2 * linux/fs/jbd2/journal.c
4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6 * Copyright 1998 Red Hat corp --- All Rights Reserved
8 * This file is part of the Linux kernel and is made available under
9 * the terms of the GNU General Public License, version 2, or at your
10 * option, any later version, incorporated herein by reference.
12 * Generic filesystem journal-writing code; part of the ext2fs
15 * This file manages journals: areas of disk reserved for logging
16 * transactional updates. This includes the kernel journaling thread
17 * which is responsible for scheduling updates to the log.
19 * We do not actually manage the physical storage of the journal in this
20 * file: that is left to a per-journal policy function, which allows us
21 * to store the journal within a filesystem-specified area for ext2
22 * journaling (ext2 can use a reserved inode for storing the log).
25 #include <linux/module.h>
26 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
33 #include <linux/freezer.h>
34 #include <linux/pagemap.h>
35 #include <linux/kthread.h>
36 #include <linux/poison.h>
37 #include <linux/proc_fs.h>
38 #include <linux/debugfs.h>
39 #include <linux/seq_file.h>
40 #include <linux/math64.h>
41 #include <linux/hash.h>
42 #include <linux/log2.h>
43 #include <linux/vmalloc.h>
44 #include <linux/backing-dev.h>
45 #include <linux/bitops.h>
46 #include <linux/ratelimit.h>
48 #define CREATE_TRACE_POINTS
49 #include <trace/events/jbd2.h>
51 #include <asm/uaccess.h>
54 EXPORT_SYMBOL(jbd2_journal_extend
);
55 EXPORT_SYMBOL(jbd2_journal_stop
);
56 EXPORT_SYMBOL(jbd2_journal_lock_updates
);
57 EXPORT_SYMBOL(jbd2_journal_unlock_updates
);
58 EXPORT_SYMBOL(jbd2_journal_get_write_access
);
59 EXPORT_SYMBOL(jbd2_journal_get_create_access
);
60 EXPORT_SYMBOL(jbd2_journal_get_undo_access
);
61 EXPORT_SYMBOL(jbd2_journal_set_triggers
);
62 EXPORT_SYMBOL(jbd2_journal_dirty_metadata
);
63 EXPORT_SYMBOL(jbd2_journal_release_buffer
);
64 EXPORT_SYMBOL(jbd2_journal_forget
);
66 EXPORT_SYMBOL(journal_sync_buffer
);
68 EXPORT_SYMBOL(jbd2_journal_flush
);
69 EXPORT_SYMBOL(jbd2_journal_revoke
);
71 EXPORT_SYMBOL(jbd2_journal_init_dev
);
72 EXPORT_SYMBOL(jbd2_journal_init_inode
);
73 EXPORT_SYMBOL(jbd2_journal_check_used_features
);
74 EXPORT_SYMBOL(jbd2_journal_check_available_features
);
75 EXPORT_SYMBOL(jbd2_journal_set_features
);
76 EXPORT_SYMBOL(jbd2_journal_load
);
77 EXPORT_SYMBOL(jbd2_journal_destroy
);
78 EXPORT_SYMBOL(jbd2_journal_abort
);
79 EXPORT_SYMBOL(jbd2_journal_errno
);
80 EXPORT_SYMBOL(jbd2_journal_ack_err
);
81 EXPORT_SYMBOL(jbd2_journal_clear_err
);
82 EXPORT_SYMBOL(jbd2_log_wait_commit
);
83 EXPORT_SYMBOL(jbd2_log_start_commit
);
84 EXPORT_SYMBOL(jbd2_journal_start_commit
);
85 EXPORT_SYMBOL(jbd2_journal_force_commit_nested
);
86 EXPORT_SYMBOL(jbd2_journal_wipe
);
87 EXPORT_SYMBOL(jbd2_journal_blocks_per_page
);
88 EXPORT_SYMBOL(jbd2_journal_invalidatepage
);
89 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers
);
90 EXPORT_SYMBOL(jbd2_journal_force_commit
);
91 EXPORT_SYMBOL(jbd2_journal_file_inode
);
92 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode
);
93 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode
);
94 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate
);
95 EXPORT_SYMBOL(jbd2_inode_cache
);
97 static void __journal_abort_soft (journal_t
*journal
, int errno
);
98 static int jbd2_journal_create_slab(size_t slab_size
);
101 * Helper function used to manage commit timeouts
104 static void commit_timeout(unsigned long __data
)
106 struct task_struct
* p
= (struct task_struct
*) __data
;
112 * kjournald2: The main thread function used to manage a logging device
115 * This kernel thread is responsible for two things:
117 * 1) COMMIT: Every so often we need to commit the current state of the
118 * filesystem to disk. The journal thread is responsible for writing
119 * all of the metadata buffers to disk.
121 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
122 * of the data in that part of the log has been rewritten elsewhere on
123 * the disk. Flushing these old buffers to reclaim space in the log is
124 * known as checkpointing, and this thread is responsible for that job.
127 static int kjournald2(void *arg
)
129 journal_t
*journal
= arg
;
130 transaction_t
*transaction
;
133 * Set up an interval timer which can be used to trigger a commit wakeup
134 * after the commit interval expires
136 setup_timer(&journal
->j_commit_timer
, commit_timeout
,
137 (unsigned long)current
);
141 /* Record that the journal thread is running */
142 journal
->j_task
= current
;
143 wake_up(&journal
->j_wait_done_commit
);
146 * And now, wait forever for commit wakeup events.
148 write_lock(&journal
->j_state_lock
);
151 if (journal
->j_flags
& JBD2_UNMOUNT
)
154 jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
155 journal
->j_commit_sequence
, journal
->j_commit_request
);
157 if (journal
->j_commit_sequence
!= journal
->j_commit_request
) {
158 jbd_debug(1, "OK, requests differ\n");
159 write_unlock(&journal
->j_state_lock
);
160 del_timer_sync(&journal
->j_commit_timer
);
161 jbd2_journal_commit_transaction(journal
);
162 write_lock(&journal
->j_state_lock
);
166 wake_up(&journal
->j_wait_done_commit
);
167 if (freezing(current
)) {
169 * The simpler the better. Flushing journal isn't a
170 * good idea, because that depends on threads that may
171 * be already stopped.
173 jbd_debug(1, "Now suspending kjournald2\n");
174 write_unlock(&journal
->j_state_lock
);
176 write_lock(&journal
->j_state_lock
);
179 * We assume on resume that commits are already there,
183 int should_sleep
= 1;
185 prepare_to_wait(&journal
->j_wait_commit
, &wait
,
187 if (journal
->j_commit_sequence
!= journal
->j_commit_request
)
189 transaction
= journal
->j_running_transaction
;
190 if (transaction
&& time_after_eq(jiffies
,
191 transaction
->t_expires
))
193 if (journal
->j_flags
& JBD2_UNMOUNT
)
196 write_unlock(&journal
->j_state_lock
);
198 write_lock(&journal
->j_state_lock
);
200 finish_wait(&journal
->j_wait_commit
, &wait
);
203 jbd_debug(1, "kjournald2 wakes\n");
206 * Were we woken up by a commit wakeup event?
208 transaction
= journal
->j_running_transaction
;
209 if (transaction
&& time_after_eq(jiffies
, transaction
->t_expires
)) {
210 journal
->j_commit_request
= transaction
->t_tid
;
211 jbd_debug(1, "woke because of timeout\n");
216 write_unlock(&journal
->j_state_lock
);
217 del_timer_sync(&journal
->j_commit_timer
);
218 journal
->j_task
= NULL
;
219 wake_up(&journal
->j_wait_done_commit
);
220 jbd_debug(1, "Journal thread exiting.\n");
224 static int jbd2_journal_start_thread(journal_t
*journal
)
226 struct task_struct
*t
;
228 t
= kthread_run(kjournald2
, journal
, "jbd2/%s",
233 wait_event(journal
->j_wait_done_commit
, journal
->j_task
!= NULL
);
237 static void journal_kill_thread(journal_t
*journal
)
239 write_lock(&journal
->j_state_lock
);
240 journal
->j_flags
|= JBD2_UNMOUNT
;
242 while (journal
->j_task
) {
243 wake_up(&journal
->j_wait_commit
);
244 write_unlock(&journal
->j_state_lock
);
245 wait_event(journal
->j_wait_done_commit
, journal
->j_task
== NULL
);
246 write_lock(&journal
->j_state_lock
);
248 write_unlock(&journal
->j_state_lock
);
252 * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
254 * Writes a metadata buffer to a given disk block. The actual IO is not
255 * performed but a new buffer_head is constructed which labels the data
256 * to be written with the correct destination disk block.
258 * Any magic-number escaping which needs to be done will cause a
259 * copy-out here. If the buffer happens to start with the
260 * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
261 * magic number is only written to the log for descripter blocks. In
262 * this case, we copy the data and replace the first word with 0, and we
263 * return a result code which indicates that this buffer needs to be
264 * marked as an escaped buffer in the corresponding log descriptor
265 * block. The missing word can then be restored when the block is read
268 * If the source buffer has already been modified by a new transaction
269 * since we took the last commit snapshot, we use the frozen copy of
270 * that data for IO. If we end up using the existing buffer_head's data
271 * for the write, then we *have* to lock the buffer to prevent anyone
272 * else from using and possibly modifying it while the IO is in
275 * The function returns a pointer to the buffer_heads to be used for IO.
277 * We assume that the journal has already been locked in this function.
284 * Bit 0 set == escape performed on the data
285 * Bit 1 set == buffer copy-out performed (kfree the data after IO)
288 int jbd2_journal_write_metadata_buffer(transaction_t
*transaction
,
289 struct journal_head
*jh_in
,
290 struct journal_head
**jh_out
,
291 unsigned long long blocknr
)
293 int need_copy_out
= 0;
294 int done_copy_out
= 0;
297 struct buffer_head
*new_bh
;
298 struct journal_head
*new_jh
;
299 struct page
*new_page
;
300 unsigned int new_offset
;
301 struct buffer_head
*bh_in
= jh2bh(jh_in
);
302 journal_t
*journal
= transaction
->t_journal
;
305 * The buffer really shouldn't be locked: only the current committing
306 * transaction is allowed to write it, so nobody else is allowed
309 * akpm: except if we're journalling data, and write() output is
310 * also part of a shared mapping, and another thread has
311 * decided to launch a writepage() against this buffer.
