2 * linux/fs/binfmt_elf.c
4 * These are the functions used to load ELF format executables as used
5 * on SVr4 machines. Information on the format may be found in the book
6 * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support
9 * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com).
12 #include <linux/module.h>
13 #include <linux/kernel.h>
16 #include <linux/mman.h>
17 #include <linux/errno.h>
18 #include <linux/signal.h>
19 #include <linux/binfmts.h>
20 #include <linux/string.h>
21 #include <linux/file.h>
22 #include <linux/slab.h>
23 #include <linux/personality.h>
24 #include <linux/elfcore.h>
25 #include <linux/init.h>
26 #include <linux/highuid.h>
27 #include <linux/compiler.h>
28 #include <linux/highmem.h>
29 #include <linux/pagemap.h>
30 #include <linux/vmalloc.h>
31 #include <linux/security.h>
32 #include <linux/random.h>
33 #include <linux/elf.h>
34 #include <linux/utsname.h>
35 #include <linux/coredump.h>
36 #include <linux/sched.h>
37 #include <asm/uaccess.h>
38 #include <asm/param.h>
42 #define user_long_t long
44 #ifndef user_siginfo_t
45 #define user_siginfo_t siginfo_t
48 static int load_elf_binary(struct linux_binprm
*bprm
);
49 static unsigned long elf_map(struct file
*, unsigned long, struct elf_phdr
*,
50 int, int, unsigned long);
53 static int load_elf_library(struct file
*);
55 #define load_elf_library NULL
59 * If we don't support core dumping, then supply a NULL so we
62 #ifdef CONFIG_ELF_CORE
63 static int elf_core_dump(struct coredump_params
*cprm
);
65 #define elf_core_dump NULL
68 #if ELF_EXEC_PAGESIZE > PAGE_SIZE
69 #define ELF_MIN_ALIGN ELF_EXEC_PAGESIZE
71 #define ELF_MIN_ALIGN PAGE_SIZE
74 #ifndef ELF_CORE_EFLAGS
75 #define ELF_CORE_EFLAGS 0
78 #define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1))
79 #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))
80 #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))
82 static struct linux_binfmt elf_format
= {
83 .module
= THIS_MODULE
,
84 .load_binary
= load_elf_binary
,
85 .load_shlib
= load_elf_library
,
86 .core_dump
= elf_core_dump
,
87 .min_coredump
= ELF_EXEC_PAGESIZE
,
90 #define BAD_ADDR(x) ((unsigned long)(x) >= TASK_SIZE)
92 static int set_brk(unsigned long start
, unsigned long end
)
94 start
= ELF_PAGEALIGN(start
);
95 end
= ELF_PAGEALIGN(end
);
98 addr
= vm_brk(start
, end
- start
);
102 current
->mm
->start_brk
= current
->mm
->brk
= end
;
106 /* We need to explicitly zero any fractional pages
107 after the data section (i.e. bss). This would
108 contain the junk from the file that should not
111 static int padzero(unsigned long elf_bss
)
115 nbyte
= ELF_PAGEOFFSET(elf_bss
);
117 nbyte
= ELF_MIN_ALIGN
- nbyte
;
118 if (clear_user((void __user
*) elf_bss
, nbyte
))
124 /* Let's use some macros to make this stack manipulation a little clearer */
125 #ifdef CONFIG_STACK_GROWSUP
126 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items))
127 #define STACK_ROUND(sp, items) \
128 ((15 + (unsigned long) ((sp) + (items))) &~ 15UL)
129 #define STACK_ALLOC(sp, len) ({ \
130 elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \
133 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items))
134 #define STACK_ROUND(sp, items) \
135 (((unsigned long) (sp - items)) &~ 15UL)
136 #define STACK_ALLOC(sp, len) ({ sp -= len ; sp; })
139 #ifndef ELF_BASE_PLATFORM
141 * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture.
142 * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value
143 * will be copied to the user stack in the same manner as AT_PLATFORM.
145 #define ELF_BASE_PLATFORM NULL
149 create_elf_tables(struct linux_binprm
*bprm
, struct elfhdr
*exec
,
150 unsigned long load_addr
, unsigned long interp_load_addr
)
152 unsigned long p
= bprm
->p
;
153 int argc
= bprm
->argc
;
154 int envc
= bprm
->envc
;
155 elf_addr_t __user
*argv
;
156 elf_addr_t __user
*envp
;
157 elf_addr_t __user
*sp
;
158 elf_addr_t __user
*u_platform
;
159 elf_addr_t __user
*u_base_platform
;
160 elf_addr_t __user
*u_rand_bytes
;
161 const char *k_platform
= ELF_PLATFORM
;
162 const char *k_base_platform
= ELF_BASE_PLATFORM
;
163 unsigned char k_rand_bytes
[16];
165 elf_addr_t
*elf_info
;
167 const struct cred
*cred
= current_cred();
168 struct vm_area_struct
*vma
;
171 * In some cases (e.g. Hyper-Threading), we want to avoid L1
172 * evictions by the processes running on the same package. One
173 * thing we can do is to shuffle the initial stack for them.
176 p
= arch_align_stack(p
);
179 * If this architecture has a platform capability string, copy it
180 * to userspace. In some cases (Sparc), this info is impossible
181 * for userspace to get any other way, in others (i386) it is
186 size_t len
= strlen(k_platform
) + 1;
188 u_platform
= (elf_addr_t __user
*)STACK_ALLOC(p
, len
);
189 if (__copy_to_user(u_platform
, k_platform
, len
))
194 * If this architecture has a "base" platform capability
195 * string, copy it to userspace.
197 u_base_platform
= NULL
;
198 if (k_base_platform
) {
199 size_t len
= strlen(k_base_platform
) + 1;
201 u_base_platform
= (elf_addr_t __user
*)STACK_ALLOC(p
, len
);
202 if (__copy_to_user(u_base_platform
, k_base_platform
, len
))
207 * Generate 16 random bytes for userspace PRNG seeding.
209 get_random_bytes(k_rand_bytes
, sizeof(k_rand_bytes
));
210 u_rand_bytes
= (elf_addr_t __user
*)
211 STACK_ALLOC(p
, sizeof(k_rand_bytes
));
212 if (__copy_to_user(u_rand_bytes
, k_rand_bytes
, sizeof(k_rand_bytes
)))
215 /* Create the ELF interpreter info */
216 elf_info
= (elf_addr_t
*)current
->mm
->saved_auxv
;
217 /* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */
218 #define NEW_AUX_ENT(id, val) \
220 elf_info[ei_index++] = id; \
221 elf_info[ei_index++] = val; \
226 * ARCH_DLINFO must come first so PPC can do its special alignment of
228 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in
229 * ARCH_DLINFO changes
233 NEW_AUX_ENT(AT_HWCAP
, ELF_HWCAP
);
234 NEW_AUX_ENT(AT_PAGESZ
, ELF_EXEC_PAGESIZE
);
235 NEW_AUX_ENT(AT_CLKTCK
, CLOCKS_PER_SEC
);
236 NEW_AUX_ENT(AT_PHDR
, load_addr
+ exec
->e_phoff
);
237 NEW_AUX_ENT(AT_PHENT
, sizeof(struct elf_phdr
));
238 NEW_AUX_ENT(AT_PHNUM
, exec
->e_phnum
);
239 NEW_AUX_ENT(AT_BASE
, interp_load_addr
);
240 NEW_AUX_ENT(AT_FLAGS
, 0);
241 NEW_AUX_ENT(AT_ENTRY
, exec
->e_entry
);
242 NEW_AUX_ENT(AT_UID
, from_kuid_munged(cred
->user_ns
, cred
->uid
));
243 NEW_AUX_ENT(AT_EUID
, from_kuid_munged(cred
->user_ns
, cred
->euid
));
244 NEW_AUX_ENT(AT_GID
, from_kgid_munged(cred
->user_ns
, cred
->gid
));
245 NEW_AUX_ENT(AT_EGID
, from_kgid_munged(cred
->user_ns
, cred
->egid
));
246 NEW_AUX_ENT(AT_SECURE
, security_bprm_secureexec(bprm
));
247 NEW_AUX_ENT(AT_RANDOM
, (elf_addr_t
)(unsigned long)u_rand_bytes
);
249 NEW_AUX_ENT(AT_HWCAP2
, ELF_HWCAP2
);
251 NEW_AUX_ENT(AT_EXECFN
, bprm
->exec
);
253 NEW_AUX_ENT(AT_PLATFORM
,
254 (elf_addr_t
)(unsigned long)u_platform
);
256 if (k_base_platform
) {
257 NEW_AUX_ENT(AT_BASE_PLATFORM
,
258 (elf_addr_t
)(unsigned long)u_base_platform
);
260 if (bprm
->interp_flags
& BINPRM_FLAGS_EXECFD
) {
261 NEW_AUX_ENT(AT_EXECFD
, bprm
->interp_data
);
264 /* AT_NULL is zero; clear the rest too */
265 memset(&elf_info
[ei_index
], 0,
266 sizeof current
->mm
->saved_auxv
- ei_index
* sizeof elf_info
[0]);
268 /* And advance past the AT_NULL entry. */
271 sp
= STACK_ADD(p
, ei_index
);
273 items
= (argc
+ 1) + (envc
+ 1) + 1;
274 bprm
->p
= STACK_ROUND(sp
, items
);
276 /* Point sp at the lowest address on the stack */
277 #ifdef CONFIG_STACK_GROWSUP
278 sp
= (elf_addr_t __user
*)bprm
->p
- items
- ei_index
;
279 bprm
->exec
= (unsigned long)sp
; /* XXX: PARISC HACK */
281 sp
= (elf_addr_t __user
*)bprm
->p
;
286 * Grow the stack manually; some architectures have a limit on how
287 * far ahead a user-space access may be in order to grow the stack.
