drbd: merge_bvec_fn: properly remap bvm->bi_bdev
[linux/fpc-iii.git] / kernel / trace / ring_buffer.c
blob774a0807fe811b103d4b80d33b284ef48ecd7fc4
1 /*
2 * Generic ring buffer
4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5 */
6 #include <linux/ftrace_event.h>
7 #include <linux/ring_buffer.h>
8 #include <linux/trace_clock.h>
9 #include <linux/trace_seq.h>
10 #include <linux/spinlock.h>
11 #include <linux/irq_work.h>
12 #include <linux/debugfs.h>
13 #include <linux/uaccess.h>
14 #include <linux/hardirq.h>
15 #include <linux/kthread.h> /* for self test */
16 #include <linux/kmemcheck.h>
17 #include <linux/module.h>
18 #include <linux/percpu.h>
19 #include <linux/mutex.h>
20 #include <linux/delay.h>
21 #include <linux/slab.h>
22 #include <linux/init.h>
23 #include <linux/hash.h>
24 #include <linux/list.h>
25 #include <linux/cpu.h>
26 #include <linux/fs.h>
28 #include <asm/local.h>
30 static void update_pages_handler(struct work_struct *work);
33 * The ring buffer header is special. We must manually up keep it.
35 int ring_buffer_print_entry_header(struct trace_seq *s)
37 int ret;
39 ret = trace_seq_puts(s, "# compressed entry header\n");
40 ret = trace_seq_puts(s, "\ttype_len : 5 bits\n");
41 ret = trace_seq_puts(s, "\ttime_delta : 27 bits\n");
42 ret = trace_seq_puts(s, "\tarray : 32 bits\n");
43 ret = trace_seq_putc(s, '\n');
44 ret = trace_seq_printf(s, "\tpadding : type == %d\n",
45 RINGBUF_TYPE_PADDING);
46 ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
47 RINGBUF_TYPE_TIME_EXTEND);
48 ret = trace_seq_printf(s, "\tdata max type_len == %d\n",
49 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
51 return ret;
55 * The ring buffer is made up of a list of pages. A separate list of pages is
56 * allocated for each CPU. A writer may only write to a buffer that is
57 * associated with the CPU it is currently executing on. A reader may read
58 * from any per cpu buffer.
60 * The reader is special. For each per cpu buffer, the reader has its own
61 * reader page. When a reader has read the entire reader page, this reader
62 * page is swapped with another page in the ring buffer.
64 * Now, as long as the writer is off the reader page, the reader can do what
65 * ever it wants with that page. The writer will never write to that page
66 * again (as long as it is out of the ring buffer).
68 * Here's some silly ASCII art.
70 * +------+
71 * |reader| RING BUFFER
72 * |page |
73 * +------+ +---+ +---+ +---+
74 * | |-->| |-->| |
75 * +---+ +---+ +---+
76 * ^ |
77 * | |
78 * +---------------+
81 * +------+
82 * |reader| RING BUFFER
83 * |page |------------------v
84 * +------+ +---+ +---+ +---+
85 * | |-->| |-->| |
86 * +---+ +---+ +---+
87 * ^ |
88 * | |
89 * +---------------+
92 * +------+
93 * |reader| RING BUFFER
94 * |page |------------------v
95 * +------+ +---+ +---+ +---+
96 * ^ | |-->| |-->| |
97 * | +---+ +---+ +---+
98 * | |
99 * | |
100 * +------------------------------+
103 * +------+
104 * |buffer| RING BUFFER
105 * |page |------------------v
106 * +------+ +---+ +---+ +---+
107 * ^ | | | |-->| |
108 * | New +---+ +---+ +---+
109 * | Reader------^ |
110 * | page |
111 * +------------------------------+
114 * After we make this swap, the reader can hand this page off to the splice
115 * code and be done with it. It can even allocate a new page if it needs to
116 * and swap that into the ring buffer.
118 * We will be using cmpxchg soon to make all this lockless.
123 * A fast way to enable or disable all ring buffers is to
124 * call tracing_on or tracing_off. Turning off the ring buffers
125 * prevents all ring buffers from being recorded to.
126 * Turning this switch on, makes it OK to write to the
127 * ring buffer, if the ring buffer is enabled itself.
129 * There's three layers that must be on in order to write
130 * to the ring buffer.
132 * 1) This global flag must be set.
133 * 2) The ring buffer must be enabled for recording.
134 * 3) The per cpu buffer must be enabled for recording.
136 * In case of an anomaly, this global flag has a bit set that
137 * will permantly disable all ring buffers.
141 * Global flag to disable all recording to ring buffers
142 * This has two bits: ON, DISABLED
144 * ON DISABLED
145 * ---- ----------
146 * 0 0 : ring buffers are off
147 * 1 0 : ring buffers are on
148 * X 1 : ring buffers are permanently disabled
151 enum {
152 RB_BUFFERS_ON_BIT = 0,
153 RB_BUFFERS_DISABLED_BIT = 1,
156 enum {
157 RB_BUFFERS_ON = 1 << RB_BUFFERS_ON_BIT,
158 RB_BUFFERS_DISABLED = 1 << RB_BUFFERS_DISABLED_BIT,
161 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
163 /* Used for individual buffers (after the counter) */
164 #define RB_BUFFER_OFF (1 << 20)
166 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
169 * tracing_off_permanent - permanently disable ring buffers
171 * This function, once called, will disable all ring buffers
172 * permanently.
174 void tracing_off_permanent(void)
176 set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
179 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
180 #define RB_ALIGNMENT 4U
181 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
182 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
184 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
185 # define RB_FORCE_8BYTE_ALIGNMENT 0
186 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT
187 #else
188 # define RB_FORCE_8BYTE_ALIGNMENT 1
189 # define RB_ARCH_ALIGNMENT 8U
190 #endif
192 #define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT)
194 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
195 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
197 enum {
198 RB_LEN_TIME_EXTEND = 8,
199 RB_LEN_TIME_STAMP = 16,
202 #define skip_time_extend(event) \
203 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
205 static inline int rb_null_event(struct ring_buffer_event *event)
207 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
210 static void rb_event_set_padding(struct ring_buffer_event *event)
212 /* padding has a NULL time_delta */
213 event->type_len = RINGBUF_TYPE_PADDING;
214 event->time_delta = 0;
217 static unsigned
218 rb_event_data_length(struct ring_buffer_event *event)
220 unsigned length;
222 if (event->type_len)
223 length = event->type_len * RB_ALIGNMENT;
224 else
225 length = event->array[0];
226 return length + RB_EVNT_HDR_SIZE;
230 * Return the length of the given event. Will return
231 * the length of the time extend if the event is a
232 * time extend.
234 static inline unsigned
235 rb_event_length(struct ring_buffer_event *event)
237 switch (event->type_len) {
238 case RINGBUF_TYPE_PADDING:
239 if (rb_null_event(event))
240 /* undefined */
241 return -1;
242 return event->array[0] + RB_EVNT_HDR_SIZE;
244 case RINGBUF_TYPE_TIME_EXTEND:
245 return RB_LEN_TIME_EXTEND;
247 case RINGBUF_TYPE_TIME_STAMP:
248 return RB_LEN_TIME_STAMP;
250 case RINGBUF_TYPE_DATA:
251 return rb_event_data_length(event);
252 default:
253 BUG();
255 /* not hit */
256 return 0;
260 * Return total length of time extend and data,
261 * or just the event length for all other events.
263 static inline unsigned
264 rb_event_ts_length(struct ring_buffer_event *event)
266 unsigned len = 0;
268 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
269 /* time extends include the data event after it */
270 len = RB_LEN_TIME_EXTEND;
271 event = skip_time_extend(event);
273 return len + rb_event_length(event);
277 * ring_buffer_event_length - return the length of the event
278 * @event: the event to get the length of
280 * Returns the size of the data load of a data event.
281 * If the event is something other than a data event, it
282 * returns the size of the event itself. With the exception
283 * of a TIME EXTEND, where it still returns the size of the
284 * data load of the data event after it.
286 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
288 unsigned length;
290 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
291 event = skip_time_extend(event);
293 length = rb_event_length(event);
294 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
295 return length;
296 length -= RB_EVNT_HDR_SIZE;
297 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
298 length -= sizeof(event->array[0]);
299 return length;
301 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
303 /* inline for ring buffer fast paths */
304 static void *
305 rb_event_data(struct ring_buffer_event *event)
307 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
308 event = skip_time_extend(event);
309 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
310 /* If length is in len field, then array[0] has the data */
311 if (event->type_len)
312 return (void *)&event->array[0];
313 /* Otherwise length is in array[0] and array[1] has the data */
314 return (void *)&event->array[1];
318 * ring_buffer_event_data - return the data of the event
319 * @event: the event to get the data from
321 void *ring_buffer_event_data(struct ring_buffer_event *event)
323 return rb_event_data(event);
325 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
327 #define for_each_buffer_cpu(buffer, cpu) \
328 for_each_cpu(cpu, buffer->cpumask)
330 #define TS_SHIFT 27
331 #define TS_MASK ((1ULL << TS_SHIFT) - 1)
332 #define TS_DELTA_TEST (~TS_MASK)
334 /* Flag when events were overwritten */
335 #define RB_MISSED_EVENTS (1 << 31)
336 /* Missed count stored at end */
337 #define RB_MISSED_STORED (1 << 30)
339 struct buffer_data_page {
340 u64 time_stamp; /* page time stamp */
341 local_t commit; /* write committed index */
342 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */
346 * Note, the buffer_page list must be first. The buffer pages
347 * are allocated in cache lines, which means that each buffer
348 * page will be at the beginning of a cache line, and thus
349 * the least significant bits will be zero. We use this to
350 * add flags in the list struct pointers, to make the ring buffer
351 * lockless.
353 struct buffer_page {
354 struct list_head list; /* list of buffer pages */
355 local_t write; /* index for next write */
356 unsigned read; /* index for next read */
357 local_t entries; /* entries on this page */
358 unsigned long real_end; /* real end of data */
359 struct buffer_data_page *page; /* Actual data page */
363 * The buffer page counters, write and entries, must be reset
364 * atomically when crossing page boundaries. To synchronize this
365 * update, two counters are inserted into the number. One is
366 * the actual counter for the write position or count on the page.
368 * The other is a counter of updaters. Before an update happens
369 * the update partition of the counter is incremented. This will
370 * allow the updater to update the counter atomically.
372 * The counter is 20 bits, and the state data is 12.
374 #define RB_WRITE_MASK 0xfffff
375 #define RB_WRITE_INTCNT (1 << 20)
377 static void rb_init_page(struct buffer_data_page *bpage)
379 local_set(&bpage->commit, 0);
383 * ring_buffer_page_len - the size of data on the page.
384 * @page: The page to read
386 * Returns the amount of data on the page, including buffer page header.
388 size_t ring_buffer_page_len(void *page)
390 return local_read(&((struct buffer_data_page *)page)->commit)
391 + BUF_PAGE_HDR_SIZE;
395 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
396 * this issue out.
398 static void free_buffer_page(struct buffer_page *bpage)
400 free_page((unsigned long)bpage->page);
401 kfree(bpage);
405 * We need to fit the time_stamp delta into 27 bits.
407 static inline int test_time_stamp(u64 delta)
409 if (delta & TS_DELTA_TEST)
410 return 1;
411 return 0;
414 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
416 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
417 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
419 int ring_buffer_print_page_header(struct trace_seq *s)
421 struct buffer_data_page field;
422 int ret;
424 ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
425 "offset:0;\tsize:%u;\tsigned:%u;\n",
426 (unsigned int)sizeof(field.time_stamp),
427 (unsigned int)is_signed_type(u64));
429 ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
430 "offset:%u;\tsize:%u;\tsigned:%u;\n",
431 (unsigned int)offsetof(typeof(field), commit),
432 (unsigned int)sizeof(field.commit),
433 (unsigned int)is_signed_type(long));
435 ret = trace_seq_printf(s, "\tfield: int overwrite;\t"
436 "offset:%u;\tsize:%u;\tsigned:%u;\n",
437 (unsigned int)offsetof(typeof(field), commit),
439 (unsigned int)is_signed_type(long));
441 ret = trace_seq_printf(s, "\tfield: char data;\t"
442 "offset:%u;\tsize:%u;\tsigned:%u;\n",
443 (unsigned int)offsetof(typeof(field), data),
444 (unsigned int)BUF_PAGE_SIZE,
445 (unsigned int)is_signed_type(char));
447 return ret;
450 struct rb_irq_work {
451 struct irq_work work;
452 wait_queue_head_t waiters;
453 bool waiters_pending;
457 * head_page == tail_page && head == tail then buffer is empty.
459 struct ring_buffer_per_cpu {
460 int cpu;
461 atomic_t record_disabled;
462 struct ring_buffer *buffer;
463 raw_spinlock_t reader_lock; /* serialize readers */
464 arch_spinlock_t lock;
465 struct lock_class_key lock_key;
466 unsigned int nr_pages;
467 struct list_head *pages;
468 struct buffer_page *head_page; /* read from head */
469 struct buffer_page *tail_page; /* write to tail */
470 struct buffer_page *commit_page; /* committed pages */
471 struct buffer_page *reader_page;
472 unsigned long lost_events;
473 unsigned long last_overrun;
474 local_t entries_bytes;
475 local_t entries;
476 local_t overrun;
477 local_t commit_overrun;
478 local_t dropped_events;
479 local_t committing;
480 local_t commits;
481 unsigned long read;
482 unsigned long read_bytes;
483 u64 write_stamp;
484 u64 read_stamp;
485 /* ring buffer pages to update, > 0 to add, < 0 to remove */
486 int nr_pages_to_update;
487 struct list_head new_pages; /* new pages to add */
488 struct work_struct update_pages_work;
489 struct completion update_done;
491 struct rb_irq_work irq_work;
494 struct ring_buffer {
495 unsigned flags;
496 int cpus;
497 atomic_t record_disabled;
498 atomic_t resize_disabled;
499 cpumask_var_t cpumask;
501 struct lock_class_key *reader_lock_key;
503 struct mutex mutex;
505 struct ring_buffer_per_cpu **buffers;
507 #ifdef CONFIG_HOTPLUG_CPU
508 struct notifier_block cpu_notify;
509 #endif
510 u64 (*clock)(void);
512 struct rb_irq_work irq_work;
515 struct ring_buffer_iter {
516 struct ring_buffer_per_cpu *cpu_buffer;
517 unsigned long head;
518 struct buffer_page *head_page;
519 struct buffer_page *cache_reader_page;
520 unsigned long cache_read;
521 u64 read_stamp;
525 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
527 * Schedules a delayed work to wake up any task that is blocked on the
528 * ring buffer waiters queue.
530 static void rb_wake_up_waiters(struct irq_work *work)
532 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
534 wake_up_all(&rbwork->waiters);
538 * ring_buffer_wait - wait for input to the ring buffer
539 * @buffer: buffer to wait on
540 * @cpu: the cpu buffer to wait on
542 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
543 * as data is added to any of the @buffer's cpu buffers. Otherwise
544 * it will wait for data to be added to a specific cpu buffer.
546 int ring_buffer_wait(struct ring_buffer *buffer, int cpu)
548 struct ring_buffer_per_cpu *cpu_buffer;
549 DEFINE_WAIT(wait);
550 struct rb_irq_work *work;
553 * Depending on what the caller is waiting for, either any
554 * data in any cpu buffer, or a specific buffer, put the
555 * caller on the appropriate wait queue.
557 if (cpu == RING_BUFFER_ALL_CPUS)
558 work = &buffer->irq_work;
559 else {
560 if (!cpumask_test_cpu(cpu, buffer->cpumask))
561 return -ENODEV;
562 cpu_buffer = buffer->buffers[cpu];
563 work = &cpu_buffer->irq_work;
567 prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
570 * The events can happen in critical sections where
571 * checking a work queue can cause deadlocks.
572 * After adding a task to the queue, this flag is set
573 * only to notify events to try to wake up the queue
574 * using irq_work.
576 * We don't clear it even if the buffer is no longer
577 * empty. The flag only causes the next event to run
578 * irq_work to do the work queue wake up. The worse
579 * that can happen if we race with !trace_empty() is that
580 * an event will cause an irq_work to try to wake up
581 * an empty queue.
583 * There's no reason to protect this flag either, as
584 * the work queue and irq_work logic will do the necessary
585 * synchronization for the wake ups. The only thing
586 * that is necessary is that the wake up happens after
587 * a task has been queued. It's OK for spurious wake ups.
