crypto: caam - fix caam_jr_alloc() ret code
[linux/fpc-iii.git] / fs / namei.c
blobe1976450a1e2087dfaa01caa2baacbb5f86b8b40
1 /*
2 * linux/fs/namei.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * Some corrections by tytso.
9 */
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <linux/hash.h>
38 #include <asm/uaccess.h>
40 #include "internal.h"
41 #include "mount.h"
43 /* [Feb-1997 T. Schoebel-Theuer]
44 * Fundamental changes in the pathname lookup mechanisms (namei)
45 * were necessary because of omirr. The reason is that omirr needs
46 * to know the _real_ pathname, not the user-supplied one, in case
47 * of symlinks (and also when transname replacements occur).
49 * The new code replaces the old recursive symlink resolution with
50 * an iterative one (in case of non-nested symlink chains). It does
51 * this with calls to <fs>_follow_link().
52 * As a side effect, dir_namei(), _namei() and follow_link() are now
53 * replaced with a single function lookup_dentry() that can handle all
54 * the special cases of the former code.
56 * With the new dcache, the pathname is stored at each inode, at least as
57 * long as the refcount of the inode is positive. As a side effect, the
58 * size of the dcache depends on the inode cache and thus is dynamic.
60 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
61 * resolution to correspond with current state of the code.
63 * Note that the symlink resolution is not *completely* iterative.
64 * There is still a significant amount of tail- and mid- recursion in
65 * the algorithm. Also, note that <fs>_readlink() is not used in
66 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
67 * may return different results than <fs>_follow_link(). Many virtual
68 * filesystems (including /proc) exhibit this behavior.
71 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
72 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
73 * and the name already exists in form of a symlink, try to create the new
74 * name indicated by the symlink. The old code always complained that the
75 * name already exists, due to not following the symlink even if its target
76 * is nonexistent. The new semantics affects also mknod() and link() when
77 * the name is a symlink pointing to a non-existent name.
79 * I don't know which semantics is the right one, since I have no access
80 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
81 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
82 * "old" one. Personally, I think the new semantics is much more logical.
83 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
84 * file does succeed in both HP-UX and SunOs, but not in Solaris
85 * and in the old Linux semantics.
88 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
89 * semantics. See the comments in "open_namei" and "do_link" below.
91 * [10-Sep-98 Alan Modra] Another symlink change.
94 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
95 * inside the path - always follow.
96 * in the last component in creation/removal/renaming - never follow.
97 * if LOOKUP_FOLLOW passed - follow.
98 * if the pathname has trailing slashes - follow.
99 * otherwise - don't follow.
100 * (applied in that order).
102 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
103 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
104 * During the 2.4 we need to fix the userland stuff depending on it -
105 * hopefully we will be able to get rid of that wart in 2.5. So far only
106 * XEmacs seems to be relying on it...
109 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
110 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
111 * any extra contention...
114 /* In order to reduce some races, while at the same time doing additional
115 * checking and hopefully speeding things up, we copy filenames to the
116 * kernel data space before using them..
118 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
119 * PATH_MAX includes the nul terminator --RR.
121 void final_putname(struct filename *name)
123 if (name->separate) {
124 __putname(name->name);
125 kfree(name);
126 } else {
127 __putname(name);
131 #define EMBEDDED_NAME_MAX (PATH_MAX - sizeof(struct filename))
133 static struct filename *
134 getname_flags(const char __user *filename, int flags, int *empty)
136 struct filename *result, *err;
137 int len;
138 long max;
139 char *kname;
141 result = audit_reusename(filename);
142 if (result)
143 return result;
145 result = __getname();
146 if (unlikely(!result))
147 return ERR_PTR(-ENOMEM);
150 * First, try to embed the struct filename inside the names_cache
151 * allocation
153 kname = (char *)result + sizeof(*result);
154 result->name = kname;
155 result->separate = false;
156 max = EMBEDDED_NAME_MAX;
158 recopy:
159 len = strncpy_from_user(kname, filename, max);
160 if (unlikely(len < 0)) {
161 err = ERR_PTR(len);
162 goto error;
166 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
167 * separate struct filename so we can dedicate the entire
168 * names_cache allocation for the pathname, and re-do the copy from
169 * userland.
171 if (len == EMBEDDED_NAME_MAX && max == EMBEDDED_NAME_MAX) {
172 kname = (char *)result;
174 result = kzalloc(sizeof(*result), GFP_KERNEL);
175 if (!result) {
176 err = ERR_PTR(-ENOMEM);
177 result = (struct filename *)kname;
178 goto error;
180 result->name = kname;
181 result->separate = true;
182 max = PATH_MAX;
183 goto recopy;
186 /* The empty path is special. */
187 if (unlikely(!len)) {
188 if (empty)
189 *empty = 1;
190 err = ERR_PTR(-ENOENT);
191 if (!(flags & LOOKUP_EMPTY))
192 goto error;
195 err = ERR_PTR(-ENAMETOOLONG);
196 if (unlikely(len >= PATH_MAX))
197 goto error;
199 result->uptr = filename;
200 result->aname = NULL;
201 audit_getname(result);
202 return result;
204 error:
205 final_putname(result);
206 return err;
209 struct filename *
210 getname(const char __user * filename)
212 return getname_flags(filename, 0, NULL);
216 * The "getname_kernel()" interface doesn't do pathnames longer
217 * than EMBEDDED_NAME_MAX. Deal with it - you're a kernel user.
219 struct filename *
220 getname_kernel(const char * filename)
222 struct filename *result;
223 char *kname;
224 int len;
226 len = strlen(filename);
227 if (len >= EMBEDDED_NAME_MAX)
228 return ERR_PTR(-ENAMETOOLONG);
230 result = __getname();
231 if (unlikely(!result))
232 return ERR_PTR(-ENOMEM);
234 kname = (char *)result + sizeof(*result);
235 result->name = kname;
236 result->uptr = NULL;
237 result->aname = NULL;
238 result->separate = false;
240 strlcpy(kname, filename, EMBEDDED_NAME_MAX);
241 return result;
244 #ifdef CONFIG_AUDITSYSCALL
245 void putname(struct filename *name)
247 if (unlikely(!audit_dummy_context()))
248 return audit_putname(name);
249 final_putname(name);
251 #endif
253 static int check_acl(struct inode *inode, int mask)
255 #ifdef CONFIG_FS_POSIX_ACL
256 struct posix_acl *acl;
258 if (mask & MAY_NOT_BLOCK) {
259 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
260 if (!acl)
261 return -EAGAIN;
262 /* no ->get_acl() calls in RCU mode... */
263 if (acl == ACL_NOT_CACHED)
264 return -ECHILD;
265 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
268 acl = get_acl(inode, ACL_TYPE_ACCESS);
269 if (IS_ERR(acl))
270 return PTR_ERR(acl);
271 if (acl) {
272 int error = posix_acl_permission(inode, acl, mask);
273 posix_acl_release(acl);
274 return error;
276 #endif
278 return -EAGAIN;
282 * This does the basic permission checking
284 static int acl_permission_check(struct inode *inode, int mask)
286 unsigned int mode = inode->i_mode;
288 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
289 mode >>= 6;
290 else {
291 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
292 int error = check_acl(inode, mask);
293 if (error != -EAGAIN)
294 return error;
297 if (in_group_p(inode->i_gid))
298 mode >>= 3;
302 * If the DACs are ok we don't need any capability check.
304 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
305 return 0;
306 return -EACCES;
310 * generic_permission - check for access rights on a Posix-like filesystem
311 * @inode: inode to check access rights for
312 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
314 * Used to check for read/write/execute permissions on a file.
315 * We use "fsuid" for this, letting us set arbitrary permissions
316 * for filesystem access without changing the "normal" uids which
317 * are used for other things.
319 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
320 * request cannot be satisfied (eg. requires blocking or too much complexity).
321 * It would then be called again in ref-walk mode.
323 int generic_permission(struct inode *inode, int mask)
325 int ret;
328 * Do the basic permission checks.
330 ret = acl_permission_check(inode, mask);
331 if (ret != -EACCES)
332 return ret;
334 if (S_ISDIR(inode->i_mode)) {
335 /* DACs are overridable for directories */
336 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
337 return 0;
338 if (!(mask & MAY_WRITE))
339 if (capable_wrt_inode_uidgid(inode,
340 CAP_DAC_READ_SEARCH))
341 return 0;
342 return -EACCES;
345 * Read/write DACs are always overridable.
346 * Executable DACs are overridable when there is
347 * at least one exec bit set.
349 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
350 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
351 return 0;
354 * Searching includes executable on directories, else just read.
356 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
357 if (mask == MAY_READ)
358 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
359 return 0;
361 return -EACCES;
363 EXPORT_SYMBOL(generic_permission);
366 * We _really_ want to just do "generic_permission()" without
367 * even looking at the inode->i_op values. So we keep a cache
368 * flag in inode->i_opflags, that says "this has not special
369 * permission function, use the fast case".
371 static inline int do_inode_permission(struct inode *inode, int mask)
373 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
374 if (likely(inode->i_op->permission))
375 return inode->i_op->permission(inode, mask);
377 /* This gets set once for the inode lifetime */
378 spin_lock(&inode->i_lock);
379 inode->i_opflags |= IOP_FASTPERM;
380 spin_unlock(&inode->i_lock);
382 return generic_permission(inode, mask);
386 * __inode_permission - Check for access rights to a given inode
387 * @inode: Inode to check permission on
388 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
390 * Check for read/write/execute permissions on an inode.
392 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
394 * This does not check for a read-only file system. You probably want
395 * inode_permission().
397 int __inode_permission(struct inode *inode, int mask)
399 int retval;
401 if (unlikely(mask & MAY_WRITE)) {
403 * Nobody gets write access to an immutable file.
405 if (IS_IMMUTABLE(inode))
406 return -EACCES;
409 retval = do_inode_permission(inode, mask);
410 if (retval)
411 return retval;
413 retval = devcgroup_inode_permission(inode, mask);
414 if (retval)
415 return retval;
417 return security_inode_permission(inode, mask);
419 EXPORT_SYMBOL(__inode_permission);
422 * sb_permission - Check superblock-level permissions
423 * @sb: Superblock of inode to check permission on
424 * @inode: Inode to check permission on
425 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
427 * Separate out file-system wide checks from inode-specific permission checks.
429 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
431 if (unlikely(mask & MAY_WRITE)) {
432 umode_t mode = inode->i_mode;
434 /* Nobody gets write access to a read-only fs. */
435 if ((sb->s_flags & MS_RDONLY) &&
436 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
437 return -EROFS;
439 return 0;
443 * inode_permission - Check for access rights to a given inode
444 * @inode: Inode to check permission on
445 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
447 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
448 * this, letting us set arbitrary permissions for filesystem access without
449 * changing the "normal" UIDs which are used for other things.
451 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
453 int inode_permission(struct inode *inode, int mask)
455 int retval;
457 retval = sb_permission(inode->i_sb, inode, mask);
458 if (retval)
459 return retval;
460 return __inode_permission(inode, mask);
462 EXPORT_SYMBOL(inode_permission);
465 * path_get - get a reference to a path
466 * @path: path to get the reference to
468 * Given a path increment the reference count to the dentry and the vfsmount.
470 void path_get(const struct path *path)
472 mntget(path->mnt);
473 dget(path->dentry);
475 EXPORT_SYMBOL(path_get);
478 * path_put - put a reference to a path
479 * @path: path to put the reference to
481 * Given a path decrement the reference count to the dentry and the vfsmount.
483 void path_put(const struct path *path)
485 dput(path->dentry);
486 mntput(path->mnt);
488 EXPORT_SYMBOL(path_put);
491 * path_connected - Verify that a path->dentry is below path->mnt.mnt_root
492 * @path: nameidate to verify
494 * Rename can sometimes move a file or directory outside of a bind
495 * mount, path_connected allows those cases to be detected.
497 static bool path_connected(const struct path *path)
499 struct vfsmount *mnt = path->mnt;
501 /* Only bind mounts can have disconnected paths */
502 if (mnt->mnt_root == mnt->mnt_sb->s_root)
503 return true;
505 return is_subdir(path->dentry, mnt->mnt_root);
509 * Path walking has 2 modes, rcu-walk and ref-walk (see
510 * Documentation/filesystems/path-lookup.txt). In situations when we can't
511 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
512 * normal reference counts on dentries and vfsmounts to transition to rcu-walk
513 * mode. Refcounts are grabbed at the last known good point before rcu-walk
514 * got stuck, so ref-walk may continue from there. If this is not successful
515 * (eg. a seqcount has changed), then failure is returned and it's up to caller
516 * to restart the path walk from the beginning in ref-walk mode.
520 * unlazy_walk - try to switch to ref-walk mode.
521 * @nd: nameidata pathwalk data
522 * @dentry: child of nd->path.dentry or NULL
523 * Returns: 0 on success, -ECHILD on failure
525 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
526 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
527 * @nd or NULL. Must be called from rcu-walk context.
529 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
531 struct fs_struct *fs = current->fs;
532 struct dentry *parent = nd->path.dentry;
534 BUG_ON(!(nd->flags & LOOKUP_RCU));
537 * After legitimizing the bastards, terminate_walk()
538 * will do the right thing for non-RCU mode, and all our
539 * subsequent exit cases should rcu_read_unlock()
540 * before returning. Do vfsmount first; if dentry
541 * can't be legitimized, just set nd->path.dentry to NULL
542 * and rely on dput(NULL) being a no-op.
544 if (!legitimize_mnt(nd->path.mnt, nd->m_seq))
545 return -ECHILD;
546 nd->flags &= ~LOOKUP_RCU;
548 if (!lockref_get_not_dead(&parent->d_lockref)) {
549 nd->path.dentry = NULL;
550 goto out;
554 * For a negative lookup, the lookup sequence point is the parents
555 * sequence point, and it only needs to revalidate the parent dentry.
557 * For a positive lookup, we need to move both the parent and the
558 * dentry from the RCU domain to be properly refcounted. And the
559 * sequence number in the dentry validates *both* dentry counters,
560 * since we checked the sequence number of the parent after we got
561 * the child sequence number. So we know the parent must still
562 * be valid if the child sequence number is still valid.
564 if (!dentry) {
565 if (read_seqcount_retry(&parent->d_seq, nd->seq))
566 goto out;
567 BUG_ON(nd->inode != parent->d_inode);
568 } else {
569 if (!lockref_get_not_dead(&dentry->d_lockref))
570 goto out;
571 if (read_seqcount_retry(&dentry->d_seq, nd->seq))
572 goto drop_dentry;
576 * Sequence counts matched. Now make sure that the root is
577 * still valid and get it if required.
579 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
580 spin_lock(&fs->lock);
581 if (nd->root.mnt != fs->root.mnt || nd->root.dentry != fs->root.dentry)
582 goto unlock_and_drop_dentry;
583 path_get(&nd->root);
584 spin_unlock(&fs->lock);
587 rcu_read_unlock();
588 return 0;
590 unlock_and_drop_dentry:
591 spin_unlock(&fs->lock);
592 drop_dentry:
593 rcu_read_unlock();
594 dput(dentry);
595 goto drop_root_mnt;
596 out:
597 rcu_read_unlock();
598 drop_root_mnt:
599 if (!(nd->flags & LOOKUP_ROOT))
600 nd->root.mnt = NULL;
601 return -ECHILD;
604 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
606 return dentry->d_op->d_revalidate(dentry, flags);
610 * complete_walk - successful completion of path walk
611 * @nd: pointer nameidata
613 * If we had been in RCU mode, drop out of it and legitimize nd->path.
614 * Revalidate the final result, unless we'd already done that during
615 * the path walk or the filesystem doesn't ask for it. Return 0 on
616 * success, -error on failure. In case of failure caller does not
617 * need to drop nd->path.
