2 * kexec.c - kexec system call
3 * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com>
5 * This source code is licensed under the GNU General Public License,
6 * Version 2. See the file COPYING for more details.
9 #define pr_fmt(fmt) "kexec: " fmt
11 #include <linux/capability.h>
13 #include <linux/file.h>
14 #include <linux/slab.h>
16 #include <linux/kexec.h>
17 #include <linux/mutex.h>
18 #include <linux/list.h>
19 #include <linux/highmem.h>
20 #include <linux/syscalls.h>
21 #include <linux/reboot.h>
22 #include <linux/ioport.h>
23 #include <linux/hardirq.h>
24 #include <linux/elf.h>
25 #include <linux/elfcore.h>
26 #include <linux/utsname.h>
27 #include <linux/numa.h>
28 #include <linux/suspend.h>
29 #include <linux/device.h>
30 #include <linux/freezer.h>
32 #include <linux/cpu.h>
33 #include <linux/console.h>
34 #include <linux/vmalloc.h>
35 #include <linux/swap.h>
36 #include <linux/syscore_ops.h>
37 #include <linux/compiler.h>
38 #include <linux/hugetlb.h>
41 #include <asm/uaccess.h>
43 #include <asm/sections.h>
45 #include <crypto/hash.h>
46 #include <crypto/sha.h>
48 /* Per cpu memory for storing cpu states in case of system crash. */
49 note_buf_t __percpu
*crash_notes
;
51 /* vmcoreinfo stuff */
52 static unsigned char vmcoreinfo_data
[VMCOREINFO_BYTES
];
53 u32 vmcoreinfo_note
[VMCOREINFO_NOTE_SIZE
/4];
54 size_t vmcoreinfo_size
;
55 size_t vmcoreinfo_max_size
= sizeof(vmcoreinfo_data
);
57 /* Flag to indicate we are going to kexec a new kernel */
58 bool kexec_in_progress
= false;
61 * Declare these symbols weak so that if architecture provides a purgatory,
62 * these will be overridden.
64 char __weak kexec_purgatory
[0];
65 size_t __weak kexec_purgatory_size
= 0;
67 #ifdef CONFIG_KEXEC_FILE
68 static int kexec_calculate_store_digests(struct kimage
*image
);
71 /* Location of the reserved area for the crash kernel */
72 struct resource crashk_res
= {
73 .name
= "Crash kernel",
76 .flags
= IORESOURCE_BUSY
| IORESOURCE_MEM
78 struct resource crashk_low_res
= {
79 .name
= "Crash kernel",
82 .flags
= IORESOURCE_BUSY
| IORESOURCE_MEM
85 int kexec_should_crash(struct task_struct
*p
)
87 if (in_interrupt() || !p
->pid
|| is_global_init(p
) || panic_on_oops
)
93 * When kexec transitions to the new kernel there is a one-to-one
94 * mapping between physical and virtual addresses. On processors
95 * where you can disable the MMU this is trivial, and easy. For
96 * others it is still a simple predictable page table to setup.
98 * In that environment kexec copies the new kernel to its final
99 * resting place. This means I can only support memory whose
100 * physical address can fit in an unsigned long. In particular
101 * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
102 * If the assembly stub has more restrictive requirements
103 * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
104 * defined more restrictively in <asm/kexec.h>.
106 * The code for the transition from the current kernel to the
107 * the new kernel is placed in the control_code_buffer, whose size
108 * is given by KEXEC_CONTROL_PAGE_SIZE. In the best case only a single
109 * page of memory is necessary, but some architectures require more.
110 * Because this memory must be identity mapped in the transition from
111 * virtual to physical addresses it must live in the range
112 * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
115 * The assembly stub in the control code buffer is passed a linked list
116 * of descriptor pages detailing the source pages of the new kernel,
117 * and the destination addresses of those source pages. As this data
118 * structure is not used in the context of the current OS, it must
121 * The code has been made to work with highmem pages and will use a
122 * destination page in its final resting place (if it happens
123 * to allocate it). The end product of this is that most of the
124 * physical address space, and most of RAM can be used.
126 * Future directions include:
127 * - allocating a page table with the control code buffer identity
128 * mapped, to simplify machine_kexec and make kexec_on_panic more
133 * KIMAGE_NO_DEST is an impossible destination address..., for
134 * allocating pages whose destination address we do not care about.
136 #define KIMAGE_NO_DEST (-1UL)
138 static int kimage_is_destination_range(struct kimage
*image
,
139 unsigned long start
, unsigned long end
);
140 static struct page
*kimage_alloc_page(struct kimage
*image
,
144 static int copy_user_segment_list(struct kimage
*image
,
145 unsigned long nr_segments
,
146 struct kexec_segment __user
*segments
)
149 size_t segment_bytes
;
151 /* Read in the segments */
152 image
->nr_segments
= nr_segments
;
153 segment_bytes
= nr_segments
* sizeof(*segments
);
154 ret
= copy_from_user(image
->segment
, segments
, segment_bytes
);
161 static int sanity_check_segment_list(struct kimage
*image
)
164 unsigned long nr_segments
= image
->nr_segments
;
167 * Verify we have good destination addresses. The caller is
168 * responsible for making certain we don't attempt to load
169 * the new image into invalid or reserved areas of RAM. This
170 * just verifies it is an address we can use.
172 * Since the kernel does everything in page size chunks ensure
173 * the destination addresses are page aligned. Too many
174 * special cases crop of when we don't do this. The most
175 * insidious is getting overlapping destination addresses
176 * simply because addresses are changed to page size
179 result
= -EADDRNOTAVAIL
;
180 for (i
= 0; i
< nr_segments
; i
++) {
181 unsigned long mstart
, mend
;
183 mstart
= image
->segment
[i
].mem
;
184 mend
= mstart
+ image
->segment
[i
].memsz
;
185 if ((mstart
& ~PAGE_MASK
) || (mend
& ~PAGE_MASK
))
187 if (mend
>= KEXEC_DESTINATION_MEMORY_LIMIT
)
191 /* Verify our destination addresses do not overlap.
192 * If we alloed overlapping destination addresses
193 * through very weird things can happen with no
194 * easy explanation as one segment stops on another.
197 for (i
= 0; i
< nr_segments
; i
++) {
198 unsigned long mstart
, mend
;
201 mstart
= image
->segment
[i
].mem
;
202 mend
= mstart
+ image
->segment
[i
].memsz
;
203 for (j
= 0; j
< i
; j
++) {
204 unsigned long pstart
, pend
;
205 pstart
= image
->segment
[j
].mem
;
206 pend
= pstart
+ image
->segment
[j
].memsz
;
207 /* Do the segments overlap ? */
208 if ((mend
> pstart
) && (mstart
< pend
))
213 /* Ensure our buffer sizes are strictly less than
214 * our memory sizes. This should always be the case,
215 * and it is easier to check up front than to be surprised
219 for (i
= 0; i
< nr_segments
; i
++) {
220 if (image
->segment
[i
].bufsz
> image
->segment
[i
].memsz
)
225 * Verify we have good destination addresses. Normally
226 * the caller is responsible for making certain we don't
227 * attempt to load the new image into invalid or reserved
228 * areas of RAM. But crash kernels are preloaded into a
229 * reserved area of ram. We must ensure the addresses
230 * are in the reserved area otherwise preloading the
231 * kernel could corrupt things.
234 if (image
->type
== KEXEC_TYPE_CRASH
) {
235 result
= -EADDRNOTAVAIL
;
236 for (i
= 0; i
< nr_segments
; i
++) {
237 unsigned long mstart
, mend
;
239 mstart
= image
->segment
[i
].mem
;
240 mend
= mstart
+ image
->segment
[i
].memsz
- 1;
241 /* Ensure we are within the crash kernel limits */
242 if ((mstart
< crashk_res
.start
) ||
243 (mend
> crashk_res
.end
))
251 static struct kimage
*do_kimage_alloc_init(void)
253 struct kimage
*image
;
255 /* Allocate a controlling structure */
256 image
= kzalloc(sizeof(*image
), GFP_KERNEL
);
261 image
->entry
= &image
->head
;
262 image
->last_entry
= &image
->head
;
263 image
->control_page
= ~0; /* By default this does not apply */
264 image
->type
= KEXEC_TYPE_DEFAULT
;
266 /* Initialize the list of control pages */
267 INIT_LIST_HEAD(&image
->control_pages
);
269 /* Initialize the list of destination pages */
270 INIT_LIST_HEAD(&image
->dest_pages
);
272 /* Initialize the list of unusable pages */
273 INIT_LIST_HEAD(&image
->unusable_pages
);
278 static void kimage_free_page_list(struct list_head
*list
);
280 static int kimage_alloc_init(struct kimage
**rimage
, unsigned long entry
,
281 unsigned long nr_segments
,
282 struct kexec_segment __user
*segments
,
286 struct kimage
*image
;
287 bool kexec_on_panic
= flags
& KEXEC_ON_CRASH
;
289 if (kexec_on_panic
) {
290 /* Verify we have a valid entry point */
291 if ((entry
< crashk_res
.start
) || (entry
> crashk_res
.end
))
292 return -EADDRNOTAVAIL
;
295 /* Allocate and initialize a controlling structure */
296 image
= do_kimage_alloc_init();
300 image
->start
= entry
;
302 ret
= copy_user_segment_list(image
, nr_segments
, segments
);
306 ret
= sanity_check_segment_list(image
);
310 /* Enable the special crash kernel control page allocation policy. */
311 if (kexec_on_panic
) {
312 image
->control_page
= crashk_res
.start
;
313 image
->type
= KEXEC_TYPE_CRASH
;
317 * Find a location for the control code buffer, and add it
318 * the vector of segments so that it's pages will also be
319 * counted as destination pages.
