4 * Copyright (C) 1991, 1992 Linus Torvalds
7 #include <linux/config.h>
8 #include <linux/module.h>
10 #include <linux/utsname.h>
11 #include <linux/mman.h>
12 #include <linux/smp_lock.h>
13 #include <linux/notifier.h>
14 #include <linux/reboot.h>
15 #include <linux/prctl.h>
16 #include <linux/init.h>
17 #include <linux/highuid.h>
19 #include <linux/workqueue.h>
20 #include <linux/device.h>
21 #include <linux/key.h>
22 #include <linux/times.h>
23 #include <linux/posix-timers.h>
24 #include <linux/security.h>
25 #include <linux/dcookies.h>
26 #include <linux/suspend.h>
27 #include <linux/tty.h>
29 #include <linux/compat.h>
30 #include <linux/syscalls.h>
32 #include <asm/uaccess.h>
34 #include <asm/unistd.h>
36 #ifndef SET_UNALIGN_CTL
37 # define SET_UNALIGN_CTL(a,b) (-EINVAL)
39 #ifndef GET_UNALIGN_CTL
40 # define GET_UNALIGN_CTL(a,b) (-EINVAL)
43 # define SET_FPEMU_CTL(a,b) (-EINVAL)
46 # define GET_FPEMU_CTL(a,b) (-EINVAL)
49 # define SET_FPEXC_CTL(a,b) (-EINVAL)
52 # define GET_FPEXC_CTL(a,b) (-EINVAL)
56 * this is where the system-wide overflow UID and GID are defined, for
57 * architectures that now have 32-bit UID/GID but didn't in the past
60 int overflowuid
= DEFAULT_OVERFLOWUID
;
61 int overflowgid
= DEFAULT_OVERFLOWGID
;
64 EXPORT_SYMBOL(overflowuid
);
65 EXPORT_SYMBOL(overflowgid
);
69 * the same as above, but for filesystems which can only store a 16-bit
70 * UID and GID. as such, this is needed on all architectures
73 int fs_overflowuid
= DEFAULT_FS_OVERFLOWUID
;
74 int fs_overflowgid
= DEFAULT_FS_OVERFLOWUID
;
76 EXPORT_SYMBOL(fs_overflowuid
);
77 EXPORT_SYMBOL(fs_overflowgid
);
80 * this indicates whether you can reboot with ctrl-alt-del: the default is yes
87 * Notifier list for kernel code which wants to be called
88 * at shutdown. This is used to stop any idling DMA operations
92 static struct notifier_block
*reboot_notifier_list
;
93 static DEFINE_RWLOCK(notifier_lock
);
96 * notifier_chain_register - Add notifier to a notifier chain
97 * @list: Pointer to root list pointer
98 * @n: New entry in notifier chain
100 * Adds a notifier to a notifier chain.
102 * Currently always returns zero.
105 int notifier_chain_register(struct notifier_block
**list
, struct notifier_block
*n
)
107 write_lock(¬ifier_lock
);
110 if(n
->priority
> (*list
)->priority
)
112 list
= &((*list
)->next
);
116 write_unlock(¬ifier_lock
);
120 EXPORT_SYMBOL(notifier_chain_register
);
123 * notifier_chain_unregister - Remove notifier from a notifier chain
124 * @nl: Pointer to root list pointer
125 * @n: New entry in notifier chain
127 * Removes a notifier from a notifier chain.
129 * Returns zero on success, or %-ENOENT on failure.
132 int notifier_chain_unregister(struct notifier_block
**nl
, struct notifier_block
*n
)
134 write_lock(¬ifier_lock
);
140 write_unlock(¬ifier_lock
);
145 write_unlock(¬ifier_lock
);
149 EXPORT_SYMBOL(notifier_chain_unregister
);
152 * notifier_call_chain - Call functions in a notifier chain
153 * @n: Pointer to root pointer of notifier chain
154 * @val: Value passed unmodified to notifier function
155 * @v: Pointer passed unmodified to notifier function
157 * Calls each function in a notifier chain in turn.
159 * If the return value of the notifier can be and'd
160 * with %NOTIFY_STOP_MASK, then notifier_call_chain
161 * will return immediately, with the return value of
162 * the notifier function which halted execution.
163 * Otherwise, the return value is the return value
164 * of the last notifier function called.
167 int notifier_call_chain(struct notifier_block
**n
, unsigned long val
, void *v
)
170 struct notifier_block
*nb
= *n
;
174 ret
=nb
->notifier_call(nb
,val
,v
);
175 if(ret
&NOTIFY_STOP_MASK
)
184 EXPORT_SYMBOL(notifier_call_chain
);
187 * register_reboot_notifier - Register function to be called at reboot time
188 * @nb: Info about notifier function to be called
190 * Registers a function with the list of functions
191 * to be called at reboot time.
193 * Currently always returns zero, as notifier_chain_register
194 * always returns zero.
197 int register_reboot_notifier(struct notifier_block
* nb
)
199 return notifier_chain_register(&reboot_notifier_list
, nb
);
202 EXPORT_SYMBOL(register_reboot_notifier
);
205 * unregister_reboot_notifier - Unregister previously registered reboot notifier
206 * @nb: Hook to be unregistered
208 * Unregisters a previously registered reboot
211 * Returns zero on success, or %-ENOENT on failure.