619 static int complete_walk(struct nameidata *nd)
621 struct dentry *dentry = nd->path.dentry;
622 int status;
624 if (nd->flags & LOOKUP_RCU) {
625 nd->flags &= ~LOOKUP_RCU;
626 if (!(nd->flags & LOOKUP_ROOT))
627 nd->root.mnt = NULL;
629 if (!legitimize_mnt(nd->path.mnt, nd->m_seq)) {
630 rcu_read_unlock();
631 return -ECHILD;
633 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref))) {
634 rcu_read_unlock();
635 mntput(nd->path.mnt);
636 return -ECHILD;
638 if (read_seqcount_retry(&dentry->d_seq, nd->seq)) {
639 rcu_read_unlock();
640 dput(dentry);
641 mntput(nd->path.mnt);
642 return -ECHILD;
644 rcu_read_unlock();
647 if (likely(!(nd->flags & LOOKUP_JUMPED)))
648 return 0;
650 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
651 return 0;
653 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
654 if (status > 0)
655 return 0;
657 if (!status)
658 status = -ESTALE;
660 path_put(&nd->path);
661 return status;
664 static __always_inline void set_root(struct nameidata *nd)
666 get_fs_root(current->fs, &nd->root);
669 static int link_path_walk(const char *, struct nameidata *);
671 static __always_inline unsigned set_root_rcu(struct nameidata *nd)
673 struct fs_struct *fs = current->fs;
674 unsigned seq, res;
676 do {
677 seq = read_seqcount_begin(&fs->seq);
678 nd->root = fs->root;
679 res = __read_seqcount_begin(&nd->root.dentry->d_seq);
680 } while (read_seqcount_retry(&fs->seq, seq));
681 return res;
684 static void path_put_conditional(struct path *path, struct nameidata *nd)
686 dput(path->dentry);
687 if (path->mnt != nd->path.mnt)
688 mntput(path->mnt);
691 static inline void path_to_nameidata(const struct path *path,
692 struct nameidata *nd)
694 if (!(nd->flags & LOOKUP_RCU)) {
695 dput(nd->path.dentry);
696 if (nd->path.mnt != path->mnt)
697 mntput(nd->path.mnt);
699 nd->path.mnt = path->mnt;
700 nd->path.dentry = path->dentry;
704 * Helper to directly jump to a known parsed path from ->follow_link,
705 * caller must have taken a reference to path beforehand.
707 void nd_jump_link(struct nameidata *nd, struct path *path)
709 path_put(&nd->path);
711 nd->path = *path;
712 nd->inode = nd->path.dentry->d_inode;
713 nd->flags |= LOOKUP_JUMPED;
716 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie)
718 struct inode *inode = link->dentry->d_inode;
719 if (inode->i_op->put_link)
720 inode->i_op->put_link(link->dentry, nd, cookie);
721 path_put(link);
724 int sysctl_protected_symlinks __read_mostly = 0;
725 int sysctl_protected_hardlinks __read_mostly = 0;
728 * may_follow_link - Check symlink following for unsafe situations
729 * @link: The path of the symlink
730 * @nd: nameidata pathwalk data
732 * In the case of the sysctl_protected_symlinks sysctl being enabled,
733 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
734 * in a sticky world-writable directory. This is to protect privileged
735 * processes from failing races against path names that may change out
736 * from under them by way of other users creating malicious symlinks.
737 * It will permit symlinks to be followed only when outside a sticky
738 * world-writable directory, or when the uid of the symlink and follower
739 * match, or when the directory owner matches the symlink's owner.
741 * Returns 0 if following the symlink is allowed, -ve on error.
743 static inline int may_follow_link(struct path *link, struct nameidata *nd)
745 const struct inode *inode;
746 const struct inode *parent;
748 if (!sysctl_protected_symlinks)
749 return 0;
751 /* Allowed if owner and follower match. */
752 inode = link->dentry->d_inode;
753 if (uid_eq(current_cred()->fsuid, inode->i_uid))
754 return 0;
756 /* Allowed if parent directory not sticky and world-writable. */
757 parent = nd->path.dentry->d_inode;
758 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
759 return 0;
761 /* Allowed if parent directory and link owner match. */
762 if (uid_eq(parent->i_uid, inode->i_uid))
763 return 0;
765 audit_log_link_denied("follow_link", link);
766 path_put_conditional(link, nd);
767 path_put(&nd->path);
768 return -EACCES;
772 * safe_hardlink_source - Check for safe hardlink conditions
773 * @inode: the source inode to hardlink from
775 * Return false if at least one of the following conditions:
776 * - inode is not a regular file
777 * - inode is setuid
778 * - inode is setgid and group-exec
779 * - access failure for read and write
781 * Otherwise returns true.
783 static bool safe_hardlink_source(struct inode *inode)
785 umode_t mode = inode->i_mode;
787 /* Special files should not get pinned to the filesystem. */
788 if (!S_ISREG(mode))
789 return false;
791 /* Setuid files should not get pinned to the filesystem. */
792 if (mode & S_ISUID)
793 return false;
795 /* Executable setgid files should not get pinned to the filesystem. */
796 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
797 return false;
799 /* Hardlinking to unreadable or unwritable sources is dangerous. */
800 if (inode_permission(inode, MAY_READ | MAY_WRITE))
801 return false;
803 return true;
807 * may_linkat - Check permissions for creating a hardlink
808 * @link: the source to hardlink from
810 * Block hardlink when all of:
811 * - sysctl_protected_hardlinks enabled
812 * - fsuid does not match inode
813 * - hardlink source is unsafe (see safe_hardlink_source() above)
814 * - not CAP_FOWNER
816 * Returns 0 if successful, -ve on error.
818 static int may_linkat(struct path *link)
820 const struct cred *cred;
821 struct inode *inode;
823 if (!sysctl_protected_hardlinks)
824 return 0;
826 cred = current_cred();
827 inode = link->dentry->d_inode;
829 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
830 * otherwise, it must be a safe source.
832 if (uid_eq(cred->fsuid, inode->i_uid) || safe_hardlink_source(inode) ||
833 capable(CAP_FOWNER))
834 return 0;
836 audit_log_link_denied("linkat", link);
837 return -EPERM;
840 static __always_inline int
841 follow_link(struct path *link, struct nameidata *nd, void **p)
843 struct dentry *dentry = link->dentry;
844 int error;
845 char *s;
847 BUG_ON(nd->flags & LOOKUP_RCU);
849 if (link->mnt == nd->path.mnt)
850 mntget(link->mnt);
852 error = -ELOOP;
853 if (unlikely(current->total_link_count >= 40))
854 goto out_put_nd_path;
856 cond_resched();
857 current->total_link_count++;
859 touch_atime(link);
860 nd_set_link(nd, NULL);
862 error = security_inode_follow_link(link->dentry, nd);
863 if (error)
864 goto out_put_nd_path;
866 nd->last_type = LAST_BIND;
867 *p = dentry->d_inode->i_op->follow_link(dentry, nd);
868 error = PTR_ERR(*p);
869 if (IS_ERR(*p))
870 goto out_put_nd_path;
872 error = 0;
873 s = nd_get_link(nd);
874 if (s) {
875 if (unlikely(IS_ERR(s))) {
876 path_put(&nd->path);
877 put_link(nd, link, *p);
878 return PTR_ERR(s);
880 if (*s == '/') {
881 if (!nd->root.mnt)
882 set_root(nd);
883 path_put(&nd->path);
884 nd->path = nd->root;
885 path_get(&nd->root);
886 nd->flags |= LOOKUP_JUMPED;
888 nd->inode = nd->path.dentry->d_inode;
889 error = link_path_walk(s, nd);
890 if (unlikely(error))
891 put_link(nd, link, *p);
894 return error;
896 out_put_nd_path:
897 *p = NULL;
898 path_put(&nd->path);
899 path_put(link);
900 return error;
903 static int follow_up_rcu(struct path *path)
905 struct mount *mnt = real_mount(path->mnt);
906 struct mount *parent;
907 struct dentry *mountpoint;
909 parent = mnt->mnt_parent;
910 if (&parent->mnt == path->mnt)
911 return 0;
912 mountpoint = mnt->mnt_mountpoint;
913 path->dentry = mountpoint;
914 path->mnt = &parent->mnt;
915 return 1;
919 * follow_up - Find the mountpoint of path's vfsmount
921 * Given a path, find the mountpoint of its source file system.
922 * Replace @path with the path of the mountpoint in the parent mount.
923 * Up is towards /.
925 * Return 1 if we went up a level and 0 if we were already at the
926 * root.
928 int follow_up(struct path *path)
930 struct mount *mnt = real_mount(path->mnt);
931 struct mount *parent;
932 struct dentry *mountpoint;
934 read_seqlock_excl(&mount_lock);
935 parent = mnt->mnt_parent;
936 if (parent == mnt) {
937 read_sequnlock_excl(&mount_lock);
938 return 0;
940 mntget(&parent->mnt);
941 mountpoint = dget(mnt->mnt_mountpoint);
942 read_sequnlock_excl(&mount_lock);
943 dput(path->dentry);
944 path->dentry = mountpoint;
945 mntput(path->mnt);
946 path->mnt = &parent->mnt;
947 return 1;
949 EXPORT_SYMBOL(follow_up);
952 * Perform an automount
953 * - return -EISDIR to tell follow_managed() to stop and return the path we
954 * were called with.
956 static int follow_automount(struct path *path, unsigned flags,
957 bool *need_mntput)
959 struct vfsmount *mnt;
960 int err;
962 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
963 return -EREMOTE;
965 /* We don't want to mount if someone's just doing a stat -
966 * unless they're stat'ing a directory and appended a '/' to
967 * the name.
969 * We do, however, want to mount if someone wants to open or
970 * create a file of any type under the mountpoint, wants to
971 * traverse through the mountpoint or wants to open the
972 * mounted directory. Also, autofs may mark negative dentries
973 * as being automount points. These will need the attentions
974 * of the daemon to instantiate them before they can be used.
976 if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
977 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
978 path->dentry->d_inode)
979 return -EISDIR;
981 current->total_link_count++;
982 if (current->total_link_count >= 40)
983 return -ELOOP;
985 mnt = path->dentry->d_op->d_automount(path);
986 if (IS_ERR(mnt)) {
988 * The filesystem is allowed to return -EISDIR here to indicate
989 * it doesn't want to automount. For instance, autofs would do
990 * this so that its userspace daemon can mount on this dentry.
992 * However, we can only permit this if it's a terminal point in
993 * the path being looked up; if it wasn't then the remainder of
994 * the path is inaccessible and we should say so.
996 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT))
997 return -EREMOTE;
998 return PTR_ERR(mnt);
1001 if (!mnt) /* mount collision */
1002 return 0;
1004 if (!*need_mntput) {
1005 /* lock_mount() may release path->mnt on error */
1006 mntget(path->mnt);
1007 *need_mntput = true;
1009 err = finish_automount(mnt, path);
1011 switch (err) {
1012 case -EBUSY:
1013 /* Someone else made a mount here whilst we were busy */
1014 return 0;
1015 case 0:
1016 path_put(path);
1017 path->mnt = mnt;
1018 path->dentry = dget(mnt->mnt_root);
1019 return 0;
1020 default:
1021 return err;
1027 * Handle a dentry that is managed in some way.
1028 * - Flagged for transit management (autofs)
1029 * - Flagged as mountpoint
1030 * - Flagged as automount point
1032 * This may only be called in refwalk mode.
1034 * Serialization is taken care of in namespace.c
1036 static int follow_managed(struct path *path, unsigned flags)
1038 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1039 unsigned managed;
1040 bool need_mntput = false;
1041 int ret = 0;
1043 /* Given that we're not holding a lock here, we retain the value in a
1044 * local variable for each dentry as we look at it so that we don't see
1045 * the components of that value change under us */
1046 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1047 managed &= DCACHE_MANAGED_DENTRY,
1048 unlikely(managed != 0)) {
1049 /* Allow the filesystem to manage the transit without i_mutex
1050 * being held. */
1051 if (managed & DCACHE_MANAGE_TRANSIT) {
1052 BUG_ON(!path->dentry->d_op);
1053 BUG_ON(!path->dentry->d_op->d_manage);
1054 ret = path->dentry->d_op->d_manage(path->dentry, false);
1055 if (ret < 0)
1056 break;
1059 /* Transit to a mounted filesystem. */
1060 if (managed & DCACHE_MOUNTED) {
1061 struct vfsmount *mounted = lookup_mnt(path);
1062 if (mounted) {
1063 dput(path->dentry);
1064 if (need_mntput)
1065 mntput(path->mnt);
1066 path->mnt = mounted;
1067 path->dentry = dget(mounted->mnt_root);
1068 need_mntput = true;
1069 continue;
1072 /* Something is mounted on this dentry in another
1073 * namespace and/or whatever was mounted there in this
1074 * namespace got unmounted before lookup_mnt() could
1075 * get it */
1078 /* Handle an automount point */
1079 if (managed & DCACHE_NEED_AUTOMOUNT) {
1080 ret = follow_automount(path, flags, &need_mntput);
1081 if (ret < 0)
1082 break;
1083 continue;
1086 /* We didn't change the current path point */
1087 break;
1090 if (need_mntput && path->mnt == mnt)
1091 mntput(path->mnt);
1092 if (ret == -EISDIR)
1093 ret = 0;
1094 return ret < 0 ? ret : need_mntput;
1097 int follow_down_one(struct path *path)
1099 struct vfsmount *mounted;
1101 mounted = lookup_mnt(path);
1102 if (mounted) {
1103 dput(path->dentry);
1104 mntput(path->mnt);
1105 path->mnt = mounted;
1106 path->dentry = dget(mounted->mnt_root);
1107 return 1;
1109 return 0;
1111 EXPORT_SYMBOL(follow_down_one);
1113 static inline int managed_dentry_rcu(struct dentry *dentry)
1115 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1116 dentry->d_op->d_manage(dentry, true) : 0;
1120 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1121 * we meet a managed dentry that would need blocking.
1123 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1124 struct inode **inode)
1126 for (;;) {
1127 struct mount *mounted;
1129 * Don't forget we might have a non-mountpoint managed dentry
1130 * that wants to block transit.
1132 switch (managed_dentry_rcu(path->dentry)) {
1133 case -ECHILD:
1134 default:
1135 return false;
1136 case -EISDIR:
1137 return true;
1138 case 0:
1139 break;
1142 if (!d_mountpoint(path->dentry))
1143 return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1145 mounted = __lookup_mnt(path->mnt, path->dentry);
1146 if (!mounted)
1147 break;
1148 path->mnt = &mounted->mnt;
1149 path->dentry = mounted->mnt.mnt_root;
1150 nd->flags |= LOOKUP_JUMPED;
1151 nd->seq = read_seqcount_begin(&path->dentry->d_seq);
1153 * Update the inode too. We don't need to re-check the
1154 * dentry sequence number here after this d_inode read,
1155 * because a mount-point is always pinned.
1157 *inode = path->dentry->d_inode;
1159 return !read_seqretry(&mount_lock, nd->m_seq) &&
1160 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1163 static int follow_dotdot_rcu(struct nameidata *nd)
1165 struct inode *inode = nd->inode;
1166 if (!nd->root.mnt)
1167 set_root_rcu(nd);
1169 while (1) {
1170 if (nd->path.dentry == nd->root.dentry &&
1171 nd->path.mnt == nd->root.mnt) {
1172 break;
1174 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1175 struct dentry *old = nd->path.dentry;
1176 struct dentry *parent = old->d_parent;
1177 unsigned seq;
1179 inode = parent->d_inode;
1180 seq = read_seqcount_begin(&parent->d_seq);
1181 if (read_seqcount_retry(&old->d_seq, nd->seq))
1182 goto failed;
1183 nd->path.dentry = parent;
1184 nd->seq = seq;
1185 if (unlikely(!path_connected(&nd->path)))
1186 goto failed;
1187 break;
1189 if (!follow_up_rcu(&nd->path))
1190 break;
1191 inode = nd->path.dentry->d_inode;
1192 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1194 while (d_mountpoint(nd->path.dentry)) {
1195 struct mount *mounted;
1196 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1197 if (!mounted)
1198 break;
1199 nd->path.mnt = &mounted->mnt;
1200 nd->path.dentry = mounted->mnt.mnt_root;
1201 inode = nd->path.dentry->d_inode;
1202 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1203 if (read_seqretry(&mount_lock, nd->m_seq))
1204 goto failed;
1206 nd->inode = inode;
1207 return 0;
1209 failed:
1210 nd->flags &= ~LOOKUP_RCU;
1211 if (!(nd->flags & LOOKUP_ROOT))
1212 nd->root.mnt = NULL;
1213 rcu_read_unlock();
1214 return -ECHILD;
1218 * Follow down to the covering mount currently visible to userspace. At each
1219 * point, the filesystem owning that dentry may be queried as to whether the
1220 * caller is permitted to proceed or not.
