2 * I2C adapter for the IMG Serial Control Bus (SCB) IP block.
4 * Copyright (C) 2009, 2010, 2012, 2014 Imagination Technologies Ltd.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
10 * There are three ways that this I2C controller can be driven:
12 * - Raw control of the SDA and SCK signals.
14 * This corresponds to MODE_RAW, which takes control of the signals
15 * directly for a certain number of clock cycles (the INT_TIMING
16 * interrupt can be used for timing).
18 * - Atomic commands. A low level I2C symbol (such as generate
19 * start/stop/ack/nack bit, generate byte, receive byte, and receive
20 * ACK) is given to the hardware, with detection of completion by bits
21 * in the LINESTAT register.
23 * This mode of operation is used by MODE_ATOMIC, which uses an I2C
24 * state machine in the interrupt handler to compose/react to I2C
25 * transactions using atomic mode commands, and also by MODE_SEQUENCE,
26 * which emits a simple fixed sequence of atomic mode commands.
28 * Due to software control, the use of atomic commands usually results
29 * in suboptimal use of the bus, with gaps between the I2C symbols while
30 * the driver decides what to do next.
32 * - Automatic mode. A bus address, and whether to read/write is
33 * specified, and the hardware takes care of the I2C state machine,
34 * using a FIFO to send/receive bytes of data to an I2C slave. The
35 * driver just has to keep the FIFO drained or filled in response to the
36 * appropriate FIFO interrupts.
38 * This corresponds to MODE_AUTOMATIC, which manages the FIFOs and deals
39 * with control of repeated start bits between I2C messages.
41 * Use of automatic mode and the FIFO can make much more efficient use
42 * of the bus compared to individual atomic commands, with potentially
43 * no wasted time between I2C symbols or I2C messages.
45 * In most cases MODE_AUTOMATIC is used, however if any of the messages in
46 * a transaction are zero byte writes (e.g. used by i2cdetect for probing
47 * the bus), MODE_ATOMIC must be used since automatic mode is normally
48 * started by the writing of data into the FIFO.
50 * The other modes are used in specific circumstances where MODE_ATOMIC and
51 * MODE_AUTOMATIC aren't appropriate. MODE_RAW is used to implement a bus
52 * recovery routine. MODE_SEQUENCE is used to reset the bus and make sure
53 * it is in a sane state.
55 * Notice that the driver implements a timer-based timeout mechanism.
56 * The reason for this mechanism is to reduce the number of interrupts
57 * received in automatic mode.
59 * The driver would get a slave event and transaction done interrupts for
60 * each atomic mode command that gets completed. However, these events are
61 * not needed in automatic mode, becase those atomic mode commands are
62 * managed automatically by the hardware.
64 * In practice, normal I2C transactions will be complete well before you
65 * get the timer interrupt, as the timer is re-scheduled during FIFO
66 * maintenance and disabled after the transaction is complete.
68 * In this way normal automatic mode operation isn't impacted by
69 * unnecessary interrupts, but the exceptional abort condition can still be
70 * detected (with a slight delay).
73 #include <linux/bitops.h>
74 #include <linux/clk.h>
75 #include <linux/completion.h>
76 #include <linux/err.h>
77 #include <linux/i2c.h>
78 #include <linux/init.h>
79 #include <linux/interrupt.h>
81 #include <linux/kernel.h>
82 #include <linux/module.h>
83 #include <linux/of_platform.h>
84 #include <linux/platform_device.h>
85 #include <linux/pm_runtime.h>
86 #include <linux/slab.h>
87 #include <linux/timer.h>
89 /* Register offsets */
91 #define SCB_STATUS_REG 0x00
92 #define SCB_OVERRIDE_REG 0x04
93 #define SCB_READ_ADDR_REG 0x08
94 #define SCB_READ_COUNT_REG 0x0c
95 #define SCB_WRITE_ADDR_REG 0x10
96 #define SCB_READ_DATA_REG 0x14
97 #define SCB_WRITE_DATA_REG 0x18
98 #define SCB_FIFO_STATUS_REG 0x1c
99 #define SCB_CONTROL_SOFT_RESET 0x1f
100 #define SCB_CLK_SET_REG 0x3c
101 #define SCB_INT_STATUS_REG 0x40
102 #define SCB_INT_CLEAR_REG 0x44
103 #define SCB_INT_MASK_REG 0x48
104 #define SCB_CONTROL_REG 0x4c
105 #define SCB_TIME_TPL_REG 0x50
106 #define SCB_TIME_TPH_REG 0x54
107 #define SCB_TIME_TP2S_REG 0x58
108 #define SCB_TIME_TBI_REG 0x60
109 #define SCB_TIME_TSL_REG 0x64
110 #define SCB_TIME_TDL_REG 0x68
111 #define SCB_TIME_TSDL_REG 0x6c
112 #define SCB_TIME_TSDH_REG 0x70
113 #define SCB_READ_XADDR_REG 0x74
114 #define SCB_WRITE_XADDR_REG 0x78
115 #define SCB_WRITE_COUNT_REG 0x7c
116 #define SCB_CORE_REV_REG 0x80
117 #define SCB_TIME_TCKH_REG 0x84
118 #define SCB_TIME_TCKL_REG 0x88
119 #define SCB_FIFO_FLUSH_REG 0x8c
120 #define SCB_READ_FIFO_REG 0x94
121 #define SCB_CLEAR_REG 0x98
123 /* SCB_CONTROL_REG bits */
125 #define SCB_CONTROL_CLK_ENABLE 0x1e0
126 #define SCB_CONTROL_TRANSACTION_HALT 0x200
128 #define FIFO_READ_FULL BIT(0)
129 #define FIFO_READ_EMPTY BIT(1)
130 #define FIFO_WRITE_FULL BIT(2)
131 #define FIFO_WRITE_EMPTY BIT(3)
133 /* SCB_CLK_SET_REG bits */
134 #define SCB_FILT_DISABLE BIT(31)
135 #define SCB_FILT_BYPASS BIT(30)
136 #define SCB_FILT_INC_MASK 0x7f
137 #define SCB_FILT_INC_SHIFT 16
138 #define SCB_INC_MASK 0x7f
139 #define SCB_INC_SHIFT 8
141 /* SCB_INT_*_REG bits */
143 #define INT_BUS_INACTIVE BIT(0)
144 #define INT_UNEXPECTED_START BIT(1)
145 #define INT_SCLK_LOW_TIMEOUT BIT(2)
146 #define INT_SDAT_LOW_TIMEOUT BIT(3)
147 #define INT_WRITE_ACK_ERR BIT(4)
148 #define INT_ADDR_ACK_ERR BIT(5)