289 vma
= find_extend_vma(current
->mm
, bprm
->p
);
293 /* Now, let's put argc (and argv, envp if appropriate) on the stack */
294 if (__put_user(argc
, sp
++))
297 envp
= argv
+ argc
+ 1;
299 /* Populate argv and envp */
300 p
= current
->mm
->arg_end
= current
->mm
->arg_start
;
303 if (__put_user((elf_addr_t
)p
, argv
++))
305 len
= strnlen_user((void __user
*)p
, MAX_ARG_STRLEN
);
306 if (!len
|| len
> MAX_ARG_STRLEN
)
310 if (__put_user(0, argv
))
312 current
->mm
->arg_end
= current
->mm
->env_start
= p
;
315 if (__put_user((elf_addr_t
)p
, envp
++))
317 len
= strnlen_user((void __user
*)p
, MAX_ARG_STRLEN
);
318 if (!len
|| len
> MAX_ARG_STRLEN
)
322 if (__put_user(0, envp
))
324 current
->mm
->env_end
= p
;
326 /* Put the elf_info on the stack in the right place. */
327 sp
= (elf_addr_t __user
*)envp
+ 1;
328 if (copy_to_user(sp
, elf_info
, ei_index
* sizeof(elf_addr_t
)))
335 static unsigned long elf_map(struct file
*filep
, unsigned long addr
,
336 struct elf_phdr
*eppnt
, int prot
, int type
,
337 unsigned long total_size
)
339 unsigned long map_addr
;
340 unsigned long size
= eppnt
->p_filesz
+ ELF_PAGEOFFSET(eppnt
->p_vaddr
);
341 unsigned long off
= eppnt
->p_offset
- ELF_PAGEOFFSET(eppnt
->p_vaddr
);
342 addr
= ELF_PAGESTART(addr
);
343 size
= ELF_PAGEALIGN(size
);
345 /* mmap() will return -EINVAL if given a zero size, but a
346 * segment with zero filesize is perfectly valid */
351 * total_size is the size of the ELF (interpreter) image.
352 * The _first_ mmap needs to know the full size, otherwise
353 * randomization might put this image into an overlapping
354 * position with the ELF binary image. (since size < total_size)
355 * So we first map the 'big' image - and unmap the remainder at
356 * the end. (which unmap is needed for ELF images with holes.)
359 total_size
= ELF_PAGEALIGN(total_size
);
360 map_addr
= vm_mmap(filep
, addr
, total_size
, prot
, type
, off
);
361 if (!BAD_ADDR(map_addr
))
362 vm_munmap(map_addr
+size
, total_size
-size
);
364 map_addr
= vm_mmap(filep
, addr
, size
, prot
, type
, off
);
369 #endif /* !elf_map */
371 static unsigned long total_mapping_size(struct elf_phdr
*cmds
, int nr
)
373 int i
, first_idx
= -1, last_idx
= -1;
375 for (i
= 0; i
< nr
; i
++) {
376 if (cmds
[i
].p_type
== PT_LOAD
) {
385 return cmds
[last_idx
].p_vaddr
+ cmds
[last_idx
].p_memsz
-
386 ELF_PAGESTART(cmds
[first_idx
].p_vaddr
);
390 /* This is much more generalized than the library routine read function,
391 so we keep this separate. Technically the library read function
392 is only provided so that we can read a.out libraries that have
395 static unsigned long load_elf_interp(struct elfhdr
*interp_elf_ex
,
396 struct file
*interpreter
, unsigned long *interp_map_addr
,
397 unsigned long no_base
)
399 struct elf_phdr
*elf_phdata
;
400 struct elf_phdr
*eppnt
;
401 unsigned long load_addr
= 0;
402 int load_addr_set
= 0;
403 unsigned long last_bss
= 0, elf_bss
= 0;
404 unsigned long error
= ~0UL;
405 unsigned long total_size
;
408 /* First of all, some simple consistency checks */
409 if (interp_elf_ex
->e_type
!= ET_EXEC
&&
410 interp_elf_ex
->e_type
!= ET_DYN
)
412 if (!elf_check_arch(interp_elf_ex
))
414 if (!interpreter
->f_op
->mmap
)
418 * If the size of this structure has changed, then punt, since
419 * we will be doing the wrong thing.
421 if (interp_elf_ex
->e_phentsize
!= sizeof(struct elf_phdr
))
423 if (interp_elf_ex
->e_phnum
< 1 ||
424 interp_elf_ex
->e_phnum
> 65536U / sizeof(struct elf_phdr
))
427 /* Now read in all of the header information */
428 size
= sizeof(struct elf_phdr
) * interp_elf_ex
->e_phnum
;
429 if (size
> ELF_MIN_ALIGN
)
431 elf_phdata
= kmalloc(size
, GFP_KERNEL
);
435 retval
= kernel_read(interpreter
, interp_elf_ex
->e_phoff
,
436 (char *)elf_phdata
, size
);
438 if (retval
!= size
) {
444 total_size
= total_mapping_size(elf_phdata
, interp_elf_ex
->e_phnum
);
451 for (i
= 0; i
< interp_elf_ex
->e_phnum
; i
++, eppnt
++) {
452 if (eppnt
->p_type
== PT_LOAD
) {
453 int elf_type
= MAP_PRIVATE
| MAP_DENYWRITE
;
455 unsigned long vaddr
= 0;
456 unsigned long k
, map_addr
;
458 if (eppnt
->p_flags
& PF_R
)
459 elf_prot
= PROT_READ
;
460 if (eppnt
->p_flags
& PF_W
)
461 elf_prot
|= PROT_WRITE
;
462 if (eppnt
->p_flags
& PF_X
)
463 elf_prot
|= PROT_EXEC
;
464 vaddr
= eppnt
->p_vaddr
;
465 if (interp_elf_ex
->e_type
== ET_EXEC
|| load_addr_set
)
466 elf_type
|= MAP_FIXED
;
467 else if (no_base
&& interp_elf_ex
->e_type
== ET_DYN
)
470 map_addr
= elf_map(interpreter
, load_addr
+ vaddr
,
471 eppnt
, elf_prot
, elf_type
, total_size
);
473 if (!*interp_map_addr
)
474 *interp_map_addr
= map_addr
;
476 if (BAD_ADDR(map_addr
))
479 if (!load_addr_set
&&
480 interp_elf_ex
->e_type
== ET_DYN
) {
481 load_addr
= map_addr
- ELF_PAGESTART(vaddr
);
486 * Check to see if the section's size will overflow the
487 * allowed task size. Note that p_filesz must always be
488 * <= p_memsize so it's only necessary to check p_memsz.
490 k
= load_addr
+ eppnt
->p_vaddr
;
492 eppnt
->p_filesz
> eppnt
->p_memsz
||
493 eppnt
->p_memsz
> TASK_SIZE
||
494 TASK_SIZE
- eppnt
->p_memsz
< k
) {
500 * Find the end of the file mapping for this phdr, and
501 * keep track of the largest address we see for this.
503 k
= load_addr
+ eppnt
->p_vaddr
+ eppnt
->p_filesz
;
508 * Do the same thing for the memory mapping - between
509 * elf_bss and last_bss is the bss section.
511 k
= load_addr
+ eppnt
->p_memsz
+ eppnt
->p_vaddr
;
517 if (last_bss
> elf_bss
) {
519 * Now fill out the bss section. First pad the last page up
520 * to the page boundary, and then perform a mmap to make sure
521 * that there are zero-mapped pages up to and including the
524 if (padzero(elf_bss
)) {
529 /* What we have mapped so far */
530 elf_bss
= ELF_PAGESTART(elf_bss
+ ELF_MIN_ALIGN
- 1);
532 /* Map the last of the bss segment */
533 error
= vm_brk(elf_bss
, last_bss
- elf_bss
);
547 * These are the functions used to load ELF style executables and shared
548 * libraries. There is no binary dependent code anywhere else.