1222 int follow_down(struct path *path)
1224 unsigned managed;
1225 int ret;
1227 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1228 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1229 /* Allow the filesystem to manage the transit without i_mutex
1230 * being held.
1232 * We indicate to the filesystem if someone is trying to mount
1233 * something here. This gives autofs the chance to deny anyone
1234 * other than its daemon the right to mount on its
1235 * superstructure.
1237 * The filesystem may sleep at this point.
1239 if (managed & DCACHE_MANAGE_TRANSIT) {
1240 BUG_ON(!path->dentry->d_op);
1241 BUG_ON(!path->dentry->d_op->d_manage);
1242 ret = path->dentry->d_op->d_manage(
1243 path->dentry, false);
1244 if (ret < 0)
1245 return ret == -EISDIR ? 0 : ret;
1248 /* Transit to a mounted filesystem. */
1249 if (managed & DCACHE_MOUNTED) {
1250 struct vfsmount *mounted = lookup_mnt(path);
1251 if (!mounted)
1252 break;
1253 dput(path->dentry);
1254 mntput(path->mnt);
1255 path->mnt = mounted;
1256 path->dentry = dget(mounted->mnt_root);
1257 continue;
1260 /* Don't handle automount points here */
1261 break;
1263 return 0;
1265 EXPORT_SYMBOL(follow_down);
1268 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1270 static void follow_mount(struct path *path)
1272 while (d_mountpoint(path->dentry)) {
1273 struct vfsmount *mounted = lookup_mnt(path);
1274 if (!mounted)
1275 break;
1276 dput(path->dentry);
1277 mntput(path->mnt);
1278 path->mnt = mounted;
1279 path->dentry = dget(mounted->mnt_root);
1283 static int follow_dotdot(struct nameidata *nd)
1285 if (!nd->root.mnt)
1286 set_root(nd);
1288 while(1) {
1289 struct dentry *old = nd->path.dentry;
1291 if (nd->path.dentry == nd->root.dentry &&
1292 nd->path.mnt == nd->root.mnt) {
1293 break;
1295 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1296 /* rare case of legitimate dget_parent()... */
1297 nd->path.dentry = dget_parent(nd->path.dentry);
1298 dput(old);
1299 if (unlikely(!path_connected(&nd->path))) {
1300 path_put(&nd->path);
1301 return -ENOENT;
1303 break;
1305 if (!follow_up(&nd->path))
1306 break;
1308 follow_mount(&nd->path);
1309 nd->inode = nd->path.dentry->d_inode;
1310 return 0;
1314 * This looks up the name in dcache, possibly revalidates the old dentry and
1315 * allocates a new one if not found or not valid. In the need_lookup argument
1316 * returns whether i_op->lookup is necessary.
1318 * dir->d_inode->i_mutex must be held
1320 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir,
1321 unsigned int flags, bool *need_lookup)
1323 struct dentry *dentry;
1324 int error;
1326 *need_lookup = false;
1327 dentry = d_lookup(dir, name);
1328 if (dentry) {
1329 if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1330 error = d_revalidate(dentry, flags);
1331 if (unlikely(error <= 0)) {
1332 if (error < 0) {
1333 dput(dentry);
1334 return ERR_PTR(error);
1335 } else {
1336 d_invalidate(dentry);
1337 dput(dentry);
1338 dentry = NULL;
1344 if (!dentry) {
1345 dentry = d_alloc(dir, name);
1346 if (unlikely(!dentry))
1347 return ERR_PTR(-ENOMEM);
1349 *need_lookup = true;
1351 return dentry;
1355 * Call i_op->lookup on the dentry. The dentry must be negative and
1356 * unhashed.
1358 * dir->d_inode->i_mutex must be held
1360 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1361 unsigned int flags)
1363 struct dentry *old;
1365 /* Don't create child dentry for a dead directory. */
1366 if (unlikely(IS_DEADDIR(dir))) {
1367 dput(dentry);
1368 return ERR_PTR(-ENOENT);
1371 old = dir->i_op->lookup(dir, dentry, flags);
1372 if (unlikely(old)) {
1373 dput(dentry);
1374 dentry = old;
1376 return dentry;
1379 static struct dentry *__lookup_hash(struct qstr *name,
1380 struct dentry *base, unsigned int flags)
1382 bool need_lookup;
1383 struct dentry *dentry;
1385 dentry = lookup_dcache(name, base, flags, &need_lookup);
1386 if (!need_lookup)
1387 return dentry;
1389 return lookup_real(base->d_inode, dentry, flags);
1393 * It's more convoluted than I'd like it to be, but... it's still fairly
1394 * small and for now I'd prefer to have fast path as straight as possible.
1395 * It _is_ time-critical.
1397 static int lookup_fast(struct nameidata *nd,
1398 struct path *path, struct inode **inode)
1400 struct vfsmount *mnt = nd->path.mnt;
1401 struct dentry *dentry, *parent = nd->path.dentry;
1402 int need_reval = 1;
1403 int status = 1;
1404 int err;
1407 * Rename seqlock is not required here because in the off chance
1408 * of a false negative due to a concurrent rename, we're going to
1409 * do the non-racy lookup, below.
1411 if (nd->flags & LOOKUP_RCU) {
1412 unsigned seq;
1413 dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1414 if (!dentry)
1415 goto unlazy;
1418 * This sequence count validates that the inode matches
1419 * the dentry name information from lookup.
1421 *inode = dentry->d_inode;
1422 if (read_seqcount_retry(&dentry->d_seq, seq))
1423 return -ECHILD;
1426 * This sequence count validates that the parent had no
1427 * changes while we did the lookup of the dentry above.
1429 * The memory barrier in read_seqcount_begin of child is
1430 * enough, we can use __read_seqcount_retry here.
1432 if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1433 return -ECHILD;
1434 nd->seq = seq;
1436 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1437 status = d_revalidate(dentry, nd->flags);
1438 if (unlikely(status <= 0)) {
1439 if (status != -ECHILD)
1440 need_reval = 0;
1441 goto unlazy;
1444 path->mnt = mnt;
1445 path->dentry = dentry;
1446 if (likely(__follow_mount_rcu(nd, path, inode)))
1447 return 0;
1448 unlazy:
1449 if (unlazy_walk(nd, dentry))
1450 return -ECHILD;
1451 } else {
1452 dentry = __d_lookup(parent, &nd->last);
1455 if (unlikely(!dentry))
1456 goto need_lookup;
1458 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1459 status = d_revalidate(dentry, nd->flags);
1460 if (unlikely(status <= 0)) {
1461 if (status < 0) {
1462 dput(dentry);
1463 return status;
1465 d_invalidate(dentry);
1466 dput(dentry);
1467 goto need_lookup;
1470 path->mnt = mnt;
1471 path->dentry = dentry;
1472 err = follow_managed(path, nd->flags);
1473 if (unlikely(err < 0)) {
1474 path_put_conditional(path, nd);
1475 return err;
1477 if (err)
1478 nd->flags |= LOOKUP_JUMPED;
1479 *inode = path->dentry->d_inode;
1480 return 0;
1482 need_lookup:
1483 return 1;
1486 /* Fast lookup failed, do it the slow way */
1487 static int lookup_slow(struct nameidata *nd, struct path *path)
1489 struct dentry *dentry, *parent;
1490 int err;
1492 parent = nd->path.dentry;
1493 BUG_ON(nd->inode != parent->d_inode);
1495 mutex_lock(&parent->d_inode->i_mutex);
1496 dentry = __lookup_hash(&nd->last, parent, nd->flags);
1497 mutex_unlock(&parent->d_inode->i_mutex);
1498 if (IS_ERR(dentry))
1499 return PTR_ERR(dentry);
1500 path->mnt = nd->path.mnt;
1501 path->dentry = dentry;
1502 err = follow_managed(path, nd->flags);
1503 if (unlikely(err < 0)) {
1504 path_put_conditional(path, nd);
1505 return err;
1507 if (err)
1508 nd->flags |= LOOKUP_JUMPED;
1509 return 0;
1512 static inline int may_lookup(struct nameidata *nd)
1514 if (nd->flags & LOOKUP_RCU) {
1515 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1516 if (err != -ECHILD)
1517 return err;
1518 if (unlazy_walk(nd, NULL))
1519 return -ECHILD;
1521 return inode_permission(nd->inode, MAY_EXEC);
1524 static inline int handle_dots(struct nameidata *nd, int type)
1526 if (type == LAST_DOTDOT) {
1527 if (nd->flags & LOOKUP_RCU) {
1528 if (follow_dotdot_rcu(nd))
1529 return -ECHILD;
1530 } else
1531 return follow_dotdot(nd);
1533 return 0;
1536 static void terminate_walk(struct nameidata *nd)
1538 if (!(nd->flags & LOOKUP_RCU)) {
1539 path_put(&nd->path);
1540 } else {
1541 nd->flags &= ~LOOKUP_RCU;
1542 if (!(nd->flags & LOOKUP_ROOT))
1543 nd->root.mnt = NULL;
1544 rcu_read_unlock();
1549 * Do we need to follow links? We _really_ want to be able
1550 * to do this check without having to look at inode->i_op,
1551 * so we keep a cache of "no, this doesn't need follow_link"
1552 * for the common case.
1554 static inline int should_follow_link(struct dentry *dentry, int follow)
1556 return unlikely(d_is_symlink(dentry)) ? follow : 0;
1559 static inline int walk_component(struct nameidata *nd, struct path *path,
1560 int follow)
1562 struct inode *inode;
1563 int err;
1565 * "." and ".." are special - ".." especially so because it has
1566 * to be able to know about the current root directory and
1567 * parent relationships.
1569 if (unlikely(nd->last_type != LAST_NORM))
1570 return handle_dots(nd, nd->last_type);
1571 err = lookup_fast(nd, path, &inode);
1572 if (unlikely(err)) {
1573 if (err < 0)
1574 goto out_err;
1576 err = lookup_slow(nd, path);
1577 if (err < 0)
1578 goto out_err;
1580 inode = path->dentry->d_inode;
1582 err = -ENOENT;
1583 if (!inode || d_is_negative(path->dentry))
1584 goto out_path_put;
1586 if (should_follow_link(path->dentry, follow)) {
1587 if (nd->flags & LOOKUP_RCU) {
1588 if (unlikely(nd->path.mnt != path->mnt ||
1589 unlazy_walk(nd, path->dentry))) {
1590 err = -ECHILD;
1591 goto out_err;
1594 BUG_ON(inode != path->dentry->d_inode);
1595 return 1;
1597 path_to_nameidata(path, nd);
1598 nd->inode = inode;
1599 return 0;
1601 out_path_put:
1602 path_to_nameidata(path, nd);
1603 out_err:
1604 terminate_walk(nd);
1605 return err;
1609 * This limits recursive symlink follows to 8, while
1610 * limiting consecutive symlinks to 40.
1612 * Without that kind of total limit, nasty chains of consecutive
1613 * symlinks can cause almost arbitrarily long lookups.
1615 static inline int nested_symlink(struct path *path, struct nameidata *nd)
1617 int res;
1619 if (unlikely(current->link_count >= MAX_NESTED_LINKS)) {
1620 path_put_conditional(path, nd);
1621 path_put(&nd->path);
1622 return -ELOOP;
1624 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
1626 nd->depth++;
1627 current->link_count++;
1629 do {
1630 struct path link = *path;
1631 void *cookie;
1633 res = follow_link(&link, nd, &cookie);
1634 if (res)
1635 break;
1636 res = walk_component(nd, path, LOOKUP_FOLLOW);
1637 put_link(nd, &link, cookie);
1638 } while (res > 0);
1640 current->link_count--;
1641 nd->depth--;
1642 return res;
1646 * We can do the critical dentry name comparison and hashing
1647 * operations one word at a time, but we are limited to:
1649 * - Architectures with fast unaligned word accesses. We could
1650 * do a "get_unaligned()" if this helps and is sufficiently
1651 * fast.
1653 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1654 * do not trap on the (extremely unlikely) case of a page
1655 * crossing operation.
1657 * - Furthermore, we need an efficient 64-bit compile for the
1658 * 64-bit case in order to generate the "number of bytes in
1659 * the final mask". Again, that could be replaced with a
1660 * efficient population count instruction or similar.
1662 #ifdef CONFIG_DCACHE_WORD_ACCESS
1664 #include <asm/word-at-a-time.h>
1666 #ifdef CONFIG_64BIT
1668 static inline unsigned int fold_hash(unsigned long hash)
1670 return hash_64(hash, 32);
1673 #else /* 32-bit case */
1675 #define fold_hash(x) (x)
1677 #endif
1679 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1681 unsigned long a, mask;
1682 unsigned long hash = 0;
1684 for (;;) {
1685 a = load_unaligned_zeropad(name);
1686 if (len < sizeof(unsigned long))
1687 break;
1688 hash += a;
1689 hash *= 9;
1690 name += sizeof(unsigned long);
1691 len -= sizeof(unsigned long);
1692 if (!len)
1693 goto done;
1695 mask = bytemask_from_count(len);
1696 hash += mask & a;
1697 done:
1698 return fold_hash(hash);
1700 EXPORT_SYMBOL(full_name_hash);
1703 * Calculate the length and hash of the path component, and
1704 * return the "hash_len" as the result.
1706 static inline u64 hash_name(const char *name)
1708 unsigned long a, b, adata, bdata, mask, hash, len;
1709 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1711 hash = a = 0;
1712 len = -sizeof(unsigned long);
1713 do {
1714 hash = (hash + a) * 9;
1715 len += sizeof(unsigned long);
1716 a = load_unaligned_zeropad(name+len);
1717 b = a ^ REPEAT_BYTE('/');
1718 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1720 adata = prep_zero_mask(a, adata, &constants);
1721 bdata = prep_zero_mask(b, bdata, &constants);
1723 mask = create_zero_mask(adata | bdata);
1725 hash += a & zero_bytemask(mask);
1726 len += find_zero(mask);
1727 return hashlen_create(fold_hash(hash), len);
1730 #else
1732 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1734 unsigned long hash = init_name_hash();
1735 while (len--)
1736 hash = partial_name_hash(*name++, hash);
1737 return end_name_hash(hash);
1739 EXPORT_SYMBOL(full_name_hash);
1742 * We know there's a real path component here of at least
1743 * one character.
1745 static inline u64 hash_name(const char *name)
1747 unsigned long hash = init_name_hash();
1748 unsigned long len = 0, c;
1750 c = (unsigned char)*name;
1751 do {
1752 len++;
1753 hash = partial_name_hash(c, hash);
1754 c = (unsigned char)name[len];
1755 } while (c && c != '/');
1756 return hashlen_create(end_name_hash(hash), len);
1759 #endif
1762 * Name resolution.
1763 * This is the basic name resolution function, turning a pathname into
1764 * the final dentry. We expect 'base' to be positive and a directory.
1766 * Returns 0 and nd will have valid dentry and mnt on success.
1767 * Returns error and drops reference to input namei data on failure.