149 #define INT_FIFO_FULL BIT(9)
150 #define INT_FIFO_FILLING BIT(10)
151 #define INT_FIFO_EMPTY BIT(11)
152 #define INT_FIFO_EMPTYING BIT(12)
153 #define INT_TRANSACTION_DONE BIT(15)
154 #define INT_SLAVE_EVENT BIT(16)
155 #define INT_MASTER_HALTED BIT(17)
156 #define INT_TIMING BIT(18)
157 #define INT_STOP_DETECTED BIT(19)
159 #define INT_FIFO_FULL_FILLING (INT_FIFO_FULL | INT_FIFO_FILLING)
161 /* Level interrupts need clearing after handling instead of before */
162 #define INT_LEVEL 0x01e00
164 /* Don't allow any interrupts while the clock may be off */
165 #define INT_ENABLE_MASK_INACTIVE 0x00000
167 /* Interrupt masks for the different driver modes */
169 #define INT_ENABLE_MASK_RAW INT_TIMING
171 #define INT_ENABLE_MASK_ATOMIC (INT_TRANSACTION_DONE | \
176 #define INT_ENABLE_MASK_AUTOMATIC (INT_SCLK_LOW_TIMEOUT | \
178 INT_WRITE_ACK_ERR | \
182 INT_MASTER_HALTED | \
185 #define INT_ENABLE_MASK_WAITSTOP (INT_SLAVE_EVENT | \
189 /* SCB_STATUS_REG fields */
191 #define LINESTAT_SCLK_LINE_STATUS BIT(0)
192 #define LINESTAT_SCLK_EN BIT(1)
193 #define LINESTAT_SDAT_LINE_STATUS BIT(2)
194 #define LINESTAT_SDAT_EN BIT(3)
195 #define LINESTAT_DET_START_STATUS BIT(4)
196 #define LINESTAT_DET_STOP_STATUS BIT(5)
197 #define LINESTAT_DET_ACK_STATUS BIT(6)
198 #define LINESTAT_DET_NACK_STATUS BIT(7)
199 #define LINESTAT_BUS_IDLE BIT(8)
200 #define LINESTAT_T_DONE_STATUS BIT(9)
201 #define LINESTAT_SCLK_OUT_STATUS BIT(10)
202 #define LINESTAT_SDAT_OUT_STATUS BIT(11)
203 #define LINESTAT_GEN_LINE_MASK_STATUS BIT(12)
204 #define LINESTAT_START_BIT_DET BIT(13)
205 #define LINESTAT_STOP_BIT_DET BIT(14)
206 #define LINESTAT_ACK_DET BIT(15)
207 #define LINESTAT_NACK_DET BIT(16)
208 #define LINESTAT_INPUT_HELD_V BIT(17)
209 #define LINESTAT_ABORT_DET BIT(18)
210 #define LINESTAT_ACK_OR_NACK_DET (LINESTAT_ACK_DET | LINESTAT_NACK_DET)
211 #define LINESTAT_INPUT_DATA 0xff000000
212 #define LINESTAT_INPUT_DATA_SHIFT 24
214 #define LINESTAT_CLEAR_SHIFT 13
215 #define LINESTAT_LATCHED (0x3f << LINESTAT_CLEAR_SHIFT)
217 /* SCB_OVERRIDE_REG fields */
219 #define OVERRIDE_SCLK_OVR BIT(0)
220 #define OVERRIDE_SCLKEN_OVR BIT(1)
221 #define OVERRIDE_SDAT_OVR BIT(2)
222 #define OVERRIDE_SDATEN_OVR BIT(3)
223 #define OVERRIDE_MASTER BIT(9)
224 #define OVERRIDE_LINE_OVR_EN BIT(10)
225 #define OVERRIDE_DIRECT BIT(11)
226 #define OVERRIDE_CMD_SHIFT 4
227 #define OVERRIDE_CMD_MASK 0x1f
228 #define OVERRIDE_DATA_SHIFT 24
230 #define OVERRIDE_SCLK_DOWN (OVERRIDE_LINE_OVR_EN | \
232 #define OVERRIDE_SCLK_UP (OVERRIDE_LINE_OVR_EN | \
233 OVERRIDE_SCLKEN_OVR | \
235 #define OVERRIDE_SDAT_DOWN (OVERRIDE_LINE_OVR_EN | \
237 #define OVERRIDE_SDAT_UP (OVERRIDE_LINE_OVR_EN | \
238 OVERRIDE_SDATEN_OVR | \
241 /* OVERRIDE_CMD values */
243 #define CMD_PAUSE 0x00
244 #define CMD_GEN_DATA 0x01
245 #define CMD_GEN_START 0x02
246 #define CMD_GEN_STOP 0x03
247 #define CMD_GEN_ACK 0x04
248 #define CMD_GEN_NACK 0x05
249 #define CMD_RET_DATA 0x08
250 #define CMD_RET_ACK 0x09
252 /* Fixed timing values */
254 #define TIMEOUT_TBI 0x0
255 #define TIMEOUT_TSL 0xffff
256 #define TIMEOUT_TDL 0x0
258 /* Transaction timeout */
260 #define IMG_I2C_TIMEOUT (msecs_to_jiffies(1000))
263 * Worst incs are 1 (innacurate) and 16*256 (irregular).
264 * So a sensible inc is the logarithmic mean: 64 (2^6), which is
265 * in the middle of the valid range (0-127).
267 #define SCB_OPT_INC 64
269 /* Setup the clock enable filtering for 25 ns */
270 #define SCB_FILT_GLITCH 25
273 * Bits to return from interrupt handler functions for different modes.
274 * This delays completion until we've finished with the registers, so that the
275 * function waiting for completion can safely disable the clock to save power.
277 #define ISR_COMPLETE_M BIT(31)
278 #define ISR_FATAL_M BIT(30)
279 #define ISR_WAITSTOP BIT(29)
280 #define ISR_STATUS_M 0x0000ffff /* contains +ve errno */
281 #define ISR_COMPLETE(err) (ISR_COMPLETE_M | (ISR_STATUS_M & (err)))
282 #define ISR_FATAL(err) (ISR_COMPLETE(err) | ISR_FATAL_M)
284 #define IMG_I2C_PM_TIMEOUT 1000 /* ms */
297 /* Timing parameters for i2c modes (in ns) */
298 struct img_i2c_timings
{
300 unsigned int max_bitrate
;
301 unsigned int tckh
, tckl
, tsdh
, tsdl
;
302 unsigned int tp2s
, tpl
, tph
;
305 /* The timings array must be ordered from slower to faster */
306 static struct img_i2c_timings timings
[] = {
310 .max_bitrate
= 100000,
322 .max_bitrate
= 400000,
334 static u8 img_i2c_reset_seq
[] = { CMD_GEN_START
,
340 /* Just issue a stop (after an abort condition) */
341 static u8 img_i2c_stop_seq
[] = { CMD_GEN_STOP
,
344 /* We're interested in different interrupts depending on the mode */
345 static unsigned int img_i2c_int_enable_by_mode
[] = {
346 [MODE_INACTIVE
] = INT_ENABLE_MASK_INACTIVE
,
347 [MODE_RAW
] = INT_ENABLE_MASK_RAW
,
348 [MODE_ATOMIC
] = INT_ENABLE_MASK_ATOMIC
,
349 [MODE_AUTOMATIC
] = INT_ENABLE_MASK_AUTOMATIC
,
350 [MODE_SEQUENCE
] = INT_ENABLE_MASK_ATOMIC
,
352 [MODE_WAITSTOP
] = INT_ENABLE_MASK_WAITSTOP
,
356 /* Atomic command names */
357 static const char * const img_i2c_atomic_cmd_names
[] = {
358 [CMD_PAUSE
] = "PAUSE",
359 [CMD_GEN_DATA
] = "GEN_DATA",
360 [CMD_GEN_START
] = "GEN_START",
361 [CMD_GEN_STOP
] = "GEN_STOP",
362 [CMD_GEN_ACK
] = "GEN_ACK",
363 [CMD_GEN_NACK
] = "GEN_NACK",
364 [CMD_RET_DATA
] = "RET_DATA",
365 [CMD_RET_ACK
] = "RET_ACK",
369 struct i2c_adapter adap
;
374 * The scb core clock is used to get the input frequency, and to disable
375 * it after every set of transactions to save some power.
377 struct clk
*scb_clk
, *sys_clk
;
378 unsigned int bitrate
;
379 bool need_wr_rd_fence
;
382 struct completion msg_complete
;
383 spinlock_t lock
; /* lock before doing anything with the state */
386 /* After the last transaction, wait for a stop bit */
390 enum img_i2c_mode mode
;
391 u32 int_enable
; /* depends on mode */
392 u32 line_status
; /* line status over command */
395 * To avoid slave event interrupts in automatic mode, use a timer to
396 * poll the abort condition if we don't get an interrupt for too long.
398 struct timer_list check_timer
;
401 /* atomic mode state */
407 /* Sequence: either reset or stop. See img_i2c_sequence. */
411 unsigned int raw_timeout
;
414 static int img_i2c_runtime_suspend(struct device
*dev
);
415 static int img_i2c_runtime_resume(struct device
*dev
);
417 static void img_i2c_writel(struct img_i2c
*i2c
, u32 offset
, u32 value
)
419 writel(value
, i2c
->base
+ offset
);
422 static u32
img_i2c_readl(struct img_i2c
*i2c
, u32 offset
)
424 return readl(i2c
->base
+ offset
);
428 * The code to read from the master read fifo, and write to the master
429 * write fifo, checks a bit in an SCB register before every byte to
430 * ensure that the fifo is not full (write fifo) or empty (read fifo).
431 * Due to clock domain crossing inside the SCB block the updated value
432 * of this bit is only visible after 2 cycles.
434 * The scb_wr_rd_fence() function does 2 dummy writes (to the read-only
435 * revision register), and it's called after reading from or writing to the
436 * fifos to ensure that subsequent reads of the fifo status bits do not read
439 static void img_i2c_wr_rd_fence(struct img_i2c
*i2c
)
441 if (i2c
->need_wr_rd_fence
) {
442 img_i2c_writel(i2c
, SCB_CORE_REV_REG
, 0);
443 img_i2c_writel(i2c
, SCB_CORE_REV_REG
, 0);
447 static void img_i2c_switch_mode(struct img_i2c
*i2c
, enum img_i2c_mode mode
)
450 i2c
->int_enable
= img_i2c_int_enable_by_mode
[mode
];
451 i2c
->line_status
= 0;
454 static void img_i2c_raw_op(struct img_i2c
*i2c
)
456 i2c
->raw_timeout
= 0;
457 img_i2c_writel(i2c
, SCB_OVERRIDE_REG
,
458 OVERRIDE_SCLKEN_OVR
|
459 OVERRIDE_SDATEN_OVR
|
461 OVERRIDE_LINE_OVR_EN
|
463 ((i2c
->at_cur_cmd
& OVERRIDE_CMD_MASK
) << OVERRIDE_CMD_SHIFT
) |
464 (i2c
->at_cur_data
<< OVERRIDE_DATA_SHIFT
));
467 static const char *img_i2c_atomic_op_name(unsigned int cmd
)
469 if (unlikely(cmd
>= ARRAY_SIZE(img_i2c_atomic_cmd_names
)))
471 return img_i2c_atomic_cmd_names
[cmd
];
474 /* Send a single atomic mode command to the hardware */
475 static void img_i2c_atomic_op(struct img_i2c
*i2c
, int cmd
, u8 data
)
477 i2c
->at_cur_cmd
= cmd
;
478 i2c
->at_cur_data
= data
;
480 /* work around lack of data setup time when generating data */
481 if (cmd
== CMD_GEN_DATA
&& i2c
->mode
== MODE_ATOMIC
) {
482 u32 line_status
= img_i2c_readl(i2c
, SCB_STATUS_REG
);
484 if (line_status
& LINESTAT_SDAT_LINE_STATUS
&& !(data
& 0x80)) {
485 /* hold the data line down for a moment */
486 img_i2c_switch_mode(i2c
, MODE_RAW
);
492 dev_dbg(i2c
->adap
.dev
.parent
,
493 "atomic cmd=%s (%d) data=%#x\n",
494 img_i2c_atomic_op_name(cmd
), cmd
, data
);
495 i2c
->at_t_done
= (cmd
== CMD_RET_DATA
|| cmd
== CMD_RET_ACK
);
496 i2c
->at_slave_event
= false;
497 i2c
->line_status
= 0;
499 img_i2c_writel(i2c
, SCB_OVERRIDE_REG
,
500 ((cmd
& OVERRIDE_CMD_MASK
) << OVERRIDE_CMD_SHIFT
) |
503 (data
<< OVERRIDE_DATA_SHIFT
));
506 /* Start a transaction in atomic mode */
507 static void img_i2c_atomic_start(struct img_i2c
*i2c
)
509 img_i2c_switch_mode(i2c
, MODE_ATOMIC
);
510 img_i2c_writel(i2c
, SCB_INT_MASK_REG
, i2c
->int_enable
);
511 img_i2c_atomic_op(i2c
, CMD_GEN_START
, 0x00);
514 static void img_i2c_soft_reset(struct img_i2c
*i2c
)
517 img_i2c_writel(i2c
, SCB_CONTROL_REG
, 0);
518 img_i2c_writel(i2c
, SCB_CONTROL_REG
,
519 SCB_CONTROL_CLK_ENABLE
| SCB_CONTROL_SOFT_RESET
);
523 * Enable or release transaction halt for control of repeated starts.
524 * In version 3.3 of the IP when transaction halt is set, an interrupt
525 * will be generated after each byte of a transfer instead of after
526 * every transfer but before the stop bit.
527 * Due to this behaviour we have to be careful that every time we
528 * release the transaction halt we have to re-enable it straight away
529 * so that we only process a single byte, not doing so will result in
530 * all remaining bytes been processed and a stop bit being issued,
531 * which will prevent us having a repeated start.