551 #ifndef STACK_RND_MASK
552 #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12)) /* 8MB of VA */
555 static unsigned long randomize_stack_top(unsigned long stack_top
)
557 unsigned long random_variable
= 0;
559 if ((current
->flags
& PF_RANDOMIZE
) &&
560 !(current
->personality
& ADDR_NO_RANDOMIZE
)) {
561 random_variable
= (unsigned long) get_random_int();
562 random_variable
&= STACK_RND_MASK
;
563 random_variable
<<= PAGE_SHIFT
;
565 #ifdef CONFIG_STACK_GROWSUP
566 return PAGE_ALIGN(stack_top
) + random_variable
;
568 return PAGE_ALIGN(stack_top
) - random_variable
;
572 static int load_elf_binary(struct linux_binprm
*bprm
)
574 struct file
*interpreter
= NULL
; /* to shut gcc up */
575 unsigned long load_addr
= 0, load_bias
= 0;
576 int load_addr_set
= 0;
577 char * elf_interpreter
= NULL
;
579 struct elf_phdr
*elf_ppnt
, *elf_phdata
;
580 unsigned long elf_bss
, elf_brk
;
583 unsigned long elf_entry
;
584 unsigned long interp_load_addr
= 0;
585 unsigned long start_code
, end_code
, start_data
, end_data
;
586 unsigned long reloc_func_desc __maybe_unused
= 0;
587 int executable_stack
= EXSTACK_DEFAULT
;
588 struct pt_regs
*regs
= current_pt_regs();
590 struct elfhdr elf_ex
;
591 struct elfhdr interp_elf_ex
;
594 loc
= kmalloc(sizeof(*loc
), GFP_KERNEL
);
600 /* Get the exec-header */
601 loc
->elf_ex
= *((struct elfhdr
*)bprm
->buf
);
604 /* First of all, some simple consistency checks */
605 if (memcmp(loc
->elf_ex
.e_ident
, ELFMAG
, SELFMAG
) != 0)
608 if (loc
->elf_ex
.e_type
!= ET_EXEC
&& loc
->elf_ex
.e_type
!= ET_DYN
)
610 if (!elf_check_arch(&loc
->elf_ex
))
612 if (!bprm
->file
->f_op
->mmap
)
615 /* Now read in all of the header information */
616 if (loc
->elf_ex
.e_phentsize
!= sizeof(struct elf_phdr
))
618 if (loc
->elf_ex
.e_phnum
< 1 ||
619 loc
->elf_ex
.e_phnum
> 65536U / sizeof(struct elf_phdr
))
621 size
= loc
->elf_ex
.e_phnum
* sizeof(struct elf_phdr
);
623 elf_phdata
= kmalloc(size
, GFP_KERNEL
);
627 retval
= kernel_read(bprm
->file
, loc
->elf_ex
.e_phoff
,
628 (char *)elf_phdata
, size
);
629 if (retval
!= size
) {
635 elf_ppnt
= elf_phdata
;
644 for (i
= 0; i
< loc
->elf_ex
.e_phnum
; i
++) {
645 if (elf_ppnt
->p_type
== PT_INTERP
) {
646 /* This is the program interpreter used for
647 * shared libraries - for now assume that this
648 * is an a.out format binary
651 if (elf_ppnt
->p_filesz
> PATH_MAX
||
652 elf_ppnt
->p_filesz
< 2)
656 elf_interpreter
= kmalloc(elf_ppnt
->p_filesz
,
658 if (!elf_interpreter
)
661 retval
= kernel_read(bprm
->file
, elf_ppnt
->p_offset
,
664 if (retval
!= elf_ppnt
->p_filesz
) {
667 goto out_free_interp
;
669 /* make sure path is NULL terminated */
671 if (elf_interpreter
[elf_ppnt
->p_filesz
- 1] != '\0')
672 goto out_free_interp
;
674 interpreter
= open_exec(elf_interpreter
);
675 retval
= PTR_ERR(interpreter
);
676 if (IS_ERR(interpreter
))
677 goto out_free_interp
;
680 * If the binary is not readable then enforce
681 * mm->dumpable = 0 regardless of the interpreter's
684 would_dump(bprm
, interpreter
);
686 retval
= kernel_read(interpreter
, 0, bprm
->buf
,
688 if (retval
!= BINPRM_BUF_SIZE
) {
691 goto out_free_dentry
;
694 /* Get the exec headers */
695 loc
->interp_elf_ex
= *((struct elfhdr
*)bprm
->buf
);
701 elf_ppnt
= elf_phdata
;
702 for (i
= 0; i
< loc
->elf_ex
.e_phnum
; i
++, elf_ppnt
++)
703 if (elf_ppnt
->p_type
== PT_GNU_STACK
) {
704 if (elf_ppnt
->p_flags
& PF_X
)
705 executable_stack
= EXSTACK_ENABLE_X
;
707 executable_stack
= EXSTACK_DISABLE_X
;
711 /* Some simple consistency checks for the interpreter */
712 if (elf_interpreter
) {
714 /* Not an ELF interpreter */
715 if (memcmp(loc
->interp_elf_ex
.e_ident
, ELFMAG
, SELFMAG
) != 0)
716 goto out_free_dentry
;
717 /* Verify the interpreter has a valid arch */
718 if (!elf_check_arch(&loc
->interp_elf_ex
))
719 goto out_free_dentry
;
722 /* Flush all traces of the currently running executable */
723 retval
= flush_old_exec(bprm
);
725 goto out_free_dentry
;
727 /* Do this immediately, since STACK_TOP as used in setup_arg_pages
728 may depend on the personality. */
729 SET_PERSONALITY(loc
->elf_ex
);
730 if (elf_read_implies_exec(loc
->elf_ex
, executable_stack
))
731 current
->personality
|= READ_IMPLIES_EXEC
;
733 if (!(current
->personality
& ADDR_NO_RANDOMIZE
) && randomize_va_space
)
734 current
->flags
|= PF_RANDOMIZE
;
736 setup_new_exec(bprm
);
738 /* Do this so that we can load the interpreter, if need be. We will
739 change some of these later */
740 retval
= setup_arg_pages(bprm
, randomize_stack_top(STACK_TOP
),
743 goto out_free_dentry
;
745 current
->mm
->start_stack
= bprm
->p
;
747 /* Now we do a little grungy work by mmapping the ELF image into
748 the correct location in memory. */
749 for(i
= 0, elf_ppnt
= elf_phdata
;
750 i
< loc
->elf_ex
.e_phnum
; i
++, elf_ppnt
++) {
751 int elf_prot
= 0, elf_flags
;
752 unsigned long k
, vaddr
;
753 unsigned long total_size
= 0;
755 if (elf_ppnt
->p_type
!= PT_LOAD
)
758 if (unlikely (elf_brk
> elf_bss
)) {
761 /* There was a PT_LOAD segment with p_memsz > p_filesz
762 before this one. Map anonymous pages, if needed,
763 and clear the area. */
764 retval
= set_brk(elf_bss
+ load_bias
,
765 elf_brk
+ load_bias
);
767 goto out_free_dentry
;
768 nbyte
= ELF_PAGEOFFSET(elf_bss
);
770 nbyte
= ELF_MIN_ALIGN
- nbyte
;
771 if (nbyte
> elf_brk
- elf_bss
)
772 nbyte
= elf_brk
- elf_bss
;
773 if (clear_user((void __user
*)elf_bss
+
776 * This bss-zeroing can fail if the ELF
777 * file specifies odd protections. So
778 * we don't check the return value
784 if (elf_ppnt
->p_flags
& PF_R
)
785 elf_prot
|= PROT_READ
;
786 if (elf_ppnt
->p_flags
& PF_W
)
787 elf_prot
|= PROT_WRITE
;
788 if (elf_ppnt
->p_flags
& PF_X
)
789 elf_prot
|= PROT_EXEC
;
791 elf_flags
= MAP_PRIVATE
| MAP_DENYWRITE
| MAP_EXECUTABLE
;
793 vaddr
= elf_ppnt
->p_vaddr
;
794 if (loc
->elf_ex
.e_type
== ET_EXEC
|| load_addr_set
) {
795 elf_flags
|= MAP_FIXED
;
796 } else if (loc
->elf_ex
.e_type
== ET_DYN
) {
797 /* Try and get dynamic programs out of the way of the
798 * default mmap base, as well as whatever program they
799 * might try to exec. This is because the brk will
800 * follow the loader, and is not movable. */
801 #ifdef CONFIG_ARCH_BINFMT_ELF_RANDOMIZE_PIE
802 /* Memory randomization might have been switched off
803 * in runtime via sysctl or explicit setting of
805 * If that is the case, retain the original non-zero
806 * load_bias value in order to establish proper
807 * non-randomized mappings.
809 if (current
->flags
& PF_RANDOMIZE
)
812 load_bias
= ELF_PAGESTART(ELF_ET_DYN_BASE
- vaddr
);
814 load_bias
= ELF_PAGESTART(ELF_ET_DYN_BASE
- vaddr
);
816 total_size
= total_mapping_size(elf_phdata
,
817 loc
->elf_ex
.e_phnum
);
820 goto out_free_dentry
;
824 error
= elf_map(bprm
->file
, load_bias
+ vaddr
, elf_ppnt
,
825 elf_prot
, elf_flags
, total_size
);
826 if (BAD_ADDR(error
)) {
827 retval
= IS_ERR((void *)error
) ?
