
) == index
;
1900 rb_set_commit_to_write(struct ring_buffer_per_cpu
*cpu_buffer
)
1902 unsigned long max_count
;
1905 * We only race with interrupts and NMIs on this CPU.
1906 * If we own the commit event, then we can commit
1907 * all others that interrupted us, since the interruptions
1908 * are in stack format (they finish before they come
1909 * back to us). This allows us to do a simple loop to
1910 * assign the commit to the tail.
1913 max_count
= cpu_buffer
->nr_pages
* 100;
1915 while (cpu_buffer
->commit_page
!= cpu_buffer
->tail_page
) {
1916 if (RB_WARN_ON(cpu_buffer
, !(--max_count
)))
1918 if (RB_WARN_ON(cpu_buffer
,
1919 rb_is_reader_page(cpu_buffer
->tail_page
)))
1921 local_set(&cpu_buffer
->commit_page
->page
->commit
,
1922 rb_page_write(cpu_buffer
->commit_page
));
1923 rb_inc_page(cpu_buffer
, &cpu_buffer
->commit_page
);
1924 cpu_buffer
->write_stamp
=
1925 cpu_buffer
->commit_page
->page
->time_stamp
;
1926 /* add barrier to keep gcc from optimizing too much */
1929 while (rb_commit_index(cpu_buffer
) !=
1930 rb_page_write(cpu_buffer
->commit_page
)) {
1932 local_set(&cpu_buffer
->commit_page
->page
->commit
,
1933 rb_page_write(cpu_buffer
->commit_page
));
1934 RB_WARN_ON(cpu_buffer
,
1935 local_read(&cpu_buffer
->commit_page
->page
->commit
) &
1940 /* again, keep gcc from optimizing */
1944 * If an interrupt came in just after the first while loop
1945 * and pushed the tail page forward, we will be left with
1946 * a dangling commit that will never go forward.
1948 if (unlikely(cpu_buffer
->commit_page
!= cpu_buffer
->tail_page
))
1952 static void rb_reset_reader_page(struct ring_buffer_per_cpu
*cpu_buffer
)
1954 cpu_buffer
->read_stamp
= cpu_buffer
->reader_page
->page
->time_stamp
;
1955 cpu_buffer
->reader_page
->read
= 0;
1958 static void rb_inc_iter(struct ring_buffer_iter
*iter
)
1960 struct ring_buffer_per_cpu
*cpu_buffer
= iter
->cpu_buffer
;
1963 * The iterator could be on the reader page (it starts there).
1964 * But the head could have moved, since the reader was
1965 * found. Check for this case and assign the iterator
1966 * to the head page instead of next.
1968 if (iter
->head_page
== cpu_buffer
->reader_page
)
1969 iter
->head_page
= rb_set_head_page(cpu_buffer
);
1971 rb_inc_page(cpu_buffer
, &iter
->head_page
);
1973 iter
->read_stamp
= iter
->head_page
->page
->time_stamp
;
1977 /* Slow path, do not inline */
1978 static noinline
struct ring_buffer_event
*
1979 rb_add_time_stamp(struct ring_buffer_event
*event
, u64 delta
)
1981 event
->type_len
= RINGBUF_TYPE_TIME_EXTEND
;
1983 /* Not the first event on the page? */
1984 if (rb_event_index(event
)) {
1985 event
->time_delta
= delta
& TS_MASK
;
1986 event
->array
[0] = delta
>> TS_SHIFT
;
1988 /* nope, just zero it */
1989 event
->time_delta
= 0;
1990 event
->array
[0] = 0;
1993 return skip_time_extend(event
);
1997 * rb_update_event - update event type and data
1998 * @event: the event to update
1999 * @type: the type of event
2000 * @length: the size of the event field in the ring buffer
2002 * Update the type and data fields of the event. The length
2003 * is the actual size that is written to the ring buffer,
2004 * and with this, we can determine what to place into the
2008 rb_update_event(struct ring_buffer_per_cpu
*cpu_buffer
,
2009 struct ring_buffer_event
*event
, unsigned length
,
2010 int add_timestamp
, u64 delta
)
2012 /* Only a commit updates the timestamp */
2013 if (unlikely(!rb_event_is_commit(cpu_buffer
, event
)))
2017 * If we need to add a timestamp, then we
2018 * add it to the start of the resevered space.
2020 if (unlikely(add_timestamp
)) {
2021 event
= rb_add_time_stamp(event
, delta
);
2022 length
-= RB_LEN_TIME_EXTEND
;
2026 event
->time_delta
= delta
;
2027 length
-= RB_EVNT_HDR_SIZE
;
2028 if (length
> RB_MAX_SMALL_DATA
|| RB_FORCE_8BYTE_ALIGNMENT
) {
2029 event
->type_len
= 0;
2030 event
->array
[0] = length
;
2032 event
->type_len
= DIV_ROUND_UP(length
, RB_ALIGNMENT
);
2036 * rb_handle_head_page - writer hit the head page
2038 * Returns: +1 to retry page
2043 rb_handle_head_page(struct ring_buffer_per_cpu
*cpu_buffer
,
2044 struct buffer_page
*tail_page
,
2045 struct buffer_page
*next_page
)
2047 struct buffer_page
*new_head
;
2052 entries
= rb_page_entries(next_page
);
2055 * The hard part is here. We need to move the head
2056 * forward, and protect against both readers on
2057 * other CPUs and writers coming in via interrupts.
2059 type
= rb_head_page_set_update(cpu_buffer
, next_page
, tail_page
,
2063 * type can be one of four:
2064 * NORMAL - an interrupt already moved it for us
2065 * HEAD - we are the first to get here.
2066 * UPDATE - we are the interrupt interrupting
2068 * MOVED - a reader on another CPU moved the next
2069 * pointer to its reader page. Give up
2076 * We changed the head to UPDATE, thus
2077 * it is our responsibility to update
2080 local_add(entries
, &cpu_buffer
->overrun
);
2081 local_sub(BUF_PAGE_SIZE
, &cpu_buffer
->entries_bytes
);
2084 * The entries will be zeroed out when we move the
2088 /* still more to do */
2091 case RB_PAGE_UPDATE
:
2093 * This is an interrupt that interrupt the
2094 * previous update. Still more to do.
2097 case RB_PAGE_NORMAL
:
2099 * An interrupt came in before the update
2100 * and processed this for us.
2101 * Nothing left to do.
2106 * The reader is on another CPU and just did
2107 * a swap with our next_page.
2112 RB_WARN_ON(cpu_buffer
, 1); /* WTF??? */
2117 * Now that we are here, the old head pointer is
2118 * set to UPDATE. This will keep the reader from
2119 * swapping the head page with the reader page.
2120 * The reader (on another CPU) will spin till
2123 * We just need to protect against interrupts
2124 * doing the job. We will set the next pointer
2125 * to HEAD. After that, we set the old pointer
2126 * to NORMAL, but only if it was HEAD before.
2127 * otherwise we are an interrupt, and only
2128 * want the outer most commit to reset it.
2130 new_head
= next_page
;
2131 rb_inc_page(cpu_buffer
, &new_head
);
2133 ret
= rb_head_page_set_head(cpu_buffer
, new_head
, next_page
,
2137 * Valid returns are:
2138 * HEAD - an interrupt came in and already set it.
2139 * NORMAL - One of two things:
2140 * 1) We really set it.
2141 * 2) A bunch of interrupts came in and moved
2142 * the page forward again.
2146 case RB_PAGE_NORMAL
:
2150 RB_WARN_ON(cpu_buffer
, 1);
2155 * It is possible that an interrupt came in,
2156 * set the head up, then more interrupts came in
2157 * and moved it again. When we get back here,
2158 * the page would have been set to NORMAL but we
2159 * just set it back to HEAD.
2161 * How do you detect this? Well, if that happened
2162 * the tail page would have moved.
2164 if (ret
== RB_PAGE_NORMAL
) {
2166 * If the tail had moved passed next, then we need
2167 * to reset the pointer.
2169 if (cpu_buffer
->tail_page
!= tail_page
&&
2170 cpu_buffer
->tail_page
!= next_page
)
2171 rb_head_page_set_normal(cpu_buffer
, new_head
,
2177 * If this was the outer most commit (the one that
2178 * changed the original pointer from HEAD to UPDATE),
2179 * then it is up to us to reset it to NORMAL.
2181 if (type
== RB_PAGE_HEAD
) {
2182 ret
= rb_head_page_set_normal(cpu_buffer
, next_page
,
2185 if (RB_WARN_ON(cpu_buffer
,
2186 ret
!= RB_PAGE_UPDATE
))
2193 static unsigned rb_calculate_event_length(unsigned length
)
2195 struct ring_buffer_event event
; /* Used only for sizeof array */
2197 /* zero length can cause confusions */
2201 if (length
> RB_MAX_SMALL_DATA
|| RB_FORCE_8BYTE_ALIGNMENT
)
2202 length
+= sizeof(event
.array
[0]);
2204 length
+= RB_EVNT_HDR_SIZE
;
2205 length
= ALIGN(length
, RB_ARCH_ALIGNMENT
);
2211 rb_reset_tail(struct ring_buffer_per_cpu
*cpu_buffer
,
2212 struct buffer_page
*tail_page
,
2213 unsigned long tail
, unsigned long length
)
2215 struct ring_buffer_event
*event
;
2218 * Only the event that crossed the page boundary
2219 * must fill the old tail_page with padding.
2221 if (tail
>= BUF_PAGE_SIZE
) {
2223 * If the page was filled, then we still need
2224 * to update the real_end. Reset it to zero
2225 * and the reader will ignore it.
2227 if (tail
== BUF_PAGE_SIZE
)
2228 tail_page
->real_end
= 0;
2230 local_sub(length
, &tail_page
->write
);
2234 event
= __rb_page_index(tail_page
, tail
);
2235 kmemcheck_annotate_bitfield(event
, bitfield
);
2237 /* account for padding bytes */
2238 local_add(BUF_PAGE_SIZE
- tail
, &cpu_buffer
->entries_bytes
);
2241 * Save the original length to the meta data.
2242 * This will be used by the reader to add lost event
2245 tail_page
->real_end
= tail
;
2248 * If this event is bigger than the minimum size, then
2249 * we need to be careful that we don't subtract the
2250 * write counter enough to allow another writer to slip
2252 * We put in a discarded commit instead, to make sure
2253 * that this space is not used again.
2255 * If we are less than the minimum size, we don't need to
2258 if (tail
> (BUF_PAGE_SIZE
- RB_EVNT_MIN_SIZE
)) {
2259 /* No room for any events */
2261 /* Mark the rest of the page with padding */
2262 rb_event_set_padding(event
);
2264 /* Set the write back to the previous setting */
2265 local_sub(length
, &tail_page
->write
);
2269 /* Put in a discarded event */
2270 event
->array
[0] = (BUF_PAGE_SIZE
- tail
) - RB_EVNT_HDR_SIZE
;
2271 event
->type_len
= RINGBUF_TYPE_PADDING
;
2272 /* time delta must be non zero */
2273 event
->time_delta
= 1;
2275 /* Set write to end of buffer */
2276 length
= (tail
+ length
) - BUF_PAGE_SIZE
;
2277 local_sub(length
, &tail_page
->write
);
2281 * This is the slow path, force gcc not to inline it.