1769 static int link_path_walk(const char *name, struct nameidata *nd)
1771 struct path next;
1772 int err;
1774 while (*name=='/')
1775 name++;
1776 if (!*name)
1777 return 0;
1779 /* At this point we know we have a real path component. */
1780 for(;;) {
1781 u64 hash_len;
1782 int type;
1784 err = may_lookup(nd);
1785 if (err)
1786 break;
1788 hash_len = hash_name(name);
1790 type = LAST_NORM;
1791 if (name[0] == '.') switch (hashlen_len(hash_len)) {
1792 case 2:
1793 if (name[1] == '.') {
1794 type = LAST_DOTDOT;
1795 nd->flags |= LOOKUP_JUMPED;
1797 break;
1798 case 1:
1799 type = LAST_DOT;
1801 if (likely(type == LAST_NORM)) {
1802 struct dentry *parent = nd->path.dentry;
1803 nd->flags &= ~LOOKUP_JUMPED;
1804 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1805 struct qstr this = { { .hash_len = hash_len }, .name = name };
1806 err = parent->d_op->d_hash(parent, &this);
1807 if (err < 0)
1808 break;
1809 hash_len = this.hash_len;
1810 name = this.name;
1814 nd->last.hash_len = hash_len;
1815 nd->last.name = name;
1816 nd->last_type = type;
1818 name += hashlen_len(hash_len);
1819 if (!*name)
1820 return 0;
1822 * If it wasn't NUL, we know it was '/'. Skip that
1823 * slash, and continue until no more slashes.
1825 do {
1826 name++;
1827 } while (unlikely(*name == '/'));
1828 if (!*name)
1829 return 0;
1831 err = walk_component(nd, &next, LOOKUP_FOLLOW);
1832 if (err < 0)
1833 return err;
1835 if (err) {
1836 err = nested_symlink(&next, nd);
1837 if (err)
1838 return err;
1840 if (!d_can_lookup(nd->path.dentry)) {
1841 err = -ENOTDIR;
1842 break;
1845 terminate_walk(nd);
1846 return err;
1849 static int path_init(int dfd, const char *name, unsigned int flags,
1850 struct nameidata *nd, struct file **fp)
1852 int retval = 0;
1854 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1855 nd->flags = flags | LOOKUP_JUMPED;
1856 nd->depth = 0;
1857 if (flags & LOOKUP_ROOT) {
1858 struct dentry *root = nd->root.dentry;
1859 struct inode *inode = root->d_inode;
1860 if (*name) {
1861 if (!d_can_lookup(root))
1862 return -ENOTDIR;
1863 retval = inode_permission(inode, MAY_EXEC);
1864 if (retval)
1865 return retval;
1867 nd->path = nd->root;
1868 nd->inode = inode;
1869 if (flags & LOOKUP_RCU) {
1870 rcu_read_lock();
1871 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1872 nd->m_seq = read_seqbegin(&mount_lock);
1873 } else {
1874 path_get(&nd->path);
1876 return 0;
1879 nd->root.mnt = NULL;
1881 nd->m_seq = read_seqbegin(&mount_lock);
1882 if (*name=='/') {
1883 if (flags & LOOKUP_RCU) {
1884 rcu_read_lock();
1885 nd->seq = set_root_rcu(nd);
1886 } else {
1887 set_root(nd);
1888 path_get(&nd->root);
1890 nd->path = nd->root;
1891 } else if (dfd == AT_FDCWD) {
1892 if (flags & LOOKUP_RCU) {
1893 struct fs_struct *fs = current->fs;
1894 unsigned seq;
1896 rcu_read_lock();
1898 do {
1899 seq = read_seqcount_begin(&fs->seq);
1900 nd->path = fs->pwd;
1901 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1902 } while (read_seqcount_retry(&fs->seq, seq));
1903 } else {
1904 get_fs_pwd(current->fs, &nd->path);
1906 } else {
1907 /* Caller must check execute permissions on the starting path component */
1908 struct fd f = fdget_raw(dfd);
1909 struct dentry *dentry;
1911 if (!f.file)
1912 return -EBADF;
1914 dentry = f.file->f_path.dentry;
1916 if (*name) {
1917 if (!d_can_lookup(dentry)) {
1918 fdput(f);
1919 return -ENOTDIR;
1923 nd->path = f.file->f_path;
1924 if (flags & LOOKUP_RCU) {
1925 if (f.flags & FDPUT_FPUT)
1926 *fp = f.file;
1927 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1928 rcu_read_lock();
1929 } else {
1930 path_get(&nd->path);
1931 fdput(f);
1935 nd->inode = nd->path.dentry->d_inode;
1936 if (!(flags & LOOKUP_RCU))
1937 return 0;
1938 if (likely(!read_seqcount_retry(&nd->path.dentry->d_seq, nd->seq)))
1939 return 0;
1940 if (!(nd->flags & LOOKUP_ROOT))
1941 nd->root.mnt = NULL;
1942 rcu_read_unlock();
1943 return -ECHILD;
1946 static inline int lookup_last(struct nameidata *nd, struct path *path)
1948 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
1949 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1951 nd->flags &= ~LOOKUP_PARENT;
1952 return walk_component(nd, path, nd->flags & LOOKUP_FOLLOW);
1955 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1956 static int path_lookupat(int dfd, const char *name,
1957 unsigned int flags, struct nameidata *nd)
1959 struct file *base = NULL;
1960 struct path path;
1961 int err;
1964 * Path walking is largely split up into 2 different synchronisation
1965 * schemes, rcu-walk and ref-walk (explained in
1966 * Documentation/filesystems/path-lookup.txt). These share much of the
1967 * path walk code, but some things particularly setup, cleanup, and
1968 * following mounts are sufficiently divergent that functions are
1969 * duplicated. Typically there is a function foo(), and its RCU
1970 * analogue, foo_rcu().
1972 * -ECHILD is the error number of choice (just to avoid clashes) that
1973 * is returned if some aspect of an rcu-walk fails. Such an error must
1974 * be handled by restarting a traditional ref-walk (which will always
1975 * be able to complete).
1977 err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base);
1979 if (unlikely(err))
1980 goto out;
1982 current->total_link_count = 0;
1983 err = link_path_walk(name, nd);
1985 if (!err && !(flags & LOOKUP_PARENT)) {
1986 err = lookup_last(nd, &path);
1987 while (err > 0) {
1988 void *cookie;
1989 struct path link = path;
1990 err = may_follow_link(&link, nd);
1991 if (unlikely(err))
1992 break;
1993 nd->flags |= LOOKUP_PARENT;
1994 err = follow_link(&link, nd, &cookie);
1995 if (err)
1996 break;
1997 err = lookup_last(nd, &path);
1998 put_link(nd, &link, cookie);
2002 if (!err)
2003 err = complete_walk(nd);
2005 if (!err && nd->flags & LOOKUP_DIRECTORY) {
2006 if (!d_can_lookup(nd->path.dentry)) {
2007 path_put(&nd->path);
2008 err = -ENOTDIR;
2012 out:
2013 if (base)
2014 fput(base);
2016 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
2017 path_put(&nd->root);
2018 nd->root.mnt = NULL;
2020 return err;
2023 static int filename_lookup(int dfd, struct filename *name,
2024 unsigned int flags, struct nameidata *nd)
2026 int retval = path_lookupat(dfd, name->name, flags | LOOKUP_RCU, nd);
2027 if (unlikely(retval == -ECHILD))
2028 retval = path_lookupat(dfd, name->name, flags, nd);
2029 if (unlikely(retval == -ESTALE))
2030 retval = path_lookupat(dfd, name->name,
2031 flags | LOOKUP_REVAL, nd);
2033 if (likely(!retval))
2034 audit_inode(name, nd->path.dentry, flags & LOOKUP_PARENT);
2035 return retval;
2038 static int do_path_lookup(int dfd, const char *name,
2039 unsigned int flags, struct nameidata *nd)
2041 struct filename filename = { .name = name };
2043 return filename_lookup(dfd, &filename, flags, nd);
2046 /* does lookup, returns the object with parent locked */
2047 struct dentry *kern_path_locked(const char *name, struct path *path)
2049 struct nameidata nd;
2050 struct dentry *d;
2051 int err = do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, &nd);
2052 if (err)
2053 return ERR_PTR(err);
2054 if (nd.last_type != LAST_NORM) {
2055 path_put(&nd.path);
2056 return ERR_PTR(-EINVAL);
2058 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2059 d = __lookup_hash(&nd.last, nd.path.dentry, 0);
2060 if (IS_ERR(d)) {
2061 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2062 path_put(&nd.path);
2063 return d;
2065 *path = nd.path;
2066 return d;
2069 int kern_path(const char *name, unsigned int flags, struct path *path)
2071 struct nameidata nd;
2072 int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
2073 if (!res)
2074 *path = nd.path;
2075 return res;
2077 EXPORT_SYMBOL(kern_path);
2080 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2081 * @dentry: pointer to dentry of the base directory
2082 * @mnt: pointer to vfs mount of the base directory
2083 * @name: pointer to file name
2084 * @flags: lookup flags
2085 * @path: pointer to struct path to fill
2087 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2088 const char *name, unsigned int flags,
2089 struct path *path)
2091 struct nameidata nd;
2092 int err;
2093 nd.root.dentry = dentry;
2094 nd.root.mnt = mnt;
2095 BUG_ON(flags & LOOKUP_PARENT);
2096 /* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */
2097 err = do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, &nd);
2098 if (!err)
2099 *path = nd.path;
2100 return err;
2102 EXPORT_SYMBOL(vfs_path_lookup);
2105 * Restricted form of lookup. Doesn't follow links, single-component only,
2106 * needs parent already locked. Doesn't follow mounts.
2107 * SMP-safe.
2109 static struct dentry *lookup_hash(struct nameidata *nd)
2111 return __lookup_hash(&nd->last, nd->path.dentry, nd->flags);
2115 * lookup_one_len - filesystem helper to lookup single pathname component
2116 * @name: pathname component to lookup
2117 * @base: base directory to lookup from
2118 * @len: maximum length @len should be interpreted to
2120 * Note that this routine is purely a helper for filesystem usage and should
2121 * not be called by generic code. Also note that by using this function the
2122 * nameidata argument is passed to the filesystem methods and a filesystem
2123 * using this helper needs to be prepared for that.
2125 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2127 struct qstr this;
2128 unsigned int c;
2129 int err;
2131 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
2133 this.name = name;
2134 this.len = len;
2135 this.hash = full_name_hash(name, len);
2136 if (!len)
2137 return ERR_PTR(-EACCES);
2139 if (unlikely(name[0] == '.')) {
2140 if (len < 2 || (len == 2 && name[1] == '.'))
2141 return ERR_PTR(-EACCES);
2144 while (len--) {
2145 c = *(const unsigned char *)name++;
2146 if (c == '/' || c == '\0')
2147 return ERR_PTR(-EACCES);
2150 * See if the low-level filesystem might want
2151 * to use its own hash..
2153 if (base->d_flags & DCACHE_OP_HASH) {
2154 int err = base->d_op->d_hash(base, &this);
2155 if (err < 0)
2156 return ERR_PTR(err);
2159 err = inode_permission(base->d_inode, MAY_EXEC);
2160 if (err)
2161 return ERR_PTR(err);
2163 return __lookup_hash(&this, base, 0);
2165 EXPORT_SYMBOL(lookup_one_len);
2167 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2168 struct path *path, int *empty)
2170 struct nameidata nd;
2171 struct filename *tmp = getname_flags(name, flags, empty);
2172 int err = PTR_ERR(tmp);
2173 if (!IS_ERR(tmp)) {
2175 BUG_ON(flags & LOOKUP_PARENT);
2177 err = filename_lookup(dfd, tmp, flags, &nd);
2178 putname(tmp);
2179 if (!err)
2180 *path = nd.path;
2182 return err;
2185 int user_path_at(int dfd, const char __user *name, unsigned flags,
2186 struct path *path)
2188 return user_path_at_empty(dfd, name, flags, path, NULL);
2190 EXPORT_SYMBOL(user_path_at);
2193 * NB: most callers don't do anything directly with the reference to the
2194 * to struct filename, but the nd->last pointer points into the name string
2195 * allocated by getname. So we must hold the reference to it until all
2196 * path-walking is complete.
2198 static struct filename *
2199 user_path_parent(int dfd, const char __user *path, struct nameidata *nd,
2200 unsigned int flags)
2202 struct filename *s = getname(path);
2203 int error;
2205 /* only LOOKUP_REVAL is allowed in extra flags */
2206 flags &= LOOKUP_REVAL;
2208 if (IS_ERR(s))
2209 return s;
2211 error = filename_lookup(dfd, s, flags | LOOKUP_PARENT, nd);
2212 if (error) {
2213 putname(s);
2214 return ERR_PTR(error);
2217 return s;
2221 * mountpoint_last - look up last component for umount
2222 * @nd: pathwalk nameidata - currently pointing at parent directory of "last"
2223 * @path: pointer to container for result
2225 * This is a special lookup_last function just for umount. In this case, we
2226 * need to resolve the path without doing any revalidation.
2228 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2229 * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2230 * in almost all cases, this lookup will be served out of the dcache. The only
2231 * cases where it won't are if nd->last refers to a symlink or the path is
2232 * bogus and it doesn't exist.
2234 * Returns:
2235 * -error: if there was an error during lookup. This includes -ENOENT if the
2236 * lookup found a negative dentry. The nd->path reference will also be
2237 * put in this case.
2239 * 0: if we successfully resolved nd->path and found it to not to be a
2240 * symlink that needs to be followed. "path" will also be populated.
2241 * The nd->path reference will also be put.
2243 * 1: if we successfully resolved nd->last and found it to be a symlink
2244 * that needs to be followed. "path" will be populated with the path
2245 * to the link, and nd->path will *not* be put.
2247 static int
2248 mountpoint_last(struct nameidata *nd, struct path *path)
2250 int error = 0;
2251 struct dentry *dentry;
2252 struct dentry *dir = nd->path.dentry;
2254 /* If we're in rcuwalk, drop out of it to handle last component */
2255 if (nd->flags & LOOKUP_RCU) {
2256 if (unlazy_walk(nd, NULL)) {
2257 error = -ECHILD;
2258 goto out;
2262 nd->flags &= ~LOOKUP_PARENT;
2264 if (unlikely(nd->last_type != LAST_NORM)) {
2265 error = handle_dots(nd, nd->last_type);
2266 if (error)
2267 return error;
2268 dentry = dget(nd->path.dentry);
2269 goto done;
2272 mutex_lock(&dir->d_inode->i_mutex);
2273 dentry = d_lookup(dir, &nd->last);
2274 if (!dentry) {
2276 * No cached dentry. Mounted dentries are pinned in the cache,
2277 * so that means that this dentry is probably a symlink or the
2278 * path doesn't actually point to a mounted dentry.
2280 dentry = d_alloc(dir, &nd->last);
2281 if (!dentry) {
2282 error = -ENOMEM;
2283 mutex_unlock(&dir->d_inode->i_mutex);
2284 goto out;
2286 dentry = lookup_real(dir->d_inode, dentry, nd->flags);
2287 error = PTR_ERR(dentry);
2288 if (IS_ERR(dentry)) {
2289 mutex_unlock(&dir->d_inode->i_mutex);
2290 goto out;
2293 mutex_unlock(&dir->d_inode->i_mutex);
2295 done:
2296 if (!dentry->d_inode || d_is_negative(dentry)) {
2297 error = -ENOENT;
2298 dput(dentry);
2299 goto out;
2301 path->dentry = dentry;
2302 path->mnt = nd->path.mnt;
2303 if (should_follow_link(dentry, nd->flags & LOOKUP_FOLLOW))
2304 return 1;
2305 mntget(path->mnt);
2306 follow_mount(path);
2307 error = 0;
2308 out:
2309 terminate_walk(nd);
2310 return error;
2314 * path_mountpoint - look up a path to be umounted
2315 * @dfd: directory file descriptor to start walk from
2316 * @name: full pathname to walk
2317 * @path: pointer to container for result
2318 * @flags: lookup flags
2320 * Look up the given name, but don't attempt to revalidate the last component.