214 int unregister_reboot_notifier(struct notifier_block
* nb
)
216 return notifier_chain_unregister(&reboot_notifier_list
, nb
);
219 EXPORT_SYMBOL(unregister_reboot_notifier
);
221 static int set_one_prio(struct task_struct
*p
, int niceval
, int error
)
225 if (p
->uid
!= current
->euid
&&
226 p
->euid
!= current
->euid
&& !capable(CAP_SYS_NICE
)) {
230 if (niceval
< task_nice(p
) && !can_nice(p
, niceval
)) {
234 no_nice
= security_task_setnice(p
, niceval
);
241 set_user_nice(p
, niceval
);
246 asmlinkage
long sys_setpriority(int which
, int who
, int niceval
)
248 struct task_struct
*g
, *p
;
249 struct user_struct
*user
;
252 if (which
> 2 || which
< 0)
255 /* normalize: avoid signed division (rounding problems) */
262 read_lock(&tasklist_lock
);
267 p
= find_task_by_pid(who
);
269 error
= set_one_prio(p
, niceval
, error
);
273 who
= process_group(current
);
274 do_each_task_pid(who
, PIDTYPE_PGID
, p
) {
275 error
= set_one_prio(p
, niceval
, error
);
276 } while_each_task_pid(who
, PIDTYPE_PGID
, p
);
279 user
= current
->user
;
283 if ((who
!= current
->uid
) && !(user
= find_user(who
)))
284 goto out_unlock
; /* No processes for this user */
288 error
= set_one_prio(p
, niceval
, error
);
289 while_each_thread(g
, p
);
290 if (who
!= current
->uid
)
291 free_uid(user
); /* For find_user() */
295 read_unlock(&tasklist_lock
);
301 * Ugh. To avoid negative return values, "getpriority()" will
302 * not return the normal nice-value, but a negated value that
303 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
304 * to stay compatible.
306 asmlinkage
long sys_getpriority(int which
, int who
)
308 struct task_struct
*g
, *p
;
309 struct user_struct
*user
;
310 long niceval
, retval
= -ESRCH
;
312 if (which
> 2 || which
< 0)
315 read_lock(&tasklist_lock
);
320 p
= find_task_by_pid(who
);
322 niceval
= 20 - task_nice(p
);
323 if (niceval
> retval
)
329 who
= process_group(current
);
330 do_each_task_pid(who
, PIDTYPE_PGID
, p
) {
331 niceval
= 20 - task_nice(p
);
332 if (niceval
> retval
)
334 } while_each_task_pid(who
, PIDTYPE_PGID
, p
);
337 user
= current
->user
;
341 if ((who
!= current
->uid
) && !(user
= find_user(who
)))
342 goto out_unlock
; /* No processes for this user */
346 niceval
= 20 - task_nice(p
);
347 if (niceval
> retval
)
350 while_each_thread(g
, p
);
351 if (who
!= current
->uid
)
352 free_uid(user
); /* for find_user() */
356 read_unlock(&tasklist_lock
);
363 * Reboot system call: for obvious reasons only root may call it,
364 * and even root needs to set up some magic numbers in the registers
365 * so that some mistake won't make this reboot the whole machine.
366 * You can also set the meaning of the ctrl-alt-del-key here.
368 * reboot doesn't sync: do that yourself before calling this.
370 asmlinkage
long sys_reboot(int magic1
, int magic2
, unsigned int cmd
, void __user
* arg
)
374 /* We only trust the superuser with rebooting the system. */
375 if (!capable(CAP_SYS_BOOT
))
378 /* For safety, we require "magic" arguments. */
379 if (magic1
!= LINUX_REBOOT_MAGIC1
||
380 (magic2
!= LINUX_REBOOT_MAGIC2
&&
381 magic2
!= LINUX_REBOOT_MAGIC2A
&&
382 magic2
!= LINUX_REBOOT_MAGIC2B
&&
383 magic2
!= LINUX_REBOOT_MAGIC2C
))
388 case LINUX_REBOOT_CMD_RESTART
:
389 notifier_call_chain(&reboot_notifier_list
, SYS_RESTART
, NULL
);
390 system_state
= SYSTEM_RESTART
;
392 printk(KERN_EMERG
"Restarting system.\n");
393 machine_restart(NULL
);
396 case LINUX_REBOOT_CMD_CAD_ON
:
400 case LINUX_REBOOT_CMD_CAD_OFF
:
404 case LINUX_REBOOT_CMD_HALT
:
405 notifier_call_chain(&reboot_notifier_list
, SYS_HALT
, NULL
);
406 system_state
= SYSTEM_HALT
;
408 printk(KERN_EMERG
"System halted.\n");
414 case LINUX_REBOOT_CMD_POWER_OFF
:
415 notifier_call_chain(&reboot_notifier_list
, SYS_POWER_OFF
, NULL
);
416 system_state
= SYSTEM_POWER_OFF
;
418 printk(KERN_EMERG
"Power down.\n");
424 case LINUX_REBOOT_CMD_RESTART2
:
425 if (strncpy_from_user(&buffer
[0], arg
, sizeof(buffer
) - 1) < 0) {
429 buffer
[sizeof(buffer
) - 1] = '\0';
431 notifier_call_chain(&reboot_notifier_list
, SYS_RESTART
, buffer
);
432 system_state
= SYSTEM_RESTART
;
434 printk(KERN_EMERG
"Restarting system with command '%s'.\n", buffer
);
435 machine_restart(buffer
);
438 #ifdef CONFIG_SOFTWARE_SUSPEND
439 case LINUX_REBOOT_CMD_SW_SUSPEND
:
441 int ret
= software_suspend();
455 static void deferred_cad(void *dummy
)
457 notifier_call_chain(&reboot_notifier_list
, SYS_RESTART
, NULL
);
458 machine_restart(NULL
);
462 * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
463 * As it's called within an interrupt, it may NOT sync: the only choice
464 * is whether to reboot at once, or just ignore the ctrl-alt-del.