828 PTR_ERR((void*)error
) : -EINVAL
;
829 goto out_free_dentry
;
832 if (!load_addr_set
) {
834 load_addr
= (elf_ppnt
->p_vaddr
- elf_ppnt
->p_offset
);
835 if (loc
->elf_ex
.e_type
== ET_DYN
) {
837 ELF_PAGESTART(load_bias
+ vaddr
);
838 load_addr
+= load_bias
;
839 reloc_func_desc
= load_bias
;
842 k
= elf_ppnt
->p_vaddr
;
849 * Check to see if the section's size will overflow the
850 * allowed task size. Note that p_filesz must always be
851 * <= p_memsz so it is only necessary to check p_memsz.
853 if (BAD_ADDR(k
) || elf_ppnt
->p_filesz
> elf_ppnt
->p_memsz
||
854 elf_ppnt
->p_memsz
> TASK_SIZE
||
855 TASK_SIZE
- elf_ppnt
->p_memsz
< k
) {
856 /* set_brk can never work. Avoid overflows. */
858 goto out_free_dentry
;
861 k
= elf_ppnt
->p_vaddr
+ elf_ppnt
->p_filesz
;
865 if ((elf_ppnt
->p_flags
& PF_X
) && end_code
< k
)
869 k
= elf_ppnt
->p_vaddr
+ elf_ppnt
->p_memsz
;
874 loc
->elf_ex
.e_entry
+= load_bias
;
875 elf_bss
+= load_bias
;
876 elf_brk
+= load_bias
;
877 start_code
+= load_bias
;
878 end_code
+= load_bias
;
879 start_data
+= load_bias
;
880 end_data
+= load_bias
;
882 /* Calling set_brk effectively mmaps the pages that we need
883 * for the bss and break sections. We must do this before
884 * mapping in the interpreter, to make sure it doesn't wind
885 * up getting placed where the bss needs to go.
887 retval
= set_brk(elf_bss
, elf_brk
);
889 goto out_free_dentry
;
890 if (likely(elf_bss
!= elf_brk
) && unlikely(padzero(elf_bss
))) {
891 retval
= -EFAULT
; /* Nobody gets to see this, but.. */
892 goto out_free_dentry
;
895 if (elf_interpreter
) {
896 unsigned long interp_map_addr
= 0;
898 elf_entry
= load_elf_interp(&loc
->interp_elf_ex
,
902 if (!IS_ERR((void *)elf_entry
)) {
904 * load_elf_interp() returns relocation
907 interp_load_addr
= elf_entry
;
908 elf_entry
+= loc
->interp_elf_ex
.e_entry
;
910 if (BAD_ADDR(elf_entry
)) {
911 retval
= IS_ERR((void *)elf_entry
) ?
912 (int)elf_entry
: -EINVAL
;
913 goto out_free_dentry
;
915 reloc_func_desc
= interp_load_addr
;
917 allow_write_access(interpreter
);
919 kfree(elf_interpreter
);
921 elf_entry
= loc
->elf_ex
.e_entry
;
922 if (BAD_ADDR(elf_entry
)) {
924 goto out_free_dentry
;
930 set_binfmt(&elf_format
);
932 #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES
933 retval
= arch_setup_additional_pages(bprm
, !!elf_interpreter
);
936 #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */
938 install_exec_creds(bprm
);
939 retval
= create_elf_tables(bprm
, &loc
->elf_ex
,
940 load_addr
, interp_load_addr
);
943 /* N.B. passed_fileno might not be initialized? */
944 current
->mm
->end_code
= end_code
;
945 current
->mm
->start_code
= start_code
;
946 current
->mm
->start_data
= start_data
;
947 current
->mm
->end_data
= end_data
;
948 current
->mm
->start_stack
= bprm
->p
;
950 #ifdef arch_randomize_brk
951 if ((current
->flags
& PF_RANDOMIZE
) && (randomize_va_space
> 1)) {
952 current
->mm
->brk
= current
->mm
->start_brk
=
953 arch_randomize_brk(current
->mm
);
954 #ifdef CONFIG_COMPAT_BRK
955 current
->brk_randomized
= 1;
960 if (current
->personality
& MMAP_PAGE_ZERO
) {
961 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
962 and some applications "depend" upon this behavior.
963 Since we do not have the power to recompile these, we
964 emulate the SVr4 behavior. Sigh. */
965 error
= vm_mmap(NULL
, 0, PAGE_SIZE
, PROT_READ
| PROT_EXEC
,
966 MAP_FIXED
| MAP_PRIVATE
, 0);
971 * The ABI may specify that certain registers be set up in special
972 * ways (on i386 %edx is the address of a DT_FINI function, for
973 * example. In addition, it may also specify (eg, PowerPC64 ELF)
974 * that the e_entry field is the address of the function descriptor
975 * for the startup routine, rather than the address of the startup
976 * routine itself. This macro performs whatever initialization to
977 * the regs structure is required as well as any relocations to the
978 * function descriptor entries when executing dynamically links apps.
980 ELF_PLAT_INIT(regs
, reloc_func_desc
);
983 start_thread(regs
, elf_entry
, bprm
->p
);
992 allow_write_access(interpreter
);
996 kfree(elf_interpreter
);
1002 #ifdef CONFIG_USELIB
1003 /* This is really simpleminded and specialized - we are loading an
1004 a.out library that is given an ELF header. */
1005 static int load_elf_library(struct file
*file
)
1007 struct elf_phdr
*elf_phdata
;
1008 struct elf_phdr
*eppnt
;
1009 unsigned long elf_bss
, bss
, len
;
1010 int retval
, error
, i
, j
;
1011 struct elfhdr elf_ex
;
1014 retval
= kernel_read(file
, 0, (char *)&elf_ex
, sizeof(elf_ex
));
1015 if (retval
!= sizeof(elf_ex
))
1018 if (memcmp(elf_ex
.e_ident
, ELFMAG
, SELFMAG
) != 0)
1021 /* First of all, some simple consistency checks */
1022 if (elf_ex
.e_type
!= ET_EXEC
|| elf_ex
.e_phnum
> 2 ||
1023 !elf_check_arch(&elf_ex
) || !file
->f_op
->mmap
)
1026 /* Now read in all of the header information */
1028 j
= sizeof(struct elf_phdr
) * elf_ex
.e_phnum
;
1029 /* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */
1032 elf_phdata
= kmalloc(j
, GFP_KERNEL
);
1038 retval
= kernel_read(file
, elf_ex
.e_phoff
, (char *)eppnt
, j
);
1042 for (j
= 0, i
= 0; i
<elf_ex
.e_phnum
; i
++)
1043 if ((eppnt
+ i
)->p_type
== PT_LOAD
)
1048 while (eppnt
->p_type
!= PT_LOAD
)
1051 /* Now use mmap to map the library into memory. */
1052 error
= vm_mmap(file
,
1053 ELF_PAGESTART(eppnt
->p_vaddr
),
1055 ELF_PAGEOFFSET(eppnt
->p_vaddr
)),
1056 PROT_READ
| PROT_WRITE
| PROT_EXEC
,
1057 MAP_FIXED
| MAP_PRIVATE
| MAP_DENYWRITE
,
1059 ELF_PAGEOFFSET(eppnt
->p_vaddr
)));
1060 if (error
!= ELF_PAGESTART(eppnt
->p_vaddr
))
1063 elf_bss
= eppnt
->p_vaddr
+ eppnt
->p_filesz
;
1064 if (padzero(elf_bss
)) {
1069 len
= ELF_PAGESTART(eppnt
->p_filesz
+ eppnt
->p_vaddr
+
1071 bss
= eppnt
->p_memsz
+ eppnt
->p_vaddr
;
1073 vm_brk(len
, bss
- len
);
1081 #endif /* #ifdef CONFIG_USELIB */
1083 #ifdef CONFIG_ELF_CORE
1087 * Modelled on fs/exec.c:aout_core_dump()
1088 * Jeremy Fitzhardinge <jeremy@sw.oz.au>
1092 * The purpose of always_dump_vma() is to make sure that special kernel mappings
1093 * that are useful for post-mortem analysis are included in every core dump.
1094 * In that way we ensure that the core dump is fully interpretable later
1095 * without matching up the same kernel and hardware config to see what PC values
1096 * meant. These special mappings include - vDSO, vsyscall, and other
1097 * architecture specific mappings
1099 static bool always_dump_vma(struct vm_area_struct
*vma
)
1101 /* Any vsyscall mappings? */
1102 if (vma
== get_gate_vma(vma
->vm_mm
))
1106 * Assume that all vmas with a .name op should always be dumped.
1107 * If this changes, a new vm_ops field can easily be added.
1109 if (vma
->vm_ops
&& vma
->vm_ops
->name
&& vma
->vm_ops
->name(vma
))
1113 * arch_vma_name() returns non-NULL for special architecture mappings,
1114 * such as vDSO sections.