2321 * Returns 0 and "path" will be valid on success; Returns error otherwise.
2323 static int
2324 path_mountpoint(int dfd, const char *name, struct path *path, unsigned int flags)
2326 struct file *base = NULL;
2327 struct nameidata nd;
2328 int err;
2330 err = path_init(dfd, name, flags | LOOKUP_PARENT, &nd, &base);
2331 if (unlikely(err))
2332 goto out;
2334 current->total_link_count = 0;
2335 err = link_path_walk(name, &nd);
2336 if (err)
2337 goto out;
2339 err = mountpoint_last(&nd, path);
2340 while (err > 0) {
2341 void *cookie;
2342 struct path link = *path;
2343 err = may_follow_link(&link, &nd);
2344 if (unlikely(err))
2345 break;
2346 nd.flags |= LOOKUP_PARENT;
2347 err = follow_link(&link, &nd, &cookie);
2348 if (err)
2349 break;
2350 err = mountpoint_last(&nd, path);
2351 put_link(&nd, &link, cookie);
2353 out:
2354 if (base)
2355 fput(base);
2357 if (nd.root.mnt && !(nd.flags & LOOKUP_ROOT))
2358 path_put(&nd.root);
2360 return err;
2363 static int
2364 filename_mountpoint(int dfd, struct filename *s, struct path *path,
2365 unsigned int flags)
2367 int error = path_mountpoint(dfd, s->name, path, flags | LOOKUP_RCU);
2368 if (unlikely(error == -ECHILD))
2369 error = path_mountpoint(dfd, s->name, path, flags);
2370 if (unlikely(error == -ESTALE))
2371 error = path_mountpoint(dfd, s->name, path, flags | LOOKUP_REVAL);
2372 if (likely(!error))
2373 audit_inode(s, path->dentry, 0);
2374 return error;
2378 * user_path_mountpoint_at - lookup a path from userland in order to umount it
2379 * @dfd: directory file descriptor
2380 * @name: pathname from userland
2381 * @flags: lookup flags
2382 * @path: pointer to container to hold result
2384 * A umount is a special case for path walking. We're not actually interested
2385 * in the inode in this situation, and ESTALE errors can be a problem. We
2386 * simply want track down the dentry and vfsmount attached at the mountpoint
2387 * and avoid revalidating the last component.
2389 * Returns 0 and populates "path" on success.
2392 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2393 struct path *path)
2395 struct filename *s = getname(name);
2396 int error;
2397 if (IS_ERR(s))
2398 return PTR_ERR(s);
2399 error = filename_mountpoint(dfd, s, path, flags);
2400 putname(s);
2401 return error;
2405 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2406 unsigned int flags)
2408 struct filename s = {.name = name};
2409 return filename_mountpoint(dfd, &s, path, flags);
2411 EXPORT_SYMBOL(kern_path_mountpoint);
2413 int __check_sticky(struct inode *dir, struct inode *inode)
2415 kuid_t fsuid = current_fsuid();
2417 if (uid_eq(inode->i_uid, fsuid))
2418 return 0;
2419 if (uid_eq(dir->i_uid, fsuid))
2420 return 0;
2421 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2423 EXPORT_SYMBOL(__check_sticky);
2426 * Check whether we can remove a link victim from directory dir, check
2427 * whether the type of victim is right.
2428 * 1. We can't do it if dir is read-only (done in permission())
2429 * 2. We should have write and exec permissions on dir
2430 * 3. We can't remove anything from append-only dir
2431 * 4. We can't do anything with immutable dir (done in permission())
2432 * 5. If the sticky bit on dir is set we should either
2433 * a. be owner of dir, or
2434 * b. be owner of victim, or
2435 * c. have CAP_FOWNER capability
2436 * 6. If the victim is append-only or immutable we can't do antyhing with
2437 * links pointing to it.
2438 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2439 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2440 * 9. We can't remove a root or mountpoint.
2441 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2442 * nfs_async_unlink().
2444 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2446 struct inode *inode = victim->d_inode;
2447 int error;
2449 if (d_is_negative(victim))
2450 return -ENOENT;
2451 BUG_ON(!inode);
2453 BUG_ON(victim->d_parent->d_inode != dir);
2454 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2456 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2457 if (error)
2458 return error;
2459 if (IS_APPEND(dir))
2460 return -EPERM;
2462 if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2463 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode))
2464 return -EPERM;
2465 if (isdir) {
2466 if (!d_is_dir(victim))
2467 return -ENOTDIR;
2468 if (IS_ROOT(victim))
2469 return -EBUSY;
2470 } else if (d_is_dir(victim))
2471 return -EISDIR;
2472 if (IS_DEADDIR(dir))
2473 return -ENOENT;
2474 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2475 return -EBUSY;
2476 return 0;
2479 /* Check whether we can create an object with dentry child in directory
2480 * dir.
2481 * 1. We can't do it if child already exists (open has special treatment for
2482 * this case, but since we are inlined it's OK)
2483 * 2. We can't do it if dir is read-only (done in permission())
2484 * 3. We should have write and exec permissions on dir
2485 * 4. We can't do it if dir is immutable (done in permission())
2487 static inline int may_create(struct inode *dir, struct dentry *child)
2489 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2490 if (child->d_inode)
2491 return -EEXIST;
2492 if (IS_DEADDIR(dir))
2493 return -ENOENT;
2494 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2498 * p1 and p2 should be directories on the same fs.
2500 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2502 struct dentry *p;
2504 if (p1 == p2) {
2505 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2506 return NULL;
2509 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2511 p = d_ancestor(p2, p1);
2512 if (p) {
2513 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2514 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2515 return p;
2518 p = d_ancestor(p1, p2);
2519 if (p) {
2520 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2521 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2522 return p;
2525 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2526 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT2);
2527 return NULL;
2529 EXPORT_SYMBOL(lock_rename);
2531 void unlock_rename(struct dentry *p1, struct dentry *p2)
2533 mutex_unlock(&p1->d_inode->i_mutex);
2534 if (p1 != p2) {
2535 mutex_unlock(&p2->d_inode->i_mutex);
2536 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2539 EXPORT_SYMBOL(unlock_rename);
2541 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2542 bool want_excl)
2544 int error = may_create(dir, dentry);
2545 if (error)
2546 return error;
2548 if (!dir->i_op->create)
2549 return -EACCES; /* shouldn't it be ENOSYS? */
2550 mode &= S_IALLUGO;
2551 mode |= S_IFREG;
2552 error = security_inode_create(dir, dentry, mode);
2553 if (error)
2554 return error;
2555 error = dir->i_op->create(dir, dentry, mode, want_excl);
2556 if (!error)
2557 fsnotify_create(dir, dentry);
2558 return error;
2560 EXPORT_SYMBOL(vfs_create);
2562 static int may_open(struct path *path, int acc_mode, int flag)
2564 struct dentry *dentry = path->dentry;
2565 struct inode *inode = dentry->d_inode;
2566 int error;
2568 /* O_PATH? */
2569 if (!acc_mode)
2570 return 0;
2572 if (!inode)
2573 return -ENOENT;
2575 switch (inode->i_mode & S_IFMT) {
2576 case S_IFLNK:
2577 return -ELOOP;
2578 case S_IFDIR:
2579 if (acc_mode & MAY_WRITE)
2580 return -EISDIR;
2581 break;
2582 case S_IFBLK:
2583 case S_IFCHR:
2584 if (path->mnt->mnt_flags & MNT_NODEV)
2585 return -EACCES;
2586 /*FALLTHRU*/
2587 case S_IFIFO:
2588 case S_IFSOCK:
2589 flag &= ~O_TRUNC;
2590 break;
2593 error = inode_permission(inode, acc_mode);
2594 if (error)
2595 return error;
2598 * An append-only file must be opened in append mode for writing.
2600 if (IS_APPEND(inode)) {
2601 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2602 return -EPERM;
2603 if (flag & O_TRUNC)
2604 return -EPERM;
2607 /* O_NOATIME can only be set by the owner or superuser */
2608 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2609 return -EPERM;
2611 return 0;
2614 static int handle_truncate(struct file *filp)
2616 struct path *path = &filp->f_path;
2617 struct inode *inode = path->dentry->d_inode;
2618 int error = get_write_access(inode);
2619 if (error)
2620 return error;
2622 * Refuse to truncate files with mandatory locks held on them.
2624 error = locks_verify_locked(filp);
2625 if (!error)
2626 error = security_path_truncate(path);
2627 if (!error) {
2628 error = do_truncate(path->dentry, 0,
2629 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2630 filp);
2632 put_write_access(inode);
2633 return error;
2636 static inline int open_to_namei_flags(int flag)
2638 if ((flag & O_ACCMODE) == 3)
2639 flag--;
2640 return flag;
2643 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode)
2645 int error = security_path_mknod(dir, dentry, mode, 0);
2646 if (error)
2647 return error;
2649 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2650 if (error)
2651 return error;
2653 return security_inode_create(dir->dentry->d_inode, dentry, mode);
2657 * Attempt to atomically look up, create and open a file from a negative
2658 * dentry.
2660 * Returns 0 if successful. The file will have been created and attached to
2661 * @file by the filesystem calling finish_open().
2663 * Returns 1 if the file was looked up only or didn't need creating. The
2664 * caller will need to perform the open themselves. @path will have been
2665 * updated to point to the new dentry. This may be negative.
2667 * Returns an error code otherwise.
2669 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2670 struct path *path, struct file *file,
2671 const struct open_flags *op,
2672 bool got_write, bool need_lookup,
2673 int *opened)
2675 struct inode *dir = nd->path.dentry->d_inode;
2676 unsigned open_flag = open_to_namei_flags(op->open_flag);
2677 umode_t mode;
2678 int error;
2679 int acc_mode;
2680 int create_error = 0;
2681 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2682 bool excl;
2684 BUG_ON(dentry->d_inode);
2686 /* Don't create child dentry for a dead directory. */
2687 if (unlikely(IS_DEADDIR(dir))) {
2688 error = -ENOENT;
2689 goto out;
2692 mode = op->mode;
2693 if ((open_flag & O_CREAT) && !IS_POSIXACL(dir))
2694 mode &= ~current_umask();
2696 excl = (open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT);
2697 if (excl)
2698 open_flag &= ~O_TRUNC;
2701 * Checking write permission is tricky, bacuse we don't know if we are
2702 * going to actually need it: O_CREAT opens should work as long as the
2703 * file exists. But checking existence breaks atomicity. The trick is
2704 * to check access and if not granted clear O_CREAT from the flags.
2706 * Another problem is returing the "right" error value (e.g. for an
2707 * O_EXCL open we want to return EEXIST not EROFS).
2709 if (((open_flag & (O_CREAT | O_TRUNC)) ||
2710 (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) {
2711 if (!(open_flag & O_CREAT)) {
2713 * No O_CREATE -> atomicity not a requirement -> fall
2714 * back to lookup + open
2716 goto no_open;
2717 } else if (open_flag & (O_EXCL | O_TRUNC)) {
2718 /* Fall back and fail with the right error */
2719 create_error = -EROFS;
2720 goto no_open;
2721 } else {
2722 /* No side effects, safe to clear O_CREAT */
2723 create_error = -EROFS;
2724 open_flag &= ~O_CREAT;
2728 if (open_flag & O_CREAT) {
2729 error = may_o_create(&nd->path, dentry, mode);
2730 if (error) {
2731 create_error = error;
2732 if (open_flag & O_EXCL)
2733 goto no_open;
2734 open_flag &= ~O_CREAT;
2738 if (nd->flags & LOOKUP_DIRECTORY)
2739 open_flag |= O_DIRECTORY;
2741 file->f_path.dentry = DENTRY_NOT_SET;
2742 file->f_path.mnt = nd->path.mnt;
2743 error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode,
2744 opened);
2745 if (error < 0) {
2746 if (create_error && error == -ENOENT)
2747 error = create_error;
2748 goto out;
2751 if (error) { /* returned 1, that is */
2752 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2753 error = -EIO;
2754 goto out;
2756 if (file->f_path.dentry) {
2757 dput(dentry);
2758 dentry = file->f_path.dentry;
2760 if (*opened & FILE_CREATED)
2761 fsnotify_create(dir, dentry);
2762 if (!dentry->d_inode) {
2763 WARN_ON(*opened & FILE_CREATED);
2764 if (create_error) {
2765 error = create_error;
2766 goto out;
2768 } else {
2769 if (excl && !(*opened & FILE_CREATED)) {
2770 error = -EEXIST;
2771 goto out;
2774 goto looked_up;
2778 * We didn't have the inode before the open, so check open permission
2779 * here.
2781 acc_mode = op->acc_mode;
2782 if (*opened & FILE_CREATED) {
2783 WARN_ON(!(open_flag & O_CREAT));
2784 fsnotify_create(dir, dentry);
2785 acc_mode = MAY_OPEN;
2787 error = may_open(&file->f_path, acc_mode, open_flag);
2788 if (error)
2789 fput(file);
2791 out:
2792 dput(dentry);
2793 return error;
2795 no_open:
2796 if (need_lookup) {
2797 dentry = lookup_real(dir, dentry, nd->flags);
2798 if (IS_ERR(dentry))
2799 return PTR_ERR(dentry);
2801 if (create_error && !dentry->d_inode) {
2802 error = create_error;
2803 goto out;
2805 looked_up:
2806 path->dentry = dentry;
2807 path->mnt = nd->path.mnt;
2808 return 1;
2812 * Look up and maybe create and open the last component.
2814 * Must be called with i_mutex held on parent.
2816 * Returns 0 if the file was successfully atomically created (if necessary) and
2817 * opened. In this case the file will be returned attached to @file.
2819 * Returns 1 if the file was not completely opened at this time, though lookups
2820 * and creations will have been performed and the dentry returned in @path will
2821 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't
2822 * specified then a negative dentry may be returned.
2824 * An error code is returned otherwise.
2826 * FILE_CREATE will be set in @*opened if the dentry was created and will be
2827 * cleared otherwise prior to returning.
2829 static int lookup_open(struct nameidata *nd, struct path *path,
2830 struct file *file,
2831 const struct open_flags *op,
2832 bool got_write, int *opened)
2834 struct dentry *dir = nd->path.dentry;
2835 struct inode *dir_inode = dir->d_inode;
2836 struct dentry *dentry;
2837 int error;
2838 bool need_lookup;
2840 *opened &= ~FILE_CREATED;
2841 dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup);
2842 if (IS_ERR(dentry))
2843 return PTR_ERR(dentry);
2845 /* Cached positive dentry: will open in f_op->open */
2846 if (!need_lookup && dentry->d_inode)
2847 goto out_no_open;
2849 if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) {
2850 return atomic_open(nd, dentry, path, file, op, got_write,
2851 need_lookup, opened);
2854 if (need_lookup) {
2855 BUG_ON(dentry->d_inode);
2857 dentry = lookup_real(dir_inode, dentry, nd->flags);
2858 if (IS_ERR(dentry))
2859 return PTR_ERR(dentry);
2862 /* Negative dentry, just create the file */
2863 if (!dentry->d_inode && (op->open_flag & O_CREAT)) {
2864 umode_t mode = op->mode;
2865 if (!IS_POSIXACL(dir->d_inode))
2866 mode &= ~current_umask();
2868 * This write is needed to ensure that a
2869 * rw->ro transition does not occur between
2870 * the time when the file is created and when
2871 * a permanent write count is taken through
2872 * the 'struct file' in finish_open().
