k8temp: Documentation update
[linux/fpc-iii.git] / mm / memory.c
blob97f5ea3957209123123b7ac34ea0a56d86a16c33
1 /*
2 * linux/mm/memory.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/rmap.h>
49 #include <linux/module.h>
50 #include <linux/init.h>
52 #include <asm/pgalloc.h>
53 #include <asm/uaccess.h>
54 #include <asm/tlb.h>
55 #include <asm/tlbflush.h>
56 #include <asm/pgtable.h>
58 #include <linux/swapops.h>
59 #include <linux/elf.h>
61 #ifndef CONFIG_NEED_MULTIPLE_NODES
62 /* use the per-pgdat data instead for discontigmem - mbligh */
63 unsigned long max_mapnr;
64 struct page *mem_map;
66 EXPORT_SYMBOL(max_mapnr);
67 EXPORT_SYMBOL(mem_map);
68 #endif
70 unsigned long num_physpages;
72 * A number of key systems in x86 including ioremap() rely on the assumption
73 * that high_memory defines the upper bound on direct map memory, then end
74 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
75 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
76 * and ZONE_HIGHMEM.
78 void * high_memory;
79 unsigned long vmalloc_earlyreserve;
81 EXPORT_SYMBOL(num_physpages);
82 EXPORT_SYMBOL(high_memory);
83 EXPORT_SYMBOL(vmalloc_earlyreserve);
85 int randomize_va_space __read_mostly = 1;
87 static int __init disable_randmaps(char *s)
89 randomize_va_space = 0;
90 return 0;
92 __setup("norandmaps", disable_randmaps);
96 * If a p?d_bad entry is found while walking page tables, report
97 * the error, before resetting entry to p?d_none. Usually (but
98 * very seldom) called out from the p?d_none_or_clear_bad macros.
101 void pgd_clear_bad(pgd_t *pgd)
103 pgd_ERROR(*pgd);
104 pgd_clear(pgd);
107 void pud_clear_bad(pud_t *pud)
109 pud_ERROR(*pud);
110 pud_clear(pud);
113 void pmd_clear_bad(pmd_t *pmd)
115 pmd_ERROR(*pmd);
116 pmd_clear(pmd);
120 * Note: this doesn't free the actual pages themselves. That
121 * has been handled earlier when unmapping all the memory regions.
123 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
125 struct page *page = pmd_page(*pmd);
126 pmd_clear(pmd);
127 pte_lock_deinit(page);
128 pte_free_tlb(tlb, page);
129 dec_page_state(nr_page_table_pages);
130 tlb->mm->nr_ptes--;
133 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
134 unsigned long addr, unsigned long end,
135 unsigned long floor, unsigned long ceiling)
137 pmd_t *pmd;
138 unsigned long next;
139 unsigned long start;
141 start = addr;
142 pmd = pmd_offset(pud, addr);
143 do {
144 next = pmd_addr_end(addr, end);
145 if (pmd_none_or_clear_bad(pmd))
146 continue;
147 free_pte_range(tlb, pmd);
148 } while (pmd++, addr = next, addr != end);
150 start &= PUD_MASK;
151 if (start < floor)
152 return;
153 if (ceiling) {
154 ceiling &= PUD_MASK;
155 if (!ceiling)
156 return;
158 if (end - 1 > ceiling - 1)
159 return;
161 pmd = pmd_offset(pud, start);
162 pud_clear(pud);
163 pmd_free_tlb(tlb, pmd);
166 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
167 unsigned long addr, unsigned long end,
168 unsigned long floor, unsigned long ceiling)
170 pud_t *pud;
171 unsigned long next;
172 unsigned long start;
174 start = addr;
175 pud = pud_offset(pgd, addr);
176 do {
177 next = pud_addr_end(addr, end);
178 if (pud_none_or_clear_bad(pud))
179 continue;
180 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
181 } while (pud++, addr = next, addr != end);
183 start &= PGDIR_MASK;
184 if (start < floor)
185 return;
186 if (ceiling) {
187 ceiling &= PGDIR_MASK;
188 if (!ceiling)
189 return;
191 if (end - 1 > ceiling - 1)
192 return;
194 pud = pud_offset(pgd, start);
195 pgd_clear(pgd);
196 pud_free_tlb(tlb, pud);
200 * This function frees user-level page tables of a process.
202 * Must be called with pagetable lock held.
204 void free_pgd_range(struct mmu_gather **tlb,
205 unsigned long addr, unsigned long end,
206 unsigned long floor, unsigned long ceiling)
208 pgd_t *pgd;
209 unsigned long next;
210 unsigned long start;
213 * The next few lines have given us lots of grief...
215 * Why are we testing PMD* at this top level? Because often
216 * there will be no work to do at all, and we'd prefer not to
217 * go all the way down to the bottom just to discover that.
219 * Why all these "- 1"s? Because 0 represents both the bottom
220 * of the address space and the top of it (using -1 for the
221 * top wouldn't help much: the masks would do the wrong thing).
222 * The rule is that addr 0 and floor 0 refer to the bottom of
223 * the address space, but end 0 and ceiling 0 refer to the top
224 * Comparisons need to use "end - 1" and "ceiling - 1" (though
225 * that end 0 case should be mythical).
227 * Wherever addr is brought up or ceiling brought down, we must
228 * be careful to reject "the opposite 0" before it confuses the
229 * subsequent tests. But what about where end is brought down
230 * by PMD_SIZE below? no, end can't go down to 0 there.
232 * Whereas we round start (addr) and ceiling down, by different
233 * masks at different levels, in order to test whether a table
234 * now has no other vmas using it, so can be freed, we don't
235 * bother to round floor or end up - the tests don't need that.
238 addr &= PMD_MASK;
239 if (addr < floor) {
240 addr += PMD_SIZE;
241 if (!addr)
242 return;
244 if (ceiling) {
245 ceiling &= PMD_MASK;
246 if (!ceiling)
247 return;
249 if (end - 1 > ceiling - 1)
250 end -= PMD_SIZE;
251 if (addr > end - 1)
252 return;
254 start = addr;
255 pgd = pgd_offset((*tlb)->mm, addr);
256 do {
257 next = pgd_addr_end(addr, end);
258 if (pgd_none_or_clear_bad(pgd))
259 continue;
260 free_pud_range(*tlb, pgd, addr, next, floor, ceiling);
261 } while (pgd++, addr = next, addr != end);
263 if (!(*tlb)->fullmm)
264 flush_tlb_pgtables((*tlb)->mm, start, end);
267 void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma,
268 unsigned long floor, unsigned long ceiling)
270 while (vma) {
271 struct vm_area_struct *next = vma->vm_next;
272 unsigned long addr = vma->vm_start;
275 * Hide vma from rmap and vmtruncate before freeing pgtables
277 anon_vma_unlink(vma);
278 unlink_file_vma(vma);
280 if (is_hugepage_only_range(vma->vm_mm, addr, HPAGE_SIZE)) {
281 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
282 floor, next? next->vm_start: ceiling);
283 } else {
285 * Optimization: gather nearby vmas into one call down
287 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
288 && !is_hugepage_only_range(vma->vm_mm, next->vm_start,
289 HPAGE_SIZE)) {
290 vma = next;
291 next = vma->vm_next;
292 anon_vma_unlink(vma);
293 unlink_file_vma(vma);
295 free_pgd_range(tlb, addr, vma->vm_end,
296 floor, next? next->vm_start: ceiling);
298 vma = next;
302 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
304 struct page *new = pte_alloc_one(mm, address);
305 if (!new)
306 return -ENOMEM;
308 pte_lock_init(new);
309 spin_lock(&mm->page_table_lock);
310 if (pmd_present(*pmd)) { /* Another has populated it */
311 pte_lock_deinit(new);
312 pte_free(new);
313 } else {
314 mm->nr_ptes++;
315 inc_page_state(nr_page_table_pages);
316 pmd_populate(mm, pmd, new);
318 spin_unlock(&mm->page_table_lock);
319 return 0;
322 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
324 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
325 if (!new)
326 return -ENOMEM;
328 spin_lock(&init_mm.page_table_lock);
329 if (pmd_present(*pmd)) /* Another has populated it */
330 pte_free_kernel(new);
331 else
332 pmd_populate_kernel(&init_mm, pmd, new);
333 spin_unlock(&init_mm.page_table_lock);
334 return 0;
337 static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
339 if (file_rss)
340 add_mm_counter(mm, file_rss, file_rss);
341 if (anon_rss)
342 add_mm_counter(mm, anon_rss, anon_rss);
346 * This function is called to print an error when a bad pte
347 * is found. For example, we might have a PFN-mapped pte in
348 * a region that doesn't allow it.
350 * The calling function must still handle the error.
352 void print_bad_pte(struct vm_area_struct *vma, pte_t pte, unsigned long vaddr)
354 printk(KERN_ERR "Bad pte = %08llx, process = %s, "
355 "vm_flags = %lx, vaddr = %lx\n",
356 (long long)pte_val(pte),
357 (vma->vm_mm == current->mm ? current->comm : "???"),
358 vma->vm_flags, vaddr);
359 dump_stack();
362 static inline int is_cow_mapping(unsigned int flags)
364 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
368 * This function gets the "struct page" associated with a pte.