2283 static noinline
struct ring_buffer_event
*
2284 rb_move_tail(struct ring_buffer_per_cpu
*cpu_buffer
,
2285 unsigned long length
, unsigned long tail
,
2286 struct buffer_page
*tail_page
, u64 ts
)
2288 struct buffer_page
*commit_page
= cpu_buffer
->commit_page
;
2289 struct ring_buffer
*buffer
= cpu_buffer
->buffer
;
2290 struct buffer_page
*next_page
;
2293 next_page
= tail_page
;
2295 rb_inc_page(cpu_buffer
, &next_page
);
2298 * If for some reason, we had an interrupt storm that made
2299 * it all the way around the buffer, bail, and warn
2302 if (unlikely(next_page
== commit_page
)) {
2303 local_inc(&cpu_buffer
->commit_overrun
);
2308 * This is where the fun begins!
2310 * We are fighting against races between a reader that
2311 * could be on another CPU trying to swap its reader
2312 * page with the buffer head.
2314 * We are also fighting against interrupts coming in and
2315 * moving the head or tail on us as well.
2317 * If the next page is the head page then we have filled
2318 * the buffer, unless the commit page is still on the
2321 if (rb_is_head_page(cpu_buffer
, next_page
, &tail_page
->list
)) {
2324 * If the commit is not on the reader page, then
2325 * move the header page.
2327 if (!rb_is_reader_page(cpu_buffer
->commit_page
)) {
2329 * If we are not in overwrite mode,
2330 * this is easy, just stop here.
2332 if (!(buffer
->flags
& RB_FL_OVERWRITE
)) {
2333 local_inc(&cpu_buffer
->dropped_events
);
2337 ret
= rb_handle_head_page(cpu_buffer
,
2346 * We need to be careful here too. The
2347 * commit page could still be on the reader
2348 * page. We could have a small buffer, and
2349 * have filled up the buffer with events
2350 * from interrupts and such, and wrapped.
2352 * Note, if the tail page is also the on the
2353 * reader_page, we let it move out.
2355 if (unlikely((cpu_buffer
->commit_page
!=
2356 cpu_buffer
->tail_page
) &&
2357 (cpu_buffer
->commit_page
==
2358 cpu_buffer
->reader_page
))) {
2359 local_inc(&cpu_buffer
->commit_overrun
);
2365 ret
= rb_tail_page_update(cpu_buffer
, tail_page
, next_page
);
2368 * Nested commits always have zero deltas, so
2369 * just reread the time stamp
2371 ts
= rb_time_stamp(buffer
);
2372 next_page
->page
->time_stamp
= ts
;
2377 rb_reset_tail(cpu_buffer
, tail_page
, tail
, length
);
2379 /* fail and let the caller try again */
2380 return ERR_PTR(-EAGAIN
);
2384 rb_reset_tail(cpu_buffer
, tail_page
, tail
, length
);
2389 static struct ring_buffer_event
*
2390 __rb_reserve_next(struct ring_buffer_per_cpu
*cpu_buffer
,
2391 unsigned long length
, u64 ts
,
2392 u64 delta
, int add_timestamp
)
2394 struct buffer_page
*tail_page
;
2395 struct ring_buffer_event
*event
;
2396 unsigned long tail
, write
;
2399 * If the time delta since the last event is too big to
2400 * hold in the time field of the event, then we append a
2401 * TIME EXTEND event ahead of the data event.
2403 if (unlikely(add_timestamp
))
2404 length
+= RB_LEN_TIME_EXTEND
;
2406 tail_page
= cpu_buffer
->tail_page
;
2407 write
= local_add_return(length
, &tail_page
->write
);
2409 /* set write to only the index of the write */
2410 write
&= RB_WRITE_MASK
;
2411 tail
= write
- length
;
2414 * If this is the first commit on the page, then it has the same
2415 * timestamp as the page itself.
2420 /* See if we shot pass the end of this buffer page */
2421 if (unlikely(write
> BUF_PAGE_SIZE
))
2422 return rb_move_tail(cpu_buffer
, length
, tail
,
2425 /* We reserved something on the buffer */
2427 event
= __rb_page_index(tail_page
, tail
);
2428 kmemcheck_annotate_bitfield(event
, bitfield
);
2429 rb_update_event(cpu_buffer
, event
, length
, add_timestamp
, delta
);
2431 local_inc(&tail_page
->entries
);
2434 * If this is the first commit on the page, then update
2438 tail_page
->page
->time_stamp
= ts
;
2440 /* account for these added bytes */
2441 local_add(length
, &cpu_buffer
->entries_bytes
);
2447 rb_try_to_discard(struct ring_buffer_per_cpu
*cpu_buffer
,
2448 struct ring_buffer_event
*event
)
2450 unsigned long new_index
, old_index
;
2451 struct buffer_page
*bpage
;
2452 unsigned long index
;
2455 new_index
= rb_event_index(event
);
2456 old_index
= new_index
+ rb_event_ts_length(event
);
2457 addr
= (unsigned long)event
;
2460 bpage
= cpu_buffer
->tail_page
;
2462 if (bpage
->page
== (void *)addr
&& rb_page_write(bpage
) == old_index
) {
2463 unsigned long write_mask
=
2464 local_read(&bpage
->write
) & ~RB_WRITE_MASK
;
2465 unsigned long event_length
= rb_event_length(event
);
2467 * This is on the tail page. It is possible that
2468 * a write could come in and move the tail page
2469 * and write to the next page. That is fine
2470 * because we just shorten what is on this page.
2472 old_index
+= write_mask
;
2473 new_index
+= write_mask
;
2474 index
= local_cmpxchg(&bpage
->write
, old_index
, new_index
);
2475 if (index
== old_index
) {
2476 /* update counters */
2477 local_sub(event_length
, &cpu_buffer
->entries_bytes
);
2482 /* could not discard */
2486 static void rb_start_commit(struct ring_buffer_per_cpu
*cpu_buffer
)
2488 local_inc(&cpu_buffer
->committing
);
2489 local_inc(&cpu_buffer
->commits
);
2492 static inline void rb_end_commit(struct ring_buffer_per_cpu
*cpu_buffer
)
2494 unsigned long commits
;
2496 if (RB_WARN_ON(cpu_buffer
,
2497 !local_read(&cpu_buffer
->committing
)))
2501 commits
= local_read(&cpu_buffer
->commits
);
2502 /* synchronize with interrupts */
2504 if (local_read(&cpu_buffer
->committing
) == 1)
2505 rb_set_commit_to_write(cpu_buffer
);
2507 local_dec(&cpu_buffer
->committing
);
2509 /* synchronize with interrupts */
2513 * Need to account for interrupts coming in between the
2514 * updating of the commit page and the clearing of the
2515 * committing counter.
2517 if (unlikely(local_read(&cpu_buffer
->commits
) != commits
) &&
2518 !local_read(&cpu_buffer
->committing
)) {
2519 local_inc(&cpu_buffer
->committing
);
2524 static struct ring_buffer_event
*
2525 rb_reserve_next_event(struct ring_buffer
*buffer
,
2526 struct ring_buffer_per_cpu
*cpu_buffer
,
2527 unsigned long length
)
2529 struct ring_buffer_event
*event
;
2535 rb_start_commit(cpu_buffer
);
2537 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2539 * Due to the ability to swap a cpu buffer from a buffer
2540 * it is possible it was swapped before we committed.
2541 * (committing stops a swap). We check for it here and
2542 * if it happened, we have to fail the write.
2545 if (unlikely(ACCESS_ONCE(cpu_buffer
->buffer
) != buffer
)) {
2546 local_dec(&cpu_buffer
->committing
);
2547 local_dec(&cpu_buffer
->commits
);
2552 length
= rb_calculate_event_length(length
);
2558 * We allow for interrupts to reenter here and do a trace.
2559 * If one does, it will cause this original code to loop
2560 * back here. Even with heavy interrupts happening, this
2561 * should only happen a few times in a row. If this happens
2562 * 1000 times in a row, there must be either an interrupt
2563 * storm or we have something buggy.
2566 if (RB_WARN_ON(cpu_buffer
, ++nr_loops
> 1000))
2569 ts
= rb_time_stamp(cpu_buffer
->buffer
);
2570 diff
= ts
- cpu_buffer
->write_stamp
;
2572 /* make sure this diff is calculated here */
2575 /* Did the write stamp get updated already? */
2576 if (likely(ts
>= cpu_buffer
->write_stamp
)) {
2578 if (unlikely(test_time_stamp(delta
))) {
2579 int local_clock_stable
= 1;
2580 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2581 local_clock_stable
= sched_clock_stable();
2583 WARN_ONCE(delta
> (1ULL << 59),
2584 KERN_WARNING
"Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2585 (unsigned long long)delta
,
2586 (unsigned long long)ts
,
2587 (unsigned long long)cpu_buffer
->write_stamp
,
2588 local_clock_stable
? "" :
2589 "If you just came from a suspend/resume,\n"
2590 "please switch to the trace global clock:\n"
2591 " echo global > /sys/kernel/debug/tracing/trace_clock\n");
2596 event
= __rb_reserve_next(cpu_buffer
, length
, ts
,
2597 delta
, add_timestamp
);
2598 if (unlikely(PTR_ERR(event
) == -EAGAIN
))
2607 rb_end_commit(cpu_buffer
);
2611 #ifdef CONFIG_TRACING
2614 * The lock and unlock are done within a preempt disable section.
2615 * The current_context per_cpu variable can only be modified
2616 * by the current task between lock and unlock. But it can
2617 * be modified more than once via an interrupt. To pass this
2618 * information from the lock to the unlock without having to
2619 * access the 'in_interrupt()' functions again (which do show
2620 * a bit of overhead in something as critical as function tracing,
2621 * we use a bitmask trick.
2623 * bit 0 = NMI context
2624 * bit 1 = IRQ context
2625 * bit 2 = SoftIRQ context
2626 * bit 3 = normal context.
2628 * This works because this is the order of contexts that can
2629 * preempt other contexts. A SoftIRQ never preempts an IRQ
2632 * When the context is determined, the corresponding bit is
2633 * checked and set (if it was set, then a recursion of that context
2636 * On unlock, we need to clear this bit. To do so, just subtract
2637 * 1 from the current_context and AND it to itself.
2641 * 101 & 100 = 100 (clearing bit zero)
2644 * 1010 & 1001 = 1000 (clearing bit 1)
2646 * The least significant bit can be cleared this way, and it
2647 * just so happens that it is the same bit corresponding to
2648 * the current context.
2650 static DEFINE_PER_CPU(unsigned int, current_context
);
2652 static __always_inline
int trace_recursive_lock(void)
2654 unsigned int val
= this_cpu_read(current_context
);
2657 if (in_interrupt()) {
2667 if (unlikely(val
& (1 << bit
)))
2671 this_cpu_write(current_context
, val
);
2676 static __always_inline
void trace_recursive_unlock(void)
2678 unsigned int val
= this_cpu_read(current_context
);
2681 val
&= this_cpu_read(current_context
);
2682 this_cpu_write(current_context
, val
);
2687 #define trace_recursive_lock() (0)
2688 #define trace_recursive_unlock() do { } while (0)
2693 * ring_buffer_lock_reserve - reserve a part of the buffer
2694 * @buffer: the ring buffer to reserve from
2695 * @length: the length of the data to reserve (excluding event header)
2697 * Returns a reseverd event on the ring buffer to copy directly to.
