2 * i2c Support for Atmel's AT91 Two-Wire Interface (TWI)
4 * Copyright (C) 2011 Weinmann Medical GmbH
5 * Author: Nikolaus Voss <n.voss@weinmann.de>
7 * Evolved from original work by:
8 * Copyright (C) 2004 Rick Bronson
9 * Converted to 2.6 by Andrew Victor <andrew@sanpeople.com>
11 * Borrowed heavily from original work by:
12 * Copyright (C) 2000 Philip Edelbrock <phil@stimpy.netroedge.com>
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or
17 * (at your option) any later version.
20 #include <linux/clk.h>
21 #include <linux/completion.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/dmaengine.h>
24 #include <linux/err.h>
25 #include <linux/i2c.h>
26 #include <linux/interrupt.h>
28 #include <linux/module.h>
30 #include <linux/of_device.h>
31 #include <linux/platform_device.h>
32 #include <linux/slab.h>
33 #include <linux/platform_data/dma-atmel.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/pinctrl/consumer.h>
37 #define DEFAULT_TWI_CLK_HZ 100000 /* max 400 Kbits/s */
38 #define AT91_I2C_TIMEOUT msecs_to_jiffies(100) /* transfer timeout */
39 #define AT91_I2C_DMA_THRESHOLD 8 /* enable DMA if transfer size is bigger than this threshold */
40 #define AUTOSUSPEND_TIMEOUT 2000
41 #define AT91_I2C_MAX_ALT_CMD_DATA_SIZE 256
43 /* AT91 TWI register definitions */
44 #define AT91_TWI_CR 0x0000 /* Control Register */
45 #define AT91_TWI_START BIT(0) /* Send a Start Condition */
46 #define AT91_TWI_STOP BIT(1) /* Send a Stop Condition */
47 #define AT91_TWI_MSEN BIT(2) /* Master Transfer Enable */
48 #define AT91_TWI_MSDIS BIT(3) /* Master Transfer Disable */
49 #define AT91_TWI_SVEN BIT(4) /* Slave Transfer Enable */
50 #define AT91_TWI_SVDIS BIT(5) /* Slave Transfer Disable */
51 #define AT91_TWI_QUICK BIT(6) /* SMBus quick command */
52 #define AT91_TWI_SWRST BIT(7) /* Software Reset */
53 #define AT91_TWI_ACMEN BIT(16) /* Alternative Command Mode Enable */
54 #define AT91_TWI_ACMDIS BIT(17) /* Alternative Command Mode Disable */
55 #define AT91_TWI_THRCLR BIT(24) /* Transmit Holding Register Clear */
56 #define AT91_TWI_RHRCLR BIT(25) /* Receive Holding Register Clear */
57 #define AT91_TWI_LOCKCLR BIT(26) /* Lock Clear */
58 #define AT91_TWI_FIFOEN BIT(28) /* FIFO Enable */
59 #define AT91_TWI_FIFODIS BIT(29) /* FIFO Disable */
61 #define AT91_TWI_MMR 0x0004 /* Master Mode Register */
62 #define AT91_TWI_IADRSZ_1 0x0100 /* Internal Device Address Size */
63 #define AT91_TWI_MREAD BIT(12) /* Master Read Direction */
65 #define AT91_TWI_IADR 0x000c /* Internal Address Register */
67 #define AT91_TWI_CWGR 0x0010 /* Clock Waveform Generator Reg */
68 #define AT91_TWI_CWGR_HOLD_MAX 0x1f
69 #define AT91_TWI_CWGR_HOLD(x) (((x) & AT91_TWI_CWGR_HOLD_MAX) << 24)
71 #define AT91_TWI_SR 0x0020 /* Status Register */
72 #define AT91_TWI_TXCOMP BIT(0) /* Transmission Complete */
73 #define AT91_TWI_RXRDY BIT(1) /* Receive Holding Register Ready */
74 #define AT91_TWI_TXRDY BIT(2) /* Transmit Holding Register Ready */
75 #define AT91_TWI_OVRE BIT(6) /* Overrun Error */
76 #define AT91_TWI_UNRE BIT(7) /* Underrun Error */
77 #define AT91_TWI_NACK BIT(8) /* Not Acknowledged */
78 #define AT91_TWI_LOCK BIT(23) /* TWI Lock due to Frame Errors */
80 #define AT91_TWI_INT_MASK \
81 (AT91_TWI_TXCOMP | AT91_TWI_RXRDY | AT91_TWI_TXRDY | AT91_TWI_NACK)
83 #define AT91_TWI_IER 0x0024 /* Interrupt Enable Register */
84 #define AT91_TWI_IDR 0x0028 /* Interrupt Disable Register */
85 #define AT91_TWI_IMR 0x002c /* Interrupt Mask Register */
86 #define AT91_TWI_RHR 0x0030 /* Receive Holding Register */
87 #define AT91_TWI_THR 0x0034 /* Transmit Holding Register */
89 #define AT91_TWI_ACR 0x0040 /* Alternative Command Register */
90 #define AT91_TWI_ACR_DATAL(len) ((len) & 0xff)
91 #define AT91_TWI_ACR_DIR BIT(8)
93 #define AT91_TWI_FMR 0x0050 /* FIFO Mode Register */
94 #define AT91_TWI_FMR_TXRDYM(mode) (((mode) & 0x3) << 0)
95 #define AT91_TWI_FMR_TXRDYM_MASK (0x3 << 0)
96 #define AT91_TWI_FMR_RXRDYM(mode) (((mode) & 0x3) << 4)
97 #define AT91_TWI_FMR_RXRDYM_MASK (0x3 << 4)
98 #define AT91_TWI_ONE_DATA 0x0
99 #define AT91_TWI_TWO_DATA 0x1
100 #define AT91_TWI_FOUR_DATA 0x2
102 #define AT91_TWI_FLR 0x0054 /* FIFO Level Register */
104 #define AT91_TWI_FSR 0x0060 /* FIFO Status Register */
105 #define AT91_TWI_FIER 0x0064 /* FIFO Interrupt Enable Register */
106 #define AT91_TWI_FIDR 0x0068 /* FIFO Interrupt Disable Register */
107 #define AT91_TWI_FIMR 0x006c /* FIFO Interrupt Mask Register */
109 #define AT91_TWI_VER 0x00fc /* Version Register */