370 * NOTE! Some mappings do not have "struct pages". A raw PFN mapping
371 * will have each page table entry just pointing to a raw page frame
372 * number, and as far as the VM layer is concerned, those do not have
373 * pages associated with them - even if the PFN might point to memory
374 * that otherwise is perfectly fine and has a "struct page".
376 * The way we recognize those mappings is through the rules set up
377 * by "remap_pfn_range()": the vma will have the VM_PFNMAP bit set,
378 * and the vm_pgoff will point to the first PFN mapped: thus every
379 * page that is a raw mapping will always honor the rule
381 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
383 * and if that isn't true, the page has been COW'ed (in which case it
384 * _does_ have a "struct page" associated with it even if it is in a
385 * VM_PFNMAP range).
387 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
389 unsigned long pfn = pte_pfn(pte);
391 if (vma->vm_flags & VM_PFNMAP) {
392 unsigned long off = (addr - vma->vm_start) >> PAGE_SHIFT;
393 if (pfn == vma->vm_pgoff + off)
394 return NULL;
395 if (!is_cow_mapping(vma->vm_flags))
396 return NULL;
400 * Add some anal sanity checks for now. Eventually,
401 * we should just do "return pfn_to_page(pfn)", but
402 * in the meantime we check that we get a valid pfn,
403 * and that the resulting page looks ok.
405 * Remove this test eventually!
407 if (unlikely(!pfn_valid(pfn))) {
408 print_bad_pte(vma, pte, addr);
409 return NULL;
413 * NOTE! We still have PageReserved() pages in the page
414 * tables.
416 * The PAGE_ZERO() pages and various VDSO mappings can
417 * cause them to exist.
419 return pfn_to_page(pfn);
423 * copy one vm_area from one task to the other. Assumes the page tables
424 * already present in the new task to be cleared in the whole range
425 * covered by this vma.
428 static inline void
429 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
430 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
431 unsigned long addr, int *rss)
433 unsigned long vm_flags = vma->vm_flags;
434 pte_t pte = *src_pte;
435 struct page *page;
437 /* pte contains position in swap or file, so copy. */
438 if (unlikely(!pte_present(pte))) {
439 if (!pte_file(pte)) {
440 swap_duplicate(pte_to_swp_entry(pte));
441 /* make sure dst_mm is on swapoff's mmlist. */
442 if (unlikely(list_empty(&dst_mm->mmlist))) {
443 spin_lock(&mmlist_lock);
444 if (list_empty(&dst_mm->mmlist))
445 list_add(&dst_mm->mmlist,
446 &src_mm->mmlist);
447 spin_unlock(&mmlist_lock);
450 goto out_set_pte;
454 * If it's a COW mapping, write protect it both
455 * in the parent and the child
457 if (is_cow_mapping(vm_flags)) {
458 ptep_set_wrprotect(src_mm, addr, src_pte);
459 pte = *src_pte;
463 * If it's a shared mapping, mark it clean in
464 * the child
466 if (vm_flags & VM_SHARED)
467 pte = pte_mkclean(pte);
468 pte = pte_mkold(pte);
470 page = vm_normal_page(vma, addr, pte);
471 if (page) {
472 get_page(page);
473 page_dup_rmap(page);
474 rss[!!PageAnon(page)]++;
477 out_set_pte:
478 set_pte_at(dst_mm, addr, dst_pte, pte);
481 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
482 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
483 unsigned long addr, unsigned long end)
485 pte_t *src_pte, *dst_pte;
486 spinlock_t *src_ptl, *dst_ptl;
487 int progress = 0;
488 int rss[2];
490 again:
491 rss[1] = rss[0] = 0;
492 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
493 if (!dst_pte)
494 return -ENOMEM;
495 src_pte = pte_offset_map_nested(src_pmd, addr);
496 src_ptl = pte_lockptr(src_mm, src_pmd);
497 spin_lock(src_ptl);
499 do {
501 * We are holding two locks at this point - either of them
502 * could generate latencies in another task on another CPU.
504 if (progress >= 32) {
505 progress = 0;
506 if (need_resched() ||
507 need_lockbreak(src_ptl) ||
508 need_lockbreak(dst_ptl))
509 break;
511 if (pte_none(*src_pte)) {
512 progress++;
513 continue;
515 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
516 progress += 8;
517 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
519 spin_unlock(src_ptl);
520 pte_unmap_nested(src_pte - 1);
521 add_mm_rss(dst_mm, rss[0], rss[1]);
522 pte_unmap_unlock(dst_pte - 1, dst_ptl);
523 cond_resched();
524 if (addr != end)
525 goto again;
526 return 0;
529 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
530 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
531 unsigned long addr, unsigned long end)
533 pmd_t *src_pmd, *dst_pmd;
534 unsigned long next;
536 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
537 if (!dst_pmd)
538 return -ENOMEM;
539 src_pmd = pmd_offset(src_pud, addr);
540 do {
541 next = pmd_addr_end(addr, end);
542 if (pmd_none_or_clear_bad(src_pmd))
543 continue;
544 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
545 vma, addr, next))
546 return -ENOMEM;
547 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
548 return 0;
551 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
552 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
553 unsigned long addr, unsigned long end)
555 pud_t *src_pud, *dst_pud;
556 unsigned long next;
558 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
559 if (!dst_pud)
560 return -ENOMEM;
561 src_pud = pud_offset(src_pgd, addr);
562 do {
563 next = pud_addr_end(addr, end);
564 if (pud_none_or_clear_bad(src_pud))
565 continue;
566 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
567 vma, addr, next))
568 return -ENOMEM;
569 } while (dst_pud++, src_pud++, addr = next, addr != end);
570 return 0;
573 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
574 struct vm_area_struct *vma)
576 pgd_t *src_pgd, *dst_pgd;
577 unsigned long next;
578 unsigned long addr = vma->vm_start;
579 unsigned long end = vma->vm_end;
582 * Don't copy ptes where a page fault will fill them correctly.
583 * Fork becomes much lighter when there are big shared or private
584 * readonly mappings. The tradeoff is that copy_page_range is more
585 * efficient than faulting.
587 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
588 if (!vma->anon_vma)
589 return 0;
592 if (is_vm_hugetlb_page(vma))
593 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
595 dst_pgd = pgd_offset(dst_mm, addr);
596 src_pgd = pgd_offset(src_mm, addr);
597 do {
598 next = pgd_addr_end(addr, end);
599 if (pgd_none_or_clear_bad(src_pgd))
600 continue;
601 if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
602 vma, addr, next))
603 return -ENOMEM;
604 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
605 return 0;
608 static unsigned long zap_pte_range(struct mmu_gather *tlb,
609 struct vm_area_struct *vma, pmd_t *pmd,
610 unsigned long addr, unsigned long end,
611 long *zap_work, struct zap_details *details)
613 struct mm_struct *mm = tlb->mm;
614 pte_t *pte;
615 spinlock_t *ptl;
616 int file_rss = 0;
617 int anon_rss = 0;
619 pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
620 do {
621 pte_t ptent = *pte;
622 if (pte_none(ptent)) {
623 (*zap_work)--;
624 continue;
627 (*zap_work) -= PAGE_SIZE;
629 if (pte_present(ptent)) {
630 struct page *page;
632 page = vm_normal_page(vma, addr, ptent);
633 if (unlikely(details) && page) {
635 * unmap_shared_mapping_pages() wants to
636 * invalidate cache without truncating:
637 * unmap shared but keep private pages.
639 if (details->check_mapping &&
640 details->check_mapping != page->mapping)
641 continue;
643 * Each page->index must be checked when
644 * invalidating or truncating nonlinear.
646 if (details->nonlinear_vma &&
647 (page->index < details->first_index ||
648 page->index > details->last_index))
649 continue;
651 ptent = ptep_get_and_clear_full(mm, addr, pte,
652 tlb->fullmm);
653 tlb_remove_tlb_entry(tlb, pte, addr);
654 if (unlikely(!page))
655 continue;
656 if (unlikely(details) && details->nonlinear_vma
657 && linear_page_index(details->nonlinear_vma,
658 addr) != page->index)
659 set_pte_at(mm, addr, pte,
660 pgoff_to_pte(page->index));
661 if (PageAnon(page))
662 anon_rss--;
663 else {
664 if (pte_dirty(ptent))
665 set_page_dirty(page);
666 if (pte_young(ptent))
667 mark_page_accessed(page);
668 file_rss--;
670 page_remove_rmap(page);
671 tlb_remove_page(tlb, page);
672 continue;
675 * If details->check_mapping, we leave swap entries;
676 * if details->nonlinear_vma, we leave file entries.