589 work->waiters_pending = true;
591 if ((cpu == RING_BUFFER_ALL_CPUS && ring_buffer_empty(buffer)) ||
592 (cpu != RING_BUFFER_ALL_CPUS && ring_buffer_empty_cpu(buffer, cpu)))
593 schedule();
595 finish_wait(&work->waiters, &wait);
596 return 0;
600 * ring_buffer_poll_wait - poll on buffer input
601 * @buffer: buffer to wait on
602 * @cpu: the cpu buffer to wait on
603 * @filp: the file descriptor
604 * @poll_table: The poll descriptor
606 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
607 * as data is added to any of the @buffer's cpu buffers. Otherwise
608 * it will wait for data to be added to a specific cpu buffer.
610 * Returns POLLIN | POLLRDNORM if data exists in the buffers,
611 * zero otherwise.
613 int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
614 struct file *filp, poll_table *poll_table)
616 struct ring_buffer_per_cpu *cpu_buffer;
617 struct rb_irq_work *work;
619 if (cpu == RING_BUFFER_ALL_CPUS)
620 work = &buffer->irq_work;
621 else {
622 if (!cpumask_test_cpu(cpu, buffer->cpumask))
623 return -EINVAL;
625 cpu_buffer = buffer->buffers[cpu];
626 work = &cpu_buffer->irq_work;
629 poll_wait(filp, &work->waiters, poll_table);
630 work->waiters_pending = true;
632 * There's a tight race between setting the waiters_pending and
633 * checking if the ring buffer is empty. Once the waiters_pending bit
634 * is set, the next event will wake the task up, but we can get stuck
635 * if there's only a single event in.
637 * FIXME: Ideally, we need a memory barrier on the writer side as well,
638 * but adding a memory barrier to all events will cause too much of a
639 * performance hit in the fast path. We only need a memory barrier when
640 * the buffer goes from empty to having content. But as this race is
641 * extremely small, and it's not a problem if another event comes in, we
642 * will fix it later.
644 smp_mb();
646 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
647 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
648 return POLLIN | POLLRDNORM;
649 return 0;
652 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
653 #define RB_WARN_ON(b, cond) \
654 ({ \
655 int _____ret = unlikely(cond); \
656 if (_____ret) { \
657 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
658 struct ring_buffer_per_cpu *__b = \
659 (void *)b; \
660 atomic_inc(&__b->buffer->record_disabled); \
661 } else \
662 atomic_inc(&b->record_disabled); \
663 WARN_ON(1); \
665 _____ret; \
668 /* Up this if you want to test the TIME_EXTENTS and normalization */
669 #define DEBUG_SHIFT 0
671 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
673 /* shift to debug/test normalization and TIME_EXTENTS */
674 return buffer->clock() << DEBUG_SHIFT;
677 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
679 u64 time;
681 preempt_disable_notrace();
682 time = rb_time_stamp(buffer);
683 preempt_enable_no_resched_notrace();
685 return time;
687 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
689 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
690 int cpu, u64 *ts)
692 /* Just stupid testing the normalize function and deltas */
693 *ts >>= DEBUG_SHIFT;
695 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
698 * Making the ring buffer lockless makes things tricky.
699 * Although writes only happen on the CPU that they are on,
700 * and they only need to worry about interrupts. Reads can
701 * happen on any CPU.
703 * The reader page is always off the ring buffer, but when the
704 * reader finishes with a page, it needs to swap its page with
705 * a new one from the buffer. The reader needs to take from
706 * the head (writes go to the tail). But if a writer is in overwrite
707 * mode and wraps, it must push the head page forward.
709 * Here lies the problem.
711 * The reader must be careful to replace only the head page, and
712 * not another one. As described at the top of the file in the
713 * ASCII art, the reader sets its old page to point to the next
714 * page after head. It then sets the page after head to point to
715 * the old reader page. But if the writer moves the head page
716 * during this operation, the reader could end up with the tail.
718 * We use cmpxchg to help prevent this race. We also do something
719 * special with the page before head. We set the LSB to 1.
721 * When the writer must push the page forward, it will clear the
722 * bit that points to the head page, move the head, and then set
723 * the bit that points to the new head page.
725 * We also don't want an interrupt coming in and moving the head
726 * page on another writer. Thus we use the second LSB to catch
727 * that too. Thus:
729 * head->list->prev->next bit 1 bit 0
730 * ------- -------
731 * Normal page 0 0
732 * Points to head page 0 1
733 * New head page 1 0
735 * Note we can not trust the prev pointer of the head page, because:
737 * +----+ +-----+ +-----+
738 * | |------>| T |---X--->| N |
739 * | |<------| | | |
740 * +----+ +-----+ +-----+
741 * ^ ^ |
742 * | +-----+ | |
743 * +----------| R |----------+ |
744 * | |<-----------+
745 * +-----+
747 * Key: ---X--> HEAD flag set in pointer
748 * T Tail page
749 * R Reader page
750 * N Next page
752 * (see __rb_reserve_next() to see where this happens)
754 * What the above shows is that the reader just swapped out
755 * the reader page with a page in the buffer, but before it
756 * could make the new header point back to the new page added
757 * it was preempted by a writer. The writer moved forward onto
758 * the new page added by the reader and is about to move forward
759 * again.
761 * You can see, it is legitimate for the previous pointer of
762 * the head (or any page) not to point back to itself. But only
763 * temporarially.
766 #define RB_PAGE_NORMAL 0UL
767 #define RB_PAGE_HEAD 1UL
768 #define RB_PAGE_UPDATE 2UL
771 #define RB_FLAG_MASK 3UL
773 /* PAGE_MOVED is not part of the mask */
774 #define RB_PAGE_MOVED 4UL
777 * rb_list_head - remove any bit
779 static struct list_head *rb_list_head(struct list_head *list)
781 unsigned long val = (unsigned long)list;
783 return (struct list_head *)(val & ~RB_FLAG_MASK);
787 * rb_is_head_page - test if the given page is the head page
789 * Because the reader may move the head_page pointer, we can
790 * not trust what the head page is (it may be pointing to
791 * the reader page). But if the next page is a header page,
792 * its flags will be non zero.
794 static inline int
795 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
796 struct buffer_page *page, struct list_head *list)
798 unsigned long val;
800 val = (unsigned long)list->next;
802 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
803 return RB_PAGE_MOVED;
805 return val & RB_FLAG_MASK;
809 * rb_is_reader_page
811 * The unique thing about the reader page, is that, if the
812 * writer is ever on it, the previous pointer never points
813 * back to the reader page.
815 static int rb_is_reader_page(struct buffer_page *page)
817 struct list_head *list = page->list.prev;
819 return rb_list_head(list->next) != &page->list;
823 * rb_set_list_to_head - set a list_head to be pointing to head.
825 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
826 struct list_head *list)
828 unsigned long *ptr;
830 ptr = (unsigned long *)&list->next;
831 *ptr |= RB_PAGE_HEAD;
832 *ptr &= ~RB_PAGE_UPDATE;
836 * rb_head_page_activate - sets up head page
838 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
840 struct buffer_page *head;
842 head = cpu_buffer->head_page;
843 if (!head)
844 return;
847 * Set the previous list pointer to have the HEAD flag.
849 rb_set_list_to_head(cpu_buffer, head->list.prev);
852 static void rb_list_head_clear(struct list_head *list)
854 unsigned long *ptr = (unsigned long *)&list->next;
856 *ptr &= ~RB_FLAG_MASK;
860 * rb_head_page_dactivate - clears head page ptr (for free list)
862 static void
863 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
865 struct list_head *hd;
867 /* Go through the whole list and clear any pointers found. */
868 rb_list_head_clear(cpu_buffer->pages);
870 list_for_each(hd, cpu_buffer->pages)
871 rb_list_head_clear(hd);
874 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
875 struct buffer_page *head,
876 struct buffer_page *prev,
877 int old_flag, int new_flag)
879 struct list_head *list;
880 unsigned long val = (unsigned long)&head->list;
881 unsigned long ret;
883 list = &prev->list;
885 val &= ~RB_FLAG_MASK;
887 ret = cmpxchg((unsigned long *)&list->next,
888 val | old_flag, val | new_flag);
890 /* check if the reader took the page */
891 if ((ret & ~RB_FLAG_MASK) != val)
892 return RB_PAGE_MOVED;
894 return ret & RB_FLAG_MASK;
897 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
898 struct buffer_page *head,
899 struct buffer_page *prev,
900 int old_flag)
902 return rb_head_page_set(cpu_buffer, head, prev,
903 old_flag, RB_PAGE_UPDATE);
906 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
907 struct buffer_page *head,
908 struct buffer_page *prev,
909 int old_flag)
911 return rb_head_page_set(cpu_buffer, head, prev,
912 old_flag, RB_PAGE_HEAD);
915 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
916 struct buffer_page *head,
917 struct buffer_page *prev,
918 int old_flag)
920 return rb_head_page_set(cpu_buffer, head, prev,
921 old_flag, RB_PAGE_NORMAL);
924 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
925 struct buffer_page **bpage)
927 struct list_head *p = rb_list_head((*bpage)->list.next);
929 *bpage = list_entry(p, struct buffer_page, list);
932 static struct buffer_page *
933 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
935 struct buffer_page *head;
936 struct buffer_page *page;
937 struct list_head *list;
938 int i;
940 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
941 return NULL;
943 /* sanity check */
944 list = cpu_buffer->pages;
945 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
946 return NULL;
948 page = head = cpu_buffer->head_page;
950 * It is possible that the writer moves the header behind
951 * where we started, and we miss in one loop.
952 * A second loop should grab the header, but we'll do
953 * three loops just because I'm paranoid.
955 for (i = 0; i < 3; i++) {
956 do {
957 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
958 cpu_buffer->head_page = page;
959 return page;
961 rb_inc_page(cpu_buffer, &page);
962 } while (page != head);
965 RB_WARN_ON(cpu_buffer, 1);
967 return NULL;
970 static int rb_head_page_replace(struct buffer_page *old,
971 struct buffer_page *new)
973 unsigned long *ptr = (unsigned long *)&old->list.prev->next;
974 unsigned long val;
975 unsigned long ret;
977 val = *ptr & ~RB_FLAG_MASK;
978 val |= RB_PAGE_HEAD;
980 ret = cmpxchg(ptr, val, (unsigned long)&new->list);
982 return ret == val;
986 * rb_tail_page_update - move the tail page forward
988 * Returns 1 if moved tail page, 0 if someone else did.
990 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
991 struct buffer_page *tail_page,
992 struct buffer_page *next_page)
994 struct buffer_page *old_tail;
995 unsigned long old_entries;
996 unsigned long old_write;
997 int ret = 0;
1000 * The tail page now needs to be moved forward.
1002 * We need to reset the tail page, but without messing
1003 * with possible erasing of data brought in by interrupts
1004 * that have moved the tail page and are currently on it.
1006 * We add a counter to the write field to denote this.
1008 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1009 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1012 * Just make sure we have seen our old_write and synchronize
1013 * with any interrupts that come in.
1015 barrier();
1018 * If the tail page is still the same as what we think
1019 * it is, then it is up to us to update the tail
1020 * pointer.
1022 if (tail_page == cpu_buffer->tail_page) {
1023 /* Zero the write counter */
1024 unsigned long val = old_write & ~RB_WRITE_MASK;
1025 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1028 * This will only succeed if an interrupt did
1029 * not come in and change it. In which case, we
1030 * do not want to modify it.
1032 * We add (void) to let the compiler know that we do not care
1033 * about the return value of these functions. We use the
1034 * cmpxchg to only update if an interrupt did not already
1035 * do it for us. If the cmpxchg fails, we don't care.
1037 (void)local_cmpxchg(&next_page->write, old_write, val);
1038 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
1041 * No need to worry about races with clearing out the commit.
1042 * it only can increment when a commit takes place. But that
1043 * only happens in the outer most nested commit.
1045 local_set(&next_page->page->commit, 0);
1047 old_tail = cmpxchg(&cpu_buffer->tail_page,
1048 tail_page, next_page);
1050 if (old_tail == tail_page)
1051 ret = 1;
1054 return ret;
1057 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1058 struct buffer_page *bpage)
1060 unsigned long val = (unsigned long)bpage;
1062 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1063 return 1;
1065 return 0;
1069 * rb_check_list - make sure a pointer to a list has the last bits zero
1071 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1072 struct list_head *list)
1074 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1075 return 1;
1076 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1077 return 1;
1078 return 0;
1082 * rb_check_pages - integrity check of buffer pages
1083 * @cpu_buffer: CPU buffer with pages to test
1085 * As a safety measure we check to make sure the data pages have not
1086 * been corrupted.
1088 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1090 struct list_head *head = cpu_buffer->pages;
1091 struct buffer_page *bpage, *tmp;
1093 /* Reset the head page if it exists */
1094 if (cpu_buffer->head_page)
1095 rb_set_head_page(cpu_buffer);
1097 rb_head_page_deactivate(cpu_buffer);
1099 if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1100 return -1;
1101 if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1102 return -1;
1104 if (rb_check_list(cpu_buffer, head))
1105 return -1;
1107 list_for_each_entry_safe(bpage, tmp, head, list) {
1108 if (RB_WARN_ON(cpu_buffer,
1109 bpage->list.next->prev != &bpage->list))
1110 return -1;
1111 if (RB_WARN_ON(cpu_buffer,
1112 bpage->list.prev->next != &bpage->list))
1113 return -1;
1114 if (rb_check_list(cpu_buffer, &bpage->list))
1115 return -1;
1118 rb_head_page_activate(cpu_buffer);
1120 return 0;
1123 static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu)
1125 int i;
1126 struct buffer_page *bpage, *tmp;
1128 for (i = 0; i < nr_pages; i++) {
1129 struct page *page;
1131 * __GFP_NORETRY flag makes sure that the allocation fails
1132 * gracefully without invoking oom-killer and the system is
1133 * not destabilized.
1135 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1136 GFP_KERNEL | __GFP_NORETRY,
1137 cpu_to_node(cpu));
1138 if (!bpage)
1139 goto free_pages;
1141 list_add(&bpage->list, pages);
1143 page = alloc_pages_node(cpu_to_node(cpu),
1144 GFP_KERNEL | __GFP_NORETRY, 0);
1145 if (!page)
1146 goto free_pages;
1147 bpage->page = page_address(page);
1148 rb_init_page(bpage->page);
1151 return 0;
1153 free_pages:
1154 list_for_each_entry_safe(bpage, tmp, pages, list) {
1155 list_del_init(&bpage->list);
1156 free_buffer_page(bpage);
1159 return -ENOMEM;
1162 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1163 unsigned nr_pages)
1165 LIST_HEAD(pages);
1167 WARN_ON(!nr_pages);
1169 if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1170 return -ENOMEM;
1173 * The ring buffer page list is a circular list that does not
1174 * start and end with a list head. All page list items point to
1175 * other pages.
1177 cpu_buffer->pages = pages.next;
1178 list_del(&pages);
1180 cpu_buffer->nr_pages = nr_pages;
1182 rb_check_pages(cpu_buffer);
1184 return 0;
1187 static struct ring_buffer_per_cpu *
1188 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu)
1190 struct ring_buffer_per_cpu *cpu_buffer;
1191 struct buffer_page *bpage;
1192 struct page *page;
1193 int ret;
1195 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1196 GFP_KERNEL, cpu_to_node(cpu));
1197 if (!cpu_buffer)
1198 return NULL;
1200 cpu_buffer->cpu = cpu;
1201 cpu_buffer->buffer = buffer;
1202 raw_spin_lock_init(&cpu_buffer->reader_lock);
1203 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1204 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1205 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1206 init_completion(&cpu_buffer->update_done);
1207 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1208 init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1210 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1211 GFP_KERNEL, cpu_to_node(cpu));
1212 if (!bpage)
1213 goto fail_free_buffer;
1215 rb_check_bpage(cpu_buffer, bpage);
1217 cpu_buffer->reader_page = bpage;
1218 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1219 if (!page)
1220 goto fail_free_reader;
1221 bpage->page = page_address(page);
1222 rb_init_page(bpage->page);
1224 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1225 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1227 ret = rb_allocate_pages(cpu_buffer, nr_pages);
1228 if (ret < 0)
1229 goto fail_free_reader;
1231 cpu_buffer->head_page
1232 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1233 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1235 rb_head_page_activate(cpu_buffer);
1237 return cpu_buffer;
1239 fail_free_reader:
1240 free_buffer_page(cpu_buffer->reader_page);
1242 fail_free_buffer:
1243 kfree(cpu_buffer);
1244 return NULL;
1247 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1249 struct list_head *head = cpu_buffer->pages;
1250 struct buffer_page *bpage, *tmp;
1252 free_buffer_page(cpu_buffer->reader_page);
1254 rb_head_page_deactivate(cpu_buffer);
1256 if (head) {
1257 list_for_each_entry_safe(bpage, tmp, head, list) {
1258 list_del_init(&bpage->list);
1259 free_buffer_page(bpage);
1261 bpage = list_entry(head, struct buffer_page, list);
1262 free_buffer_page(bpage);
1265 kfree(cpu_buffer);
1268 #ifdef CONFIG_HOTPLUG_CPU
1269 static int rb_cpu_notify(struct notifier_block *self,
1270 unsigned long action, void *hcpu);
1271 #endif
1274 * __ring_buffer_alloc - allocate a new ring_buffer
1275 * @size: the size in bytes per cpu that is needed.