533 static void img_i2c_transaction_halt(struct img_i2c
*i2c
, bool t_halt
)
537 if (i2c
->t_halt
== t_halt
)
539 i2c
->t_halt
= t_halt
;
540 val
= img_i2c_readl(i2c
, SCB_CONTROL_REG
);
542 val
|= SCB_CONTROL_TRANSACTION_HALT
;
544 val
&= ~SCB_CONTROL_TRANSACTION_HALT
;
545 img_i2c_writel(i2c
, SCB_CONTROL_REG
, val
);
548 /* Drain data from the FIFO into the buffer (automatic mode) */
549 static void img_i2c_read_fifo(struct img_i2c
*i2c
)
551 while (i2c
->msg
.len
) {
555 img_i2c_wr_rd_fence(i2c
);
556 fifo_status
= img_i2c_readl(i2c
, SCB_FIFO_STATUS_REG
);
557 if (fifo_status
& FIFO_READ_EMPTY
)
560 data
= img_i2c_readl(i2c
, SCB_READ_DATA_REG
);
561 *i2c
->msg
.buf
= data
;
563 img_i2c_writel(i2c
, SCB_READ_FIFO_REG
, 0xff);
569 /* Fill the FIFO with data from the buffer (automatic mode) */
570 static void img_i2c_write_fifo(struct img_i2c
*i2c
)
572 while (i2c
->msg
.len
) {
575 img_i2c_wr_rd_fence(i2c
);
576 fifo_status
= img_i2c_readl(i2c
, SCB_FIFO_STATUS_REG
);
577 if (fifo_status
& FIFO_WRITE_FULL
)
580 img_i2c_writel(i2c
, SCB_WRITE_DATA_REG
, *i2c
->msg
.buf
);
585 /* Disable fifo emptying interrupt if nothing more to write */
587 i2c
->int_enable
&= ~INT_FIFO_EMPTYING
;
590 /* Start a read transaction in automatic mode */
591 static void img_i2c_read(struct img_i2c
*i2c
)
593 img_i2c_switch_mode(i2c
, MODE_AUTOMATIC
);
595 i2c
->int_enable
|= INT_SLAVE_EVENT
;
597 img_i2c_writel(i2c
, SCB_INT_MASK_REG
, i2c
->int_enable
);
598 img_i2c_writel(i2c
, SCB_READ_ADDR_REG
, i2c
->msg
.addr
);
599 img_i2c_writel(i2c
, SCB_READ_COUNT_REG
, i2c
->msg
.len
);
601 mod_timer(&i2c
->check_timer
, jiffies
+ msecs_to_jiffies(1));
604 /* Start a write transaction in automatic mode */
605 static void img_i2c_write(struct img_i2c
*i2c
)
607 img_i2c_switch_mode(i2c
, MODE_AUTOMATIC
);
609 i2c
->int_enable
|= INT_SLAVE_EVENT
;
611 img_i2c_writel(i2c
, SCB_WRITE_ADDR_REG
, i2c
->msg
.addr
);
612 img_i2c_writel(i2c
, SCB_WRITE_COUNT_REG
, i2c
->msg
.len
);
614 mod_timer(&i2c
->check_timer
, jiffies
+ msecs_to_jiffies(1));
615 img_i2c_write_fifo(i2c
);
617 /* img_i2c_write_fifo() may modify int_enable */
618 img_i2c_writel(i2c
, SCB_INT_MASK_REG
, i2c
->int_enable
);
622 * Indicate that the transaction is complete. This is called from the
623 * ISR to wake up the waiting thread, after which the ISR must not
624 * access any more SCB registers.
626 static void img_i2c_complete_transaction(struct img_i2c
*i2c
, int status
)
628 img_i2c_switch_mode(i2c
, MODE_INACTIVE
);
630 i2c
->msg_status
= status
;
631 img_i2c_transaction_halt(i2c
, false);
633 complete(&i2c
->msg_complete
);
636 static unsigned int img_i2c_raw_atomic_delay_handler(struct img_i2c
*i2c
,
637 u32 int_status
, u32 line_status
)
639 /* Stay in raw mode for this, so we don't just loop infinitely */
640 img_i2c_atomic_op(i2c
, i2c
->at_cur_cmd
, i2c
->at_cur_data
);
641 img_i2c_switch_mode(i2c
, MODE_ATOMIC
);
645 static unsigned int img_i2c_raw(struct img_i2c
*i2c
, u32 int_status
,
648 if (int_status
& INT_TIMING
) {
649 if (i2c
->raw_timeout
== 0)
650 return img_i2c_raw_atomic_delay_handler(i2c
,
651 int_status
, line_status
);
657 static unsigned int img_i2c_sequence(struct img_i2c
*i2c
, u32 int_status
)
659 static const unsigned int continue_bits
[] = {
660 [CMD_GEN_START
] = LINESTAT_START_BIT_DET
,
661 [CMD_GEN_DATA
] = LINESTAT_INPUT_HELD_V
,
662 [CMD_RET_ACK
] = LINESTAT_ACK_DET
| LINESTAT_NACK_DET
,
663 [CMD_RET_DATA
] = LINESTAT_INPUT_HELD_V
,
664 [CMD_GEN_STOP
] = LINESTAT_STOP_BIT_DET
,
669 if (int_status
& INT_SLAVE_EVENT
)
670 i2c
->at_slave_event
= true;
671 if (int_status
& INT_TRANSACTION_DONE
)
672 i2c
->at_t_done
= true;
674 if (!i2c
->at_slave_event
|| !i2c
->at_t_done
)
677 /* wait if no continue bits are set */
678 if (i2c
->at_cur_cmd
>= 0 &&
679 i2c
->at_cur_cmd
< ARRAY_SIZE(continue_bits
)) {
680 unsigned int cont_bits
= continue_bits
[i2c
->at_cur_cmd
];
683 cont_bits
|= LINESTAT_ABORT_DET
;
684 if (!(i2c
->line_status
& cont_bits
))
689 /* follow the sequence of commands in i2c->seq */
690 next_cmd
= *i2c
->seq
;
693 img_i2c_writel(i2c
, SCB_OVERRIDE_REG
, 0);
694 return ISR_COMPLETE(0);
696 /* when generating data, the next byte is the data */
697 if (next_cmd
== CMD_GEN_DATA
) {
699 next_data
= *i2c
->seq
;
702 img_i2c_atomic_op(i2c
, next_cmd
, next_data
);
707 static void img_i2c_reset_start(struct img_i2c
*i2c
)
709 /* Initiate the magic dance */
710 img_i2c_switch_mode(i2c
, MODE_SEQUENCE
);
711 img_i2c_writel(i2c
, SCB_INT_MASK_REG
, i2c
->int_enable
);
712 i2c
->seq
= img_i2c_reset_seq
;
713 i2c
->at_slave_event
= true;
714 i2c
->at_t_done
= true;
715 i2c
->at_cur_cmd
= -1;
717 /* img_i2c_reset_seq isn't empty so the following won't fail */
718 img_i2c_sequence(i2c
, 0);
721 static void img_i2c_stop_start(struct img_i2c
*i2c
)
723 /* Initiate a stop bit sequence */
724 img_i2c_switch_mode(i2c
, MODE_SEQUENCE
);
725 img_i2c_writel(i2c
, SCB_INT_MASK_REG
, i2c
->int_enable
);
726 i2c
->seq
= img_i2c_stop_seq
;
727 i2c
->at_slave_event
= true;
728 i2c
->at_t_done
= true;
729 i2c
->at_cur_cmd
= -1;
731 /* img_i2c_stop_seq isn't empty so the following won't fail */
732 img_i2c_sequence(i2c
, 0);
735 static unsigned int img_i2c_atomic(struct img_i2c
*i2c
,
742 if (int_status
& INT_SLAVE_EVENT
)
743 i2c
->at_slave_event
= true;
744 if (int_status
& INT_TRANSACTION_DONE
)
745 i2c
->at_t_done
= true;
747 if (!i2c
->at_slave_event
|| !i2c
->at_t_done
)
748 goto next_atomic_cmd
;
749 if (i2c
->line_status
& LINESTAT_ABORT_DET
) {
750 dev_dbg(i2c
->adap
.dev
.parent
, "abort condition detected\n");
751 next_cmd
= CMD_GEN_STOP
;
752 i2c
->msg_status
= -EIO
;
753 goto next_atomic_cmd
;
756 /* i2c->at_cur_cmd may have completed */
757 switch (i2c
->at_cur_cmd
) {
759 next_cmd
= CMD_GEN_DATA
;
760 next_data
= i2c_8bit_addr_from_msg(&i2c
->msg
);
763 if (i2c
->line_status
& LINESTAT_INPUT_HELD_V
)
764 next_cmd
= CMD_RET_ACK
;
767 if (i2c
->line_status
& LINESTAT_ACK_DET
||
768 (i2c
->line_status
& LINESTAT_NACK_DET
&&
769 i2c
->msg
.flags
& I2C_M_IGNORE_NAK
)) {
770 if (i2c
->msg
.len
== 0) {
771 next_cmd
= CMD_GEN_STOP
;
772 } else if (i2c
->msg
.flags
& I2C_M_RD
) {
773 next_cmd
= CMD_RET_DATA
;
775 next_cmd
= CMD_GEN_DATA
;
776 next_data
= *i2c
->msg
.buf
;
780 } else if (i2c
->line_status
& LINESTAT_NACK_DET
) {
781 i2c
->msg_status
= -EIO
;
782 next_cmd
= CMD_GEN_STOP
;
786 if (i2c
->line_status
& LINESTAT_INPUT_HELD_V
) {
787 *i2c
->msg
.buf
= (i2c
->line_status
&
789 >> LINESTAT_INPUT_DATA_SHIFT
;
793 next_cmd
= CMD_GEN_ACK
;
795 next_cmd
= CMD_GEN_NACK
;
799 if (i2c
->line_status
& LINESTAT_ACK_DET
) {
800 next_cmd
= CMD_RET_DATA
;
802 i2c
->msg_status
= -EIO
;
803 next_cmd
= CMD_GEN_STOP
;
807 next_cmd
= CMD_GEN_STOP
;
810 img_i2c_writel(i2c
, SCB_OVERRIDE_REG
, 0);
811 return ISR_COMPLETE(0);
813 dev_err(i2c
->adap
.dev
.parent
, "bad atomic command %d\n",
815 i2c
->msg_status
= -EIO
;
816 next_cmd
= CMD_GEN_STOP
;
821 if (next_cmd
!= -1) {
822 /* don't actually stop unless we're the last transaction */
823 if (next_cmd
== CMD_GEN_STOP
&& !i2c
->msg_status
&&
825 return ISR_COMPLETE(0);
826 img_i2c_atomic_op(i2c
, next_cmd
, next_data
);
832 * Timer function to check if something has gone wrong in automatic mode (so we
833 * don't have to handle so many interrupts just to catch an exception).
835 static void img_i2c_check_timer(struct timer_list
*t
)
837 struct img_i2c
*i2c
= from_timer(i2c
, t
, check_timer
);
839 unsigned int line_status
;
841 spin_lock_irqsave(&i2c
->lock
, flags
);
842 line_status
= img_i2c_readl(i2c
, SCB_STATUS_REG
);
844 /* check for an abort condition */
845 if (line_status
& LINESTAT_ABORT_DET
) {
846 dev_dbg(i2c
->adap
.dev
.parent
,
847 "abort condition detected by check timer\n");
848 /* enable slave event interrupt mask to trigger irq */
849 img_i2c_writel(i2c
, SCB_INT_MASK_REG
,
850 i2c
->int_enable
| INT_SLAVE_EVENT
);
853 spin_unlock_irqrestore(&i2c
->lock
, flags
);
856 static unsigned int img_i2c_auto(struct img_i2c
*i2c
,
857 unsigned int int_status
,
858 unsigned int line_status
)
860 if (int_status
& (INT_WRITE_ACK_ERR
| INT_ADDR_ACK_ERR
))
861 return ISR_COMPLETE(EIO
);
863 if (line_status
& LINESTAT_ABORT_DET
) {
864 dev_dbg(i2c
->adap
.dev
.parent
, "abort condition detected\n");
865 /* empty the read fifo */
866 if ((i2c
->msg
.flags
& I2C_M_RD
) &&
867 (int_status
& INT_FIFO_FULL_FILLING
))
868 img_i2c_read_fifo(i2c
);
869 /* use atomic mode and try to force a stop bit */
870 i2c
->msg_status
= -EIO
;
871 img_i2c_stop_start(i2c
);
875 /* Enable transaction halt on start bit */
876 if (!i2c
->last_msg
&& line_status
& LINESTAT_START_BIT_DET
) {
877 img_i2c_transaction_halt(i2c
, !i2c
->last_msg
);
878 /* we're no longer interested in the slave event */
879 i2c
->int_enable
&= ~INT_SLAVE_EVENT
;
882 mod_timer(&i2c
->check_timer
, jiffies
+ msecs_to_jiffies(1));
884 if (int_status
& INT_STOP_DETECTED
) {
885 /* Drain remaining data in FIFO and complete transaction */
886 if (i2c
->msg
.flags
& I2C_M_RD
)
887 img_i2c_read_fifo(i2c
);
888 return ISR_COMPLETE(0);
891 if (i2c
->msg
.flags
& I2C_M_RD
) {
892 if (int_status
& (INT_FIFO_FULL_FILLING
| INT_MASTER_HALTED
)) {
893 img_i2c_read_fifo(i2c
);
894 if (i2c
->msg
.len
== 0)
898 if (int_status
& (INT_FIFO_EMPTY
| INT_MASTER_HALTED
)) {
899 if ((int_status
& INT_FIFO_EMPTY
) &&
902 img_i2c_write_fifo(i2c
);
905 if (int_status
& INT_MASTER_HALTED
) {
907 * Release and then enable transaction halt, to
908 * allow only a single byte to proceed.
910 img_i2c_transaction_halt(i2c
, false);
911 img_i2c_transaction_halt(i2c
, !i2c
->last_msg
);
917 static irqreturn_t
img_i2c_isr(int irq
, void *dev_id
)
919 struct img_i2c
*i2c
= (struct img_i2c
*)dev_id
;
920 u32 int_status
, line_status
;
921 /* We handle transaction completion AFTER accessing registers */
924 /* Read interrupt status register. */
925 int_status
= img_i2c_readl(i2c
, SCB_INT_STATUS_REG
);
926 /* Clear detected interrupts. */
927 img_i2c_writel(i2c
, SCB_INT_CLEAR_REG
, int_status
);
930 * Read line status and clear it until it actually is clear. We have
931 * to be careful not to lose any line status bits that get latched.
933 line_status
= img_i2c_readl(i2c
, SCB_STATUS_REG
);
934 if (line_status
& LINESTAT_LATCHED
) {
935 img_i2c_writel(i2c
, SCB_CLEAR_REG
,
936 (line_status
& LINESTAT_LATCHED
)
937 >> LINESTAT_CLEAR_SHIFT
);
938 img_i2c_wr_rd_fence(i2c
);
941 spin_lock(&i2c
->lock
);
943 /* Keep track of line status bits received */
944 i2c
->line_status
&= ~LINESTAT_INPUT_DATA
;
945 i2c
->line_status
|= line_status
;
948 * Certain interrupts indicate that sclk low timeout is not
949 * a problem. If any of these are set, just continue.
951 if ((int_status
& INT_SCLK_LOW_TIMEOUT
) &&
952 !(int_status
& (INT_SLAVE_EVENT
|
955 dev_crit(i2c
->adap
.dev
.parent
,
956 "fatal: clock low timeout occurred %s addr 0x%02x\n",
957 (i2c
->msg
.flags
& I2C_M_RD
) ? "reading" : "writing",
959 hret
= ISR_FATAL(EIO
);
963 if (i2c
->mode
== MODE_ATOMIC
)
964 hret
= img_i2c_atomic(i2c
, int_status
, line_status
);
965 else if (i2c
->mode
== MODE_AUTOMATIC
)
966 hret
= img_i2c_auto(i2c
, int_status
, line_status
);
967 else if (i2c
->mode
== MODE_SEQUENCE
)
968 hret
= img_i2c_sequence(i2c
, int_status
);
969 else if (i2c
->mode
== MODE_WAITSTOP
&& (int_status
& INT_SLAVE_EVENT
) &&
970 (line_status
& LINESTAT_STOP_BIT_DET
))
971 hret
= ISR_COMPLETE(0);
972 else if (i2c
->mode
== MODE_RAW
)
973 hret
= img_i2c_raw(i2c
, int_status
, line_status
);
977 /* Clear detected level interrupts. */
978 img_i2c_writel(i2c
, SCB_INT_CLEAR_REG
, int_status
& INT_LEVEL
);
981 if (hret
& ISR_WAITSTOP
) {
983 * Only wait for stop on last message.
984 * Also we may already have detected the stop bit.
986 if (!i2c
->last_msg
|| i2c
->line_status
& LINESTAT_STOP_BIT_DET
)
987 hret
= ISR_COMPLETE(0);
989 img_i2c_switch_mode(i2c
, MODE_WAITSTOP
);
992 /* now we've finished using regs, handle transaction completion */
993 if (hret
& ISR_COMPLETE_M
) {
994 int status
= -(hret
& ISR_STATUS_M
);
996 img_i2c_complete_transaction(i2c
, status
);
997 if (hret
& ISR_FATAL_M
)
998 img_i2c_switch_mode(i2c
, MODE_FATAL
);
1001 /* Enable interrupts (int_enable may be altered by changing mode) */
1002 img_i2c_writel(i2c
, SCB_INT_MASK_REG
, i2c
->int_enable
);
1004 spin_unlock(&i2c
->lock
);
1009 /* Force a bus reset sequence and wait for it to complete */
1010 static int img_i2c_reset_bus(struct img_i2c
*i2c
)
1012 unsigned long flags
;
1013 unsigned long time_left
;
1015 spin_lock_irqsave(&i2c
->lock
, flags
);
1016 reinit_completion(&i2c
->msg_complete
);
1017 img_i2c_reset_start(i2c
);
1018 spin_unlock_irqrestore(&i2c
->lock
, flags
);
1020 time_left
= wait_for_completion_timeout(&i2c
->msg_complete
,
1027 static int img_i2c_xfer(struct i2c_adapter
*adap
, struct i2c_msg
*msgs
,
1030 struct img_i2c
*i2c
= i2c_get_adapdata(adap
);
1031 bool atomic
= false;
1033 unsigned long time_left
;
1035 if (i2c
->mode
== MODE_SUSPEND
) {
1036 WARN(1, "refusing to service transaction in suspended state\n");
1040 if (i2c
->mode
== MODE_FATAL
)
1043 for (i
= 0; i
< num
; i
++) {
1045 * 0 byte reads are not possible because the slave could try
1046 * and pull the data line low, preventing a stop bit.
1048 if (!msgs
[i
].len
&& msgs
[i
].flags
& I2C_M_RD
)
1051 * 0 byte writes are possible and used for probing, but we
1052 * cannot do them in automatic mode, so use atomic mode
1055 * Also, the I2C_M_IGNORE_NAK mode can only be implemented
1059 (msgs
[i
].flags
& I2C_M_IGNORE_NAK
))
1063 ret
= pm_runtime_get_sync(adap
->dev
.parent
);
1067 for (i
= 0; i
< num
; i
++) {
1068 struct i2c_msg
*msg
= &msgs
[i
];
1069 unsigned long flags
;
1071 spin_lock_irqsave(&i2c
->lock
, flags
);
1074 * Make a copy of the message struct. We mustn't modify the
1075 * original or we'll confuse drivers and i2c-dev.
1078 i2c
->msg_status
= 0;
1081 * After the last message we must have waited for a stop bit.
1082 * Not waiting can cause problems when the clock is disabled
1083 * before the stop bit is sent, and the linux I2C interface
1084 * requires separate transfers not to joined with repeated
1087 i2c
->last_msg
= (i
== num
- 1);
1088 reinit_completion(&i2c
->msg_complete
);
1091 * Clear line status and all interrupts before starting a
1092 * transfer, as we may have unserviced interrupts from
1093 * previous transfers that might be handled in the context
1094 * of the new transfer.
1096 img_i2c_writel(i2c
, SCB_INT_CLEAR_REG
, ~0);
1097 img_i2c_writel(i2c
, SCB_CLEAR_REG
, ~0);
1100 img_i2c_atomic_start(i2c
);
1103 * Enable transaction halt if not the last message in
1104 * the queue so that we can control repeated starts.
1106 img_i2c_transaction_halt(i2c
, !i2c
->last_msg
);
1108 if (msg
->flags
& I2C_M_RD
)
1114 * Release and then enable transaction halt, to
1115 * allow only a single byte to proceed.
1116 * This doesn't have an effect on the initial transfer
1117 * but will allow the following transfers to start
1118 * processing if the previous transfer was marked as
1119 * complete while the i2c block was halted.
1121 img_i2c_transaction_halt(i2c
, false);
1122 img_i2c_transaction_halt(i2c
, !i2c
->last_msg
);
1124 spin_unlock_irqrestore(&i2c
->lock
, flags
);
1126 time_left
= wait_for_completion_timeout(&i2c
->msg_complete
,
1128 del_timer_sync(&i2c
->check_timer
);
1130 if (time_left
== 0) {
1131 dev_err(adap
->dev
.parent
, "i2c transfer timed out\n");
1132 i2c
->msg_status
= -ETIMEDOUT
;
1136 if (i2c
->msg_status
)
1140 pm_runtime_mark_last_busy(adap
->dev
.parent
);
1141 pm_runtime_put_autosuspend(adap
->dev
.parent
);
1143 return i2c
->msg_status
? i2c
->msg_status
: num
;
1146 static u32
img_i2c_func(struct i2c_adapter
*adap
)
1148 return I2C_FUNC_I2C
| I2C_FUNC_SMBUS_EMUL
;
1151 static const struct i2c_algorithm img_i2c_algo
= {
1152 .master_xfer
= img_i2c_xfer
,
1153 .functionality
= img_i2c_func
,
1156 static int img_i2c_init(struct img_i2c
*i2c
)
1158 unsigned int clk_khz
, bitrate_khz
, clk_period
, tckh
, tckl
, tsdh
;
1159 unsigned int i
, data
, prescale
, inc
, int_bitrate
, filt
;
1160 struct img_i2c_timings timing
;
1164 ret
= pm_runtime_get_sync(i2c
->adap
.dev
.parent
);
1168 rev
= img_i2c_readl(i2c
, SCB_CORE_REV_REG
);
1169 if ((rev
& 0x00ffffff) < 0x00020200) {
1170 dev_info(i2c
->adap
.dev
.parent
,
1171 "Unknown hardware revision (%d.%d.%d.%d)\n",
1172 (rev
>> 24) & 0xff, (rev
>> 16) & 0xff,
1173 (rev
>> 8) & 0xff, rev
& 0xff);
1174 pm_runtime_mark_last_busy(i2c
->adap
.dev
.parent
);
1175 pm_runtime_put_autosuspend(i2c
->adap
.dev
.parent
);
1179 /* Fencing enabled by default. */
1180 i2c
->need_wr_rd_fence
= true;
1182 /* Determine what mode we're in from the bitrate */
1183 timing
= timings
[0];
1184 for (i
= 0; i
< ARRAY_SIZE(timings
); i
++) {
1185 if (i2c
->bitrate
<= timings
[i
].max_bitrate
) {
1186 timing
= timings
[i
];
1190 if (i2c
->bitrate
> timings
[ARRAY_SIZE(timings
) - 1].max_bitrate
) {
1191 dev_warn(i2c
->adap
.dev
.parent
,
1192 "requested bitrate (%u) is higher than the max bitrate supported (%u)\n",
1194 timings
[ARRAY_SIZE(timings
) - 1].max_bitrate
);
1195 timing
= timings
[ARRAY_SIZE(timings
) - 1];
1196 i2c
->bitrate
= timing
.max_bitrate
;
1199 bitrate_khz
= i2c
->bitrate
/ 1000;
1200 clk_khz
= clk_get_rate(i2c
->scb_clk
) / 1000;
1202 /* Find the prescale that would give us that inc (approx delay = 0) */
1203 prescale
= SCB_OPT_INC
* clk_khz
/ (256 * 16 * bitrate_khz
);
1204 prescale
= clamp_t(unsigned int, prescale
, 1, 8);
1205 clk_khz
/= prescale
;
1207 /* Setup the clock increment value */
1208 inc
= (256 * 16 * bitrate_khz
) / clk_khz
;
1211 * The clock generation logic allows to filter glitches on the bus.
1212 * This filter is able to remove bus glitches shorter than 50ns.
1213 * If the clock enable rate is greater than 20 MHz, no filtering
1214 * is required, so we need to disable it.
1215 * If it's between the 20-40 MHz range, there's no need to divide
1216 * the clock to get a filter.
1218 if (clk_khz
< 20000) {
1219 filt
= SCB_FILT_DISABLE
;
1220 } else if (clk_khz
< 40000) {
1221 filt
= SCB_FILT_BYPASS
;
1223 /* Calculate filter clock */
1224 filt
= (64000 / ((clk_khz
/ 1000) * SCB_FILT_GLITCH
));
1226 /* Scale up if needed */
1227 if (64000 % ((clk_khz
/ 1000) * SCB_FILT_GLITCH
))
1230 if (filt
> SCB_FILT_INC_MASK
)
1231 filt
= SCB_FILT_INC_MASK
;
1233 filt
= (filt
& SCB_FILT_INC_MASK
) << SCB_FILT_INC_SHIFT
;
1235 data
= filt
| ((inc
& SCB_INC_MASK
) << SCB_INC_SHIFT
) | (prescale
- 1);
1236 img_i2c_writel(i2c
, SCB_CLK_SET_REG
, data
);
1238 /* Obtain the clock period of the fx16 clock in ns */
1239 clk_period
= (256 * 1000000) / (clk_khz
* inc
);
1241 /* Calculate the bitrate in terms of internal clock pulses */
1242 int_bitrate
= 1000000 / (bitrate_khz
* clk_period
);
1243 if ((1000000 % (bitrate_khz
* clk_period
)) >=
1244 ((bitrate_khz
* clk_period
) / 2))
1248 * Setup clock duty cycle, start with 50% and adjust TCKH and TCKL
1249 * values from there if they don't meet minimum timing requirements
1251 tckh
= int_bitrate
/ 2;
1252 tckl
= int_bitrate
- tckh
;
1254 /* Adjust TCKH and TCKL values */
1255 data
= DIV_ROUND_UP(timing
.tckl
, clk_period
);
1259 tckh
= int_bitrate
- tckl
;
1268 img_i2c_writel(i2c
, SCB_TIME_TCKH_REG
, tckh
);
1269 img_i2c_writel(i2c
, SCB_TIME_TCKL_REG
, tckl
);
1271 /* Setup TSDH value */
1272 tsdh
= DIV_ROUND_UP(timing
.tsdh
, clk_period
);
1278 img_i2c_writel(i2c
, SCB_TIME_TSDH_REG
, data
);
1280 /* This value is used later */
1283 /* Setup TPL value */
1284 data
= timing
.tpl
/ clk_period
;
1287 img_i2c_writel(i2c
, SCB_TIME_TPL_REG
, data
);
1289 /* Setup TPH value */
1290 data
= timing
.tph
/ clk_period
;
1293 img_i2c_writel(i2c
, SCB_TIME_TPH_REG
, data
);
1295 /* Setup TSDL value to TPL + TSDH + 2 */
1296 img_i2c_writel(i2c
, SCB_TIME_TSDL_REG
, data
+ tsdh
+ 2);
1298 /* Setup TP2S value */
1299 data
= timing
.tp2s
/ clk_period
;
1302 img_i2c_writel(i2c
, SCB_TIME_TP2S_REG
, data
);
1304 img_i2c_writel(i2c
, SCB_TIME_TBI_REG
, TIMEOUT_TBI
);
1305 img_i2c_writel(i2c
, SCB_TIME_TSL_REG
, TIMEOUT_TSL
);
1306 img_i2c_writel(i2c
, SCB_TIME_TDL_REG
, TIMEOUT_TDL
);
1308 /* Take module out of soft reset and enable clocks */
1309 img_i2c_soft_reset(i2c
);
1311 /* Disable all interrupts */
1312 img_i2c_writel(i2c
, SCB_INT_MASK_REG
, 0);
1314 /* Clear all interrupts */
1315 img_i2c_writel(i2c
, SCB_INT_CLEAR_REG
, ~0);
1317 /* Clear the scb_line_status events */
1318 img_i2c_writel(i2c
, SCB_CLEAR_REG
, ~0);
1320 /* Enable interrupts */
1321 img_i2c_writel(i2c
, SCB_INT_MASK_REG
, i2c
->int_enable
);
1323 /* Perform a synchronous sequence to reset the bus */
1324 ret
= img_i2c_reset_bus(i2c
);
1326 pm_runtime_mark_last_busy(i2c
->adap
.dev
.parent
);
1327 pm_runtime_put_autosuspend(i2c
->adap
.dev
.parent
);
1332 static int img_i2c_probe(struct platform_device
*pdev
)
1334 struct device_node
*node
= pdev
->dev
.of_node
;
1335 struct img_i2c
*i2c
;
1336 struct resource
*res
;
1340 i2c
= devm_kzalloc(&pdev
->dev
, sizeof(struct img_i2c
), GFP_KERNEL
);
1344 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1345 i2c
->base
= devm_ioremap_resource(&pdev
->dev
, res
);
1346 if (IS_ERR(i2c
->base
))
1347 return PTR_ERR(i2c
->base
);
1349 irq
= platform_get_irq(pdev
, 0);
1351 dev_err(&pdev
->dev
, "can't get irq number\n");
1355 i2c
->sys_clk
= devm_clk_get(&pdev
->dev
, "sys");
1356 if (IS_ERR(i2c
->sys_clk
)) {
1357 dev_err(&pdev
->dev
, "can't get system clock\n");
1358 return PTR_ERR(i2c
->sys_clk
);
1361 i2c
->scb_clk
= devm_clk_get(&pdev
->dev
, "scb");
1362 if (IS_ERR(i2c
->scb_clk
)) {
1363 dev_err(&pdev
->dev
, "can't get core clock\n");
1364 return PTR_ERR(i2c
->scb_clk
);
1367 ret
= devm_request_irq(&pdev
->dev
, irq
, img_i2c_isr
, 0,
1370 dev_err(&pdev
->dev
, "can't request irq %d\n", irq
);
1374 /* Set up the exception check timer */
1375 timer_setup(&i2c
->check_timer
, img_i2c_check_timer
, 0);
1377 i2c
->bitrate
= timings
[0].max_bitrate
;
1378 if (!of_property_read_u32(node
, "clock-frequency", &val
))
1381 i2c_set_adapdata(&i2c
->adap
, i2c
);
1382 i2c
->adap
.dev
.parent
= &pdev
->dev
;
1383 i2c
->adap
.dev
.of_node
= node
;
1384 i2c
->adap
.owner
= THIS_MODULE
;
1385 i2c
->adap
.algo
= &img_i2c_algo
;
1386 i2c
->adap
.retries
= 5;
1387 i2c
->adap
.nr
= pdev
->id
;
1388 snprintf(i2c
->adap
.name
, sizeof(i2c
->adap
.name
), "IMG SCB I2C");
1390 img_i2c_switch_mode(i2c
, MODE_INACTIVE
);
1391 spin_lock_init(&i2c
->lock
);
1392 init_completion(&i2c
->msg_complete
);
1394 platform_set_drvdata(pdev
, i2c
);
1396 pm_runtime_set_autosuspend_delay(&pdev
->dev
, IMG_I2C_PM_TIMEOUT
);
1397 pm_runtime_use_autosuspend(&pdev
->dev
);
1398 pm_runtime_enable(&pdev
->dev
);
1399 if (!pm_runtime_enabled(&pdev
->dev
)) {
1400 ret
= img_i2c_runtime_resume(&pdev
->dev
);
1405 ret
= img_i2c_init(i2c
);
1409 ret
= i2c_add_numbered_adapter(&i2c
->adap
);
1416 if (!pm_runtime_enabled(&pdev
->dev
))
1417 img_i2c_runtime_suspend(&pdev
->dev
);
1418 pm_runtime_disable(&pdev
->dev
);
1419 pm_runtime_dont_use_autosuspend(&pdev
->dev
);
1423 static int img_i2c_remove(struct platform_device
*dev
)
1425 struct img_i2c
*i2c
= platform_get_drvdata(dev
);
1427 i2c_del_adapter(&i2c
->adap
);
1428 pm_runtime_disable(&dev
->dev
);
1429 if (!pm_runtime_status_suspended(&dev
->dev
))
1430 img_i2c_runtime_suspend(&dev
->dev
);
1435 static int img_i2c_runtime_suspend(struct device
*dev
)
1437 struct img_i2c
*i2c
= dev_get_drvdata(dev
);
1439 clk_disable_unprepare(i2c
->scb_clk
);
1440 clk_disable_unprepare(i2c
->sys_clk
);
1445 static int img_i2c_runtime_resume(struct device
*dev
)
1447 struct img_i2c
*i2c
= dev_get_drvdata(dev
);
1450 ret
= clk_prepare_enable(i2c
->sys_clk
);
1452 dev_err(dev
, "Unable to enable sys clock\n");
1456 ret
= clk_prepare_enable(i2c
->scb_clk
);
1458 dev_err(dev
, "Unable to enable scb clock\n");
1459 clk_disable_unprepare(i2c
->sys_clk
);
1466 #ifdef CONFIG_PM_SLEEP
1467 static int img_i2c_suspend(struct device
*dev
)
1469 struct img_i2c
*i2c
= dev_get_drvdata(dev
);
1472 ret
= pm_runtime_force_suspend(dev
);
1476 img_i2c_switch_mode(i2c
, MODE_SUSPEND
);
1481 static int img_i2c_resume(struct device
*dev
)
1483 struct img_i2c
*i2c
= dev_get_drvdata(dev
);
1486 ret
= pm_runtime_force_resume(dev
);
1494 #endif /* CONFIG_PM_SLEEP */
1496 static const struct dev_pm_ops img_i2c_pm
= {
1497 SET_RUNTIME_PM_OPS(img_i2c_runtime_suspend
,
1498 img_i2c_runtime_resume
,
1500 SET_SYSTEM_SLEEP_PM_OPS(img_i2c_suspend
, img_i2c_resume
)
1503 static const struct of_device_id img_scb_i2c_match
[] = {
1504 { .compatible
= "img,scb-i2c" },
1507 MODULE_DEVICE_TABLE(of
, img_scb_i2c_match
);
1509 static struct platform_driver img_scb_i2c_driver
= {
1511 .name
= "img-i2c-scb",
1512 .of_match_table
= img_scb_i2c_match
,
1515 .probe
= img_i2c_probe
,
1516 .remove
= img_i2c_remove
,
1518 module_platform_driver(img_scb_i2c_driver
);
1520 MODULE_AUTHOR("James Hogan <jhogan@kernel.org>");
1521 MODULE_DESCRIPTION("IMG host I2C driver");
1522 MODULE_LICENSE("GPL v2");