111 struct at91_twi_pdata
{
112 unsigned clk_max_div
;
117 struct at_dma_slave dma_slave
;
120 struct at91_twi_dma
{
121 struct dma_chan
*chan_rx
;
122 struct dma_chan
*chan_tx
;
123 struct scatterlist sg
[2];
124 struct dma_async_tx_descriptor
*data_desc
;
125 enum dma_data_direction direction
;
127 bool xfer_in_progress
;
130 struct at91_twi_dev
{
133 struct completion cmd_complete
;
140 unsigned transfer_status
;
141 struct i2c_adapter adapter
;
142 unsigned twi_cwgr_reg
;
143 struct at91_twi_pdata
*pdata
;
148 struct at91_twi_dma dma
;
151 static unsigned at91_twi_read(struct at91_twi_dev
*dev
, unsigned reg
)
153 return readl_relaxed(dev
->base
+ reg
);
156 static void at91_twi_write(struct at91_twi_dev
*dev
, unsigned reg
, unsigned val
)
158 writel_relaxed(val
, dev
->base
+ reg
);
161 static void at91_disable_twi_interrupts(struct at91_twi_dev
*dev
)
163 at91_twi_write(dev
, AT91_TWI_IDR
, AT91_TWI_INT_MASK
);
166 static void at91_twi_irq_save(struct at91_twi_dev
*dev
)
168 dev
->imr
= at91_twi_read(dev
, AT91_TWI_IMR
) & AT91_TWI_INT_MASK
;
169 at91_disable_twi_interrupts(dev
);
172 static void at91_twi_irq_restore(struct at91_twi_dev
*dev
)
174 at91_twi_write(dev
, AT91_TWI_IER
, dev
->imr
);
177 static void at91_init_twi_bus(struct at91_twi_dev
*dev
)
179 at91_disable_twi_interrupts(dev
);
180 at91_twi_write(dev
, AT91_TWI_CR
, AT91_TWI_SWRST
);
181 /* FIFO should be enabled immediately after the software reset */
183 at91_twi_write(dev
, AT91_TWI_CR
, AT91_TWI_FIFOEN
);
184 at91_twi_write(dev
, AT91_TWI_CR
, AT91_TWI_MSEN
);
185 at91_twi_write(dev
, AT91_TWI_CR
, AT91_TWI_SVDIS
);
186 at91_twi_write(dev
, AT91_TWI_CWGR
, dev
->twi_cwgr_reg
);
190 * Calculate symmetric clock as stated in datasheet:
191 * twi_clk = F_MAIN / (2 * (cdiv * (1 << ckdiv) + offset))
193 static void at91_calc_twi_clock(struct at91_twi_dev
*dev
, int twi_clk
)
195 int ckdiv
, cdiv
, div
, hold
= 0;
196 struct at91_twi_pdata
*pdata
= dev
->pdata
;
197 int offset
= pdata
->clk_offset
;
198 int max_ckdiv
= pdata
->clk_max_div
;
199 u32 twd_hold_time_ns
= 0;
201 div
= max(0, (int)DIV_ROUND_UP(clk_get_rate(dev
->clk
),
202 2 * twi_clk
) - offset
);
203 ckdiv
= fls(div
>> 8);
206 if (ckdiv
> max_ckdiv
) {
207 dev_warn(dev
->dev
, "%d exceeds ckdiv max value which is %d.\n",
213 if (pdata
->has_hold_field
) {
214 of_property_read_u32(dev
->dev
->of_node
, "i2c-sda-hold-time-ns",
218 * hold time = HOLD + 3 x T_peripheral_clock
219 * Use clk rate in kHz to prevent overflows when computing
222 hold
= DIV_ROUND_UP(twd_hold_time_ns
223 * (clk_get_rate(dev
->clk
) / 1000), 1000000);
227 if (hold
> AT91_TWI_CWGR_HOLD_MAX
) {
229 "HOLD field set to its maximum value (%d instead of %d)\n",
230 AT91_TWI_CWGR_HOLD_MAX
, hold
);
231 hold
= AT91_TWI_CWGR_HOLD_MAX
;
235 dev
->twi_cwgr_reg
= (ckdiv
<< 16) | (cdiv
<< 8) | cdiv
236 | AT91_TWI_CWGR_HOLD(hold
);
238 dev_dbg(dev
->dev
, "cdiv %d ckdiv %d hold %d (%d ns)\n",
239 cdiv
, ckdiv
, hold
, twd_hold_time_ns
);
242 static void at91_twi_dma_cleanup(struct at91_twi_dev
*dev
)
244 struct at91_twi_dma
*dma
= &dev
->dma
;
246 at91_twi_irq_save(dev
);
248 if (dma
->xfer_in_progress
) {
249 if (dma
->direction
== DMA_FROM_DEVICE
)
250 dmaengine_terminate_all(dma
->chan_rx
);
252 dmaengine_terminate_all(dma
->chan_tx
);
253 dma
->xfer_in_progress
= false;
255 if (dma
->buf_mapped
) {
256 dma_unmap_single(dev
->dev
, sg_dma_address(&dma
->sg
[0]),
257 dev
->buf_len
, dma
->direction
);
258 dma
->buf_mapped
= false;
261 at91_twi_irq_restore(dev
);
264 static void at91_twi_write_next_byte(struct at91_twi_dev
*dev
)
269 /* 8bit write works with and without FIFO */
270 writeb_relaxed(*dev
->buf
, dev
->base
+ AT91_TWI_THR
);
272 /* send stop when last byte has been written */
273 if (--dev
->buf_len
== 0)
274 if (!dev
->use_alt_cmd
)
275 at91_twi_write(dev
, AT91_TWI_CR
, AT91_TWI_STOP
);
277 dev_dbg(dev
->dev
, "wrote 0x%x, to go %zu\n", *dev
->buf
, dev
->buf_len
);
282 static void at91_twi_write_data_dma_callback(void *data
)
284 struct at91_twi_dev
*dev
= (struct at91_twi_dev
*)data
;
286 dma_unmap_single(dev
->dev
, sg_dma_address(&dev
->dma
.sg
[0]),
287 dev
->buf_len
, DMA_TO_DEVICE
);
290 * When this callback is called, THR/TX FIFO is likely not to be empty
291 * yet. So we have to wait for TXCOMP or NACK bits to be set into the
292 * Status Register to be sure that the STOP bit has been sent and the
293 * transfer is completed. The NACK interrupt has already been enabled,
294 * we just have to enable TXCOMP one.