1116 if (arch_vma_name(vma
))
1123 * Decide what to dump of a segment, part, all or none.
1125 static unsigned long vma_dump_size(struct vm_area_struct
*vma
,
1126 unsigned long mm_flags
)
1128 #define FILTER(type) (mm_flags & (1UL << MMF_DUMP_##type))
1130 /* always dump the vdso and vsyscall sections */
1131 if (always_dump_vma(vma
))
1134 if (vma
->vm_flags
& VM_DONTDUMP
)
1137 /* Hugetlb memory check */
1138 if (vma
->vm_flags
& VM_HUGETLB
) {
1139 if ((vma
->vm_flags
& VM_SHARED
) && FILTER(HUGETLB_SHARED
))
1141 if (!(vma
->vm_flags
& VM_SHARED
) && FILTER(HUGETLB_PRIVATE
))
1146 /* Do not dump I/O mapped devices or special mappings */
1147 if (vma
->vm_flags
& VM_IO
)
1150 /* By default, dump shared memory if mapped from an anonymous file. */
1151 if (vma
->vm_flags
& VM_SHARED
) {
1152 if (file_inode(vma
->vm_file
)->i_nlink
== 0 ?
1153 FILTER(ANON_SHARED
) : FILTER(MAPPED_SHARED
))
1158 /* Dump segments that have been written to. */
1159 if (vma
->anon_vma
&& FILTER(ANON_PRIVATE
))
1161 if (vma
->vm_file
== NULL
)
1164 if (FILTER(MAPPED_PRIVATE
))
1168 * If this looks like the beginning of a DSO or executable mapping,
1169 * check for an ELF header. If we find one, dump the first page to
1170 * aid in determining what was mapped here.
1172 if (FILTER(ELF_HEADERS
) &&
1173 vma
->vm_pgoff
== 0 && (vma
->vm_flags
& VM_READ
)) {
1174 u32 __user
*header
= (u32 __user
*) vma
->vm_start
;
1176 mm_segment_t fs
= get_fs();
1178 * Doing it this way gets the constant folded by GCC.
1182 char elfmag
[SELFMAG
];
1184 BUILD_BUG_ON(SELFMAG
!= sizeof word
);
1185 magic
.elfmag
[EI_MAG0
] = ELFMAG0
;
1186 magic
.elfmag
[EI_MAG1
] = ELFMAG1
;
1187 magic
.elfmag
[EI_MAG2
] = ELFMAG2
;
1188 magic
.elfmag
[EI_MAG3
] = ELFMAG3
;
1190 * Switch to the user "segment" for get_user(),
1191 * then put back what elf_core_dump() had in place.
1194 if (unlikely(get_user(word
, header
)))
1197 if (word
== magic
.cmp
)
1206 return vma
->vm_end
- vma
->vm_start
;
1209 /* An ELF note in memory */
1214 unsigned int datasz
;
1218 static int notesize(struct memelfnote
*en
)
1222 sz
= sizeof(struct elf_note
);
1223 sz
+= roundup(strlen(en
->name
) + 1, 4);
1224 sz
+= roundup(en
->datasz
, 4);
1229 static int writenote(struct memelfnote
*men
, struct coredump_params
*cprm
)
1232 en
.n_namesz
= strlen(men
->name
) + 1;
1233 en
.n_descsz
= men
->datasz
;
1234 en
.n_type
= men
->type
;
1236 return dump_emit(cprm
, &en
, sizeof(en
)) &&
1237 dump_emit(cprm
, men
->name
, en
.n_namesz
) && dump_align(cprm
, 4) &&
1238 dump_emit(cprm
, men
->data
, men
->datasz
) && dump_align(cprm
, 4);
1241 static void fill_elf_header(struct elfhdr
*elf
, int segs
,
1242 u16 machine
, u32 flags
)
1244 memset(elf
, 0, sizeof(*elf
));
1246 memcpy(elf
->e_ident
, ELFMAG
, SELFMAG
);
1247 elf
->e_ident
[EI_CLASS
] = ELF_CLASS
;
1248 elf
->e_ident
[EI_DATA
] = ELF_DATA
;
1249 elf
->e_ident
[EI_VERSION
] = EV_CURRENT
;
1250 elf
->e_ident
[EI_OSABI
] = ELF_OSABI
;
1252 elf
->e_type
= ET_CORE
;
1253 elf
->e_machine
= machine
;
1254 elf
->e_version
= EV_CURRENT
;
1255 elf
->e_phoff
= sizeof(struct elfhdr
);
1256 elf
->e_flags
= flags
;
1257 elf
->e_ehsize
= sizeof(struct elfhdr
);
1258 elf
->e_phentsize
= sizeof(struct elf_phdr
);
1259 elf
->e_phnum
= segs
;
1264 static void fill_elf_note_phdr(struct elf_phdr
*phdr
, int sz
, loff_t offset
)
1266 phdr
->p_type
= PT_NOTE
;
1267 phdr
->p_offset
= offset
;
1270 phdr
->p_filesz
= sz
;
1277 static void fill_note(struct memelfnote
*note
, const char *name
, int type
,
1278 unsigned int sz
, void *data
)
1288 * fill up all the fields in prstatus from the given task struct, except
1289 * registers which need to be filled up separately.
1291 static void fill_prstatus(struct elf_prstatus
*prstatus
,
1292 struct task_struct
*p
, long signr
)
1294 prstatus
->pr_info
.si_signo
= prstatus
->pr_cursig
= signr
;
1295 prstatus
->pr_sigpend
= p
->pending
.signal
.sig
[0];
1296 prstatus
->pr_sighold
= p
->blocked
.sig
[0];
1298 prstatus
->pr_ppid
= task_pid_vnr(rcu_dereference(p
->real_parent
));
1300 prstatus
->pr_pid
= task_pid_vnr(p
);
1301 prstatus
->pr_pgrp
= task_pgrp_vnr(p
);
1302 prstatus
->pr_sid
= task_session_vnr(p
);
1303 if (thread_group_leader(p
)) {
1304 struct task_cputime cputime
;
1307 * This is the record for the group leader. It shows the
1308 * group-wide total, not its individual thread total.
1310 thread_group_cputime(p
, &cputime
);
1311 cputime_to_timeval(cputime
.utime
, &prstatus
->pr_utime
);
1312 cputime_to_timeval(cputime
.stime
, &prstatus
->pr_stime
);
1314 cputime_t utime
, stime
;
1316 task_cputime(p
, &utime
, &stime
);
1317 cputime_to_timeval(utime
, &prstatus
->pr_utime
);
1318 cputime_to_timeval(stime
, &prstatus
->pr_stime
);
1320 cputime_to_timeval(p
->signal
->cutime
, &prstatus
->pr_cutime
);
1321 cputime_to_timeval(p
->signal
->cstime
, &prstatus
->pr_cstime
);
1324 static int fill_psinfo(struct elf_prpsinfo
*psinfo
, struct task_struct
*p
,
1325 struct mm_struct
*mm
)
1327 const struct cred
*cred
;
1328 unsigned int i
, len
;
1330 /* first copy the parameters from user space */
1331 memset(psinfo
, 0, sizeof(struct elf_prpsinfo
));
1333 len
= mm
->arg_end
- mm
->arg_start
;
1334 if (len
>= ELF_PRARGSZ
)
1335 len
= ELF_PRARGSZ
-1;
1336 if (copy_from_user(&psinfo
->pr_psargs
,
1337 (const char __user
*)mm
->arg_start
, len
))
1339 for(i
= 0; i
< len
; i
++)
1340 if (psinfo
->pr_psargs
[i
] == 0)
1341 psinfo
->pr_psargs
[i
] = ' ';
1342 psinfo
->pr_psargs
[len
] = 0;
1345 psinfo
->pr_ppid
= task_pid_vnr(rcu_dereference(p
->real_parent
));
1347 psinfo
->pr_pid
= task_pid_vnr(p
);
1348 psinfo
->pr_pgrp
= task_pgrp_vnr(p
);
1349 psinfo
->pr_sid
= task_session_vnr(p
);
1351 i
= p
->state
? ffz(~p
->state
) + 1 : 0;
1352 psinfo
->pr_state
= i
;
1353 psinfo
->pr_sname
= (i
> 5) ? '.' : "RSDTZW"[i
];
1354 psinfo
->pr_zomb
= psinfo
->pr_sname
== 'Z';
1355 psinfo
->pr_nice
= task_nice(p
);
1356 psinfo
->pr_flag
= p
->flags
;
1358 cred
= __task_cred(p
);
1359 SET_UID(psinfo
->pr_uid
, from_kuid_munged(cred
->user_ns
, cred
->uid
));
1360 SET_GID(psinfo
->pr_gid
, from_kgid_munged(cred
->user_ns
, cred
->gid
));
1362 strncpy(psinfo
->pr_fname
, p
->comm
, sizeof(psinfo
->pr_fname
));
1367 static void fill_auxv_note(struct memelfnote
*note
, struct mm_struct
*mm
)
1369 elf_addr_t
*auxv
= (elf_addr_t
*) mm
->saved_auxv
;
1373 while (auxv
[i
- 2] != AT_NULL
);
1374 fill_note(note
, "CORE", NT_AUXV
, i
* sizeof(elf_addr_t
), auxv
);
1377 static void fill_siginfo_note(struct memelfnote
*note
, user_siginfo_t
*csigdata
,
1378 const siginfo_t
*siginfo
)
1380 mm_segment_t old_fs
= get_fs();
1382 copy_siginfo_to_user((user_siginfo_t __user
*) csigdata
, siginfo
);
1384 fill_note(note
, "CORE", NT_SIGINFO
, sizeof(*csigdata
), csigdata
);
1387 #define MAX_FILE_NOTE_SIZE (4*1024*1024)
1389 * Format of NT_FILE note:
1391 * long count -- how many files are mapped
1392 * long page_size -- units for file_ofs
1393 * array of [COUNT] elements of
1397 * followed by COUNT filenames in ASCII: "FILE1" NUL "FILE2" NUL...
1399 static int fill_files_note(struct memelfnote
*note
)
1401 struct vm_area_struct
*vma
;
1402 unsigned count
, size
, names_ofs
, remaining
, n
;
1404 user_long_t
*start_end_ofs
;
1405 char *name_base
, *name_curpos
;
1407 /* *Estimated* file count and total data size needed */
1408 count
= current
->mm
->map_count
;
1411 names_ofs
= (2 + 3 * count
) * sizeof(data
[0]);
1413 if (size
>= MAX_FILE_NOTE_SIZE
) /* paranoia check */
1415 size
= round_up(size
, PAGE_SIZE
);
1416 data
= vmalloc(size
);
1420 start_end_ofs
= data
+ 2;
1421 name_base
= name_curpos
= ((char *)data
) + names_ofs
;
1422 remaining
= size
- names_ofs
;
1424 for (vma
= current
->mm
->mmap
; vma
!= NULL
; vma
= vma
->vm_next
) {
1426 const char *filename
;
1428 file
= vma
->vm_file
;
1431 filename
= d_path(&file
->f_path
, name_curpos
, remaining
);
1432 if (IS_ERR(filename
)) {
1433 if (PTR_ERR(filename
) == -ENAMETOOLONG
) {
1435 size
= size
* 5 / 4;
1441 /* d_path() fills at the end, move name down */
1442 /* n = strlen(filename) + 1: */
1443 n
= (name_curpos
+ remaining
) - filename
;
1444 remaining
= filename
- name_curpos
;
1445 memmove(name_curpos
, filename
, n
);
1448 *start_end_ofs
++ = vma
->vm_start
;
1449 *start_end_ofs
++ = vma
->vm_end
;
1450 *start_end_ofs
++ = vma
->vm_pgoff
;
1454 /* Now we know exact count of files, can store it */
1456 data
[1] = PAGE_SIZE
;
1458 * Count usually is less than current->mm->map_count,
1459 * we need to move filenames down.
1461 n
= current
->mm
->map_count
- count
;
1463 unsigned shift_bytes
= n
* 3 * sizeof(data
[0]);
1464 memmove(name_base
- shift_bytes
, name_base
,
1465 name_curpos
- name_base
);
1466 name_curpos
-= shift_bytes
;
1469 size
= name_curpos
- (char *)data
;
1470 fill_note(note
, "CORE", NT_FILE
, size
, data
);
1474 #ifdef CORE_DUMP_USE_REGSET
1475 #include <linux/regset.h>
1477 struct elf_thread_core_info
{
1478 struct elf_thread_core_info
*next
;
1479 struct task_struct
*task
;
1480 struct elf_prstatus prstatus
;
1481 struct memelfnote notes
[0];
1484 struct elf_note_info
{
1485 struct elf_thread_core_info
*thread
;
1486 struct memelfnote psinfo
;
1487 struct memelfnote signote
;
1488 struct memelfnote auxv
;
1489 struct memelfnote files
;
1490 user_siginfo_t csigdata
;
1496 * When a regset has a writeback hook, we call it on each thread before
1497 * dumping user memory. On register window machines, this makes sure the
1498 * user memory backing the register data is up to date before we read it.
1500 static void do_thread_regset_writeback(struct task_struct
*task
,
1501 const struct user_regset
*regset
)
1503 if (regset
->writeback
)
1504 regset
->writeback(task
, regset
, 1);
1508 #define PR_REG_SIZE(S) sizeof(S)
1511 #ifndef PRSTATUS_SIZE
1512 #define PRSTATUS_SIZE(S) sizeof(S)
1516 #define PR_REG_PTR(S) (&((S)->pr_reg))
1519 #ifndef SET_PR_FPVALID
1520 #define SET_PR_FPVALID(S, V) ((S)->pr_fpvalid = (V))
1523 static int fill_thread_core_info(struct elf_thread_core_info
*t
,
1524 const struct user_regset_view
*view
,
1525 long signr
, size_t *total
)
1530 * NT_PRSTATUS is the one special case, because the regset data
1531 * goes into the pr_reg field inside the note contents, rather
1532 * than being the whole note contents. We fill the reset in here.
1533 * We assume that regset 0 is NT_PRSTATUS.
1535 fill_prstatus(&t
->prstatus
, t
->task
, signr
);
1536 (void) view
->regsets
[0].get(t
->task
, &view
->regsets
[0],
1537 0, PR_REG_SIZE(t
->prstatus
.pr_reg
),
1538 PR_REG_PTR(&t
->prstatus
), NULL
);
1540 fill_note(&t
->notes
[0], "CORE", NT_PRSTATUS
,
1541 PRSTATUS_SIZE(t
->prstatus
), &t
->prstatus
);
1542 *total
+= notesize(&t
->notes
[0]);
1544 do_thread_regset_writeback(t
->task
, &view
->regsets
[0]);
1547 * Each other regset might generate a note too. For each regset
1548 * that has no core_note_type or is inactive, we leave t->notes[i]
1549 * all zero and we'll know to skip writing it later.
1551 for (i
= 1; i
< view
->n
; ++i
) {
1552 const struct user_regset
*regset
= &view
->regsets
[i
];
1553 do_thread_regset_writeback(t
->task
, regset
);
1554 if (regset
->core_note_type
&& regset
->get
&&
1555 (!regset
->active
|| regset
->active(t
->task
, regset
))) {
1557 size_t size
= regset
->n
* regset
->size
;
1558 void *data
= kmalloc(size
, GFP_KERNEL
);
1559 if (unlikely(!data
))
1561 ret
= regset
->get(t
->task
, regset
,
1562 0, size
, data
, NULL
);
1566 if (regset
->core_note_type
!= NT_PRFPREG
)
1567 fill_note(&t
->notes
[i
], "LINUX",
1568 regset
->core_note_type
,
1571 SET_PR_FPVALID(&t
->prstatus
, 1);
1572 fill_note(&t
->notes
[i
], "CORE",
1573 NT_PRFPREG
, size
, data
);
1575 *total
+= notesize(&t
->notes
[i
]);
1583 static int fill_note_info(struct elfhdr
*elf
, int phdrs
,
1584 struct elf_note_info
*info
,
1585 const siginfo_t
*siginfo
, struct pt_regs
*regs
)
1587 struct task_struct
*dump_task
= current
;
1588 const struct user_regset_view
*view
= task_user_regset_view(dump_task
);
1589 struct elf_thread_core_info
*t
;
1590 struct elf_prpsinfo
*psinfo
;
1591 struct core_thread
*ct
;
1595 info
->thread
= NULL
;
1597 psinfo
= kmalloc(sizeof(*psinfo
), GFP_KERNEL
);
1598 if (psinfo
== NULL
) {
1599 info
->psinfo
.data
= NULL
; /* So we don't free this wrongly */
1603 fill_note(&info
->psinfo
, "CORE", NT_PRPSINFO
, sizeof(*psinfo
), psinfo
);
1606 * Figure out how many notes we're going to need for each thread.
1608 info
->thread_notes
= 0;
1609 for (i
= 0; i
< view
->n
; ++i
)
1610 if (view
->regsets
[i
].core_note_type
!= 0)
1611 ++info
->thread_notes
;
1614 * Sanity check. We rely on regset 0 being in NT_PRSTATUS,
1615 * since it is our one special case.
1617 if (unlikely(info
->thread_notes
== 0) ||
1618 unlikely(view
->regsets
[0].core_note_type
!= NT_PRSTATUS
)) {
1624 * Initialize the ELF file header.
1626 fill_elf_header(elf
, phdrs
,
1627 view
->e_machine
, view
->e_flags
);
1630 * Allocate a structure for each thread.
1632 for (ct
= &dump_task
->mm
->core_state
->dumper
; ct
; ct
= ct
->next
) {
1633 t
= kzalloc(offsetof(struct elf_thread_core_info
,
1634 notes
[info
->thread_notes
]),
1640 if (ct
->task
== dump_task
|| !info
->thread
) {
1641 t
->next
= info
->thread
;
1645 * Make sure to keep the original task at
1646 * the head of the list.
1648 t
->next
= info
->thread
->next
;
1649 info
->thread
->next
= t
;
1654 * Now fill in each thread's information.
1656 for (t
= info
->thread
; t
!= NULL
; t
= t
->next
)
1657 if (!fill_thread_core_info(t
, view
, siginfo
->si_signo
, &info
->size
))
1661 * Fill in the two process-wide notes.
1663 fill_psinfo(psinfo
, dump_task
->group_leader
, dump_task
->mm
);
1664 info
->size
+= notesize(&info
->psinfo
);
1666 fill_siginfo_note(&info
->signote
, &info
->csigdata
, siginfo
);
1667 info
->size
+= notesize(&info
->signote
);
1669 fill_auxv_note(&info
->auxv
, current
->mm
);
1670 info
->size
+= notesize(&info
->auxv
);
1672 if (fill_files_note(&info
->files
) == 0)
1673 info
->size
+= notesize(&info
->files
);
1678 static size_t get_note_info_size(struct elf_note_info
*info
)
1684 * Write all the notes for each thread. When writing the first thread, the
1685 * process-wide notes are interleaved after the first thread-specific note.
1687 static int write_note_info(struct elf_note_info
*info
,
1688 struct coredump_params
*cprm
)
1691 struct elf_thread_core_info
*t
= info
->thread
;
1696 if (!writenote(&t
->notes
[0], cprm
))
1699 if (first
&& !writenote(&info
->psinfo
, cprm
))
1701 if (first
&& !writenote(&info
->signote
, cprm
))
1703 if (first
&& !writenote(&info
->auxv
, cprm
))
1705 if (first
&& info
->files
.data
&&
1706 !writenote(&info
->files
, cprm
))
1709 for (i
= 1; i
< info
->thread_notes
; ++i
)
1710 if (t
->notes
[i
].data
&&
1711 !writenote(&t
->notes
[i
], cprm
))
1721 static void free_note_info(struct elf_note_info
*info
)
1723 struct elf_thread_core_info
*threads
= info
->thread
;
1726 struct elf_thread_core_info
*t
= threads
;
1728 WARN_ON(t
->notes
[0].data
&& t
->notes
[0].data
!= &t
->prstatus
);
1729 for (i
= 1; i
< info
->thread_notes
; ++i
)
1730 kfree(t
->notes
[i
].data
);
1733 kfree(info
->psinfo
.data
);
1734 vfree(info
->files
.data
);
1739 /* Here is the structure in which status of each thread is captured. */
1740 struct elf_thread_status
1742 struct list_head list
;
1743 struct elf_prstatus prstatus
; /* NT_PRSTATUS */
1744 elf_fpregset_t fpu
; /* NT_PRFPREG */
1745 struct task_struct
*thread
;
1746 #ifdef ELF_CORE_COPY_XFPREGS
1747 elf_fpxregset_t xfpu
; /* ELF_CORE_XFPREG_TYPE */
1749 struct memelfnote notes
[3];
1754 * In order to add the specific thread information for the elf file format,
1755 * we need to keep a linked list of every threads pr_status and then create
1756 * a single section for them in the final core file.
1758 static int elf_dump_thread_status(long signr
, struct elf_thread_status
*t
)
1761 struct task_struct
*p
= t
->thread
;
1764 fill_prstatus(&t
->prstatus
, p
, signr
);
1765 elf_core_copy_task_regs(p
, &t
->prstatus
.pr_reg
);
1767 fill_note(&t
->notes
[0], "CORE", NT_PRSTATUS
, sizeof(t
->prstatus
),
1770 sz
+= notesize(&t
->notes
[0]);
1772 if ((t
->prstatus
.pr_fpvalid
= elf_core_copy_task_fpregs(p
, NULL
,
1774 fill_note(&t
->notes
[1], "CORE", NT_PRFPREG
, sizeof(t
->fpu
),
1777 sz
+= notesize(&t
->notes
[1]);
1780 #ifdef ELF_CORE_COPY_XFPREGS
1781 if (elf_core_copy_task_xfpregs(p
, &t
->xfpu
)) {
1782 fill_note(&t
->notes
[2], "LINUX", ELF_CORE_XFPREG_TYPE
,
1783 sizeof(t
->xfpu
), &t
->xfpu
);
1785 sz
+= notesize(&t
->notes
[2]);
1791 struct elf_note_info
{
1792 struct memelfnote
*notes
;
1793 struct memelfnote
*notes_files
;
1794 struct elf_prstatus
*prstatus
; /* NT_PRSTATUS */
1795 struct elf_prpsinfo
*psinfo
; /* NT_PRPSINFO */
1796 struct list_head thread_list
;
1797 elf_fpregset_t
*fpu
;
1798 #ifdef ELF_CORE_COPY_XFPREGS
1799 elf_fpxregset_t
*xfpu
;
1801 user_siginfo_t csigdata
;
1802 int thread_status_size
;
1806 static int elf_note_info_init(struct elf_note_info
*info
)
1808 memset(info
, 0, sizeof(*info
));
1809 INIT_LIST_HEAD(&info
->thread_list
);
1811 /* Allocate space for ELF notes */
1812 info
->notes
= kmalloc(8 * sizeof(struct memelfnote
), GFP_KERNEL
);
1815 info
->psinfo
= kmalloc(sizeof(*info
->psinfo
), GFP_KERNEL
);
1818 info
->prstatus
= kmalloc(sizeof(*info
->prstatus
), GFP_KERNEL
);
1819 if (!info
->prstatus
)
1821 info
->fpu
= kmalloc(sizeof(*info
->fpu
), GFP_KERNEL
);
1824 #ifdef ELF_CORE_COPY_XFPREGS
1825 info
->xfpu
= kmalloc(sizeof(*info
->xfpu
), GFP_KERNEL
);
1832 static int fill_note_info(struct elfhdr
*elf
, int phdrs
,
1833 struct elf_note_info
*info
,
1834 const siginfo_t
*siginfo
, struct pt_regs
*regs
)
1836 struct list_head
*t
;
1837 struct core_thread
*ct
;
1838 struct elf_thread_status
*ets
;
1840 if (!elf_note_info_init(info
))
1843 for (ct
= current
->mm
->core_state
->dumper
.next
;
1844 ct
; ct
= ct
->next
) {
1845 ets
= kzalloc(sizeof(*ets
), GFP_KERNEL
);
1849 ets
->thread
= ct
->task
;
1850 list_add(&ets
->list
, &info
->thread_list
);
1853 list_for_each(t
, &info
->thread_list
) {
1856 ets
= list_entry(t
, struct elf_thread_status
, list
);
1857 sz
= elf_dump_thread_status(siginfo
->si_signo
, ets
);
1858 info
->thread_status_size
+= sz
;
1860 /* now collect the dump for the current */
1861 memset(info
->prstatus
, 0, sizeof(*info
->prstatus
));
1862 fill_prstatus(info
->prstatus
, current
, siginfo
->si_signo
);
1863 elf_core_copy_regs(&info
->prstatus
->pr_reg
, regs
);
1866 fill_elf_header(elf
, phdrs
, ELF_ARCH
, ELF_CORE_EFLAGS
);
1869 * Set up the notes in similar form to SVR4 core dumps made
1870 * with info from their /proc.
1873 fill_note(info
->notes
+ 0, "CORE", NT_PRSTATUS
,
1874 sizeof(*info
->prstatus
), info
->prstatus
);
1875 fill_psinfo(info
->psinfo
, current
->group_leader
, current
->mm
);
1876 fill_note(info
->notes
+ 1, "CORE", NT_PRPSINFO
,
1877 sizeof(*info
->psinfo
), info
->psinfo
);
1879 fill_siginfo_note(info
->notes
+ 2, &info
->csigdata
, siginfo
);
1880 fill_auxv_note(info
->notes
+ 3, current
->mm
);
1883 if (fill_files_note(info
->notes
+ info
->numnote
) == 0) {
1884 info
->notes_files
= info
->notes
+ info
->numnote
;
1888 /* Try to dump the FPU. */
1889 info
->prstatus
->pr_fpvalid
= elf_core_copy_task_fpregs(current
, regs
,
1891 if (info
->prstatus
->pr_fpvalid
)
1892 fill_note(info
->notes
+ info
->numnote
++,
1893 "CORE", NT_PRFPREG
, sizeof(*info
->fpu
), info
->fpu
);
1894 #ifdef ELF_CORE_COPY_XFPREGS
1895 if (elf_core_copy_task_xfpregs(current
, info
->xfpu
))
1896 fill_note(info
->notes
+ info
->numnote
++,
1897 "LINUX", ELF_CORE_XFPREG_TYPE
,
1898 sizeof(*info
->xfpu
), info
->xfpu
);
1904 static size_t get_note_info_size(struct elf_note_info
*info
)
1909 for (i
= 0; i
< info
->numnote
; i
++)
1910 sz
+= notesize(info
->notes
+ i
);
1912 sz
+= info
->thread_status_size
;
1917 static int write_note_info(struct elf_note_info
*info
,
1918 struct coredump_params
*cprm
)
1921 struct list_head
*t
;
1923 for (i
= 0; i
< info
->numnote
; i
++)
1924 if (!writenote(info
->notes
+ i
, cprm
))
1927 /* write out the thread status notes section */
1928 list_for_each(t
, &info
->thread_list
) {
1929 struct elf_thread_status
*tmp
=
1930 list_entry(t
, struct elf_thread_status
, list
);
1932 for (i
= 0; i
< tmp
->num_notes
; i
++)
1933 if (!writenote(&tmp
->notes
[i
], cprm
))
1940 static void free_note_info(struct elf_note_info
*info
)
1942 while (!list_empty(&info
->thread_list
)) {
1943 struct list_head
*tmp
= info
->thread_list
.next
;
1945 kfree(list_entry(tmp
, struct elf_thread_status
, list
));
1948 /* Free data possibly allocated by fill_files_note(): */
1949 if (info
->notes_files
)
1950 vfree(info
->notes_files
->data
);
1952 kfree(info
->prstatus
);
1953 kfree(info
->psinfo
);
1956 #ifdef ELF_CORE_COPY_XFPREGS
1963 static struct vm_area_struct
*first_vma(struct task_struct
*tsk
,
1964 struct vm_area_struct
*gate_vma
)
1966 struct vm_area_struct
*ret
= tsk
->mm
->mmap
;
1973 * Helper function for iterating across a vma list. It ensures that the caller
1974 * will visit `gate_vma' prior to terminating the search.
1976 static struct vm_area_struct
*next_vma(struct vm_area_struct
*this_vma
,
1977 struct vm_area_struct
*gate_vma
)
1979 struct vm_area_struct
*ret
;
1981 ret
= this_vma
->vm_next
;
1984 if (this_vma
== gate_vma
)
1989 static void fill_extnum_info(struct elfhdr
*elf
, struct elf_shdr
*shdr4extnum
,
1990 elf_addr_t e_shoff
, int segs
)
1992 elf
->e_shoff
= e_shoff
;
1993 elf
->e_shentsize
= sizeof(*shdr4extnum
);
1995 elf
->e_shstrndx
= SHN_UNDEF
;
1997 memset(shdr4extnum
, 0, sizeof(*shdr4extnum
));
1999 shdr4extnum
->sh_type
= SHT_NULL
;
2000 shdr4extnum
->sh_size
= elf
->e_shnum
;
2001 shdr4extnum
->sh_link
= elf
->e_shstrndx
;
2002 shdr4extnum
->sh_info
= segs
;
2005 static size_t elf_core_vma_data_size(struct vm_area_struct
*gate_vma
,
2006 unsigned long mm_flags
)
2008 struct vm_area_struct
*vma
;
2011 for (vma
= first_vma(current
, gate_vma
); vma
!= NULL
;
2012 vma
= next_vma(vma
, gate_vma
))
2013 size
+= vma_dump_size(vma
, mm_flags
);
2020 * This is a two-pass process; first we find the offsets of the bits,
2021 * and then they are actually written out. If we run out of core limit
2024 static int elf_core_dump(struct coredump_params
*cprm
)
2029 struct vm_area_struct
*vma
, *gate_vma
;
2030 struct elfhdr
*elf
= NULL
;
2031 loff_t offset
= 0, dataoff
;
2032 struct elf_note_info info
= { };
2033 struct elf_phdr
*phdr4note
= NULL
;
2034 struct elf_shdr
*shdr4extnum
= NULL
;
2039 * We no longer stop all VM operations.
2041 * This is because those proceses that could possibly change map_count
2042 * or the mmap / vma pages are now blocked in do_exit on current
2043 * finishing this core dump.
2045 * Only ptrace can touch these memory addresses, but it doesn't change
2046 * the map_count or the pages allocated. So no possibility of crashing
2047 * exists while dumping the mm->vm_next areas to the core file.
2050 /* alloc memory for large data structures: too large to be on stack */
2051 elf
= kmalloc(sizeof(*elf
), GFP_KERNEL
);
2055 * The number of segs are recored into ELF header as 16bit value.
2056 * Please check DEFAULT_MAX_MAP_COUNT definition when you modify here.
2058 segs
= current
->mm
->map_count
;
2059 segs
+= elf_core_extra_phdrs();
2061 gate_vma
= get_gate_vma(current
->mm
);
2062 if (gate_vma
!= NULL
)
2065 /* for notes section */
2068 /* If segs > PN_XNUM(0xffff), then e_phnum overflows. To avoid
2069 * this, kernel supports extended numbering. Have a look at
2070 * include/linux/elf.h for further information. */
2071 e_phnum
= segs
> PN_XNUM
? PN_XNUM
: segs
;
2074 * Collect all the non-memory information about the process for the
2075 * notes. This also sets up the file header.
2077 if (!fill_note_info(elf
, e_phnum
, &info
, cprm
->siginfo
, cprm
->regs
))
2085 offset
+= sizeof(*elf
); /* Elf header */
2086 offset
+= segs
* sizeof(struct elf_phdr
); /* Program headers */
2088 /* Write notes phdr entry */
2090 size_t sz
= get_note_info_size(&info
);
2092 sz
+= elf_coredump_extra_notes_size();
2094 phdr4note
= kmalloc(sizeof(*phdr4note
), GFP_KERNEL
);
2098 fill_elf_note_phdr(phdr4note
, sz
, offset
);
2102 dataoff
= offset
= roundup(offset
, ELF_EXEC_PAGESIZE
);
2104 offset
+= elf_core_vma_data_size(gate_vma
, cprm
->mm_flags
);
2105 offset
+= elf_core_extra_data_size();
2108 if (e_phnum
== PN_XNUM
) {
2109 shdr4extnum
= kmalloc(sizeof(*shdr4extnum
), GFP_KERNEL
);
2112 fill_extnum_info(elf
, shdr4extnum
, e_shoff
, segs
);
2117 if (!dump_emit(cprm
, elf
, sizeof(*elf
)))
2120 if (!dump_emit(cprm
, phdr4note
, sizeof(*phdr4note
)))
2123 /* Write program headers for segments dump */
2124 for (vma
= first_vma(current
, gate_vma
); vma
!= NULL
;
2125 vma
= next_vma(vma
, gate_vma
)) {
2126 struct elf_phdr phdr
;
2128 phdr
.p_type
= PT_LOAD
;
2129 phdr
.p_offset
= offset
;
2130 phdr
.p_vaddr
= vma
->vm_start
;
2132 phdr
.p_filesz
= vma_dump_size(vma
, cprm
->mm_flags
);
2133 phdr
.p_memsz
= vma
->vm_end
- vma
->vm_start
;
2134 offset
+= phdr
.p_filesz
;
2135 phdr
.p_flags
= vma
->vm_flags
& VM_READ
? PF_R
: 0;
2136 if (vma
->vm_flags
& VM_WRITE
)
2137 phdr
.p_flags
|= PF_W
;
2138 if (vma
->vm_flags
& VM_EXEC
)
2139 phdr
.p_flags
|= PF_X
;
2140 phdr
.p_align
= ELF_EXEC_PAGESIZE
;
2142 if (!dump_emit(cprm
, &phdr
, sizeof(phdr
)))
2146 if (!elf_core_write_extra_phdrs(cprm
, offset
))
2149 /* write out the notes section */
2150 if (!write_note_info(&info
, cprm
))
2153 if (elf_coredump_extra_notes_write(cprm
))
2157 if (!dump_skip(cprm
, dataoff
- cprm
->written
))
2160 for (vma
= first_vma(current
, gate_vma
); vma
!= NULL
;
2161 vma
= next_vma(vma
, gate_vma
)) {
2165 end
= vma
->vm_start
+ vma_dump_size(vma
, cprm
->mm_flags
);
2167 for (addr
= vma
->vm_start
; addr
< end
; addr
+= PAGE_SIZE
) {
2171 page
= get_dump_page(addr
);
2173 void *kaddr
= kmap(page
);
2174 stop
= !dump_emit(cprm
, kaddr
, PAGE_SIZE
);
2176 page_cache_release(page
);
2178 stop
= !dump_skip(cprm
, PAGE_SIZE
);
2184 if (!elf_core_write_extra_data(cprm
))
2187 if (e_phnum
== PN_XNUM
) {
2188 if (!dump_emit(cprm
, shdr4extnum
, sizeof(*shdr4extnum
)))
2196 free_note_info(&info
);
2204 #endif /* CONFIG_ELF_CORE */
2206 static int __init
init_elf_binfmt(void)
2208 register_binfmt(&elf_format
);
2212 static void __exit
exit_elf_binfmt(void)
2214 /* Remove the COFF and ELF loaders. */
2215 unregister_binfmt(&elf_format
);
2218 core_initcall(init_elf_binfmt
);
2219 module_exit(exit_elf_binfmt
);
2220 MODULE_LICENSE("GPL");