313 J_ASSERT_BH(bh_in
, buffer_jbddirty(bh_in
));
316 new_bh
= alloc_buffer_head(GFP_NOFS
);
319 * Failure is not an option, but __GFP_NOFAIL is going
320 * away; so we retry ourselves here.
322 congestion_wait(BLK_RW_ASYNC
, HZ
/50);
326 /* keep subsequent assertions sane */
328 init_buffer(new_bh
, NULL
, NULL
);
329 atomic_set(&new_bh
->b_count
, 1);
330 new_jh
= jbd2_journal_add_journal_head(new_bh
); /* This sleeps */
333 * If a new transaction has already done a buffer copy-out, then
334 * we use that version of the data for the commit.
336 jbd_lock_bh_state(bh_in
);
338 if (jh_in
->b_frozen_data
) {
340 new_page
= virt_to_page(jh_in
->b_frozen_data
);
341 new_offset
= offset_in_page(jh_in
->b_frozen_data
);
343 new_page
= jh2bh(jh_in
)->b_page
;
344 new_offset
= offset_in_page(jh2bh(jh_in
)->b_data
);
347 mapped_data
= kmap_atomic(new_page
);
349 * Fire data frozen trigger if data already wasn't frozen. Do this
350 * before checking for escaping, as the trigger may modify the magic
351 * offset. If a copy-out happens afterwards, it will have the correct
352 * data in the buffer.
355 jbd2_buffer_frozen_trigger(jh_in
, mapped_data
+ new_offset
,
361 if (*((__be32
*)(mapped_data
+ new_offset
)) ==
362 cpu_to_be32(JBD2_MAGIC_NUMBER
)) {
366 kunmap_atomic(mapped_data
);
369 * Do we need to do a data copy?
371 if (need_copy_out
&& !done_copy_out
) {
374 jbd_unlock_bh_state(bh_in
);
375 tmp
= jbd2_alloc(bh_in
->b_size
, GFP_NOFS
);
377 jbd2_journal_put_journal_head(new_jh
);
380 jbd_lock_bh_state(bh_in
);
381 if (jh_in
->b_frozen_data
) {
382 jbd2_free(tmp
, bh_in
->b_size
);
386 jh_in
->b_frozen_data
= tmp
;
387 mapped_data
= kmap_atomic(new_page
);
388 memcpy(tmp
, mapped_data
+ new_offset
, jh2bh(jh_in
)->b_size
);
389 kunmap_atomic(mapped_data
);
391 new_page
= virt_to_page(tmp
);
392 new_offset
= offset_in_page(tmp
);
396 * This isn't strictly necessary, as we're using frozen
397 * data for the escaping, but it keeps consistency with
398 * b_frozen_data usage.
400 jh_in
->b_frozen_triggers
= jh_in
->b_triggers
;
404 * Did we need to do an escaping? Now we've done all the
405 * copying, we can finally do so.
408 mapped_data
= kmap_atomic(new_page
);
409 *((unsigned int *)(mapped_data
+ new_offset
)) = 0;
410 kunmap_atomic(mapped_data
);
413 set_bh_page(new_bh
, new_page
, new_offset
);
414 new_jh
->b_transaction
= NULL
;
415 new_bh
->b_size
= jh2bh(jh_in
)->b_size
;
416 new_bh
->b_bdev
= transaction
->t_journal
->j_dev
;
417 new_bh
->b_blocknr
= blocknr
;
418 set_buffer_mapped(new_bh
);
419 set_buffer_dirty(new_bh
);
424 * The to-be-written buffer needs to get moved to the io queue,
425 * and the original buffer whose contents we are shadowing or
426 * copying is moved to the transaction's shadow queue.
428 JBUFFER_TRACE(jh_in
, "file as BJ_Shadow");
429 spin_lock(&journal
->j_list_lock
);
430 __jbd2_journal_file_buffer(jh_in
, transaction
, BJ_Shadow
);
431 spin_unlock(&journal
->j_list_lock
);
432 jbd_unlock_bh_state(bh_in
);
434 JBUFFER_TRACE(new_jh
, "file as BJ_IO");
435 jbd2_journal_file_buffer(new_jh
, transaction
, BJ_IO
);
437 return do_escape
| (done_copy_out
<< 1);
441 * Allocation code for the journal file. Manage the space left in the
442 * journal, so that we can begin checkpointing when appropriate.
446 * __jbd2_log_space_left: Return the number of free blocks left in the journal.
448 * Called with the journal already locked.
450 * Called under j_state_lock
453 int __jbd2_log_space_left(journal_t
*journal
)
455 int left
= journal
->j_free
;
457 /* assert_spin_locked(&journal->j_state_lock); */
460 * Be pessimistic here about the number of those free blocks which
461 * might be required for log descriptor control blocks.
464 #define MIN_LOG_RESERVED_BLOCKS 32 /* Allow for rounding errors */
466 left
-= MIN_LOG_RESERVED_BLOCKS
;
475 * Called with j_state_lock locked for writing.
476 * Returns true if a transaction commit was started.
478 int __jbd2_log_start_commit(journal_t
*journal
, tid_t target
)
481 * The only transaction we can possibly wait upon is the
482 * currently running transaction (if it exists). Otherwise,
483 * the target tid must be an old one.
485 if (journal
->j_running_transaction
&&
486 journal
->j_running_transaction
->t_tid
== target
) {
488 * We want a new commit: OK, mark the request and wakeup the
489 * commit thread. We do _not_ do the commit ourselves.
492 journal
->j_commit_request
= target
;
493 jbd_debug(1, "JBD2: requesting commit %d/%d\n",
494 journal
->j_commit_request
,
495 journal
->j_commit_sequence
);
496 wake_up(&journal
->j_wait_commit
);
498 } else if (!tid_geq(journal
->j_commit_request
, target
))
499 /* This should never happen, but if it does, preserve
500 the evidence before kjournald goes into a loop and
501 increments j_commit_sequence beyond all recognition. */
502 WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
503 journal
->j_commit_request
,
504 journal
->j_commit_sequence
,
505 target
, journal
->j_running_transaction
?
506 journal
->j_running_transaction
->t_tid
: 0);
510 int jbd2_log_start_commit(journal_t
*journal
, tid_t tid
)
514 write_lock(&journal
->j_state_lock
);
515 ret
= __jbd2_log_start_commit(journal
, tid
);
516 write_unlock(&journal
->j_state_lock
);
521 * Force and wait upon a commit if the calling process is not within
522 * transaction. This is used for forcing out undo-protected data which contains
523 * bitmaps, when the fs is running out of space.
525 * We can only force the running transaction if we don't have an active handle;
526 * otherwise, we will deadlock.
528 * Returns true if a transaction was started.
530 int jbd2_journal_force_commit_nested(journal_t
*journal
)
532 transaction_t
*transaction
= NULL
;
534 int need_to_start
= 0;
536 read_lock(&journal
->j_state_lock
);
537 if (journal
->j_running_transaction
&& !current
->journal_info
) {
538 transaction
= journal
->j_running_transaction
;
539 if (!tid_geq(journal
->j_commit_request
, transaction
->t_tid
))
541 } else if (journal
->j_committing_transaction
)
542 transaction
= journal
->j_committing_transaction
;
545 read_unlock(&journal
->j_state_lock
);
546 return 0; /* Nothing to retry */
549 tid
= transaction
->t_tid
;
550 read_unlock(&journal
->j_state_lock
);
552 jbd2_log_start_commit(journal
, tid
);
553 jbd2_log_wait_commit(journal
, tid
);
558 * Start a commit of the current running transaction (if any). Returns true
559 * if a transaction is going to be committed (or is currently already
560 * committing), and fills its tid in at *ptid
562 int jbd2_journal_start_commit(journal_t
*journal
, tid_t
*ptid
)
566 write_lock(&journal
->j_state_lock
);
567 if (journal
->j_running_transaction
) {
568 tid_t tid
= journal
->j_running_transaction
->t_tid
;
570 __jbd2_log_start_commit(journal
, tid
);
571 /* There's a running transaction and we've just made sure
572 * it's commit has been scheduled. */
576 } else if (journal
->j_committing_transaction
) {
578 * If ext3_write_super() recently started a commit, then we
579 * have to wait for completion of that transaction
582 *ptid
= journal
->j_committing_transaction
->t_tid
;
585 write_unlock(&journal
->j_state_lock
);
590 * Return 1 if a given transaction has not yet sent barrier request
591 * connected with a transaction commit. If 0 is returned, transaction
592 * may or may not have sent the barrier. Used to avoid sending barrier
593 * twice in common cases.
595 int jbd2_trans_will_send_data_barrier(journal_t
*journal
, tid_t tid
)
598 transaction_t
*commit_trans
;
600 if (!(journal
->j_flags
& JBD2_BARRIER
))
602 read_lock(&journal
->j_state_lock
);
603 /* Transaction already committed? */
604 if (tid_geq(journal
->j_commit_sequence
, tid
))
606 commit_trans
= journal
->j_committing_transaction
;
607 if (!commit_trans
|| commit_trans
->t_tid
!= tid
) {
612 * Transaction is being committed and we already proceeded to
613 * submitting a flush to fs partition?
615 if (journal
->j_fs_dev
!= journal
->j_dev
) {
616 if (!commit_trans
->t_need_data_flush
||
617 commit_trans
->t_state
>= T_COMMIT_DFLUSH
)
620 if (commit_trans
->t_state
>= T_COMMIT_JFLUSH
)
625 read_unlock(&journal
->j_state_lock
);
628 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier
);
631 * Wait for a specified commit to complete.
632 * The caller may not hold the journal lock.
634 int jbd2_log_wait_commit(journal_t
*journal
, tid_t tid
)
638 read_lock(&journal
->j_state_lock
);
639 #ifdef CONFIG_JBD2_DEBUG
640 if (!tid_geq(journal
->j_commit_request
, tid
)) {
642 "%s: error: j_commit_request=%d, tid=%d\n",
643 __func__
, journal
->j_commit_request
, tid
);
646 while (tid_gt(tid
, journal
->j_commit_sequence
)) {
647 jbd_debug(1, "JBD2: want %d, j_commit_sequence=%d\n",
648 tid
, journal
->j_commit_sequence
);
649 wake_up(&journal
->j_wait_commit
);
650 read_unlock(&journal
->j_state_lock
);
651 wait_event(journal
->j_wait_done_commit
,
652 !tid_gt(tid
, journal
->j_commit_sequence
));
653 read_lock(&journal
->j_state_lock
);
655 read_unlock(&journal
->j_state_lock
);
657 if (unlikely(is_journal_aborted(journal
))) {
658 printk(KERN_EMERG
"journal commit I/O error\n");
665 * When this function returns the transaction corresponding to tid
666 * will be completed. If the transaction has currently running, start
667 * committing that transaction before waiting for it to complete. If
668 * the transaction id is stale, it is by definition already completed,
669 * so just return SUCCESS.
671 int jbd2_complete_transaction(journal_t
*journal
, tid_t tid
)
673 int need_to_wait
= 1;
675 read_lock(&journal
->j_state_lock
);
676 if (journal
->j_running_transaction
&&
677 journal
->j_running_transaction
->t_tid
== tid
) {
678 if (journal
->j_commit_request
!= tid
) {
679 /* transaction not yet started, so request it */
680 read_unlock(&journal
->j_state_lock
);
681 jbd2_log_start_commit(journal
, tid
);
684 } else if (!(journal
->j_committing_transaction
&&
685 journal
->j_committing_transaction
->t_tid
== tid
))
687 read_unlock(&journal
->j_state_lock
);
691 return jbd2_log_wait_commit(journal
, tid
);
693 EXPORT_SYMBOL(jbd2_complete_transaction
);
696 * Log buffer allocation routines:
699 int jbd2_journal_next_log_block(journal_t
*journal
, unsigned long long *retp
)
701 unsigned long blocknr
;
703 write_lock(&journal
->j_state_lock
);
704 J_ASSERT(journal
->j_free
> 1);
706 blocknr
= journal
->j_head
;
709 if (journal
->j_head
== journal
->j_last
)
710 journal
->j_head
= journal
->j_first
;
711 write_unlock(&journal
->j_state_lock
);
712 return jbd2_journal_bmap(journal
, blocknr
, retp
);
716 * Conversion of logical to physical block numbers for the journal
718 * On external journals the journal blocks are identity-mapped, so
719 * this is a no-op. If needed, we can use j_blk_offset - everything is
722 int jbd2_journal_bmap(journal_t
*journal
, unsigned long blocknr
,
723 unsigned long long *retp
)
726 unsigned long long ret
;
728 if (journal
->j_inode
) {
729 ret
= bmap(journal
->j_inode
, blocknr
);
733 printk(KERN_ALERT
"%s: journal block not found "
734 "at offset %lu on %s\n",
735 __func__
, blocknr
, journal
->j_devname
);
737 __journal_abort_soft(journal
, err
);
740 *retp
= blocknr
; /* +journal->j_blk_offset */
746 * We play buffer_head aliasing tricks to write data/metadata blocks to
747 * the journal without copying their contents, but for journal
748 * descriptor blocks we do need to generate bona fide buffers.
750 * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
751 * the buffer's contents they really should run flush_dcache_page(bh->b_page).
752 * But we don't bother doing that, so there will be coherency problems with
753 * mmaps of blockdevs which hold live JBD-controlled filesystems.
755 struct journal_head
*jbd2_journal_get_descriptor_buffer(journal_t
*journal
)
757 struct buffer_head
*bh
;
758 unsigned long long blocknr
;
761 err
= jbd2_journal_next_log_block(journal
, &blocknr
);
766 bh
= __getblk(journal
->j_dev
, blocknr
, journal
->j_blocksize
);
770 memset(bh
->b_data
, 0, journal
->j_blocksize
);
771 set_buffer_uptodate(bh
);
773 BUFFER_TRACE(bh
, "return this buffer");
774 return jbd2_journal_add_journal_head(bh
);
778 * Return tid of the oldest transaction in the journal and block in the journal
779 * where the transaction starts.
781 * If the journal is now empty, return which will be the next transaction ID
782 * we will write and where will that transaction start.
784 * The return value is 0 if journal tail cannot be pushed any further, 1 if
787 int jbd2_journal_get_log_tail(journal_t
*journal
, tid_t
*tid
,
788 unsigned long *block
)
790 transaction_t
*transaction
;
793 read_lock(&journal
->j_state_lock
);
794 spin_lock(&journal
->j_list_lock
);
795 transaction
= journal
->j_checkpoint_transactions
;
797 *tid
= transaction
->t_tid
;
798 *block
= transaction
->t_log_start
;
799 } else if ((transaction
= journal
->j_committing_transaction
) != NULL
) {
800 *tid
= transaction
->t_tid
;
801 *block
= transaction
->t_log_start
;
802 } else if ((transaction
= journal
->j_running_transaction
) != NULL
) {
803 *tid
= transaction
->t_tid
;
804 *block
= journal
->j_head
;
806 *tid
= journal
->j_transaction_sequence
;
807 *block
= journal
->j_head
;
809 ret
= tid_gt(*tid
, journal
->j_tail_sequence
);
810 spin_unlock(&journal
->j_list_lock
);
811 read_unlock(&journal
->j_state_lock
);
817 * Update information in journal structure and in on disk journal superblock
818 * about log tail. This function does not check whether information passed in
819 * really pushes log tail further. It's responsibility of the caller to make
820 * sure provided log tail information is valid (e.g. by holding
821 * j_checkpoint_mutex all the time between computing log tail and calling this
822 * function as is the case with jbd2_cleanup_journal_tail()).
824 * Requires j_checkpoint_mutex
826 void __jbd2_update_log_tail(journal_t
*journal
, tid_t tid
, unsigned long block
)
830 BUG_ON(!mutex_is_locked(&journal
->j_checkpoint_mutex
));
833 * We cannot afford for write to remain in drive's caches since as
834 * soon as we update j_tail, next transaction can start reusing journal
835 * space and if we lose sb update during power failure we'd replay
836 * old transaction with possibly newly overwritten data.
838 jbd2_journal_update_sb_log_tail(journal
, tid
, block
, WRITE_FUA
);
839 write_lock(&journal
->j_state_lock
);
840 freed
= block
- journal
->j_tail
;
841 if (block
< journal
->j_tail
)
842 freed
+= journal
->j_last
- journal
->j_first
;
844 trace_jbd2_update_log_tail(journal
, tid
, block
, freed
);
846 "Cleaning journal tail from %d to %d (offset %lu), "
848 journal
->j_tail_sequence
, tid
, block
, freed
);
850 journal
->j_free
+= freed
;
851 journal
->j_tail_sequence
= tid
;
852 journal
->j_tail
= block
;
853 write_unlock(&journal
->j_state_lock
);
857 * This is a variaon of __jbd2_update_log_tail which checks for validity of
858 * provided log tail and locks j_checkpoint_mutex. So it is safe against races
859 * with other threads updating log tail.
861 void jbd2_update_log_tail(journal_t
*journal
, tid_t tid
, unsigned long block
)
863 mutex_lock(&journal
->j_checkpoint_mutex
);
864 if (tid_gt(tid
, journal
->j_tail_sequence
))
865 __jbd2_update_log_tail(journal
, tid
, block
);
866 mutex_unlock(&journal
->j_checkpoint_mutex
);
869 struct jbd2_stats_proc_session
{
871 struct transaction_stats_s
*stats
;
876 static void *jbd2_seq_info_start(struct seq_file
*seq
, loff_t
*pos
)
878 return *pos
? NULL
: SEQ_START_TOKEN
;
881 static void *jbd2_seq_info_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
886 static int jbd2_seq_info_show(struct seq_file
*seq
, void *v
)
888 struct jbd2_stats_proc_session
*s
= seq
->private;
890 if (v
!= SEQ_START_TOKEN
)
892 seq_printf(seq
, "%lu transaction, each up to %u blocks\n",
894 s
->journal
->j_max_transaction_buffers
);
895 if (s
->stats
->ts_tid
== 0)
897 seq_printf(seq
, "average: \n %ums waiting for transaction\n",
898 jiffies_to_msecs(s
->stats
->run
.rs_wait
/ s
->stats
->ts_tid
));
899 seq_printf(seq
, " %ums running transaction\n",
900 jiffies_to_msecs(s
->stats
->run
.rs_running
/ s
->stats
->ts_tid
));
901 seq_printf(seq
, " %ums transaction was being locked\n",
902 jiffies_to_msecs(s
->stats
->run
.rs_locked
/ s
->stats
->ts_tid
));
903 seq_printf(seq
, " %ums flushing data (in ordered mode)\n",
904 jiffies_to_msecs(s
->stats
->run
.rs_flushing
/ s
->stats
->ts_tid
));
905 seq_printf(seq
, " %ums logging transaction\n",
906 jiffies_to_msecs(s
->stats
->run
.rs_logging
/ s
->stats
->ts_tid
));
907 seq_printf(seq
, " %lluus average transaction commit time\n",
908 div_u64(s
->journal
->j_average_commit_time
, 1000));
909 seq_printf(seq
, " %lu handles per transaction\n",
910 s
->stats
->run
.rs_handle_count
/ s
->stats
->ts_tid
);
911 seq_printf(seq
, " %lu blocks per transaction\n",
912 s
->stats
->run
.rs_blocks
/ s
->stats
->ts_tid
);
913 seq_printf(seq
, " %lu logged blocks per transaction\n",
914 s
->stats
->run
.rs_blocks_logged
/ s
->stats
->ts_tid
);
918 static void jbd2_seq_info_stop(struct seq_file
*seq
, void *v
)
922 static const struct seq_operations jbd2_seq_info_ops
= {
923 .start
= jbd2_seq_info_start
,
924 .next
= jbd2_seq_info_next
,
925 .stop
= jbd2_seq_info_stop
,
926 .show
= jbd2_seq_info_show
,
929 static int jbd2_seq_info_open(struct inode
*inode
, struct file
*file
)
931 journal_t
*journal
= PDE(inode
)->data
;
932 struct jbd2_stats_proc_session
*s
;
935 s
= kmalloc(sizeof(*s
), GFP_KERNEL
);
938 size
= sizeof(struct transaction_stats_s
);
939 s
->stats
= kmalloc(size
, GFP_KERNEL
);
940 if (s
->stats
== NULL
) {
944 spin_lock(&journal
->j_history_lock
);
945 memcpy(s
->stats
, &journal
->j_stats
, size
);
946 s
->journal
= journal
;
947 spin_unlock(&journal
->j_history_lock
);
949 rc
= seq_open(file
, &jbd2_seq_info_ops
);
951 struct seq_file
*m
= file
->private_data
;
961 static int jbd2_seq_info_release(struct inode
*inode
, struct file
*file
)
963 struct seq_file
*seq
= file
->private_data
;
964 struct jbd2_stats_proc_session
*s
= seq
->private;
967 return seq_release(inode
, file
);
970 static const struct file_operations jbd2_seq_info_fops
= {
971 .owner
= THIS_MODULE
,
972 .open
= jbd2_seq_info_open
,
975 .release
= jbd2_seq_info_release
,
978 static struct proc_dir_entry
*proc_jbd2_stats
;
980 static void jbd2_stats_proc_init(journal_t
*journal
)
982 journal
->j_proc_entry
= proc_mkdir(journal
->j_devname
, proc_jbd2_stats
);
983 if (journal
->j_proc_entry
) {
984 proc_create_data("info", S_IRUGO
, journal
->j_proc_entry
,
985 &jbd2_seq_info_fops
, journal
);
989 static void jbd2_stats_proc_exit(journal_t
*journal
)
991 remove_proc_entry("info", journal
->j_proc_entry
);
992 remove_proc_entry(journal
->j_devname
, proc_jbd2_stats
);
996 * Management for journal control blocks: functions to create and
997 * destroy journal_t structures, and to initialise and read existing
998 * journal blocks from disk. */
1000 /* First: create and setup a journal_t object in memory. We initialise
1001 * very few fields yet: that has to wait until we have created the
1002 * journal structures from from scratch, or loaded them from disk. */
1004 static journal_t
* journal_init_common (void)
1009 journal
= kzalloc(sizeof(*journal
), GFP_KERNEL
);
1013 init_waitqueue_head(&journal
->j_wait_transaction_locked
);
1014 init_waitqueue_head(&journal
->j_wait_logspace
);
1015 init_waitqueue_head(&journal
->j_wait_done_commit
);
1016 init_waitqueue_head(&journal
->j_wait_checkpoint
);
1017 init_waitqueue_head(&journal
->j_wait_commit
);
1018 init_waitqueue_head(&journal
->j_wait_updates
);
1019 mutex_init(&journal
->j_barrier
);
1020 mutex_init(&journal
->j_checkpoint_mutex
);
1021 spin_lock_init(&journal
->j_revoke_lock
);
1022 spin_lock_init(&journal
->j_list_lock
);
1023 rwlock_init(&journal
->j_state_lock
);
1025 journal
->j_commit_interval
= (HZ
* JBD2_DEFAULT_MAX_COMMIT_AGE
);
1026 journal
->j_min_batch_time
= 0;
1027 journal
->j_max_batch_time
= 15000; /* 15ms */
1029 /* The journal is marked for error until we succeed with recovery! */
1030 journal
->j_flags
= JBD2_ABORT
;
1032 /* Set up a default-sized revoke table for the new mount. */
1033 err
= jbd2_journal_init_revoke(journal
, JOURNAL_REVOKE_DEFAULT_HASH
);
1039 spin_lock_init(&journal
->j_history_lock
);
1044 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1046 * Create a journal structure assigned some fixed set of disk blocks to
1047 * the journal. We don't actually touch those disk blocks yet, but we
1048 * need to set up all of the mapping information to tell the journaling
1049 * system where the journal blocks are.
1054 * journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1055 * @bdev: Block device on which to create the journal
1056 * @fs_dev: Device which hold journalled filesystem for this journal.
1057 * @start: Block nr Start of journal.
1058 * @len: Length of the journal in blocks.
1059 * @blocksize: blocksize of journalling device
1061 * Returns: a newly created journal_t *
1063 * jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1064 * range of blocks on an arbitrary block device.
1067 journal_t
* jbd2_journal_init_dev(struct block_device
*bdev
,
1068 struct block_device
*fs_dev
,
1069 unsigned long long start
, int len
, int blocksize
)
1071 journal_t
*journal
= journal_init_common();
1072 struct buffer_head
*bh
;
1079 /* journal descriptor can store up to n blocks -bzzz */
1080 journal
->j_blocksize
= blocksize
;
1081 journal
->j_dev
= bdev
;
1082 journal
->j_fs_dev
= fs_dev
;
1083 journal
->j_blk_offset
= start
;
1084 journal
->j_maxlen
= len
;
1085 bdevname(journal
->j_dev
, journal
->j_devname
);
1086 p
= journal
->j_devname
;
1087 while ((p
= strchr(p
, '/')))
1089 jbd2_stats_proc_init(journal
);
1090 n
= journal
->j_blocksize
/ sizeof(journal_block_tag_t
);
1091 journal
->j_wbufsize
= n
;
1092 journal
->j_wbuf
= kmalloc(n
* sizeof(struct buffer_head
*), GFP_KERNEL
);
1093 if (!journal
->j_wbuf
) {
1094 printk(KERN_ERR
"%s: Can't allocate bhs for commit thread\n",
1099 bh
= __getblk(journal
->j_dev
, start
, journal
->j_blocksize
);
1102 "%s: Cannot get buffer for journal superblock\n",
1106 journal
->j_sb_buffer
= bh
;
1107 journal
->j_superblock
= (journal_superblock_t
*)bh
->b_data
;
1111 kfree(journal
->j_wbuf
);
1112 jbd2_stats_proc_exit(journal
);
1118 * journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1119 * @inode: An inode to create the journal in
1121 * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1122 * the journal. The inode must exist already, must support bmap() and
1123 * must have all data blocks preallocated.
1125 journal_t
* jbd2_journal_init_inode (struct inode
*inode
)
1127 struct buffer_head
*bh
;
1128 journal_t
*journal
= journal_init_common();
1132 unsigned long long blocknr
;
1137 journal
->j_dev
= journal
->j_fs_dev
= inode
->i_sb
->s_bdev
;
1138 journal
->j_inode
= inode
;
1139 bdevname(journal
->j_dev
, journal
->j_devname
);
1140 p
= journal
->j_devname
;
1141 while ((p
= strchr(p
, '/')))
1143 p
= journal
->j_devname
+ strlen(journal
->j_devname
);
1144 sprintf(p
, "-%lu", journal
->j_inode
->i_ino
);
1146 "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
1147 journal
, inode
->i_sb
->s_id
, inode
->i_ino
,
1148 (long long) inode
->i_size
,
1149 inode
->i_sb
->s_blocksize_bits
, inode
->i_sb
->s_blocksize
);
1151 journal
->j_maxlen
= inode
->i_size
>> inode
->i_sb
->s_blocksize_bits
;
1152 journal
->j_blocksize
= inode
->i_sb
->s_blocksize
;
1153 jbd2_stats_proc_init(journal
);
1155 /* journal descriptor can store up to n blocks -bzzz */
1156 n
= journal
->j_blocksize
/ sizeof(journal_block_tag_t
);
1157 journal
->j_wbufsize
= n
;
1158 journal
->j_wbuf
= kmalloc(n
* sizeof(struct buffer_head
*), GFP_KERNEL
);
1159 if (!journal
->j_wbuf
) {
1160 printk(KERN_ERR
"%s: Can't allocate bhs for commit thread\n",
1165 err
= jbd2_journal_bmap(journal
, 0, &blocknr
);
1166 /* If that failed, give up */
1168 printk(KERN_ERR
"%s: Cannot locate journal superblock\n",
1173 bh
= __getblk(journal
->j_dev
, blocknr
, journal
->j_blocksize
);
1176 "%s: Cannot get buffer for journal superblock\n",
1180 journal
->j_sb_buffer
= bh
;
1181 journal
->j_superblock
= (journal_superblock_t
*)bh
->b_data
;
1185 kfree(journal
->j_wbuf
);
1186 jbd2_stats_proc_exit(journal
);
1192 * If the journal init or create aborts, we need to mark the journal
1193 * superblock as being NULL to prevent the journal destroy from writing
1194 * back a bogus superblock.
1196 static void journal_fail_superblock (journal_t
*journal
)
1198 struct buffer_head
*bh
= journal
->j_sb_buffer
;
1200 journal
->j_sb_buffer
= NULL
;
1204 * Given a journal_t structure, initialise the various fields for
1205 * startup of a new journaling session. We use this both when creating
1206 * a journal, and after recovering an old journal to reset it for
1210 static int journal_reset(journal_t
*journal
)
1212 journal_superblock_t
*sb
= journal
->j_superblock
;
1213 unsigned long long first
, last
;
1215 first
= be32_to_cpu(sb
->s_first
);
1216 last
= be32_to_cpu(sb
->s_maxlen
);
1217 if (first
+ JBD2_MIN_JOURNAL_BLOCKS
> last
+ 1) {
1218 printk(KERN_ERR
"JBD2: Journal too short (blocks %llu-%llu).\n",
1220 journal_fail_superblock(journal
);
1224 journal
->j_first
= first
;
1225 journal
->j_last
= last
;
1227 journal
->j_head
= first
;
1228 journal
->j_tail
= first
;
1229 journal
->j_free
= last
- first
;
1231 journal
->j_tail_sequence
= journal
->j_transaction_sequence
;
1232 journal
->j_commit_sequence
= journal
->j_transaction_sequence
- 1;
1233 journal
->j_commit_request
= journal
->j_commit_sequence
;
1235 journal
->j_max_transaction_buffers
= journal
->j_maxlen
/ 4;
1238 * As a special case, if the on-disk copy is already marked as needing
1239 * no recovery (s_start == 0), then we can safely defer the superblock
1240 * update until the next commit by setting JBD2_FLUSHED. This avoids
1241 * attempting a write to a potential-readonly device.
1243 if (sb
->s_start
== 0) {
1244 jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1245 "(start %ld, seq %d, errno %d)\n",
1246 journal
->j_tail
, journal
->j_tail_sequence
,
1248 journal
->j_flags
|= JBD2_FLUSHED
;
1250 /* Lock here to make assertions happy... */
1251 mutex_lock(&journal
->j_checkpoint_mutex
);
1253 * Update log tail information. We use WRITE_FUA since new
1254 * transaction will start reusing journal space and so we
1255 * must make sure information about current log tail is on
1258 jbd2_journal_update_sb_log_tail(journal
,
1259 journal
->j_tail_sequence
,
1262 mutex_unlock(&journal
->j_checkpoint_mutex
);
1264 return jbd2_journal_start_thread(journal
);
1267 static void jbd2_write_superblock(journal_t
*journal
, int write_op
)
1269 struct buffer_head
*bh
= journal
->j_sb_buffer
;
1272 trace_jbd2_write_superblock(journal
, write_op
);
1273 if (!(journal
->j_flags
& JBD2_BARRIER
))
1274 write_op
&= ~(REQ_FUA
| REQ_FLUSH
);
1276 if (buffer_write_io_error(bh
)) {
1278 * Oh, dear. A previous attempt to write the journal
1279 * superblock failed. This could happen because the
1280 * USB device was yanked out. Or it could happen to
1281 * be a transient write error and maybe the block will
1282 * be remapped. Nothing we can do but to retry the
1283 * write and hope for the best.
1285 printk(KERN_ERR
"JBD2: previous I/O error detected "
1286 "for journal superblock update for %s.\n",
1287 journal
->j_devname
);
1288 clear_buffer_write_io_error(bh
);
1289 set_buffer_uptodate(bh
);
1292 bh
->b_end_io
= end_buffer_write_sync
;
1293 ret
= submit_bh(write_op
, bh
);
1295 if (buffer_write_io_error(bh
)) {
1296 clear_buffer_write_io_error(bh
);
1297 set_buffer_uptodate(bh
);
1301 printk(KERN_ERR
"JBD2: Error %d detected when updating "
1302 "journal superblock for %s.\n", ret
,
1303 journal
->j_devname
);
1308 * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1309 * @journal: The journal to update.
1310 * @tail_tid: TID of the new transaction at the tail of the log
1311 * @tail_block: The first block of the transaction at the tail of the log
1312 * @write_op: With which operation should we write the journal sb
1314 * Update a journal's superblock information about log tail and write it to
1315 * disk, waiting for the IO to complete.
1317 void jbd2_journal_update_sb_log_tail(journal_t
*journal
, tid_t tail_tid
,
1318 unsigned long tail_block
, int write_op
)
1320 journal_superblock_t
*sb
= journal
->j_superblock
;
1322 BUG_ON(!mutex_is_locked(&journal
->j_checkpoint_mutex
));
1323 jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1324 tail_block
, tail_tid
);
1326 sb
->s_sequence
= cpu_to_be32(tail_tid
);
1327 sb
->s_start
= cpu_to_be32(tail_block
);
1329 jbd2_write_superblock(journal
, write_op
);
1331 /* Log is no longer empty */
1332 write_lock(&journal
->j_state_lock
);
1333 WARN_ON(!sb
->s_sequence
);
1334 journal
->j_flags
&= ~JBD2_FLUSHED
;
1335 write_unlock(&journal
->j_state_lock
);
1339 * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1340 * @journal: The journal to update.
1342 * Update a journal's dynamic superblock fields to show that journal is empty.
1343 * Write updated superblock to disk waiting for IO to complete.
1345 static void jbd2_mark_journal_empty(journal_t
*journal
)
1347 journal_superblock_t
*sb
= journal
->j_superblock
;
1349 BUG_ON(!mutex_is_locked(&journal
->j_checkpoint_mutex
));
1350 read_lock(&journal
->j_state_lock
);
1351 /* Is it already empty? */
1352 if (sb
->s_start
== 0) {
1353 read_unlock(&journal
->j_state_lock
);
1356 jbd_debug(1, "JBD2: Marking journal as empty (seq %d)\n",
1357 journal
->j_tail_sequence
);
1359 sb
->s_sequence
= cpu_to_be32(journal
->j_tail_sequence
);
1360 sb
->s_start
= cpu_to_be32(0);
1361 read_unlock(&journal
->j_state_lock
);
1363 jbd2_write_superblock(journal
, WRITE_FUA
);
1365 /* Log is no longer empty */
1366 write_lock(&journal
->j_state_lock
);
1367 journal
->j_flags
|= JBD2_FLUSHED
;
1368 write_unlock(&journal
->j_state_lock
);
1373 * jbd2_journal_update_sb_errno() - Update error in the journal.
1374 * @journal: The journal to update.
1376 * Update a journal's errno. Write updated superblock to disk waiting for IO
1379 void jbd2_journal_update_sb_errno(journal_t
*journal
)
1381 journal_superblock_t
*sb
= journal
->j_superblock
;
1383 read_lock(&journal
->j_state_lock
);
1384 jbd_debug(1, "JBD2: updating superblock error (errno %d)\n",
1386 sb
->s_errno
= cpu_to_be32(journal
->j_errno
);
1387 read_unlock(&journal
->j_state_lock
);
1389 jbd2_write_superblock(journal
, WRITE_SYNC
);
1391 EXPORT_SYMBOL(jbd2_journal_update_sb_errno
);
1394 * Read the superblock for a given journal, performing initial
1395 * validation of the format.
1397 static int journal_get_superblock(journal_t
*journal
)
1399 struct buffer_head
*bh
;
1400 journal_superblock_t
*sb
;
1403 bh
= journal
->j_sb_buffer
;
1405 J_ASSERT(bh
!= NULL
);
1406 if (!buffer_uptodate(bh
)) {
1407 ll_rw_block(READ
, 1, &bh
);
1409 if (!buffer_uptodate(bh
)) {
1411 "JBD2: IO error reading journal superblock\n");
1416 sb
= journal
->j_superblock
;
1420 if (sb
->s_header
.h_magic
!= cpu_to_be32(JBD2_MAGIC_NUMBER
) ||
1421 sb
->s_blocksize
!= cpu_to_be32(journal
->j_blocksize
)) {
1422 printk(KERN_WARNING
"JBD2: no valid journal superblock found\n");
1426 switch(be32_to_cpu(sb
->s_header
.h_blocktype
)) {
1427 case JBD2_SUPERBLOCK_V1
:
1428 journal
->j_format_version
= 1;
1430 case JBD2_SUPERBLOCK_V2
:
1431 journal
->j_format_version
= 2;
1434 printk(KERN_WARNING
"JBD2: unrecognised superblock format ID\n");
1438 if (be32_to_cpu(sb
->s_maxlen
) < journal
->j_maxlen
)
1439 journal
->j_maxlen
= be32_to_cpu(sb
->s_maxlen
);
1440 else if (be32_to_cpu(sb
->s_maxlen
) > journal
->j_maxlen
) {
1441 printk(KERN_WARNING
"JBD2: journal file too short\n");
1445 if (be32_to_cpu(sb
->s_first
) == 0 ||
1446 be32_to_cpu(sb
->s_first
) >= journal
->j_maxlen
) {
1448 "JBD2: Invalid start block of journal: %u\n",
1449 be32_to_cpu(sb
->s_first
));
1456 journal_fail_superblock(journal
);
1461 * Load the on-disk journal superblock and read the key fields into the
1465 static int load_superblock(journal_t
*journal
)
1468 journal_superblock_t
*sb
;
1470 err
= journal_get_superblock(journal
);
1474 sb
= journal
->j_superblock
;
1476 journal
->j_tail_sequence
= be32_to_cpu(sb
->s_sequence
);
1477 journal
->j_tail
= be32_to_cpu(sb
->s_start
);
1478 journal
->j_first
= be32_to_cpu(sb
->s_first
);
1479 journal
->j_last
= be32_to_cpu(sb
->s_maxlen
);
1480 journal
->j_errno
= be32_to_cpu(sb
->s_errno
);
1487 * int jbd2_journal_load() - Read journal from disk.
1488 * @journal: Journal to act on.
1490 * Given a journal_t structure which tells us which disk blocks contain
1491 * a journal, read the journal from disk to initialise the in-memory
1494 int jbd2_journal_load(journal_t
*journal
)
1497 journal_superblock_t
*sb
;
1499 err
= load_superblock(journal
);
1503 sb
= journal
->j_superblock
;
1504 /* If this is a V2 superblock, then we have to check the
1505 * features flags on it. */
1507 if (journal
->j_format_version
>= 2) {
1508 if ((sb
->s_feature_ro_compat
&
1509 ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES
)) ||
1510 (sb
->s_feature_incompat
&
1511 ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES
))) {
1513 "JBD2: Unrecognised features on journal\n");
1519 * Create a slab for this blocksize
1521 err
= jbd2_journal_create_slab(be32_to_cpu(sb
->s_blocksize
));
1525 /* Let the recovery code check whether it needs to recover any
1526 * data from the journal. */
1527 if (jbd2_journal_recover(journal
))
1528 goto recovery_error
;
1530 if (journal
->j_failed_commit
) {
1531 printk(KERN_ERR
"JBD2: journal transaction %u on %s "
1532 "is corrupt.\n", journal
->j_failed_commit
,
1533 journal
->j_devname
);
1537 /* OK, we've finished with the dynamic journal bits:
1538 * reinitialise the dynamic contents of the superblock in memory
1539 * and reset them on disk. */
1540 if (journal_reset(journal
))
1541 goto recovery_error
;
1543 journal
->j_flags
&= ~JBD2_ABORT
;
1544 journal
->j_flags
|= JBD2_LOADED
;
1548 printk(KERN_WARNING
"JBD2: recovery failed\n");
1553 * void jbd2_journal_destroy() - Release a journal_t structure.
1554 * @journal: Journal to act on.
1556 * Release a journal_t structure once it is no longer in use by the
1558 * Return <0 if we couldn't clean up the journal.
1560 int jbd2_journal_destroy(journal_t
*journal
)
1564 /* Wait for the commit thread to wake up and die. */
1565 journal_kill_thread(journal
);
1567 /* Force a final log commit */
1568 if (journal
->j_running_transaction
)
1569 jbd2_journal_commit_transaction(journal
);
1571 /* Force any old transactions to disk */
1573 /* Totally anal locking here... */
1574 spin_lock(&journal
->j_list_lock
);
1575 while (journal
->j_checkpoint_transactions
!= NULL
) {
1576 spin_unlock(&journal
->j_list_lock
);
1577 mutex_lock(&journal
->j_checkpoint_mutex
);
1578 jbd2_log_do_checkpoint(journal
);
1579 mutex_unlock(&journal
->j_checkpoint_mutex
);
1580 spin_lock(&journal
->j_list_lock
);
1583 J_ASSERT(journal
->j_running_transaction
== NULL
);
1584 J_ASSERT(journal
->j_committing_transaction
== NULL
);
1585 J_ASSERT(journal
->j_checkpoint_transactions
== NULL
);
1586 spin_unlock(&journal
->j_list_lock
);
1588 if (journal
->j_sb_buffer
) {
1589 if (!is_journal_aborted(journal
)) {
1590 mutex_lock(&journal
->j_checkpoint_mutex
);
1591 jbd2_mark_journal_empty(journal
);
1592 mutex_unlock(&journal
->j_checkpoint_mutex
);
1595 brelse(journal
->j_sb_buffer
);
1598 if (journal
->j_proc_entry
)
1599 jbd2_stats_proc_exit(journal
);
1600 if (journal
->j_inode
)
1601 iput(journal
->j_inode
);
1602 if (journal
->j_revoke
)
1603 jbd2_journal_destroy_revoke(journal
);
1604 kfree(journal
->j_wbuf
);
1612 *int jbd2_journal_check_used_features () - Check if features specified are used.
1613 * @journal: Journal to check.
1614 * @compat: bitmask of compatible features
1615 * @ro: bitmask of features that force read-only mount
1616 * @incompat: bitmask of incompatible features
1618 * Check whether the journal uses all of a given set of
1619 * features. Return true (non-zero) if it does.
1622 int jbd2_journal_check_used_features (journal_t
*journal
, unsigned long compat
,
1623 unsigned long ro
, unsigned long incompat
)
1625 journal_superblock_t
*sb
;
1627 if (!compat
&& !ro
&& !incompat
)
1629 /* Load journal superblock if it is not loaded yet. */
1630 if (journal
->j_format_version
== 0 &&
1631 journal_get_superblock(journal
) != 0)
1633 if (journal
->j_format_version
== 1)
1636 sb
= journal
->j_superblock
;
1638 if (((be32_to_cpu(sb
->s_feature_compat
) & compat
) == compat
) &&
1639 ((be32_to_cpu(sb
->s_feature_ro_compat
) & ro
) == ro
) &&
1640 ((be32_to_cpu(sb
->s_feature_incompat
) & incompat
) == incompat
))
1647 * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1648 * @journal: Journal to check.
1649 * @compat: bitmask of compatible features
1650 * @ro: bitmask of features that force read-only mount
1651 * @incompat: bitmask of incompatible features
1653 * Check whether the journaling code supports the use of
1654 * all of a given set of features on this journal. Return true
1655 * (non-zero) if it can. */
1657 int jbd2_journal_check_available_features (journal_t
*journal
, unsigned long compat
,
1658 unsigned long ro
, unsigned long incompat
)
1660 if (!compat
&& !ro
&& !incompat
)
1663 /* We can support any known requested features iff the
1664 * superblock is in version 2. Otherwise we fail to support any
1665 * extended sb features. */
1667 if (journal
->j_format_version
!= 2)
1670 if ((compat
& JBD2_KNOWN_COMPAT_FEATURES
) == compat
&&
1671 (ro
& JBD2_KNOWN_ROCOMPAT_FEATURES
) == ro
&&
1672 (incompat
& JBD2_KNOWN_INCOMPAT_FEATURES
) == incompat
)
1679 * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1680 * @journal: Journal to act on.
1681 * @compat: bitmask of compatible features
1682 * @ro: bitmask of features that force read-only mount
1683 * @incompat: bitmask of incompatible features
1685 * Mark a given journal feature as present on the
1686 * superblock. Returns true if the requested features could be set.
1690 int jbd2_journal_set_features (journal_t
*journal
, unsigned long compat
,
1691 unsigned long ro
, unsigned long incompat
)
1693 journal_superblock_t
*sb
;
1695 if (jbd2_journal_check_used_features(journal
, compat
, ro
, incompat
))
1698 if (!jbd2_journal_check_available_features(journal
, compat
, ro
, incompat
))
1701 jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1702 compat
, ro
, incompat
);
1704 sb
= journal
->j_superblock
;
1706 sb
->s_feature_compat
|= cpu_to_be32(compat
);
1707 sb
->s_feature_ro_compat
|= cpu_to_be32(ro
);
1708 sb
->s_feature_incompat
|= cpu_to_be32(incompat
);
1714 * jbd2_journal_clear_features () - Clear a given journal feature in the
1716 * @journal: Journal to act on.
1717 * @compat: bitmask of compatible features
1718 * @ro: bitmask of features that force read-only mount
1719 * @incompat: bitmask of incompatible features
1721 * Clear a given journal feature as present on the
1724 void jbd2_journal_clear_features(journal_t
*journal
, unsigned long compat
,
1725 unsigned long ro
, unsigned long incompat
)
1727 journal_superblock_t
*sb
;
1729 jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1730 compat
, ro
, incompat
);
1732 sb
= journal
->j_superblock
;
1734 sb
->s_feature_compat
&= ~cpu_to_be32(compat
);
1735 sb
->s_feature_ro_compat
&= ~cpu_to_be32(ro
);
1736 sb
->s_feature_incompat
&= ~cpu_to_be32(incompat
);
1738 EXPORT_SYMBOL(jbd2_journal_clear_features
);
1741 * int jbd2_journal_flush () - Flush journal
1742 * @journal: Journal to act on.
1744 * Flush all data for a given journal to disk and empty the journal.
1745 * Filesystems can use this when remounting readonly to ensure that
1746 * recovery does not need to happen on remount.
1749 int jbd2_journal_flush(journal_t
*journal
)
1752 transaction_t
*transaction
= NULL
;
1754 write_lock(&journal
->j_state_lock
);
1756 /* Force everything buffered to the log... */
1757 if (journal
->j_running_transaction
) {
1758 transaction
= journal
->j_running_transaction
;
1759 __jbd2_log_start_commit(journal
, transaction
->t_tid
);
1760 } else if (journal
->j_committing_transaction
)
1761 transaction
= journal
->j_committing_transaction
;
1763 /* Wait for the log commit to complete... */
1765 tid_t tid
= transaction
->t_tid
;
1767 write_unlock(&journal
->j_state_lock
);
1768 jbd2_log_wait_commit(journal
, tid
);
1770 write_unlock(&journal
->j_state_lock
);
1773 /* ...and flush everything in the log out to disk. */
1774 spin_lock(&journal
->j_list_lock
);
1775 while (!err
&& journal
->j_checkpoint_transactions
!= NULL
) {
1776 spin_unlock(&journal
->j_list_lock
);
1777 mutex_lock(&journal
->j_checkpoint_mutex
);
1778 err
= jbd2_log_do_checkpoint(journal
);
1779 mutex_unlock(&journal
->j_checkpoint_mutex
);
1780 spin_lock(&journal
->j_list_lock
);
1782 spin_unlock(&journal
->j_list_lock
);
1784 if (is_journal_aborted(journal
))
1787 mutex_lock(&journal
->j_checkpoint_mutex
);
1788 jbd2_cleanup_journal_tail(journal
);
1790 /* Finally, mark the journal as really needing no recovery.
1791 * This sets s_start==0 in the underlying superblock, which is
1792 * the magic code for a fully-recovered superblock. Any future
1793 * commits of data to the journal will restore the current
1795 jbd2_mark_journal_empty(journal
);
1796 mutex_unlock(&journal
->j_checkpoint_mutex
);
1797 write_lock(&journal
->j_state_lock
);
1798 J_ASSERT(!journal
->j_running_transaction
);
1799 J_ASSERT(!journal
->j_committing_transaction
);
1800 J_ASSERT(!journal
->j_checkpoint_transactions
);
1801 J_ASSERT(journal
->j_head
== journal
->j_tail
);
1802 J_ASSERT(journal
->j_tail_sequence
== journal
->j_transaction_sequence
);
1803 write_unlock(&journal
->j_state_lock
);
1808 * int jbd2_journal_wipe() - Wipe journal contents
1809 * @journal: Journal to act on.
1810 * @write: flag (see below)
1812 * Wipe out all of the contents of a journal, safely. This will produce
1813 * a warning if the journal contains any valid recovery information.
1814 * Must be called between journal_init_*() and jbd2_journal_load().
1816 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
1817 * we merely suppress recovery.
1820 int jbd2_journal_wipe(journal_t
*journal
, int write
)
1824 J_ASSERT (!(journal
->j_flags
& JBD2_LOADED
));
1826 err
= load_superblock(journal
);
1830 if (!journal
->j_tail
)
1833 printk(KERN_WARNING
"JBD2: %s recovery information on journal\n",
1834 write
? "Clearing" : "Ignoring");
1836 err
= jbd2_journal_skip_recovery(journal
);
1838 /* Lock to make assertions happy... */
1839 mutex_lock(&journal
->j_checkpoint_mutex
);
1840 jbd2_mark_journal_empty(journal
);
1841 mutex_unlock(&journal
->j_checkpoint_mutex
);
1849 * Journal abort has very specific semantics, which we describe
1850 * for journal abort.
1852 * Two internal functions, which provide abort to the jbd layer
1857 * Quick version for internal journal use (doesn't lock the journal).
1858 * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
1859 * and don't attempt to make any other journal updates.
1861 void __jbd2_journal_abort_hard(journal_t
*journal
)
1863 transaction_t
*transaction
;
1865 if (journal
->j_flags
& JBD2_ABORT
)
1868 printk(KERN_ERR
"Aborting journal on device %s.\n",
1869 journal
->j_devname
);
1871 write_lock(&journal
->j_state_lock
);
1872 journal
->j_flags
|= JBD2_ABORT
;
1873 transaction
= journal
->j_running_transaction
;
1875 __jbd2_log_start_commit(journal
, transaction
->t_tid
);
1876 write_unlock(&journal
->j_state_lock
);
1879 /* Soft abort: record the abort error status in the journal superblock,
1880 * but don't do any other IO. */
1881 static void __journal_abort_soft (journal_t
*journal
, int errno
)
1883 if (journal
->j_flags
& JBD2_ABORT
)
1886 if (!journal
->j_errno
)
1887 journal
->j_errno
= errno
;
1889 __jbd2_journal_abort_hard(journal
);
1892 jbd2_journal_update_sb_errno(journal
);
1896 * void jbd2_journal_abort () - Shutdown the journal immediately.
1897 * @journal: the journal to shutdown.
1898 * @errno: an error number to record in the journal indicating
1899 * the reason for the shutdown.
1901 * Perform a complete, immediate shutdown of the ENTIRE
1902 * journal (not of a single transaction). This operation cannot be
1903 * undone without closing and reopening the journal.
1905 * The jbd2_journal_abort function is intended to support higher level error
1906 * recovery mechanisms such as the ext2/ext3 remount-readonly error
1909 * Journal abort has very specific semantics. Any existing dirty,
1910 * unjournaled buffers in the main filesystem will still be written to
1911 * disk by bdflush, but the journaling mechanism will be suspended
1912 * immediately and no further transaction commits will be honoured.
1914 * Any dirty, journaled buffers will be written back to disk without
1915 * hitting the journal. Atomicity cannot be guaranteed on an aborted
1916 * filesystem, but we _do_ attempt to leave as much data as possible
1917 * behind for fsck to use for cleanup.
1919 * Any attempt to get a new transaction handle on a journal which is in
1920 * ABORT state will just result in an -EROFS error return. A
1921 * jbd2_journal_stop on an existing handle will return -EIO if we have
1922 * entered abort state during the update.
1924 * Recursive transactions are not disturbed by journal abort until the
1925 * final jbd2_journal_stop, which will receive the -EIO error.
1927 * Finally, the jbd2_journal_abort call allows the caller to supply an errno
1928 * which will be recorded (if possible) in the journal superblock. This
1929 * allows a client to record failure conditions in the middle of a
1930 * transaction without having to complete the transaction to record the
1931 * failure to disk. ext3_error, for example, now uses this
1934 * Errors which originate from within the journaling layer will NOT
1935 * supply an errno; a null errno implies that absolutely no further
1936 * writes are done to the journal (unless there are any already in
1941 void jbd2_journal_abort(journal_t
*journal
, int errno
)
1943 __journal_abort_soft(journal
, errno
);
1947 * int jbd2_journal_errno () - returns the journal's error state.
1948 * @journal: journal to examine.
1950 * This is the errno number set with jbd2_journal_abort(), the last
1951 * time the journal was mounted - if the journal was stopped
1952 * without calling abort this will be 0.
1954 * If the journal has been aborted on this mount time -EROFS will
1957 int jbd2_journal_errno(journal_t
*journal
)
1961 read_lock(&journal
->j_state_lock
);
1962 if (journal
->j_flags
& JBD2_ABORT
)
1965 err
= journal
->j_errno
;
1966 read_unlock(&journal
->j_state_lock
);
1971 * int jbd2_journal_clear_err () - clears the journal's error state
1972 * @journal: journal to act on.
1974 * An error must be cleared or acked to take a FS out of readonly
1977 int jbd2_journal_clear_err(journal_t
*journal
)
1981 write_lock(&journal
->j_state_lock
);
1982 if (journal
->j_flags
& JBD2_ABORT
)
1985 journal
->j_errno
= 0;
1986 write_unlock(&journal
->j_state_lock
);
1991 * void jbd2_journal_ack_err() - Ack journal err.
1992 * @journal: journal to act on.
1994 * An error must be cleared or acked to take a FS out of readonly
1997 void jbd2_journal_ack_err(journal_t
*journal
)
1999 write_lock(&journal
->j_state_lock
);
2000 if (journal
->j_errno
)
2001 journal
->j_flags
|= JBD2_ACK_ERR
;
2002 write_unlock(&journal
->j_state_lock
);
2005 int jbd2_journal_blocks_per_page(struct inode
*inode
)
2007 return 1 << (PAGE_CACHE_SHIFT
- inode
->i_sb
->s_blocksize_bits
);
2011 * helper functions to deal with 32 or 64bit block numbers.
2013 size_t journal_tag_bytes(journal_t
*journal
)
2015 if (JBD2_HAS_INCOMPAT_FEATURE(journal
, JBD2_FEATURE_INCOMPAT_64BIT
))
2016 return JBD2_TAG_SIZE64
;
2018 return JBD2_TAG_SIZE32
;
2022 * JBD memory management
2024 * These functions are used to allocate block-sized chunks of memory
2025 * used for making copies of buffer_head data. Very often it will be
2026 * page-sized chunks of data, but sometimes it will be in
2027 * sub-page-size chunks. (For example, 16k pages on Power systems
2028 * with a 4k block file system.) For blocks smaller than a page, we
2029 * use a SLAB allocator. There are slab caches for each block size,
2030 * which are allocated at mount time, if necessary, and we only free
2031 * (all of) the slab caches when/if the jbd2 module is unloaded. For
2032 * this reason we don't need to a mutex to protect access to
2033 * jbd2_slab[] allocating or releasing memory; only in
2034 * jbd2_journal_create_slab().
2036 #define JBD2_MAX_SLABS 8
2037 static struct kmem_cache
*jbd2_slab
[JBD2_MAX_SLABS
];
2039 static const char *jbd2_slab_names
[JBD2_MAX_SLABS
] = {
2040 "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2041 "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2045 static void jbd2_journal_destroy_slabs(void)
2049 for (i
= 0; i
< JBD2_MAX_SLABS
; i
++) {
2051 kmem_cache_destroy(jbd2_slab
[i
]);
2052 jbd2_slab
[i
] = NULL
;
2056 static int jbd2_journal_create_slab(size_t size
)
2058 static DEFINE_MUTEX(jbd2_slab_create_mutex
);
2059 int i
= order_base_2(size
) - 10;
2062 if (size
== PAGE_SIZE
)
2065 if (i
>= JBD2_MAX_SLABS
)
2068 if (unlikely(i
< 0))
2070 mutex_lock(&jbd2_slab_create_mutex
);
2072 mutex_unlock(&jbd2_slab_create_mutex
);
2073 return 0; /* Already created */
2076 slab_size
= 1 << (i
+10);
2077 jbd2_slab
[i
] = kmem_cache_create(jbd2_slab_names
[i
], slab_size
,
2078 slab_size
, 0, NULL
);
2079 mutex_unlock(&jbd2_slab_create_mutex
);
2080 if (!jbd2_slab
[i
]) {
2081 printk(KERN_EMERG
"JBD2: no memory for jbd2_slab cache\n");
2087 static struct kmem_cache
*get_slab(size_t size
)
2089 int i
= order_base_2(size
) - 10;
2091 BUG_ON(i
>= JBD2_MAX_SLABS
);
2092 if (unlikely(i
< 0))
2094 BUG_ON(jbd2_slab
[i
] == NULL
);
2095 return jbd2_slab
[i
];
2098 void *jbd2_alloc(size_t size
, gfp_t flags
)
2102 BUG_ON(size
& (size
-1)); /* Must be a power of 2 */
2104 flags
|= __GFP_REPEAT
;
2105 if (size
== PAGE_SIZE
)
2106 ptr
= (void *)__get_free_pages(flags
, 0);
2107 else if (size
> PAGE_SIZE
) {
2108 int order
= get_order(size
);
2111 ptr
= (void *)__get_free_pages(flags
, order
);
2113 ptr
= vmalloc(size
);
2115 ptr
= kmem_cache_alloc(get_slab(size
), flags
);
2117 /* Check alignment; SLUB has gotten this wrong in the past,
2118 * and this can lead to user data corruption! */
2119 BUG_ON(((unsigned long) ptr
) & (size
-1));
2124 void jbd2_free(void *ptr
, size_t size
)
2126 if (size
== PAGE_SIZE
) {
2127 free_pages((unsigned long)ptr
, 0);
2130 if (size
> PAGE_SIZE
) {
2131 int order
= get_order(size
);
2134 free_pages((unsigned long)ptr
, order
);
2139 kmem_cache_free(get_slab(size
), ptr
);
2143 * Journal_head storage management
2145 static struct kmem_cache
*jbd2_journal_head_cache
;
2146 #ifdef CONFIG_JBD2_DEBUG
2147 static atomic_t nr_journal_heads
= ATOMIC_INIT(0);
2150 static int jbd2_journal_init_journal_head_cache(void)
2154 J_ASSERT(jbd2_journal_head_cache
== NULL
);
2155 jbd2_journal_head_cache
= kmem_cache_create("jbd2_journal_head",
2156 sizeof(struct journal_head
),
2158 SLAB_TEMPORARY
, /* flags */
2161 if (!jbd2_journal_head_cache
) {
2163 printk(KERN_EMERG
"JBD2: no memory for journal_head cache\n");
2168 static void jbd2_journal_destroy_journal_head_cache(void)
2170 if (jbd2_journal_head_cache
) {
2171 kmem_cache_destroy(jbd2_journal_head_cache
);
2172 jbd2_journal_head_cache
= NULL
;
2177 * journal_head splicing and dicing
2179 static struct journal_head
*journal_alloc_journal_head(void)
2181 struct journal_head
*ret
;
2183 #ifdef CONFIG_JBD2_DEBUG
2184 atomic_inc(&nr_journal_heads
);
2186 ret
= kmem_cache_alloc(jbd2_journal_head_cache
, GFP_NOFS
);
2188 jbd_debug(1, "out of memory for journal_head\n");
2189 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__
);
2192 ret
= kmem_cache_alloc(jbd2_journal_head_cache
, GFP_NOFS
);
2198 static void journal_free_journal_head(struct journal_head
*jh
)
2200 #ifdef CONFIG_JBD2_DEBUG
2201 atomic_dec(&nr_journal_heads
);
2202 memset(jh
, JBD2_POISON_FREE
, sizeof(*jh
));
2204 kmem_cache_free(jbd2_journal_head_cache
, jh
);
2208 * A journal_head is attached to a buffer_head whenever JBD has an
2209 * interest in the buffer.
2211 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2212 * is set. This bit is tested in core kernel code where we need to take
2213 * JBD-specific actions. Testing the zeroness of ->b_private is not reliable
2216 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2218 * When a buffer has its BH_JBD bit set it is immune from being released by
2219 * core kernel code, mainly via ->b_count.
2221 * A journal_head is detached from its buffer_head when the journal_head's
2222 * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2223 * transaction (b_cp_transaction) hold their references to b_jcount.
2225 * Various places in the kernel want to attach a journal_head to a buffer_head
2226 * _before_ attaching the journal_head to a transaction. To protect the
2227 * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2228 * journal_head's b_jcount refcount by one. The caller must call
2229 * jbd2_journal_put_journal_head() to undo this.
2231 * So the typical usage would be:
2233 * (Attach a journal_head if needed. Increments b_jcount)
2234 * struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2236 * (Get another reference for transaction)
2237 * jbd2_journal_grab_journal_head(bh);
2238 * jh->b_transaction = xxx;
2239 * (Put original reference)
2240 * jbd2_journal_put_journal_head(jh);
2244 * Give a buffer_head a journal_head.
2248 struct journal_head
*jbd2_journal_add_journal_head(struct buffer_head
*bh
)
2250 struct journal_head
*jh
;
2251 struct journal_head
*new_jh
= NULL
;
2254 if (!buffer_jbd(bh
)) {
2255 new_jh
= journal_alloc_journal_head();
2256 memset(new_jh
, 0, sizeof(*new_jh
));
2259 jbd_lock_bh_journal_head(bh
);
2260 if (buffer_jbd(bh
)) {
2264 (atomic_read(&bh
->b_count
) > 0) ||
2265 (bh
->b_page
&& bh
->b_page
->mapping
));
2268 jbd_unlock_bh_journal_head(bh
);
2273 new_jh
= NULL
; /* We consumed it */
2278 BUFFER_TRACE(bh
, "added journal_head");
2281 jbd_unlock_bh_journal_head(bh
);
2283 journal_free_journal_head(new_jh
);
2284 return bh
->b_private
;
2288 * Grab a ref against this buffer_head's journal_head. If it ended up not
2289 * having a journal_head, return NULL
2291 struct journal_head
*jbd2_journal_grab_journal_head(struct buffer_head
*bh
)
2293 struct journal_head
*jh
= NULL
;
2295 jbd_lock_bh_journal_head(bh
);
2296 if (buffer_jbd(bh
)) {
2300 jbd_unlock_bh_journal_head(bh
);
2304 static void __journal_remove_journal_head(struct buffer_head
*bh
)
2306 struct journal_head
*jh
= bh2jh(bh
);
2308 J_ASSERT_JH(jh
, jh
->b_jcount
>= 0);
2309 J_ASSERT_JH(jh
, jh
->b_transaction
== NULL
);
2310 J_ASSERT_JH(jh
, jh
->b_next_transaction
== NULL
);
2311 J_ASSERT_JH(jh
, jh
->b_cp_transaction
== NULL
);
2312 J_ASSERT_JH(jh
, jh
->b_jlist
== BJ_None
);
2313 J_ASSERT_BH(bh
, buffer_jbd(bh
));
2314 J_ASSERT_BH(bh
, jh2bh(jh
) == bh
);
2315 BUFFER_TRACE(bh
, "remove journal_head");
2316 if (jh
->b_frozen_data
) {
2317 printk(KERN_WARNING
"%s: freeing b_frozen_data\n", __func__
);
2318 jbd2_free(jh
->b_frozen_data
, bh
->b_size
);
2320 if (jh
->b_committed_data
) {
2321 printk(KERN_WARNING
"%s: freeing b_committed_data\n", __func__
);
2322 jbd2_free(jh
->b_committed_data
, bh
->b_size
);
2324 bh
->b_private
= NULL
;
2325 jh
->b_bh
= NULL
; /* debug, really */
2326 clear_buffer_jbd(bh
);
2327 journal_free_journal_head(jh
);
2331 * Drop a reference on the passed journal_head. If it fell to zero then
2332 * release the journal_head from the buffer_head.
2334 void jbd2_journal_put_journal_head(struct journal_head
*jh
)
2336 struct buffer_head
*bh
= jh2bh(jh
);
2338 jbd_lock_bh_journal_head(bh
);
2339 J_ASSERT_JH(jh
, jh
->b_jcount
> 0);
2341 if (!jh
->b_jcount
) {
2342 __journal_remove_journal_head(bh
);
2343 jbd_unlock_bh_journal_head(bh
);
2346 jbd_unlock_bh_journal_head(bh
);
2350 * Initialize jbd inode head
2352 void jbd2_journal_init_jbd_inode(struct jbd2_inode
*jinode
, struct inode
*inode
)
2354 jinode
->i_transaction
= NULL
;
2355 jinode
->i_next_transaction
= NULL
;
2356 jinode
->i_vfs_inode
= inode
;
2357 jinode
->i_flags
= 0;
2358 INIT_LIST_HEAD(&jinode
->i_list
);
2362 * Function to be called before we start removing inode from memory (i.e.,
2363 * clear_inode() is a fine place to be called from). It removes inode from
2364 * transaction's lists.
2366 void jbd2_journal_release_jbd_inode(journal_t
*journal
,
2367 struct jbd2_inode
*jinode
)
2372 spin_lock(&journal
->j_list_lock
);
2373 /* Is commit writing out inode - we have to wait */
2374 if (test_bit(__JI_COMMIT_RUNNING
, &jinode
->i_flags
)) {
2375 wait_queue_head_t
*wq
;
2376 DEFINE_WAIT_BIT(wait
, &jinode
->i_flags
, __JI_COMMIT_RUNNING
);
2377 wq
= bit_waitqueue(&jinode
->i_flags
, __JI_COMMIT_RUNNING
);
2378 prepare_to_wait(wq
, &wait
.wait
, TASK_UNINTERRUPTIBLE
);
2379 spin_unlock(&journal
->j_list_lock
);
2381 finish_wait(wq
, &wait
.wait
);
2385 if (jinode
->i_transaction
) {
2386 list_del(&jinode
->i_list
);
2387 jinode
->i_transaction
= NULL
;
2389 spin_unlock(&journal
->j_list_lock
);
2395 #ifdef CONFIG_JBD2_DEBUG
2396 u8 jbd2_journal_enable_debug __read_mostly
;
2397 EXPORT_SYMBOL(jbd2_journal_enable_debug
);
2399 #define JBD2_DEBUG_NAME "jbd2-debug"
2401 static struct dentry
*jbd2_debugfs_dir
;
2402 static struct dentry
*jbd2_debug
;
2404 static void __init
jbd2_create_debugfs_entry(void)
2406 jbd2_debugfs_dir
= debugfs_create_dir("jbd2", NULL
);
2407 if (jbd2_debugfs_dir
)
2408 jbd2_debug
= debugfs_create_u8(JBD2_DEBUG_NAME
,
2411 &jbd2_journal_enable_debug
);
2414 static void __exit
jbd2_remove_debugfs_entry(void)
2416 debugfs_remove(jbd2_debug
);
2417 debugfs_remove(jbd2_debugfs_dir
);
2422 static void __init
jbd2_create_debugfs_entry(void)
2426 static void __exit
jbd2_remove_debugfs_entry(void)
2432 #ifdef CONFIG_PROC_FS
2434 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2436 static void __init
jbd2_create_jbd_stats_proc_entry(void)
2438 proc_jbd2_stats
= proc_mkdir(JBD2_STATS_PROC_NAME
, NULL
);
2441 static void __exit
jbd2_remove_jbd_stats_proc_entry(void)
2443 if (proc_jbd2_stats
)
2444 remove_proc_entry(JBD2_STATS_PROC_NAME
, NULL
);
2449 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2450 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2454 struct kmem_cache
*jbd2_handle_cache
, *jbd2_inode_cache
;
2456 static int __init
jbd2_journal_init_handle_cache(void)
2458 jbd2_handle_cache
= KMEM_CACHE(jbd2_journal_handle
, SLAB_TEMPORARY
);
2459 if (jbd2_handle_cache
== NULL
) {
2460 printk(KERN_EMERG
"JBD2: failed to create handle cache\n");
2463 jbd2_inode_cache
= KMEM_CACHE(jbd2_inode
, 0);
2464 if (jbd2_inode_cache
== NULL
) {
2465 printk(KERN_EMERG
"JBD2: failed to create inode cache\n");
2466 kmem_cache_destroy(jbd2_handle_cache
);
2472 static void jbd2_journal_destroy_handle_cache(void)
2474 if (jbd2_handle_cache
)
2475 kmem_cache_destroy(jbd2_handle_cache
);
2476 if (jbd2_inode_cache
)
2477 kmem_cache_destroy(jbd2_inode_cache
);
2482 * Module startup and shutdown
2485 static int __init
journal_init_caches(void)
2489 ret
= jbd2_journal_init_revoke_caches();
2491 ret
= jbd2_journal_init_journal_head_cache();
2493 ret
= jbd2_journal_init_handle_cache();
2495 ret
= jbd2_journal_init_transaction_cache();
2499 static void jbd2_journal_destroy_caches(void)
2501 jbd2_journal_destroy_revoke_caches();
2502 jbd2_journal_destroy_journal_head_cache();
2503 jbd2_journal_destroy_handle_cache();
2504 jbd2_journal_destroy_transaction_cache();
2505 jbd2_journal_destroy_slabs();
2508 static int __init
journal_init(void)
2512 BUILD_BUG_ON(sizeof(struct journal_superblock_s
) != 1024);
2514 ret
= journal_init_caches();
2516 jbd2_create_debugfs_entry();
2517 jbd2_create_jbd_stats_proc_entry();
2519 jbd2_journal_destroy_caches();
2524 static void __exit
journal_exit(void)
2526 #ifdef CONFIG_JBD2_DEBUG
2527 int n
= atomic_read(&nr_journal_heads
);
2529 printk(KERN_EMERG
"JBD2: leaked %d journal_heads!\n", n
);
2531 jbd2_remove_debugfs_entry();
2532 jbd2_remove_jbd_stats_proc_entry();
2533 jbd2_journal_destroy_caches();
2536 MODULE_LICENSE("GPL");
2537 module_init(journal_init
);
2538 module_exit(journal_exit
);