296 at91_twi_write(dev
, AT91_TWI_IER
, AT91_TWI_TXCOMP
);
297 if (!dev
->use_alt_cmd
)
298 at91_twi_write(dev
, AT91_TWI_CR
, AT91_TWI_STOP
);
301 static void at91_twi_write_data_dma(struct at91_twi_dev
*dev
)
304 struct dma_async_tx_descriptor
*txdesc
;
305 struct at91_twi_dma
*dma
= &dev
->dma
;
306 struct dma_chan
*chan_tx
= dma
->chan_tx
;
307 unsigned int sg_len
= 1;
312 dma
->direction
= DMA_TO_DEVICE
;
314 at91_twi_irq_save(dev
);
315 dma_addr
= dma_map_single(dev
->dev
, dev
->buf
, dev
->buf_len
,
317 if (dma_mapping_error(dev
->dev
, dma_addr
)) {
318 dev_err(dev
->dev
, "dma map failed\n");
321 dma
->buf_mapped
= true;
322 at91_twi_irq_restore(dev
);
324 if (dev
->fifo_size
) {
325 size_t part1_len
, part2_len
;
326 struct scatterlist
*sg
;
331 part1_len
= dev
->buf_len
& ~0x3;
333 sg
= &dma
->sg
[sg_len
++];
334 sg_dma_len(sg
) = part1_len
;
335 sg_dma_address(sg
) = dma_addr
;
338 part2_len
= dev
->buf_len
& 0x3;
340 sg
= &dma
->sg
[sg_len
++];
341 sg_dma_len(sg
) = part2_len
;
342 sg_dma_address(sg
) = dma_addr
+ part1_len
;
346 * DMA controller is triggered when at least 4 data can be
347 * written into the TX FIFO
349 fifo_mr
= at91_twi_read(dev
, AT91_TWI_FMR
);
350 fifo_mr
&= ~AT91_TWI_FMR_TXRDYM_MASK
;
351 fifo_mr
|= AT91_TWI_FMR_TXRDYM(AT91_TWI_FOUR_DATA
);
352 at91_twi_write(dev
, AT91_TWI_FMR
, fifo_mr
);
354 sg_dma_len(&dma
->sg
[0]) = dev
->buf_len
;
355 sg_dma_address(&dma
->sg
[0]) = dma_addr
;
358 txdesc
= dmaengine_prep_slave_sg(chan_tx
, dma
->sg
, sg_len
,
360 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
362 dev_err(dev
->dev
, "dma prep slave sg failed\n");
366 txdesc
->callback
= at91_twi_write_data_dma_callback
;
367 txdesc
->callback_param
= dev
;
369 dma
->xfer_in_progress
= true;
370 dmaengine_submit(txdesc
);
371 dma_async_issue_pending(chan_tx
);
376 at91_twi_dma_cleanup(dev
);
379 static void at91_twi_read_next_byte(struct at91_twi_dev
*dev
)
382 * If we are in this case, it means there is garbage data in RHR, so
386 at91_twi_read(dev
, AT91_TWI_RHR
);
390 /* 8bit read works with and without FIFO */
391 *dev
->buf
= readb_relaxed(dev
->base
+ AT91_TWI_RHR
);
394 /* return if aborting, we only needed to read RHR to clear RXRDY*/
395 if (dev
->recv_len_abort
)
398 /* handle I2C_SMBUS_BLOCK_DATA */
399 if (unlikely(dev
->msg
->flags
& I2C_M_RECV_LEN
)) {
400 /* ensure length byte is a valid value */
401 if (*dev
->buf
<= I2C_SMBUS_BLOCK_MAX
&& *dev
->buf
> 0) {
402 dev
->msg
->flags
&= ~I2C_M_RECV_LEN
;
403 dev
->buf_len
+= *dev
->buf
;
404 dev
->msg
->len
= dev
->buf_len
+ 1;
405 dev_dbg(dev
->dev
, "received block length %zu\n",
408 /* abort and send the stop by reading one more byte */
409 dev
->recv_len_abort
= true;
414 /* send stop if second but last byte has been read */
415 if (!dev
->use_alt_cmd
&& dev
->buf_len
== 1)
416 at91_twi_write(dev
, AT91_TWI_CR
, AT91_TWI_STOP
);
418 dev_dbg(dev
->dev
, "read 0x%x, to go %zu\n", *dev
->buf
, dev
->buf_len
);
423 static void at91_twi_read_data_dma_callback(void *data
)
425 struct at91_twi_dev
*dev
= (struct at91_twi_dev
*)data
;
426 unsigned ier
= AT91_TWI_TXCOMP
;
428 dma_unmap_single(dev
->dev
, sg_dma_address(&dev
->dma
.sg
[0]),
429 dev
->buf_len
, DMA_FROM_DEVICE
);
431 if (!dev
->use_alt_cmd
) {
432 /* The last two bytes have to be read without using dma */
433 dev
->buf
+= dev
->buf_len
- 2;
435 ier
|= AT91_TWI_RXRDY
;
437 at91_twi_write(dev
, AT91_TWI_IER
, ier
);
440 static void at91_twi_read_data_dma(struct at91_twi_dev
*dev
)
443 struct dma_async_tx_descriptor
*rxdesc
;
444 struct at91_twi_dma
*dma
= &dev
->dma
;
445 struct dma_chan
*chan_rx
= dma
->chan_rx
;
448 buf_len
= (dev
->use_alt_cmd
) ? dev
->buf_len
: dev
->buf_len
- 2;
449 dma
->direction
= DMA_FROM_DEVICE
;
451 /* Keep in mind that we won't use dma to read the last two bytes */
452 at91_twi_irq_save(dev
);
453 dma_addr
= dma_map_single(dev
->dev
, dev
->buf
, buf_len
, DMA_FROM_DEVICE
);
454 if (dma_mapping_error(dev
->dev
, dma_addr
)) {
455 dev_err(dev
->dev
, "dma map failed\n");
458 dma
->buf_mapped
= true;
459 at91_twi_irq_restore(dev
);
461 if (dev
->fifo_size
&& IS_ALIGNED(buf_len
, 4)) {
465 * DMA controller is triggered when at least 4 data can be
466 * read from the RX FIFO
468 fifo_mr
= at91_twi_read(dev
, AT91_TWI_FMR
);
469 fifo_mr
&= ~AT91_TWI_FMR_RXRDYM_MASK
;
470 fifo_mr
|= AT91_TWI_FMR_RXRDYM(AT91_TWI_FOUR_DATA
);
471 at91_twi_write(dev
, AT91_TWI_FMR
, fifo_mr
);
474 sg_dma_len(&dma
->sg
[0]) = buf_len
;
475 sg_dma_address(&dma
->sg
[0]) = dma_addr
;
477 rxdesc
= dmaengine_prep_slave_sg(chan_rx
, dma
->sg
, 1, DMA_DEV_TO_MEM
,
478 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
480 dev_err(dev
->dev
, "dma prep slave sg failed\n");
484 rxdesc
->callback
= at91_twi_read_data_dma_callback
;
485 rxdesc
->callback_param
= dev
;
487 dma
->xfer_in_progress
= true;
488 dmaengine_submit(rxdesc
);
489 dma_async_issue_pending(dma
->chan_rx
);
494 at91_twi_dma_cleanup(dev
);
497 static irqreturn_t
atmel_twi_interrupt(int irq
, void *dev_id
)
499 struct at91_twi_dev
*dev
= dev_id
;
500 const unsigned status
= at91_twi_read(dev
, AT91_TWI_SR
);
501 const unsigned irqstatus
= status
& at91_twi_read(dev
, AT91_TWI_IMR
);
506 * In reception, the behavior of the twi device (before sama5d2) is
507 * weird. There is some magic about RXRDY flag! When a data has been
508 * almost received, the reception of a new one is anticipated if there
509 * is no stop command to send. That is the reason why ask for sending
510 * the stop command not on the last data but on the second last one.
512 * Unfortunately, we could still have the RXRDY flag set even if the
513 * transfer is done and we have read the last data. It might happen
514 * when the i2c slave device sends too quickly data after receiving the
515 * ack from the master. The data has been almost received before having
516 * the order to send stop. In this case, sending the stop command could
517 * cause a RXRDY interrupt with a TXCOMP one. It is better to manage
518 * the RXRDY interrupt first in order to not keep garbage data in the
519 * Receive Holding Register for the next transfer.
521 if (irqstatus
& AT91_TWI_RXRDY
) {
523 * Read all available bytes at once by polling RXRDY usable w/
524 * and w/o FIFO. With FIFO enabled we could also read RXFL and
525 * avoid polling RXRDY.
528 at91_twi_read_next_byte(dev
);
529 } while (at91_twi_read(dev
, AT91_TWI_SR
) & AT91_TWI_RXRDY
);
533 * When a NACK condition is detected, the I2C controller sets the NACK,
534 * TXCOMP and TXRDY bits all together in the Status Register (SR).
536 * 1 - Handling NACK errors with CPU write transfer.
538 * In such case, we should not write the next byte into the Transmit
539 * Holding Register (THR) otherwise the I2C controller would start a new
540 * transfer and the I2C slave is likely to reply by another NACK.
542 * 2 - Handling NACK errors with DMA write transfer.
544 * By setting the TXRDY bit in the SR, the I2C controller also triggers
545 * the DMA controller to write the next data into the THR. Then the
546 * result depends on the hardware version of the I2C controller.
548 * 2a - Without support of the Alternative Command mode.
550 * This is the worst case: the DMA controller is triggered to write the
551 * next data into the THR, hence starting a new transfer: the I2C slave
552 * is likely to reply by another NACK.
553 * Concurrently, this interrupt handler is likely to be called to manage
554 * the first NACK before the I2C controller detects the second NACK and
555 * sets once again the NACK bit into the SR.
556 * When handling the first NACK, this interrupt handler disables the I2C
557 * controller interruptions, especially the NACK interrupt.
558 * Hence, the NACK bit is pending into the SR. This is why we should
559 * read the SR to clear all pending interrupts at the beginning of
560 * at91_do_twi_transfer() before actually starting a new transfer.
562 * 2b - With support of the Alternative Command mode.
564 * When a NACK condition is detected, the I2C controller also locks the
565 * THR (and sets the LOCK bit in the SR): even though the DMA controller
566 * is triggered by the TXRDY bit to write the next data into the THR,
567 * this data actually won't go on the I2C bus hence a second NACK is not
570 if (irqstatus
& (AT91_TWI_TXCOMP
| AT91_TWI_NACK
)) {
571 at91_disable_twi_interrupts(dev
);
572 complete(&dev
->cmd_complete
);
573 } else if (irqstatus
& AT91_TWI_TXRDY
) {
574 at91_twi_write_next_byte(dev
);
577 /* catch error flags */
578 dev
->transfer_status
|= status
;
583 static int at91_do_twi_transfer(struct at91_twi_dev
*dev
)
586 unsigned long time_left
;
587 bool has_unre_flag
= dev
->pdata
->has_unre_flag
;
588 bool has_alt_cmd
= dev
->pdata
->has_alt_cmd
;
591 * WARNING: the TXCOMP bit in the Status Register is NOT a clear on
592 * read flag but shows the state of the transmission at the time the
593 * Status Register is read. According to the programmer datasheet,
594 * TXCOMP is set when both holding register and internal shifter are
595 * empty and STOP condition has been sent.