678 if (unlikely(details))
679 continue;
680 if (!pte_file(ptent))
681 free_swap_and_cache(pte_to_swp_entry(ptent));
682 pte_clear_full(mm, addr, pte, tlb->fullmm);
683 } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
685 add_mm_rss(mm, file_rss, anon_rss);
686 pte_unmap_unlock(pte - 1, ptl);
688 return addr;
691 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
692 struct vm_area_struct *vma, pud_t *pud,
693 unsigned long addr, unsigned long end,
694 long *zap_work, struct zap_details *details)
696 pmd_t *pmd;
697 unsigned long next;
699 pmd = pmd_offset(pud, addr);
700 do {
701 next = pmd_addr_end(addr, end);
702 if (pmd_none_or_clear_bad(pmd)) {
703 (*zap_work)--;
704 continue;
706 next = zap_pte_range(tlb, vma, pmd, addr, next,
707 zap_work, details);
708 } while (pmd++, addr = next, (addr != end && *zap_work > 0));
710 return addr;
713 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
714 struct vm_area_struct *vma, pgd_t *pgd,
715 unsigned long addr, unsigned long end,
716 long *zap_work, struct zap_details *details)
718 pud_t *pud;
719 unsigned long next;
721 pud = pud_offset(pgd, addr);
722 do {
723 next = pud_addr_end(addr, end);
724 if (pud_none_or_clear_bad(pud)) {
725 (*zap_work)--;
726 continue;
728 next = zap_pmd_range(tlb, vma, pud, addr, next,
729 zap_work, details);
730 } while (pud++, addr = next, (addr != end && *zap_work > 0));
732 return addr;
735 static unsigned long unmap_page_range(struct mmu_gather *tlb,
736 struct vm_area_struct *vma,
737 unsigned long addr, unsigned long end,
738 long *zap_work, struct zap_details *details)
740 pgd_t *pgd;
741 unsigned long next;
743 if (details && !details->check_mapping && !details->nonlinear_vma)
744 details = NULL;
746 BUG_ON(addr >= end);
747 tlb_start_vma(tlb, vma);
748 pgd = pgd_offset(vma->vm_mm, addr);
749 do {
750 next = pgd_addr_end(addr, end);
751 if (pgd_none_or_clear_bad(pgd)) {
752 (*zap_work)--;
753 continue;
755 next = zap_pud_range(tlb, vma, pgd, addr, next,
756 zap_work, details);
757 } while (pgd++, addr = next, (addr != end && *zap_work > 0));
758 tlb_end_vma(tlb, vma);
760 return addr;
763 #ifdef CONFIG_PREEMPT
764 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
765 #else
766 /* No preempt: go for improved straight-line efficiency */
767 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
768 #endif
771 * unmap_vmas - unmap a range of memory covered by a list of vma's
772 * @tlbp: address of the caller's struct mmu_gather
773 * @vma: the starting vma
774 * @start_addr: virtual address at which to start unmapping
775 * @end_addr: virtual address at which to end unmapping
776 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
777 * @details: details of nonlinear truncation or shared cache invalidation
779 * Returns the end address of the unmapping (restart addr if interrupted).
781 * Unmap all pages in the vma list.
783 * We aim to not hold locks for too long (for scheduling latency reasons).
784 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
785 * return the ending mmu_gather to the caller.
787 * Only addresses between `start' and `end' will be unmapped.
789 * The VMA list must be sorted in ascending virtual address order.
791 * unmap_vmas() assumes that the caller will flush the whole unmapped address
792 * range after unmap_vmas() returns. So the only responsibility here is to
793 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
794 * drops the lock and schedules.
796 unsigned long unmap_vmas(struct mmu_gather **tlbp,
797 struct vm_area_struct *vma, unsigned long start_addr,
798 unsigned long end_addr, unsigned long *nr_accounted,
799 struct zap_details *details)
801 long zap_work = ZAP_BLOCK_SIZE;
802 unsigned long tlb_start = 0; /* For tlb_finish_mmu */
803 int tlb_start_valid = 0;
804 unsigned long start = start_addr;
805 spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
806 int fullmm = (*tlbp)->fullmm;
808 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
809 unsigned long end;
811 start = max(vma->vm_start, start_addr);
812 if (start >= vma->vm_end)
813 continue;
814 end = min(vma->vm_end, end_addr);
815 if (end <= vma->vm_start)
816 continue;
818 if (vma->vm_flags & VM_ACCOUNT)
819 *nr_accounted += (end - start) >> PAGE_SHIFT;
821 while (start != end) {
822 if (!tlb_start_valid) {
823 tlb_start = start;
824 tlb_start_valid = 1;
827 if (unlikely(is_vm_hugetlb_page(vma))) {
828 unmap_hugepage_range(vma, start, end);
829 zap_work -= (end - start) /
830 (HPAGE_SIZE / PAGE_SIZE);
831 start = end;
832 } else
833 start = unmap_page_range(*tlbp, vma,
834 start, end, &zap_work, details);
836 if (zap_work > 0) {
837 BUG_ON(start != end);
838 break;
841 tlb_finish_mmu(*tlbp, tlb_start, start);
843 if (need_resched() ||
844 (i_mmap_lock && need_lockbreak(i_mmap_lock))) {
845 if (i_mmap_lock) {
846 *tlbp = NULL;
847 goto out;
849 cond_resched();
852 *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
853 tlb_start_valid = 0;
854 zap_work = ZAP_BLOCK_SIZE;
857 out:
858 return start; /* which is now the end (or restart) address */
862 * zap_page_range - remove user pages in a given range
863 * @vma: vm_area_struct holding the applicable pages
864 * @address: starting address of pages to zap
865 * @size: number of bytes to zap
866 * @details: details of nonlinear truncation or shared cache invalidation
868 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
869 unsigned long size, struct zap_details *details)
871 struct mm_struct *mm = vma->vm_mm;
872 struct mmu_gather *tlb;
873 unsigned long end = address + size;
874 unsigned long nr_accounted = 0;
876 lru_add_drain();
877 tlb = tlb_gather_mmu(mm, 0);
878 update_hiwater_rss(mm);
879 end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
880 if (tlb)
881 tlb_finish_mmu(tlb, address, end);
882 return end;
886 * Do a quick page-table lookup for a single page.
888 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
889 unsigned int flags)
891 pgd_t *pgd;
892 pud_t *pud;
893 pmd_t *pmd;
894 pte_t *ptep, pte;
895 spinlock_t *ptl;
896 struct page *page;
897 struct mm_struct *mm = vma->vm_mm;
899 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
900 if (!IS_ERR(page)) {
901 BUG_ON(flags & FOLL_GET);
902 goto out;
905 page = NULL;
906 pgd = pgd_offset(mm, address);
907 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
908 goto no_page_table;
910 pud = pud_offset(pgd, address);
911 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
912 goto no_page_table;
914 pmd = pmd_offset(pud, address);
915 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
916 goto no_page_table;
918 if (pmd_huge(*pmd)) {
919 BUG_ON(flags & FOLL_GET);
920 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
921 goto out;
924 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
925 if (!ptep)
926 goto out;
928 pte = *ptep;
929 if (!pte_present(pte))
930 goto unlock;
931 if ((flags & FOLL_WRITE) && !pte_write(pte))
932 goto unlock;
933 page = vm_normal_page(vma, address, pte);
934 if (unlikely(!page))
935 goto unlock;
937 if (flags & FOLL_GET)
938 get_page(page);
939 if (flags & FOLL_TOUCH) {
940 if ((flags & FOLL_WRITE) &&
941 !pte_dirty(pte) && !PageDirty(page))
942 set_page_dirty(page);
943 mark_page_accessed(page);
945 unlock:
946 pte_unmap_unlock(ptep, ptl);
947 out:
948 return page;
950 no_page_table:
952 * When core dumping an enormous anonymous area that nobody
953 * has touched so far, we don't want to allocate page tables.
955 if (flags & FOLL_ANON) {
956 page = ZERO_PAGE(address);
957 if (flags & FOLL_GET)
958 get_page(page);
959 BUG_ON(flags & FOLL_WRITE);
961 return page;
964 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
965 unsigned long start, int len, int write, int force,
966 struct page **pages, struct vm_area_struct **vmas)
968 int i;
969 unsigned int vm_flags;
972 * Require read or write permissions.
973 * If 'force' is set, we only require the "MAY" flags.
975 vm_flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
976 vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
977 i = 0;
979 do {
980 struct vm_area_struct *vma;
981 unsigned int foll_flags;
983 vma = find_extend_vma(mm, start);
984 if (!vma && in_gate_area(tsk, start)) {
985 unsigned long pg = start & PAGE_MASK;
986 struct vm_area_struct *gate_vma = get_gate_vma(tsk);
987 pgd_t *pgd;
988 pud_t *pud;
989 pmd_t *pmd;
990 pte_t *pte;
991 if (write) /* user gate pages are read-only */
992 return i ? : -EFAULT;
993 if (pg > TASK_SIZE)
994 pgd = pgd_offset_k(pg);
995 else
996 pgd = pgd_offset_gate(mm, pg);
997 BUG_ON(pgd_none(*pgd));
998 pud = pud_offset(pgd, pg);
999 BUG_ON(pud_none(*pud));
1000 pmd = pmd_offset(pud, pg);
1001 if (pmd_none(*pmd))
1002 return i ? : -EFAULT;
1003 pte = pte_offset_map(pmd, pg);
1004 if (pte_none(*pte)) {
1005 pte_unmap(pte);
1006 return i ? : -EFAULT;
1008 if (pages) {
1009 struct page *page = vm_normal_page(gate_vma, start, *pte);
1010 pages[i] = page;
1011 if (page)
1012 get_page(page);
1014 pte_unmap(pte);
1015 if (vmas)
1016 vmas[i] = gate_vma;
1017 i++;
1018 start += PAGE_SIZE;
1019 len--;
1020 continue;
1023 if (!vma || (vma->vm_flags & (VM_IO | VM_PFNMAP))
1024 || !(vm_flags & vma->vm_flags))
1025 return i ? : -EFAULT;
1027 if (is_vm_hugetlb_page(vma)) {
1028 i = follow_hugetlb_page(mm, vma, pages, vmas,
1029 &start, &len, i);
1030 continue;
1033 foll_flags = FOLL_TOUCH;
1034 if (pages)
1035 foll_flags |= FOLL_GET;
1036 if (!write && !(vma->vm_flags & VM_LOCKED) &&
1037 (!vma->vm_ops || !vma->vm_ops->nopage))
1038 foll_flags |= FOLL_ANON;
1040 do {
1041 struct page *page;
1043 if (write)
1044 foll_flags |= FOLL_WRITE;
1046 cond_resched();
1047 while (!(page = follow_page(vma, start, foll_flags))) {
1048 int ret;
1049 ret = __handle_mm_fault(mm, vma, start,
1050 foll_flags & FOLL_WRITE);
1052 * The VM_FAULT_WRITE bit tells us that do_wp_page has
1053 * broken COW when necessary, even if maybe_mkwrite
1054 * decided not to set pte_write. We can thus safely do
1055 * subsequent page lookups as if they were reads.