466 void ctrl_alt_del(void)
468 static DECLARE_WORK(cad_work
, deferred_cad
, NULL
);
471 schedule_work(&cad_work
);
473 kill_proc(cad_pid
, SIGINT
, 1);
478 * Unprivileged users may change the real gid to the effective gid
479 * or vice versa. (BSD-style)
481 * If you set the real gid at all, or set the effective gid to a value not
482 * equal to the real gid, then the saved gid is set to the new effective gid.
484 * This makes it possible for a setgid program to completely drop its
485 * privileges, which is often a useful assertion to make when you are doing
486 * a security audit over a program.
488 * The general idea is that a program which uses just setregid() will be
489 * 100% compatible with BSD. A program which uses just setgid() will be
490 * 100% compatible with POSIX with saved IDs.
492 * SMP: There are not races, the GIDs are checked only by filesystem
493 * operations (as far as semantic preservation is concerned).
495 asmlinkage
long sys_setregid(gid_t rgid
, gid_t egid
)
497 int old_rgid
= current
->gid
;
498 int old_egid
= current
->egid
;
499 int new_rgid
= old_rgid
;
500 int new_egid
= old_egid
;
503 retval
= security_task_setgid(rgid
, egid
, (gid_t
)-1, LSM_SETID_RE
);
507 if (rgid
!= (gid_t
) -1) {
508 if ((old_rgid
== rgid
) ||
509 (current
->egid
==rgid
) ||
515 if (egid
!= (gid_t
) -1) {
516 if ((old_rgid
== egid
) ||
517 (current
->egid
== egid
) ||
518 (current
->sgid
== egid
) ||
525 if (new_egid
!= old_egid
)
527 current
->mm
->dumpable
= 0;
530 if (rgid
!= (gid_t
) -1 ||
531 (egid
!= (gid_t
) -1 && egid
!= old_rgid
))
532 current
->sgid
= new_egid
;
533 current
->fsgid
= new_egid
;
534 current
->egid
= new_egid
;
535 current
->gid
= new_rgid
;
536 key_fsgid_changed(current
);
541 * setgid() is implemented like SysV w/ SAVED_IDS
543 * SMP: Same implicit races as above.
545 asmlinkage
long sys_setgid(gid_t gid
)
547 int old_egid
= current
->egid
;
550 retval
= security_task_setgid(gid
, (gid_t
)-1, (gid_t
)-1, LSM_SETID_ID
);
554 if (capable(CAP_SETGID
))
558 current
->mm
->dumpable
=0;
561 current
->gid
= current
->egid
= current
->sgid
= current
->fsgid
= gid
;
563 else if ((gid
== current
->gid
) || (gid
== current
->sgid
))
567 current
->mm
->dumpable
=0;
570 current
->egid
= current
->fsgid
= gid
;
575 key_fsgid_changed(current
);
579 static int set_user(uid_t new_ruid
, int dumpclear
)
581 struct user_struct
*new_user
;
583 new_user
= alloc_uid(new_ruid
);
587 if (atomic_read(&new_user
->processes
) >=
588 current
->signal
->rlim
[RLIMIT_NPROC
].rlim_cur
&&
589 new_user
!= &root_user
) {
594 switch_uid(new_user
);
598 current
->mm
->dumpable
= 0;
601 current
->uid
= new_ruid
;
606 * Unprivileged users may change the real uid to the effective uid
607 * or vice versa. (BSD-style)
609 * If you set the real uid at all, or set the effective uid to a value not
610 * equal to the real uid, then the saved uid is set to the new effective uid.
612 * This makes it possible for a setuid program to completely drop its
613 * privileges, which is often a useful assertion to make when you are doing
614 * a security audit over a program.
616 * The general idea is that a program which uses just setreuid() will be
617 * 100% compatible with BSD. A program which uses just setuid() will be
618 * 100% compatible with POSIX with saved IDs.
620 asmlinkage
long sys_setreuid(uid_t ruid
, uid_t euid
)
622 int old_ruid
, old_euid
, old_suid
, new_ruid
, new_euid
;
625 retval
= security_task_setuid(ruid
, euid
, (uid_t
)-1, LSM_SETID_RE
);
629 new_ruid
= old_ruid
= current
->uid
;
630 new_euid
= old_euid
= current
->euid
;
631 old_suid
= current
->suid
;
633 if (ruid
!= (uid_t
) -1) {
635 if ((old_ruid
!= ruid
) &&
636 (current
->euid
!= ruid
) &&
637 !capable(CAP_SETUID
))
641 if (euid
!= (uid_t
) -1) {
643 if ((old_ruid
!= euid
) &&
644 (current
->euid
!= euid
) &&
645 (current
->suid
!= euid
) &&
646 !capable(CAP_SETUID
))
650 if (new_ruid
!= old_ruid
&& set_user(new_ruid
, new_euid
!= old_euid
) < 0)
653 if (new_euid
!= old_euid
)
655 current
->mm
->dumpable
=0;
658 current
->fsuid
= current
->euid
= new_euid
;
659 if (ruid
!= (uid_t
) -1 ||
660 (euid
!= (uid_t
) -1 && euid
!= old_ruid
))
661 current
->suid
= current
->euid
;
662 current
->fsuid
= current
->euid
;
664 key_fsuid_changed(current
);
666 return security_task_post_setuid(old_ruid
, old_euid
, old_suid
, LSM_SETID_RE
);
672 * setuid() is implemented like SysV with SAVED_IDS
674 * Note that SAVED_ID's is deficient in that a setuid root program
675 * like sendmail, for example, cannot set its uid to be a normal
676 * user and then switch back, because if you're root, setuid() sets
677 * the saved uid too. If you don't like this, blame the bright people
678 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
679 * will allow a root program to temporarily drop privileges and be able to
680 * regain them by swapping the real and effective uid.
682 asmlinkage
long sys_setuid(uid_t uid
)
684 int old_euid
= current
->euid
;
685 int old_ruid
, old_suid
, new_ruid
, new_suid
;
688 retval
= security_task_setuid(uid
, (uid_t
)-1, (uid_t
)-1, LSM_SETID_ID
);
692 old_ruid
= new_ruid
= current
->uid
;
693 old_suid
= current
->suid
;
696 if (capable(CAP_SETUID
)) {
697 if (uid
!= old_ruid
&& set_user(uid
, old_euid
!= uid
) < 0)
700 } else if ((uid
!= current
->uid
) && (uid
!= new_suid
))
705 current
->mm
->dumpable
= 0;
708 current
->fsuid
= current
->euid
= uid
;
709 current
->suid
= new_suid
;
711 key_fsuid_changed(current
);
713 return security_task_post_setuid(old_ruid
, old_euid
, old_suid
, LSM_SETID_ID
);
718 * This function implements a generic ability to update ruid, euid,
719 * and suid. This allows you to implement the 4.4 compatible seteuid().
721 asmlinkage
long sys_setresuid(uid_t ruid
, uid_t euid
, uid_t suid
)
723 int old_ruid
= current
->uid
;
724 int old_euid
= current
->euid
;
725 int old_suid
= current
->suid
;
728 retval
= security_task_setuid(ruid
, euid
, suid
, LSM_SETID_RES
);
732 if (!capable(CAP_SETUID
)) {
733 if ((ruid
!= (uid_t
) -1) && (ruid
!= current
->uid
) &&
734 (ruid
!= current
->euid
) && (ruid
!= current
->suid
))
736 if ((euid
!= (uid_t
) -1) && (euid
!= current
->uid
) &&
737 (euid
!= current
->euid
) && (euid
!= current
->suid
))
739 if ((suid
!= (uid_t
) -1) && (suid
!= current
->uid
) &&
740 (suid
!= current
->euid
) && (suid
!= current
->suid
))
743 if (ruid
!= (uid_t
) -1) {
744 if (ruid
!= current
->uid
&& set_user(ruid
, euid
!= current
->euid
) < 0)
747 if (euid
!= (uid_t
) -1) {
748 if (euid
!= current
->euid
)
750 current
->mm
->dumpable
= 0;
753 current
->euid
= euid
;
755 current
->fsuid
= current
->euid
;
756 if (suid
!= (uid_t
) -1)
757 current
->suid
= suid
;
759 key_fsuid_changed(current
);
761 return security_task_post_setuid(old_ruid
, old_euid
, old_suid
, LSM_SETID_RES
);
764 asmlinkage
long sys_getresuid(uid_t __user
*ruid
, uid_t __user
*euid
, uid_t __user
*suid
)
768 if (!(retval
= put_user(current
->uid
, ruid
)) &&
769 !(retval
= put_user(current
->euid
, euid
)))
770 retval
= put_user(current
->suid
, suid
);
776 * Same as above, but for rgid, egid, sgid.
778 asmlinkage
long sys_setresgid(gid_t rgid
, gid_t egid
, gid_t sgid
)
782 retval
= security_task_setgid(rgid
, egid
, sgid
, LSM_SETID_RES
);
786 if (!capable(CAP_SETGID
)) {
787 if ((rgid
!= (gid_t
) -1) && (rgid
!= current
->gid
) &&
788 (rgid
!= current
->egid
) && (rgid
!= current
->sgid
))
790 if ((egid
!= (gid_t
) -1) && (egid
!= current
->gid
) &&
791 (egid
!= current
->egid
) && (egid
!= current
->sgid
))
793 if ((sgid
!= (gid_t
) -1) && (sgid
!= current
->gid
) &&
794 (sgid
!= current
->egid
) && (sgid
!= current
->sgid
))
797 if (egid
!= (gid_t
) -1) {
798 if (egid
!= current
->egid
)
800 current
->mm
->dumpable
= 0;
803 current
->egid
= egid
;
805 current
->fsgid
= current
->egid
;
806 if (rgid
!= (gid_t
) -1)
808 if (sgid
!= (gid_t
) -1)
809 current
->sgid
= sgid
;
811 key_fsgid_changed(current
);
815 asmlinkage
long sys_getresgid(gid_t __user
*rgid
, gid_t __user
*egid
, gid_t __user
*sgid
)
819 if (!(retval
= put_user(current
->gid
, rgid
)) &&
820 !(retval
= put_user(current
->egid
, egid
)))
821 retval
= put_user(current
->sgid
, sgid
);
828 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
829 * is used for "access()" and for the NFS daemon (letting nfsd stay at
830 * whatever uid it wants to). It normally shadows "euid", except when
831 * explicitly set by setfsuid() or for access..
833 asmlinkage
long sys_setfsuid(uid_t uid
)
837 old_fsuid
= current
->fsuid
;
838 if (security_task_setuid(uid
, (uid_t
)-1, (uid_t
)-1, LSM_SETID_FS
))
841 if (uid
== current
->uid
|| uid
== current
->euid
||
842 uid
== current
->suid
|| uid
== current
->fsuid
||
845 if (uid
!= old_fsuid
)
847 current
->mm
->dumpable
= 0;
850 current
->fsuid
= uid
;
853 key_fsuid_changed(current
);
855 security_task_post_setuid(old_fsuid
, (uid_t
)-1, (uid_t
)-1, LSM_SETID_FS
);
861 * Samma på svenska..
863 asmlinkage
long sys_setfsgid(gid_t gid
)
867 old_fsgid
= current
->fsgid
;
868 if (security_task_setgid(gid
, (gid_t
)-1, (gid_t
)-1, LSM_SETID_FS
))
871 if (gid
== current
->gid
|| gid
== current
->egid
||
872 gid
== current
->sgid
|| gid
== current
->fsgid
||
875 if (gid
!= old_fsgid
)
877 current
->mm
->dumpable
= 0;
880 current
->fsgid
= gid
;
881 key_fsgid_changed(current
);
886 asmlinkage
long sys_times(struct tms __user
* tbuf
)
889 * In the SMP world we might just be unlucky and have one of
890 * the times increment as we use it. Since the value is an
891 * atomically safe type this is just fine. Conceptually its
892 * as if the syscall took an instant longer to occur.
896 struct task_struct
*tsk
= current
;
897 struct task_struct
*t
;
898 cputime_t utime
, stime
, cutime
, cstime
;
900 read_lock(&tasklist_lock
);
901 utime
= tsk
->signal
->utime
;
902 stime
= tsk
->signal
->stime
;
905 utime
= cputime_add(utime
, t
->utime
);
906 stime
= cputime_add(stime
, t
->stime
);
911 * While we have tasklist_lock read-locked, no dying thread
912 * can be updating current->signal->[us]time. Instead,
913 * we got their counts included in the live thread loop.
914 * However, another thread can come in right now and
915 * do a wait call that updates current->signal->c[us]time.
916 * To make sure we always see that pair updated atomically,
917 * we take the siglock around fetching them.
919 spin_lock_irq(&tsk
->sighand
->siglock
);
920 cutime
= tsk
->signal
->cutime
;
921 cstime
= tsk
->signal
->cstime
;
922 spin_unlock_irq(&tsk
->sighand
->siglock
);
923 read_unlock(&tasklist_lock
);
925 tmp
.tms_utime
= cputime_to_clock_t(utime
);
926 tmp
.tms_stime
= cputime_to_clock_t(stime
);
927 tmp
.tms_cutime
= cputime_to_clock_t(cutime
);
928 tmp
.tms_cstime
= cputime_to_clock_t(cstime
);
929 if (copy_to_user(tbuf
, &tmp
, sizeof(struct tms
)))
932 return (long) jiffies_64_to_clock_t(get_jiffies_64());
936 * This needs some heavy checking ...
937 * I just haven't the stomach for it. I also don't fully
938 * understand sessions/pgrp etc. Let somebody who does explain it.
940 * OK, I think I have the protection semantics right.... this is really
941 * only important on a multi-user system anyway, to make sure one user
942 * can't send a signal to a process owned by another. -TYT, 12/12/91
944 * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
948 asmlinkage
long sys_setpgid(pid_t pid
, pid_t pgid
)
950 struct task_struct
*p
;
960 /* From this point forward we keep holding onto the tasklist lock
961 * so that our parent does not change from under us. -DaveM
963 write_lock_irq(&tasklist_lock
);
966 p
= find_task_by_pid(pid
);
971 if (!thread_group_leader(p
))
974 if (p
->parent
== current
|| p
->real_parent
== current
) {
976 if (p
->signal
->session
!= current
->signal
->session
)
988 if (p
->signal
->leader
)
992 struct task_struct
*p
;
994 do_each_task_pid(pgid
, PIDTYPE_PGID
, p
) {
995 if (p
->signal
->session
== current
->signal
->session
)
997 } while_each_task_pid(pgid
, PIDTYPE_PGID
, p
);
1002 err
= security_task_setpgid(p
, pgid
);
1006 if (process_group(p
) != pgid
) {
1007 detach_pid(p
, PIDTYPE_PGID
);
1008 p
->signal
->pgrp
= pgid
;
1009 attach_pid(p
, PIDTYPE_PGID
, pgid
);
1014 /* All paths lead to here, thus we are safe. -DaveM */
1015 write_unlock_irq(&tasklist_lock
);
1019 asmlinkage
long sys_getpgid(pid_t pid
)
1022 return process_group(current
);
1025 struct task_struct
*p
;
1027 read_lock(&tasklist_lock
);
1028 p
= find_task_by_pid(pid
);
1032 retval
= security_task_getpgid(p
);
1034 retval
= process_group(p
);
1036 read_unlock(&tasklist_lock
);
1041 #ifdef __ARCH_WANT_SYS_GETPGRP
1043 asmlinkage
long sys_getpgrp(void)
1045 /* SMP - assuming writes are word atomic this is fine */
1046 return process_group(current
);
1051 asmlinkage
long sys_getsid(pid_t pid
)
1054 return current
->signal
->session
;
1057 struct task_struct
*p
;
1059 read_lock(&tasklist_lock
);
1060 p
= find_task_by_pid(pid
);
1064 retval
= security_task_getsid(p
);
1066 retval
= p
->signal
->session
;
1068 read_unlock(&tasklist_lock
);
1073 asmlinkage
long sys_setsid(void)
1078 if (!thread_group_leader(current
))
1082 write_lock_irq(&tasklist_lock
);
1084 pid
= find_pid(PIDTYPE_PGID
, current
->pid
);
1088 current
->signal
->leader
= 1;
1089 __set_special_pids(current
->pid
, current
->pid
);
1090 current
->signal
->tty
= NULL
;
1091 current
->signal
->tty_old_pgrp
= 0;
1092 err
= process_group(current
);
1094 write_unlock_irq(&tasklist_lock
);
1100 * Supplementary group IDs
1103 /* init to 2 - one for init_task, one to ensure it is never freed */
1104 struct group_info init_groups
= { .usage
= ATOMIC_INIT(2) };
1106 struct group_info
*groups_alloc(int gidsetsize
)
1108 struct group_info
*group_info
;
1112 nblocks
= (gidsetsize
+ NGROUPS_PER_BLOCK
- 1) / NGROUPS_PER_BLOCK
;
1113 /* Make sure we always allocate at least one indirect block pointer */
1114 nblocks
= nblocks
? : 1;
1115 group_info
= kmalloc(sizeof(*group_info
) + nblocks
*sizeof(gid_t
*), GFP_USER
);
1118 group_info
->ngroups
= gidsetsize
;
1119 group_info
->nblocks
= nblocks
;
1120 atomic_set(&group_info
->usage
, 1);
1122 if (gidsetsize
<= NGROUPS_SMALL
) {
1123 group_info
->blocks
[0] = group_info
->small_block
;
1125 for (i
= 0; i
< nblocks
; i
++) {
1127 b
= (void *)__get_free_page(GFP_USER
);
1129 goto out_undo_partial_alloc
;
1130 group_info
->blocks
[i
] = b
;
1135 out_undo_partial_alloc
:
1137 free_page((unsigned long)group_info
->blocks
[i
]);
1143 EXPORT_SYMBOL(groups_alloc
);
1145 void groups_free(struct group_info
*group_info
)
1147 if (group_info
->blocks
[0] != group_info
->small_block
) {
1149 for (i
= 0; i
< group_info
->nblocks
; i
++)
1150 free_page((unsigned long)group_info
->blocks
[i
]);
1155 EXPORT_SYMBOL(groups_free
);
1157 /* export the group_info to a user-space array */
1158 static int groups_to_user(gid_t __user
*grouplist
,
1159 struct group_info
*group_info
)
1162 int count
= group_info
->ngroups
;
1164 for (i
= 0; i
< group_info
->nblocks
; i
++) {
1165 int cp_count
= min(NGROUPS_PER_BLOCK
, count
);
1166 int off
= i
* NGROUPS_PER_BLOCK
;
1167 int len
= cp_count
* sizeof(*grouplist
);
1169 if (copy_to_user(grouplist
+off
, group_info
->blocks
[i
], len
))
1177 /* fill a group_info from a user-space array - it must be allocated already */
1178 static int groups_from_user(struct group_info
*group_info
,
1179 gid_t __user
*grouplist
)
1182 int count
= group_info
->ngroups
;
1184 for (i
= 0; i
< group_info
->nblocks
; i
++) {
1185 int cp_count
= min(NGROUPS_PER_BLOCK
, count
);
1186 int off
= i
* NGROUPS_PER_BLOCK
;
1187 int len
= cp_count
* sizeof(*grouplist
);
1189 if (copy_from_user(group_info
->blocks
[i
], grouplist
+off
, len
))
1197 /* a simple shell-metzner sort */
1198 static void groups_sort(struct group_info
*group_info
)
1200 int base
, max
, stride
;
1201 int gidsetsize
= group_info
->ngroups
;
1203 for (stride
= 1; stride
< gidsetsize
; stride
= 3 * stride
+ 1)
1208 max
= gidsetsize
- stride
;
1209 for (base
= 0; base
< max
; base
++) {
1211 int right
= left
+ stride
;
1212 gid_t tmp
= GROUP_AT(group_info
, right
);
1214 while (left
>= 0 && GROUP_AT(group_info
, left
) > tmp
) {
1215 GROUP_AT(group_info
, right
) =
1216 GROUP_AT(group_info
, left
);
1220 GROUP_AT(group_info
, right
) = tmp
;
1226 /* a simple bsearch */
1227 static int groups_search(struct group_info
*group_info
, gid_t grp
)
1235 right
= group_info
->ngroups
;
1236 while (left
< right
) {
1237 int mid
= (left
+right
)/2;
1238 int cmp
= grp
- GROUP_AT(group_info
, mid
);
1249 /* validate and set current->group_info */
1250 int set_current_groups(struct group_info
*group_info
)
1253 struct group_info
*old_info
;
1255 retval
= security_task_setgroups(group_info
);
1259 groups_sort(group_info
);
1260 get_group_info(group_info
);
1263 old_info
= current
->group_info
;
1264 current
->group_info
= group_info
;
1265 task_unlock(current
);
1267 put_group_info(old_info
);
1272 EXPORT_SYMBOL(set_current_groups
);
1274 asmlinkage
long sys_getgroups(int gidsetsize
, gid_t __user
*grouplist
)
1279 * SMP: Nobody else can change our grouplist. Thus we are
1286 /* no need to grab task_lock here; it cannot change */
1287 get_group_info(current
->group_info
);
1288 i
= current
->group_info
->ngroups
;
1290 if (i
> gidsetsize
) {
1294 if (groups_to_user(grouplist
, current
->group_info
)) {
1300 put_group_info(current
->group_info
);
1305 * SMP: Our groups are copy-on-write. We can set them safely
1306 * without another task interfering.
1309 asmlinkage
long sys_setgroups(int gidsetsize
, gid_t __user
*grouplist
)
1311 struct group_info
*group_info
;
1314 if (!capable(CAP_SETGID
))
1316 if ((unsigned)gidsetsize
> NGROUPS_MAX
)
1319 group_info
= groups_alloc(gidsetsize
);
1322 retval
= groups_from_user(group_info
, grouplist
);
1324 put_group_info(group_info
);
1328 retval
= set_current_groups(group_info
);
1329 put_group_info(group_info
);
1335 * Check whether we're fsgid/egid or in the supplemental group..
1337 int in_group_p(gid_t grp
)
1340 if (grp
!= current
->fsgid
) {
1341 get_group_info(current
->group_info
);
1342 retval
= groups_search(current
->group_info
, grp
);
1343 put_group_info(current
->group_info
);
1348 EXPORT_SYMBOL(in_group_p
);
1350 int in_egroup_p(gid_t grp
)
1353 if (grp
!= current
->egid
) {
1354 get_group_info(current
->group_info
);
1355 retval
= groups_search(current
->group_info
, grp
);
1356 put_group_info(current
->group_info
);
1361 EXPORT_SYMBOL(in_egroup_p
);
1363 DECLARE_RWSEM(uts_sem
);
1365 EXPORT_SYMBOL(uts_sem
);
1367 asmlinkage
long sys_newuname(struct new_utsname __user
* name
)
1371 down_read(&uts_sem
);
1372 if (copy_to_user(name
,&system_utsname
,sizeof *name
))
1378 asmlinkage
long sys_sethostname(char __user
*name
, int len
)
1381 char tmp
[__NEW_UTS_LEN
];
1383 if (!capable(CAP_SYS_ADMIN
))
1385 if (len
< 0 || len
> __NEW_UTS_LEN
)
1387 down_write(&uts_sem
);
1389 if (!copy_from_user(tmp
, name
, len
)) {
1390 memcpy(system_utsname
.nodename
, tmp
, len
);
1391 system_utsname
.nodename
[len
] = 0;
1398 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1400 asmlinkage
long sys_gethostname(char __user
*name
, int len
)
1406 down_read(&uts_sem
);
1407 i
= 1 + strlen(system_utsname
.nodename
);
1411 if (copy_to_user(name
, system_utsname
.nodename
, i
))
1420 * Only setdomainname; getdomainname can be implemented by calling
1423 asmlinkage
long sys_setdomainname(char __user
*name
, int len
)
1426 char tmp
[__NEW_UTS_LEN
];
1428 if (!capable(CAP_SYS_ADMIN
))
1430 if (len
< 0 || len
> __NEW_UTS_LEN
)
1433 down_write(&uts_sem
);
1435 if (!copy_from_user(tmp
, name
, len
)) {
1436 memcpy(system_utsname
.domainname
, tmp
, len
);
1437 system_utsname
.domainname
[len
] = 0;
1444 asmlinkage
long sys_getrlimit(unsigned int resource
, struct rlimit __user
*rlim
)
1446 if (resource
>= RLIM_NLIMITS
)
1449 struct rlimit value
;
1450 task_lock(current
->group_leader
);
1451 value
= current
->signal
->rlim
[resource
];
1452 task_unlock(current
->group_leader
);
1453 return copy_to_user(rlim
, &value
, sizeof(*rlim
)) ? -EFAULT
: 0;
1457 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1460 * Back compatibility for getrlimit. Needed for some apps.
1463 asmlinkage
long sys_old_getrlimit(unsigned int resource
, struct rlimit __user
*rlim
)
1466 if (resource
>= RLIM_NLIMITS
)
1469 task_lock(current
->group_leader
);
1470 x
= current
->signal
->rlim
[resource
];
1471 task_unlock(current
->group_leader
);
1472 if(x
.rlim_cur
> 0x7FFFFFFF)
1473 x
.rlim_cur
= 0x7FFFFFFF;
1474 if(x
.rlim_max
> 0x7FFFFFFF)
1475 x
.rlim_max
= 0x7FFFFFFF;
1476 return copy_to_user(rlim
, &x
, sizeof(x
))?-EFAULT
:0;
1481 asmlinkage
long sys_setrlimit(unsigned int resource
, struct rlimit __user
*rlim
)
1483 struct rlimit new_rlim
, *old_rlim
;
1486 if (resource
>= RLIM_NLIMITS
)
1488 if(copy_from_user(&new_rlim
, rlim
, sizeof(*rlim
)))
1490 if (new_rlim
.rlim_cur
> new_rlim
.rlim_max
)
1492 old_rlim
= current
->signal
->rlim
+ resource
;
1493 if ((new_rlim
.rlim_max
> old_rlim
->rlim_max
) &&
1494 !capable(CAP_SYS_RESOURCE
))
1496 if (resource
== RLIMIT_NOFILE
&& new_rlim
.rlim_max
> NR_OPEN
)
1499 retval
= security_task_setrlimit(resource
, &new_rlim
);
1503 task_lock(current
->group_leader
);
1504 *old_rlim
= new_rlim
;
1505 task_unlock(current
->group_leader
);
1507 if (resource
== RLIMIT_CPU
&& new_rlim
.rlim_cur
!= RLIM_INFINITY
&&
1508 (cputime_eq(current
->signal
->it_prof_expires
, cputime_zero
) ||
1509 new_rlim
.rlim_cur
<= cputime_to_secs(
1510 current
->signal
->it_prof_expires
))) {
1511 cputime_t cputime
= secs_to_cputime(new_rlim
.rlim_cur
);
1512 read_lock(&tasklist_lock
);
1513 spin_lock_irq(¤t
->sighand
->siglock
);
1514 set_process_cpu_timer(current
, CPUCLOCK_PROF
,
1516 spin_unlock_irq(¤t
->sighand
->siglock
);
1517 read_unlock(&tasklist_lock
);
1524 * It would make sense to put struct rusage in the task_struct,
1525 * except that would make the task_struct be *really big*. After
1526 * task_struct gets moved into malloc'ed memory, it would
1527 * make sense to do this. It will make moving the rest of the information
1528 * a lot simpler! (Which we're not doing right now because we're not
1529 * measuring them yet).
1531 * This expects to be called with tasklist_lock read-locked or better,
1532 * and the siglock not locked. It may momentarily take the siglock.
1534 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1535 * races with threads incrementing their own counters. But since word
1536 * reads are atomic, we either get new values or old values and we don't
1537 * care which for the sums. We always take the siglock to protect reading
1538 * the c* fields from p->signal from races with exit.c updating those
1539 * fields when reaping, so a sample either gets all the additions of a
1540 * given child after it's reaped, or none so this sample is before reaping.
1543 static void k_getrusage(struct task_struct
*p
, int who
, struct rusage
*r
)
1545 struct task_struct
*t
;
1546 unsigned long flags
;
1547 cputime_t utime
, stime
;
1549 memset((char *) r
, 0, sizeof *r
);
1551 if (unlikely(!p
->signal
))
1555 case RUSAGE_CHILDREN
:
1556 spin_lock_irqsave(&p
->sighand
->siglock
, flags
);
1557 utime
= p
->signal
->cutime
;
1558 stime
= p
->signal
->cstime
;
1559 r
->ru_nvcsw
= p
->signal
->cnvcsw
;
1560 r
->ru_nivcsw
= p
->signal
->cnivcsw
;
1561 r
->ru_minflt
= p
->signal
->cmin_flt
;
1562 r
->ru_majflt
= p
->signal
->cmaj_flt
;
1563 spin_unlock_irqrestore(&p
->sighand
->siglock
, flags
);
1564 cputime_to_timeval(utime
, &r
->ru_utime
);
1565 cputime_to_timeval(stime
, &r
->ru_stime
);
1568 spin_lock_irqsave(&p
->sighand
->siglock
, flags
);
1569 utime
= stime
= cputime_zero
;
1572 spin_lock_irqsave(&p
->sighand
->siglock
, flags
);
1573 utime
= p
->signal
->cutime
;
1574 stime
= p
->signal
->cstime
;
1575 r
->ru_nvcsw
= p
->signal
->cnvcsw
;
1576 r
->ru_nivcsw
= p
->signal
->cnivcsw
;
1577 r
->ru_minflt
= p
->signal
->cmin_flt
;
1578 r
->ru_majflt
= p
->signal
->cmaj_flt
;
1580 utime
= cputime_add(utime
, p
->signal
->utime
);
1581 stime
= cputime_add(stime
, p
->signal
->stime
);
1582 r
->ru_nvcsw
+= p
->signal
->nvcsw
;
1583 r
->ru_nivcsw
+= p
->signal
->nivcsw
;
1584 r
->ru_minflt
+= p
->signal
->min_flt
;
1585 r
->ru_majflt
+= p
->signal
->maj_flt
;
1588 utime
= cputime_add(utime
, t
->utime
);
1589 stime
= cputime_add(stime
, t
->stime
);
1590 r
->ru_nvcsw
+= t
->nvcsw
;
1591 r
->ru_nivcsw
+= t
->nivcsw
;
1592 r
->ru_minflt
+= t
->min_flt
;
1593 r
->ru_majflt
+= t
->maj_flt
;
1596 spin_unlock_irqrestore(&p
->sighand
->siglock
, flags
);
1597 cputime_to_timeval(utime
, &r
->ru_utime
);
1598 cputime_to_timeval(stime
, &r
->ru_stime
);
1605 int getrusage(struct task_struct
*p
, int who
, struct rusage __user
*ru
)
1608 read_lock(&tasklist_lock
);
1609 k_getrusage(p
, who
, &r
);
1610 read_unlock(&tasklist_lock
);
1611 return copy_to_user(ru
, &r
, sizeof(r
)) ? -EFAULT
: 0;
1614 asmlinkage
long sys_getrusage(int who
, struct rusage __user
*ru
)
1616 if (who
!= RUSAGE_SELF
&& who
!= RUSAGE_CHILDREN
)
1618 return getrusage(current
, who
, ru
);
1621 asmlinkage
long sys_umask(int mask
)
1623 mask
= xchg(¤t
->fs
->umask
, mask
& S_IRWXUGO
);
1627 asmlinkage
long sys_prctl(int option
, unsigned long arg2
, unsigned long arg3
,
1628 unsigned long arg4
, unsigned long arg5
)
1633 error
= security_task_prctl(option
, arg2
, arg3
, arg4
, arg5
);
1638 case PR_SET_PDEATHSIG
:
1640 if (sig
< 0 || sig
> _NSIG
) {
1644 current
->pdeath_signal
= sig
;
1646 case PR_GET_PDEATHSIG
:
1647 error
= put_user(current
->pdeath_signal
, (int __user
*)arg2
);
1649 case PR_GET_DUMPABLE
:
1650 if (current
->mm
->dumpable
)
1653 case PR_SET_DUMPABLE
:
1654 if (arg2
!= 0 && arg2
!= 1) {
1658 current
->mm
->dumpable
= arg2
;
1661 case PR_SET_UNALIGN
:
1662 error
= SET_UNALIGN_CTL(current
, arg2
);
1664 case PR_GET_UNALIGN
:
1665 error
= GET_UNALIGN_CTL(current
, arg2
);
1668 error
= SET_FPEMU_CTL(current
, arg2
);
1671 error
= GET_FPEMU_CTL(current
, arg2
);
1674 error
= SET_FPEXC_CTL(current
, arg2
);
1677 error
= GET_FPEXC_CTL(current
, arg2
);
1680 error
= PR_TIMING_STATISTICAL
;
1683 if (arg2
== PR_TIMING_STATISTICAL
)
1689 case PR_GET_KEEPCAPS
:
1690 if (current
->keep_capabilities
)
1693 case PR_SET_KEEPCAPS
:
1694 if (arg2
!= 0 && arg2
!= 1) {
1698 current
->keep_capabilities
= arg2
;
1701 struct task_struct
*me
= current
;
1702 unsigned char ncomm
[sizeof(me
->comm
)];
1704 ncomm
[sizeof(me
->comm
)-1] = 0;
1705 if (strncpy_from_user(ncomm
, (char __user
*)arg2
,
1706 sizeof(me
->comm
)-1) < 0)
1708 set_task_comm(me
, ncomm
);
1712 struct task_struct
*me
= current
;
1713 unsigned char tcomm
[sizeof(me
->comm
)];
1715 get_task_comm(tcomm
, me
);
1716 if (copy_to_user((char __user
*)arg2
, tcomm
, sizeof(tcomm
)))