596 * Consequently, we should enable NACK interrupt rather than TXCOMP to
597 * detect transmission failure.
598 * Indeed let's take the case of an i2c write command using DMA.
599 * Whenever the slave doesn't acknowledge a byte, the LOCK, NACK and
600 * TXCOMP bits are set together into the Status Register.
601 * LOCK is a clear on write bit, which is set to prevent the DMA
602 * controller from sending new data on the i2c bus after a NACK
603 * condition has happened. Once locked, this i2c peripheral stops
604 * triggering the DMA controller for new data but it is more than
605 * likely that a new DMA transaction is already in progress, writing
606 * into the Transmit Holding Register. Since the peripheral is locked,
607 * these new data won't be sent to the i2c bus but they will remain
608 * into the Transmit Holding Register, so TXCOMP bit is cleared.
609 * Then when the interrupt handler is called, the Status Register is
610 * read: the TXCOMP bit is clear but NACK bit is still set. The driver
611 * manage the error properly, without waiting for timeout.
612 * This case can be reproduced easyly when writing into an at24 eeprom.
614 * Besides, the TXCOMP bit is already set before the i2c transaction
615 * has been started. For read transactions, this bit is cleared when
616 * writing the START bit into the Control Register. So the
617 * corresponding interrupt can safely be enabled just after.
618 * However for write transactions managed by the CPU, we first write
619 * into THR, so TXCOMP is cleared. Then we can safely enable TXCOMP
620 * interrupt. If TXCOMP interrupt were enabled before writing into THR,
621 * the interrupt handler would be called immediately and the i2c command
622 * would be reported as completed.
623 * Also when a write transaction is managed by the DMA controller,
624 * enabling the TXCOMP interrupt in this function may lead to a race
625 * condition since we don't know whether the TXCOMP interrupt is enabled
626 * before or after the DMA has started to write into THR. So the TXCOMP
627 * interrupt is enabled later by at91_twi_write_data_dma_callback().
628 * Immediately after in that DMA callback, if the alternative command
629 * mode is not used, we still need to send the STOP condition manually
630 * writing the corresponding bit into the Control Register.
633 dev_dbg(dev
->dev
, "transfer: %s %zu bytes.\n",
634 (dev
->msg
->flags
& I2C_M_RD
) ? "read" : "write", dev
->buf_len
);
636 reinit_completion(&dev
->cmd_complete
);
637 dev
->transfer_status
= 0;
639 /* Clear pending interrupts, such as NACK. */
640 at91_twi_read(dev
, AT91_TWI_SR
);
642 if (dev
->fifo_size
) {
643 unsigned fifo_mr
= at91_twi_read(dev
, AT91_TWI_FMR
);
645 /* Reset FIFO mode register */
646 fifo_mr
&= ~(AT91_TWI_FMR_TXRDYM_MASK
|
647 AT91_TWI_FMR_RXRDYM_MASK
);
648 fifo_mr
|= AT91_TWI_FMR_TXRDYM(AT91_TWI_ONE_DATA
);
649 fifo_mr
|= AT91_TWI_FMR_RXRDYM(AT91_TWI_ONE_DATA
);
650 at91_twi_write(dev
, AT91_TWI_FMR
, fifo_mr
);
653 at91_twi_write(dev
, AT91_TWI_CR
,
654 AT91_TWI_THRCLR
| AT91_TWI_RHRCLR
);
658 at91_twi_write(dev
, AT91_TWI_CR
, AT91_TWI_QUICK
);
659 at91_twi_write(dev
, AT91_TWI_IER
, AT91_TWI_TXCOMP
);
660 } else if (dev
->msg
->flags
& I2C_M_RD
) {
661 unsigned start_flags
= AT91_TWI_START
;
663 /* if only one byte is to be read, immediately stop transfer */
664 if (!dev
->use_alt_cmd
&& dev
->buf_len
<= 1 &&
665 !(dev
->msg
->flags
& I2C_M_RECV_LEN
))
666 start_flags
|= AT91_TWI_STOP
;
667 at91_twi_write(dev
, AT91_TWI_CR
, start_flags
);
669 * When using dma without alternative command mode, the last
670 * byte has to be read manually in order to not send the stop
671 * command too late and then to receive extra data.
672 * In practice, there are some issues if you use the dma to
673 * read n-1 bytes because of latency.
674 * Reading n-2 bytes with dma and the two last ones manually
675 * seems to be the best solution.
677 if (dev
->use_dma
&& (dev
->buf_len
> AT91_I2C_DMA_THRESHOLD
)) {
678 at91_twi_write(dev
, AT91_TWI_IER
, AT91_TWI_NACK
);
679 at91_twi_read_data_dma(dev
);
681 at91_twi_write(dev
, AT91_TWI_IER
,
687 if (dev
->use_dma
&& (dev
->buf_len
> AT91_I2C_DMA_THRESHOLD
)) {
688 at91_twi_write(dev
, AT91_TWI_IER
, AT91_TWI_NACK
);
689 at91_twi_write_data_dma(dev
);
691 at91_twi_write_next_byte(dev
);
692 at91_twi_write(dev
, AT91_TWI_IER
,
699 time_left
= wait_for_completion_timeout(&dev
->cmd_complete
,
700 dev
->adapter
.timeout
);
701 if (time_left
== 0) {
702 dev
->transfer_status
|= at91_twi_read(dev
, AT91_TWI_SR
);
703 dev_err(dev
->dev
, "controller timed out\n");
704 at91_init_twi_bus(dev
);
708 if (dev
->transfer_status
& AT91_TWI_NACK
) {
709 dev_dbg(dev
->dev
, "received nack\n");
713 if (dev
->transfer_status
& AT91_TWI_OVRE
) {
714 dev_err(dev
->dev
, "overrun while reading\n");
718 if (has_unre_flag
&& dev
->transfer_status
& AT91_TWI_UNRE
) {
719 dev_err(dev
->dev
, "underrun while writing\n");
723 if ((has_alt_cmd
|| dev
->fifo_size
) &&
724 (dev
->transfer_status
& AT91_TWI_LOCK
)) {
725 dev_err(dev
->dev
, "tx locked\n");
729 if (dev
->recv_len_abort
) {
730 dev_err(dev
->dev
, "invalid smbus block length recvd\n");
735 dev_dbg(dev
->dev
, "transfer complete\n");
740 /* first stop DMA transfer if still in progress */
741 at91_twi_dma_cleanup(dev
);
742 /* then flush THR/FIFO and unlock TX if locked */
743 if ((has_alt_cmd
|| dev
->fifo_size
) &&
744 (dev
->transfer_status
& AT91_TWI_LOCK
)) {
745 dev_dbg(dev
->dev
, "unlock tx\n");
746 at91_twi_write(dev
, AT91_TWI_CR
,
747 AT91_TWI_THRCLR
| AT91_TWI_LOCKCLR
);
752 static int at91_twi_xfer(struct i2c_adapter
*adap
, struct i2c_msg
*msg
, int num
)
754 struct at91_twi_dev
*dev
= i2c_get_adapdata(adap
);
756 unsigned int_addr_flag
= 0;
757 struct i2c_msg
*m_start
= msg
;
760 dev_dbg(&adap
->dev
, "at91_xfer: processing %d messages:\n", num
);
762 ret
= pm_runtime_get_sync(dev
->dev
);
767 int internal_address
= 0;
770 /* 1st msg is put into the internal address, start with 2nd */
772 for (i
= 0; i
< msg
->len
; ++i
) {
773 const unsigned addr
= msg
->buf
[msg
->len
- 1 - i
];
775 internal_address
|= addr
<< (8 * i
);
776 int_addr_flag
+= AT91_TWI_IADRSZ_1
;
778 at91_twi_write(dev
, AT91_TWI_IADR
, internal_address
);
781 dev
->use_alt_cmd
= false;
782 is_read
= (m_start
->flags
& I2C_M_RD
);
783 if (dev
->pdata
->has_alt_cmd
) {
784 if (m_start
->len
> 0 &&
785 m_start
->len
< AT91_I2C_MAX_ALT_CMD_DATA_SIZE
) {
786 at91_twi_write(dev
, AT91_TWI_CR
, AT91_TWI_ACMEN
);
787 at91_twi_write(dev
, AT91_TWI_ACR
,
788 AT91_TWI_ACR_DATAL(m_start
->len
) |
789 ((is_read
) ? AT91_TWI_ACR_DIR
: 0));
790 dev
->use_alt_cmd
= true;
792 at91_twi_write(dev
, AT91_TWI_CR
, AT91_TWI_ACMDIS
);
796 at91_twi_write(dev
, AT91_TWI_MMR
,
797 (m_start
->addr
<< 16) |
799 ((!dev
->use_alt_cmd
&& is_read
) ? AT91_TWI_MREAD
: 0));
801 dev
->buf_len
= m_start
->len
;
802 dev
->buf
= m_start
->buf
;
804 dev
->recv_len_abort
= false;
806 ret
= at91_do_twi_transfer(dev
);
808 ret
= (ret
< 0) ? ret
: num
;
810 pm_runtime_mark_last_busy(dev
->dev
);
811 pm_runtime_put_autosuspend(dev
->dev
);
817 * The hardware can handle at most two messages concatenated by a
818 * repeated start via it's internal address feature.
820 static const struct i2c_adapter_quirks at91_twi_quirks
= {
821 .flags
= I2C_AQ_COMB
| I2C_AQ_COMB_WRITE_FIRST
| I2C_AQ_COMB_SAME_ADDR
,
822 .max_comb_1st_msg_len
= 3,
825 static u32
at91_twi_func(struct i2c_adapter
*adapter
)
827 return I2C_FUNC_I2C
| I2C_FUNC_SMBUS_EMUL
828 | I2C_FUNC_SMBUS_READ_BLOCK_DATA
;
831 static const struct i2c_algorithm at91_twi_algorithm
= {
832 .master_xfer
= at91_twi_xfer
,
833 .functionality
= at91_twi_func
,
836 static struct at91_twi_pdata at91rm9200_config
= {
839 .has_unre_flag
= true,
840 .has_alt_cmd
= false,
841 .has_hold_field
= false,
844 static struct at91_twi_pdata at91sam9261_config
= {
847 .has_unre_flag
= false,
848 .has_alt_cmd
= false,
849 .has_hold_field
= false,
852 static struct at91_twi_pdata at91sam9260_config
= {
855 .has_unre_flag
= false,
856 .has_alt_cmd
= false,
857 .has_hold_field
= false,
860 static struct at91_twi_pdata at91sam9g20_config
= {
863 .has_unre_flag
= false,
864 .has_alt_cmd
= false,
865 .has_hold_field
= false,
868 static struct at91_twi_pdata at91sam9g10_config
= {
871 .has_unre_flag
= false,
872 .has_alt_cmd
= false,
873 .has_hold_field
= false,
876 static const struct platform_device_id at91_twi_devtypes
[] = {
878 .name
= "i2c-at91rm9200",
879 .driver_data
= (unsigned long) &at91rm9200_config
,
881 .name
= "i2c-at91sam9261",
882 .driver_data
= (unsigned long) &at91sam9261_config
,
884 .name
= "i2c-at91sam9260",
885 .driver_data
= (unsigned long) &at91sam9260_config
,
887 .name
= "i2c-at91sam9g20",
888 .driver_data
= (unsigned long) &at91sam9g20_config
,
890 .name
= "i2c-at91sam9g10",
891 .driver_data
= (unsigned long) &at91sam9g10_config
,
897 #if defined(CONFIG_OF)
898 static struct at91_twi_pdata at91sam9x5_config
= {
901 .has_unre_flag
= false,
902 .has_alt_cmd
= false,
903 .has_hold_field
= false,
906 static struct at91_twi_pdata sama5d4_config
= {
909 .has_unre_flag
= false,
910 .has_alt_cmd
= false,
911 .has_hold_field
= true,
914 static struct at91_twi_pdata sama5d2_config
= {
917 .has_unre_flag
= true,
919 .has_hold_field
= true,
922 static const struct of_device_id atmel_twi_dt_ids
[] = {
924 .compatible
= "atmel,at91rm9200-i2c",
925 .data
= &at91rm9200_config
,
927 .compatible
= "atmel,at91sam9260-i2c",
928 .data
= &at91sam9260_config
,
930 .compatible
= "atmel,at91sam9261-i2c",
931 .data
= &at91sam9261_config
,
933 .compatible
= "atmel,at91sam9g20-i2c",
934 .data
= &at91sam9g20_config
,
936 .compatible
= "atmel,at91sam9g10-i2c",
937 .data
= &at91sam9g10_config
,
939 .compatible
= "atmel,at91sam9x5-i2c",
940 .data
= &at91sam9x5_config
,
942 .compatible
= "atmel,sama5d4-i2c",
943 .data
= &sama5d4_config
,
945 .compatible
= "atmel,sama5d2-i2c",
946 .data
= &sama5d2_config
,
951 MODULE_DEVICE_TABLE(of
, atmel_twi_dt_ids
);
954 static int at91_twi_configure_dma(struct at91_twi_dev
*dev
, u32 phy_addr
)
957 struct dma_slave_config slave_config
;
958 struct at91_twi_dma
*dma
= &dev
->dma
;
959 enum dma_slave_buswidth addr_width
= DMA_SLAVE_BUSWIDTH_1_BYTE
;
962 * The actual width of the access will be chosen in
963 * dmaengine_prep_slave_sg():
964 * for each buffer in the scatter-gather list, if its size is aligned
965 * to addr_width then addr_width accesses will be performed to transfer
966 * the buffer. On the other hand, if the buffer size is not aligned to
967 * addr_width then the buffer is transferred using single byte accesses.
968 * Please refer to the Atmel eXtended DMA controller driver.
969 * When FIFOs are used, the TXRDYM threshold can always be set to
970 * trigger the XDMAC when at least 4 data can be written into the TX
971 * FIFO, even if single byte accesses are performed.
972 * However the RXRDYM threshold must be set to fit the access width,
973 * deduced from buffer length, so the XDMAC is triggered properly to
974 * read data from the RX FIFO.
977 addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
;
979 memset(&slave_config
, 0, sizeof(slave_config
));
980 slave_config
.src_addr
= (dma_addr_t
)phy_addr
+ AT91_TWI_RHR
;
981 slave_config
.src_addr_width
= addr_width
;
982 slave_config
.src_maxburst
= 1;
983 slave_config
.dst_addr
= (dma_addr_t
)phy_addr
+ AT91_TWI_THR
;
984 slave_config
.dst_addr_width
= addr_width
;
985 slave_config
.dst_maxburst
= 1;
986 slave_config
.device_fc
= false;
988 dma
->chan_tx
= dma_request_slave_channel_reason(dev
->dev
, "tx");
989 if (IS_ERR(dma
->chan_tx
)) {
990 ret
= PTR_ERR(dma
->chan_tx
);
995 dma
->chan_rx
= dma_request_slave_channel_reason(dev
->dev
, "rx");
996 if (IS_ERR(dma
->chan_rx
)) {
997 ret
= PTR_ERR(dma
->chan_rx
);
1002 slave_config
.direction
= DMA_MEM_TO_DEV
;
1003 if (dmaengine_slave_config(dma
->chan_tx
, &slave_config
)) {
1004 dev_err(dev
->dev
, "failed to configure tx channel\n");
1009 slave_config
.direction
= DMA_DEV_TO_MEM
;
1010 if (dmaengine_slave_config(dma
->chan_rx
, &slave_config
)) {
1011 dev_err(dev
->dev
, "failed to configure rx channel\n");
1016 sg_init_table(dma
->sg
, 2);
1017 dma
->buf_mapped
= false;
1018 dma
->xfer_in_progress
= false;
1019 dev
->use_dma
= true;
1021 dev_info(dev
->dev
, "using %s (tx) and %s (rx) for DMA transfers\n",
1022 dma_chan_name(dma
->chan_tx
), dma_chan_name(dma
->chan_rx
));
1027 if (ret
!= -EPROBE_DEFER
)
1028 dev_info(dev
->dev
, "can't get DMA channel, continue without DMA support\n");
1030 dma_release_channel(dma
->chan_rx
);
1032 dma_release_channel(dma
->chan_tx
);
1036 static struct at91_twi_pdata
*at91_twi_get_driver_data(
1037 struct platform_device
*pdev
)
1039 if (pdev
->dev
.of_node
) {
1040 const struct of_device_id
*match
;
1041 match
= of_match_node(atmel_twi_dt_ids
, pdev
->dev
.of_node
);
1044 return (struct at91_twi_pdata
*)match
->data
;
1046 return (struct at91_twi_pdata
*) platform_get_device_id(pdev
)->driver_data
;
1049 static int at91_twi_probe(struct platform_device