322 image
->control_code_page
= kimage_alloc_control_pages(image
,
323 get_order(KEXEC_CONTROL_PAGE_SIZE
));
324 if (!image
->control_code_page
) {
325 pr_err("Could not allocate control_code_buffer\n");
329 if (!kexec_on_panic
) {
330 image
->swap_page
= kimage_alloc_control_pages(image
, 0);
331 if (!image
->swap_page
) {
332 pr_err("Could not allocate swap buffer\n");
333 goto out_free_control_pages
;
339 out_free_control_pages
:
340 kimage_free_page_list(&image
->control_pages
);
346 #ifdef CONFIG_KEXEC_FILE
347 static int copy_file_from_fd(int fd
, void **buf
, unsigned long *buf_len
)
349 struct fd f
= fdget(fd
);
358 ret
= vfs_getattr(&f
.file
->f_path
, &stat
);
362 if (stat
.size
> INT_MAX
) {
367 /* Don't hand 0 to vmalloc, it whines. */
368 if (stat
.size
== 0) {
373 *buf
= vmalloc(stat
.size
);
380 while (pos
< stat
.size
) {
381 bytes
= kernel_read(f
.file
, pos
, (char *)(*buf
) + pos
,
394 if (pos
!= stat
.size
) {
406 /* Architectures can provide this probe function */
407 int __weak
arch_kexec_kernel_image_probe(struct kimage
*image
, void *buf
,
408 unsigned long buf_len
)
413 void * __weak
arch_kexec_kernel_image_load(struct kimage
*image
)
415 return ERR_PTR(-ENOEXEC
);
418 void __weak
arch_kimage_file_post_load_cleanup(struct kimage
*image
)
422 int __weak
arch_kexec_kernel_verify_sig(struct kimage
*image
, void *buf
,
423 unsigned long buf_len
)
425 return -EKEYREJECTED
;
428 /* Apply relocations of type RELA */
430 arch_kexec_apply_relocations_add(const Elf_Ehdr
*ehdr
, Elf_Shdr
*sechdrs
,
433 pr_err("RELA relocation unsupported.\n");
437 /* Apply relocations of type REL */
439 arch_kexec_apply_relocations(const Elf_Ehdr
*ehdr
, Elf_Shdr
*sechdrs
,
442 pr_err("REL relocation unsupported.\n");
447 * Free up memory used by kernel, initrd, and command line. This is temporary
448 * memory allocation which is not needed any more after these buffers have
449 * been loaded into separate segments and have been copied elsewhere.
451 static void kimage_file_post_load_cleanup(struct kimage
*image
)
453 struct purgatory_info
*pi
= &image
->purgatory_info
;
455 vfree(image
->kernel_buf
);
456 image
->kernel_buf
= NULL
;
458 vfree(image
->initrd_buf
);
459 image
->initrd_buf
= NULL
;
461 kfree(image
->cmdline_buf
);
462 image
->cmdline_buf
= NULL
;
464 vfree(pi
->purgatory_buf
);
465 pi
->purgatory_buf
= NULL
;
470 /* See if architecture has anything to cleanup post load */
471 arch_kimage_file_post_load_cleanup(image
);
474 * Above call should have called into bootloader to free up
475 * any data stored in kimage->image_loader_data. It should
476 * be ok now to free it up.
478 kfree(image
->image_loader_data
);
479 image
->image_loader_data
= NULL
;
483 * In file mode list of segments is prepared by kernel. Copy relevant
484 * data from user space, do error checking, prepare segment list
487 kimage_file_prepare_segments(struct kimage
*image
, int kernel_fd
, int initrd_fd
,
488 const char __user
*cmdline_ptr
,
489 unsigned long cmdline_len
, unsigned flags
)
494 ret
= copy_file_from_fd(kernel_fd
, &image
->kernel_buf
,
495 &image
->kernel_buf_len
);
499 /* Call arch image probe handlers */
500 ret
= arch_kexec_kernel_image_probe(image
, image
->kernel_buf
,
501 image
->kernel_buf_len
);
506 #ifdef CONFIG_KEXEC_VERIFY_SIG
507 ret
= arch_kexec_kernel_verify_sig(image
, image
->kernel_buf
,
508 image
->kernel_buf_len
);
510 pr_debug("kernel signature verification failed.\n");
513 pr_debug("kernel signature verification successful.\n");
515 /* It is possible that there no initramfs is being loaded */
516 if (!(flags
& KEXEC_FILE_NO_INITRAMFS
)) {
517 ret
= copy_file_from_fd(initrd_fd
, &image
->initrd_buf
,
518 &image
->initrd_buf_len
);
524 image
->cmdline_buf
= kzalloc(cmdline_len
, GFP_KERNEL
);
525 if (!image
->cmdline_buf
) {
530 ret
= copy_from_user(image
->cmdline_buf
, cmdline_ptr
,
537 image
->cmdline_buf_len
= cmdline_len
;
539 /* command line should be a string with last byte null */
540 if (image
->cmdline_buf
[cmdline_len
- 1] != '\0') {
546 /* Call arch image load handlers */
547 ldata
= arch_kexec_kernel_image_load(image
);
550 ret
= PTR_ERR(ldata
);
554 image
->image_loader_data
= ldata
;
556 /* In case of error, free up all allocated memory in this function */
558 kimage_file_post_load_cleanup(image
);
563 kimage_file_alloc_init(struct kimage
**rimage
, int kernel_fd
,
564 int initrd_fd
, const char __user
*cmdline_ptr
,
565 unsigned long cmdline_len
, unsigned long flags
)
568 struct kimage
*image
;
569 bool kexec_on_panic
= flags
& KEXEC_FILE_ON_CRASH
;
571 image
= do_kimage_alloc_init();
575 image
->file_mode
= 1;
577 if (kexec_on_panic
) {
578 /* Enable special crash kernel control page alloc policy. */
579 image
->control_page
= crashk_res
.start
;
580 image
->type
= KEXEC_TYPE_CRASH
;
583 ret
= kimage_file_prepare_segments(image
, kernel_fd
, initrd_fd
,
584 cmdline_ptr
, cmdline_len
, flags
);
588 ret
= sanity_check_segment_list(image
);
590 goto out_free_post_load_bufs
;
593 image
->control_code_page
= kimage_alloc_control_pages(image
,
594 get_order(KEXEC_CONTROL_PAGE_SIZE
));
595 if (!image
->control_code_page
) {
596 pr_err("Could not allocate control_code_buffer\n");
597 goto out_free_post_load_bufs
;
600 if (!kexec_on_panic
) {
601 image
->swap_page
= kimage_alloc_control_pages(image
, 0);
602 if (!image
->swap_page
) {
603 pr_err("Could not allocate swap buffer\n");
604 goto out_free_control_pages
;
610 out_free_control_pages
:
611 kimage_free_page_list(&image
->control_pages
);
612 out_free_post_load_bufs
:
613 kimage_file_post_load_cleanup(image
);
618 #else /* CONFIG_KEXEC_FILE */
619 static inline void kimage_file_post_load_cleanup(struct kimage
*image
) { }
620 #endif /* CONFIG_KEXEC_FILE */
622 static int kimage_is_destination_range(struct kimage
*image
,
628 for (i
= 0; i
< image
->nr_segments
; i
++) {
629 unsigned long mstart
, mend
;
631 mstart
= image
->segment
[i
].mem
;
632 mend
= mstart
+ image
->segment
[i
].memsz
;
633 if ((end
> mstart
) && (start
< mend
))
640 static struct page
*kimage_alloc_pages(gfp_t gfp_mask
, unsigned int order
)
644 pages
= alloc_pages(gfp_mask
, order
);
646 unsigned int count
, i
;
647 pages
->mapping
= NULL
;
648 set_page_private(pages
, order
);
650 for (i
= 0; i
< count
; i
++)
651 SetPageReserved(pages
+ i
);
657 static void kimage_free_pages(struct page
*page
)
659 unsigned int order
, count
, i
;
661 order
= page_private(page
);
663 for (i
= 0; i
< count
; i
++)
664 ClearPageReserved(page
+ i
);
665 __free_pages(page
, order
);
668 static void kimage_free_page_list(struct list_head
*list
)
670 struct list_head
*pos
, *next
;
672 list_for_each_safe(pos
, next
, list
) {
675 page
= list_entry(pos
, struct page
, lru
);
676 list_del(&page
->lru
);
677 kimage_free_pages(page
);
681 static struct page
*kimage_alloc_normal_control_pages(struct kimage
*image
,
684 /* Control pages are special, they are the intermediaries
685 * that are needed while we copy the rest of the pages
686 * to their final resting place. As such they must
687 * not conflict with either the destination addresses
688 * or memory the kernel is already using.
690 * The only case where we really need more than one of
691 * these are for architectures where we cannot disable
692 * the MMU and must instead generate an identity mapped
693 * page table for all of the memory.
695 * At worst this runs in O(N) of the image size.
697 struct list_head extra_pages
;
702 INIT_LIST_HEAD(&extra_pages
);
704 /* Loop while I can allocate a page and the page allocated
705 * is a destination page.
708 unsigned long pfn
, epfn
, addr
, eaddr
;
710 pages
= kimage_alloc_pages(KEXEC_CONTROL_MEMORY_GFP
, order
);
713 pfn
= page_to_pfn(pages
);
715 addr
= pfn
<< PAGE_SHIFT
;
716 eaddr
= epfn
<< PAGE_SHIFT
;
717 if ((epfn
>= (KEXEC_CONTROL_MEMORY_LIMIT
>> PAGE_SHIFT
)) ||
718 kimage_is_destination_range(image
, addr
, eaddr
)) {
719 list_add(&pages
->lru
, &extra_pages
);
725 /* Remember the allocated page... */
726 list_add(&pages
->lru
, &image
->control_pages
);
728 /* Because the page is already in it's destination
729 * location we will never allocate another page at
730 * that address. Therefore kimage_alloc_pages
731 * will not return it (again) and we don't need
732 * to give it an entry in image->segment[].
735 /* Deal with the destination pages I have inadvertently allocated.