2698 * The user of this interface will need to get the body to write into
2699 * and can use the ring_buffer_event_data() interface.
2701 * The length is the length of the data needed, not the event length
2702 * which also includes the event header.
2704 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2705 * If NULL is returned, then nothing has been allocated or locked.
2707 struct ring_buffer_event
*
2708 ring_buffer_lock_reserve(struct ring_buffer
*buffer
, unsigned long length
)
2710 struct ring_buffer_per_cpu
*cpu_buffer
;
2711 struct ring_buffer_event
*event
;
2714 if (ring_buffer_flags
!= RB_BUFFERS_ON
)
2717 /* If we are tracing schedule, we don't want to recurse */
2718 preempt_disable_notrace();
2720 if (atomic_read(&buffer
->record_disabled
))
2723 if (trace_recursive_lock())
2726 cpu
= raw_smp_processor_id();
2728 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
2731 cpu_buffer
= buffer
->buffers
[cpu
];
2733 if (atomic_read(&cpu_buffer
->record_disabled
))
2736 if (length
> BUF_MAX_DATA_SIZE
)
2739 event
= rb_reserve_next_event(buffer
, cpu_buffer
, length
);
2746 trace_recursive_unlock();
2749 preempt_enable_notrace();
2752 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve
);
2755 rb_update_write_stamp(struct ring_buffer_per_cpu
*cpu_buffer
,
2756 struct ring_buffer_event
*event
)
2761 * The event first in the commit queue updates the
2764 if (rb_event_is_commit(cpu_buffer
, event
)) {
2766 * A commit event that is first on a page
2767 * updates the write timestamp with the page stamp
2769 if (!rb_event_index(event
))
2770 cpu_buffer
->write_stamp
=
2771 cpu_buffer
->commit_page
->page
->time_stamp
;
2772 else if (event
->type_len
== RINGBUF_TYPE_TIME_EXTEND
) {
2773 delta
= event
->array
[0];
2775 delta
+= event
->time_delta
;
2776 cpu_buffer
->write_stamp
+= delta
;
2778 cpu_buffer
->write_stamp
+= event
->time_delta
;
2782 static void rb_commit(struct ring_buffer_per_cpu
*cpu_buffer
,
2783 struct ring_buffer_event
*event
)
2785 local_inc(&cpu_buffer
->entries
);
2786 rb_update_write_stamp(cpu_buffer
, event
);
2787 rb_end_commit(cpu_buffer
);
2790 static __always_inline
void
2791 rb_wakeups(struct ring_buffer
*buffer
, struct ring_buffer_per_cpu
*cpu_buffer
)
2793 if (buffer
->irq_work
.waiters_pending
) {
2794 buffer
->irq_work
.waiters_pending
= false;
2795 /* irq_work_queue() supplies it's own memory barriers */
2796 irq_work_queue(&buffer
->irq_work
.work
);
2799 if (cpu_buffer
->irq_work
.waiters_pending
) {
2800 cpu_buffer
->irq_work
.waiters_pending
= false;
2801 /* irq_work_queue() supplies it's own memory barriers */
2802 irq_work_queue(&cpu_buffer
->irq_work
.work
);
2807 * ring_buffer_unlock_commit - commit a reserved
2808 * @buffer: The buffer to commit to
2809 * @event: The event pointer to commit.
2811 * This commits the data to the ring buffer, and releases any locks held.
2813 * Must be paired with ring_buffer_lock_reserve.
2815 int ring_buffer_unlock_commit(struct ring_buffer
*buffer
,
2816 struct ring_buffer_event
*event
)
2818 struct ring_buffer_per_cpu
*cpu_buffer
;
2819 int cpu
= raw_smp_processor_id();
2821 cpu_buffer
= buffer
->buffers
[cpu
];
2823 rb_commit(cpu_buffer
, event
);
2825 rb_wakeups(buffer
, cpu_buffer
);
2827 trace_recursive_unlock();
2829 preempt_enable_notrace();
2833 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit
);
2835 static inline void rb_event_discard(struct ring_buffer_event
*event
)
2837 if (event
->type_len
== RINGBUF_TYPE_TIME_EXTEND
)
2838 event
= skip_time_extend(event
);
2840 /* array[0] holds the actual length for the discarded event */
2841 event
->array
[0] = rb_event_data_length(event
) - RB_EVNT_HDR_SIZE
;
2842 event
->type_len
= RINGBUF_TYPE_PADDING
;
2843 /* time delta must be non zero */
2844 if (!event
->time_delta
)
2845 event
->time_delta
= 1;
2849 * Decrement the entries to the page that an event is on.
2850 * The event does not even need to exist, only the pointer
2851 * to the page it is on. This may only be called before the commit
2855 rb_decrement_entry(struct ring_buffer_per_cpu
*cpu_buffer
,
2856 struct ring_buffer_event
*event
)
2858 unsigned long addr
= (unsigned long)event
;
2859 struct buffer_page
*bpage
= cpu_buffer
->commit_page
;
2860 struct buffer_page
*start
;
2864 /* Do the likely case first */
2865 if (likely(bpage
->page
== (void *)addr
)) {
2866 local_dec(&bpage
->entries
);
2871 * Because the commit page may be on the reader page we
2872 * start with the next page and check the end loop there.
2874 rb_inc_page(cpu_buffer
, &bpage
);
2877 if (bpage
->page
== (void *)addr
) {
2878 local_dec(&bpage
->entries
);
2881 rb_inc_page(cpu_buffer
, &bpage
);
2882 } while (bpage
!= start
);
2884 /* commit not part of this buffer?? */
2885 RB_WARN_ON(cpu_buffer
, 1);
2889 * ring_buffer_commit_discard - discard an event that has not been committed
2890 * @buffer: the ring buffer
2891 * @event: non committed event to discard
2893 * Sometimes an event that is in the ring buffer needs to be ignored.
2894 * This function lets the user discard an event in the ring buffer
2895 * and then that event will not be read later.
2897 * This function only works if it is called before the the item has been
2898 * committed. It will try to free the event from the ring buffer
2899 * if another event has not been added behind it.
2901 * If another event has been added behind it, it will set the event
2902 * up as discarded, and perform the commit.
2904 * If this function is called, do not call ring_buffer_unlock_commit on
2907 void ring_buffer_discard_commit(struct ring_buffer
*buffer
,
2908 struct ring_buffer_event
*event
)
2910 struct ring_buffer_per_cpu
*cpu_buffer
;
2913 /* The event is discarded regardless */
2914 rb_event_discard(event
);
2916 cpu
= smp_processor_id();
2917 cpu_buffer
= buffer
->buffers
[cpu
];
2920 * This must only be called if the event has not been
2921 * committed yet. Thus we can assume that preemption
2922 * is still disabled.
2924 RB_WARN_ON(buffer
, !local_read(&cpu_buffer
->committing
));
2926 rb_decrement_entry(cpu_buffer
, event
);
2927 if (rb_try_to_discard(cpu_buffer
, event
))
2931 * The commit is still visible by the reader, so we
2932 * must still update the timestamp.
2934 rb_update_write_stamp(cpu_buffer
, event
);
2936 rb_end_commit(cpu_buffer
);
2938 trace_recursive_unlock();
2940 preempt_enable_notrace();
2943 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit
);
2946 * ring_buffer_write - write data to the buffer without reserving
2947 * @buffer: The ring buffer to write to.
2948 * @length: The length of the data being written (excluding the event header)
2949 * @data: The data to write to the buffer.
2951 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2952 * one function. If you already have the data to write to the buffer, it
2953 * may be easier to simply call this function.
2955 * Note, like ring_buffer_lock_reserve, the length is the length of the data
2956 * and not the length of the event which would hold the header.
2958 int ring_buffer_write(struct ring_buffer
*buffer
,
2959 unsigned long length
,
2962 struct ring_buffer_per_cpu
*cpu_buffer
;
2963 struct ring_buffer_event
*event
;
2968 if (ring_buffer_flags
!= RB_BUFFERS_ON
)
2971 preempt_disable_notrace();
2973 if (atomic_read(&buffer
->record_disabled
))
2976 cpu
= raw_smp_processor_id();
2978 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
2981 cpu_buffer
= buffer
->buffers
[cpu
];
2983 if (atomic_read(&cpu_buffer
->record_disabled
))
2986 if (length
> BUF_MAX_DATA_SIZE
)
2989 event
= rb_reserve_next_event(buffer
, cpu_buffer
, length
);
2993 body
= rb_event_data(event
);
2995 memcpy(body
, data
, length
);
2997 rb_commit(cpu_buffer
, event
);
2999 rb_wakeups(buffer
, cpu_buffer
);
3003 preempt_enable_notrace();
3007 EXPORT_SYMBOL_GPL(ring_buffer_write
);
3009 static int rb_per_cpu_empty(struct ring_buffer_per_cpu
*cpu_buffer
)
3011 struct buffer_page
*reader
= cpu_buffer
->reader_page
;
3012 struct buffer_page
*head
= rb_set_head_page(cpu_buffer
);
3013 struct buffer_page
*commit
= cpu_buffer
->commit_page
;
3015 /* In case of error, head will be NULL */
3016 if (unlikely(!head
))
3019 return reader
->read
== rb_page_commit(reader
) &&
3020 (commit
== reader
||
3022 head
->read
== rb_page_commit(commit
)));
3026 * ring_buffer_record_disable - stop all writes into the buffer
3027 * @buffer: The ring buffer to stop writes to.
3029 * This prevents all writes to the buffer. Any attempt to write
3030 * to the buffer after this will fail and return NULL.
3032 * The caller should call synchronize_sched() after this.
3034 void ring_buffer_record_disable(struct ring_buffer
*buffer
)
3036 atomic_inc(&buffer
->record_disabled
);
3038 EXPORT_SYMBOL_GPL(ring_buffer_record_disable
);
3041 * ring_buffer_record_enable - enable writes to the buffer
3042 * @buffer: The ring buffer to enable writes
3044 * Note, multiple disables will need the same number of enables
3045 * to truly enable the writing (much like preempt_disable).
3047 void ring_buffer_record_enable(struct ring_buffer
*buffer
)
3049 atomic_dec(&buffer
->record_disabled
);
3051 EXPORT_SYMBOL_GPL(ring_buffer_record_enable
);
3054 * ring_buffer_record_off - stop all writes into the buffer
3055 * @buffer: The ring buffer to stop writes to.
3057 * This prevents all writes to the buffer. Any attempt to write
3058 * to the buffer after this will fail and return NULL.
3060 * This is different than ring_buffer_record_disable() as
3061 * it works like an on/off switch, where as the disable() version
3062 * must be paired with a enable().
3064 void ring_buffer_record_off(struct ring_buffer
*buffer
)
3067 unsigned int new_rd
;
3070 rd
= atomic_read(&buffer
->record_disabled
);
3071 new_rd
= rd
| RB_BUFFER_OFF
;
3072 } while (atomic_cmpxchg(&buffer
->record_disabled
, rd
, new_rd
) != rd
);
3074 EXPORT_SYMBOL_GPL(ring_buffer_record_off
);
3077 * ring_buffer_record_on - restart writes into the buffer
3078 * @buffer: The ring buffer to start writes to.
3080 * This enables all writes to the buffer that was disabled by
3081 * ring_buffer_record_off().
3083 * This is different than ring_buffer_record_enable() as
3084 * it works like an on/off switch, where as the enable() version
3085 * must be paired with a disable().
3087 void ring_buffer_record_on(struct ring_buffer
*buffer
)
3090 unsigned int new_rd
;
3093 rd
= atomic_read(&buffer
->record_disabled
);
3094 new_rd
= rd
& ~RB_BUFFER_OFF
;
3095 } while (atomic_cmpxchg(&buffer
->record_disabled
, rd
, new_rd
) != rd
);
3097 EXPORT_SYMBOL_GPL(ring_buffer_record_on
);
3100 * ring_buffer_record_is_on - return true if the ring buffer can write
3101 * @buffer: The ring buffer to see if write is enabled
3103 * Returns true if the ring buffer is in a state that it accepts writes.
3105 int ring_buffer_record_is_on(struct ring_buffer
*buffer
)
3107 return !atomic_read(&buffer
->record_disabled
);
3111 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3112 * @buffer: The ring buffer to stop writes to.
3113 * @cpu: The CPU buffer to stop
3115 * This prevents all writes to the buffer. Any attempt to write
3116 * to the buffer after this will fail and return NULL.
3118 * The caller should call synchronize_sched() after this.
3120 void ring_buffer_record_disable_cpu(struct ring_buffer
*buffer
, int cpu
)
3122 struct ring_buffer_per_cpu
*cpu_buffer
;
3124 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3127 cpu_buffer
= buffer
->buffers
[cpu
];
3128 atomic_inc(&cpu_buffer
->record_disabled
);
3130 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu
);
3133 * ring_buffer_record_enable_cpu - enable writes to the buffer
3134 * @buffer: The ring buffer to enable writes
3135 * @cpu: The CPU to enable.
3137 * Note, multiple disables will need the same number of enables
3138 * to truly enable the writing (much like preempt_disable).
3140 void ring_buffer_record_enable_cpu(struct ring_buffer
*buffer
, int cpu
)
3142 struct ring_buffer_per_cpu
*cpu_buffer
;
3144 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3147 cpu_buffer
= buffer
->buffers
[cpu
];
3148 atomic_dec(&cpu_buffer
->record_disabled
);
3150 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu
);
3153 * The total entries in the ring buffer is the running counter
3154 * of entries entered into the ring buffer, minus the sum of
3155 * the entries read from the ring buffer and the number of
3156 * entries that were overwritten.
3158 static inline unsigned long
3159 rb_num_of_entries(struct ring_buffer_per_cpu
*cpu_buffer
)
3161 return local_read(&cpu_buffer
->entries
) -
3162 (local_read(&cpu_buffer
->overrun
) + cpu_buffer
->read
);
3166 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3167 * @buffer: The ring buffer
3168 * @cpu: The per CPU buffer to read from.
3170 u64
ring_buffer_oldest_event_ts(struct ring_buffer
*buffer
, int cpu
)
3172 unsigned long flags
;
3173 struct ring_buffer_per_cpu
*cpu_buffer
;
3174 struct buffer_page
*bpage
;
3177 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3180 cpu_buffer
= buffer
->buffers
[cpu
];
3181 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
3183 * if the tail is on reader_page, oldest time stamp is on the reader
3186 if (cpu_buffer
->tail_page
== cpu_buffer
->reader_page
)
3187 bpage
= cpu_buffer
->reader_page
;
3189 bpage
= rb_set_head_page(cpu_buffer
);
3191 ret
= bpage
->page
->time_stamp
;
3192 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
3196 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts
);
3199 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3200 * @buffer: The ring buffer
3201 * @cpu: The per CPU buffer to read from.
3203 unsigned long ring_buffer_bytes_cpu(struct ring_buffer
*buffer
, int cpu
)
3205 struct ring_buffer_per_cpu
*cpu_buffer
;
3208 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3211 cpu_buffer
= buffer
->buffers
[cpu
];
3212 ret
= local_read(&cpu_buffer
->entries_bytes
) - cpu_buffer
->read_bytes
;
3216 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu
);
3219 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3220 * @buffer: The ring buffer
3221 * @cpu: The per CPU buffer to get the entries from.
3223 unsigned long ring_buffer_entries_cpu(struct ring_buffer
*buffer
, int cpu
)
3225 struct ring_buffer_per_cpu
*cpu_buffer
;
3227 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3230 cpu_buffer
= buffer
->buffers
[cpu
];
3232 return rb_num_of_entries(cpu_buffer
);
3234 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu
);
3237 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3238 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3239 * @buffer: The ring buffer
3240 * @cpu: The per CPU buffer to get the number of overruns from
3242 unsigned long ring_buffer_overrun_cpu(struct ring_buffer
*buffer
, int cpu
)
3244 struct ring_buffer_per_cpu
*cpu_buffer
;
3247 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3250 cpu_buffer
= buffer
->buffers
[cpu
];
3251 ret
= local_read(&cpu_buffer
->overrun
);
3255 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu
);
3258 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3259 * commits failing due to the buffer wrapping around while there are uncommitted
3260 * events, such as during an interrupt storm.
3261 * @buffer: The ring buffer
3262 * @cpu: The per CPU buffer to get the number of overruns from
3265 ring_buffer_commit_overrun_cpu(struct ring_buffer
*buffer
, int cpu
)
3267 struct ring_buffer_per_cpu
*cpu_buffer
;
3270 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3273 cpu_buffer
= buffer
->buffers
[cpu
];
3274 ret
= local_read(&cpu_buffer
->commit_overrun
);
3278 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu
);
3281 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3282 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3283 * @buffer: The ring buffer
3284 * @cpu: The per CPU buffer to get the number of overruns from
3287 ring_buffer_dropped_events_cpu(struct ring_buffer
*buffer
, int cpu
)
3289 struct ring_buffer_per_cpu
*cpu_buffer
;
3292 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3295 cpu_buffer
= buffer
->buffers
[cpu
];
3296 ret
= local_read(&cpu_buffer
->dropped_events
);
3300 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu
);
3303 * ring_buffer_read_events_cpu - get the number of events successfully read
3304 * @buffer: The ring buffer
3305 * @cpu: The per CPU buffer to get the number of events read
3308 ring_buffer_read_events_cpu(struct ring_buffer
*buffer
, int cpu
)
3310 struct ring_buffer_per_cpu
*cpu_buffer
;
3312 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3315 cpu_buffer
= buffer
->buffers
[cpu
];
3316 return cpu_buffer
->read
;
3318 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu
);
3321 * ring_buffer_entries - get the number of entries in a buffer
3322 * @buffer: The ring buffer
3324 * Returns the total number of entries in the ring buffer
3327 unsigned long ring_buffer_entries(struct ring_buffer
*buffer
)
3329 struct ring_buffer_per_cpu
*cpu_buffer
;
3330 unsigned long entries
= 0;
3333 /* if you care about this being correct, lock the buffer */
3334 for_each_buffer_cpu(buffer
, cpu
) {
3335 cpu_buffer
= buffer
->buffers
[cpu
];
3336 entries
+= rb_num_of_entries(cpu_buffer
);
3341 EXPORT_SYMBOL_GPL(ring_buffer_entries
);
3344 * ring_buffer_overruns - get the number of overruns in buffer
3345 * @buffer: The ring buffer
3347 * Returns the total number of overruns in the ring buffer
3350 unsigned long ring_buffer_overruns(struct ring_buffer
*buffer
)
3352 struct ring_buffer_per_cpu
*cpu_buffer
;
3353 unsigned long overruns
= 0;
3356 /* if you care about this being correct, lock the buffer */
3357 for_each_buffer_cpu(buffer
, cpu
) {
3358 cpu_buffer
= buffer
->buffers
[cpu
];
3359 overruns
+= local_read(&cpu_buffer
->overrun
);
3364 EXPORT_SYMBOL_GPL(ring_buffer_overruns
);
3366 static void rb_iter_reset(struct ring_buffer_iter
*iter
)
3368 struct ring_buffer_per_cpu
*cpu_buffer
= iter
->cpu_buffer
;
3370 /* Iterator usage is expected to have record disabled */
3371 iter
->head_page
= cpu_buffer
->reader_page
;
3372 iter
->head
= cpu_buffer
->reader_page
->read
;
3374 iter
->cache_reader_page
= iter
->head_page
;
3375 iter
->cache_read
= cpu_buffer
->read
;
3378 iter
->read_stamp
= cpu_buffer
->read_stamp
;
3380 iter
->read_stamp
= iter
->head_page
->page
->time_stamp
;
3384 * ring_buffer_iter_reset - reset an iterator
3385 * @iter: The iterator to reset
3387 * Resets the iterator, so that it will start from the beginning
3390 void ring_buffer_iter_reset(struct ring_buffer_iter
*iter
)
3392 struct ring_buffer_per_cpu
*cpu_buffer
;
3393 unsigned long flags
;
3398 cpu_buffer
= iter
->cpu_buffer
;
3400 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
3401 rb_iter_reset(iter
);
3402 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
3404 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset
);
3407 * ring_buffer_iter_empty - check if an iterator has no more to read
3408 * @iter: The iterator to check
3410 int ring_buffer_iter_empty(struct ring_buffer_iter
*iter
)
3412 struct ring_buffer_per_cpu
*cpu_buffer
;
3414 cpu_buffer
= iter
->cpu_buffer
;
3416 return iter
->head_page
== cpu_buffer
->commit_page
&&
3417 iter
->head
== rb_commit_index(cpu_buffer
);
3419 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty
);
3422 rb_update_read_stamp(struct ring_buffer_per_cpu
*cpu_buffer
,
3423 struct ring_buffer_event
*event
)
3427 switch (event
->type_len
) {
3428 case RINGBUF_TYPE_PADDING
:
3431 case RINGBUF_TYPE_TIME_EXTEND
:
3432 delta
= event
->array
[0];
3434 delta
+= event
->time_delta
;
3435 cpu_buffer
->read_stamp
+= delta
;
3438 case RINGBUF_TYPE_TIME_STAMP
:
3439 /* FIXME: not implemented */
3442 case RINGBUF_TYPE_DATA
:
3443 cpu_buffer
->read_stamp
+= event
->time_delta
;
3453 rb_update_iter_read_stamp(struct ring_buffer_iter
*iter
,
3454 struct ring_buffer_event
*event
)
3458 switch (event
->type_len
) {
3459 case RINGBUF_TYPE_PADDING
:
3462 case RINGBUF_TYPE_TIME_EXTEND
:
3463 delta
= event
->array
[0];
3465 delta
+= event
->time_delta
;
3466 iter
->read_stamp
+= delta
;
3469 case RINGBUF_TYPE_TIME_STAMP
:
3470 /* FIXME: not implemented */
3473 case RINGBUF_TYPE_DATA
:
3474 iter
->read_stamp
+= event
->time_delta
;
3483 static struct buffer_page
*
3484 rb_get_reader_page(struct ring_buffer_per_cpu
*cpu_buffer
)
3486 struct buffer_page
*reader
= NULL
;
3487 unsigned long overwrite
;
3488 unsigned long flags
;
3492 local_irq_save(flags
);
3493 arch_spin_lock(&cpu_buffer
->lock
);
3497 * This should normally only loop twice. But because the
3498 * start of the reader inserts an empty page, it causes
3499 * a case where we will loop three times. There should be no
3500 * reason to loop four times (that I know of).
3502 if (RB_WARN_ON(cpu_buffer
, ++nr_loops
> 3)) {
3507 reader
= cpu_buffer
->reader_page
;
3509 /* If there's more to read, return this page */
3510 if (cpu_buffer
->reader_page
->read
< rb_page_size(reader
))
3513 /* Never should we have an index greater than the size */
3514 if (RB_WARN_ON(cpu_buffer
,
3515 cpu_buffer
->reader_page
->read
> rb_page_size(reader
)))
3518 /* check if we caught up to the tail */
3520 if (cpu_buffer
->commit_page
== cpu_buffer
->reader_page
)
3523 /* Don't bother swapping if the ring buffer is empty */
3524 if (rb_num_of_entries(cpu_buffer
) == 0)
3528 * Reset the reader page to size zero.
3530 local_set(&cpu_buffer
->reader_page
->write
, 0);
3531 local_set(&cpu_buffer
->reader_page
->entries
, 0);
3532 local_set(&cpu_buffer
->reader_page
->page
->commit
, 0);
3533 cpu_buffer
->reader_page
->real_end
= 0;
3537 * Splice the empty reader page into the list around the head.
3539 reader
= rb_set_head_page(cpu_buffer
);
3542 cpu_buffer
->reader_page
->list
.next
= rb_list_head(reader
->list
.next
);
3543 cpu_buffer
->reader_page
->list
.prev
= reader
->list
.prev
;
3546 * cpu_buffer->pages just needs to point to the buffer, it
3547 * has no specific buffer page to point to. Lets move it out
3548 * of our way so we don't accidentally swap it.
3550 cpu_buffer
->pages
= reader
->list
.prev
;
3552 /* The reader page will be pointing to the new head */
3553 rb_set_list_to_head(cpu_buffer
, &cpu_buffer
->reader_page
->list
);
3556 * We want to make sure we read the overruns after we set up our
3557 * pointers to the next object. The writer side does a
3558 * cmpxchg to cross pages which acts as the mb on the writer
3559 * side. Note, the reader will constantly fail the swap
3560 * while the writer is updating the pointers, so this
3561 * guarantees that the overwrite recorded here is the one we
3562 * want to compare with the last_overrun.
3565 overwrite
= local_read(&(cpu_buffer
->overrun
));
3568 * Here's the tricky part.
3570 * We need to move the pointer past the header page.
3571 * But we can only do that if a writer is not currently
3572 * moving it. The page before the header page has the
3573 * flag bit '1' set if it is pointing to the page we want.
3574 * but if the writer is in the process of moving it
3575 * than it will be '2' or already moved '0'.
3578 ret
= rb_head_page_replace(reader
, cpu_buffer
->reader_page
);
3581 * If we did not convert it, then we must try again.
3587 * Yeah! We succeeded in replacing the page.
3589 * Now make the new head point back to the reader page.
3591 rb_list_head(reader
->list
.next
)->prev
= &cpu_buffer
->reader_page
->list
;
3592 rb_inc_page(cpu_buffer
, &cpu_buffer
->head_page
);
3594 /* Finally update the reader page to the new head */
3595 cpu_buffer
->reader_page
= reader
;
3596 rb_reset_reader_page(cpu_buffer
);
3598 if (overwrite
!= cpu_buffer
->last_overrun
) {
3599 cpu_buffer
->lost_events
= overwrite
- cpu_buffer
->last_overrun
;
3600 cpu_buffer
->last_overrun
= overwrite
;
3606 arch_spin_unlock(&cpu_buffer
->lock
);
3607 local_irq_restore(flags
);
3612 static void rb_advance_reader(struct ring_buffer_per_cpu
*cpu_buffer
)
3614 struct ring_buffer_event
*event
;
3615 struct buffer_page
*reader
;
3618 reader
= rb_get_reader_page(cpu_buffer
);
3620 /* This function should not be called when buffer is empty */
3621 if (RB_WARN_ON(cpu_buffer
, !reader
))
3624 event
= rb_reader_event(cpu_buffer
);
3626 if (event
->type_len
<= RINGBUF_TYPE_DATA_TYPE_LEN_MAX
)
3629 rb_update_read_stamp(cpu_buffer
, event
);
3631 length
= rb_event_length(event
);
3632 cpu_buffer
->reader_page
->read
+= length
;
3635 static void rb_advance_iter(struct ring_buffer_iter
*iter
)
3637 struct ring_buffer_per_cpu
*cpu_buffer
;
3638 struct ring_buffer_event
*event
;
3641 cpu_buffer
= iter
->cpu_buffer
;
3644 * Check if we are at the end of the buffer.
3646 if (iter
->head
>= rb_page_size(iter
->head_page
)) {
3647 /* discarded commits can make the page empty */
3648 if (iter
->head_page
== cpu_buffer
->commit_page
)
3654 event
= rb_iter_head_event(iter
);
3656 length
= rb_event_length(event
);
3659 * This should not be called to advance the header if we are
3660 * at the tail of the buffer.
3662 if (RB_WARN_ON(cpu_buffer
,
3663 (iter
->head_page
== cpu_buffer
->commit_page
) &&
3664 (iter
->head
+ length
> rb_commit_index(cpu_buffer
))))
3667 rb_update_iter_read_stamp(iter
, event
);
3669 iter
->head
+= length
;
3671 /* check for end of page padding */
3672 if ((iter
->head
>= rb_page_size(iter
->head_page
)) &&
3673 (iter
->head_page
!= cpu_buffer
->commit_page
))
3677 static int rb_lost_events(struct ring_buffer_per_cpu
*cpu_buffer
)
3679 return cpu_buffer
->lost_events
;
3682 static struct ring_buffer_event
*
3683 rb_buffer_peek(struct ring_buffer_per_cpu
*cpu_buffer
, u64
*ts
,
3684 unsigned long *lost_events
)
3686 struct ring_buffer_event
*event
;
3687 struct buffer_page
*reader
;
3692 * We repeat when a time extend is encountered.
3693 * Since the time extend is always attached to a data event,
3694 * we should never loop more than once.
3695 * (We never hit the following condition more than twice).
3697 if (RB_WARN_ON(cpu_buffer
, ++nr_loops
> 2))
3700 reader
= rb_get_reader_page(cpu_buffer
);
3704 event
= rb_reader_event(cpu_buffer
);
3706 switch (event
->type_len
) {
3707 case RINGBUF_TYPE_PADDING
:
3708 if (rb_null_event(event
))
3709 RB_WARN_ON(cpu_buffer
, 1);
3711 * Because the writer could be discarding every
3712 * event it creates (which would probably be bad)
3713 * if we were to go back to "again" then we may never
3714 * catch up, and will trigger the warn on, or lock
3715 * the box. Return the padding, and we will release
3716 * the current locks, and try again.
3720 case RINGBUF_TYPE_TIME_EXTEND
:
3721 /* Internal data, OK to advance */
3722 rb_advance_reader(cpu_buffer
);
3725 case RINGBUF_TYPE_TIME_STAMP
:
3726 /* FIXME: not implemented */
3727 rb_advance_reader(cpu_buffer
);
3730 case RINGBUF_TYPE_DATA
:
3732 *ts
= cpu_buffer
->read_stamp
+ event
->time_delta
;
3733 ring_buffer_normalize_time_stamp(cpu_buffer
->buffer
,
3734 cpu_buffer
->cpu
, ts
);
3737 *lost_events
= rb_lost_events(cpu_buffer
);
3746 EXPORT_SYMBOL_GPL(ring_buffer_peek
);
3748 static struct ring_buffer_event
*
3749 rb_iter_peek(struct ring_buffer_iter
*iter
, u64
*ts
)
3751 struct ring_buffer
*buffer
;
3752 struct ring_buffer_per_cpu
*cpu_buffer
;
3753 struct ring_buffer_event
*event
;
3756 cpu_buffer
= iter
->cpu_buffer
;
3757 buffer
= cpu_buffer
->buffer
;
3760 * Check if someone performed a consuming read to
3761 * the buffer. A consuming read invalidates the iterator
3762 * and we need to reset the iterator in this case.
3764 if (unlikely(iter
->cache_read
!= cpu_buffer
->read
||
3765 iter
->cache_reader_page
!= cpu_buffer
->reader_page
))
3766 rb_iter_reset(iter
);
3769 if (ring_buffer_iter_empty(iter
))
3773 * We repeat when a time extend is encountered or we hit
3774 * the end of the page. Since the time extend is always attached
3775 * to a data event, we should never loop more than three times.
3776 * Once for going to next page, once on time extend, and
3777 * finally once to get the event.
3778 * (We never hit the following condition more than thrice).
3780 if (RB_WARN_ON(cpu_buffer
, ++nr_loops
> 3))
3783 if (rb_per_cpu_empty(cpu_buffer
))
3786 if (iter
->head
>= local_read(&iter
->head_page
->page
->commit
)) {
3791 event
= rb_iter_head_event(iter
);
3793 switch (event
->type_len
) {
3794 case RINGBUF_TYPE_PADDING
:
3795 if (rb_null_event(event
)) {
3799 rb_advance_iter(iter
);
3802 case RINGBUF_TYPE_TIME_EXTEND
:
3803 /* Internal data, OK to advance */
3804 rb_advance_iter(iter
);
3807 case RINGBUF_TYPE_TIME_STAMP
:
3808 /* FIXME: not implemented */
3809 rb_advance_iter(iter
);
3812 case RINGBUF_TYPE_DATA
:
3814 *ts
= iter
->read_stamp
+ event
->time_delta
;
3815 ring_buffer_normalize_time_stamp(buffer
,
3816 cpu_buffer
->cpu
, ts
);
3826 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek
);
3828 static inline int rb_ok_to_lock(void)
3831 * If an NMI die dumps out the content of the ring buffer
3832 * do not grab locks. We also permanently disable the ring
3833 * buffer too. A one time deal is all you get from reading
3834 * the ring buffer from an NMI.
3836 if (likely(!in_nmi()))
3839 tracing_off_permanent();
3844 * ring_buffer_peek - peek at the next event to be read
3845 * @buffer: The ring buffer to read
3846 * @cpu: The cpu to peak at
3847 * @ts: The timestamp counter of this event.
3848 * @lost_events: a variable to store if events were lost (may be NULL)
3850 * This will return the event that will be read next, but does
3851 * not consume the data.
3853 struct ring_buffer_event
*
3854 ring_buffer_peek(struct ring_buffer
*buffer
, int cpu
, u64
*ts
,
3855 unsigned long *lost_events
)
3857 struct ring_buffer_per_cpu
*cpu_buffer
= buffer
->buffers
[cpu
];
3858 struct ring_buffer_event
*event
;
3859 unsigned long flags
;
3862 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3865 dolock
= rb_ok_to_lock();
3867 local_irq_save(flags
);
3869 raw_spin_lock(&cpu_buffer
->reader_lock
);
3870 event
= rb_buffer_peek(cpu_buffer
, ts
, lost_events
);
3871 if (event
&& event
->type_len
== RINGBUF_TYPE_PADDING
)
3872 rb_advance_reader(cpu_buffer
);
3874 raw_spin_unlock(&cpu_buffer
->reader_lock
);
3875 local_irq_restore(flags
);
3877 if (event
&& event
->type_len
== RINGBUF_TYPE_PADDING
)
3884 * ring_buffer_iter_peek - peek at the next event to be read
3885 * @iter: The ring buffer iterator
3886 * @ts: The timestamp counter of this event.
3888 * This will return the event that will be read next, but does
3889 * not increment the iterator.
3891 struct ring_buffer_event
*
3892 ring_buffer_iter_peek(struct ring_buffer_iter
*iter
, u64
*ts
)
3894 struct ring_buffer_per_cpu
*cpu_buffer
= iter
->cpu_buffer
;
3895 struct ring_buffer_event
*event
;
3896 unsigned long flags
;
3899 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
3900 event
= rb_iter_peek(iter
, ts
);
3901 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
3903 if (event
&& event
->type_len
== RINGBUF_TYPE_PADDING
)
3910 * ring_buffer_consume - return an event and consume it
3911 * @buffer: The ring buffer to get the next event from
3912 * @cpu: the cpu to read the buffer from
3913 * @ts: a variable to store the timestamp (may be NULL)
3914 * @lost_events: a variable to store if events were lost (may be NULL)
3916 * Returns the next event in the ring buffer, and that event is consumed.
3917 * Meaning, that sequential reads will keep returning a different event,
3918 * and eventually empty the ring buffer if the producer is slower.
3920 struct ring_buffer_event
*
3921 ring_buffer_consume(struct ring_buffer
*buffer
, int cpu
, u64
*ts
,
3922 unsigned long *lost_events
)
3924 struct ring_buffer_per_cpu
*cpu_buffer
;
3925 struct ring_buffer_event
*event
= NULL
;
3926 unsigned long flags
;
3929 dolock
= rb_ok_to_lock();
3932 /* might be called in atomic */
3935 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3938 cpu_buffer
= buffer
->buffers
[cpu
];
3939 local_irq_save(flags
);
3941 raw_spin_lock(&cpu_buffer
->reader_lock
);
3943 event
= rb_buffer_peek(cpu_buffer
, ts
, lost_events
);
3945 cpu_buffer
->lost_events
= 0;
3946 rb_advance_reader(cpu_buffer
);
3950 raw_spin_unlock(&cpu_buffer
->reader_lock
);
3951 local_irq_restore(flags
);
3956 if (event
&& event
->type_len
== RINGBUF_TYPE_PADDING
)
3961 EXPORT_SYMBOL_GPL(ring_buffer_consume
);
3964 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
3965 * @buffer: The ring buffer to read from
3966 * @cpu: The cpu buffer to iterate over
3968 * This performs the initial preparations necessary to iterate
3969 * through the buffer. Memory is allocated, buffer recording
3970 * is disabled, and the iterator pointer is returned to the caller.
3972 * Disabling buffer recordng prevents the reading from being
3973 * corrupted. This is not a consuming read, so a producer is not
3976 * After a sequence of ring_buffer_read_prepare calls, the user is
3977 * expected to make at least one call to ring_buffer_read_prepare_sync.
3978 * Afterwards, ring_buffer_read_start is invoked to get things going
3981 * This overall must be paired with ring_buffer_read_finish.
3983 struct ring_buffer_iter
*
3984 ring_buffer_read_prepare(struct ring_buffer
*buffer
, int cpu
)
3986 struct ring_buffer_per_cpu
*cpu_buffer
;
3987 struct ring_buffer_iter
*iter
;
3989 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3992 iter
= kmalloc(sizeof(*iter
), GFP_KERNEL
);
3996 cpu_buffer
= buffer
->buffers
[cpu
];
3998 iter
->cpu_buffer
= cpu_buffer
;
4000 atomic_inc(&buffer
->resize_disabled
);
4001 atomic_inc(&cpu_buffer
->record_disabled
);
4005 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare
);
4008 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4010 * All previously invoked ring_buffer_read_prepare calls to prepare
4011 * iterators will be synchronized. Afterwards, read_buffer_read_start
4012 * calls on those iterators are allowed.
4015 ring_buffer_read_prepare_sync(void)
4017 synchronize_sched();
4019 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync
);
4022 * ring_buffer_read_start - start a non consuming read of the buffer
4023 * @iter: The iterator returned by ring_buffer_read_prepare
4025 * This finalizes the startup of an iteration through the buffer.
4026 * The iterator comes from a call to ring_buffer_read_prepare and
4027 * an intervening ring_buffer_read_prepare_sync must have been
4030 * Must be paired with ring_buffer_read_finish.
4033 ring_buffer_read_start(struct ring_buffer_iter
*iter
)
4035 struct ring_buffer_per_cpu
*cpu_buffer
;
4036 unsigned long flags
;
4041 cpu_buffer
= iter
->cpu_buffer
;
4043 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
4044 arch_spin_lock(&cpu_buffer
->lock
);
4045 rb_iter_reset(iter
);
4046 arch_spin_unlock(&cpu_buffer
->lock
);
4047 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
4049 EXPORT_SYMBOL_GPL(ring_buffer_read_start
);
4052 * ring_buffer_read_finish - finish reading the iterator of the buffer
4053 * @iter: The iterator retrieved by ring_buffer_start
4055 * This re-enables the recording to the buffer, and frees the
4059 ring_buffer_read_finish(struct ring_buffer_iter
*iter
)
4061 struct ring_buffer_per_cpu
*cpu_buffer
= iter
->cpu_buffer
;
4062 unsigned long flags
;
4065 * Ring buffer is disabled from recording, here's a good place
4066 * to check the integrity of the ring buffer.
4067 * Must prevent readers from trying to read, as the check
4068 * clears the HEAD page and readers require it.
4070 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
4071 rb_check_pages(cpu_buffer
);
4072 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
4074 atomic_dec(&cpu_buffer
->record_disabled
);
4075 atomic_dec(&cpu_buffer
->buffer
->resize_disabled
);
4078 EXPORT_SYMBOL_GPL(ring_buffer_read_finish
);
4081 * ring_buffer_read - read the next item in the ring buffer by the iterator
4082 * @iter: The ring buffer iterator
4083 * @ts: The time stamp of the event read.
4085 * This reads the next event in the ring buffer and increments the iterator.
4087 struct ring_buffer_event
*
4088 ring_buffer_read(struct ring_buffer_iter
*iter
, u64
*ts
)
4090 struct ring_buffer_event
*event
;
4091 struct ring_buffer_per_cpu
*cpu_buffer
= iter
->cpu_buffer
;
4092 unsigned long flags
;
4094 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
4096 event
= rb_iter_peek(iter
, ts
);
4100 if (event
->type_len
== RINGBUF_TYPE_PADDING
)
4103 rb_advance_iter(iter
);
4105 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
4109 EXPORT_SYMBOL_GPL(ring_buffer_read
);
4112 * ring_buffer_size - return the size of the ring buffer (in bytes)
4113 * @buffer: The ring buffer.
4115 unsigned long ring_buffer_size(struct ring_buffer
*buffer
, int cpu
)
4118 * Earlier, this method returned
4119 * BUF_PAGE_SIZE * buffer->nr_pages
4120 * Since the nr_pages field is now removed, we have converted this to
4121 * return the per cpu buffer value.
4123 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
4126 return BUF_PAGE_SIZE
* buffer
->buffers
[cpu
]->nr_pages
;
4128 EXPORT_SYMBOL_GPL(ring_buffer_size
);
4131 rb_reset_cpu(struct ring_buffer_per_cpu
*cpu_buffer
)
4133 rb_head_page_deactivate(cpu_buffer
);
4135 cpu_buffer
->head_page
4136 = list_entry(cpu_buffer
->pages
, struct buffer_page
, list
);
4137 local_set(&cpu_buffer
->head_page
->write
, 0);
4138 local_set(&cpu_buffer
->head_page
->entries
, 0);
4139 local_set(&cpu_buffer
->head_page
->page
->commit
, 0);
4141 cpu_buffer
->head_page
->read
= 0;
4143 cpu_buffer
->tail_page
= cpu_buffer
->head_page
;
4144 cpu_buffer
->commit_page
= cpu_buffer
->head_page
;
4146 INIT_LIST_HEAD(&cpu_buffer
->reader_page
->list
);
4147 INIT_LIST_HEAD(&cpu_buffer
->new_pages
);
4148 local_set(&cpu_buffer
->reader_page
->write
, 0);
4149 local_set(&cpu_buffer
->reader_page
->entries
, 0);
4150 local_set(&cpu_buffer
->reader_page
->page
->commit
, 0);
4151 cpu_buffer
->reader_page
->read
= 0;
4153 local_set(&cpu_buffer
->entries_bytes
, 0);
4154 local_set(&cpu_buffer
->overrun
, 0);
4155 local_set(&cpu_buffer
->commit_overrun
, 0);
4156 local_set(&cpu_buffer
->dropped_events
, 0);
4157 local_set(&cpu_buffer
->entries
, 0);
4158 local_set(&cpu_buffer
->committing
, 0);
4159 local_set(&cpu_buffer
->commits
, 0);
4160 cpu_buffer
->read
= 0;
4161 cpu_buffer
->read_bytes
= 0;
4163 cpu_buffer
->write_stamp
= 0;
4164 cpu_buffer
->read_stamp
= 0;
4166 cpu_buffer
->lost_events
= 0;
4167 cpu_buffer
->last_overrun
= 0;
4169 rb_head_page_activate(cpu_buffer
);
4173 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4174 * @buffer: The ring buffer to reset a per cpu buffer of
4175 * @cpu: The CPU buffer to be reset
4177 void ring_buffer_reset_cpu(struct ring_buffer
*buffer
, int cpu
)
4179 struct ring_buffer_per_cpu
*cpu_buffer
= buffer
->buffers
[cpu
];
4180 unsigned long flags
;
4182 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
4185 atomic_inc(&buffer
->resize_disabled
);
4186 atomic_inc(&cpu_buffer
->record_disabled
);
4188 /* Make sure all commits have finished */
4189 synchronize_sched();
4191 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
4193 if (RB_WARN_ON(cpu_buffer
, local_read(&cpu_buffer
->committing
)))
4196 arch_spin_lock(&cpu_buffer
->lock
);
4198 rb_reset_cpu(cpu_buffer
);
4200 arch_spin_unlock(&cpu_buffer
->lock
);
4203 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
4205 atomic_dec(&cpu_buffer
->record_disabled
);
4206 atomic_dec(&buffer
->resize_disabled
);
4208 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu
);
4211 * ring_buffer_reset - reset a ring buffer
4212 * @buffer: The ring buffer to reset all cpu buffers
4214 void ring_buffer_reset(struct ring_buffer
*buffer
)
4218 for_each_buffer_cpu(buffer
, cpu
)
4219 ring_buffer_reset_cpu(buffer
, cpu
);
4221 EXPORT_SYMBOL_GPL(ring_buffer_reset
);
4224 * rind_buffer_empty - is the ring buffer empty?
4225 * @buffer: The ring buffer to test
4227 int ring_buffer_empty(struct ring_buffer
*buffer
)
4229 struct ring_buffer_per_cpu
*cpu_buffer
;
4230 unsigned long flags
;
4235 dolock
= rb_ok_to_lock();
4237 /* yes this is racy, but if you don't like the race, lock the buffer */
4238 for_each_buffer_cpu(buffer
, cpu
) {
4239 cpu_buffer
= buffer
->buffers
[cpu
];
4240 local_irq_save(flags
);
4242 raw_spin_lock(&cpu_buffer
->reader_lock
);
4243 ret
= rb_per_cpu_empty(cpu_buffer
);
4245 raw_spin_unlock(&cpu_buffer
->reader_lock
);
4246 local_irq_restore(flags
);
4254 EXPORT_SYMBOL_GPL(ring_buffer_empty
);
4257 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4258 * @buffer: The ring buffer
4259 * @cpu: The CPU buffer to test
4261 int ring_buffer_empty_cpu(struct ring_buffer
*buffer
, int cpu
)
4263 struct ring_buffer_per_cpu
*cpu_buffer
;
4264 unsigned long flags
;
4268 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
4271 dolock
= rb_ok_to_lock();
4273 cpu_buffer
= buffer
->buffers
[cpu
];
4274 local_irq_save(flags
);
4276 raw_spin_lock(&cpu_buffer
->reader_lock
);
4277 ret
= rb_per_cpu_empty(cpu_buffer
);
4279 raw_spin_unlock(&cpu_buffer
->reader_lock
);
4280 local_irq_restore(flags
);
4284 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu
);
4286 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4288 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4289 * @buffer_a: One buffer to swap with
4290 * @buffer_b: The other buffer to swap with
4292 * This function is useful for tracers that want to take a "snapshot"
4293 * of a CPU buffer and has another back up buffer lying around.
4294 * it is expected that the tracer handles the cpu buffer not being
4295 * used at the moment.
4297 int ring_buffer_swap_cpu(struct ring_buffer
*buffer_a
,
4298 struct ring_buffer
*buffer_b
, int cpu
)
4300 struct ring_buffer_per_cpu
*cpu_buffer_a
;
4301 struct ring_buffer_per_cpu
*cpu_buffer_b
;
4304 if (!cpumask_test_cpu(cpu
, buffer_a
->cpumask
) ||
4305 !cpumask_test_cpu(cpu
, buffer_b
->cpumask
))
4308 cpu_buffer_a
= buffer_a
->buffers
[cpu
];
4309 cpu_buffer_b
= buffer_b
->buffers
[cpu
];
4311 /* At least make sure the two buffers are somewhat the same */
4312 if (cpu_buffer_a
->nr_pages
!= cpu_buffer_b
->nr_pages
)
4317 if (ring_buffer_flags
!= RB_BUFFERS_ON
)
4320 if (atomic_read(&buffer_a
->record_disabled
))
4323 if (atomic_read(&buffer_b
->record_disabled
))
4326 if (atomic_read(&cpu_buffer_a
->record_disabled
))
4329 if (atomic_read(&cpu_buffer_b
->record_disabled
))
4333 * We can't do a synchronize_sched here because this
4334 * function can be called in atomic context.
4335 * Normally this will be called from the same CPU as cpu.
4336 * If not it's up to the caller to protect this.
4338 atomic_inc(&cpu_buffer_a
->record_disabled
);
4339 atomic_inc(&cpu_buffer_b
->record_disabled
);
4342 if (local_read(&cpu_buffer_a
->committing
))
4344 if (local_read(&cpu_buffer_b
->committing
))
4347 buffer_a
->buffers
[cpu
] = cpu_buffer_b
;
4348 buffer_b
->buffers
[cpu
] = cpu_buffer_a
;
4350 cpu_buffer_b
->buffer
= buffer_a
;
4351 cpu_buffer_a
->buffer
= buffer_b
;
4356 atomic_dec(&cpu_buffer_a
->record_disabled
);
4357 atomic_dec(&cpu_buffer_b
->record_disabled
);
4361 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu
);
4362 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4365 * ring_buffer_alloc_read_page - allocate a page to read from buffer
4366 * @buffer: the buffer to allocate for.
4367 * @cpu: the cpu buffer to allocate.
4369 * This function is used in conjunction with ring_buffer_read_page.
4370 * When reading a full page from the ring buffer, these functions
4371 * can be used to speed up the process. The calling function should
4372 * allocate a few pages first with this function. Then when it
4373 * needs to get pages from the ring buffer, it passes the result
4374 * of this function into ring_buffer_read_page, which will swap
4375 * the page that was allocated, with the read page of the buffer.
4378 * The page allocated, or NULL on error.
4380 void *ring_buffer_alloc_read_page(struct ring_buffer
*buffer
, int cpu
)
4382 struct buffer_data_page
*bpage
;
4385 page
= alloc_pages_node(cpu_to_node(cpu
),
4386 GFP_KERNEL
| __GFP_NORETRY
, 0);
4390 bpage
= page_address(page
);
4392 rb_init_page(bpage
);
4396 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page
);
4399 * ring_buffer_free_read_page - free an allocated read page
4400 * @buffer: the buffer the page was allocate for
4401 * @data: the page to free
4403 * Free a page allocated from ring_buffer_alloc_read_page.
4405 void ring_buffer_free_read_page(struct ring_buffer
*buffer
, void *data
)
4407 free_page((unsigned long)data
);
4409 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page
);
4412 * ring_buffer_read_page - extract a page from the ring buffer
4413 * @buffer: buffer to extract from
4414 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4415 * @len: amount to extract
4416 * @cpu: the cpu of the buffer to extract
4417 * @full: should the extraction only happen when the page is full.
4419 * This function will pull out a page from the ring buffer and consume it.
4420 * @data_page must be the address of the variable that was returned
4421 * from ring_buffer_alloc_read_page. This is because the page might be used
4422 * to swap with a page in the ring buffer.
4425 * rpage = ring_buffer_alloc_read_page(buffer, cpu);
4428 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4430 * process_page(rpage, ret);
4432 * When @full is set, the function will not return true unless
4433 * the writer is off the reader page.
4435 * Note: it is up to the calling functions to handle sleeps and wakeups.
4436 * The ring buffer can be used anywhere in the kernel and can not
4437 * blindly call wake_up. The layer that uses the ring buffer must be
4438 * responsible for that.
4441 * >=0 if data has been transferred, returns the offset of consumed data.
4442 * <0 if no data has been transferred.
4444 int ring_buffer_read_page(struct ring_buffer
*buffer
,
4445 void **data_page
, size_t len
, int cpu
, int full
)
4447 struct ring_buffer_per_cpu
*cpu_buffer
= buffer
->buffers
[cpu
];
4448 struct ring_buffer_event
*event
;
4449 struct buffer_data_page
*bpage
;
4450 struct buffer_page
*reader
;
4451 unsigned long missed_events
;
4452 unsigned long flags
;
4453 unsigned int commit
;
4458 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
4462 * If len is not big enough to hold the page header, then
4463 * we can not copy anything.
4465 if (len
<= BUF_PAGE_HDR_SIZE
)
4468 len
-= BUF_PAGE_HDR_SIZE
;
4477 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
4479 reader
= rb_get_reader_page(cpu_buffer
);
4483 event
= rb_reader_event(cpu_buffer
);
4485 read
= reader
->read
;
4486 commit
= rb_page_commit(reader
);
4488 /* Check if any events were dropped */
4489 missed_events
= cpu_buffer
->lost_events
;
4492 * If this page has been partially read or
4493 * if len is not big enough to read the rest of the page or
4494 * a writer is still on the page, then
4495 * we must copy the data from the page to the buffer.
4496 * Otherwise, we can simply swap the page with the one passed in.
4498 if (read
|| (len
< (commit
- read
)) ||
4499 cpu_buffer
->reader_page
== cpu_buffer
->commit_page
) {
4500 struct buffer_data_page
*rpage
= cpu_buffer
->reader_page
->page
;
4501 unsigned int rpos
= read
;
4502 unsigned int pos
= 0;
4508 if (len
> (commit
- read
))
4509 len
= (commit
- read
);
4511 /* Always keep the time extend and data together */
4512 size
= rb_event_ts_length(event
);
4517 /* save the current timestamp, since the user will need it */
4518 save_timestamp
= cpu_buffer
->read_stamp
;
4520 /* Need to copy one event at a time */
4522 /* We need the size of one event, because
4523 * rb_advance_reader only advances by one event,
4524 * whereas rb_event_ts_length may include the size of
4525 * one or two events.
4526 * We have already ensured there's enough space if this
4527 * is a time extend. */
4528 size
= rb_event_length(event
);
4529 memcpy(bpage
->data
+ pos
, rpage
->data
+ rpos
, size
);
4533 rb_advance_reader(cpu_buffer
);
4534 rpos
= reader
->read
;
4540 event
= rb_reader_event(cpu_buffer
);
4541 /* Always keep the time extend and data together */
4542 size
= rb_event_ts_length(event
);
4543 } while (len
>= size
);
4546 local_set(&bpage
->commit
, pos
);
4547 bpage
->time_stamp
= save_timestamp
;
4549 /* we copied everything to the beginning */
4552 /* update the entry counter */
4553 cpu_buffer
->read
+= rb_page_entries(reader
);
4554 cpu_buffer
->read_bytes
+= BUF_PAGE_SIZE
;
4556 /* swap the pages */
4557 rb_init_page(bpage
);
4558 bpage
= reader
->page
;
4559 reader
->page
= *data_page
;
4560 local_set(&reader
->write
, 0);
4561 local_set(&reader
->entries
, 0);
4566 * Use the real_end for the data size,
4567 * This gives us a chance to store the lost events
4570 if (reader
->real_end
)
4571 local_set(&bpage
->commit
, reader
->real_end
);
4575 cpu_buffer
->lost_events
= 0;
4577 commit
= local_read(&bpage
->commit
);
4579 * Set a flag in the commit field if we lost events
4581 if (missed_events
) {
4582 /* If there is room at the end of the page to save the
4583 * missed events, then record it there.
4585 if (BUF_PAGE_SIZE
- commit
>= sizeof(missed_events
)) {
4586 memcpy(&bpage
->data
[commit
], &missed_events
,
4587 sizeof(missed_events
));
4588 local_add(RB_MISSED_STORED
, &bpage
->commit
);
4589 commit
+= sizeof(missed_events
);
4591 local_add(RB_MISSED_EVENTS
, &bpage
->commit
);
4595 * This page may be off to user land. Zero it out here.
4597 if (commit
< BUF_PAGE_SIZE
)
4598 memset(&bpage
->data
[commit
], 0, BUF_PAGE_SIZE
- commit
);
4601 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
4606 EXPORT_SYMBOL_GPL(ring_buffer_read_page
);
4608 #ifdef CONFIG_HOTPLUG_CPU
4609 static int rb_cpu_notify(struct notifier_block
*self
,
4610 unsigned long action
, void *hcpu
)
4612 struct ring_buffer
*buffer
=
4613 container_of(self
, struct ring_buffer
, cpu_notify
);
4614 long cpu
= (long)hcpu
;
4615 int cpu_i
, nr_pages_same
;
4616 unsigned int nr_pages
;
4619 case CPU_UP_PREPARE
:
4620 case CPU_UP_PREPARE_FROZEN
:
4621 if (cpumask_test_cpu(cpu
, buffer
->cpumask
))
4626 /* check if all cpu sizes are same */
4627 for_each_buffer_cpu(buffer
, cpu_i
) {
4628 /* fill in the size from first enabled cpu */
4630 nr_pages
= buffer
->buffers
[cpu_i
]->nr_pages
;
4631 if (nr_pages
!= buffer
->buffers
[cpu_i
]->nr_pages
) {
4636 /* allocate minimum pages, user can later expand it */
4639 buffer
->buffers
[cpu
] =
4640 rb_allocate_cpu_buffer(buffer
, nr_pages
, cpu
);
4641 if (!buffer
->buffers
[cpu
]) {
4642 WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4647 cpumask_set_cpu(cpu
, buffer
->cpumask
);
4649 case CPU_DOWN_PREPARE
:
4650 case CPU_DOWN_PREPARE_FROZEN
:
4653 * If we were to free the buffer, then the user would
4654 * lose any trace that was in the buffer.
4664 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4666 * This is a basic integrity check of the ring buffer.
4667 * Late in the boot cycle this test will run when configured in.
4668 * It will kick off a thread per CPU that will go into a loop
4669 * writing to the per cpu ring buffer various sizes of data.
4670 * Some of the data will be large items, some small.
4672 * Another thread is created that goes into a spin, sending out
4673 * IPIs to the other CPUs to also write into the ring buffer.
4674 * this is to test the nesting ability of the buffer.
4676 * Basic stats are recorded and reported. If something in the
4677 * ring buffer should happen that's not expected, a big warning
4678 * is displayed and all ring buffers are disabled.
4680 static struct task_struct
*rb_threads
[NR_CPUS
] __initdata
;
4682 struct rb_test_data
{
4683 struct ring_buffer
*buffer
;
4684 unsigned long events
;
4685 unsigned long bytes_written
;
4686 unsigned long bytes_alloc
;
4687 unsigned long bytes_dropped
;
4688 unsigned long events_nested
;
4689 unsigned long bytes_written_nested
;
4690 unsigned long bytes_alloc_nested
;
4691 unsigned long bytes_dropped_nested
;
4692 int min_size_nested
;
4693 int max_size_nested
;
4700 static struct rb_test_data rb_data
[NR_CPUS
] __initdata
;
4703 #define RB_TEST_BUFFER_SIZE 1048576
4705 static char rb_string
[] __initdata
=
4706 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4707 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4708 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4710 static bool rb_test_started __initdata
;
4717 static __init
int rb_write_something(struct rb_test_data
*data
, bool nested
)
4719 struct ring_buffer_event
*event
;
4720 struct rb_item
*item
;
4727 /* Have nested writes different that what is written */
4728 cnt
= data
->cnt
+ (nested
? 27 : 0);
4730 /* Multiply cnt by ~e, to make some unique increment */
4731 size
= (data
->cnt
* 68 / 25) % (sizeof(rb_string
) - 1);
4733 len
= size
+ sizeof(struct rb_item
);
4735 started
= rb_test_started
;
4736 /* read rb_test_started before checking buffer enabled */
4739 event
= ring_buffer_lock_reserve(data
->buffer
, len
);
4741 /* Ignore dropped events before test starts. */
4744 data
->bytes_dropped
+= len
;
4746 data
->bytes_dropped_nested
+= len
;
4751 event_len
= ring_buffer_event_length(event
);
4753 if (RB_WARN_ON(data
->buffer
, event_len
< len
))
4756 item
= ring_buffer_event_data(event
);
4758 memcpy(item
->str
, rb_string
, size
);
4761 data
->bytes_alloc_nested
+= event_len
;
4762 data
->bytes_written_nested
+= len
;
4763 data
->events_nested
++;
4764 if (!data
->min_size_nested
|| len
< data
->min_size_nested
)
4765 data
->min_size_nested
= len
;
4766 if (len
> data
->max_size_nested
)
4767 data
->max_size_nested
= len
;
4769 data
->bytes_alloc
+= event_len
;
4770 data
->bytes_written
+= len
;
4772 if (!data
->min_size
|| len
< data
->min_size
)
4773 data
->max_size
= len
;
4774 if (len
> data
->max_size
)
4775 data
->max_size
= len
;
4779 ring_buffer_unlock_commit(data
->buffer
, event
);
4784 static __init
int rb_test(void *arg
)
4786 struct rb_test_data
*data
= arg
;
4788 while (!kthread_should_stop()) {
4789 rb_write_something(data
, false);
4792 set_current_state(TASK_INTERRUPTIBLE
);
4793 /* Now sleep between a min of 100-300us and a max of 1ms */
4794 usleep_range(((data
->cnt
% 3) + 1) * 100, 1000);
4800 static __init
void rb_ipi(void *ignore
)
4802 struct rb_test_data
*data
;
4803 int cpu
= smp_processor_id();
4805 data
= &rb_data
[cpu
];
4806 rb_write_something(data
, true);
4809 static __init
int rb_hammer_test(void *arg
)
4811 while (!kthread_should_stop()) {
4813 /* Send an IPI to all cpus to write data! */
4814 smp_call_function(rb_ipi
, NULL
, 1);
4815 /* No sleep, but for non preempt, let others run */
4822 static __init
int test_ringbuffer(void)
4824 struct task_struct
*rb_hammer
;
4825 struct ring_buffer
*buffer
;
4829 pr_info("Running ring buffer tests...\n");
4831 buffer
= ring_buffer_alloc(RB_TEST_BUFFER_SIZE
, RB_FL_OVERWRITE
);
4832 if (WARN_ON(!buffer
))
4835 /* Disable buffer so that threads can't write to it yet */
4836 ring_buffer_record_off(buffer
);
4838 for_each_online_cpu(cpu
) {
4839 rb_data
[cpu
].buffer
= buffer
;
4840 rb_data
[cpu
].cpu
= cpu
;
4841 rb_data
[cpu
].cnt
= cpu
;
4842 rb_threads
[cpu
] = kthread_create(rb_test
, &rb_data
[cpu
],
4843 "rbtester/%d", cpu
);
4844 if (WARN_ON(!rb_threads
[cpu
])) {
4845 pr_cont("FAILED\n");
4850 kthread_bind(rb_threads
[cpu
], cpu
);
4851 wake_up_process(rb_threads
[cpu
]);
4854 /* Now create the rb hammer! */
4855 rb_hammer
= kthread_run(rb_hammer_test
, NULL
, "rbhammer");
4856 if (WARN_ON(!rb_hammer
)) {
4857 pr_cont("FAILED\n");
4862 ring_buffer_record_on(buffer
);
4864 * Show buffer is enabled before setting rb_test_started.
4865 * Yes there's a small race window where events could be
4866 * dropped and the thread wont catch it. But when a ring
4867 * buffer gets enabled, there will always be some kind of
4868 * delay before other CPUs see it. Thus, we don't care about
4869 * those dropped events. We care about events dropped after
4870 * the threads see that the buffer is active.
4873 rb_test_started
= true;
4875 set_current_state(TASK_INTERRUPTIBLE
);
4876 /* Just run for 10 seconds */;
4877 schedule_timeout(10 * HZ
);
4879 kthread_stop(rb_hammer
);
4882 for_each_online_cpu(cpu
) {
4883 if (!rb_threads
[cpu
])
4885 kthread_stop(rb_threads
[cpu
]);
4888 ring_buffer_free(buffer
);
4893 pr_info("finished\n");
4894 for_each_online_cpu(cpu
) {
4895 struct ring_buffer_event
*event
;
4896 struct rb_test_data
*data
= &rb_data
[cpu
];
4897 struct rb_item
*item
;
4898 unsigned long total_events
;
4899 unsigned long total_dropped
;
4900 unsigned long total_written
;
4901 unsigned long total_alloc
;
4902 unsigned long total_read
= 0;
4903 unsigned long total_size
= 0;
4904 unsigned long total_len
= 0;
4905 unsigned long total_lost
= 0;
4908 int small_event_size
;
4912 total_events
= data
->events
+ data
->events_nested
;
4913 total_written
= data
->bytes_written
+ data
->bytes_written_nested
;
4914 total_alloc
= data
->bytes_alloc
+ data
->bytes_alloc_nested
;
4915 total_dropped
= data
->bytes_dropped
+ data
->bytes_dropped_nested
;
4917 big_event_size
= data
->max_size
+ data
->max_size_nested
;
4918 small_event_size
= data
->min_size
+ data
->min_size_nested
;
4920 pr_info("CPU %d:\n", cpu
);
4921 pr_info(" events: %ld\n", total_events
);
4922 pr_info(" dropped bytes: %ld\n", total_dropped
);
4923 pr_info(" alloced bytes: %ld\n", total_alloc
);
4924 pr_info(" written bytes: %ld\n", total_written
);
4925 pr_info(" biggest event: %d\n", big_event_size
);
4926 pr_info(" smallest event: %d\n", small_event_size
);
4928 if (RB_WARN_ON(buffer
, total_dropped
))
4933 while ((event
= ring_buffer_consume(buffer
, cpu
, NULL
, &lost
))) {
4935 item
= ring_buffer_event_data(event
);
4936 total_len
+= ring_buffer_event_length(event
);
4937 total_size
+= item
->size
+ sizeof(struct rb_item
);
4938 if (memcmp(&item
->str
[0], rb_string
, item
->size
) != 0) {
4939 pr_info("FAILED!\n");
4940 pr_info("buffer had: %.*s\n", item
->size
, item
->str
);
4941 pr_info("expected: %.*s\n", item
->size
, rb_string
);
4942 RB_WARN_ON(buffer
, 1);
4953 pr_info(" read events: %ld\n", total_read
);
4954 pr_info(" lost events: %ld\n", total_lost
);
4955 pr_info(" total events: %ld\n", total_lost
+ total_read
);
4956 pr_info(" recorded len bytes: %ld\n", total_len
);
4957 pr_info(" recorded size bytes: %ld\n", total_size
);
4959 pr_info(" With dropped events, record len and size may not match\n"
4960 " alloced and written from above\n");
4962 if (RB_WARN_ON(buffer
, total_len
!= total_alloc
||
4963 total_size
!= total_written
))
4966 if (RB_WARN_ON(buffer
, total_lost
+ total_read
!= total_events
))
4972 pr_info("Ring buffer PASSED!\n");
4974 ring_buffer_free(buffer
);
4978 late_initcall(test_ringbuffer
);
4979 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */