iwlwifi: fix incorrect 5GHz rates reported in monitor mode
[linux/fpc-iii.git] / fs / file.c
blob7b3887e054d0bcb5e0e187c8e1e42691c4fadcd0
1 /*
2 * linux/fs/file.c
4 * Copyright (C) 1998-1999, Stephen Tweedie and Bill Hawes
6 * Manage the dynamic fd arrays in the process files_struct.
7 */
9 #include <linux/fs.h>
10 #include <linux/mm.h>
11 #include <linux/time.h>
12 #include <linux/slab.h>
13 #include <linux/vmalloc.h>
14 #include <linux/file.h>
15 #include <linux/fdtable.h>
16 #include <linux/bitops.h>
17 #include <linux/interrupt.h>
18 #include <linux/spinlock.h>
19 #include <linux/rcupdate.h>
20 #include <linux/workqueue.h>
22 struct fdtable_defer {
23 spinlock_t lock;
24 struct work_struct wq;
25 struct fdtable *next;
28 int sysctl_nr_open __read_mostly = 1024*1024;
29 int sysctl_nr_open_min = BITS_PER_LONG;
30 int sysctl_nr_open_max = 1024 * 1024; /* raised later */
33 * We use this list to defer free fdtables that have vmalloced
34 * sets/arrays. By keeping a per-cpu list, we avoid having to embed
35 * the work_struct in fdtable itself which avoids a 64 byte (i386) increase in
36 * this per-task structure.
38 static DEFINE_PER_CPU(struct fdtable_defer, fdtable_defer_list);
40 static inline void * alloc_fdmem(unsigned int size)
42 if (size <= PAGE_SIZE)
43 return kmalloc(size, GFP_KERNEL);
44 else
45 return vmalloc(size);
48 static inline void free_fdarr(struct fdtable *fdt)
50 if (fdt->max_fds <= (PAGE_SIZE / sizeof(struct file *)))
51 kfree(fdt->fd);
52 else
53 vfree(fdt->fd);
56 static inline void free_fdset(struct fdtable *fdt)
58 if (fdt->max_fds <= (PAGE_SIZE * BITS_PER_BYTE / 2))
59 kfree(fdt->open_fds);
60 else
61 vfree(fdt->open_fds);
64 static void free_fdtable_work(struct work_struct *work)
66 struct fdtable_defer *f =
67 container_of(work, struct fdtable_defer, wq);
68 struct fdtable *fdt;
70 spin_lock_bh(&f->lock);
71 fdt = f->next;
72 f->next = NULL;
73 spin_unlock_bh(&f->lock);
74 while(fdt) {
75 struct fdtable *next = fdt->next;
76 vfree(fdt->fd);
77 free_fdset(fdt);
78 kfree(fdt);
79 fdt = next;
83 void free_fdtable_rcu(struct rcu_head *rcu)
85 struct fdtable *fdt = container_of(rcu, struct fdtable, rcu);
86 struct fdtable_defer *fddef;
88 BUG_ON(!fdt);
90 if (fdt->max_fds <= NR_OPEN_DEFAULT) {
92 * This fdtable is embedded in the files structure and that
93 * structure itself is getting destroyed.
95 kmem_cache_free(files_cachep,
96 container_of(fdt, struct files_struct, fdtab));
97 return;
99 if (fdt->max_fds <= (PAGE_SIZE / sizeof(struct file *))) {
100 kfree(fdt->fd);
101 kfree(fdt->open_fds);
102 kfree(fdt);
103 } else {
104 fddef = &get_cpu_var(fdtable_defer_list);
105 spin_lock(&fddef->lock);
106 fdt->next = fddef->next;
107 fddef->next = fdt;
108 /* vmallocs are handled from the workqueue context */
109 schedule_work(&fddef->wq);
110 spin_unlock(&fddef->lock);
111 put_cpu_var(fdtable_defer_list);
116 * Expand the fdset in the files_struct. Called with the files spinlock
117 * held for write.
119 static void copy_fdtable(struct fdtable *nfdt, struct fdtable *ofdt)
121 unsigned int cpy, set;
123 BUG_ON(nfdt->max_fds < ofdt->max_fds);
125 cpy = ofdt->max_fds * sizeof(struct file *);
126 set = (nfdt->max_fds - ofdt->max_fds) * sizeof(struct file *);
127 memcpy(nfdt->fd, ofdt->fd, cpy);
128 memset((char *)(nfdt->fd) + cpy, 0, set);
130 cpy = ofdt->max_fds / BITS_PER_BYTE;
131 set = (nfdt->max_fds - ofdt->max_fds) / BITS_PER_BYTE;
132 memcpy(nfdt->open_fds, ofdt->open_fds, cpy);
133 memset((char *)(nfdt->open_fds) + cpy, 0, set);
134 memcpy(nfdt->close_on_exec, ofdt->close_on_exec, cpy);
135 memset((char *)(nfdt->close_on_exec) + cpy, 0, set);
138 static struct fdtable * alloc_fdtable(unsigned int nr)
140 struct fdtable *fdt;
141 char *data;
144 * Figure out how many fds we actually want to support in this fdtable.
145 * Allocation steps are keyed to the size of the fdarray, since it
146 * grows far faster than any of the other dynamic data. We try to fit
147 * the fdarray into comfortable page-tuned chunks: starting at 1024B
148 * and growing in powers of two from there on.
150 nr /= (1024 / sizeof(struct file *));
151 nr = roundup_pow_of_two(nr + 1);
152 nr *= (1024 / sizeof(struct file *));
154 * Note that this can drive nr *below* what we had passed if sysctl_nr_open
155 * had been set lower between the check in expand_files() and here. Deal
156 * with that in caller, it's cheaper that way.
158 * We make sure that nr remains a multiple of BITS_PER_LONG - otherwise
159 * bitmaps handling below becomes unpleasant, to put it mildly...
161 if (unlikely(nr > sysctl_nr_open))
162 nr = ((sysctl_nr_open - 1) | (BITS_PER_LONG - 1)) + 1;
164 fdt = kmalloc(sizeof(struct fdtable), GFP_KERNEL);
165 if (!fdt)
166 goto out;
167 fdt->max_fds = nr;
168 data = alloc_fdmem(nr * sizeof(struct file *));
169 if (!data)
170 goto out_fdt;
171 fdt->fd = (struct file **)data;
172 data = alloc_fdmem(max_t(unsigned int,
173 2 * nr / BITS_PER_BYTE, L1_CACHE_BYTES));
174 if (!data)
175 goto out_arr;
176 fdt->open_fds = (fd_set *)data;
177 data += nr / BITS_PER_BYTE;
178 fdt->close_on_exec = (fd_set *)data;
179 INIT_RCU_HEAD(&fdt->rcu);
180 fdt->next = NULL;
182 return fdt;
184 out_arr:
185 free_fdarr(fdt);
186 out_fdt:
187 kfree(fdt);
188 out:
189 return NULL;
193 * Expand the file descriptor table.
194 * This function will allocate a new fdtable and both fd array and fdset, of
195 * the given size.
196 * Return <0 error code on error; 1 on successful completion.
197 * The files->file_lock should be held on entry, and will be held on exit.
199 static int expand_fdtable(struct files_struct *files, int nr)
200 __releases(files->file_lock)
201 __acquires(files->file_lock)
203 struct fdtable *new_fdt, *cur_fdt;
205 spin_unlock(&files->file_lock);
206 new_fdt = alloc_fdtable(nr);
207 spin_lock(&files->file_lock);
208 if (!new_fdt)
209 return -ENOMEM;
211 * extremely unlikely race - sysctl_nr_open decreased between the check in
212 * caller and alloc_fdtable(). Cheaper to catch it here...
214 if (unlikely(new_fdt->max_fds <= nr)) {
215 free_fdarr(new_fdt);
216 free_fdset(new_fdt);
217 kfree(new_fdt);
218 return -EMFILE;
221 * Check again since another task may have expanded the fd table while
222 * we dropped the lock
224 cur_fdt = files_fdtable(files);
225 if (nr >= cur_fdt->max_fds) {
226 /* Continue as planned */
227 copy_fdtable(new_fdt, cur_fdt);
228 rcu_assign_pointer(files->fdt, new_fdt);
229 if (cur_fdt->max_fds > NR_OPEN_DEFAULT)
230 free_fdtable(cur_fdt);
231 } else {
232 /* Somebody else expanded, so undo our attempt */
233 free_fdarr(new_fdt);
234 free_fdset(new_fdt);
235 kfree(new_fdt);
237 return 1;
241 * Expand files.
242 * This function will expand the file structures, if the requested size exceeds
243 * the current capacity and there is room for expansion.
244 * Return <0 error code on error; 0 when nothing done; 1 when files were
245 * expanded and execution may have blocked.
246 * The files->file_lock should be held on entry, and will be held on exit.
248 int expand_files(struct files_struct *files, int nr)
250 struct fdtable *fdt;
252 fdt = files_fdtable(files);
253 /* Do we need to expand? */
254 if (nr < fdt->max_fds)
255 return 0;
256 /* Can we expand? */
257 if (nr >= sysctl_nr_open)
258 return -EMFILE;
260 /* All good, so we try */
261 return expand_fdtable(files, nr);
264 static int count_open_files(struct fdtable *fdt)
266 int size = fdt->max_fds;
267 int i;
269 /* Find the last open fd */
270 for (i = size/(8*sizeof(long)); i > 0; ) {
271 if (fdt->open_fds->fds_bits[--i])
272 break;
274 i = (i+1) * 8 * sizeof(long);
275 return i;
279 * Allocate a new files structure and copy contents from the
280 * passed in files structure.
281 * errorp will be valid only when the returned files_struct is NULL.
283 struct files_struct *dup_fd(struct files_struct *oldf, int *errorp)
285 struct files_struct *newf;
286 struct file **old_fds, **new_fds;
287 int open_files, size, i;
288 struct fdtable *old_fdt, *new_fdt;
290 *errorp = -ENOMEM;
291 newf = kmem_cache_alloc(files_cachep, GFP_KERNEL);
292 if (!newf)
293 goto out;
295 atomic_set(&newf->count, 1);
297 spin_lock_init(&newf->file_lock);
298 newf->next_fd = 0;
299 new_fdt = &newf->fdtab;
300 new_fdt->max_fds = NR_OPEN_DEFAULT;
301 new_fdt->close_on_exec = (fd_set *)&newf->close_on_exec_init;
302 new_fdt->open_fds = (fd_set *)&newf->open_fds_init;
303 new_fdt->fd = &newf->fd_array[0];
304 INIT_RCU_HEAD(&new_fdt->rcu);
305 new_fdt->next = NULL;
307 spin_lock(&oldf->file_lock);
308 old_fdt = files_fdtable(oldf);
309 open_files = count_open_files(old_fdt);
312 * Check whether we need to allocate a larger fd array and fd set.
314 while (unlikely(open_files > new_fdt->max_fds)) {
315 spin_unlock(&oldf->file_lock);
317 if (new_fdt != &newf->fdtab) {
318 free_fdarr(new_fdt);
319 free_fdset(new_fdt);
320 kfree(new_fdt);
323 new_fdt = alloc_fdtable(open_files - 1);
324 if (!new_fdt) {
325 *errorp = -ENOMEM;
326 goto out_release;
329 /* beyond sysctl_nr_open; nothing to do */
330 if (unlikely(new_fdt->max_fds < open_files)) {
331 free_fdarr(new_fdt);
332 free_fdset(new_fdt);
333 kfree(new_fdt);
334 *errorp = -EMFILE;
335 goto out_release;
339 * Reacquire the oldf lock and a pointer to its fd table
340 * who knows it may have a new bigger fd table. We need
341 * the latest pointer.
343 spin_lock(&oldf->file_lock);
344 old_fdt = files_fdtable(oldf);
345 open_files = count_open_files(old_fdt);
348 old_fds = old_fdt->fd;
349 new_fds = new_fdt->fd;
351 memcpy(new_fdt->open_fds->fds_bits,
352 old_fdt->open_fds->fds_bits, open_files/8);
353 memcpy(new_fdt->close_on_exec->fds_bits,
354 old_fdt->close_on_exec->fds_bits, open_files/8);
356 for (i = open_files; i != 0; i--) {
357 struct file *f = *old_fds++;
358 if (f) {
359 get_file(f);
360 } else {
362 * The fd may be claimed in the fd bitmap but not yet
363 * instantiated in the files array if a sibling thread
364 * is partway through open(). So make sure that this
365 * fd is available to the new process.
367 FD_CLR(open_files - i, new_fdt->open_fds);
369 rcu_assign_pointer(*new_fds++, f);
371 spin_unlock(&oldf->file_lock);
373 /* compute the remainder to be cleared */
374 size = (new_fdt->max_fds - open_files) * sizeof(struct file *);
376 /* This is long word aligned thus could use a optimized version */
377 memset(new_fds, 0, size);
379 if (new_fdt->max_fds > open_files) {
380 int left = (new_fdt->max_fds-open_files)/8;
381 int start = open_files / (8 * sizeof(unsigned long));
383 memset(&new_fdt->open_fds->fds_bits[start], 0, left);
384 memset(&new_fdt->close_on_exec->fds_bits[start], 0, left);
387 rcu_assign_pointer(newf->fdt, new_fdt);
389 return newf;
391 out_release:
392 kmem_cache_free(files_cachep, newf);
393 out:
394 return NULL;
397 static void __devinit fdtable_defer_list_init(int cpu)
399 struct fdtable_defer *fddef = &per_cpu(fdtable_defer_list, cpu);
400 spin_lock_init(&fddef->lock);
401 INIT_WORK(&fddef->wq, free_fdtable_work);
402 fddef->next = NULL;
405 void __init files_defer_init(void)
407 int i;
408 for_each_possible_cpu(i)
409 fdtable_defer_list_init(i);
410 sysctl_nr_open_max = min((size_t)INT_MAX, ~(size_t)0/sizeof(void *)) &
411 -BITS_PER_LONG;
414 struct files_struct init_files = {
415 .count = ATOMIC_INIT(1),
416 .fdt = &init_files.fdtab,
417 .fdtab = {
418 .max_fds = NR_OPEN_DEFAULT,
419 .fd = &init_files.fd_array[0],
420 .close_on_exec = (fd_set *)&init_files.close_on_exec_init,
421 .open_fds = (fd_set *)&init_files.open_fds_init,
422 .rcu = RCU_HEAD_INIT,
424 .file_lock = __SPIN_LOCK_UNLOCKED(init_task.file_lock),