1276 * @flags: attributes to set for the ring buffer.
1278 * Currently the only flag that is available is the RB_FL_OVERWRITE
1279 * flag. This flag means that the buffer will overwrite old data
1280 * when the buffer wraps. If this flag is not set, the buffer will
1281 * drop data when the tail hits the head.
1283 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1284 struct lock_class_key *key)
1286 struct ring_buffer *buffer;
1287 int bsize;
1288 int cpu, nr_pages;
1290 /* keep it in its own cache line */
1291 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1292 GFP_KERNEL);
1293 if (!buffer)
1294 return NULL;
1296 if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1297 goto fail_free_buffer;
1299 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1300 buffer->flags = flags;
1301 buffer->clock = trace_clock_local;
1302 buffer->reader_lock_key = key;
1304 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1305 init_waitqueue_head(&buffer->irq_work.waiters);
1307 /* need at least two pages */
1308 if (nr_pages < 2)
1309 nr_pages = 2;
1312 * In case of non-hotplug cpu, if the ring-buffer is allocated
1313 * in early initcall, it will not be notified of secondary cpus.
1314 * In that off case, we need to allocate for all possible cpus.
1316 #ifdef CONFIG_HOTPLUG_CPU
1317 get_online_cpus();
1318 cpumask_copy(buffer->cpumask, cpu_online_mask);
1319 #else
1320 cpumask_copy(buffer->cpumask, cpu_possible_mask);
1321 #endif
1322 buffer->cpus = nr_cpu_ids;
1324 bsize = sizeof(void *) * nr_cpu_ids;
1325 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1326 GFP_KERNEL);
1327 if (!buffer->buffers)
1328 goto fail_free_cpumask;
1330 for_each_buffer_cpu(buffer, cpu) {
1331 buffer->buffers[cpu] =
1332 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1333 if (!buffer->buffers[cpu])
1334 goto fail_free_buffers;
1337 #ifdef CONFIG_HOTPLUG_CPU
1338 buffer->cpu_notify.notifier_call = rb_cpu_notify;
1339 buffer->cpu_notify.priority = 0;
1340 register_cpu_notifier(&buffer->cpu_notify);
1341 #endif
1343 put_online_cpus();
1344 mutex_init(&buffer->mutex);
1346 return buffer;
1348 fail_free_buffers:
1349 for_each_buffer_cpu(buffer, cpu) {
1350 if (buffer->buffers[cpu])
1351 rb_free_cpu_buffer(buffer->buffers[cpu]);
1353 kfree(buffer->buffers);
1355 fail_free_cpumask:
1356 free_cpumask_var(buffer->cpumask);
1357 put_online_cpus();
1359 fail_free_buffer:
1360 kfree(buffer);
1361 return NULL;
1363 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1366 * ring_buffer_free - free a ring buffer.
1367 * @buffer: the buffer to free.
1369 void
1370 ring_buffer_free(struct ring_buffer *buffer)
1372 int cpu;
1374 get_online_cpus();
1376 #ifdef CONFIG_HOTPLUG_CPU
1377 unregister_cpu_notifier(&buffer->cpu_notify);
1378 #endif
1380 for_each_buffer_cpu(buffer, cpu)
1381 rb_free_cpu_buffer(buffer->buffers[cpu]);
1383 put_online_cpus();
1385 kfree(buffer->buffers);
1386 free_cpumask_var(buffer->cpumask);
1388 kfree(buffer);
1390 EXPORT_SYMBOL_GPL(ring_buffer_free);
1392 void ring_buffer_set_clock(struct ring_buffer *buffer,
1393 u64 (*clock)(void))
1395 buffer->clock = clock;
1398 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1400 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1402 return local_read(&bpage->entries) & RB_WRITE_MASK;
1405 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1407 return local_read(&bpage->write) & RB_WRITE_MASK;
1410 static int
1411 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages)
1413 struct list_head *tail_page, *to_remove, *next_page;
1414 struct buffer_page *to_remove_page, *tmp_iter_page;
1415 struct buffer_page *last_page, *first_page;
1416 unsigned int nr_removed;
1417 unsigned long head_bit;
1418 int page_entries;
1420 head_bit = 0;
1422 raw_spin_lock_irq(&cpu_buffer->reader_lock);
1423 atomic_inc(&cpu_buffer->record_disabled);
1425 * We don't race with the readers since we have acquired the reader
1426 * lock. We also don't race with writers after disabling recording.
1427 * This makes it easy to figure out the first and the last page to be
1428 * removed from the list. We unlink all the pages in between including
1429 * the first and last pages. This is done in a busy loop so that we
1430 * lose the least number of traces.
1431 * The pages are freed after we restart recording and unlock readers.
1433 tail_page = &cpu_buffer->tail_page->list;
1436 * tail page might be on reader page, we remove the next page
1437 * from the ring buffer
1439 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1440 tail_page = rb_list_head(tail_page->next);
1441 to_remove = tail_page;
1443 /* start of pages to remove */
1444 first_page = list_entry(rb_list_head(to_remove->next),
1445 struct buffer_page, list);
1447 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1448 to_remove = rb_list_head(to_remove)->next;
1449 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1452 next_page = rb_list_head(to_remove)->next;
1455 * Now we remove all pages between tail_page and next_page.
1456 * Make sure that we have head_bit value preserved for the
1457 * next page
1459 tail_page->next = (struct list_head *)((unsigned long)next_page |
1460 head_bit);
1461 next_page = rb_list_head(next_page);
1462 next_page->prev = tail_page;
1464 /* make sure pages points to a valid page in the ring buffer */
1465 cpu_buffer->pages = next_page;
1467 /* update head page */
1468 if (head_bit)
1469 cpu_buffer->head_page = list_entry(next_page,
1470 struct buffer_page, list);
1473 * change read pointer to make sure any read iterators reset
1474 * themselves
1476 cpu_buffer->read = 0;
1478 /* pages are removed, resume tracing and then free the pages */
1479 atomic_dec(&cpu_buffer->record_disabled);
1480 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1482 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1484 /* last buffer page to remove */
1485 last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1486 list);
1487 tmp_iter_page = first_page;
1489 do {
1490 to_remove_page = tmp_iter_page;
1491 rb_inc_page(cpu_buffer, &tmp_iter_page);
1493 /* update the counters */
1494 page_entries = rb_page_entries(to_remove_page);
1495 if (page_entries) {
1497 * If something was added to this page, it was full
1498 * since it is not the tail page. So we deduct the
1499 * bytes consumed in ring buffer from here.
1500 * Increment overrun to account for the lost events.
1502 local_add(page_entries, &cpu_buffer->overrun);
1503 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1507 * We have already removed references to this list item, just
1508 * free up the buffer_page and its page
1510 free_buffer_page(to_remove_page);
1511 nr_removed--;
1513 } while (to_remove_page != last_page);
1515 RB_WARN_ON(cpu_buffer, nr_removed);
1517 return nr_removed == 0;
1520 static int
1521 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1523 struct list_head *pages = &cpu_buffer->new_pages;
1524 int retries, success;
1526 raw_spin_lock_irq(&cpu_buffer->reader_lock);
1528 * We are holding the reader lock, so the reader page won't be swapped
1529 * in the ring buffer. Now we are racing with the writer trying to
1530 * move head page and the tail page.
1531 * We are going to adapt the reader page update process where:
1532 * 1. We first splice the start and end of list of new pages between
1533 * the head page and its previous page.
1534 * 2. We cmpxchg the prev_page->next to point from head page to the
1535 * start of new pages list.
1536 * 3. Finally, we update the head->prev to the end of new list.
1538 * We will try this process 10 times, to make sure that we don't keep
1539 * spinning.
1541 retries = 10;
1542 success = 0;
1543 while (retries--) {
1544 struct list_head *head_page, *prev_page, *r;
1545 struct list_head *last_page, *first_page;
1546 struct list_head *head_page_with_bit;
1548 head_page = &rb_set_head_page(cpu_buffer)->list;
1549 if (!head_page)
1550 break;
1551 prev_page = head_page->prev;
1553 first_page = pages->next;
1554 last_page = pages->prev;
1556 head_page_with_bit = (struct list_head *)
1557 ((unsigned long)head_page | RB_PAGE_HEAD);
1559 last_page->next = head_page_with_bit;
1560 first_page->prev = prev_page;
1562 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1564 if (r == head_page_with_bit) {
1566 * yay, we replaced the page pointer to our new list,
1567 * now, we just have to update to head page's prev
1568 * pointer to point to end of list
1570 head_page->prev = last_page;
1571 success = 1;
1572 break;
1576 if (success)
1577 INIT_LIST_HEAD(pages);
1579 * If we weren't successful in adding in new pages, warn and stop
1580 * tracing
1582 RB_WARN_ON(cpu_buffer, !success);
1583 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1585 /* free pages if they weren't inserted */
1586 if (!success) {
1587 struct buffer_page *bpage, *tmp;
1588 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1589 list) {
1590 list_del_init(&bpage->list);
1591 free_buffer_page(bpage);
1594 return success;
1597 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1599 int success;
1601 if (cpu_buffer->nr_pages_to_update > 0)
1602 success = rb_insert_pages(cpu_buffer);
1603 else
1604 success = rb_remove_pages(cpu_buffer,
1605 -cpu_buffer->nr_pages_to_update);
1607 if (success)
1608 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1611 static void update_pages_handler(struct work_struct *work)
1613 struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1614 struct ring_buffer_per_cpu, update_pages_work);
1615 rb_update_pages(cpu_buffer);
1616 complete(&cpu_buffer->update_done);
1620 * ring_buffer_resize - resize the ring buffer
1621 * @buffer: the buffer to resize.
1622 * @size: the new size.
1623 * @cpu_id: the cpu buffer to resize
1625 * Minimum size is 2 * BUF_PAGE_SIZE.
1627 * Returns 0 on success and < 0 on failure.
1629 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1630 int cpu_id)
1632 struct ring_buffer_per_cpu *cpu_buffer;
1633 unsigned nr_pages;
1634 int cpu, err = 0;
1637 * Always succeed at resizing a non-existent buffer:
1639 if (!buffer)
1640 return size;
1642 /* Make sure the requested buffer exists */
1643 if (cpu_id != RING_BUFFER_ALL_CPUS &&
1644 !cpumask_test_cpu(cpu_id, buffer->cpumask))
1645 return size;
1647 size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1648 size *= BUF_PAGE_SIZE;
1650 /* we need a minimum of two pages */
1651 if (size < BUF_PAGE_SIZE * 2)
1652 size = BUF_PAGE_SIZE * 2;
1654 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1657 * Don't succeed if resizing is disabled, as a reader might be
1658 * manipulating the ring buffer and is expecting a sane state while
1659 * this is true.
1661 if (atomic_read(&buffer->resize_disabled))
1662 return -EBUSY;
1664 /* prevent another thread from changing buffer sizes */
1665 mutex_lock(&buffer->mutex);
1667 if (cpu_id == RING_BUFFER_ALL_CPUS) {
1668 /* calculate the pages to update */
1669 for_each_buffer_cpu(buffer, cpu) {
1670 cpu_buffer = buffer->buffers[cpu];
1672 cpu_buffer->nr_pages_to_update = nr_pages -
1673 cpu_buffer->nr_pages;
1675 * nothing more to do for removing pages or no update
1677 if (cpu_buffer->nr_pages_to_update <= 0)
1678 continue;
1680 * to add pages, make sure all new pages can be
1681 * allocated without receiving ENOMEM
1683 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1684 if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1685 &cpu_buffer->new_pages, cpu)) {
1686 /* not enough memory for new pages */
1687 err = -ENOMEM;
1688 goto out_err;
1692 get_online_cpus();
1694 * Fire off all the required work handlers
1695 * We can't schedule on offline CPUs, but it's not necessary
1696 * since we can change their buffer sizes without any race.
1698 for_each_buffer_cpu(buffer, cpu) {
1699 cpu_buffer = buffer->buffers[cpu];
1700 if (!cpu_buffer->nr_pages_to_update)
1701 continue;
1703 /* The update must run on the CPU that is being updated. */
1704 preempt_disable();
1705 if (cpu == smp_processor_id() || !cpu_online(cpu)) {
1706 rb_update_pages(cpu_buffer);
1707 cpu_buffer->nr_pages_to_update = 0;
1708 } else {
1710 * Can not disable preemption for schedule_work_on()
1711 * on PREEMPT_RT.
1713 preempt_enable();
1714 schedule_work_on(cpu,
1715 &cpu_buffer->update_pages_work);
1716 preempt_disable();
1718 preempt_enable();
1721 /* wait for all the updates to complete */
1722 for_each_buffer_cpu(buffer, cpu) {
1723 cpu_buffer = buffer->buffers[cpu];
1724 if (!cpu_buffer->nr_pages_to_update)
1725 continue;
1727 if (cpu_online(cpu))
1728 wait_for_completion(&cpu_buffer->update_done);
1729 cpu_buffer->nr_pages_to_update = 0;
1732 put_online_cpus();
1733 } else {
1734 /* Make sure this CPU has been intitialized */
1735 if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1736 goto out;
1738 cpu_buffer = buffer->buffers[cpu_id];
1740 if (nr_pages == cpu_buffer->nr_pages)
1741 goto out;
1743 cpu_buffer->nr_pages_to_update = nr_pages -
1744 cpu_buffer->nr_pages;
1746 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1747 if (cpu_buffer->nr_pages_to_update > 0 &&
1748 __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1749 &cpu_buffer->new_pages, cpu_id)) {
1750 err = -ENOMEM;
1751 goto out_err;
1754 get_online_cpus();
1756 preempt_disable();
1757 /* The update must run on the CPU that is being updated. */
1758 if (cpu_id == smp_processor_id() || !cpu_online(cpu_id))
1759 rb_update_pages(cpu_buffer);
1760 else {
1762 * Can not disable preemption for schedule_work_on()
1763 * on PREEMPT_RT.
1765 preempt_enable();
1766 schedule_work_on(cpu_id,
1767 &cpu_buffer->update_pages_work);
1768 wait_for_completion(&cpu_buffer->update_done);
1769 preempt_disable();
1771 preempt_enable();
1773 cpu_buffer->nr_pages_to_update = 0;
1774 put_online_cpus();
1777 out:
1779 * The ring buffer resize can happen with the ring buffer
1780 * enabled, so that the update disturbs the tracing as little
1781 * as possible. But if the buffer is disabled, we do not need
1782 * to worry about that, and we can take the time to verify
1783 * that the buffer is not corrupt.
1785 if (atomic_read(&buffer->record_disabled)) {
1786 atomic_inc(&buffer->record_disabled);
1788 * Even though the buffer was disabled, we must make sure
1789 * that it is truly disabled before calling rb_check_pages.
1790 * There could have been a race between checking
1791 * record_disable and incrementing it.
1793 synchronize_sched();
1794 for_each_buffer_cpu(buffer, cpu) {
1795 cpu_buffer = buffer->buffers[cpu];
1796 rb_check_pages(cpu_buffer);
1798 atomic_dec(&buffer->record_disabled);
1801 mutex_unlock(&buffer->mutex);
1802 return size;
1804 out_err:
1805 for_each_buffer_cpu(buffer, cpu) {
1806 struct buffer_page *bpage, *tmp;
1808 cpu_buffer = buffer->buffers[cpu];
1809 cpu_buffer->nr_pages_to_update = 0;
1811 if (list_empty(&cpu_buffer->new_pages))
1812 continue;
1814 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1815 list) {
1816 list_del_init(&bpage->list);
1817 free_buffer_page(bpage);
1820 mutex_unlock(&buffer->mutex);
1821 return err;
1823 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1825 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1827 mutex_lock(&buffer->mutex);
1828 if (val)
1829 buffer->flags |= RB_FL_OVERWRITE;
1830 else
1831 buffer->flags &= ~RB_FL_OVERWRITE;
1832 mutex_unlock(&buffer->mutex);
1834 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1836 static inline void *
1837 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1839 return bpage->data + index;
1842 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1844 return bpage->page->data + index;
1847 static inline struct ring_buffer_event *
1848 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1850 return __rb_page_index(cpu_buffer->reader_page,
1851 cpu_buffer->reader_page->read);
1854 static inline struct ring_buffer_event *
1855 rb_iter_head_event(struct ring_buffer_iter *iter)
1857 return __rb_page_index(iter->head_page, iter->head);
1860 static inline unsigned rb_page_commit(struct buffer_page *bpage)
1862 return local_read(&bpage->page->commit);
1865 /* Size is determined by what has been committed */
1866 static inline unsigned rb_page_size(struct buffer_page *bpage)
1868 return rb_page_commit(bpage);
1871 static inline unsigned
1872 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1874 return rb_page_commit(cpu_buffer->commit_page);
1877 static inline unsigned
1878 rb_event_index(struct ring_buffer_event *event)
1880 unsigned long addr = (unsigned long)event;
1882 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1885 static inline int
1886 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1887 struct ring_buffer_event *event)
1889 unsigned long addr = (unsigned long)event;
1890 unsigned long index;
1892 index = rb_event_index(event);
1893 addr &= PAGE_MASK;
1895 return cpu_buffer->commit_page->page == (void *)addr &&
1896 rb_commit_index(cpu_buffer) == index;
1899 static void
1900 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1902 unsigned long max_count;
1905 * We only race with interrupts and NMIs on this CPU.