2874 if (!got_write) {
2875 error = -EROFS;
2876 goto out_dput;
2878 *opened |= FILE_CREATED;
2879 error = security_path_mknod(&nd->path, dentry, mode, 0);
2880 if (error)
2881 goto out_dput;
2882 error = vfs_create(dir->d_inode, dentry, mode,
2883 nd->flags & LOOKUP_EXCL);
2884 if (error)
2885 goto out_dput;
2887 out_no_open:
2888 path->dentry = dentry;
2889 path->mnt = nd->path.mnt;
2890 return 1;
2892 out_dput:
2893 dput(dentry);
2894 return error;
2898 * Handle the last step of open()
2900 static int do_last(struct nameidata *nd, struct path *path,
2901 struct file *file, const struct open_flags *op,
2902 int *opened, struct filename *name)
2904 struct dentry *dir = nd->path.dentry;
2905 int open_flag = op->open_flag;
2906 bool will_truncate = (open_flag & O_TRUNC) != 0;
2907 bool got_write = false;
2908 int acc_mode = op->acc_mode;
2909 struct inode *inode;
2910 bool symlink_ok = false;
2911 struct path save_parent = { .dentry = NULL, .mnt = NULL };
2912 bool retried = false;
2913 int error;
2915 nd->flags &= ~LOOKUP_PARENT;
2916 nd->flags |= op->intent;
2918 if (nd->last_type != LAST_NORM) {
2919 error = handle_dots(nd, nd->last_type);
2920 if (error)
2921 return error;
2922 goto finish_open;
2925 if (!(open_flag & O_CREAT)) {
2926 if (nd->last.name[nd->last.len])
2927 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2928 if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW))
2929 symlink_ok = true;
2930 /* we _can_ be in RCU mode here */
2931 error = lookup_fast(nd, path, &inode);
2932 if (likely(!error))
2933 goto finish_lookup;
2935 if (error < 0)
2936 goto out;
2938 BUG_ON(nd->inode != dir->d_inode);
2939 } else {
2940 /* create side of things */
2942 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
2943 * has been cleared when we got to the last component we are
2944 * about to look up
2946 error = complete_walk(nd);
2947 if (error)
2948 return error;
2950 audit_inode(name, dir, LOOKUP_PARENT);
2951 error = -EISDIR;
2952 /* trailing slashes? */
2953 if (nd->last.name[nd->last.len])
2954 goto out;
2957 retry_lookup:
2958 if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
2959 error = mnt_want_write(nd->path.mnt);
2960 if (!error)
2961 got_write = true;
2963 * do _not_ fail yet - we might not need that or fail with
2964 * a different error; let lookup_open() decide; we'll be
2965 * dropping this one anyway.
2968 mutex_lock(&dir->d_inode->i_mutex);
2969 error = lookup_open(nd, path, file, op, got_write, opened);
2970 mutex_unlock(&dir->d_inode->i_mutex);
2972 if (error <= 0) {
2973 if (error)
2974 goto out;
2976 if ((*opened & FILE_CREATED) ||
2977 !S_ISREG(file_inode(file)->i_mode))
2978 will_truncate = false;
2980 audit_inode(name, file->f_path.dentry, 0);
2981 goto opened;
2984 if (*opened & FILE_CREATED) {
2985 /* Don't check for write permission, don't truncate */
2986 open_flag &= ~O_TRUNC;
2987 will_truncate = false;
2988 acc_mode = MAY_OPEN;
2989 path_to_nameidata(path, nd);
2990 goto finish_open_created;
2994 * create/update audit record if it already exists.
2996 if (d_is_positive(path->dentry))
2997 audit_inode(name, path->dentry, 0);
3000 * If atomic_open() acquired write access it is dropped now due to
3001 * possible mount and symlink following (this might be optimized away if
3002 * necessary...)
3004 if (got_write) {
3005 mnt_drop_write(nd->path.mnt);
3006 got_write = false;
3009 error = -EEXIST;
3010 if ((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))
3011 goto exit_dput;
3013 error = follow_managed(path, nd->flags);
3014 if (error < 0)
3015 goto exit_dput;
3017 if (error)
3018 nd->flags |= LOOKUP_JUMPED;
3020 BUG_ON(nd->flags & LOOKUP_RCU);
3021 inode = path->dentry->d_inode;
3022 finish_lookup:
3023 /* we _can_ be in RCU mode here */
3024 error = -ENOENT;
3025 if (!inode || d_is_negative(path->dentry)) {
3026 path_to_nameidata(path, nd);
3027 goto out;
3030 if (should_follow_link(path->dentry, !symlink_ok)) {
3031 if (nd->flags & LOOKUP_RCU) {
3032 if (unlikely(nd->path.mnt != path->mnt ||
3033 unlazy_walk(nd, path->dentry))) {
3034 error = -ECHILD;
3035 goto out;
3038 BUG_ON(inode != path->dentry->d_inode);
3039 return 1;
3042 if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path->mnt) {
3043 path_to_nameidata(path, nd);
3044 } else {
3045 save_parent.dentry = nd->path.dentry;
3046 save_parent.mnt = mntget(path->mnt);
3047 nd->path.dentry = path->dentry;
3050 nd->inode = inode;
3051 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
3052 finish_open:
3053 error = complete_walk(nd);
3054 if (error) {
3055 path_put(&save_parent);
3056 return error;
3058 audit_inode(name, nd->path.dentry, 0);
3059 error = -EISDIR;
3060 if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry))
3061 goto out;
3062 error = -ENOTDIR;
3063 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3064 goto out;
3065 if (!S_ISREG(nd->inode->i_mode))
3066 will_truncate = false;
3068 if (will_truncate) {
3069 error = mnt_want_write(nd->path.mnt);
3070 if (error)
3071 goto out;
3072 got_write = true;
3074 finish_open_created:
3075 error = may_open(&nd->path, acc_mode, open_flag);
3076 if (error)
3077 goto out;
3079 BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */
3080 error = vfs_open(&nd->path, file, current_cred());
3081 if (!error) {
3082 *opened |= FILE_OPENED;
3083 } else {
3084 if (error == -EOPENSTALE)
3085 goto stale_open;
3086 goto out;
3088 opened:
3089 error = open_check_o_direct(file);
3090 if (error)
3091 goto exit_fput;
3092 error = ima_file_check(file, op->acc_mode, *opened);
3093 if (error)
3094 goto exit_fput;
3096 if (will_truncate) {
3097 error = handle_truncate(file);
3098 if (error)
3099 goto exit_fput;
3101 out:
3102 if (unlikely(error > 0)) {
3103 WARN_ON(1);
3104 error = -EINVAL;
3106 if (got_write)
3107 mnt_drop_write(nd->path.mnt);
3108 path_put(&save_parent);
3109 terminate_walk(nd);
3110 return error;
3112 exit_dput:
3113 path_put_conditional(path, nd);
3114 goto out;
3115 exit_fput:
3116 fput(file);
3117 goto out;
3119 stale_open:
3120 /* If no saved parent or already retried then can't retry */
3121 if (!save_parent.dentry || retried)
3122 goto out;
3124 BUG_ON(save_parent.dentry != dir);
3125 path_put(&nd->path);
3126 nd->path = save_parent;
3127 nd->inode = dir->d_inode;
3128 save_parent.mnt = NULL;
3129 save_parent.dentry = NULL;
3130 if (got_write) {
3131 mnt_drop_write(nd->path.mnt);
3132 got_write = false;
3134 retried = true;
3135 goto retry_lookup;
3138 static int do_tmpfile(int dfd, struct filename *pathname,
3139 struct nameidata *nd, int flags,
3140 const struct open_flags *op,
3141 struct file *file, int *opened)
3143 static const struct qstr name = QSTR_INIT("/", 1);
3144 struct dentry *dentry, *child;
3145 struct inode *dir;
3146 int error = path_lookupat(dfd, pathname->name,
3147 flags | LOOKUP_DIRECTORY, nd);
3148 if (unlikely(error))
3149 return error;
3150 error = mnt_want_write(nd->path.mnt);
3151 if (unlikely(error))
3152 goto out;
3153 /* we want directory to be writable */
3154 error = inode_permission(nd->inode, MAY_WRITE | MAY_EXEC);
3155 if (error)
3156 goto out2;
3157 dentry = nd->path.dentry;
3158 dir = dentry->d_inode;
3159 if (!dir->i_op->tmpfile) {
3160 error = -EOPNOTSUPP;
3161 goto out2;
3163 child = d_alloc(dentry, &name);
3164 if (unlikely(!child)) {
3165 error = -ENOMEM;
3166 goto out2;
3168 nd->flags &= ~LOOKUP_DIRECTORY;
3169 nd->flags |= op->intent;
3170 dput(nd->path.dentry);
3171 nd->path.dentry = child;
3172 error = dir->i_op->tmpfile(dir, nd->path.dentry, op->mode);
3173 if (error)
3174 goto out2;
3175 audit_inode(pathname, nd->path.dentry, 0);
3176 /* Don't check for other permissions, the inode was just created */
3177 error = may_open(&nd->path, MAY_OPEN, op->open_flag);
3178 if (error)
3179 goto out2;
3180 file->f_path.mnt = nd->path.mnt;
3181 error = finish_open(file, nd->path.dentry, NULL, opened);
3182 if (error)
3183 goto out2;
3184 error = open_check_o_direct(file);
3185 if (error) {
3186 fput(file);
3187 } else if (!(op->open_flag & O_EXCL)) {
3188 struct inode *inode = file_inode(file);
3189 spin_lock(&inode->i_lock);
3190 inode->i_state |= I_LINKABLE;
3191 spin_unlock(&inode->i_lock);
3193 out2:
3194 mnt_drop_write(nd->path.mnt);
3195 out:
3196 path_put(&nd->path);
3197 return error;
3200 static struct file *path_openat(int dfd, struct filename *pathname,
3201 struct nameidata *nd, const struct open_flags *op, int flags)
3203 struct file *base = NULL;
3204 struct file *file;
3205 struct path path;
3206 int opened = 0;
3207 int error;
3209 file = get_empty_filp();
3210 if (IS_ERR(file))
3211 return file;
3213 file->f_flags = op->open_flag;
3215 if (unlikely(file->f_flags & __O_TMPFILE)) {
3216 error = do_tmpfile(dfd, pathname, nd, flags, op, file, &opened);
3217 goto out2;
3220 error = path_init(dfd, pathname->name, flags | LOOKUP_PARENT, nd, &base);
3221 if (unlikely(error))
3222 goto out;
3224 current->total_link_count = 0;
3225 error = link_path_walk(pathname->name, nd);
3226 if (unlikely(error))
3227 goto out;
3229 error = do_last(nd, &path, file, op, &opened, pathname);
3230 while (unlikely(error > 0)) { /* trailing symlink */
3231 struct path link = path;
3232 void *cookie;
3233 if (!(nd->flags & LOOKUP_FOLLOW)) {
3234 path_put_conditional(&path, nd);
3235 path_put(&nd->path);
3236 error = -ELOOP;
3237 break;
3239 error = may_follow_link(&link, nd);
3240 if (unlikely(error))
3241 break;
3242 nd->flags |= LOOKUP_PARENT;
3243 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3244 error = follow_link(&link, nd, &cookie);
3245 if (unlikely(error))
3246 break;
3247 error = do_last(nd, &path, file, op, &opened, pathname);
3248 put_link(nd, &link, cookie);
3250 out:
3251 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT))
3252 path_put(&nd->root);
3253 if (base)
3254 fput(base);
3255 out2:
3256 if (!(opened & FILE_OPENED)) {
3257 BUG_ON(!error);
3258 put_filp(file);
3260 if (unlikely(error)) {
3261 if (error == -EOPENSTALE) {
3262 if (flags & LOOKUP_RCU)
3263 error = -ECHILD;
3264 else
3265 error = -ESTALE;
3267 file = ERR_PTR(error);
3269 return file;
3272 struct file *do_filp_open(int dfd, struct filename *pathname,
3273 const struct open_flags *op)
3275 struct nameidata nd;
3276 int flags = op->lookup_flags;
3277 struct file *filp;
3279 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
3280 if (unlikely(filp == ERR_PTR(-ECHILD)))
3281 filp = path_openat(dfd, pathname, &nd, op, flags);
3282 if (unlikely(filp == ERR_PTR(-ESTALE)))
3283 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
3284 return filp;
3287 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3288 const char *name, const struct open_flags *op)
3290 struct nameidata nd;
3291 struct file *file;
3292 struct filename filename = { .name = name };
3293 int flags = op->lookup_flags | LOOKUP_ROOT;
3295 nd.root.mnt = mnt;
3296 nd.root.dentry = dentry;
3298 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3299 return ERR_PTR(-ELOOP);
3301 file = path_openat(-1, &filename, &nd, op, flags | LOOKUP_RCU);
3302 if (unlikely(file == ERR_PTR(-ECHILD)))
3303 file = path_openat(-1, &filename, &nd, op, flags);
3304 if (unlikely(file == ERR_PTR(-ESTALE)))
3305 file = path_openat(-1, &filename, &nd, op, flags | LOOKUP_REVAL);
3306 return file;
3309 struct dentry *kern_path_create(int dfd, const char *pathname,
3310 struct path *path, unsigned int lookup_flags)
3312 struct dentry *dentry = ERR_PTR(-EEXIST);
3313 struct nameidata nd;
3314 int err2;
3315 int error;
3316 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3319 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3320 * other flags passed in are ignored!
3322 lookup_flags &= LOOKUP_REVAL;
3324 error = do_path_lookup(dfd, pathname, LOOKUP_PARENT|lookup_flags, &nd);
3325 if (error)
3326 return ERR_PTR(error);
3329 * Yucky last component or no last component at all?
3330 * (foo/., foo/.., /////)
3332 if (nd.last_type != LAST_NORM)
3333 goto out;
3334 nd.flags &= ~LOOKUP_PARENT;
3335 nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3337 /* don't fail immediately if it's r/o, at least try to report other errors */
3338 err2 = mnt_want_write(nd.path.mnt);
3340 * Do the final lookup.
3342 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3343 dentry = lookup_hash(&nd);
3344 if (IS_ERR(dentry))
3345 goto unlock;
3347 error = -EEXIST;
3348 if (d_is_positive(dentry))
3349 goto fail;
3352 * Special case - lookup gave negative, but... we had foo/bar/
3353 * From the vfs_mknod() POV we just have a negative dentry -
3354 * all is fine. Let's be bastards - you had / on the end, you've
3355 * been asking for (non-existent) directory. -ENOENT for you.
3357 if (unlikely(!is_dir && nd.last.name[nd.last.len])) {
3358 error = -ENOENT;
3359 goto fail;
3361 if (unlikely(err2)) {
3362 error = err2;
3363 goto fail;
3365 *path = nd.path;
3366 return dentry;
3367 fail:
3368 dput(dentry);
3369 dentry = ERR_PTR(error);
3370 unlock:
3371 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3372 if (!err2)
3373 mnt_drop_write(nd.path.mnt);
3374 out:
3375 path_put(&nd.path);
3376 return dentry;
3378 EXPORT_SYMBOL(kern_path_create);
3380 void done_path_create(struct path *path, struct dentry *dentry)
3382 dput(dentry);
3383 mutex_unlock(&path->dentry->d_inode->i_mutex);
3384 mnt_drop_write(path->mnt);
3385 path_put(path);
3387 EXPORT_SYMBOL(done_path_create);
3389 struct dentry *user_path_create(int dfd, const char __user *pathname,
3390 struct path *path, unsigned int lookup_flags)
3392 struct filename *tmp = getname(pathname);
3393 struct dentry *res;
3394 if (IS_ERR(tmp))
3395 return ERR_CAST(tmp);
3396 res = kern_path_create(dfd, tmp->name, path, lookup_flags);
3397 putname(tmp);
3398 return res;
3400 EXPORT_SYMBOL(user_path_create);
3402 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3404 int error = may_create(dir, dentry);
3406 if (error)
3407 return error;
3409 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3410 return -EPERM;
3412 if (!dir->i_op->mknod)
3413 return -EPERM;
3415 error = devcgroup_inode_mknod(mode, dev);
3416 if (error)
3417 return error;
3419 error = security_inode_mknod(dir, dentry, mode, dev);
3420 if (error)
3421 return error;
3423 error = dir->i_op->mknod(dir, dentry, mode, dev);
3424 if (!error)
3425 fsnotify_create(dir, dentry);
3426 return error;
3428 EXPORT_SYMBOL(vfs_mknod);
3430 static int may_mknod(umode_t mode)
3432 switch (mode & S_IFMT) {
3433 case S_IFREG:
3434 case S_IFCHR:
3435 case S_IFBLK:
3436 case S_IFIFO:
3437 case S_IFSOCK:
3438 case 0: /* zero mode translates to S_IFREG */
3439 return 0;
3440 case S_IFDIR:
3441 return -EPERM;
3442 default:
3443 return -EINVAL;
3447 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3448 unsigned, dev)
3450 struct dentry *dentry;
3451 struct path path;
3452 int error;
3453 unsigned int lookup_flags = 0;
3455 error = may_mknod(mode);
3456 if (error)
3457 return error;
3458 retry:
3459 dentry = user_path_create(dfd, filename, &path, lookup_flags);
3460 if (IS_ERR(dentry))
3461 return PTR_ERR(dentry);
3463 if (!IS_POSIXACL(path.dentry->d_inode))
3464 mode &= ~current_umask();
3465 error = security_path_mknod(&path, dentry, mode, dev);
3466 if (error)
3467 goto out;
3468 switch (mode & S_IFMT) {
3469 case 0: case S_IFREG:
3470 error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3471 break;
3472 case S_IFCHR: case S_IFBLK:
3473 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3474 new_decode_dev(dev));
3475 break;
3476 case S_IFIFO: case S_IFSOCK:
3477 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3478 break;
3480 out:
3481 done_path_create(&path, dentry);
3482 if (retry_estale(error, lookup_flags)) {
3483 lookup_flags |= LOOKUP_REVAL;
3484 goto retry;
3486 return error;
3489 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3491 return sys_mknodat(AT_FDCWD, filename, mode, dev);
3494 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3496 int error = may_create(dir, dentry);
3497 unsigned max_links = dir->i_sb->s_max_links;
3499 if (error)
3500 return error;
3502 if (!dir->i_op->mkdir)
3503 return -EPERM;
3505 mode &= (S_IRWXUGO|S_ISVTX);
3506 error = security_inode_mkdir(dir, dentry, mode);
3507 if (error)
3508 return error;
3510 if (max_links && dir->i_nlink >= max_links)
3511 return -EMLINK;
3513 error = dir->i_op->mkdir(dir, dentry, mode);
3514 if (!error)
3515 fsnotify_mkdir(dir, dentry);
3516 return error;
3518 EXPORT_SYMBOL(vfs_mkdir);
3520 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3522 struct dentry *dentry;
3523 struct path path;
3524 int error;
3525 unsigned int lookup_flags = LOOKUP_DIRECTORY;
3527 retry:
3528 dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3529 if (IS_ERR(dentry))
3530 return PTR_ERR(dentry);
3532 if (!IS_POSIXACL(path.dentry->d_inode))
3533 mode &= ~current_umask();
3534 error = security_path_mkdir(&path, dentry, mode);
3535 if (!error)
3536 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3537 done_path_create(&path, dentry);
3538 if (retry_estale(error, lookup_flags)) {
3539 lookup_flags |= LOOKUP_REVAL;
3540 goto retry;
3542 return error;
3545 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3547 return sys_mkdirat(AT_FDCWD, pathname, mode);
3551 * The dentry_unhash() helper will try to drop the dentry early: we
3552 * should have a usage count of 1 if we're the only user of this
3553 * dentry, and if that is true (possibly after pruning the dcache),
3554 * then we drop the dentry now.
3556 * A low-level filesystem can, if it choses, legally
3557 * do a
3559 * if (!d_unhashed(dentry))
3560 * return -EBUSY;
3562 * if it cannot handle the case of removing a directory
3563 * that is still in use by something else..
3565 void dentry_unhash(struct dentry *dentry)
3567 shrink_dcache_parent(dentry);
3568 spin_lock(&dentry->d_lock);
3569 if (dentry->d_lockref.count == 1)
3570 __d_drop(dentry);
3571 spin_unlock(&dentry->d_lock);
3573 EXPORT_SYMBOL(dentry_unhash);
3575 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3577 int error = may_delete(dir, dentry, 1);
3579 if (error)
3580 return error;
3582 if (!dir->i_op->rmdir)
3583 return -EPERM;
3585 dget(dentry);
3586 mutex_lock(&dentry->d_inode->i_mutex);
3588 error = -EBUSY;
3589 if (is_local_mountpoint(dentry))
3590 goto out;
3592 error = security_inode_rmdir(dir, dentry);
3593 if (error)
3594 goto out;
3596 shrink_dcache_parent(dentry);
3597 error = dir->i_op->rmdir(dir, dentry);
3598 if (error)
3599 goto out;
3601 dentry->d_inode->i_flags |= S_DEAD;
3602 dont_mount(dentry);
3603 detach_mounts(dentry);
3605 out:
3606 mutex_unlock(&dentry->d_inode->i_mutex);
3607 dput(dentry);
3608 if (!error)
3609 d_delete(dentry);
3610 return error;
3612 EXPORT_SYMBOL(vfs_rmdir);
3614 static long do_rmdir(int dfd, const char __user *pathname)
3616 int error = 0;
3617 struct filename *name;
3618 struct dentry *dentry;
3619 struct nameidata nd;
3620 unsigned int lookup_flags = 0;
3621 retry:
3622 name = user_path_parent(dfd, pathname, &nd, lookup_flags);
3623 if (IS_ERR(name))
3624 return PTR_ERR(name);
3626 switch(nd.last_type) {
3627 case LAST_DOTDOT:
3628 error = -ENOTEMPTY;
3629 goto exit1;
3630 case LAST_DOT:
3631 error = -EINVAL;
3632 goto exit1;
3633 case LAST_ROOT:
3634 error = -EBUSY;
3635 goto exit1;
3638 nd.flags &= ~LOOKUP_PARENT;
3639 error = mnt_want_write(nd.path.mnt);
3640 if (error)
3641 goto exit1;
3643 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3644 dentry = lookup_hash(&nd);
3645 error = PTR_ERR(dentry);
3646 if (IS_ERR(dentry))
3647 goto exit2;
3648 if (!dentry->d_inode) {
3649 error = -ENOENT;
3650 goto exit3;
3652 error = security_path_rmdir(&nd.path, dentry);
3653 if (error)
3654 goto exit3;
3655 error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
3656 exit3:
3657 dput(dentry);
3658 exit2:
3659 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3660 mnt_drop_write(nd.path.mnt);
3661 exit1:
3662 path_put(&nd.path);
3663 putname(name);
3664 if (retry_estale(error, lookup_flags)) {
3665 lookup_flags |= LOOKUP_REVAL;
3666 goto retry;
3668 return error;
3671 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3673 return do_rmdir(AT_FDCWD, pathname);
3677 * vfs_unlink - unlink a filesystem object
3678 * @dir: parent directory
3679 * @dentry: victim
3680 * @delegated_inode: returns victim inode, if the inode is delegated.
3682 * The caller must hold dir->i_mutex.
3684 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3685 * return a reference to the inode in delegated_inode. The caller
3686 * should then break the delegation on that inode and retry. Because
3687 * breaking a delegation may take a long time, the caller should drop
3688 * dir->i_mutex before doing so.
3690 * Alternatively, a caller may pass NULL for delegated_inode. This may
3691 * be appropriate for callers that expect the underlying filesystem not
3692 * to be NFS exported.
3694 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3696 struct inode *target = dentry->d_inode;
3697 int error = may_delete(dir, dentry, 0);
3699 if (error)
3700 return error;
3702 if (!dir->i_op->unlink)
3703 return -EPERM;
3705 mutex_lock(&target->i_mutex);
3706 if (is_local_mountpoint(dentry))
3707 error = -EBUSY;
3708 else {
3709 error = security_inode_unlink(dir, dentry);
3710 if (!error) {
3711 error = try_break_deleg(target, delegated_inode);
3712 if (error)
3713 goto out;
3714 error = dir->i_op->unlink(dir, dentry);
3715 if (!error) {
3716 dont_mount(dentry);
3717 detach_mounts(dentry);
3721 out:
3722 mutex_unlock(&target->i_mutex);
3724 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
3725 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3726 fsnotify_link_count(target);
3727 d_delete(dentry);
3730 return error;
3732 EXPORT_SYMBOL(vfs_unlink);
3735 * Make sure that the actual truncation of the file will occur outside its
3736 * directory's i_mutex. Truncate can take a long time if there is a lot of
3737 * writeout happening, and we don't want to prevent access to the directory
3738 * while waiting on the I/O.
3740 static long do_unlinkat(int dfd, const char __user *pathname)
3742 int error;
3743 struct filename *name;
3744 struct dentry *dentry;
3745 struct nameidata nd;
3746 struct inode *inode = NULL;
3747 struct inode *delegated_inode = NULL;
3748 unsigned int lookup_flags = 0;
3749 retry:
3750 name = user_path_parent(dfd, pathname, &nd, lookup_flags);
3751 if (IS_ERR(name))
3752 return PTR_ERR(name);
3754 error = -EISDIR;
3755 if (nd.last_type != LAST_NORM)
3756 goto exit1;
3758 nd.flags &= ~LOOKUP_PARENT;
3759 error = mnt_want_write(nd.path.mnt);
3760 if (error)
3761 goto exit1;
3762 retry_deleg:
3763 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3764 dentry = lookup_hash(&nd);
3765 error = PTR_ERR(dentry);
3766 if (!IS_ERR(dentry)) {
3767 /* Why not before? Because we want correct error value */
3768 if (nd.last.name[nd.last.len])
3769 goto slashes;
3770 inode = dentry->d_inode;
3771 if (d_is_negative(dentry))
3772 goto slashes;
3773 ihold(inode);
3774 error = security_path_unlink(&nd.path, dentry);
3775 if (error)
3776 goto exit2;
3777 error = vfs_unlink(nd.path.dentry->d_inode, dentry, &delegated_inode);
3778 exit2:
3779 dput(dentry);
3781 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3782 if (inode)
3783 iput(inode); /* truncate the inode here */
3784 inode = NULL;
3785 if (delegated_inode) {
3786 error = break_deleg_wait(&delegated_inode);
3787 if (!error)
3788 goto retry_deleg;
3790 mnt_drop_write(nd.path.mnt);
3791 exit1:
3792 path_put(&nd.path);
3793 putname(name);
3794 if (retry_estale(error, lookup_flags)) {
3795 lookup_flags |= LOOKUP_REVAL;
3796 inode = NULL;
3797 goto retry;
3799 return error;
3801 slashes:
3802 if (d_is_negative(dentry))
3803 error = -ENOENT;
3804 else if (d_is_dir(dentry))
3805 error = -EISDIR;
3806 else
3807 error = -ENOTDIR;
3808 goto exit2;
3811 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3813 if ((flag & ~AT_REMOVEDIR) != 0)
3814 return -EINVAL;
3816 if (flag & AT_REMOVEDIR)
3817 return do_rmdir(dfd, pathname);
3819 return do_unlinkat(dfd, pathname);
3822 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3824 return do_unlinkat(AT_FDCWD, pathname);
3827 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3829 int error = may_create(dir, dentry);
3831 if (error)
3832 return error;
3834 if (!dir->i_op->symlink)
3835 return -EPERM;
3837 error = security_inode_symlink(dir, dentry, oldname);
3838 if (error)
3839 return error;
3841 error = dir->i_op->symlink(dir, dentry, oldname);
3842 if (!error)
3843 fsnotify_create(dir, dentry);
3844 return error;
3846 EXPORT_SYMBOL(vfs_symlink);
3848 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3849 int, newdfd, const char __user *, newname)
3851 int error;
3852 struct filename *from;
3853 struct dentry *dentry;
3854 struct path path;
3855 unsigned int lookup_flags = 0;
3857 from = getname(oldname);
3858 if (IS_ERR(from))
3859 return PTR_ERR(from);
3860 retry:
3861 dentry = user_path_create(newdfd, newname, &path, lookup_flags);
3862 error = PTR_ERR(dentry);
3863 if (IS_ERR(dentry))
3864 goto out_putname;
3866 error = security_path_symlink(&path, dentry, from->name);
3867 if (!error)
3868 error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
3869 done_path_create(&path, dentry);
3870 if (retry_estale(error, lookup_flags)) {
3871 lookup_flags |= LOOKUP_REVAL;
3872 goto retry;
3874 out_putname:
3875 putname(from);
3876 return error;
3879 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
3881 return sys_symlinkat(oldname, AT_FDCWD, newname);
3885 * vfs_link - create a new link
3886 * @old_dentry: object to be linked
3887 * @dir: new parent
3888 * @new_dentry: where to create the new link
3889 * @delegated_inode: returns inode needing a delegation break
3891 * The caller must hold dir->i_mutex
3893 * If vfs_link discovers a delegation on the to-be-linked file in need
3894 * of breaking, it will return -EWOULDBLOCK and return a reference to the
3895 * inode in delegated_inode. The caller should then break the delegation
3896 * and retry. Because breaking a delegation may take a long time, the
3897 * caller should drop the i_mutex before doing so.
3899 * Alternatively, a caller may pass NULL for delegated_inode. This may
3900 * be appropriate for callers that expect the underlying filesystem not
3901 * to be NFS exported.
3903 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
3905 struct inode *inode = old_dentry->d_inode;
3906 unsigned max_links = dir->i_sb->s_max_links;
3907 int error;
3909 if (!inode)
3910 return -ENOENT;
3912 error = may_create(dir, new_dentry);
3913 if (error)
3914 return error;
3916 if (dir->i_sb != inode->i_sb)
3917 return -EXDEV;
3920 * A link to an append-only or immutable file cannot be created.
3922 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3923 return -EPERM;
3924 if (!dir->i_op->link)
3925 return -EPERM;
3926 if (S_ISDIR(inode->i_mode))
3927 return -EPERM;
3929 error = security_inode_link(old_dentry, dir, new_dentry);
3930 if (error)
3931 return error;
3933 mutex_lock(&inode->i_mutex);
3934 /* Make sure we don't allow creating hardlink to an unlinked file */
3935 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
3936 error = -ENOENT;
3937 else if (max_links && inode->i_nlink >= max_links)
3938 error = -EMLINK;
3939 else {
3940 error = try_break_deleg(inode, delegated_inode);
3941 if (!error)
3942 error = dir->i_op->link(old_dentry, dir, new_dentry);
3945 if (!error && (inode->i_state & I_LINKABLE)) {
3946 spin_lock(&inode->i_lock);
3947 inode->i_state &= ~I_LINKABLE;
3948 spin_unlock(&inode->i_lock);
3950 mutex_unlock(&inode->i_mutex);
3951 if (!error)
3952 fsnotify_link(dir, inode, new_dentry);
3953 return error;
3955 EXPORT_SYMBOL(vfs_link);
3958 * Hardlinks are often used in delicate situations. We avoid
3959 * security-related surprises by not following symlinks on the
3960 * newname. --KAB
3962 * We don't follow them on the oldname either to be compatible
3963 * with linux 2.0, and to avoid hard-linking to directories
3964 * and other special files. --ADM
3966 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
3967 int, newdfd, const char __user *, newname, int, flags)
3969 struct dentry *new_dentry;
3970 struct path old_path, new_path;
3971 struct inode *delegated_inode = NULL;
3972 int how = 0;
3973 int error;
3975 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
3976 return -EINVAL;
3978 * To use null names we require CAP_DAC_READ_SEARCH
3979 * This ensures that not everyone will be able to create
3980 * handlink using the passed filedescriptor.
3982 if (flags & AT_EMPTY_PATH) {
3983 if (!capable(CAP_DAC_READ_SEARCH))
3984 return -ENOENT;
3985 how = LOOKUP_EMPTY;
3988 if (flags & AT_SYMLINK_FOLLOW)
3989 how |= LOOKUP_FOLLOW;
3990 retry:
3991 error = user_path_at(olddfd, oldname, how, &old_path);
3992 if (error)
3993 return error;
3995 new_dentry = user_path_create(newdfd, newname, &new_path,
3996 (how & LOOKUP_REVAL));
3997 error = PTR_ERR(new_dentry);
3998 if (IS_ERR(new_dentry))
3999 goto out;
4001 error = -EXDEV;
4002 if (old_path.mnt != new_path.mnt)
4003 goto out_dput;
4004 error = may_linkat(&old_path);
4005 if (unlikely(error))
4006 goto out_dput;
4007 error = security_path_link(old_path.dentry, &new_path, new_dentry);
4008 if (error)
4009 goto out_dput;
4010 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4011 out_dput:
4012 done_path_create(&new_path, new_dentry);
4013 if (delegated_inode) {
4014 error = break_deleg_wait(&delegated_inode);
4015 if (!error) {
4016 path_put(&old_path);
4017 goto retry;
4020 if (retry_estale(error, how)) {
4021 path_put(&old_path);
4022 how |= LOOKUP_REVAL;
4023 goto retry;
4025 out:
4026 path_put(&old_path);
4028 return error;
4031 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4033 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4037 * vfs_rename - rename a filesystem object
4038 * @old_dir: parent of source
4039 * @old_dentry: source
4040 * @new_dir: parent of destination
4041 * @new_dentry: destination
4042 * @delegated_inode: returns an inode needing a delegation break
4043 * @flags: rename flags
4045 * The caller must hold multiple mutexes--see lock_rename()).
4047 * If vfs_rename discovers a delegation in need of breaking at either
4048 * the source or destination, it will return -EWOULDBLOCK and return a
4049 * reference to the inode in delegated_inode. The caller should then
4050 * break the delegation and retry. Because breaking a delegation may
4051 * take a long time, the caller should drop all locks before doing
4052 * so.
4054 * Alternatively, a caller may pass NULL for delegated_inode. This may
4055 * be appropriate for callers that expect the underlying filesystem not
4056 * to be NFS exported.
4058 * The worst of all namespace operations - renaming directory. "Perverted"
4059 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4060 * Problems:
4061 * a) we can get into loop creation.
4062 * b) race potential - two innocent renames can create a loop together.
4063 * That's where 4.4 screws up. Current fix: serialization on
4064 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4065 * story.
4066 * c) we have to lock _four_ objects - parents and victim (if it exists),
4067 * and source (if it is not a directory).
4068 * And that - after we got ->i_mutex on parents (until then we don't know
4069 * whether the target exists). Solution: try to be smart with locking
4070 * order for inodes. We rely on the fact that tree topology may change
4071 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
4072 * move will be locked. Thus we can rank directories by the tree
4073 * (ancestors first) and rank all non-directories after them.
4074 * That works since everybody except rename does "lock parent, lookup,
4075 * lock child" and rename is under ->s_vfs_rename_mutex.
4076 * HOWEVER, it relies on the assumption that any object with ->lookup()
4077 * has no more than 1 dentry. If "hybrid" objects will ever appear,
4078 * we'd better make sure that there's no link(2) for them.
4079 * d) conversion from fhandle to dentry may come in the wrong moment - when
4080 * we are removing the target. Solution: we will have to grab ->i_mutex
4081 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4082 * ->i_mutex on parents, which works but leads to some truly excessive
4083 * locking].
4085 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4086 struct inode *new_dir, struct dentry *new_dentry,
4087 struct inode **delegated_inode, unsigned int flags)
4089 int error;
4090 bool is_dir = d_is_dir(old_dentry);
4091 const unsigned char *old_name;
4092 struct inode *source = old_dentry->d_inode;
4093 struct inode *target = new_dentry->d_inode;
4094 bool new_is_dir = false;
4095 unsigned max_links = new_dir->i_sb->s_max_links;
4097 if (source == target)
4098 return 0;
4100 error = may_delete(old_dir, old_dentry, is_dir);
4101 if (error)
4102 return error;
4104 if (!target) {
4105 error = may_create(new_dir, new_dentry);
4106 } else {
4107 new_is_dir = d_is_dir(new_dentry);
4109 if (!(flags & RENAME_EXCHANGE))
4110 error = may_delete(new_dir, new_dentry, is_dir);
4111 else
4112 error = may_delete(new_dir, new_dentry, new_is_dir);
4114 if (error)
4115 return error;
4117 if (!old_dir->i_op->rename && !old_dir->i_op->rename2)
4118 return -EPERM;
4120 if (flags && !old_dir->i_op->rename2)
4121 return -EINVAL;
4124 * If we are going to change the parent - check write permissions,
4125 * we'll need to flip '..'.
4127 if (new_dir != old_dir) {
4128 if (is_dir) {
4129 error = inode_permission(source, MAY_WRITE);
4130 if (error)
4131 return error;
4133 if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4134 error = inode_permission(target, MAY_WRITE);
4135 if (error)
4136 return error;
4140 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4141 flags);
4142 if (error)
4143 return error;
4145 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
4146 dget(new_dentry);
4147 if (!is_dir || (flags & RENAME_EXCHANGE))
4148 lock_two_nondirectories(source, target);
4149 else if (target)
4150 mutex_lock(&target->i_mutex);
4152 error = -EBUSY;
4153 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4154 goto out;
4156 if (max_links && new_dir != old_dir) {
4157 error = -EMLINK;
4158 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4159 goto out;
4160 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4161 old_dir->i_nlink >= max_links)
4162 goto out;
4164 if (is_dir && !(flags & RENAME_EXCHANGE) && target)
4165 shrink_dcache_parent(new_dentry);
4166 if (!is_dir) {
4167 error = try_break_deleg(source, delegated_inode);
4168 if (error)
4169 goto out;
4171 if (target && !new_is_dir) {
4172 error = try_break_deleg(target, delegated_inode);
4173 if (error)
4174 goto out;
4176 if (!old_dir->i_op->rename2) {
4177 error = old_dir->i_op->rename(old_dir, old_dentry,
4178 new_dir, new_dentry);
4179 } else {
4180 WARN_ON(old_dir->i_op->rename != NULL);
4181 error = old_dir->i_op->rename2(old_dir, old_dentry,
4182 new_dir, new_dentry, flags);
4184 if (error)
4185 goto out;
4187 if (!(flags & RENAME_EXCHANGE) && target) {
4188 if (is_dir)
4189 target->i_flags |= S_DEAD;
4190 dont_mount(new_dentry);
4191 detach_mounts(new_dentry);
4193 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4194 if (!(flags & RENAME_EXCHANGE))
4195 d_move(old_dentry, new_dentry);
4196 else
4197 d_exchange(old_dentry, new_dentry);
4199 out:
4200 if (!is_dir || (flags & RENAME_EXCHANGE))
4201 unlock_two_nondirectories(source, target);
4202 else if (target)
4203 mutex_unlock(&target->i_mutex);
4204 dput(new_dentry);
4205 if (!error) {
4206 fsnotify_move(old_dir, new_dir, old_name, is_dir,
4207 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4208 if (flags & RENAME_EXCHANGE) {
4209 fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4210 new_is_dir, NULL, new_dentry);
4213 fsnotify_oldname_free(old_name);
4215 return error;
4217 EXPORT_SYMBOL(vfs_rename);
4219 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4220 int, newdfd, const char __user *, newname, unsigned int, flags)
4222 struct dentry *old_dir, *new_dir;
4223 struct dentry *old_dentry, *new_dentry;
4224 struct dentry *trap;
4225 struct nameidata oldnd, newnd;
4226 struct inode *delegated_inode = NULL;
4227 struct filename *from;
4228 struct filename *to;
4229 unsigned int lookup_flags = 0;
4230 bool should_retry = false;
4231 int error;
4233 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4234 return -EINVAL;
4236 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4237 (flags & RENAME_EXCHANGE))
4238 return -EINVAL;
4240 if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4241 return -EPERM;
4243 retry:
4244 from = user_path_parent(olddfd, oldname, &oldnd, lookup_flags);
4245 if (IS_ERR(from)) {
4246 error = PTR_ERR(from);
4247 goto exit;
4250 to = user_path_parent(newdfd, newname, &newnd, lookup_flags);
4251 if (IS_ERR(to)) {
4252 error = PTR_ERR(to);
4253 goto exit1;
4256 error = -EXDEV;
4257 if (oldnd.path.mnt != newnd.path.mnt)
4258 goto exit2;
4260 old_dir = oldnd.path.dentry;
4261 error = -EBUSY;
4262 if (oldnd.last_type != LAST_NORM)
4263 goto exit2;
4265 new_dir = newnd.path.dentry;
4266 if (flags & RENAME_NOREPLACE)
4267 error = -EEXIST;
4268 if (newnd.last_type != LAST_NORM)
4269 goto exit2;
4271 error = mnt_want_write(oldnd.path.mnt);
4272 if (error)
4273 goto exit2;
4275 oldnd.flags &= ~LOOKUP_PARENT;
4276 newnd.flags &= ~LOOKUP_PARENT;
4277 if (!(flags & RENAME_EXCHANGE))
4278 newnd.flags |= LOOKUP_RENAME_TARGET;
4280 retry_deleg:
4281 trap = lock_rename(new_dir, old_dir);
4283 old_dentry = lookup_hash(&oldnd);
4284 error = PTR_ERR(old_dentry);
4285 if (IS_ERR(old_dentry))
4286 goto exit3;
4287 /* source must exist */
4288 error = -ENOENT;
4289 if (d_is_negative(old_dentry))
4290 goto exit4;
4291 new_dentry = lookup_hash(&newnd);
4292 error = PTR_ERR(new_dentry);
4293 if (IS_ERR(new_dentry))
4294 goto exit4;
4295 error = -EEXIST;
4296 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4297 goto exit5;
4298 if (flags & RENAME_EXCHANGE) {
4299 error = -ENOENT;
4300 if (d_is_negative(new_dentry))
4301 goto exit5;
4303 if (!d_is_dir(new_dentry)) {
4304 error = -ENOTDIR;
4305 if (newnd.last.name[newnd.last.len])
4306 goto exit5;
4309 /* unless the source is a directory trailing slashes give -ENOTDIR */
4310 if (!d_is_dir(old_dentry)) {
4311 error = -ENOTDIR;
4312 if (oldnd.last.name[oldnd.last.len])
4313 goto exit5;
4314 if (!(flags & RENAME_EXCHANGE) && newnd.last.name[newnd.last.len])
4315 goto exit5;
4317 /* source should not be ancestor of target */
4318 error = -EINVAL;
4319 if (old_dentry == trap)
4320 goto exit5;
4321 /* target should not be an ancestor of source */
4322 if (!(flags & RENAME_EXCHANGE))
4323 error = -ENOTEMPTY;
4324 if (new_dentry == trap)
4325 goto exit5;
4327 error = security_path_rename(&oldnd.path, old_dentry,
4328 &newnd.path, new_dentry, flags);
4329 if (error)
4330 goto exit5;
4331 error = vfs_rename(old_dir->d_inode, old_dentry,
4332 new_dir->d_inode, new_dentry,
4333 &delegated_inode, flags);
4334 exit5:
4335 dput(new_dentry);
4336 exit4:
4337 dput(old_dentry);
4338 exit3:
4339 unlock_rename(new_dir, old_dir);
4340 if (delegated_inode) {
4341 error = break_deleg_wait(&delegated_inode);
4342 if (!error)
4343 goto retry_deleg;
4345 mnt_drop_write(oldnd.path.mnt);
4346 exit2:
4347 if (retry_estale(error, lookup_flags))
4348 should_retry = true;
4349 path_put(&newnd.path);
4350 putname(to);
4351 exit1:
4352 path_put(&oldnd.path);
4353 putname(from);
4354 if (should_retry) {
4355 should_retry = false;
4356 lookup_flags |= LOOKUP_REVAL;
4357 goto retry;
4359 exit:
4360 return error;
4363 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4364 int, newdfd, const char __user *, newname)
4366 return sys_renameat2(olddfd, oldname, newdfd, newname, 0);
4369 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4371 return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4374 int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4376 int error = may_create(dir, dentry);
4377 if (error)
4378 return error;
4380 if (!dir->i_op->mknod)
4381 return -EPERM;
4383 return dir->i_op->mknod(dir, dentry,
4384 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4386 EXPORT_SYMBOL(vfs_whiteout);
4388 int readlink_copy(char __user *buffer, int buflen, const char *link)
4390 int len = PTR_ERR(link);
4391 if (IS_ERR(link))
4392 goto out;
4394 len = strlen(link);
4395 if (len > (unsigned) buflen)
4396 len = buflen;
4397 if (copy_to_user(buffer, link, len))
4398 len = -EFAULT;
4399 out:
4400 return len;
4402 EXPORT_SYMBOL(readlink_copy);
4405 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
4406 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
4407 * using) it for any given inode is up to filesystem.
4409 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4411 struct nameidata nd;
4412 void *cookie;
4413 int res;
4415 nd.depth = 0;
4416 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
4417 if (IS_ERR(cookie))
4418 return PTR_ERR(cookie);
4420 res = readlink_copy(buffer, buflen, nd_get_link(&nd));
4421 if (dentry->d_inode->i_op->put_link)
4422 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
4423 return res;
4425 EXPORT_SYMBOL(generic_readlink);
4427 /* get the link contents into pagecache */
4428 static char *page_getlink(struct dentry * dentry, struct page **ppage)
4430 char *kaddr;
4431 struct page *page;
4432 struct address_space *mapping = dentry->d_inode->i_mapping;
4433 page = read_mapping_page(mapping, 0, NULL);
4434 if (IS_ERR(page))
4435 return (char*)page;
4436 *ppage = page;
4437 kaddr = kmap(page);
4438 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
4439 return kaddr;
4442 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4444 struct page *page = NULL;
4445 int res = readlink_copy(buffer, buflen, page_getlink(dentry, &page));
4446 if (page) {
4447 kunmap(page);
4448 page_cache_release(page);
4450 return res;
4452 EXPORT_SYMBOL(page_readlink);
4454 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
4456 struct page *page = NULL;
4457 nd_set_link(nd, page_getlink(dentry, &page));
4458 return page;
4460 EXPORT_SYMBOL(page_follow_link_light);
4462 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
4464 struct page *page = cookie;
4466 if (page) {
4467 kunmap(page);
4468 page_cache_release(page);
4471 EXPORT_SYMBOL(page_put_link);
4474 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4476 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4478 struct address_space *mapping = inode->i_mapping;
4479 struct page *page;
4480 void *fsdata;
4481 int err;
4482 char *kaddr;
4483 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4484 if (nofs)
4485 flags |= AOP_FLAG_NOFS;
4487 retry:
4488 err = pagecache_write_begin(NULL, mapping, 0, len-1,
4489 flags, &page, &fsdata);
4490 if (err)
4491 goto fail;
4493 kaddr = kmap_atomic(page);
4494 memcpy(kaddr, symname, len-1);
4495 kunmap_atomic(kaddr);
4497 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4498 page, fsdata);
4499 if (err < 0)
4500 goto fail;
4501 if (err < len-1)
4502 goto retry;
4504 mark_inode_dirty(inode);
4505 return 0;
4506 fail:
4507 return err;
4509 EXPORT_SYMBOL(__page_symlink);
4511 int page_symlink(struct inode *inode, const char *symname, int len)
4513 return __page_symlink(inode, symname, len,
4514 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
4516 EXPORT_SYMBOL(page_symlink);
4518 const struct inode_operations page_symlink_inode_operations = {
4519 .readlink = generic_readlink,
4520 .follow_link = page_follow_link_light,
4521 .put_link = page_put_link,
4523 EXPORT_SYMBOL(page_symlink_inode_operations);