1057 if (ret & VM_FAULT_WRITE)
1058 foll_flags &= ~FOLL_WRITE;
1060 switch (ret & ~VM_FAULT_WRITE) {
1061 case VM_FAULT_MINOR:
1062 tsk->min_flt++;
1063 break;
1064 case VM_FAULT_MAJOR:
1065 tsk->maj_flt++;
1066 break;
1067 case VM_FAULT_SIGBUS:
1068 return i ? i : -EFAULT;
1069 case VM_FAULT_OOM:
1070 return i ? i : -ENOMEM;
1071 default:
1072 BUG();
1075 if (pages) {
1076 pages[i] = page;
1077 flush_dcache_page(page);
1079 if (vmas)
1080 vmas[i] = vma;
1081 i++;
1082 start += PAGE_SIZE;
1083 len--;
1084 } while (len && start < vma->vm_end);
1085 } while (len);
1086 return i;
1088 EXPORT_SYMBOL(get_user_pages);
1090 static int zeromap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1091 unsigned long addr, unsigned long end, pgprot_t prot)
1093 pte_t *pte;
1094 spinlock_t *ptl;
1095 int err = 0;
1097 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1098 if (!pte)
1099 return -EAGAIN;
1100 do {
1101 struct page *page = ZERO_PAGE(addr);
1102 pte_t zero_pte = pte_wrprotect(mk_pte(page, prot));
1104 if (unlikely(!pte_none(*pte))) {
1105 err = -EEXIST;
1106 pte++;
1107 break;
1109 page_cache_get(page);
1110 page_add_file_rmap(page);
1111 inc_mm_counter(mm, file_rss);
1112 set_pte_at(mm, addr, pte, zero_pte);
1113 } while (pte++, addr += PAGE_SIZE, addr != end);
1114 pte_unmap_unlock(pte - 1, ptl);
1115 return err;
1118 static inline int zeromap_pmd_range(struct mm_struct *mm, pud_t *pud,
1119 unsigned long addr, unsigned long end, pgprot_t prot)
1121 pmd_t *pmd;
1122 unsigned long next;
1123 int err;
1125 pmd = pmd_alloc(mm, pud, addr);
1126 if (!pmd)
1127 return -EAGAIN;
1128 do {
1129 next = pmd_addr_end(addr, end);
1130 err = zeromap_pte_range(mm, pmd, addr, next, prot);
1131 if (err)
1132 break;
1133 } while (pmd++, addr = next, addr != end);
1134 return err;
1137 static inline int zeromap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1138 unsigned long addr, unsigned long end, pgprot_t prot)
1140 pud_t *pud;
1141 unsigned long next;
1142 int err;
1144 pud = pud_alloc(mm, pgd, addr);
1145 if (!pud)
1146 return -EAGAIN;
1147 do {
1148 next = pud_addr_end(addr, end);
1149 err = zeromap_pmd_range(mm, pud, addr, next, prot);
1150 if (err)
1151 break;
1152 } while (pud++, addr = next, addr != end);
1153 return err;
1156 int zeromap_page_range(struct vm_area_struct *vma,
1157 unsigned long addr, unsigned long size, pgprot_t prot)
1159 pgd_t *pgd;
1160 unsigned long next;
1161 unsigned long end = addr + size;
1162 struct mm_struct *mm = vma->vm_mm;
1163 int err;
1165 BUG_ON(addr >= end);
1166 pgd = pgd_offset(mm, addr);
1167 flush_cache_range(vma, addr, end);
1168 do {
1169 next = pgd_addr_end(addr, end);
1170 err = zeromap_pud_range(mm, pgd, addr, next, prot);
1171 if (err)
1172 break;
1173 } while (pgd++, addr = next, addr != end);
1174 return err;
1177 pte_t * fastcall get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl)
1179 pgd_t * pgd = pgd_offset(mm, addr);
1180 pud_t * pud = pud_alloc(mm, pgd, addr);
1181 if (pud) {
1182 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1183 if (pmd)
1184 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1186 return NULL;
1190 * This is the old fallback for page remapping.
1192 * For historical reasons, it only allows reserved pages. Only
1193 * old drivers should use this, and they needed to mark their
1194 * pages reserved for the old functions anyway.
1196 static int insert_page(struct mm_struct *mm, unsigned long addr, struct page *page, pgprot_t prot)
1198 int retval;
1199 pte_t *pte;
1200 spinlock_t *ptl;
1202 retval = -EINVAL;
1203 if (PageAnon(page))
1204 goto out;
1205 retval = -ENOMEM;
1206 flush_dcache_page(page);
1207 pte = get_locked_pte(mm, addr, &ptl);
1208 if (!pte)
1209 goto out;
1210 retval = -EBUSY;
1211 if (!pte_none(*pte))
1212 goto out_unlock;
1214 /* Ok, finally just insert the thing.. */
1215 get_page(page);
1216 inc_mm_counter(mm, file_rss);
1217 page_add_file_rmap(page);
1218 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1220 retval = 0;
1221 out_unlock:
1222 pte_unmap_unlock(pte, ptl);
1223 out:
1224 return retval;
1228 * This allows drivers to insert individual pages they've allocated
1229 * into a user vma.
1231 * The page has to be a nice clean _individual_ kernel allocation.
1232 * If you allocate a compound page, you need to have marked it as
1233 * such (__GFP_COMP), or manually just split the page up yourself
1234 * (which is mainly an issue of doing "set_page_count(page, 1)" for
1235 * each sub-page, and then freeing them one by one when you free
1236 * them rather than freeing it as a compound page).
1238 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1239 * took an arbitrary page protection parameter. This doesn't allow
1240 * that. Your vma protection will have to be set up correctly, which
1241 * means that if you want a shared writable mapping, you'd better
1242 * ask for a shared writable mapping!
1244 * The page does not need to be reserved.
1246 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, struct page *page)
1248 if (addr < vma->vm_start || addr >= vma->vm_end)
1249 return -EFAULT;
1250 if (!page_count(page))
1251 return -EINVAL;
1252 vma->vm_flags |= VM_INSERTPAGE;
1253 return insert_page(vma->vm_mm, addr, page, vma->vm_page_prot);
1255 EXPORT_SYMBOL(vm_insert_page);
1258 * maps a range of physical memory into the requested pages. the old
1259 * mappings are removed. any references to nonexistent pages results
1260 * in null mappings (currently treated as "copy-on-access")
1262 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1263 unsigned long addr, unsigned long end,
1264 unsigned long pfn, pgprot_t prot)
1266 pte_t *pte;
1267 spinlock_t *ptl;
1269 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1270 if (!pte)
1271 return -ENOMEM;
1272 do {
1273 BUG_ON(!pte_none(*pte));
1274 set_pte_at(mm, addr, pte, pfn_pte(pfn, prot));
1275 pfn++;
1276 } while (pte++, addr += PAGE_SIZE, addr != end);
1277 pte_unmap_unlock(pte - 1, ptl);
1278 return 0;
1281 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1282 unsigned long addr, unsigned long end,
1283 unsigned long pfn, pgprot_t prot)
1285 pmd_t *pmd;
1286 unsigned long next;
1288 pfn -= addr >> PAGE_SHIFT;
1289 pmd = pmd_alloc(mm, pud, addr);
1290 if (!pmd)
1291 return -ENOMEM;
1292 do {
1293 next = pmd_addr_end(addr, end);
1294 if (remap_pte_range(mm, pmd, addr, next,
1295 pfn + (addr >> PAGE_SHIFT), prot))
1296 return -ENOMEM;
1297 } while (pmd++, addr = next, addr != end);
1298 return 0;
1301 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1302 unsigned long addr, unsigned long end,
1303 unsigned long pfn, pgprot_t prot)
1305 pud_t *pud;
1306 unsigned long next;
1308 pfn -= addr >> PAGE_SHIFT;
1309 pud = pud_alloc(mm, pgd, addr);
1310 if (!pud)
1311 return -ENOMEM;
1312 do {
1313 next = pud_addr_end(addr, end);
1314 if (remap_pmd_range(mm, pud, addr, next,
1315 pfn + (addr >> PAGE_SHIFT), prot))
1316 return -ENOMEM;
1317 } while (pud++, addr = next, addr != end);
1318 return 0;
1321 /* Note: this is only safe if the mm semaphore is held when called. */
1322 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1323 unsigned long pfn, unsigned long size, pgprot_t prot)
1325 pgd_t *pgd;
1326 unsigned long next;
1327 unsigned long end = addr + PAGE_ALIGN(size);
1328 struct mm_struct *mm = vma->vm_mm;
1329 int err;
1332 * Physically remapped pages are special. Tell the
1333 * rest of the world about it:
1334 * VM_IO tells people not to look at these pages
1335 * (accesses can have side effects).
1336 * VM_RESERVED is specified all over the place, because
1337 * in 2.4 it kept swapout's vma scan off this vma; but
1338 * in 2.6 the LRU scan won't even find its pages, so this
1339 * flag means no more than count its pages in reserved_vm,
1340 * and omit it from core dump, even when VM_IO turned off.
1341 * VM_PFNMAP tells the core MM that the base pages are just
1342 * raw PFN mappings, and do not have a "struct page" associated
1343 * with them.
1345 * There's a horrible special case to handle copy-on-write
1346 * behaviour that some programs depend on. We mark the "original"
1347 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1349 if (is_cow_mapping(vma->vm_flags)) {
1350 if (addr != vma->vm_start || end != vma->vm_end)
1351 return -EINVAL;
1352 vma->vm_pgoff = pfn;
1355 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1357 BUG_ON(addr >= end);
1358 pfn -= addr >> PAGE_SHIFT;
1359 pgd = pgd_offset(mm, addr);
1360 flush_cache_range(vma, addr, end);
1361 do {
1362 next = pgd_addr_end(addr, end);
1363 err = remap_pud_range(mm, pgd, addr, next,
1364 pfn + (addr >> PAGE_SHIFT), prot);
1365 if (err)
1366 break;
1367 } while (pgd++, addr = next, addr != end);
1368 return err;
1370 EXPORT_SYMBOL(remap_pfn_range);
1373 * handle_pte_fault chooses page fault handler according to an entry
1374 * which was read non-atomically. Before making any commitment, on
1375 * those architectures or configurations (e.g. i386 with PAE) which
1376 * might give a mix of unmatched parts, do_swap_page and do_file_page
1377 * must check under lock before unmapping the pte and proceeding
1378 * (but do_wp_page is only called after already making such a check;
1379 * and do_anonymous_page and do_no_page can safely check later on).
1381 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1382 pte_t *page_table, pte_t orig_pte)
1384 int same = 1;
1385 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1386 if (sizeof(pte_t) > sizeof(unsigned long)) {
1387 spinlock_t *ptl = pte_lockptr(mm, pmd);
1388 spin_lock(ptl);
1389 same = pte_same(*page_table, orig_pte);
1390 spin_unlock(ptl);
1392 #endif
1393 pte_unmap(page_table);
1394 return same;
1398 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1399 * servicing faults for write access. In the normal case, do always want
1400 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1401 * that do not have writing enabled, when used by access_process_vm.
1403 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1405 if (likely(vma->vm_flags & VM_WRITE))
1406 pte = pte_mkwrite(pte);
1407 return pte;
1410 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va)
1413 * If the source page was a PFN mapping, we don't have
1414 * a "struct page" for it. We do a best-effort copy by
1415 * just copying from the original user address. If that
1416 * fails, we just zero-fill it. Live with it.
1418 if (unlikely(!src)) {
1419 void *kaddr = kmap_atomic(dst, KM_USER0);
1420 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1423 * This really shouldn't fail, because the page is there
1424 * in the page tables. But it might just be unreadable,
1425 * in which case we just give up and fill the result with
1426 * zeroes.
1428 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1429 memset(kaddr, 0, PAGE_SIZE);
1430 kunmap_atomic(kaddr, KM_USER0);
1431 flush_dcache_page(dst);
1432 return;
1435 copy_user_highpage(dst, src, va);
1439 * This routine handles present pages, when users try to write
1440 * to a shared page. It is done by copying the page to a new address
1441 * and decrementing the shared-page counter for the old page.
1443 * Note that this routine assumes that the protection checks have been
1444 * done by the caller (the low-level page fault routine in most cases).
1445 * Thus we can safely just mark it writable once we've done any necessary
1446 * COW.
1448 * We also mark the page dirty at this point even though the page will
1449 * change only once the write actually happens. This avoids a few races,
1450 * and potentially makes it more efficient.
1452 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1453 * but allow concurrent faults), with pte both mapped and locked.
1454 * We return with mmap_sem still held, but pte unmapped and unlocked.
1456 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1457 unsigned long address, pte_t *page_table, pmd_t *pmd,
1458 spinlock_t *ptl, pte_t orig_pte)
1460 struct page *old_page, *new_page;
1461 pte_t entry;
1462 int ret = VM_FAULT_MINOR;
1464 old_page = vm_normal_page(vma, address, orig_pte);
1465 if (!old_page)
1466 goto gotten;
1468 if (PageAnon(old_page) && !TestSetPageLocked(old_page)) {
1469 int reuse = can_share_swap_page(old_page);
1470 unlock_page(old_page);
1471 if (reuse) {
1472 flush_cache_page(vma, address, pte_pfn(orig_pte));
1473 entry = pte_mkyoung(orig_pte);
1474 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1475 ptep_set_access_flags(vma, address, page_table, entry, 1);
1476 update_mmu_cache(vma, address, entry);
1477 lazy_mmu_prot_update(entry);
1478 ret |= VM_FAULT_WRITE;
1479 goto unlock;
1484 * Ok, we need to copy. Oh, well..
1486 page_cache_get(old_page);
1487 gotten:
1488 pte_unmap_unlock(page_table, ptl);
1490 if (unlikely(anon_vma_prepare(vma)))
1491 goto oom;
1492 if (old_page == ZERO_PAGE(address)) {
1493 new_page = alloc_zeroed_user_highpage(vma, address);
1494 if (!new_page)
1495 goto oom;
1496 } else {
1497 new_page = alloc_page_vma(GFP_HIGHUSER, vma, address);
1498 if (!new_page)
1499 goto oom;
1500 cow_user_page(new_page, old_page, address);
1504 * Re-check the pte - we dropped the lock
1506 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1507 if (likely(pte_same(*page_table, orig_pte))) {
1508 if (old_page) {
1509 page_remove_rmap(old_page);
1510 if (!PageAnon(old_page)) {
1511 dec_mm_counter(mm, file_rss);
1512 inc_mm_counter(mm, anon_rss);
1514 } else
1515 inc_mm_counter(mm, anon_rss);
1516 flush_cache_page(vma, address, pte_pfn(orig_pte));
1517 entry = mk_pte(new_page, vma->vm_page_prot);
1518 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1519 ptep_establish(vma, address, page_table, entry);
1520 update_mmu_cache(vma, address, entry);
1521 lazy_mmu_prot_update(entry);
1522 lru_cache_add_active(new_page);
1523 page_add_new_anon_rmap(new_page, vma, address);
1525 /* Free the old page.. */
1526 new_page = old_page;
1527 ret |= VM_FAULT_WRITE;
1529 if (new_page)
1530 page_cache_release(new_page);
1531 if (old_page)
1532 page_cache_release(old_page);
1533 unlock:
1534 pte_unmap_unlock(page_table, ptl);
1535 return ret;
1536 oom:
1537 if (old_page)
1538 page_cache_release(old_page);
1539 return VM_FAULT_OOM;
1543 * Helper functions for unmap_mapping_range().
1545 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
1547 * We have to restart searching the prio_tree whenever we drop the lock,
1548 * since the iterator is only valid while the lock is held, and anyway
1549 * a later vma might be split and reinserted earlier while lock dropped.
1551 * The list of nonlinear vmas could be handled more efficiently, using
1552 * a placeholder, but handle it in the same way until a need is shown.
1553 * It is important to search the prio_tree before nonlinear list: a vma
1554 * may become nonlinear and be shifted from prio_tree to nonlinear list
1555 * while the lock is dropped; but never shifted from list to prio_tree.
1557 * In order to make forward progress despite restarting the search,
1558 * vm_truncate_count is used to mark a vma as now dealt with, so we can
1559 * quickly skip it next time around. Since the prio_tree search only
1560 * shows us those vmas affected by unmapping the range in question, we
1561 * can't efficiently keep all vmas in step with mapping->truncate_count:
1562 * so instead reset them all whenever it wraps back to 0 (then go to 1).
1563 * mapping->truncate_count and vma->vm_truncate_count are protected by
1564 * i_mmap_lock.
1566 * In order to make forward progress despite repeatedly restarting some
1567 * large vma, note the restart_addr from unmap_vmas when it breaks out:
1568 * and restart from that address when we reach that vma again. It might
1569 * have been split or merged, shrunk or extended, but never shifted: so
1570 * restart_addr remains valid so long as it remains in the vma's range.
1571 * unmap_mapping_range forces truncate_count to leap over page-aligned
1572 * values so we can save vma's restart_addr in its truncate_count field.
1574 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
1576 static void reset_vma_truncate_counts(struct address_space *mapping)
1578 struct vm_area_struct *vma;
1579 struct prio_tree_iter iter;
1581 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
1582 vma->vm_truncate_count = 0;
1583 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1584 vma->vm_truncate_count = 0;
1587 static int unmap_mapping_range_vma(struct vm_area_struct *vma,
1588 unsigned long start_addr, unsigned long end_addr,
1589 struct zap_details *details)
1591 unsigned long restart_addr;
1592 int need_break;
1594 again:
1595 restart_addr = vma->vm_truncate_count;
1596 if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
1597 start_addr = restart_addr;
1598 if (start_addr >= end_addr) {
1599 /* Top of vma has been split off since last time */
1600 vma->vm_truncate_count = details->truncate_count;
1601 return 0;
1605 restart_addr = zap_page_range(vma, start_addr,
1606 end_addr - start_addr, details);
1607 need_break = need_resched() ||
1608 need_lockbreak(details->i_mmap_lock);
1610 if (restart_addr >= end_addr) {
1611 /* We have now completed this vma: mark it so */
1612 vma->vm_truncate_count = details->truncate_count;
1613 if (!need_break)
1614 return 0;
1615 } else {
1616 /* Note restart_addr in vma's truncate_count field */
1617 vma->vm_truncate_count = restart_addr;
1618 if (!need_break)
1619 goto again;
1622 spin_unlock(details->i_mmap_lock);
1623 cond_resched();
1624 spin_lock(details->i_mmap_lock);
1625 return -EINTR;
1628 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
1629 struct zap_details *details)
1631 struct vm_area_struct *vma;
1632 struct prio_tree_iter iter;
1633 pgoff_t vba, vea, zba, zea;
1635 restart:
1636 vma_prio_tree_foreach(vma, &iter, root,
1637 details->first_index, details->last_index) {
1638 /* Skip quickly over those we have already dealt with */
1639 if (vma->vm_truncate_count == details->truncate_count)
1640 continue;
1642 vba = vma->vm_pgoff;
1643 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
1644 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
1645 zba = details->first_index;
1646 if (zba < vba)
1647 zba = vba;
1648 zea = details->last_index;
1649 if (zea > vea)
1650 zea = vea;
1652 if (unmap_mapping_range_vma(vma,
1653 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
1654 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
1655 details) < 0)
1656 goto restart;
1660 static inline void unmap_mapping_range_list(struct list_head *head,
1661 struct zap_details *details)
1663 struct vm_area_struct *vma;
1666 * In nonlinear VMAs there is no correspondence between virtual address
1667 * offset and file offset. So we must perform an exhaustive search
1668 * across *all* the pages in each nonlinear VMA, not just the pages
1669 * whose virtual address lies outside the file truncation point.
1671 restart:
1672 list_for_each_entry(vma, head, shared.vm_set.list) {
1673 /* Skip quickly over those we have already dealt with */
1674 if (vma->vm_truncate_count == details->truncate_count)
1675 continue;
1676 details->nonlinear_vma = vma;
1677 if (unmap_mapping_range_vma(vma, vma->vm_start,
1678 vma->vm_end, details) < 0)
1679 goto restart;
1684 * unmap_mapping_range - unmap the portion of all mmaps
1685 * in the specified address_space corresponding to the specified
1686 * page range in the underlying file.
1687 * @mapping: the address space containing mmaps to be unmapped.
1688 * @holebegin: byte in first page to unmap, relative to the start of
1689 * the underlying file. This will be rounded down to a PAGE_SIZE
1690 * boundary. Note that this is different from vmtruncate(), which
1691 * must keep the partial page. In contrast, we must get rid of
1692 * partial pages.
1693 * @holelen: size of prospective hole in bytes. This will be rounded
1694 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
1695 * end of the file.
1696 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
1697 * but 0 when invalidating pagecache, don't throw away private data.
1699 void unmap_mapping_range(struct address_space *mapping,
1700 loff_t const holebegin, loff_t const holelen, int even_cows)
1702 struct zap_details details;
1703 pgoff_t hba = holebegin >> PAGE_SHIFT;
1704 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1706 /* Check for overflow. */
1707 if (sizeof(holelen) > sizeof(hlen)) {
1708 long long holeend =
1709 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1710 if (holeend & ~(long long)ULONG_MAX)
1711 hlen = ULONG_MAX - hba + 1;
1714 details.check_mapping = even_cows? NULL: mapping;
1715 details.nonlinear_vma = NULL;
1716 details.first_index = hba;
1717 details.last_index = hba + hlen - 1;
1718 if (details.last_index < details.first_index)
1719 details.last_index = ULONG_MAX;
1720 details.i_mmap_lock = &mapping->i_mmap_lock;
1722 spin_lock(&mapping->i_mmap_lock);
1724 /* serialize i_size write against truncate_count write */
1725 smp_wmb();
1726 /* Protect against page faults, and endless unmapping loops */
1727 mapping->truncate_count++;
1729 * For archs where spin_lock has inclusive semantics like ia64
1730 * this smp_mb() will prevent to read pagetable contents
1731 * before the truncate_count increment is visible to
1732 * other cpus.
1734 smp_mb();
1735 if (unlikely(is_restart_addr(mapping->truncate_count))) {
1736 if (mapping->truncate_count == 0)
1737 reset_vma_truncate_counts(mapping);
1738 mapping->truncate_count++;
1740 details.truncate_count = mapping->truncate_count;
1742 if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
1743 unmap_mapping_range_tree(&mapping->i_mmap, &details);
1744 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
1745 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
1746 spin_unlock(&mapping->i_mmap_lock);
1748 EXPORT_SYMBOL(unmap_mapping_range);
1751 * Handle all mappings that got truncated by a "truncate()"
1752 * system call.
1754 * NOTE! We have to be ready to update the memory sharing
1755 * between the file and the memory map for a potential last
1756 * incomplete page. Ugly, but necessary.
1758 int vmtruncate(struct inode * inode, loff_t offset)
1760 struct address_space *mapping = inode->i_mapping;
1761 unsigned long limit;
1763 if (inode->i_size < offset)
1764 goto do_expand;
1766 * truncation of in-use swapfiles is disallowed - it would cause
1767 * subsequent swapout to scribble on the now-freed blocks.
1769 if (IS_SWAPFILE(inode))
1770 goto out_busy;
1771 i_size_write(inode, offset);
1772 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
1773 truncate_inode_pages(mapping, offset);
1774 goto out_truncate;
1776 do_expand:
1777 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1778 if (limit != RLIM_INFINITY && offset > limit)
1779 goto out_sig;
1780 if (offset > inode->i_sb->s_maxbytes)
1781 goto out_big;
1782 i_size_write(inode, offset);
1784 out_truncate:
1785 if (inode->i_op && inode->i_op->truncate)
1786 inode->i_op->truncate(inode);
1787 return 0;
1788 out_sig:
1789 send_sig(SIGXFSZ, current, 0);
1790 out_big:
1791 return -EFBIG;
1792 out_busy:
1793 return -ETXTBSY;
1795 EXPORT_SYMBOL(vmtruncate);
1797 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
1799 struct address_space *mapping = inode->i_mapping;
1802 * If the underlying filesystem is not going to provide
1803 * a way to truncate a range of blocks (punch a hole) -
1804 * we should return failure right now.
1806 if (!inode->i_op || !inode->i_op->truncate_range)
1807 return -ENOSYS;
1809 mutex_lock(&inode->i_mutex);
1810 down_write(&inode->i_alloc_sem);
1811 unmap_mapping_range(mapping, offset, (end - offset), 1);
1812 truncate_inode_pages_range(mapping, offset, end);
1813 inode->i_op->truncate_range(inode, offset, end);
1814 up_write(&inode->i_alloc_sem);
1815 mutex_unlock(&inode->i_mutex);
1817 return 0;
1819 EXPORT_SYMBOL(vmtruncate_range);
1822 * Primitive swap readahead code. We simply read an aligned block of
1823 * (1 << page_cluster) entries in the swap area. This method is chosen
1824 * because it doesn't cost us any seek time. We also make sure to queue
1825 * the 'original' request together with the readahead ones...
1827 * This has been extended to use the NUMA policies from the mm triggering
1828 * the readahead.
1830 * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
1832 void swapin_readahead(swp_entry_t entry, unsigned long addr,struct vm_area_struct *vma)
1834 #ifdef CONFIG_NUMA
1835 struct vm_area_struct *next_vma = vma ? vma->vm_next : NULL;
1836 #endif
1837 int i, num;
1838 struct page *new_page;
1839 unsigned long offset;
1842 * Get the number of handles we should do readahead io to.
1844 num = valid_swaphandles(entry, &offset);
1845 for (i = 0; i < num; offset++, i++) {
1846 /* Ok, do the async read-ahead now */
1847 new_page = read_swap_cache_async(swp_entry(swp_type(entry),
1848 offset), vma, addr);
1849 if (!new_page)
1850 break;
1851 page_cache_release(new_page);
1852 #ifdef CONFIG_NUMA
1854 * Find the next applicable VMA for the NUMA policy.
1856 addr += PAGE_SIZE;
1857 if (addr == 0)
1858 vma = NULL;
1859 if (vma) {
1860 if (addr >= vma->vm_end) {
1861 vma = next_vma;
1862 next_vma = vma ? vma->vm_next : NULL;
1864 if (vma && addr < vma->vm_start)
1865 vma = NULL;
1866 } else {
1867 if (next_vma && addr >= next_vma->vm_start) {
1868 vma = next_vma;
1869 next_vma = vma->vm_next;
1872 #endif
1874 lru_add_drain(); /* Push any new pages onto the LRU now */
1878 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1879 * but allow concurrent faults), and pte mapped but not yet locked.
1880 * We return with mmap_sem still held, but pte unmapped and unlocked.
1882 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
1883 unsigned long address, pte_t *page_table, pmd_t *pmd,
1884 int write_access, pte_t orig_pte)
1886 spinlock_t *ptl;
1887 struct page *page;
1888 swp_entry_t entry;
1889 pte_t pte;
1890 int ret = VM_FAULT_MINOR;
1892 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
1893 goto out;
1895 entry = pte_to_swp_entry(orig_pte);
1896 again:
1897 page = lookup_swap_cache(entry);
1898 if (!page) {
1899 swapin_readahead(entry, address, vma);
1900 page = read_swap_cache_async(entry, vma, address);
1901 if (!page) {
1903 * Back out if somebody else faulted in this pte
1904 * while we released the pte lock.
1906 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1907 if (likely(pte_same(*page_table, orig_pte)))
1908 ret = VM_FAULT_OOM;
1909 goto unlock;
1912 /* Had to read the page from swap area: Major fault */
1913 ret = VM_FAULT_MAJOR;
1914 inc_page_state(pgmajfault);
1915 grab_swap_token();
1918 mark_page_accessed(page);
1919 lock_page(page);
1920 if (!PageSwapCache(page)) {
1921 /* Page migration has occured */
1922 unlock_page(page);
1923 page_cache_release(page);
1924 goto again;
1928 * Back out if somebody else already faulted in this pte.
1930 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1931 if (unlikely(!pte_same(*page_table, orig_pte)))
1932 goto out_nomap;
1934 if (unlikely(!PageUptodate(page))) {
1935 ret = VM_FAULT_SIGBUS;
1936 goto out_nomap;
1939 /* The page isn't present yet, go ahead with the fault. */
1941 inc_mm_counter(mm, anon_rss);
1942 pte = mk_pte(page, vma->vm_page_prot);
1943 if (write_access && can_share_swap_page(page)) {
1944 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
1945 write_access = 0;
1948 flush_icache_page(vma, page);
1949 set_pte_at(mm, address, page_table, pte);
1950 page_add_anon_rmap(page, vma, address);
1952 swap_free(entry);
1953 if (vm_swap_full())
1954 remove_exclusive_swap_page(page);
1955 unlock_page(page);
1957 if (write_access) {
1958 if (do_wp_page(mm, vma, address,
1959 page_table, pmd, ptl, pte) == VM_FAULT_OOM)
1960 ret = VM_FAULT_OOM;
1961 goto out;
1964 /* No need to invalidate - it was non-present before */
1965 update_mmu_cache(vma, address, pte);
1966 lazy_mmu_prot_update(pte);
1967 unlock:
1968 pte_unmap_unlock(page_table, ptl);
1969 out:
1970 return ret;
1971 out_nomap:
1972 pte_unmap_unlock(page_table, ptl);
1973 unlock_page(page);
1974 page_cache_release(page);
1975 return ret;
1979 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1980 * but allow concurrent faults), and pte mapped but not yet locked.
1981 * We return with mmap_sem still held, but pte unmapped and unlocked.
1983 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
1984 unsigned long address, pte_t *page_table, pmd_t *pmd,
1985 int write_access)
1987 struct page *page;
1988 spinlock_t *ptl;
1989 pte_t entry;
1991 if (write_access) {
1992 /* Allocate our own private page. */
1993 pte_unmap(page_table);
1995 if (unlikely(anon_vma_prepare(vma)))
1996 goto oom;
1997 page = alloc_zeroed_user_highpage(vma, address);
1998 if (!page)
1999 goto oom;
2001 entry = mk_pte(page, vma->vm_page_prot);
2002 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2004 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2005 if (!pte_none(*page_table))
2006 goto release;
2007 inc_mm_counter(mm, anon_rss);
2008 lru_cache_add_active(page);
2009 page_add_new_anon_rmap(page, vma, address);
2010 } else {
2011 /* Map the ZERO_PAGE - vm_page_prot is readonly */
2012 page = ZERO_PAGE(address);
2013 page_cache_get(page);
2014 entry = mk_pte(page, vma->vm_page_prot);
2016 ptl = pte_lockptr(mm, pmd);
2017 spin_lock(ptl);
2018 if (!pte_none(*page_table))
2019 goto release;
2020 inc_mm_counter(mm, file_rss);
2021 page_add_file_rmap(page);
2024 set_pte_at(mm, address, page_table, entry);
2026 /* No need to invalidate - it was non-present before */
2027 update_mmu_cache(vma, address, entry);
2028 lazy_mmu_prot_update(entry);
2029 unlock:
2030 pte_unmap_unlock(page_table, ptl);
2031 return VM_FAULT_MINOR;
2032 release:
2033 page_cache_release(page);
2034 goto unlock;
2035 oom:
2036 return VM_FAULT_OOM;
2040 * do_no_page() tries to create a new page mapping. It aggressively
2041 * tries to share with existing pages, but makes a separate copy if
2042 * the "write_access" parameter is true in order to avoid the next
2043 * page fault.
2045 * As this is called only for pages that do not currently exist, we
2046 * do not need to flush old virtual caches or the TLB.
2048 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2049 * but allow concurrent faults), and pte mapped but not yet locked.
2050 * We return with mmap_sem still held, but pte unmapped and unlocked.
2052 static int do_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2053 unsigned long address, pte_t *page_table, pmd_t *pmd,
2054 int write_access)
2056 spinlock_t *ptl;
2057 struct page *new_page;
2058 struct address_space *mapping = NULL;
2059 pte_t entry;
2060 unsigned int sequence = 0;
2061 int ret = VM_FAULT_MINOR;
2062 int anon = 0;
2064 pte_unmap(page_table);
2065 BUG_ON(vma->vm_flags & VM_PFNMAP);
2067 if (vma->vm_file) {
2068 mapping = vma->vm_file->f_mapping;
2069 sequence = mapping->truncate_count;
2070 smp_rmb(); /* serializes i_size against truncate_count */
2072 retry:
2073 new_page = vma->vm_ops->nopage(vma, address & PAGE_MASK, &ret);
2075 * No smp_rmb is needed here as long as there's a full
2076 * spin_lock/unlock sequence inside the ->nopage callback
2077 * (for the pagecache lookup) that acts as an implicit
2078 * smp_mb() and prevents the i_size read to happen
2079 * after the next truncate_count read.
2082 /* no page was available -- either SIGBUS or OOM */
2083 if (new_page == NOPAGE_SIGBUS)
2084 return VM_FAULT_SIGBUS;
2085 if (new_page == NOPAGE_OOM)
2086 return VM_FAULT_OOM;
2089 * Should we do an early C-O-W break?
2091 if (write_access && !(vma->vm_flags & VM_SHARED)) {
2092 struct page *page;
2094 if (unlikely(anon_vma_prepare(vma)))
2095 goto oom;
2096 page = alloc_page_vma(GFP_HIGHUSER, vma, address);
2097 if (!page)
2098 goto oom;
2099 copy_user_highpage(page, new_page, address);
2100 page_cache_release(new_page);
2101 new_page = page;
2102 anon = 1;
2105 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2107 * For a file-backed vma, someone could have truncated or otherwise
2108 * invalidated this page. If unmap_mapping_range got called,
2109 * retry getting the page.
2111 if (mapping && unlikely(sequence != mapping->truncate_count)) {
2112 pte_unmap_unlock(page_table, ptl);
2113 page_cache_release(new_page);
2114 cond_resched();
2115 sequence = mapping->truncate_count;
2116 smp_rmb();
2117 goto retry;
2121 * This silly early PAGE_DIRTY setting removes a race
2122 * due to the bad i386 page protection. But it's valid
2123 * for other architectures too.
2125 * Note that if write_access is true, we either now have
2126 * an exclusive copy of the page, or this is a shared mapping,
2127 * so we can make it writable and dirty to avoid having to
2128 * handle that later.
2130 /* Only go through if we didn't race with anybody else... */
2131 if (pte_none(*page_table)) {
2132 flush_icache_page(vma, new_page);
2133 entry = mk_pte(new_page, vma->vm_page_prot);
2134 if (write_access)
2135 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2136 set_pte_at(mm, address, page_table, entry);
2137 if (anon) {
2138 inc_mm_counter(mm, anon_rss);
2139 lru_cache_add_active(new_page);
2140 page_add_new_anon_rmap(new_page, vma, address);
2141 } else {
2142 inc_mm_counter(mm, file_rss);
2143 page_add_file_rmap(new_page);
2145 } else {
2146 /* One of our sibling threads was faster, back out. */
2147 page_cache_release(new_page);
2148 goto unlock;
2151 /* no need to invalidate: a not-present page shouldn't be cached */
2152 update_mmu_cache(vma, address, entry);
2153 lazy_mmu_prot_update(entry);
2154 unlock:
2155 pte_unmap_unlock(page_table, ptl);
2156 return ret;
2157 oom:
2158 page_cache_release(new_page);
2159 return VM_FAULT_OOM;
2163 * Fault of a previously existing named mapping. Repopulate the pte
2164 * from the encoded file_pte if possible. This enables swappable
2165 * nonlinear vmas.
2167 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2168 * but allow concurrent faults), and pte mapped but not yet locked.
2169 * We return with mmap_sem still held, but pte unmapped and unlocked.
2171 static int do_file_page(struct mm_struct *mm, struct vm_area_struct *vma,
2172 unsigned long address, pte_t *page_table, pmd_t *pmd,
2173 int write_access, pte_t orig_pte)
2175 pgoff_t pgoff;
2176 int err;
2178 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2179 return VM_FAULT_MINOR;
2181 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
2183 * Page table corrupted: show pte and kill process.
2185 print_bad_pte(vma, orig_pte, address);
2186 return VM_FAULT_OOM;
2188 /* We can then assume vm->vm_ops && vma->vm_ops->populate */
2190 pgoff = pte_to_pgoff(orig_pte);
2191 err = vma->vm_ops->populate(vma, address & PAGE_MASK, PAGE_SIZE,
2192 vma->vm_page_prot, pgoff, 0);
2193 if (err == -ENOMEM)
2194 return VM_FAULT_OOM;
2195 if (err)
2196 return VM_FAULT_SIGBUS;
2197 return VM_FAULT_MAJOR;
2201 * These routines also need to handle stuff like marking pages dirty
2202 * and/or accessed for architectures that don't do it in hardware (most
2203 * RISC architectures). The early dirtying is also good on the i386.
2205 * There is also a hook called "update_mmu_cache()" that architectures
2206 * with external mmu caches can use to update those (ie the Sparc or
2207 * PowerPC hashed page tables that act as extended TLBs).
2209 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2210 * but allow concurrent faults), and pte mapped but not yet locked.
2211 * We return with mmap_sem still held, but pte unmapped and unlocked.
2213 static inline int handle_pte_fault(struct mm_struct *mm,
2214 struct vm_area_struct *vma, unsigned long address,
2215 pte_t *pte, pmd_t *pmd, int write_access)
2217 pte_t entry;
2218 pte_t old_entry;
2219 spinlock_t *ptl;
2221 old_entry = entry = *pte;
2222 if (!pte_present(entry)) {
2223 if (pte_none(entry)) {
2224 if (!vma->vm_ops || !vma->vm_ops->nopage)
2225 return do_anonymous_page(mm, vma, address,
2226 pte, pmd, write_access);
2227 return do_no_page(mm, vma, address,
2228 pte, pmd, write_access);
2230 if (pte_file(entry))
2231 return do_file_page(mm, vma, address,
2232 pte, pmd, write_access, entry);
2233 return do_swap_page(mm, vma, address,
2234 pte, pmd, write_access, entry);
2237 ptl = pte_lockptr(mm, pmd);
2238 spin_lock(ptl);
2239 if (unlikely(!pte_same(*pte, entry)))
2240 goto unlock;
2241 if (write_access) {
2242 if (!pte_write(entry))
2243 return do_wp_page(mm, vma, address,
2244 pte, pmd, ptl, entry);
2245 entry = pte_mkdirty(entry);
2247 entry = pte_mkyoung(entry);
2248 if (!pte_same(old_entry, entry)) {
2249 ptep_set_access_flags(vma, address, pte, entry, write_access);
2250 update_mmu_cache(vma, address, entry);
2251 lazy_mmu_prot_update(entry);
2252 } else {
2254 * This is needed only for protection faults but the arch code
2255 * is not yet telling us if this is a protection fault or not.
2256 * This still avoids useless tlb flushes for .text page faults
2257 * with threads.
2259 if (write_access)
2260 flush_tlb_page(vma, address);
2262 unlock:
2263 pte_unmap_unlock(pte, ptl);
2264 return VM_FAULT_MINOR;
2268 * By the time we get here, we already hold the mm semaphore
2270 int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2271 unsigned long address, int write_access)
2273 pgd_t *pgd;
2274 pud_t *pud;
2275 pmd_t *pmd;
2276 pte_t *pte;
2278 __set_current_state(TASK_RUNNING);
2280 inc_page_state(pgfault);
2282 if (unlikely(is_vm_hugetlb_page(vma)))
2283 return hugetlb_fault(mm, vma, address, write_access);
2285 pgd = pgd_offset(mm, address);
2286 pud = pud_alloc(mm, pgd, address);
2287 if (!pud)
2288 return VM_FAULT_OOM;
2289 pmd = pmd_alloc(mm, pud, address);
2290 if (!pmd)
2291 return VM_FAULT_OOM;
2292 pte = pte_alloc_map(mm, pmd, address);
2293 if (!pte)
2294 return VM_FAULT_OOM;
2296 return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
2299 EXPORT_SYMBOL_GPL(__handle_mm_fault);
2301 #ifndef __PAGETABLE_PUD_FOLDED
2303 * Allocate page upper directory.
2304 * We've already handled the fast-path in-line.
2306 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2308 pud_t *new = pud_alloc_one(mm, address);
2309 if (!new)
2310 return -ENOMEM;
2312 spin_lock(&mm->page_table_lock);
2313 if (pgd_present(*pgd)) /* Another has populated it */
2314 pud_free(new);
2315 else
2316 pgd_populate(mm, pgd, new);
2317 spin_unlock(&mm->page_table_lock);
2318 return 0;
2320 #else
2321 /* Workaround for gcc 2.96 */
2322 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2324 return 0;
2326 #endif /* __PAGETABLE_PUD_FOLDED */
2328 #ifndef __PAGETABLE_PMD_FOLDED
2330 * Allocate page middle directory.
2331 * We've already handled the fast-path in-line.
2333 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2335 pmd_t *new = pmd_alloc_one(mm, address);
2336 if (!new)
2337 return -ENOMEM;
2339 spin_lock(&mm->page_table_lock);
2340 #ifndef __ARCH_HAS_4LEVEL_HACK
2341 if (pud_present(*pud)) /* Another has populated it */
2342 pmd_free(new);
2343 else
2344 pud_populate(mm, pud, new);
2345 #else
2346 if (pgd_present(*pud)) /* Another has populated it */
2347 pmd_free(new);
2348 else
2349 pgd_populate(mm, pud, new);
2350 #endif /* __ARCH_HAS_4LEVEL_HACK */
2351 spin_unlock(&mm->page_table_lock);
2352 return 0;
2354 #else
2355 /* Workaround for gcc 2.96 */
2356 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2358 return 0;
2360 #endif /* __PAGETABLE_PMD_FOLDED */
2362 int make_pages_present(unsigned long addr, unsigned long end)
2364 int ret, len, write;
2365 struct vm_area_struct * vma;
2367 vma = find_vma(current->mm, addr);
2368 if (!vma)
2369 return -1;
2370 write = (vma->vm_flags & VM_WRITE) != 0;
2371 if (addr >= end)
2372 BUG();
2373 if (end > vma->vm_end)
2374 BUG();
2375 len = (end+PAGE_SIZE-1)/PAGE_SIZE-addr/PAGE_SIZE;
2376 ret = get_user_pages(current, current->mm, addr,
2377 len, write, 0, NULL, NULL);
2378 if (ret < 0)
2379 return ret;
2380 return ret == len ? 0 : -1;
2384 * Map a vmalloc()-space virtual address to the physical page.
2386 struct page * vmalloc_to_page(void * vmalloc_addr)
2388 unsigned long addr = (unsigned long) vmalloc_addr;
2389 struct page *page = NULL;
2390 pgd_t *pgd = pgd_offset_k(addr);
2391 pud_t *pud;
2392 pmd_t *pmd;
2393 pte_t *ptep, pte;
2395 if (!pgd_none(*pgd)) {
2396 pud = pud_offset(pgd, addr);
2397 if (!pud_none(*pud)) {
2398 pmd = pmd_offset(pud, addr);
2399 if (!pmd_none(*pmd)) {
2400 ptep = pte_offset_map(pmd, addr);
2401 pte = *ptep;
2402 if (pte_present(pte))
2403 page = pte_page(pte);
2404 pte_unmap(ptep);
2408 return page;
2411 EXPORT_SYMBOL(vmalloc_to_page);
2414 * Map a vmalloc()-space virtual address to the physical page frame number.
2416 unsigned long vmalloc_to_pfn(void * vmalloc_addr)
2418 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
2421 EXPORT_SYMBOL(vmalloc_to_pfn);
2423 #if !defined(__HAVE_ARCH_GATE_AREA)
2425 #if defined(AT_SYSINFO_EHDR)
2426 static struct vm_area_struct gate_vma;
2428 static int __init gate_vma_init(void)
2430 gate_vma.vm_mm = NULL;
2431 gate_vma.vm_start = FIXADDR_USER_START;
2432 gate_vma.vm_end = FIXADDR_USER_END;
2433 gate_vma.vm_page_prot = PAGE_READONLY;
2434 gate_vma.vm_flags = 0;
2435 return 0;
2437 __initcall(gate_vma_init);
2438 #endif
2440 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2442 #ifdef AT_SYSINFO_EHDR
2443 return &gate_vma;
2444 #else
2445 return NULL;
2446 #endif
2449 int in_gate_area_no_task(unsigned long addr)
2451 #ifdef AT_SYSINFO_EHDR
2452 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2453 return 1;
2454 #endif
2455 return 0;
2458 #endif /* __HAVE_ARCH_GATE_AREA */