1906 * If we own the commit event, then we can commit
1907 * all others that interrupted us, since the interruptions
1908 * are in stack format (they finish before they come
1909 * back to us). This allows us to do a simple loop to
1910 * assign the commit to the tail.
1912 again:
1913 max_count = cpu_buffer->nr_pages * 100;
1915 while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1916 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1917 return;
1918 if (RB_WARN_ON(cpu_buffer,
1919 rb_is_reader_page(cpu_buffer->tail_page)))
1920 return;
1921 local_set(&cpu_buffer->commit_page->page->commit,
1922 rb_page_write(cpu_buffer->commit_page));
1923 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1924 cpu_buffer->write_stamp =
1925 cpu_buffer->commit_page->page->time_stamp;
1926 /* add barrier to keep gcc from optimizing too much */
1927 barrier();
1929 while (rb_commit_index(cpu_buffer) !=
1930 rb_page_write(cpu_buffer->commit_page)) {
1932 local_set(&cpu_buffer->commit_page->page->commit,
1933 rb_page_write(cpu_buffer->commit_page));
1934 RB_WARN_ON(cpu_buffer,
1935 local_read(&cpu_buffer->commit_page->page->commit) &
1936 ~RB_WRITE_MASK);
1937 barrier();
1940 /* again, keep gcc from optimizing */
1941 barrier();
1944 * If an interrupt came in just after the first while loop
1945 * and pushed the tail page forward, we will be left with
1946 * a dangling commit that will never go forward.
1948 if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1949 goto again;
1952 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1954 cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1955 cpu_buffer->reader_page->read = 0;
1958 static void rb_inc_iter(struct ring_buffer_iter *iter)
1960 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1963 * The iterator could be on the reader page (it starts there).
1964 * But the head could have moved, since the reader was
1965 * found. Check for this case and assign the iterator
1966 * to the head page instead of next.
1968 if (iter->head_page == cpu_buffer->reader_page)
1969 iter->head_page = rb_set_head_page(cpu_buffer);
1970 else
1971 rb_inc_page(cpu_buffer, &iter->head_page);
1973 iter->read_stamp = iter->head_page->page->time_stamp;
1974 iter->head = 0;
1977 /* Slow path, do not inline */
1978 static noinline struct ring_buffer_event *
1979 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
1981 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
1983 /* Not the first event on the page? */
1984 if (rb_event_index(event)) {
1985 event->time_delta = delta & TS_MASK;
1986 event->array[0] = delta >> TS_SHIFT;
1987 } else {
1988 /* nope, just zero it */
1989 event->time_delta = 0;
1990 event->array[0] = 0;
1993 return skip_time_extend(event);
1997 * rb_update_event - update event type and data
1998 * @event: the event to update
1999 * @type: the type of event
2000 * @length: the size of the event field in the ring buffer
2002 * Update the type and data fields of the event. The length
2003 * is the actual size that is written to the ring buffer,
2004 * and with this, we can determine what to place into the
2005 * data field.
2007 static void
2008 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2009 struct ring_buffer_event *event, unsigned length,
2010 int add_timestamp, u64 delta)
2012 /* Only a commit updates the timestamp */
2013 if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2014 delta = 0;
2017 * If we need to add a timestamp, then we
2018 * add it to the start of the resevered space.
2020 if (unlikely(add_timestamp)) {
2021 event = rb_add_time_stamp(event, delta);
2022 length -= RB_LEN_TIME_EXTEND;
2023 delta = 0;
2026 event->time_delta = delta;
2027 length -= RB_EVNT_HDR_SIZE;
2028 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2029 event->type_len = 0;
2030 event->array[0] = length;
2031 } else
2032 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2036 * rb_handle_head_page - writer hit the head page
2038 * Returns: +1 to retry page
2039 * 0 to continue
2040 * -1 on error
2042 static int
2043 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2044 struct buffer_page *tail_page,
2045 struct buffer_page *next_page)
2047 struct buffer_page *new_head;
2048 int entries;
2049 int type;
2050 int ret;
2052 entries = rb_page_entries(next_page);
2055 * The hard part is here. We need to move the head
2056 * forward, and protect against both readers on
2057 * other CPUs and writers coming in via interrupts.
2059 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2060 RB_PAGE_HEAD);
2063 * type can be one of four:
2064 * NORMAL - an interrupt already moved it for us
2065 * HEAD - we are the first to get here.
2066 * UPDATE - we are the interrupt interrupting
2067 * a current move.
2068 * MOVED - a reader on another CPU moved the next
2069 * pointer to its reader page. Give up
2070 * and try again.
2073 switch (type) {
2074 case RB_PAGE_HEAD:
2076 * We changed the head to UPDATE, thus
2077 * it is our responsibility to update
2078 * the counters.
2080 local_add(entries, &cpu_buffer->overrun);
2081 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
2084 * The entries will be zeroed out when we move the
2085 * tail page.
2088 /* still more to do */
2089 break;
2091 case RB_PAGE_UPDATE:
2093 * This is an interrupt that interrupt the
2094 * previous update. Still more to do.
2096 break;
2097 case RB_PAGE_NORMAL:
2099 * An interrupt came in before the update
2100 * and processed this for us.
2101 * Nothing left to do.
2103 return 1;
2104 case RB_PAGE_MOVED:
2106 * The reader is on another CPU and just did
2107 * a swap with our next_page.
2108 * Try again.
2110 return 1;
2111 default:
2112 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2113 return -1;
2117 * Now that we are here, the old head pointer is
2118 * set to UPDATE. This will keep the reader from
2119 * swapping the head page with the reader page.
2120 * The reader (on another CPU) will spin till
2121 * we are finished.
2123 * We just need to protect against interrupts
2124 * doing the job. We will set the next pointer
2125 * to HEAD. After that, we set the old pointer
2126 * to NORMAL, but only if it was HEAD before.
2127 * otherwise we are an interrupt, and only
2128 * want the outer most commit to reset it.
2130 new_head = next_page;
2131 rb_inc_page(cpu_buffer, &new_head);
2133 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2134 RB_PAGE_NORMAL);
2137 * Valid returns are:
2138 * HEAD - an interrupt came in and already set it.
2139 * NORMAL - One of two things:
2140 * 1) We really set it.
2141 * 2) A bunch of interrupts came in and moved
2142 * the page forward again.
2144 switch (ret) {
2145 case RB_PAGE_HEAD:
2146 case RB_PAGE_NORMAL:
2147 /* OK */
2148 break;
2149 default:
2150 RB_WARN_ON(cpu_buffer, 1);
2151 return -1;
2155 * It is possible that an interrupt came in,
2156 * set the head up, then more interrupts came in
2157 * and moved it again. When we get back here,
2158 * the page would have been set to NORMAL but we
2159 * just set it back to HEAD.
2161 * How do you detect this? Well, if that happened
2162 * the tail page would have moved.
2164 if (ret == RB_PAGE_NORMAL) {
2166 * If the tail had moved passed next, then we need
2167 * to reset the pointer.
2169 if (cpu_buffer->tail_page != tail_page &&
2170 cpu_buffer->tail_page != next_page)
2171 rb_head_page_set_normal(cpu_buffer, new_head,
2172 next_page,
2173 RB_PAGE_HEAD);
2177 * If this was the outer most commit (the one that
2178 * changed the original pointer from HEAD to UPDATE),
2179 * then it is up to us to reset it to NORMAL.
2181 if (type == RB_PAGE_HEAD) {
2182 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2183 tail_page,
2184 RB_PAGE_UPDATE);
2185 if (RB_WARN_ON(cpu_buffer,
2186 ret != RB_PAGE_UPDATE))
2187 return -1;
2190 return 0;
2193 static unsigned rb_calculate_event_length(unsigned length)
2195 struct ring_buffer_event event; /* Used only for sizeof array */
2197 /* zero length can cause confusions */
2198 if (!length)
2199 length = 1;
2201 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2202 length += sizeof(event.array[0]);
2204 length += RB_EVNT_HDR_SIZE;
2205 length = ALIGN(length, RB_ARCH_ALIGNMENT);
2207 return length;
2210 static inline void
2211 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2212 struct buffer_page *tail_page,
2213 unsigned long tail, unsigned long length)
2215 struct ring_buffer_event *event;
2218 * Only the event that crossed the page boundary
2219 * must fill the old tail_page with padding.
2221 if (tail >= BUF_PAGE_SIZE) {
2223 * If the page was filled, then we still need
2224 * to update the real_end. Reset it to zero
2225 * and the reader will ignore it.
2227 if (tail == BUF_PAGE_SIZE)
2228 tail_page->real_end = 0;
2230 local_sub(length, &tail_page->write);
2231 return;
2234 event = __rb_page_index(tail_page, tail);
2235 kmemcheck_annotate_bitfield(event, bitfield);
2237 /* account for padding bytes */
2238 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2241 * Save the original length to the meta data.
2242 * This will be used by the reader to add lost event
2243 * counter.
2245 tail_page->real_end = tail;
2248 * If this event is bigger than the minimum size, then
2249 * we need to be careful that we don't subtract the
2250 * write counter enough to allow another writer to slip
2251 * in on this page.
2252 * We put in a discarded commit instead, to make sure
2253 * that this space is not used again.
2255 * If we are less than the minimum size, we don't need to
2256 * worry about it.
2258 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2259 /* No room for any events */
2261 /* Mark the rest of the page with padding */
2262 rb_event_set_padding(event);
2264 /* Set the write back to the previous setting */
2265 local_sub(length, &tail_page->write);
2266 return;
2269 /* Put in a discarded event */
2270 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2271 event->type_len = RINGBUF_TYPE_PADDING;
2272 /* time delta must be non zero */
2273 event->time_delta = 1;
2275 /* Set write to end of buffer */
2276 length = (tail + length) - BUF_PAGE_SIZE;
2277 local_sub(length, &tail_page->write);
2281 * This is the slow path, force gcc not to inline it.
2283 static noinline struct ring_buffer_event *
2284 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2285 unsigned long length, unsigned long tail,
2286 struct buffer_page *tail_page, u64 ts)
2288 struct buffer_page *commit_page = cpu_buffer->commit_page;
2289 struct ring_buffer *buffer = cpu_buffer->buffer;
2290 struct buffer_page *next_page;
2291 int ret;
2293 next_page = tail_page;
2295 rb_inc_page(cpu_buffer, &next_page);
2298 * If for some reason, we had an interrupt storm that made
2299 * it all the way around the buffer, bail, and warn
2300 * about it.
2302 if (unlikely(next_page == commit_page)) {
2303 local_inc(&cpu_buffer->commit_overrun);
2304 goto out_reset;
2308 * This is where the fun begins!
2310 * We are fighting against races between a reader that
2311 * could be on another CPU trying to swap its reader
2312 * page with the buffer head.
2314 * We are also fighting against interrupts coming in and
2315 * moving the head or tail on us as well.
2317 * If the next page is the head page then we have filled
2318 * the buffer, unless the commit page is still on the
2319 * reader page.
2321 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2324 * If the commit is not on the reader page, then
2325 * move the header page.
2327 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2329 * If we are not in overwrite mode,
2330 * this is easy, just stop here.
2332 if (!(buffer->flags & RB_FL_OVERWRITE)) {
2333 local_inc(&cpu_buffer->dropped_events);
2334 goto out_reset;
2337 ret = rb_handle_head_page(cpu_buffer,
2338 tail_page,
2339 next_page);
2340 if (ret < 0)
2341 goto out_reset;
2342 if (ret)
2343 goto out_again;
2344 } else {
2346 * We need to be careful here too. The
2347 * commit page could still be on the reader
2348 * page. We could have a small buffer, and
2349 * have filled up the buffer with events
2350 * from interrupts and such, and wrapped.
2352 * Note, if the tail page is also the on the
2353 * reader_page, we let it move out.
2355 if (unlikely((cpu_buffer->commit_page !=
2356 cpu_buffer->tail_page) &&
2357 (cpu_buffer->commit_page ==
2358 cpu_buffer->reader_page))) {
2359 local_inc(&cpu_buffer->commit_overrun);
2360 goto out_reset;
2365 ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
2366 if (ret) {
2368 * Nested commits always have zero deltas, so
2369 * just reread the time stamp
2371 ts = rb_time_stamp(buffer);
2372 next_page->page->time_stamp = ts;
2375 out_again:
2377 rb_reset_tail(cpu_buffer, tail_page, tail, length);
2379 /* fail and let the caller try again */
2380 return ERR_PTR(-EAGAIN);
2382 out_reset:
2383 /* reset write */
2384 rb_reset_tail(cpu_buffer, tail_page, tail, length);
2386 return NULL;
2389 static struct ring_buffer_event *
2390 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2391 unsigned long length, u64 ts,
2392 u64 delta, int add_timestamp)
2394 struct buffer_page *tail_page;
2395 struct ring_buffer_event *event;
2396 unsigned long tail, write;
2399 * If the time delta since the last event is too big to
2400 * hold in the time field of the event, then we append a
2401 * TIME EXTEND event ahead of the data event.
2403 if (unlikely(add_timestamp))
2404 length += RB_LEN_TIME_EXTEND;
2406 tail_page = cpu_buffer->tail_page;
2407 write = local_add_return(length, &tail_page->write);
2409 /* set write to only the index of the write */
2410 write &= RB_WRITE_MASK;
2411 tail = write - length;
2414 * If this is the first commit on the page, then it has the same
2415 * timestamp as the page itself.
2417 if (!tail)
2418 delta = 0;
2420 /* See if we shot pass the end of this buffer page */
2421 if (unlikely(write > BUF_PAGE_SIZE))
2422 return rb_move_tail(cpu_buffer, length, tail,
2423 tail_page, ts);
2425 /* We reserved something on the buffer */
2427 event = __rb_page_index(tail_page, tail);
2428 kmemcheck_annotate_bitfield(event, bitfield);
2429 rb_update_event(cpu_buffer, event, length, add_timestamp, delta);
2431 local_inc(&tail_page->entries);
2434 * If this is the first commit on the page, then update
2435 * its timestamp.
2437 if (!tail)
2438 tail_page->page->time_stamp = ts;
2440 /* account for these added bytes */
2441 local_add(length, &cpu_buffer->entries_bytes);
2443 return event;
2446 static inline int
2447 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2448 struct ring_buffer_event *event)
2450 unsigned long new_index, old_index;
2451 struct buffer_page *bpage;
2452 unsigned long index;
2453 unsigned long addr;
2455 new_index = rb_event_index(event);
2456 old_index = new_index + rb_event_ts_length(event);
2457 addr = (unsigned long)event;
2458 addr &= PAGE_MASK;
2460 bpage = cpu_buffer->tail_page;
2462 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2463 unsigned long write_mask =
2464 local_read(&bpage->write) & ~RB_WRITE_MASK;
2465 unsigned long event_length = rb_event_length(event);
2467 * This is on the tail page. It is possible that
2468 * a write could come in and move the tail page
2469 * and write to the next page. That is fine
2470 * because we just shorten what is on this page.
2472 old_index += write_mask;
2473 new_index += write_mask;
2474 index = local_cmpxchg(&bpage->write, old_index, new_index);
2475 if (index == old_index) {
2476 /* update counters */
2477 local_sub(event_length, &cpu_buffer->entries_bytes);
2478 return 1;
2482 /* could not discard */
2483 return 0;
2486 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2488 local_inc(&cpu_buffer->committing);
2489 local_inc(&cpu_buffer->commits);
2492 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2494 unsigned long commits;
2496 if (RB_WARN_ON(cpu_buffer,
2497 !local_read(&cpu_buffer->committing)))
2498 return;
2500 again:
2501 commits = local_read(&cpu_buffer->commits);
2502 /* synchronize with interrupts */
2503 barrier();
2504 if (local_read(&cpu_buffer->committing) == 1)
2505 rb_set_commit_to_write(cpu_buffer);
2507 local_dec(&cpu_buffer->committing);
2509 /* synchronize with interrupts */
2510 barrier();
2513 * Need to account for interrupts coming in between the
2514 * updating of the commit page and the clearing of the
2515 * committing counter.