737 * Ideally I would convert multi-page allocations into single
738 * page allocations, and add everything to image->dest_pages.
740 * For now it is simpler to just free the pages.
742 kimage_free_page_list(&extra_pages
);
747 static struct page
*kimage_alloc_crash_control_pages(struct kimage
*image
,
750 /* Control pages are special, they are the intermediaries
751 * that are needed while we copy the rest of the pages
752 * to their final resting place. As such they must
753 * not conflict with either the destination addresses
754 * or memory the kernel is already using.
756 * Control pages are also the only pags we must allocate
757 * when loading a crash kernel. All of the other pages
758 * are specified by the segments and we just memcpy
759 * into them directly.
761 * The only case where we really need more than one of
762 * these are for architectures where we cannot disable
763 * the MMU and must instead generate an identity mapped
764 * page table for all of the memory.
766 * Given the low demand this implements a very simple
767 * allocator that finds the first hole of the appropriate
768 * size in the reserved memory region, and allocates all
769 * of the memory up to and including the hole.
771 unsigned long hole_start
, hole_end
, size
;
775 size
= (1 << order
) << PAGE_SHIFT
;
776 hole_start
= (image
->control_page
+ (size
- 1)) & ~(size
- 1);
777 hole_end
= hole_start
+ size
- 1;
778 while (hole_end
<= crashk_res
.end
) {
781 if (hole_end
> KEXEC_CRASH_CONTROL_MEMORY_LIMIT
)
783 /* See if I overlap any of the segments */
784 for (i
= 0; i
< image
->nr_segments
; i
++) {
785 unsigned long mstart
, mend
;
787 mstart
= image
->segment
[i
].mem
;
788 mend
= mstart
+ image
->segment
[i
].memsz
- 1;
789 if ((hole_end
>= mstart
) && (hole_start
<= mend
)) {
790 /* Advance the hole to the end of the segment */
791 hole_start
= (mend
+ (size
- 1)) & ~(size
- 1);
792 hole_end
= hole_start
+ size
- 1;
796 /* If I don't overlap any segments I have found my hole! */
797 if (i
== image
->nr_segments
) {
798 pages
= pfn_to_page(hole_start
>> PAGE_SHIFT
);
803 image
->control_page
= hole_end
;
809 struct page
*kimage_alloc_control_pages(struct kimage
*image
,
812 struct page
*pages
= NULL
;
814 switch (image
->type
) {
815 case KEXEC_TYPE_DEFAULT
:
816 pages
= kimage_alloc_normal_control_pages(image
, order
);
818 case KEXEC_TYPE_CRASH
:
819 pages
= kimage_alloc_crash_control_pages(image
, order
);
826 static int kimage_add_entry(struct kimage
*image
, kimage_entry_t entry
)
828 if (*image
->entry
!= 0)
831 if (image
->entry
== image
->last_entry
) {
832 kimage_entry_t
*ind_page
;
835 page
= kimage_alloc_page(image
, GFP_KERNEL
, KIMAGE_NO_DEST
);
839 ind_page
= page_address(page
);
840 *image
->entry
= virt_to_phys(ind_page
) | IND_INDIRECTION
;
841 image
->entry
= ind_page
;
842 image
->last_entry
= ind_page
+
843 ((PAGE_SIZE
/sizeof(kimage_entry_t
)) - 1);
845 *image
->entry
= entry
;
852 static int kimage_set_destination(struct kimage
*image
,
853 unsigned long destination
)
857 destination
&= PAGE_MASK
;
858 result
= kimage_add_entry(image
, destination
| IND_DESTINATION
);
864 static int kimage_add_page(struct kimage
*image
, unsigned long page
)
869 result
= kimage_add_entry(image
, page
| IND_SOURCE
);
875 static void kimage_free_extra_pages(struct kimage
*image
)
877 /* Walk through and free any extra destination pages I may have */
878 kimage_free_page_list(&image
->dest_pages
);
880 /* Walk through and free any unusable pages I have cached */
881 kimage_free_page_list(&image
->unusable_pages
);
884 static void kimage_terminate(struct kimage
*image
)
886 if (*image
->entry
!= 0)
889 *image
->entry
= IND_DONE
;
892 #define for_each_kimage_entry(image, ptr, entry) \
893 for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
894 ptr = (entry & IND_INDIRECTION) ? \
895 phys_to_virt((entry & PAGE_MASK)) : ptr + 1)
897 static void kimage_free_entry(kimage_entry_t entry
)
901 page
= pfn_to_page(entry
>> PAGE_SHIFT
);
902 kimage_free_pages(page
);
905 static void kimage_free(struct kimage
*image
)
907 kimage_entry_t
*ptr
, entry
;
908 kimage_entry_t ind
= 0;
913 kimage_free_extra_pages(image
);
914 for_each_kimage_entry(image
, ptr
, entry
) {
915 if (entry
& IND_INDIRECTION
) {
916 /* Free the previous indirection page */
917 if (ind
& IND_INDIRECTION
)
918 kimage_free_entry(ind
);
919 /* Save this indirection page until we are
923 } else if (entry
& IND_SOURCE
)
924 kimage_free_entry(entry
);
926 /* Free the final indirection page */
927 if (ind
& IND_INDIRECTION
)
928 kimage_free_entry(ind
);
930 /* Handle any machine specific cleanup */
931 machine_kexec_cleanup(image
);
933 /* Free the kexec control pages... */
934 kimage_free_page_list(&image
->control_pages
);
937 * Free up any temporary buffers allocated. This might hit if
938 * error occurred much later after buffer allocation.
940 if (image
->file_mode
)
941 kimage_file_post_load_cleanup(image
);
946 static kimage_entry_t
*kimage_dst_used(struct kimage
*image
,
949 kimage_entry_t
*ptr
, entry
;
950 unsigned long destination
= 0;
952 for_each_kimage_entry(image
, ptr
, entry
) {
953 if (entry
& IND_DESTINATION
)
954 destination
= entry
& PAGE_MASK
;
955 else if (entry
& IND_SOURCE
) {
956 if (page
== destination
)
958 destination
+= PAGE_SIZE
;
965 static struct page
*kimage_alloc_page(struct kimage
*image
,
967 unsigned long destination
)
970 * Here we implement safeguards to ensure that a source page
971 * is not copied to its destination page before the data on
972 * the destination page is no longer useful.
974 * To do this we maintain the invariant that a source page is
975 * either its own destination page, or it is not a
976 * destination page at all.
978 * That is slightly stronger than required, but the proof
979 * that no problems will not occur is trivial, and the
980 * implementation is simply to verify.
982 * When allocating all pages normally this algorithm will run
983 * in O(N) time, but in the worst case it will run in O(N^2)
984 * time. If the runtime is a problem the data structures can
991 * Walk through the list of destination pages, and see if I
994 list_for_each_entry(page
, &image
->dest_pages
, lru
) {
995 addr
= page_to_pfn(page
) << PAGE_SHIFT
;
996 if (addr
== destination
) {
997 list_del(&page
->lru
);
1003 kimage_entry_t
*old
;
1005 /* Allocate a page, if we run out of memory give up */
1006 page
= kimage_alloc_pages(gfp_mask
, 0);
1009 /* If the page cannot be used file it away */
1010 if (page_to_pfn(page
) >
1011 (KEXEC_SOURCE_MEMORY_LIMIT
>> PAGE_SHIFT
)) {
1012 list_add(&page
->lru
, &image
->unusable_pages
);
1015 addr
= page_to_pfn(page
) << PAGE_SHIFT
;
1017 /* If it is the destination page we want use it */
1018 if (addr
== destination
)
1021 /* If the page is not a destination page use it */
1022 if (!kimage_is_destination_range(image
, addr
,
1027 * I know that the page is someones destination page.
1028 * See if there is already a source page for this
1029 * destination page. And if so swap the source pages.
1031 old
= kimage_dst_used(image
, addr
);
1034 unsigned long old_addr
;
1035 struct page
*old_page
;
1037 old_addr
= *old
& PAGE_MASK
;
1038 old_page
= pfn_to_page(old_addr
>> PAGE_SHIFT
);
1039 copy_highpage(page
, old_page
);
1040 *old
= addr
| (*old
& ~PAGE_MASK
);
1042 /* The old page I have found cannot be a
1043 * destination page, so return it if it's
1044 * gfp_flags honor the ones passed in.
1046 if (!(gfp_mask
& __GFP_HIGHMEM
) &&
1047 PageHighMem(old_page
)) {
1048 kimage_free_pages(old_page
);
1055 /* Place the page on the destination list I
1056 * will use it later.
1058 list_add(&page
->lru
, &image
->dest_pages
);
1065 static int kimage_load_normal_segment(struct kimage
*image
,
1066 struct kexec_segment
*segment
)
1068 unsigned long maddr
;
1069 size_t ubytes
, mbytes
;
1071 unsigned char __user
*buf
= NULL
;
1072 unsigned char *kbuf
= NULL
;
1075 if (image
->file_mode
)
1076 kbuf
= segment
->kbuf
;
1079 ubytes
= segment
->bufsz
;
1080 mbytes
= segment
->memsz
;
1081 maddr
= segment
->mem
;
1083 result
= kimage_set_destination(image
, maddr
);
1090 size_t uchunk
, mchunk
;
1092 page
= kimage_alloc_page(image
, GFP_HIGHUSER
, maddr
);
1097 result
= kimage_add_page(image
, page_to_pfn(page
)
1103 /* Start with a clear page */
1105 ptr
+= maddr
& ~PAGE_MASK
;
1106 mchunk
= min_t(size_t, mbytes
,
1107 PAGE_SIZE
- (maddr
& ~PAGE_MASK
));
1108 uchunk
= min(ubytes
, mchunk
);
1110 /* For file based kexec, source pages are in kernel memory */
1111 if (image
->file_mode
)
1112 memcpy(ptr
, kbuf
, uchunk
);
1114 result
= copy_from_user(ptr
, buf
, uchunk
);
1122 if (image
->file_mode
)
1132 static int kimage_load_crash_segment(struct kimage
*image
,
1133 struct kexec_segment
*segment
)
1135 /* For crash dumps kernels we simply copy the data from
1136 * user space to it's destination.
1137 * We do things a page at a time for the sake of kmap.
1139 unsigned long maddr
;
1140 size_t ubytes
, mbytes
;
1142 unsigned char __user
*buf
= NULL
;
1143 unsigned char *kbuf
= NULL
;
1146 if (image
->file_mode
)
1147 kbuf
= segment
->kbuf
;
1150 ubytes
= segment
->bufsz
;
1151 mbytes
= segment
->memsz
;
1152 maddr
= segment
->mem
;
1156 size_t uchunk
, mchunk
;
1158 page
= pfn_to_page(maddr
>> PAGE_SHIFT
);
1164 ptr
+= maddr
& ~PAGE_MASK
;
1165 mchunk
= min_t(size_t, mbytes
,
1166 PAGE_SIZE
- (maddr
& ~PAGE_MASK
));
1167 uchunk
= min(ubytes
, mchunk
);
1168 if (mchunk
> uchunk
) {
1169 /* Zero the trailing part of the page */
1170 memset(ptr
+ uchunk
, 0, mchunk
- uchunk
);
1173 /* For file based kexec, source pages are in kernel memory */
1174 if (image
->file_mode
)
1175 memcpy(ptr
, kbuf
, uchunk
);
1177 result
= copy_from_user(ptr
, buf
, uchunk
);
1178 kexec_flush_icache_page(page
);
1186 if (image
->file_mode
)
1196 static int kimage_load_segment(struct kimage
*image
,
1197 struct kexec_segment
*segment
)
1199 int result
= -ENOMEM
;
1201 switch (image
->type
) {
1202 case KEXEC_TYPE_DEFAULT
:
1203 result
= kimage_load_normal_segment(image
, segment
);
1205 case KEXEC_TYPE_CRASH
:
1206 result
= kimage_load_crash_segment(image
, segment
);
1214 * Exec Kernel system call: for obvious reasons only root may call it.
1216 * This call breaks up into three pieces.
1217 * - A generic part which loads the new kernel from the current
1218 * address space, and very carefully places the data in the
1221 * - A generic part that interacts with the kernel and tells all of
1222 * the devices to shut down. Preventing on-going dmas, and placing
1223 * the devices in a consistent state so a later kernel can
1224 * reinitialize them.
1226 * - A machine specific part that includes the syscall number
1227 * and then copies the image to it's final destination. And
1228 * jumps into the image at entry.
1230 * kexec does not sync, or unmount filesystems so if you need
1231 * that to happen you need to do that yourself.
1233 struct kimage
*kexec_image
;
1234 struct kimage
*kexec_crash_image
;
1235 int kexec_load_disabled
;
1237 static DEFINE_MUTEX(kexec_mutex
);
1239 SYSCALL_DEFINE4(kexec_load
, unsigned long, entry
, unsigned long, nr_segments
,
1240 struct kexec_segment __user
*, segments
, unsigned long, flags
)
1242 struct kimage
**dest_image
, *image
;
1245 /* We only trust the superuser with rebooting the system. */
1246 if (!capable(CAP_SYS_BOOT
) || kexec_load_disabled
)
1250 * Verify we have a legal set of flags
1251 * This leaves us room for future extensions.
1253 if ((flags
& KEXEC_FLAGS
) != (flags
& ~KEXEC_ARCH_MASK
))
1256 /* Verify we are on the appropriate architecture */
1257 if (((flags
& KEXEC_ARCH_MASK
) != KEXEC_ARCH
) &&
1258 ((flags
& KEXEC_ARCH_MASK
) != KEXEC_ARCH_DEFAULT
))
1261 /* Put an artificial cap on the number
1262 * of segments passed to kexec_load.
1264 if (nr_segments
> KEXEC_SEGMENT_MAX
)
1270 /* Because we write directly to the reserved memory
1271 * region when loading crash kernels we need a mutex here to
1272 * prevent multiple crash kernels from attempting to load
1273 * simultaneously, and to prevent a crash kernel from loading
1274 * over the top of a in use crash kernel.
1276 * KISS: always take the mutex.
1278 if (!mutex_trylock(&kexec_mutex
))
1281 dest_image
= &kexec_image
;
1282 if (flags
& KEXEC_ON_CRASH
)
1283 dest_image
= &kexec_crash_image
;
1284 if (nr_segments
> 0) {
1287 if (flags
& KEXEC_ON_CRASH
) {
1289 * Loading another kernel to switch to if this one
1290 * crashes. Free any current crash dump kernel before
1294 kimage_free(xchg(&kexec_crash_image
, NULL
));
1295 result
= kimage_alloc_init(&image
, entry
, nr_segments
,
1297 crash_map_reserved_pages();
1299 /* Loading another kernel to reboot into. */
1301 result
= kimage_alloc_init(&image
, entry
, nr_segments
,
1307 if (flags
& KEXEC_PRESERVE_CONTEXT
)
1308 image
->preserve_context
= 1;
1309 result
= machine_kexec_prepare(image
);
1313 for (i
= 0; i
< nr_segments
; i
++) {
1314 result
= kimage_load_segment(image
, &image
->segment
[i
]);
1318 kimage_terminate(image
);
1319 if (flags
& KEXEC_ON_CRASH
)
1320 crash_unmap_reserved_pages();
1322 /* Install the new kernel, and Uninstall the old */
1323 image
= xchg(dest_image
, image
);
1326 mutex_unlock(&kexec_mutex
);
1333 * Add and remove page tables for crashkernel memory
1335 * Provide an empty default implementation here -- architecture
1336 * code may override this
1338 void __weak
crash_map_reserved_pages(void)
1341 void __weak
crash_unmap_reserved_pages(void)
1344 #ifdef CONFIG_COMPAT
1345 COMPAT_SYSCALL_DEFINE4(kexec_load
, compat_ulong_t
, entry
,
1346 compat_ulong_t
, nr_segments
,
1347 struct compat_kexec_segment __user
*, segments
,
1348 compat_ulong_t
, flags
)
1350 struct compat_kexec_segment in
;
1351 struct kexec_segment out
, __user
*ksegments
;
1352 unsigned long i
, result
;
1354 /* Don't allow clients that don't understand the native
1355 * architecture to do anything.
1357 if ((flags
& KEXEC_ARCH_MASK
) == KEXEC_ARCH_DEFAULT
)
1360 if (nr_segments
> KEXEC_SEGMENT_MAX
)
1363 ksegments
= compat_alloc_user_space(nr_segments
* sizeof(out
));
1364 for (i
= 0; i
< nr_segments
; i
++) {
1365 result
= copy_from_user(&in
, &segments
[i
], sizeof(in
));
1369 out
.buf
= compat_ptr(in
.buf
);
1370 out
.bufsz
= in
.bufsz
;
1372 out
.memsz
= in
.memsz
;
1374 result
= copy_to_user(&ksegments
[i
], &out
, sizeof(out
));
1379 return sys_kexec_load(entry
, nr_segments
, ksegments
, flags
);
1383 #ifdef CONFIG_KEXEC_FILE
1384 SYSCALL_DEFINE5(kexec_file_load
, int, kernel_fd
, int, initrd_fd
,
1385 unsigned long, cmdline_len
, const char __user
*, cmdline_ptr
,
1386 unsigned long, flags
)
1389 struct kimage
**dest_image
, *image
;
1391 /* We only trust the superuser with rebooting the system. */
1392 if (!capable(CAP_SYS_BOOT
) || kexec_load_disabled
)
1395 /* Make sure we have a legal set of flags */
1396 if (flags
!= (flags
& KEXEC_FILE_FLAGS
))
1401 if (!mutex_trylock(&kexec_mutex
))
1404 dest_image
= &kexec_image
;
1405 if (flags
& KEXEC_FILE_ON_CRASH
)
1406 dest_image
= &kexec_crash_image
;
1408 if (flags
& KEXEC_FILE_UNLOAD
)
1412 * In case of crash, new kernel gets loaded in reserved region. It is
1413 * same memory where old crash kernel might be loaded. Free any
1414 * current crash dump kernel before we corrupt it.
1416 if (flags
& KEXEC_FILE_ON_CRASH
)
1417 kimage_free(xchg(&kexec_crash_image
, NULL
));
1419 ret
= kimage_file_alloc_init(&image
, kernel_fd
, initrd_fd
, cmdline_ptr
,
1420 cmdline_len
, flags
);
1424 ret
= machine_kexec_prepare(image
);
1428 ret
= kexec_calculate_store_digests(image
);
1432 for (i
= 0; i
< image
->nr_segments
; i
++) {
1433 struct kexec_segment
*ksegment
;
1435 ksegment
= &image
->segment
[i
];
1436 pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
1437 i
, ksegment
->buf
, ksegment
->bufsz
, ksegment
->mem
,
1440 ret
= kimage_load_segment(image
, &image
->segment
[i
]);
1445 kimage_terminate(image
);
1448 * Free up any temporary buffers allocated which are not needed
1449 * after image has been loaded
1451 kimage_file_post_load_cleanup(image
);
1453 image
= xchg(dest_image
, image
);
1455 mutex_unlock(&kexec_mutex
);
1460 #endif /* CONFIG_KEXEC_FILE */
1462 void crash_kexec(struct pt_regs
*regs
)
1464 /* Take the kexec_mutex here to prevent sys_kexec_load
1465 * running on one cpu from replacing the crash kernel
1466 * we are using after a panic on a different cpu.
1468 * If the crash kernel was not located in a fixed area
1469 * of memory the xchg(&kexec_crash_image) would be
1470 * sufficient. But since I reuse the memory...
1472 if (mutex_trylock(&kexec_mutex
)) {
1473 if (kexec_crash_image
) {
1474 struct pt_regs fixed_regs
;
1476 crash_setup_regs(&fixed_regs
, regs
);
1477 crash_save_vmcoreinfo();
1478 machine_crash_shutdown(&fixed_regs
);
1479 machine_kexec(kexec_crash_image
);
1481 mutex_unlock(&kexec_mutex
);
1485 size_t crash_get_memory_size(void)
1488 mutex_lock(&kexec_mutex
);
1489 if (crashk_res
.end
!= crashk_res
.start
)
1490 size
= resource_size(&crashk_res
);
1491 mutex_unlock(&kexec_mutex
);
1495 void __weak
crash_free_reserved_phys_range(unsigned long begin
,
1500 for (addr
= begin
; addr
< end
; addr
+= PAGE_SIZE
)
1501 free_reserved_page(pfn_to_page(addr
>> PAGE_SHIFT
));
1504 int crash_shrink_memory(unsigned long new_size
)
1507 unsigned long start
, end
;
1508 unsigned long old_size
;
1509 struct resource
*ram_res
;
1511 mutex_lock(&kexec_mutex
);
1513 if (kexec_crash_image
) {
1517 start
= crashk_res
.start
;
1518 end
= crashk_res
.end
;
1519 old_size
= (end
== 0) ? 0 : end
- start
+ 1;
1520 if (new_size
>= old_size
) {
1521 ret
= (new_size
== old_size
) ? 0 : -EINVAL
;
1525 ram_res
= kzalloc(sizeof(*ram_res
), GFP_KERNEL
);
1531 start
= roundup(start
, KEXEC_CRASH_MEM_ALIGN
);
1532 end
= roundup(start
+ new_size
, KEXEC_CRASH_MEM_ALIGN
);
1534 crash_map_reserved_pages();
1535 crash_free_reserved_phys_range(end
, crashk_res
.end
);
1537 if ((start
== end
) && (crashk_res
.parent
!= NULL
))
1538 release_resource(&crashk_res
);
1540 ram_res
->start
= end
;
1541 ram_res
->end
= crashk_res
.end
;
1542 ram_res
->flags
= IORESOURCE_BUSY
| IORESOURCE_MEM
;
1543 ram_res
->name
= "System RAM";
1545 crashk_res
.end
= end
- 1;
1547 insert_resource(&iomem_resource
, ram_res
);
1548 crash_unmap_reserved_pages();
1551 mutex_unlock(&kexec_mutex
);
1555 static u32
*append_elf_note(u32
*buf
, char *name
, unsigned type
, void *data
,
1558 struct elf_note note
;
1560 note
.n_namesz
= strlen(name
) + 1;
1561 note
.n_descsz
= data_len
;
1563 memcpy(buf
, ¬e
, sizeof(note
));
1564 buf
+= (sizeof(note
) + 3)/4;
1565 memcpy(buf
, name
, note
.n_namesz
);
1566 buf
+= (note
.n_namesz
+ 3)/4;
1567 memcpy(buf
, data
, note
.n_descsz
);
1568 buf
+= (note
.n_descsz
+ 3)/4;
1573 static void final_note(u32
*buf
)
1575 struct elf_note note
;
1580 memcpy(buf
, ¬e
, sizeof(note
));
1583 void crash_save_cpu(struct pt_regs
*regs
, int cpu
)
1585 struct elf_prstatus prstatus
;
1588 if ((cpu
< 0) || (cpu
>= nr_cpu_ids
))
1591 /* Using ELF notes here is opportunistic.
1592 * I need a well defined structure format
1593 * for the data I pass, and I need tags
1594 * on the data to indicate what information I have
1595 * squirrelled away. ELF notes happen to provide
1596 * all of that, so there is no need to invent something new.
1598 buf
= (u32
*)per_cpu_ptr(crash_notes
, cpu
);
1601 memset(&prstatus
, 0, sizeof(prstatus
));
1602 prstatus
.pr_pid
= current
->pid
;
1603 elf_core_copy_kernel_regs(&prstatus
.pr_reg
, regs
);
1604 buf
= append_elf_note(buf
, KEXEC_CORE_NOTE_NAME
, NT_PRSTATUS
,
1605 &prstatus
, sizeof(prstatus
));
1609 static int __init
crash_notes_memory_init(void)
1611 /* Allocate memory for saving cpu registers. */
1612 crash_notes
= alloc_percpu(note_buf_t
);
1614 pr_warn("Kexec: Memory allocation for saving cpu register states failed\n");
1619 subsys_initcall(crash_notes_memory_init
);
1623 * parsing the "crashkernel" commandline
1625 * this code is intended to be called from architecture specific code
1630 * This function parses command lines in the format
1632 * crashkernel=ramsize-range:size[,...][@offset]
1634 * The function returns 0 on success and -EINVAL on failure.
1636 static int __init
parse_crashkernel_mem(char *cmdline
,
1637 unsigned long long system_ram
,
1638 unsigned long long *crash_size
,
1639 unsigned long long *crash_base
)
1641 char *cur
= cmdline
, *tmp
;
1643 /* for each entry of the comma-separated list */
1645 unsigned long long start
, end
= ULLONG_MAX
, size
;
1647 /* get the start of the range */
1648 start
= memparse(cur
, &tmp
);
1650 pr_warn("crashkernel: Memory value expected\n");
1655 pr_warn("crashkernel: '-' expected\n");
1660 /* if no ':' is here, than we read the end */
1662 end
= memparse(cur
, &tmp
);
1664 pr_warn("crashkernel: Memory value expected\n");
1669 pr_warn("crashkernel: end <= start\n");
1675 pr_warn("crashkernel: ':' expected\n");
1680 size
= memparse(cur
, &tmp
);
1682 pr_warn("Memory value expected\n");
1686 if (size
>= system_ram
) {
1687 pr_warn("crashkernel: invalid size\n");
1692 if (system_ram
>= start
&& system_ram
< end
) {
1696 } while (*cur
++ == ',');
1698 if (*crash_size
> 0) {
1699 while (*cur
&& *cur
!= ' ' && *cur
!= '@')
1703 *crash_base
= memparse(cur
, &tmp
);
1705 pr_warn("Memory value expected after '@'\n");
1715 * That function parses "simple" (old) crashkernel command lines like
1717 * crashkernel=size[@offset]
1719 * It returns 0 on success and -EINVAL on failure.
1721 static int __init
parse_crashkernel_simple(char *cmdline
,
1722 unsigned long long *crash_size
,
1723 unsigned long long *crash_base
)
1725 char *cur
= cmdline
;
1727 *crash_size
= memparse(cmdline
, &cur
);
1728 if (cmdline
== cur
) {
1729 pr_warn("crashkernel: memory value expected\n");
1734 *crash_base
= memparse(cur
+1, &cur
);
1735 else if (*cur
!= ' ' && *cur
!= '\0') {
1736 pr_warn("crashkernel: unrecognized char\n");
1743 #define SUFFIX_HIGH 0
1744 #define SUFFIX_LOW 1
1745 #define SUFFIX_NULL 2
1746 static __initdata
char *suffix_tbl
[] = {
1747 [SUFFIX_HIGH
] = ",high",
1748 [SUFFIX_LOW
] = ",low",
1749 [SUFFIX_NULL
] = NULL
,
1753 * That function parses "suffix" crashkernel command lines like
1755 * crashkernel=size,[high|low]
1757 * It returns 0 on success and -EINVAL on failure.
1759 static int __init
parse_crashkernel_suffix(char *cmdline
,
1760 unsigned long long *crash_size
,
1763 char *cur
= cmdline
;
1765 *crash_size
= memparse(cmdline
, &cur
);
1766 if (cmdline
== cur
) {
1767 pr_warn("crashkernel: memory value expected\n");
1771 /* check with suffix */
1772 if (strncmp(cur
, suffix
, strlen(suffix
))) {
1773 pr_warn("crashkernel: unrecognized char\n");
1776 cur
+= strlen(suffix
);
1777 if (*cur
!= ' ' && *cur
!= '\0') {
1778 pr_warn("crashkernel: unrecognized char\n");
1785 static __init
char *get_last_crashkernel(char *cmdline
,
1789 char *p
= cmdline
, *ck_cmdline
= NULL
;
1791 /* find crashkernel and use the last one if there are more */
1792 p
= strstr(p
, name
);
1794 char *end_p
= strchr(p
, ' ');
1798 end_p
= p
+ strlen(p
);
1803 /* skip the one with any known suffix */
1804 for (i
= 0; suffix_tbl
[i
]; i
++) {
1805 q
= end_p
- strlen(suffix_tbl
[i
]);
1806 if (!strncmp(q
, suffix_tbl
[i
],
1807 strlen(suffix_tbl
[i
])))
1812 q
= end_p
- strlen(suffix
);
1813 if (!strncmp(q
, suffix
, strlen(suffix
)))
1817 p
= strstr(p
+1, name
);
1826 static int __init
__parse_crashkernel(char *cmdline
,
1827 unsigned long long system_ram
,
1828 unsigned long long *crash_size
,
1829 unsigned long long *crash_base
,
1833 char *first_colon
, *first_space
;
1836 BUG_ON(!crash_size
|| !crash_base
);
1840 ck_cmdline
= get_last_crashkernel(cmdline
, name
, suffix
);
1845 ck_cmdline
+= strlen(name
);
1848 return parse_crashkernel_suffix(ck_cmdline
, crash_size
,
1851 * if the commandline contains a ':', then that's the extended
1852 * syntax -- if not, it must be the classic syntax
1854 first_colon
= strchr(ck_cmdline
, ':');
1855 first_space
= strchr(ck_cmdline
, ' ');
1856 if (first_colon
&& (!first_space
|| first_colon
< first_space
))
1857 return parse_crashkernel_mem(ck_cmdline
, system_ram
,
1858 crash_size
, crash_base
);
1860 return parse_crashkernel_simple(ck_cmdline
, crash_size
, crash_base
);
1864 * That function is the entry point for command line parsing and should be
1865 * called from the arch-specific code.
1867 int __init
parse_crashkernel(char *cmdline
,
1868 unsigned long long system_ram
,
1869 unsigned long long *crash_size
,
1870 unsigned long long *crash_base
)
1872 return __parse_crashkernel(cmdline
, system_ram
, crash_size
, crash_base
,
1873 "crashkernel=", NULL
);
1876 int __init
parse_crashkernel_high(char *cmdline
,
1877 unsigned long long system_ram
,
1878 unsigned long long *crash_size
,
1879 unsigned long long *crash_base
)
1881 return __parse_crashkernel(cmdline
, system_ram
, crash_size
, crash_base
,
1882 "crashkernel=", suffix_tbl
[SUFFIX_HIGH
]);
1885 int __init
parse_crashkernel_low(char *cmdline
,
1886 unsigned long long system_ram
,
1887 unsigned long long *crash_size
,
1888 unsigned long long *crash_base
)
1890 return __parse_crashkernel(cmdline
, system_ram
, crash_size
, crash_base
,
1891 "crashkernel=", suffix_tbl
[SUFFIX_LOW
]);
1894 static void update_vmcoreinfo_note(void)
1896 u32
*buf
= vmcoreinfo_note
;
1898 if (!vmcoreinfo_size
)
1900 buf
= append_elf_note(buf
, VMCOREINFO_NOTE_NAME
, 0, vmcoreinfo_data
,
1905 void crash_save_vmcoreinfo(void)
1907 vmcoreinfo_append_str("CRASHTIME=%ld\n", get_seconds());
1908 update_vmcoreinfo_note();
1911 void vmcoreinfo_append_str(const char *fmt
, ...)
1917 va_start(args
, fmt
);
1918 r
= vscnprintf(buf
, sizeof(buf
), fmt
, args
);
1921 r
= min(r
, vmcoreinfo_max_size
- vmcoreinfo_size
);
1923 memcpy(&vmcoreinfo_data
[vmcoreinfo_size
], buf
, r
);
1925 vmcoreinfo_size
+= r
;
1929 * provide an empty default implementation here -- architecture
1930 * code may override this
1932 void __weak
arch_crash_save_vmcoreinfo(void)
1935 unsigned long __weak
paddr_vmcoreinfo_note(void)
1937 return __pa((unsigned long)(char *)&vmcoreinfo_note
);
1940 static int __init
crash_save_vmcoreinfo_init(void)
1942 VMCOREINFO_OSRELEASE(init_uts_ns
.name
.release
);
1943 VMCOREINFO_PAGESIZE(PAGE_SIZE
);
1945 VMCOREINFO_SYMBOL(init_uts_ns
);
1946 VMCOREINFO_SYMBOL(node_online_map
);
1948 VMCOREINFO_SYMBOL(swapper_pg_dir
);
1950 VMCOREINFO_SYMBOL(_stext
);
1951 VMCOREINFO_SYMBOL(vmap_area_list
);
1953 #ifndef CONFIG_NEED_MULTIPLE_NODES
1954 VMCOREINFO_SYMBOL(mem_map
);
1955 VMCOREINFO_SYMBOL(contig_page_data
);
1957 #ifdef CONFIG_SPARSEMEM
1958 VMCOREINFO_SYMBOL(mem_section
);
1959 VMCOREINFO_LENGTH(mem_section
, NR_SECTION_ROOTS
);
1960 VMCOREINFO_STRUCT_SIZE(mem_section
);
1961 VMCOREINFO_OFFSET(mem_section
, section_mem_map
);
1963 VMCOREINFO_STRUCT_SIZE(page
);
1964 VMCOREINFO_STRUCT_SIZE(pglist_data
);
1965 VMCOREINFO_STRUCT_SIZE(zone
);
1966 VMCOREINFO_STRUCT_SIZE(free_area
);
1967 VMCOREINFO_STRUCT_SIZE(list_head
);
1968 VMCOREINFO_SIZE(nodemask_t
);
1969 VMCOREINFO_OFFSET(page
, flags
);
1970 VMCOREINFO_OFFSET(page
, _count
);
1971 VMCOREINFO_OFFSET(page
, mapping
);
1972 VMCOREINFO_OFFSET(page
, lru
);
1973 VMCOREINFO_OFFSET(page
, _mapcount
);
1974 VMCOREINFO_OFFSET(page
, private);
1975 VMCOREINFO_OFFSET(pglist_data
, node_zones
);
1976 VMCOREINFO_OFFSET(pglist_data
, nr_zones
);
1977 #ifdef CONFIG_FLAT_NODE_MEM_MAP
1978 VMCOREINFO_OFFSET(pglist_data
, node_mem_map
);
1980 VMCOREINFO_OFFSET(pglist_data
, node_start_pfn
);
1981 VMCOREINFO_OFFSET(pglist_data
, node_spanned_pages
);
1982 VMCOREINFO_OFFSET(pglist_data
, node_id
);
1983 VMCOREINFO_OFFSET(zone
, free_area
);
1984 VMCOREINFO_OFFSET(zone
, vm_stat
);
1985 VMCOREINFO_OFFSET(zone
, spanned_pages
);
1986 VMCOREINFO_OFFSET(free_area
, free_list
);
1987 VMCOREINFO_OFFSET(list_head
, next
);
1988 VMCOREINFO_OFFSET(list_head
, prev
);
1989 VMCOREINFO_OFFSET(vmap_area
, va_start
);
1990 VMCOREINFO_OFFSET(vmap_area
, list
);
1991 VMCOREINFO_LENGTH(zone
.free_area
, MAX_ORDER
);
1992 log_buf_kexec_setup();
1993 VMCOREINFO_LENGTH(free_area
.free_list
, MIGRATE_TYPES
);
1994 VMCOREINFO_NUMBER(NR_FREE_PAGES
);
1995 VMCOREINFO_NUMBER(PG_lru
);
1996 VMCOREINFO_NUMBER(PG_private
);
1997 VMCOREINFO_NUMBER(PG_swapcache
);
1998 VMCOREINFO_NUMBER(PG_slab
);
1999 #ifdef CONFIG_MEMORY_FAILURE
2000 VMCOREINFO_NUMBER(PG_hwpoison
);
2002 VMCOREINFO_NUMBER(PG_head_mask
);
2003 VMCOREINFO_NUMBER(PAGE_BUDDY_MAPCOUNT_VALUE
);
2004 #ifdef CONFIG_HUGETLBFS
2005 VMCOREINFO_SYMBOL(free_huge_page
);
2008 arch_crash_save_vmcoreinfo();
2009 update_vmcoreinfo_note();
2014 subsys_initcall(crash_save_vmcoreinfo_init
);
2016 #ifdef CONFIG_KEXEC_FILE
2017 static int locate_mem_hole_top_down(unsigned long start
, unsigned long end
,
2018 struct kexec_buf
*kbuf
)
2020 struct kimage
*image
= kbuf
->image
;
2021 unsigned long temp_start
, temp_end
;
2023 temp_end
= min(end
, kbuf
->buf_max
);
2024 temp_start
= temp_end
- kbuf
->memsz
;
2027 /* align down start */
2028 temp_start
= temp_start
& (~(kbuf
->buf_align
- 1));
2030 if (temp_start
< start
|| temp_start
< kbuf
->buf_min
)
2033 temp_end
= temp_start
+ kbuf
->memsz
- 1;
2036 * Make sure this does not conflict with any of existing
2039 if (kimage_is_destination_range(image
, temp_start
, temp_end
)) {
2040 temp_start
= temp_start
- PAGE_SIZE
;
2044 /* We found a suitable memory range */
2048 /* If we are here, we found a suitable memory range */
2049 kbuf
->mem
= temp_start
;
2051 /* Success, stop navigating through remaining System RAM ranges */
2055 static int locate_mem_hole_bottom_up(unsigned long start
, unsigned long end
,
2056 struct kexec_buf
*kbuf
)
2058 struct kimage
*image
= kbuf
->image
;
2059 unsigned long temp_start
, temp_end
;
2061 temp_start
= max(start
, kbuf
->buf_min
);
2064 temp_start
= ALIGN(temp_start
, kbuf
->buf_align
);
2065 temp_end
= temp_start
+ kbuf
->memsz
- 1;
2067 if (temp_end
> end
|| temp_end
> kbuf
->buf_max
)
2070 * Make sure this does not conflict with any of existing
2073 if (kimage_is_destination_range(image
, temp_start
, temp_end
)) {
2074 temp_start
= temp_start
+ PAGE_SIZE
;
2078 /* We found a suitable memory range */
2082 /* If we are here, we found a suitable memory range */
2083 kbuf
->mem
= temp_start
;
2085 /* Success, stop navigating through remaining System RAM ranges */
2089 static int locate_mem_hole_callback(u64 start
, u64 end
, void *arg
)
2091 struct kexec_buf
*kbuf
= (struct kexec_buf
*)arg
;
2092 unsigned long sz
= end
- start
+ 1;
2094 /* Returning 0 will take to next memory range */
2095 if (sz
< kbuf
->memsz
)
2098 if (end
< kbuf
->buf_min
|| start
> kbuf
->buf_max
)
2102 * Allocate memory top down with-in ram range. Otherwise bottom up
2106 return locate_mem_hole_top_down(start
, end
, kbuf
);
2107 return locate_mem_hole_bottom_up(start
, end
, kbuf
);
2111 * Helper function for placing a buffer in a kexec segment. This assumes
2112 * that kexec_mutex is held.
2114 int kexec_add_buffer(struct kimage
*image
, char *buffer
, unsigned long bufsz
,
2115 unsigned long memsz
, unsigned long buf_align
,
2116 unsigned long buf_min
, unsigned long buf_max
,
2117 bool top_down
, unsigned long *load_addr
)
2120 struct kexec_segment
*ksegment
;
2121 struct kexec_buf buf
, *kbuf
;
2124 /* Currently adding segment this way is allowed only in file mode */
2125 if (!image
->file_mode
)
2128 if (image
->nr_segments
>= KEXEC_SEGMENT_MAX
)
2132 * Make sure we are not trying to add buffer after allocating
2133 * control pages. All segments need to be placed first before
2134 * any control pages are allocated. As control page allocation
2135 * logic goes through list of segments to make sure there are
2136 * no destination overlaps.
2138 if (!list_empty(&image
->control_pages
)) {
2143 memset(&buf
, 0, sizeof(struct kexec_buf
));
2145 kbuf
->image
= image
;
2146 kbuf
->buffer
= buffer
;
2147 kbuf
->bufsz
= bufsz
;
2149 kbuf
->memsz
= ALIGN(memsz
, PAGE_SIZE
);
2150 kbuf
->buf_align
= max(buf_align
, PAGE_SIZE
);
2151 kbuf
->buf_min
= buf_min
;
2152 kbuf
->buf_max
= buf_max
;
2153 kbuf
->top_down
= top_down
;
2155 /* Walk the RAM ranges and allocate a suitable range for the buffer */
2156 if (image
->type
== KEXEC_TYPE_CRASH
)
2157 ret
= walk_iomem_res("Crash kernel",
2158 IORESOURCE_MEM
| IORESOURCE_BUSY
,
2159 crashk_res
.start
, crashk_res
.end
, kbuf
,
2160 locate_mem_hole_callback
);
2162 ret
= walk_system_ram_res(0, -1, kbuf
,
2163 locate_mem_hole_callback
);
2165 /* A suitable memory range could not be found for buffer */
2166 return -EADDRNOTAVAIL
;
2169 /* Found a suitable memory range */
2170 ksegment
= &image
->segment
[image
->nr_segments
];
2171 ksegment
->kbuf
= kbuf
->buffer
;
2172 ksegment
->bufsz
= kbuf
->bufsz
;
2173 ksegment
->mem
= kbuf
->mem
;
2174 ksegment
->memsz
= kbuf
->memsz
;
2175 image
->nr_segments
++;
2176 *load_addr
= ksegment
->mem
;
2180 /* Calculate and store the digest of segments */
2181 static int kexec_calculate_store_digests(struct kimage
*image
)
2183 struct crypto_shash
*tfm
;
2184 struct shash_desc
*desc
;
2185 int ret
= 0, i
, j
, zero_buf_sz
, sha_region_sz
;
2186 size_t desc_size
, nullsz
;
2189 struct kexec_sha_region
*sha_regions
;
2190 struct purgatory_info
*pi
= &image
->purgatory_info
;
2192 zero_buf
= __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT
);
2193 zero_buf_sz
= PAGE_SIZE
;
2195 tfm
= crypto_alloc_shash("sha256", 0, 0);
2201 desc_size
= crypto_shash_descsize(tfm
) + sizeof(*desc
);
2202 desc
= kzalloc(desc_size
, GFP_KERNEL
);
2208 sha_region_sz
= KEXEC_SEGMENT_MAX
* sizeof(struct kexec_sha_region
);
2209 sha_regions
= vzalloc(sha_region_sz
);
2216 ret
= crypto_shash_init(desc
);
2218 goto out_free_sha_regions
;
2220 digest
= kzalloc(SHA256_DIGEST_SIZE
, GFP_KERNEL
);
2223 goto out_free_sha_regions
;
2226 for (j
= i
= 0; i
< image
->nr_segments
; i
++) {
2227 struct kexec_segment
*ksegment
;
2229 ksegment
= &image
->segment
[i
];
2231 * Skip purgatory as it will be modified once we put digest
2232 * info in purgatory.
2234 if (ksegment
->kbuf
== pi
->purgatory_buf
)
2237 ret
= crypto_shash_update(desc
, ksegment
->kbuf
,
2243 * Assume rest of the buffer is filled with zero and
2244 * update digest accordingly.
2246 nullsz
= ksegment
->memsz
- ksegment
->bufsz
;
2248 unsigned long bytes
= nullsz
;
2250 if (bytes
> zero_buf_sz
)
2251 bytes
= zero_buf_sz
;
2252 ret
= crypto_shash_update(desc
, zero_buf
, bytes
);
2261 sha_regions
[j
].start
= ksegment
->mem
;
2262 sha_regions
[j
].len
= ksegment
->memsz
;
2267 ret
= crypto_shash_final(desc
, digest
);
2269 goto out_free_digest
;
2270 ret
= kexec_purgatory_get_set_symbol(image
, "sha_regions",
2271 sha_regions
, sha_region_sz
, 0);
2273 goto out_free_digest
;
2275 ret
= kexec_purgatory_get_set_symbol(image
, "sha256_digest",
2276 digest
, SHA256_DIGEST_SIZE
, 0);
2278 goto out_free_digest
;
2283 out_free_sha_regions
:
2293 /* Actually load purgatory. Lot of code taken from kexec-tools */
2294 static int __kexec_load_purgatory(struct kimage
*image
, unsigned long min
,
2295 unsigned long max
, int top_down
)
2297 struct purgatory_info
*pi
= &image
->purgatory_info
;
2298 unsigned long align
, buf_align
, bss_align
, buf_sz
, bss_sz
, bss_pad
;
2299 unsigned long memsz
, entry
, load_addr
, curr_load_addr
, bss_addr
, offset
;
2300 unsigned char *buf_addr
, *src
;
2301 int i
, ret
= 0, entry_sidx
= -1;
2302 const Elf_Shdr
*sechdrs_c
;
2303 Elf_Shdr
*sechdrs
= NULL
;
2304 void *purgatory_buf
= NULL
;
2307 * sechdrs_c points to section headers in purgatory and are read
2308 * only. No modifications allowed.
2310 sechdrs_c
= (void *)pi
->ehdr
+ pi
->ehdr
->e_shoff
;
2313 * We can not modify sechdrs_c[] and its fields. It is read only.
2314 * Copy it over to a local copy where one can store some temporary
2315 * data and free it at the end. We need to modify ->sh_addr and
2316 * ->sh_offset fields to keep track of permanent and temporary
2317 * locations of sections.
2319 sechdrs
= vzalloc(pi
->ehdr
->e_shnum
* sizeof(Elf_Shdr
));
2323 memcpy(sechdrs
, sechdrs_c
, pi
->ehdr
->e_shnum
* sizeof(Elf_Shdr
));
2326 * We seem to have multiple copies of sections. First copy is which
2327 * is embedded in kernel in read only section. Some of these sections
2328 * will be copied to a temporary buffer and relocated. And these
2329 * sections will finally be copied to their final destination at
2330 * segment load time.
2332 * Use ->sh_offset to reflect section address in memory. It will
2333 * point to original read only copy if section is not allocatable.
2334 * Otherwise it will point to temporary copy which will be relocated.
2336 * Use ->sh_addr to contain final address of the section where it
2337 * will go during execution time.
2339 for (i
= 0; i
< pi
->ehdr
->e_shnum
; i
++) {
2340 if (sechdrs
[i
].sh_type
== SHT_NOBITS
)
2343 sechdrs
[i
].sh_offset
= (unsigned long)pi
->ehdr
+
2344 sechdrs
[i
].sh_offset
;
2348 * Identify entry point section and make entry relative to section
2351 entry
= pi
->ehdr
->e_entry
;
2352 for (i
= 0; i
< pi
->ehdr
->e_shnum
; i
++) {
2353 if (!(sechdrs
[i
].sh_flags
& SHF_ALLOC
))
2356 if (!(sechdrs
[i
].sh_flags
& SHF_EXECINSTR
))
2359 /* Make entry section relative */
2360 if (sechdrs
[i
].sh_addr
<= pi
->ehdr
->e_entry
&&
2361 ((sechdrs
[i
].sh_addr
+ sechdrs
[i
].sh_size
) >
2362 pi
->ehdr
->e_entry
)) {
2364 entry
-= sechdrs
[i
].sh_addr
;
2369 /* Determine how much memory is needed to load relocatable object. */
2375 for (i
= 0; i
< pi
->ehdr
->e_shnum
; i
++) {
2376 if (!(sechdrs
[i
].sh_flags
& SHF_ALLOC
))
2379 align
= sechdrs
[i
].sh_addralign
;
2380 if (sechdrs
[i
].sh_type
!= SHT_NOBITS
) {
2381 if (buf_align
< align
)
2383 buf_sz
= ALIGN(buf_sz
, align
);
2384 buf_sz
+= sechdrs
[i
].sh_size
;
2387 if (bss_align
< align
)
2389 bss_sz
= ALIGN(bss_sz
, align
);
2390 bss_sz
+= sechdrs
[i
].sh_size
;
2394 /* Determine the bss padding required to align bss properly */
2396 if (buf_sz
& (bss_align
- 1))
2397 bss_pad
= bss_align
- (buf_sz
& (bss_align
- 1));
2399 memsz
= buf_sz
+ bss_pad
+ bss_sz
;
2401 /* Allocate buffer for purgatory */
2402 purgatory_buf
= vzalloc(buf_sz
);
2403 if (!purgatory_buf
) {
2408 if (buf_align
< bss_align
)
2409 buf_align
= bss_align
;
2411 /* Add buffer to segment list */
2412 ret
= kexec_add_buffer(image
, purgatory_buf
, buf_sz
, memsz
,
2413 buf_align
, min
, max
, top_down
,
2414 &pi
->purgatory_load_addr
);
2418 /* Load SHF_ALLOC sections */
2419 buf_addr
= purgatory_buf
;
2420 load_addr
= curr_load_addr
= pi
->purgatory_load_addr
;
2421 bss_addr
= load_addr
+ buf_sz
+ bss_pad
;
2423 for (i
= 0; i
< pi
->ehdr
->e_shnum
; i
++) {
2424 if (!(sechdrs
[i
].sh_flags
& SHF_ALLOC
))
2427 align
= sechdrs
[i
].sh_addralign
;
2428 if (sechdrs
[i
].sh_type
!= SHT_NOBITS
) {
2429 curr_load_addr
= ALIGN(curr_load_addr
, align
);
2430 offset
= curr_load_addr
- load_addr
;
2431 /* We already modifed ->sh_offset to keep src addr */
2432 src
= (char *) sechdrs
[i
].sh_offset
;
2433 memcpy(buf_addr
+ offset
, src
, sechdrs
[i
].sh_size
);
2435 /* Store load address and source address of section */
2436 sechdrs
[i
].sh_addr
= curr_load_addr
;
2439 * This section got copied to temporary buffer. Update
2440 * ->sh_offset accordingly.