*pdev
)
1051 struct at91_twi_dev
*dev
;
1052 struct resource
*mem
;
1057 dev
= devm_kzalloc(&pdev
->dev
, sizeof(*dev
), GFP_KERNEL
);
1060 init_completion(&dev
->cmd_complete
);
1061 dev
->dev
= &pdev
->dev
;
1063 mem
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1066 phy_addr
= mem
->start
;
1068 dev
->pdata
= at91_twi_get_driver_data(pdev
);
1072 dev
->base
= devm_ioremap_resource(&pdev
->dev
, mem
);
1073 if (IS_ERR(dev
->base
))
1074 return PTR_ERR(dev
->base
);
1076 dev
->irq
= platform_get_irq(pdev
, 0);
1080 rc
= devm_request_irq(&pdev
->dev
, dev
->irq
, atmel_twi_interrupt
, 0,
1081 dev_name(dev
->dev
), dev
);
1083 dev_err(dev
->dev
, "Cannot get irq %d: %d\n", dev
->irq
, rc
);
1087 platform_set_drvdata(pdev
, dev
);
1089 dev
->clk
= devm_clk_get(dev
->dev
, NULL
);
1090 if (IS_ERR(dev
->clk
)) {
1091 dev_err(dev
->dev
, "no clock defined\n");
1094 rc
= clk_prepare_enable(dev
->clk
);
1098 if (dev
->dev
->of_node
) {
1099 rc
= at91_twi_configure_dma(dev
, phy_addr
);
1100 if (rc
== -EPROBE_DEFER
) {
1101 clk_disable_unprepare(dev
->clk
);
1106 if (!of_property_read_u32(pdev
->dev
.of_node
, "atmel,fifo-size",
1108 dev_info(dev
->dev
, "Using FIFO (%u data)\n", dev
->fifo_size
);
1111 rc
= of_property_read_u32(dev
->dev
->of_node
, "clock-frequency",
1114 bus_clk_rate
= DEFAULT_TWI_CLK_HZ
;
1116 at91_calc_twi_clock(dev
, bus_clk_rate
);
1117 at91_init_twi_bus(dev
);
1119 snprintf(dev
->adapter
.name
, sizeof(dev
->adapter
.name
), "AT91");
1120 i2c_set_adapdata(&dev
->adapter
, dev
);
1121 dev
->adapter
.owner
= THIS_MODULE
;
1122 dev
->adapter
.class = I2C_CLASS_DEPRECATED
;
1123 dev
->adapter
.algo
= &at91_twi_algorithm
;
1124 dev
->adapter
.quirks
= &at91_twi_quirks
;
1125 dev
->adapter
.dev
.parent
= dev
->dev
;
1126 dev
->adapter
.nr
= pdev
->id
;
1127 dev
->adapter
.timeout
= AT91_I2C_TIMEOUT
;
1128 dev
->adapter
.dev
.of_node
= pdev
->dev
.of_node
;
1130 pm_runtime_set_autosuspend_delay(dev
->dev
, AUTOSUSPEND_TIMEOUT
);
1131 pm_runtime_use_autosuspend(dev
->dev
);
1132 pm_runtime_set_active(dev
->dev
);
1133 pm_runtime_enable(dev
->dev
);
1135 rc
= i2c_add_numbered_adapter(&dev
->adapter
);
1137 clk_disable_unprepare(dev
->clk
);
1139 pm_runtime_disable(dev
->dev
);
1140 pm_runtime_set_suspended(dev
->dev
);
1145 dev_info(dev
->dev
, "AT91 i2c bus driver (hw version: %#x).\n",
1146 at91_twi_read(dev
, AT91_TWI_VER
));
1150 static int at91_twi_remove(struct platform_device
*pdev
)
1152 struct at91_twi_dev
*dev
= platform_get_drvdata(pdev
);
1154 i2c_del_adapter(&dev
->adapter
);
1155 clk_disable_unprepare(dev
->clk
);
1157 pm_runtime_disable(dev
->dev
);
1158 pm_runtime_set_suspended(dev
->dev
);
1165 static int at91_twi_runtime_suspend(struct device
*dev
)
1167 struct at91_twi_dev
*twi_dev
= dev_get_drvdata(dev
);
1169 clk_disable_unprepare(twi_dev
->clk
);
1171 pinctrl_pm_select_sleep_state(dev
);
1176 static int at91_twi_runtime_resume(struct device
*dev
)
1178 struct at91_twi_dev
*twi_dev
= dev_get_drvdata(dev
);
1180 pinctrl_pm_select_default_state(dev
);
1182 return clk_prepare_enable(twi_dev
->clk
);
1185 static int at91_twi_suspend_noirq(struct device
*dev
)
1187 if (!pm_runtime_status_suspended(dev
))
1188 at91_twi_runtime_suspend(dev
);
1193 static int at91_twi_resume_noirq(struct device
*dev
)
1195 struct at91_twi_dev
*twi_dev
= dev_get_drvdata(dev
);
1198 if (!pm_runtime_status_suspended(dev
)) {
1199 ret
= at91_twi_runtime_resume(dev
);
1204 pm_runtime_mark_last_busy(dev
);
1205 pm_request_autosuspend(dev
);
1207 at91_init_twi_bus(twi_dev
);
1212 static const struct dev_pm_ops at91_twi_pm
= {
1213 .suspend_noirq
= at91_twi_suspend_noirq
,
1214 .resume_noirq
= at91_twi_resume_noirq
,
1215 .runtime_suspend
= at91_twi_runtime_suspend
,
1216 .runtime_resume
= at91_twi_runtime_resume
,
1219 #define at91_twi_pm_ops (&at91_twi_pm)
1221 #define at91_twi_pm_ops NULL
1224 static struct platform_driver at91_twi_driver
= {
1225 .probe
= at91_twi_probe
,
1226 .remove
= at91_twi_remove
,
1227 .id_table
= at91_twi_devtypes
,
1230 .of_match_table
= of_match_ptr(atmel_twi_dt_ids
),
1231 .pm
= at91_twi_pm_ops
,
1235 static int __init
at91_twi_init(void)
1237 return platform_driver_register(&at91_twi_driver
);
1240 static void __exit
at91_twi_exit(void)
1242 platform_driver_unregister(&at91_twi_driver
);
1245 subsys_initcall(at91_twi_init
);
1246 module_exit(at91_twi_exit
);
1248 MODULE_AUTHOR("Nikolaus Voss <n.voss@weinmann.de>");
1249 MODULE_DESCRIPTION("I2C (TWI) driver for Atmel AT91");
1250 MODULE_LICENSE("GPL");
1251 MODULE_ALIAS("platform:at91_i2c");