2517 if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2518 !local_read(&cpu_buffer->committing)) {
2519 local_inc(&cpu_buffer->committing);
2520 goto again;
2524 static struct ring_buffer_event *
2525 rb_reserve_next_event(struct ring_buffer *buffer,
2526 struct ring_buffer_per_cpu *cpu_buffer,
2527 unsigned long length)
2529 struct ring_buffer_event *event;
2530 u64 ts, delta;
2531 int nr_loops = 0;
2532 int add_timestamp;
2533 u64 diff;
2535 rb_start_commit(cpu_buffer);
2537 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2539 * Due to the ability to swap a cpu buffer from a buffer
2540 * it is possible it was swapped before we committed.
2541 * (committing stops a swap). We check for it here and
2542 * if it happened, we have to fail the write.
2544 barrier();
2545 if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2546 local_dec(&cpu_buffer->committing);
2547 local_dec(&cpu_buffer->commits);
2548 return NULL;
2550 #endif
2552 length = rb_calculate_event_length(length);
2553 again:
2554 add_timestamp = 0;
2555 delta = 0;
2558 * We allow for interrupts to reenter here and do a trace.
2559 * If one does, it will cause this original code to loop
2560 * back here. Even with heavy interrupts happening, this
2561 * should only happen a few times in a row. If this happens
2562 * 1000 times in a row, there must be either an interrupt
2563 * storm or we have something buggy.
2564 * Bail!
2566 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2567 goto out_fail;
2569 ts = rb_time_stamp(cpu_buffer->buffer);
2570 diff = ts - cpu_buffer->write_stamp;
2572 /* make sure this diff is calculated here */
2573 barrier();
2575 /* Did the write stamp get updated already? */
2576 if (likely(ts >= cpu_buffer->write_stamp)) {
2577 delta = diff;
2578 if (unlikely(test_time_stamp(delta))) {
2579 int local_clock_stable = 1;
2580 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2581 local_clock_stable = sched_clock_stable();
2582 #endif
2583 WARN_ONCE(delta > (1ULL << 59),
2584 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2585 (unsigned long long)delta,
2586 (unsigned long long)ts,
2587 (unsigned long long)cpu_buffer->write_stamp,
2588 local_clock_stable ? "" :
2589 "If you just came from a suspend/resume,\n"
2590 "please switch to the trace global clock:\n"
2591 " echo global > /sys/kernel/debug/tracing/trace_clock\n");
2592 add_timestamp = 1;
2596 event = __rb_reserve_next(cpu_buffer, length, ts,
2597 delta, add_timestamp);
2598 if (unlikely(PTR_ERR(event) == -EAGAIN))
2599 goto again;
2601 if (!event)
2602 goto out_fail;
2604 return event;
2606 out_fail:
2607 rb_end_commit(cpu_buffer);
2608 return NULL;
2611 #ifdef CONFIG_TRACING
2614 * The lock and unlock are done within a preempt disable section.
2615 * The current_context per_cpu variable can only be modified
2616 * by the current task between lock and unlock. But it can
2617 * be modified more than once via an interrupt. To pass this
2618 * information from the lock to the unlock without having to
2619 * access the 'in_interrupt()' functions again (which do show
2620 * a bit of overhead in something as critical as function tracing,
2621 * we use a bitmask trick.
2623 * bit 0 = NMI context
2624 * bit 1 = IRQ context
2625 * bit 2 = SoftIRQ context
2626 * bit 3 = normal context.
2628 * This works because this is the order of contexts that can
2629 * preempt other contexts. A SoftIRQ never preempts an IRQ
2630 * context.
2632 * When the context is determined, the corresponding bit is
2633 * checked and set (if it was set, then a recursion of that context
2634 * happened).
2636 * On unlock, we need to clear this bit. To do so, just subtract
2637 * 1 from the current_context and AND it to itself.
2639 * (binary)
2640 * 101 - 1 = 100
2641 * 101 & 100 = 100 (clearing bit zero)
2643 * 1010 - 1 = 1001
2644 * 1010 & 1001 = 1000 (clearing bit 1)
2646 * The least significant bit can be cleared this way, and it
2647 * just so happens that it is the same bit corresponding to
2648 * the current context.
2650 static DEFINE_PER_CPU(unsigned int, current_context);
2652 static __always_inline int trace_recursive_lock(void)
2654 unsigned int val = this_cpu_read(current_context);
2655 int bit;
2657 if (in_interrupt()) {
2658 if (in_nmi())
2659 bit = 0;
2660 else if (in_irq())
2661 bit = 1;
2662 else
2663 bit = 2;
2664 } else
2665 bit = 3;
2667 if (unlikely(val & (1 << bit)))
2668 return 1;
2670 val |= (1 << bit);
2671 this_cpu_write(current_context, val);
2673 return 0;
2676 static __always_inline void trace_recursive_unlock(void)
2678 unsigned int val = this_cpu_read(current_context);
2680 val--;
2681 val &= this_cpu_read(current_context);
2682 this_cpu_write(current_context, val);
2685 #else
2687 #define trace_recursive_lock() (0)
2688 #define trace_recursive_unlock() do { } while (0)
2690 #endif
2693 * ring_buffer_lock_reserve - reserve a part of the buffer
2694 * @buffer: the ring buffer to reserve from
2695 * @length: the length of the data to reserve (excluding event header)
2697 * Returns a reseverd event on the ring buffer to copy directly to.
2698 * The user of this interface will need to get the body to write into
2699 * and can use the ring_buffer_event_data() interface.
2701 * The length is the length of the data needed, not the event length
2702 * which also includes the event header.
2704 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2705 * If NULL is returned, then nothing has been allocated or locked.
2707 struct ring_buffer_event *
2708 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2710 struct ring_buffer_per_cpu *cpu_buffer;
2711 struct ring_buffer_event *event;
2712 int cpu;
2714 if (ring_buffer_flags != RB_BUFFERS_ON)
2715 return NULL;
2717 /* If we are tracing schedule, we don't want to recurse */
2718 preempt_disable_notrace();
2720 if (atomic_read(&buffer->record_disabled))
2721 goto out_nocheck;
2723 if (trace_recursive_lock())
2724 goto out_nocheck;
2726 cpu = raw_smp_processor_id();
2728 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2729 goto out;
2731 cpu_buffer = buffer->buffers[cpu];
2733 if (atomic_read(&cpu_buffer->record_disabled))
2734 goto out;
2736 if (length > BUF_MAX_DATA_SIZE)
2737 goto out;
2739 event = rb_reserve_next_event(buffer, cpu_buffer, length);
2740 if (!event)
2741 goto out;
2743 return event;
2745 out:
2746 trace_recursive_unlock();
2748 out_nocheck:
2749 preempt_enable_notrace();
2750 return NULL;
2752 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2754 static void
2755 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2756 struct ring_buffer_event *event)
2758 u64 delta;
2761 * The event first in the commit queue updates the
2762 * time stamp.
2764 if (rb_event_is_commit(cpu_buffer, event)) {
2766 * A commit event that is first on a page
2767 * updates the write timestamp with the page stamp
2769 if (!rb_event_index(event))
2770 cpu_buffer->write_stamp =
2771 cpu_buffer->commit_page->page->time_stamp;
2772 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2773 delta = event->array[0];
2774 delta <<= TS_SHIFT;
2775 delta += event->time_delta;
2776 cpu_buffer->write_stamp += delta;
2777 } else
2778 cpu_buffer->write_stamp += event->time_delta;
2782 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2783 struct ring_buffer_event *event)
2785 local_inc(&cpu_buffer->entries);
2786 rb_update_write_stamp(cpu_buffer, event);
2787 rb_end_commit(cpu_buffer);
2790 static __always_inline void
2791 rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2793 if (buffer->irq_work.waiters_pending) {
2794 buffer->irq_work.waiters_pending = false;
2795 /* irq_work_queue() supplies it's own memory barriers */
2796 irq_work_queue(&buffer->irq_work.work);
2799 if (cpu_buffer->irq_work.waiters_pending) {
2800 cpu_buffer->irq_work.waiters_pending = false;
2801 /* irq_work_queue() supplies it's own memory barriers */
2802 irq_work_queue(&cpu_buffer->irq_work.work);
2807 * ring_buffer_unlock_commit - commit a reserved
2808 * @buffer: The buffer to commit to
2809 * @event: The event pointer to commit.
2811 * This commits the data to the ring buffer, and releases any locks held.
2813 * Must be paired with ring_buffer_lock_reserve.
2815 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2816 struct ring_buffer_event *event)
2818 struct ring_buffer_per_cpu *cpu_buffer;
2819 int cpu = raw_smp_processor_id();
2821 cpu_buffer = buffer->buffers[cpu];
2823 rb_commit(cpu_buffer, event);
2825 rb_wakeups(buffer, cpu_buffer);
2827 trace_recursive_unlock();
2829 preempt_enable_notrace();
2831 return 0;
2833 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2835 static inline void rb_event_discard(struct ring_buffer_event *event)
2837 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2838 event = skip_time_extend(event);
2840 /* array[0] holds the actual length for the discarded event */
2841 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2842 event->type_len = RINGBUF_TYPE_PADDING;
2843 /* time delta must be non zero */
2844 if (!event->time_delta)
2845 event->time_delta = 1;
2849 * Decrement the entries to the page that an event is on.
2850 * The event does not even need to exist, only the pointer
2851 * to the page it is on. This may only be called before the commit
2852 * takes place.
2854 static inline void
2855 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2856 struct ring_buffer_event *event)
2858 unsigned long addr = (unsigned long)event;
2859 struct buffer_page *bpage = cpu_buffer->commit_page;
2860 struct buffer_page *start;
2862 addr &= PAGE_MASK;
2864 /* Do the likely case first */
2865 if (likely(bpage->page == (void *)addr)) {
2866 local_dec(&bpage->entries);
2867 return;
2871 * Because the commit page may be on the reader page we
2872 * start with the next page and check the end loop there.
2874 rb_inc_page(cpu_buffer, &bpage);
2875 start = bpage;
2876 do {
2877 if (bpage->page == (void *)addr) {
2878 local_dec(&bpage->entries);
2879 return;
2881 rb_inc_page(cpu_buffer, &bpage);
2882 } while (bpage != start);
2884 /* commit not part of this buffer?? */
2885 RB_WARN_ON(cpu_buffer, 1);
2889 * ring_buffer_commit_discard - discard an event that has not been committed
2890 * @buffer: the ring buffer
2891 * @event: non committed event to discard
2893 * Sometimes an event that is in the ring buffer needs to be ignored.
2894 * This function lets the user discard an event in the ring buffer
2895 * and then that event will not be read later.
2897 * This function only works if it is called before the the item has been
2898 * committed. It will try to free the event from the ring buffer
2899 * if another event has not been added behind it.
2901 * If another event has been added behind it, it will set the event
2902 * up as discarded, and perform the commit.
2904 * If this function is called, do not call ring_buffer_unlock_commit on
2905 * the event.
2907 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2908 struct ring_buffer_event *event)
2910 struct ring_buffer_per_cpu *cpu_buffer;
2911 int cpu;
2913 /* The event is discarded regardless */
2914 rb_event_discard(event);
2916 cpu = smp_processor_id();
2917 cpu_buffer = buffer->buffers[cpu];
2920 * This must only be called if the event has not been
2921 * committed yet. Thus we can assume that preemption
2922 * is still disabled.
2924 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2926 rb_decrement_entry(cpu_buffer, event);
2927 if (rb_try_to_discard(cpu_buffer, event))
2928 goto out;
2931 * The commit is still visible by the reader, so we
2932 * must still update the timestamp.
2934 rb_update_write_stamp(cpu_buffer, event);
2935 out:
2936 rb_end_commit(cpu_buffer);
2938 trace_recursive_unlock();
2940 preempt_enable_notrace();
2943 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2946 * ring_buffer_write - write data to the buffer without reserving
2947 * @buffer: The ring buffer to write to.
2948 * @length: The length of the data being written (excluding the event header)
2949 * @data: The data to write to the buffer.
2951 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2952 * one function. If you already have the data to write to the buffer, it
2953 * may be easier to simply call this function.
2955 * Note, like ring_buffer_lock_reserve, the length is the length of the data
2956 * and not the length of the event which would hold the header.
2958 int ring_buffer_write(struct ring_buffer *buffer,
2959 unsigned long length,
2960 void *data)
2962 struct ring_buffer_per_cpu *cpu_buffer;
2963 struct ring_buffer_event *event;
2964 void *body;
2965 int ret = -EBUSY;
2966 int cpu;
2968 if (ring_buffer_flags != RB_BUFFERS_ON)
2969 return -EBUSY;
2971 preempt_disable_notrace();
2973 if (atomic_read(&buffer->record_disabled))
2974 goto out;
2976 cpu = raw_smp_processor_id();
2978 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2979 goto out;
2981 cpu_buffer = buffer->buffers[cpu];
2983 if (atomic_read(&cpu_buffer->record_disabled))
2984 goto out;
2986 if (length > BUF_MAX_DATA_SIZE)
2987 goto out;
2989 event = rb_reserve_next_event(buffer, cpu_buffer, length);
2990 if (!event)
2991 goto out;
2993 body = rb_event_data(event);
2995 memcpy(body, data, length);
2997 rb_commit(cpu_buffer, event);
2999 rb_wakeups(buffer, cpu_buffer);
3001 ret = 0;
3002 out:
3003 preempt_enable_notrace();
3005 return ret;
3007 EXPORT_SYMBOL_GPL(ring_buffer_write);
3009 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3011 struct buffer_page *reader = cpu_buffer->reader_page;
3012 struct buffer_page *head = rb_set_head_page(cpu_buffer);
3013 struct buffer_page *commit = cpu_buffer->commit_page;
3015 /* In case of error, head will be NULL */
3016 if (unlikely(!head))
3017 return 1;
3019 return reader->read == rb_page_commit(reader) &&
3020 (commit == reader ||
3021 (commit == head &&
3022 head->read == rb_page_commit(commit)));
3026 * ring_buffer_record_disable - stop all writes into the buffer
3027 * @buffer: The ring buffer to stop writes to.
3029 * This prevents all writes to the buffer. Any attempt to write
3030 * to the buffer after this will fail and return NULL.
3032 * The caller should call synchronize_sched() after this.
3034 void ring_buffer_record_disable(struct ring_buffer *buffer)
3036 atomic_inc(&buffer->record_disabled);
3038 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3041 * ring_buffer_record_enable - enable writes to the buffer
3042 * @buffer: The ring buffer to enable writes
3044 * Note, multiple disables will need the same number of enables
3045 * to truly enable the writing (much like preempt_disable).
3047 void ring_buffer_record_enable(struct ring_buffer *buffer)
3049 atomic_dec(&buffer->record_disabled);
3051 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3054 * ring_buffer_record_off - stop all writes into the buffer
3055 * @buffer: The ring buffer to stop writes to.
3057 * This prevents all writes to the buffer. Any attempt to write
3058 * to the buffer after this will fail and return NULL.
3060 * This is different than ring_buffer_record_disable() as
3061 * it works like an on/off switch, where as the disable() version
3062 * must be paired with a enable().
3064 void ring_buffer_record_off(struct ring_buffer *buffer)
3066 unsigned int rd;
3067 unsigned int new_rd;
3069 do {
3070 rd = atomic_read(&buffer->record_disabled);
3071 new_rd = rd | RB_BUFFER_OFF;
3072 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3074 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3077 * ring_buffer_record_on - restart writes into the buffer
3078 * @buffer: The ring buffer to start writes to.
3080 * This enables all writes to the buffer that was disabled by
3081 * ring_buffer_record_off().
3083 * This is different than ring_buffer_record_enable() as
3084 * it works like an on/off switch, where as the enable() version
3085 * must be paired with a disable().
3087 void ring_buffer_record_on(struct ring_buffer *buffer)
3089 unsigned int rd;
3090 unsigned int new_rd;
3092 do {
3093 rd = atomic_read(&buffer->record_disabled);
3094 new_rd = rd & ~RB_BUFFER_OFF;
3095 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3097 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3100 * ring_buffer_record_is_on - return true if the ring buffer can write
3101 * @buffer: The ring buffer to see if write is enabled
3103 * Returns true if the ring buffer is in a state that it accepts writes.
3105 int ring_buffer_record_is_on(struct ring_buffer *buffer)
3107 return !atomic_read(&buffer->record_disabled);
3111 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3112 * @buffer: The ring buffer to stop writes to.
3113 * @cpu: The CPU buffer to stop
3115 * This prevents all writes to the buffer. Any attempt to write
3116 * to the buffer after this will fail and return NULL.