2442 sechdrs
[i
].sh_offset
= (unsigned long)(buf_addr
+ offset
);
2444 /* Advance to the next address */
2445 curr_load_addr
+= sechdrs
[i
].sh_size
;
2447 bss_addr
= ALIGN(bss_addr
, align
);
2448 sechdrs
[i
].sh_addr
= bss_addr
;
2449 bss_addr
+= sechdrs
[i
].sh_size
;
2453 /* Update entry point based on load address of text section */
2454 if (entry_sidx
>= 0)
2455 entry
+= sechdrs
[entry_sidx
].sh_addr
;
2457 /* Make kernel jump to purgatory after shutdown */
2458 image
->start
= entry
;
2460 /* Used later to get/set symbol values */
2461 pi
->sechdrs
= sechdrs
;
2464 * Used later to identify which section is purgatory and skip it
2465 * from checksumming.
2467 pi
->purgatory_buf
= purgatory_buf
;
2471 vfree(purgatory_buf
);
2475 static int kexec_apply_relocations(struct kimage
*image
)
2478 struct purgatory_info
*pi
= &image
->purgatory_info
;
2479 Elf_Shdr
*sechdrs
= pi
->sechdrs
;
2481 /* Apply relocations */
2482 for (i
= 0; i
< pi
->ehdr
->e_shnum
; i
++) {
2483 Elf_Shdr
*section
, *symtab
;
2485 if (sechdrs
[i
].sh_type
!= SHT_RELA
&&
2486 sechdrs
[i
].sh_type
!= SHT_REL
)
2490 * For section of type SHT_RELA/SHT_REL,
2491 * ->sh_link contains section header index of associated
2492 * symbol table. And ->sh_info contains section header
2493 * index of section to which relocations apply.
2495 if (sechdrs
[i
].sh_info
>= pi
->ehdr
->e_shnum
||
2496 sechdrs
[i
].sh_link
>= pi
->ehdr
->e_shnum
)
2499 section
= &sechdrs
[sechdrs
[i
].sh_info
];
2500 symtab
= &sechdrs
[sechdrs
[i
].sh_link
];
2502 if (!(section
->sh_flags
& SHF_ALLOC
))
2506 * symtab->sh_link contain section header index of associated
2509 if (symtab
->sh_link
>= pi
->ehdr
->e_shnum
)
2510 /* Invalid section number? */
2514 * Respective architecture needs to provide support for applying
2515 * relocations of type SHT_RELA/SHT_REL.
2517 if (sechdrs
[i
].sh_type
== SHT_RELA
)
2518 ret
= arch_kexec_apply_relocations_add(pi
->ehdr
,
2520 else if (sechdrs
[i
].sh_type
== SHT_REL
)
2521 ret
= arch_kexec_apply_relocations(pi
->ehdr
,
2530 /* Load relocatable purgatory object and relocate it appropriately */
2531 int kexec_load_purgatory(struct kimage
*image
, unsigned long min
,
2532 unsigned long max
, int top_down
,
2533 unsigned long *load_addr
)
2535 struct purgatory_info
*pi
= &image
->purgatory_info
;
2538 if (kexec_purgatory_size
<= 0)
2541 if (kexec_purgatory_size
< sizeof(Elf_Ehdr
))
2544 pi
->ehdr
= (Elf_Ehdr
*)kexec_purgatory
;
2546 if (memcmp(pi
->ehdr
->e_ident
, ELFMAG
, SELFMAG
) != 0
2547 || pi
->ehdr
->e_type
!= ET_REL
2548 || !elf_check_arch(pi
->ehdr
)
2549 || pi
->ehdr
->e_shentsize
!= sizeof(Elf_Shdr
))
2552 if (pi
->ehdr
->e_shoff
>= kexec_purgatory_size
2553 || (pi
->ehdr
->e_shnum
* sizeof(Elf_Shdr
) >
2554 kexec_purgatory_size
- pi
->ehdr
->e_shoff
))
2557 ret
= __kexec_load_purgatory(image
, min
, max
, top_down
);
2561 ret
= kexec_apply_relocations(image
);
2565 *load_addr
= pi
->purgatory_load_addr
;
2569 vfree(pi
->purgatory_buf
);
2573 static Elf_Sym
*kexec_purgatory_find_symbol(struct purgatory_info
*pi
,
2582 if (!pi
->sechdrs
|| !pi
->ehdr
)
2585 sechdrs
= pi
->sechdrs
;
2588 for (i
= 0; i
< ehdr
->e_shnum
; i
++) {
2589 if (sechdrs
[i
].sh_type
!= SHT_SYMTAB
)
2592 if (sechdrs
[i
].sh_link
>= ehdr
->e_shnum
)
2593 /* Invalid strtab section number */
2595 strtab
= (char *)sechdrs
[sechdrs
[i
].sh_link
].sh_offset
;
2596 syms
= (Elf_Sym
*)sechdrs
[i
].sh_offset
;
2598 /* Go through symbols for a match */
2599 for (k
= 0; k
< sechdrs
[i
].sh_size
/sizeof(Elf_Sym
); k
++) {
2600 if (ELF_ST_BIND(syms
[k
].st_info
) != STB_GLOBAL
)
2603 if (strcmp(strtab
+ syms
[k
].st_name
, name
) != 0)
2606 if (syms
[k
].st_shndx
== SHN_UNDEF
||
2607 syms
[k
].st_shndx
>= ehdr
->e_shnum
) {
2608 pr_debug("Symbol: %s has bad section index %d.\n",
2609 name
, syms
[k
].st_shndx
);
2613 /* Found the symbol we are looking for */
2621 void *kexec_purgatory_get_symbol_addr(struct kimage
*image
, const char *name
)
2623 struct purgatory_info
*pi
= &image
->purgatory_info
;
2627 sym
= kexec_purgatory_find_symbol(pi
, name
);
2629 return ERR_PTR(-EINVAL
);
2631 sechdr
= &pi
->sechdrs
[sym
->st_shndx
];
2634 * Returns the address where symbol will finally be loaded after
2635 * kexec_load_segment()
2637 return (void *)(sechdr
->sh_addr
+ sym
->st_value
);
2641 * Get or set value of a symbol. If "get_value" is true, symbol value is
2642 * returned in buf otherwise symbol value is set based on value in buf.
2644 int kexec_purgatory_get_set_symbol(struct kimage
*image
, const char *name
,
2645 void *buf
, unsigned int size
, bool get_value
)
2649 struct purgatory_info
*pi
= &image
->purgatory_info
;
2652 sym
= kexec_purgatory_find_symbol(pi
, name
);
2656 if (sym
->st_size
!= size
) {
2657 pr_err("symbol %s size mismatch: expected %lu actual %u\n",
2658 name
, (unsigned long)sym
->st_size
, size
);
2662 sechdrs
= pi
->sechdrs
;
2664 if (sechdrs
[sym
->st_shndx
].sh_type
== SHT_NOBITS
) {
2665 pr_err("symbol %s is in a bss section. Cannot %s\n", name
,
2666 get_value
? "get" : "set");
2670 sym_buf
= (unsigned char *)sechdrs
[sym
->st_shndx
].sh_offset
+
2674 memcpy((void *)buf
, sym_buf
, size
);
2676 memcpy((void *)sym_buf
, buf
, size
);
2680 #endif /* CONFIG_KEXEC_FILE */
2683 * Move into place and start executing a preloaded standalone
2684 * executable. If nothing was preloaded return an error.
2686 int kernel_kexec(void)
2690 if (!mutex_trylock(&kexec_mutex
))
2697 #ifdef CONFIG_KEXEC_JUMP
2698 if (kexec_image
->preserve_context
) {
2699 lock_system_sleep();
2700 pm_prepare_console();
2701 error
= freeze_processes();
2704 goto Restore_console
;
2707 error
= dpm_suspend_start(PMSG_FREEZE
);
2709 goto Resume_console
;
2710 /* At this point, dpm_suspend_start() has been called,
2711 * but *not* dpm_suspend_end(). We *must* call
2712 * dpm_suspend_end() now. Otherwise, drivers for
2713 * some devices (e.g. interrupt controllers) become
2714 * desynchronized with the actual state of the
2715 * hardware at resume time, and evil weirdness ensues.
2717 error
= dpm_suspend_end(PMSG_FREEZE
);
2719 goto Resume_devices
;
2720 error
= disable_nonboot_cpus();
2723 local_irq_disable();
2724 error
= syscore_suspend();
2730 kexec_in_progress
= true;
2731 kernel_restart_prepare(NULL
);
2732 migrate_to_reboot_cpu();
2735 * migrate_to_reboot_cpu() disables CPU hotplug assuming that
2736 * no further code needs to use CPU hotplug (which is true in
2737 * the reboot case). However, the kexec path depends on using
2738 * CPU hotplug again; so re-enable it here.
2740 cpu_hotplug_enable();
2741 pr_emerg("Starting new kernel\n");
2745 machine_kexec(kexec_image
);
2747 #ifdef CONFIG_KEXEC_JUMP
2748 if (kexec_image
->preserve_context
) {
2753 enable_nonboot_cpus();
2754 dpm_resume_start(PMSG_RESTORE
);
2756 dpm_resume_end(PMSG_RESTORE
);
2761 pm_restore_console();
2762 unlock_system_sleep();
2767 mutex_unlock(&kexec_mutex
);