3118 * The caller should call synchronize_sched() after this.
3120 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3122 struct ring_buffer_per_cpu *cpu_buffer;
3124 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3125 return;
3127 cpu_buffer = buffer->buffers[cpu];
3128 atomic_inc(&cpu_buffer->record_disabled);
3130 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3133 * ring_buffer_record_enable_cpu - enable writes to the buffer
3134 * @buffer: The ring buffer to enable writes
3135 * @cpu: The CPU to enable.
3137 * Note, multiple disables will need the same number of enables
3138 * to truly enable the writing (much like preempt_disable).
3140 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3142 struct ring_buffer_per_cpu *cpu_buffer;
3144 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3145 return;
3147 cpu_buffer = buffer->buffers[cpu];
3148 atomic_dec(&cpu_buffer->record_disabled);
3150 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3153 * The total entries in the ring buffer is the running counter
3154 * of entries entered into the ring buffer, minus the sum of
3155 * the entries read from the ring buffer and the number of
3156 * entries that were overwritten.
3158 static inline unsigned long
3159 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3161 return local_read(&cpu_buffer->entries) -
3162 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3166 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3167 * @buffer: The ring buffer
3168 * @cpu: The per CPU buffer to read from.
3170 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
3172 unsigned long flags;
3173 struct ring_buffer_per_cpu *cpu_buffer;
3174 struct buffer_page *bpage;
3175 u64 ret = 0;
3177 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3178 return 0;
3180 cpu_buffer = buffer->buffers[cpu];
3181 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3183 * if the tail is on reader_page, oldest time stamp is on the reader
3184 * page
3186 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3187 bpage = cpu_buffer->reader_page;
3188 else
3189 bpage = rb_set_head_page(cpu_buffer);
3190 if (bpage)
3191 ret = bpage->page->time_stamp;
3192 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3194 return ret;
3196 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3199 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3200 * @buffer: The ring buffer
3201 * @cpu: The per CPU buffer to read from.
3203 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3205 struct ring_buffer_per_cpu *cpu_buffer;
3206 unsigned long ret;
3208 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3209 return 0;
3211 cpu_buffer = buffer->buffers[cpu];
3212 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3214 return ret;
3216 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3219 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3220 * @buffer: The ring buffer
3221 * @cpu: The per CPU buffer to get the entries from.
3223 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3225 struct ring_buffer_per_cpu *cpu_buffer;
3227 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3228 return 0;
3230 cpu_buffer = buffer->buffers[cpu];
3232 return rb_num_of_entries(cpu_buffer);
3234 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3237 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3238 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3239 * @buffer: The ring buffer
3240 * @cpu: The per CPU buffer to get the number of overruns from
3242 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3244 struct ring_buffer_per_cpu *cpu_buffer;
3245 unsigned long ret;
3247 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3248 return 0;
3250 cpu_buffer = buffer->buffers[cpu];
3251 ret = local_read(&cpu_buffer->overrun);
3253 return ret;
3255 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3258 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3259 * commits failing due to the buffer wrapping around while there are uncommitted
3260 * events, such as during an interrupt storm.
3261 * @buffer: The ring buffer
3262 * @cpu: The per CPU buffer to get the number of overruns from
3264 unsigned long
3265 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3267 struct ring_buffer_per_cpu *cpu_buffer;
3268 unsigned long ret;
3270 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3271 return 0;
3273 cpu_buffer = buffer->buffers[cpu];
3274 ret = local_read(&cpu_buffer->commit_overrun);
3276 return ret;
3278 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3281 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3282 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3283 * @buffer: The ring buffer
3284 * @cpu: The per CPU buffer to get the number of overruns from
3286 unsigned long
3287 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3289 struct ring_buffer_per_cpu *cpu_buffer;
3290 unsigned long ret;
3292 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3293 return 0;
3295 cpu_buffer = buffer->buffers[cpu];
3296 ret = local_read(&cpu_buffer->dropped_events);
3298 return ret;
3300 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3303 * ring_buffer_read_events_cpu - get the number of events successfully read
3304 * @buffer: The ring buffer
3305 * @cpu: The per CPU buffer to get the number of events read
3307 unsigned long
3308 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3310 struct ring_buffer_per_cpu *cpu_buffer;
3312 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3313 return 0;
3315 cpu_buffer = buffer->buffers[cpu];
3316 return cpu_buffer->read;
3318 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3321 * ring_buffer_entries - get the number of entries in a buffer
3322 * @buffer: The ring buffer
3324 * Returns the total number of entries in the ring buffer
3325 * (all CPU entries)
3327 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3329 struct ring_buffer_per_cpu *cpu_buffer;
3330 unsigned long entries = 0;
3331 int cpu;
3333 /* if you care about this being correct, lock the buffer */
3334 for_each_buffer_cpu(buffer, cpu) {
3335 cpu_buffer = buffer->buffers[cpu];
3336 entries += rb_num_of_entries(cpu_buffer);
3339 return entries;
3341 EXPORT_SYMBOL_GPL(ring_buffer_entries);
3344 * ring_buffer_overruns - get the number of overruns in buffer
3345 * @buffer: The ring buffer
3347 * Returns the total number of overruns in the ring buffer
3348 * (all CPU entries)
3350 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3352 struct ring_buffer_per_cpu *cpu_buffer;
3353 unsigned long overruns = 0;
3354 int cpu;
3356 /* if you care about this being correct, lock the buffer */
3357 for_each_buffer_cpu(buffer, cpu) {
3358 cpu_buffer = buffer->buffers[cpu];
3359 overruns += local_read(&cpu_buffer->overrun);
3362 return overruns;
3364 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3366 static void rb_iter_reset(struct ring_buffer_iter *iter)
3368 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3370 /* Iterator usage is expected to have record disabled */
3371 iter->head_page = cpu_buffer->reader_page;
3372 iter->head = cpu_buffer->reader_page->read;
3374 iter->cache_reader_page = iter->head_page;
3375 iter->cache_read = cpu_buffer->read;
3377 if (iter->head)
3378 iter->read_stamp = cpu_buffer->read_stamp;
3379 else
3380 iter->read_stamp = iter->head_page->page->time_stamp;
3384 * ring_buffer_iter_reset - reset an iterator
3385 * @iter: The iterator to reset
3387 * Resets the iterator, so that it will start from the beginning
3388 * again.
3390 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3392 struct ring_buffer_per_cpu *cpu_buffer;
3393 unsigned long flags;
3395 if (!iter)
3396 return;
3398 cpu_buffer = iter->cpu_buffer;
3400 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3401 rb_iter_reset(iter);
3402 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3404 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3407 * ring_buffer_iter_empty - check if an iterator has no more to read
3408 * @iter: The iterator to check
3410 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3412 struct ring_buffer_per_cpu *cpu_buffer;
3414 cpu_buffer = iter->cpu_buffer;
3416 return iter->head_page == cpu_buffer->commit_page &&
3417 iter->head == rb_commit_index(cpu_buffer);
3419 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3421 static void
3422 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3423 struct ring_buffer_event *event)
3425 u64 delta;
3427 switch (event->type_len) {
3428 case RINGBUF_TYPE_PADDING:
3429 return;
3431 case RINGBUF_TYPE_TIME_EXTEND:
3432 delta = event->array[0];
3433 delta <<= TS_SHIFT;
3434 delta += event->time_delta;
3435 cpu_buffer->read_stamp += delta;
3436 return;
3438 case RINGBUF_TYPE_TIME_STAMP:
3439 /* FIXME: not implemented */
3440 return;
3442 case RINGBUF_TYPE_DATA:
3443 cpu_buffer->read_stamp += event->time_delta;
3444 return;
3446 default:
3447 BUG();
3449 return;
3452 static void
3453 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3454 struct ring_buffer_event *event)
3456 u64 delta;
3458 switch (event->type_len) {
3459 case RINGBUF_TYPE_PADDING:
3460 return;
3462 case RINGBUF_TYPE_TIME_EXTEND:
3463 delta = event->array[0];
3464 delta <<= TS_SHIFT;
3465 delta += event->time_delta;
3466 iter->read_stamp += delta;
3467 return;
3469 case RINGBUF_TYPE_TIME_STAMP:
3470 /* FIXME: not implemented */
3471 return;
3473 case RINGBUF_TYPE_DATA:
3474 iter->read_stamp += event->time_delta;
3475 return;
3477 default:
3478 BUG();
3480 return;
3483 static struct buffer_page *
3484 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3486 struct buffer_page *reader = NULL;
3487 unsigned long overwrite;
3488 unsigned long flags;
3489 int nr_loops = 0;
3490 int ret;
3492 local_irq_save(flags);
3493 arch_spin_lock(&cpu_buffer->lock);
3495 again:
3497 * This should normally only loop twice. But because the
3498 * start of the reader inserts an empty page, it causes
3499 * a case where we will loop three times. There should be no
3500 * reason to loop four times (that I know of).
3502 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3503 reader = NULL;
3504 goto out;
3507 reader = cpu_buffer->reader_page;
3509 /* If there's more to read, return this page */
3510 if (cpu_buffer->reader_page->read < rb_page_size(reader))
3511 goto out;
3513 /* Never should we have an index greater than the size */
3514 if (RB_WARN_ON(cpu_buffer,
3515 cpu_buffer->reader_page->read > rb_page_size(reader)))
3516 goto out;
3518 /* check if we caught up to the tail */
3519 reader = NULL;
3520 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3521 goto out;
3523 /* Don't bother swapping if the ring buffer is empty */
3524 if (rb_num_of_entries(cpu_buffer) == 0)
3525 goto out;
3528 * Reset the reader page to size zero.
3530 local_set(&cpu_buffer->reader_page->write, 0);
3531 local_set(&cpu_buffer->reader_page->entries, 0);
3532 local_set(&cpu_buffer->reader_page->page->commit, 0);
3533 cpu_buffer->reader_page->real_end = 0;
3535 spin:
3537 * Splice the empty reader page into the list around the head.
3539 reader = rb_set_head_page(cpu_buffer);
3540 if (!reader)
3541 goto out;
3542 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3543 cpu_buffer->reader_page->list.prev = reader->list.prev;
3546 * cpu_buffer->pages just needs to point to the buffer, it
3547 * has no specific buffer page to point to. Lets move it out
3548 * of our way so we don't accidentally swap it.
3550 cpu_buffer->pages = reader->list.prev;
3552 /* The reader page will be pointing to the new head */
3553 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3556 * We want to make sure we read the overruns after we set up our
3557 * pointers to the next object. The writer side does a
3558 * cmpxchg to cross pages which acts as the mb on the writer
3559 * side. Note, the reader will constantly fail the swap
3560 * while the writer is updating the pointers, so this
3561 * guarantees that the overwrite recorded here is the one we
3562 * want to compare with the last_overrun.
3564 smp_mb();
3565 overwrite = local_read(&(cpu_buffer->overrun));
3568 * Here's the tricky part.
3570 * We need to move the pointer past the header page.
3571 * But we can only do that if a writer is not currently
3572 * moving it. The page before the header page has the
3573 * flag bit '1' set if it is pointing to the page we want.
3574 * but if the writer is in the process of moving it
3575 * than it will be '2' or already moved '0'.
3578 ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3581 * If we did not convert it, then we must try again.
3583 if (!ret)
3584 goto spin;
3587 * Yeah! We succeeded in replacing the page.
3589 * Now make the new head point back to the reader page.
3591 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3592 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3594 /* Finally update the reader page to the new head */
3595 cpu_buffer->reader_page = reader;
3596 rb_reset_reader_page(cpu_buffer);
3598 if (overwrite != cpu_buffer->last_overrun) {
3599 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3600 cpu_buffer->last_overrun = overwrite;
3603 goto again;
3605 out:
3606 arch_spin_unlock(&cpu_buffer->lock);
3607 local_irq_restore(flags);
3609 return reader;
3612 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3614 struct ring_buffer_event *event;
3615 struct buffer_page *reader;
3616 unsigned length;
3618 reader = rb_get_reader_page(cpu_buffer);
3620 /* This function should not be called when buffer is empty */
3621 if (RB_WARN_ON(cpu_buffer, !reader))
3622 return;
3624 event = rb_reader_event(cpu_buffer);
3626 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3627 cpu_buffer->read++;
3629 rb_update_read_stamp(cpu_buffer, event);
3631 length = rb_event_length(event);
3632 cpu_buffer->reader_page->read += length;
3635 static void rb_advance_iter(struct ring_buffer_iter *iter)
3637 struct ring_buffer_per_cpu *cpu_buffer;
3638 struct ring_buffer_event *event;
3639 unsigned length;
3641 cpu_buffer = iter->cpu_buffer;
3644 * Check if we are at the end of the buffer.
3646 if (iter->head >= rb_page_size(iter->head_page)) {
3647 /* discarded commits can make the page empty */
3648 if (iter->head_page == cpu_buffer->commit_page)
3649 return;
3650 rb_inc_iter(iter);
3651 return;
3654 event = rb_iter_head_event(iter);
3656 length = rb_event_length(event);
3659 * This should not be called to advance the header if we are
3660 * at the tail of the buffer.
3662 if (RB_WARN_ON(cpu_buffer,
3663 (iter->head_page == cpu_buffer->commit_page) &&
3664 (iter->head + length > rb_commit_index(cpu_buffer))))
3665 return;
3667 rb_update_iter_read_stamp(iter, event);
3669 iter->head += length;
3671 /* check for end of page padding */
3672 if ((iter->head >= rb_page_size(iter->head_page)) &&
3673 (iter->head_page != cpu_buffer->commit_page))
3674 rb_inc_iter(iter);
3677 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3679 return cpu_buffer->lost_events;
3682 static struct ring_buffer_event *
3683 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3684 unsigned long *lost_events)
3686 struct ring_buffer_event *event;
3687 struct buffer_page *reader;
3688 int nr_loops = 0;
3690 again:
3692 * We repeat when a time extend is encountered.
3693 * Since the time extend is always attached to a data event,
3694 * we should never loop more than once.
3695 * (We never hit the following condition more than twice).
3697 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3698 return NULL;
3700 reader = rb_get_reader_page(cpu_buffer);
3701 if (!reader)
3702 return NULL;
3704 event = rb_reader_event(cpu_buffer);
3706 switch (event->type_len) {
3707 case RINGBUF_TYPE_PADDING:
3708 if (rb_null_event(event))
3709 RB_WARN_ON(cpu_buffer, 1);
3711 * Because the writer could be discarding every
3712 * event it creates (which would probably be bad)
3713 * if we were to go back to "again" then we may never
3714 * catch up, and will trigger the warn on, or lock
3715 * the box. Return the padding, and we will release
3716 * the current locks, and try again.
3718 return event;
3720 case RINGBUF_TYPE_TIME_EXTEND:
3721 /* Internal data, OK to advance */
3722 rb_advance_reader(cpu_buffer);
3723 goto again;
3725 case RINGBUF_TYPE_TIME_STAMP:
3726 /* FIXME: not implemented */
3727 rb_advance_reader(cpu_buffer);
3728 goto again;
3730 case RINGBUF_TYPE_DATA:
3731 if (ts) {
3732 *ts = cpu_buffer->read_stamp + event->time_delta;
3733 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3734 cpu_buffer->cpu, ts);
3736 if (lost_events)
3737 *lost_events = rb_lost_events(cpu_buffer);
3738 return event;
3740 default:
3741 BUG();
3744 return NULL;
3746 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3748 static struct ring_buffer_event *
3749 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3751 struct ring_buffer *buffer;
3752 struct ring_buffer_per_cpu *cpu_buffer;
3753 struct ring_buffer_event *event;
3754 int nr_loops = 0;
3756 cpu_buffer = iter->cpu_buffer;
3757 buffer = cpu_buffer->buffer;
3760 * Check if someone performed a consuming read to
3761 * the buffer. A consuming read invalidates the iterator
3762 * and we need to reset the iterator in this case.
3764 if (unlikely(iter->cache_read != cpu_buffer->read ||
3765 iter->cache_reader_page != cpu_buffer->reader_page))
3766 rb_iter_reset(iter);
3768 again:
3769 if (ring_buffer_iter_empty(iter))
3770 return NULL;
3773 * We repeat when a time extend is encountered or we hit
3774 * the end of the page. Since the time extend is always attached
3775 * to a data event, we should never loop more than three times.
3776 * Once for going to next page, once on time extend, and
3777 * finally once to get the event.
3778 * (We never hit the following condition more than thrice).
3780 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3))
3781 return NULL;
3783 if (rb_per_cpu_empty(cpu_buffer))
3784 return NULL;
3786 if (iter->head >= local_read(&iter->head_page->page->commit)) {
3787 rb_inc_iter(iter);
3788 goto again;
3791 event = rb_iter_head_event(iter);
3793 switch (event->type_len) {
3794 case RINGBUF_TYPE_PADDING:
3795 if (rb_null_event(event)) {
3796 rb_inc_iter(iter);
3797 goto again;
3799 rb_advance_iter(iter);
3800 return event;
3802 case RINGBUF_TYPE_TIME_EXTEND:
3803 /* Internal data, OK to advance */
3804 rb_advance_iter(iter);
3805 goto again;
3807 case RINGBUF_TYPE_TIME_STAMP:
3808 /* FIXME: not implemented */
3809 rb_advance_iter(iter);
3810 goto again;
3812 case RINGBUF_TYPE_DATA:
3813 if (ts) {
3814 *ts = iter->read_stamp + event->time_delta;
3815 ring_buffer_normalize_time_stamp(buffer,
3816 cpu_buffer->cpu, ts);
3818 return event;
3820 default:
3821 BUG();
3824 return NULL;
3826 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3828 static inline int rb_ok_to_lock(void)
3831 * If an NMI die dumps out the content of the ring buffer
3832 * do not grab locks. We also permanently disable the ring
3833 * buffer too. A one time deal is all you get from reading
3834 * the ring buffer from an NMI.
3836 if (likely(!in_nmi()))
3837 return 1;
3839 tracing_off_permanent();
3840 return 0;
3844 * ring_buffer_peek - peek at the next event to be read
3845 * @buffer: The ring buffer to read
3846 * @cpu: The cpu to peak at
3847 * @ts: The timestamp counter of this event.
3848 * @lost_events: a variable to store if events were lost (may be NULL)
3850 * This will return the event that will be read next, but does
3851 * not consume the data.
3853 struct ring_buffer_event *
3854 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3855 unsigned long *lost_events)
3857 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3858 struct ring_buffer_event *event;
3859 unsigned long flags;
3860 int dolock;
3862 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3863 return NULL;
3865 dolock = rb_ok_to_lock();
3866 again:
3867 local_irq_save(flags);
3868 if (dolock)
3869 raw_spin_lock(&cpu_buffer->reader_lock);
3870 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3871 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3872 rb_advance_reader(cpu_buffer);
3873 if (dolock)
3874 raw_spin_unlock(&cpu_buffer->reader_lock);
3875 local_irq_restore(flags);
3877 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3878 goto again;
3880 return event;
3884 * ring_buffer_iter_peek - peek at the next event to be read
3885 * @iter: The ring buffer iterator
3886 * @ts: The timestamp counter of this event.
3888 * This will return the event that will be read next, but does
3889 * not increment the iterator.
3891 struct ring_buffer_event *
3892 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3894 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3895 struct ring_buffer_event *event;
3896 unsigned long flags;
3898 again:
3899 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3900 event = rb_iter_peek(iter, ts);
3901 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3903 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3904 goto again;
3906 return event;
3910 * ring_buffer_consume - return an event and consume it
3911 * @buffer: The ring buffer to get the next event from
3912 * @cpu: the cpu to read the buffer from
3913 * @ts: a variable to store the timestamp (may be NULL)
3914 * @lost_events: a variable to store if events were lost (may be NULL)
3916 * Returns the next event in the ring buffer, and that event is consumed.
3917 * Meaning, that sequential reads will keep returning a different event,
3918 * and eventually empty the ring buffer if the producer is slower.
3920 struct ring_buffer_event *
3921 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3922 unsigned long *lost_events)
3924 struct ring_buffer_per_cpu *cpu_buffer;
3925 struct ring_buffer_event *event = NULL;
3926 unsigned long flags;
3927 int dolock;
3929 dolock = rb_ok_to_lock();
3931 again:
3932 /* might be called in atomic */
3933 preempt_disable();
3935 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3936 goto out;
3938 cpu_buffer = buffer->buffers[cpu];
3939 local_irq_save(flags);
3940 if (dolock)
3941 raw_spin_lock(&cpu_buffer->reader_lock);
3943 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3944 if (event) {
3945 cpu_buffer->lost_events = 0;
3946 rb_advance_reader(cpu_buffer);
3949 if (dolock)
3950 raw_spin_unlock(&cpu_buffer->reader_lock);
3951 local_irq_restore(flags);
3953 out:
3954 preempt_enable();
3956 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3957 goto again;
3959 return event;
3961 EXPORT_SYMBOL_GPL(ring_buffer_consume);
3964 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
3965 * @buffer: The ring buffer to read from
3966 * @cpu: The cpu buffer to iterate over
3968 * This performs the initial preparations necessary to iterate
3969 * through the buffer. Memory is allocated, buffer recording
3970 * is disabled, and the iterator pointer is returned to the caller.
3972 * Disabling buffer recordng prevents the reading from being
3973 * corrupted. This is not a consuming read, so a producer is not
3974 * expected.
3976 * After a sequence of ring_buffer_read_prepare calls, the user is
3977 * expected to make at least one call to ring_buffer_read_prepare_sync.
3978 * Afterwards, ring_buffer_read_start is invoked to get things going
3979 * for real.
3981 * This overall must be paired with ring_buffer_read_finish.
3983 struct ring_buffer_iter *
3984 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
3986 struct ring_buffer_per_cpu *cpu_buffer;
3987 struct ring_buffer_iter *iter;
3989 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3990 return NULL;
3992 iter = kmalloc(sizeof(*iter), GFP_KERNEL);
3993 if (!iter)
3994 return NULL;
3996 cpu_buffer = buffer->buffers[cpu];
3998 iter->cpu_buffer = cpu_buffer;
4000 atomic_inc(&buffer->resize_disabled);
4001 atomic_inc(&cpu_buffer->record_disabled);
4003 return iter;
4005 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4008 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4010 * All previously invoked ring_buffer_read_prepare calls to prepare
4011 * iterators will be synchronized. Afterwards, read_buffer_read_start
4012 * calls on those iterators are allowed.
4014 void
4015 ring_buffer_read_prepare_sync(void)
4017 synchronize_sched();
4019 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4022 * ring_buffer_read_start - start a non consuming read of the buffer
4023 * @iter: The iterator returned by ring_buffer_read_prepare
4025 * This finalizes the startup of an iteration through the buffer.
4026 * The iterator comes from a call to ring_buffer_read_prepare and
4027 * an intervening ring_buffer_read_prepare_sync must have been
4028 * performed.
4030 * Must be paired with ring_buffer_read_finish.
4032 void
4033 ring_buffer_read_start(struct ring_buffer_iter *iter)
4035 struct ring_buffer_per_cpu *cpu_buffer;
4036 unsigned long flags;
4038 if (!iter)
4039 return;
4041 cpu_buffer = iter->cpu_buffer;
4043 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4044 arch_spin_lock(&cpu_buffer->lock);
4045 rb_iter_reset(iter);
4046 arch_spin_unlock(&cpu_buffer->lock);
4047 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4049 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4052 * ring_buffer_read_finish - finish reading the iterator of the buffer
4053 * @iter: The iterator retrieved by ring_buffer_start
4055 * This re-enables the recording to the buffer, and frees the
4056 * iterator.
4058 void
4059 ring_buffer_read_finish(struct ring_buffer_iter *iter)
4061 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4062 unsigned long flags;
4065 * Ring buffer is disabled from recording, here's a good place
4066 * to check the integrity of the ring buffer.
4067 * Must prevent readers from trying to read, as the check
4068 * clears the HEAD page and readers require it.
4070 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4071 rb_check_pages(cpu_buffer);
4072 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4074 atomic_dec(&cpu_buffer->record_disabled);
4075 atomic_dec(&cpu_buffer->buffer->resize_disabled);
4076 kfree(iter);
4078 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4081 * ring_buffer_read - read the next item in the ring buffer by the iterator
4082 * @iter: The ring buffer iterator
4083 * @ts: The time stamp of the event read.
4085 * This reads the next event in the ring buffer and increments the iterator.
4087 struct ring_buffer_event *
4088 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4090 struct ring_buffer_event *event;
4091 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4092 unsigned long flags;
4094 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4095 again:
4096 event = rb_iter_peek(iter, ts);
4097 if (!event)
4098 goto out;
4100 if (event->type_len == RINGBUF_TYPE_PADDING)
4101 goto again;
4103 rb_advance_iter(iter);
4104 out:
4105 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4107 return event;
4109 EXPORT_SYMBOL_GPL(ring_buffer_read);
4112 * ring_buffer_size - return the size of the ring buffer (in bytes)
4113 * @buffer: The ring buffer.
4115 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
4118 * Earlier, this method returned
4119 * BUF_PAGE_SIZE * buffer->nr_pages
4120 * Since the nr_pages field is now removed, we have converted this to
4121 * return the per cpu buffer value.
4123 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4124 return 0;
4126 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4128 EXPORT_SYMBOL_GPL(ring_buffer_size);
4130 static void
4131 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4133 rb_head_page_deactivate(cpu_buffer);
4135 cpu_buffer->head_page
4136 = list_entry(cpu_buffer->pages, struct buffer_page, list);
4137 local_set(&cpu_buffer->head_page->write, 0);
4138 local_set(&cpu_buffer->head_page->entries, 0);
4139 local_set(&cpu_buffer->head_page->page->commit, 0);
4141 cpu_buffer->head_page->read = 0;
4143 cpu_buffer->tail_page = cpu_buffer->head_page;
4144 cpu_buffer->commit_page = cpu_buffer->head_page;
4146 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4147 INIT_LIST_HEAD(&cpu_buffer->new_pages);
4148 local_set(&cpu_buffer->reader_page->write, 0);
4149 local_set(&cpu_buffer->reader_page->entries, 0);
4150 local_set(&cpu_buffer->reader_page->page->commit, 0);
4151 cpu_buffer->reader_page->read = 0;
4153 local_set(&cpu_buffer->entries_bytes, 0);
4154 local_set(&cpu_buffer->overrun, 0);
4155 local_set(&cpu_buffer->commit_overrun, 0);
4156 local_set(&cpu_buffer->dropped_events, 0);
4157 local_set(&cpu_buffer->entries, 0);
4158 local_set(&cpu_buffer->committing, 0);
4159 local_set(&cpu_buffer->commits, 0);
4160 cpu_buffer->read = 0;
4161 cpu_buffer->read_bytes = 0;
4163 cpu_buffer->write_stamp = 0;
4164 cpu_buffer->read_stamp = 0;
4166 cpu_buffer->lost_events = 0;
4167 cpu_buffer->last_overrun = 0;
4169 rb_head_page_activate(cpu_buffer);
4173 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4174 * @buffer: The ring buffer to reset a per cpu buffer of
4175 * @cpu: The CPU buffer to be reset
4177 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4179 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4180 unsigned long flags;
4182 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4183 return;
4185 atomic_inc(&buffer->resize_disabled);
4186 atomic_inc(&cpu_buffer->record_disabled);
4188 /* Make sure all commits have finished */
4189 synchronize_sched();
4191 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4193 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4194 goto out;
4196 arch_spin_lock(&cpu_buffer->lock);
4198 rb_reset_cpu(cpu_buffer);
4200 arch_spin_unlock(&cpu_buffer->lock);
4202 out:
4203 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4205 atomic_dec(&cpu_buffer->record_disabled);
4206 atomic_dec(&buffer->resize_disabled);
4208 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4211 * ring_buffer_reset - reset a ring buffer
4212 * @buffer: The ring buffer to reset all cpu buffers
4214 void ring_buffer_reset(struct ring_buffer *buffer)
4216 int cpu;
4218 for_each_buffer_cpu(buffer, cpu)
4219 ring_buffer_reset_cpu(buffer, cpu);
4221 EXPORT_SYMBOL_GPL(ring_buffer_reset);
4224 * rind_buffer_empty - is the ring buffer empty?
4225 * @buffer: The ring buffer to test
4227 int ring_buffer_empty(struct ring_buffer *buffer)
4229 struct ring_buffer_per_cpu *cpu_buffer;
4230 unsigned long flags;
4231 int dolock;
4232 int cpu;
4233 int ret;
4235 dolock = rb_ok_to_lock();
4237 /* yes this is racy, but if you don't like the race, lock the buffer */
4238 for_each_buffer_cpu(buffer, cpu) {
4239 cpu_buffer = buffer->buffers[cpu];
4240 local_irq_save(flags);
4241 if (dolock)
4242 raw_spin_lock(&cpu_buffer->reader_lock);
4243 ret = rb_per_cpu_empty(cpu_buffer);
4244 if (dolock)
4245 raw_spin_unlock(&cpu_buffer->reader_lock);
4246 local_irq_restore(flags);
4248 if (!ret)
4249 return 0;
4252 return 1;
4254 EXPORT_SYMBOL_GPL(ring_buffer_empty);
4257 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4258 * @buffer: The ring buffer
4259 * @cpu: The CPU buffer to test
4261 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4263 struct ring_buffer_per_cpu *cpu_buffer;
4264 unsigned long flags;
4265 int dolock;
4266 int ret;
4268 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4269 return 1;
4271 dolock = rb_ok_to_lock();
4273 cpu_buffer = buffer->buffers[cpu];
4274 local_irq_save(flags);
4275 if (dolock)
4276 raw_spin_lock(&cpu_buffer->reader_lock);
4277 ret = rb_per_cpu_empty(cpu_buffer);
4278 if (dolock)
4279 raw_spin_unlock(&cpu_buffer->reader_lock);
4280 local_irq_restore(flags);
4282 return ret;
4284 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4286 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4288 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4289 * @buffer_a: One buffer to swap with
4290 * @buffer_b: The other buffer to swap with
4292 * This function is useful for tracers that want to take a "snapshot"
4293 * of a CPU buffer and has another back up buffer lying around.
4294 * it is expected that the tracer handles the cpu buffer not being
4295 * used at the moment.
4297 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4298 struct ring_buffer *buffer_b, int cpu)
4300 struct ring_buffer_per_cpu *cpu_buffer_a;
4301 struct ring_buffer_per_cpu *cpu_buffer_b;
4302 int ret = -EINVAL;
4304 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4305 !cpumask_test_cpu(cpu, buffer_b->cpumask))
4306 goto out;
4308 cpu_buffer_a = buffer_a->buffers[cpu];
4309 cpu_buffer_b = buffer_b->buffers[cpu];
4311 /* At least make sure the two buffers are somewhat the same */
4312 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4313 goto out;
4315 ret = -EAGAIN;
4317 if (ring_buffer_flags != RB_BUFFERS_ON)
4318 goto out;
4320 if (atomic_read(&buffer_a->record_disabled))
4321 goto out;
4323 if (atomic_read(&buffer_b->record_disabled))
4324 goto out;
4326 if (atomic_read(&cpu_buffer_a->record_disabled))
4327 goto out;
4329 if (atomic_read(&cpu_buffer_b->record_disabled))
4330 goto out;
4333 * We can't do a synchronize_sched here because this
4334 * function can be called in atomic context.
4335 * Normally this will be called from the same CPU as cpu.
4336 * If not it's up to the caller to protect this.
4338 atomic_inc(&cpu_buffer_a->record_disabled);
4339 atomic_inc(&cpu_buffer_b->record_disabled);
4341 ret = -EBUSY;
4342 if (local_read(&cpu_buffer_a->committing))
4343 goto out_dec;
4344 if (local_read(&cpu_buffer_b->committing))
4345 goto out_dec;
4347 buffer_a->buffers[cpu] = cpu_buffer_b;
4348 buffer_b->buffers[cpu] = cpu_buffer_a;
4350 cpu_buffer_b->buffer = buffer_a;
4351 cpu_buffer_a->buffer = buffer_b;
4353 ret = 0;
4355 out_dec:
4356 atomic_dec(&cpu_buffer_a->record_disabled);
4357 atomic_dec(&cpu_buffer_b->record_disabled);
4358 out:
4359 return ret;
4361 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4362 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4365 * ring_buffer_alloc_read_page - allocate a page to read from buffer
4366 * @buffer: the buffer to allocate for.
4367 * @cpu: the cpu buffer to allocate.
4369 * This function is used in conjunction with ring_buffer_read_page.
4370 * When reading a full page from the ring buffer, these functions
4371 * can be used to speed up the process. The calling function should
4372 * allocate a few pages first with this function. Then when it
4373 * needs to get pages from the ring buffer, it passes the result
4374 * of this function into ring_buffer_read_page, which will swap
4375 * the page that was allocated, with the read page of the buffer.
4377 * Returns:
4378 * The page allocated, or NULL on error.
4380 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4382 struct buffer_data_page *bpage;
4383 struct page *page;
4385 page = alloc_pages_node(cpu_to_node(cpu),
4386 GFP_KERNEL | __GFP_NORETRY, 0);
4387 if (!page)
4388 return NULL;
4390 bpage = page_address(page);
4392 rb_init_page(bpage);
4394 return bpage;
4396 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4399 * ring_buffer_free_read_page - free an allocated read page
4400 * @buffer: the buffer the page was allocate for
4401 * @data: the page to free
4403 * Free a page allocated from ring_buffer_alloc_read_page.
4405 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
4407 free_page((unsigned long)data);
4409 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4412 * ring_buffer_read_page - extract a page from the ring buffer
4413 * @buffer: buffer to extract from
4414 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4415 * @len: amount to extract
4416 * @cpu: the cpu of the buffer to extract
4417 * @full: should the extraction only happen when the page is full.
4419 * This function will pull out a page from the ring buffer and consume it.
4420 * @data_page must be the address of the variable that was returned
4421 * from ring_buffer_alloc_read_page. This is because the page might be used
4422 * to swap with a page in the ring buffer.
4424 * for example:
4425 * rpage = ring_buffer_alloc_read_page(buffer, cpu);
4426 * if (!rpage)
4427 * return error;
4428 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4429 * if (ret >= 0)
4430 * process_page(rpage, ret);
4432 * When @full is set, the function will not return true unless
4433 * the writer is off the reader page.
4435 * Note: it is up to the calling functions to handle sleeps and wakeups.
4436 * The ring buffer can be used anywhere in the kernel and can not
4437 * blindly call wake_up. The layer that uses the ring buffer must be
4438 * responsible for that.
4440 * Returns:
4441 * >=0 if data has been transferred, returns the offset of consumed data.
4442 * <0 if no data has been transferred.
4444 int ring_buffer_read_page(struct ring_buffer *buffer,
4445 void **data_page, size_t len, int cpu, int full)
4447 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4448 struct ring_buffer_event *event;
4449 struct buffer_data_page *bpage;
4450 struct buffer_page *reader;
4451 unsigned long missed_events;
4452 unsigned long flags;
4453 unsigned int commit;
4454 unsigned int read;
4455 u64 save_timestamp;
4456 int ret = -1;
4458 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4459 goto out;
4462 * If len is not big enough to hold the page header, then
4463 * we can not copy anything.
4465 if (len <= BUF_PAGE_HDR_SIZE)
4466 goto out;
4468 len -= BUF_PAGE_HDR_SIZE;
4470 if (!data_page)
4471 goto out;
4473 bpage = *data_page;
4474 if (!bpage)
4475 goto out;
4477 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4479 reader = rb_get_reader_page(cpu_buffer);
4480 if (!reader)
4481 goto out_unlock;
4483 event = rb_reader_event(cpu_buffer);
4485 read = reader->read;
4486 commit = rb_page_commit(reader);
4488 /* Check if any events were dropped */
4489 missed_events = cpu_buffer->lost_events;
4492 * If this page has been partially read or
4493 * if len is not big enough to read the rest of the page or
4494 * a writer is still on the page, then
4495 * we must copy the data from the page to the buffer.
4496 * Otherwise, we can simply swap the page with the one passed in.
4498 if (read || (len < (commit - read)) ||
4499 cpu_buffer->reader_page == cpu_buffer->commit_page) {
4500 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4501 unsigned int rpos = read;
4502 unsigned int pos = 0;
4503 unsigned int size;
4505 if (full)
4506 goto out_unlock;
4508 if (len > (commit - read))
4509 len = (commit - read);
4511 /* Always keep the time extend and data together */
4512 size = rb_event_ts_length(event);
4514 if (len < size)
4515 goto out_unlock;
4517 /* save the current timestamp, since the user will need it */
4518 save_timestamp = cpu_buffer->read_stamp;
4520 /* Need to copy one event at a time */
4521 do {
4522 /* We need the size of one event, because
4523 * rb_advance_reader only advances by one event,
4524 * whereas rb_event_ts_length may include the size of
4525 * one or two events.
4526 * We have already ensured there's enough space if this
4527 * is a time extend. */
4528 size = rb_event_length(event);
4529 memcpy(bpage->data + pos, rpage->data + rpos, size);
4531 len -= size;
4533 rb_advance_reader(cpu_buffer);
4534 rpos = reader->read;
4535 pos += size;
4537 if (rpos >= commit)
4538 break;
4540 event = rb_reader_event(cpu_buffer);
4541 /* Always keep the time extend and data together */
4542 size = rb_event_ts_length(event);
4543 } while (len >= size);
4545 /* update bpage */
4546 local_set(&bpage->commit, pos);
4547 bpage->time_stamp = save_timestamp;
4549 /* we copied everything to the beginning */
4550 read = 0;
4551 } else {
4552 /* update the entry counter */
4553 cpu_buffer->read += rb_page_entries(reader);
4554 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4556 /* swap the pages */
4557 rb_init_page(bpage);
4558 bpage = reader->page;
4559 reader->page = *data_page;
4560 local_set(&reader->write, 0);
4561 local_set(&reader->entries, 0);
4562 reader->read = 0;
4563 *data_page = bpage;
4566 * Use the real_end for the data size,
4567 * This gives us a chance to store the lost events
4568 * on the page.
4570 if (reader->real_end)
4571 local_set(&bpage->commit, reader->real_end);
4573 ret = read;
4575 cpu_buffer->lost_events = 0;
4577 commit = local_read(&bpage->commit);
4579 * Set a flag in the commit field if we lost events
4581 if (missed_events) {
4582 /* If there is room at the end of the page to save the
4583 * missed events, then record it there.
4585 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4586 memcpy(&bpage->data[commit], &missed_events,
4587 sizeof(missed_events));
4588 local_add(RB_MISSED_STORED, &bpage->commit);
4589 commit += sizeof(missed_events);
4591 local_add(RB_MISSED_EVENTS, &bpage->commit);
4595 * This page may be off to user land. Zero it out here.
4597 if (commit < BUF_PAGE_SIZE)
4598 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4600 out_unlock:
4601 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4603 out:
4604 return ret;
4606 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4608 #ifdef CONFIG_HOTPLUG_CPU
4609 static int rb_cpu_notify(struct notifier_block *self,
4610 unsigned long action, void *hcpu)
4612 struct ring_buffer *buffer =
4613 container_of(self, struct ring_buffer, cpu_notify);
4614 long cpu = (long)hcpu;
4615 int cpu_i, nr_pages_same;
4616 unsigned int nr_pages;
4618 switch (action) {
4619 case CPU_UP_PREPARE:
4620 case CPU_UP_PREPARE_FROZEN:
4621 if (cpumask_test_cpu(cpu, buffer->cpumask))
4622 return NOTIFY_OK;
4624 nr_pages = 0;
4625 nr_pages_same = 1;
4626 /* check if all cpu sizes are same */
4627 for_each_buffer_cpu(buffer, cpu_i) {
4628 /* fill in the size from first enabled cpu */
4629 if (nr_pages == 0)
4630 nr_pages = buffer->buffers[cpu_i]->nr_pages;
4631 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4632 nr_pages_same = 0;
4633 break;
4636 /* allocate minimum pages, user can later expand it */
4637 if (!nr_pages_same)
4638 nr_pages = 2;
4639 buffer->buffers[cpu] =
4640 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4641 if (!buffer->buffers[cpu]) {
4642 WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4643 cpu);
4644 return NOTIFY_OK;
4646 smp_wmb();
4647 cpumask_set_cpu(cpu, buffer->cpumask);
4648 break;
4649 case CPU_DOWN_PREPARE:
4650 case CPU_DOWN_PREPARE_FROZEN:
4652 * Do nothing.
4653 * If we were to free the buffer, then the user would
4654 * lose any trace that was in the buffer.
4656 break;
4657 default:
4658 break;
4660 return NOTIFY_OK;
4662 #endif
4664 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4666 * This is a basic integrity check of the ring buffer.
4667 * Late in the boot cycle this test will run when configured in.
4668 * It will kick off a thread per CPU that will go into a loop
4669 * writing to the per cpu ring buffer various sizes of data.
4670 * Some of the data will be large items, some small.
4672 * Another thread is created that goes into a spin, sending out
4673 * IPIs to the other CPUs to also write into the ring buffer.
4674 * this is to test the nesting ability of the buffer.
4676 * Basic stats are recorded and reported. If something in the
4677 * ring buffer should happen that's not expected, a big warning
4678 * is displayed and all ring buffers are disabled.
4680 static struct task_struct *rb_threads[NR_CPUS] __initdata;
4682 struct rb_test_data {
4683 struct ring_buffer *buffer;
4684 unsigned long events;
4685 unsigned long bytes_written;
4686 unsigned long bytes_alloc;
4687 unsigned long bytes_dropped;
4688 unsigned long events_nested;
4689 unsigned long bytes_written_nested;
4690 unsigned long bytes_alloc_nested;
4691 unsigned long bytes_dropped_nested;
4692 int min_size_nested;
4693 int max_size_nested;
4694 int max_size;
4695 int min_size;
4696 int cpu;
4697 int cnt;
4700 static struct rb_test_data rb_data[NR_CPUS] __initdata;
4702 /* 1 meg per cpu */
4703 #define RB_TEST_BUFFER_SIZE 1048576
4705 static char rb_string[] __initdata =
4706 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4707 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4708 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4710 static bool rb_test_started __initdata;
4712 struct rb_item {
4713 int size;
4714 char str[];
4717 static __init int rb_write_something(struct rb_test_data *data, bool nested)
4719 struct ring_buffer_event *event;
4720 struct rb_item *item;
4721 bool started;
4722 int event_len;
4723 int size;
4724 int len;
4725 int cnt;
4727 /* Have nested writes different that what is written */
4728 cnt = data->cnt + (nested ? 27 : 0);
4730 /* Multiply cnt by ~e, to make some unique increment */
4731 size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4733 len = size + sizeof(struct rb_item);
4735 started = rb_test_started;
4736 /* read rb_test_started before checking buffer enabled */
4737 smp_rmb();
4739 event = ring_buffer_lock_reserve(data->buffer, len);
4740 if (!event) {
4741 /* Ignore dropped events before test starts. */
4742 if (started) {
4743 if (nested)
4744 data->bytes_dropped += len;
4745 else
4746 data->bytes_dropped_nested += len;
4748 return len;
4751 event_len = ring_buffer_event_length(event);
4753 if (RB_WARN_ON(data->buffer, event_len < len))
4754 goto out;
4756 item = ring_buffer_event_data(event);
4757 item->size = size;
4758 memcpy(item->str, rb_string, size);
4760 if (nested) {
4761 data->bytes_alloc_nested += event_len;
4762 data->bytes_written_nested += len;
4763 data->events_nested++;
4764 if (!data->min_size_nested || len < data->min_size_nested)
4765 data->min_size_nested = len;
4766 if (len > data->max_size_nested)
4767 data->max_size_nested = len;
4768 } else {
4769 data->bytes_alloc += event_len;
4770 data->bytes_written += len;
4771 data->events++;
4772 if (!data->min_size || len < data->min_size)
4773 data->max_size = len;
4774 if (len > data->max_size)
4775 data->max_size = len;
4778 out:
4779 ring_buffer_unlock_commit(data->buffer, event);
4781 return 0;
4784 static __init int rb_test(void *arg)
4786 struct rb_test_data *data = arg;
4788 while (!kthread_should_stop()) {
4789 rb_write_something(data, false);
4790 data->cnt++;
4792 set_current_state(TASK_INTERRUPTIBLE);
4793 /* Now sleep between a min of 100-300us and a max of 1ms */
4794 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
4797 return 0;
4800 static __init void rb_ipi(void *ignore)
4802 struct rb_test_data *data;
4803 int cpu = smp_processor_id();
4805 data = &rb_data[cpu];
4806 rb_write_something(data, true);
4809 static __init int rb_hammer_test(void *arg)
4811 while (!kthread_should_stop()) {
4813 /* Send an IPI to all cpus to write data! */
4814 smp_call_function(rb_ipi, NULL, 1);
4815 /* No sleep, but for non preempt, let others run */
4816 schedule();
4819 return 0;
4822 static __init int test_ringbuffer(void)
4824 struct task_struct *rb_hammer;
4825 struct ring_buffer *buffer;
4826 int cpu;
4827 int ret = 0;
4829 pr_info("Running ring buffer tests...\n");
4831 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
4832 if (WARN_ON(!buffer))
4833 return 0;
4835 /* Disable buffer so that threads can't write to it yet */
4836 ring_buffer_record_off(buffer);
4838 for_each_online_cpu(cpu) {
4839 rb_data[cpu].buffer = buffer;
4840 rb_data[cpu].cpu = cpu;
4841 rb_data[cpu].cnt = cpu;
4842 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
4843 "rbtester/%d", cpu);
4844 if (WARN_ON(!rb_threads[cpu])) {
4845 pr_cont("FAILED\n");
4846 ret = -1;
4847 goto out_free;
4850 kthread_bind(rb_threads[cpu], cpu);
4851 wake_up_process(rb_threads[cpu]);
4854 /* Now create the rb hammer! */
4855 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
4856 if (WARN_ON(!rb_hammer)) {
4857 pr_cont("FAILED\n");
4858 ret = -1;
4859 goto out_free;
4862 ring_buffer_record_on(buffer);
4864 * Show buffer is enabled before setting rb_test_started.
4865 * Yes there's a small race window where events could be
4866 * dropped and the thread wont catch it. But when a ring
4867 * buffer gets enabled, there will always be some kind of
4868 * delay before other CPUs see it. Thus, we don't care about
4869 * those dropped events. We care about events dropped after
4870 * the threads see that the buffer is active.
4872 smp_wmb();
4873 rb_test_started = true;
4875 set_current_state(TASK_INTERRUPTIBLE);
4876 /* Just run for 10 seconds */;
4877 schedule_timeout(10 * HZ);
4879 kthread_stop(rb_hammer);
4881 out_free:
4882 for_each_online_cpu(cpu) {
4883 if (!rb_threads[cpu])
4884 break;
4885 kthread_stop(rb_threads[cpu]);
4887 if (ret) {
4888 ring_buffer_free(buffer);
4889 return ret;
4892 /* Report! */
4893 pr_info("finished\n");
4894 for_each_online_cpu(cpu) {
4895 struct ring_buffer_event *event;
4896 struct rb_test_data *data = &rb_data[cpu];
4897 struct rb_item *item;
4898 unsigned long total_events;
4899 unsigned long total_dropped;
4900 unsigned long total_written;
4901 unsigned long total_alloc;
4902 unsigned long total_read = 0;
4903 unsigned long total_size = 0;
4904 unsigned long total_len = 0;
4905 unsigned long total_lost = 0;
4906 unsigned long lost;
4907 int big_event_size;
4908 int small_event_size;
4910 ret = -1;
4912 total_events = data->events + data->events_nested;
4913 total_written = data->bytes_written + data->bytes_written_nested;
4914 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
4915 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
4917 big_event_size = data->max_size + data->max_size_nested;
4918 small_event_size = data->min_size + data->min_size_nested;
4920 pr_info("CPU %d:\n", cpu);
4921 pr_info(" events: %ld\n", total_events);
4922 pr_info(" dropped bytes: %ld\n", total_dropped);
4923 pr_info(" alloced bytes: %ld\n", total_alloc);
4924 pr_info(" written bytes: %ld\n", total_written);
4925 pr_info(" biggest event: %d\n", big_event_size);
4926 pr_info(" smallest event: %d\n", small_event_size);
4928 if (RB_WARN_ON(buffer, total_dropped))
4929 break;
4931 ret = 0;
4933 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
4934 total_lost += lost;
4935 item = ring_buffer_event_data(event);
4936 total_len += ring_buffer_event_length(event);
4937 total_size += item->size + sizeof(struct rb_item);
4938 if (memcmp(&item->str[0], rb_string, item->size) != 0) {
4939 pr_info("FAILED!\n");
4940 pr_info("buffer had: %.*s\n", item->size, item->str);
4941 pr_info("expected: %.*s\n", item->size, rb_string);
4942 RB_WARN_ON(buffer, 1);
4943 ret = -1;
4944 break;
4946 total_read++;
4948 if (ret)
4949 break;
4951 ret = -1;
4953 pr_info(" read events: %ld\n", total_read);
4954 pr_info(" lost events: %ld\n", total_lost);
4955 pr_info(" total events: %ld\n", total_lost + total_read);
4956 pr_info(" recorded len bytes: %ld\n", total_len);
4957 pr_info(" recorded size bytes: %ld\n", total_size);
4958 if (total_lost)
4959 pr_info(" With dropped events, record len and size may not match\n"
4960 " alloced and written from above\n");
4961 if (!total_lost) {
4962 if (RB_WARN_ON(buffer, total_len != total_alloc ||
4963 total_size != total_written))
4964 break;
4966 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
4967 break;
4969 ret = 0;
4971 if (!ret)
4972 pr_info("Ring buffer PASSED!\n");
4974 ring_buffer_free(buffer);
4975 return 0;
4978 late_initcall(test_ringbuffer);
4979 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */