NFC: pn533: Fix wrong GFP flag usage
[linux/fpc-iii.git] / drivers / i2c / busses / i2c-mxs.c
blob642c58946d8d261a48cd146ffe7bff65a90ef660
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Freescale MXS I2C bus driver
5 * Copyright (C) 2012-2013 Marek Vasut <marex@denx.de>
6 * Copyright (C) 2011-2012 Wolfram Sang, Pengutronix e.K.
8 * based on a (non-working) driver which was:
10 * Copyright (C) 2009-2010 Freescale Semiconductor, Inc. All Rights Reserved.
13 #include <linux/slab.h>
14 #include <linux/device.h>
15 #include <linux/module.h>
16 #include <linux/i2c.h>
17 #include <linux/err.h>
18 #include <linux/interrupt.h>
19 #include <linux/completion.h>
20 #include <linux/platform_device.h>
21 #include <linux/jiffies.h>
22 #include <linux/io.h>
23 #include <linux/stmp_device.h>
24 #include <linux/of.h>
25 #include <linux/of_device.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/dmaengine.h>
29 #define DRIVER_NAME "mxs-i2c"
31 #define MXS_I2C_CTRL0 (0x00)
32 #define MXS_I2C_CTRL0_SET (0x04)
33 #define MXS_I2C_CTRL0_CLR (0x08)
35 #define MXS_I2C_CTRL0_SFTRST 0x80000000
36 #define MXS_I2C_CTRL0_RUN 0x20000000
37 #define MXS_I2C_CTRL0_SEND_NAK_ON_LAST 0x02000000
38 #define MXS_I2C_CTRL0_PIO_MODE 0x01000000
39 #define MXS_I2C_CTRL0_RETAIN_CLOCK 0x00200000
40 #define MXS_I2C_CTRL0_POST_SEND_STOP 0x00100000
41 #define MXS_I2C_CTRL0_PRE_SEND_START 0x00080000
42 #define MXS_I2C_CTRL0_MASTER_MODE 0x00020000
43 #define MXS_I2C_CTRL0_DIRECTION 0x00010000
44 #define MXS_I2C_CTRL0_XFER_COUNT(v) ((v) & 0x0000FFFF)
46 #define MXS_I2C_TIMING0 (0x10)
47 #define MXS_I2C_TIMING1 (0x20)
48 #define MXS_I2C_TIMING2 (0x30)
50 #define MXS_I2C_CTRL1 (0x40)
51 #define MXS_I2C_CTRL1_SET (0x44)
52 #define MXS_I2C_CTRL1_CLR (0x48)
54 #define MXS_I2C_CTRL1_CLR_GOT_A_NAK 0x10000000
55 #define MXS_I2C_CTRL1_BUS_FREE_IRQ 0x80
56 #define MXS_I2C_CTRL1_DATA_ENGINE_CMPLT_IRQ 0x40
57 #define MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ 0x20
58 #define MXS_I2C_CTRL1_OVERSIZE_XFER_TERM_IRQ 0x10
59 #define MXS_I2C_CTRL1_EARLY_TERM_IRQ 0x08
60 #define MXS_I2C_CTRL1_MASTER_LOSS_IRQ 0x04
61 #define MXS_I2C_CTRL1_SLAVE_STOP_IRQ 0x02
62 #define MXS_I2C_CTRL1_SLAVE_IRQ 0x01
64 #define MXS_I2C_STAT (0x50)
65 #define MXS_I2C_STAT_GOT_A_NAK 0x10000000
66 #define MXS_I2C_STAT_BUS_BUSY 0x00000800
67 #define MXS_I2C_STAT_CLK_GEN_BUSY 0x00000400
69 #define MXS_I2C_DATA(i2c) ((i2c->dev_type == MXS_I2C_V1) ? 0x60 : 0xa0)
71 #define MXS_I2C_DEBUG0_CLR(i2c) ((i2c->dev_type == MXS_I2C_V1) ? 0x78 : 0xb8)
73 #define MXS_I2C_DEBUG0_DMAREQ 0x80000000
75 #define MXS_I2C_IRQ_MASK (MXS_I2C_CTRL1_DATA_ENGINE_CMPLT_IRQ | \
76 MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ | \
77 MXS_I2C_CTRL1_EARLY_TERM_IRQ | \
78 MXS_I2C_CTRL1_MASTER_LOSS_IRQ | \
79 MXS_I2C_CTRL1_SLAVE_STOP_IRQ | \
80 MXS_I2C_CTRL1_SLAVE_IRQ)
83 #define MXS_CMD_I2C_SELECT (MXS_I2C_CTRL0_RETAIN_CLOCK | \
84 MXS_I2C_CTRL0_PRE_SEND_START | \
85 MXS_I2C_CTRL0_MASTER_MODE | \
86 MXS_I2C_CTRL0_DIRECTION | \
87 MXS_I2C_CTRL0_XFER_COUNT(1))
89 #define MXS_CMD_I2C_WRITE (MXS_I2C_CTRL0_PRE_SEND_START | \
90 MXS_I2C_CTRL0_MASTER_MODE | \
91 MXS_I2C_CTRL0_DIRECTION)
93 #define MXS_CMD_I2C_READ (MXS_I2C_CTRL0_SEND_NAK_ON_LAST | \
94 MXS_I2C_CTRL0_MASTER_MODE)
96 enum mxs_i2c_devtype {
97 MXS_I2C_UNKNOWN = 0,
98 MXS_I2C_V1,
99 MXS_I2C_V2,
103 * struct mxs_i2c_dev - per device, private MXS-I2C data
105 * @dev: driver model device node
106 * @dev_type: distinguish i.MX23/i.MX28 features
107 * @regs: IO registers pointer
108 * @cmd_complete: completion object for transaction wait
109 * @cmd_err: error code for last transaction
110 * @adapter: i2c subsystem adapter node
112 struct mxs_i2c_dev {
113 struct device *dev;
114 enum mxs_i2c_devtype dev_type;
115 void __iomem *regs;
116 struct completion cmd_complete;
117 int cmd_err;
118 struct i2c_adapter adapter;
120 uint32_t timing0;
121 uint32_t timing1;
122 uint32_t timing2;
124 /* DMA support components */
125 struct dma_chan *dmach;
126 uint32_t pio_data[2];
127 uint32_t addr_data;
128 struct scatterlist sg_io[2];
129 bool dma_read;
132 static int mxs_i2c_reset(struct mxs_i2c_dev *i2c)
134 int ret = stmp_reset_block(i2c->regs);
135 if (ret)
136 return ret;
139 * Configure timing for the I2C block. The I2C TIMING2 register has to
140 * be programmed with this particular magic number. The rest is derived
141 * from the XTAL speed and requested I2C speed.
143 * For details, see i.MX233 [25.4.2 - 25.4.4] and i.MX28 [27.5.2 - 27.5.4].
145 writel(i2c->timing0, i2c->regs + MXS_I2C_TIMING0);
146 writel(i2c->timing1, i2c->regs + MXS_I2C_TIMING1);
147 writel(i2c->timing2, i2c->regs + MXS_I2C_TIMING2);
149 writel(MXS_I2C_IRQ_MASK << 8, i2c->regs + MXS_I2C_CTRL1_SET);
151 return 0;
154 static void mxs_i2c_dma_finish(struct mxs_i2c_dev *i2c)
156 if (i2c->dma_read) {
157 dma_unmap_sg(i2c->dev, &i2c->sg_io[0], 1, DMA_TO_DEVICE);
158 dma_unmap_sg(i2c->dev, &i2c->sg_io[1], 1, DMA_FROM_DEVICE);
159 } else {
160 dma_unmap_sg(i2c->dev, i2c->sg_io, 2, DMA_TO_DEVICE);
164 static void mxs_i2c_dma_irq_callback(void *param)
166 struct mxs_i2c_dev *i2c = param;
168 complete(&i2c->cmd_complete);
169 mxs_i2c_dma_finish(i2c);
172 static int mxs_i2c_dma_setup_xfer(struct i2c_adapter *adap,
173 struct i2c_msg *msg, uint32_t flags)
175 struct dma_async_tx_descriptor *desc;
176 struct mxs_i2c_dev *i2c = i2c_get_adapdata(adap);
178 i2c->addr_data = i2c_8bit_addr_from_msg(msg);
180 if (msg->flags & I2C_M_RD) {
181 i2c->dma_read = true;
184 * SELECT command.
187 /* Queue the PIO register write transfer. */
188 i2c->pio_data[0] = MXS_CMD_I2C_SELECT;
189 desc = dmaengine_prep_slave_sg(i2c->dmach,
190 (struct scatterlist *)&i2c->pio_data[0],
191 1, DMA_TRANS_NONE, 0);
192 if (!desc) {
193 dev_err(i2c->dev,
194 "Failed to get PIO reg. write descriptor.\n");
195 goto select_init_pio_fail;
198 /* Queue the DMA data transfer. */
199 sg_init_one(&i2c->sg_io[0], &i2c->addr_data, 1);
200 dma_map_sg(i2c->dev, &i2c->sg_io[0], 1, DMA_TO_DEVICE);
201 desc = dmaengine_prep_slave_sg(i2c->dmach, &i2c->sg_io[0], 1,
202 DMA_MEM_TO_DEV,
203 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
204 if (!desc) {
205 dev_err(i2c->dev,
206 "Failed to get DMA data write descriptor.\n");
207 goto select_init_dma_fail;
211 * READ command.
214 /* Queue the PIO register write transfer. */
215 i2c->pio_data[1] = flags | MXS_CMD_I2C_READ |
216 MXS_I2C_CTRL0_XFER_COUNT(msg->len);
217 desc = dmaengine_prep_slave_sg(i2c->dmach,
218 (struct scatterlist *)&i2c->pio_data[1],
219 1, DMA_TRANS_NONE, DMA_PREP_INTERRUPT);
220 if (!desc) {
221 dev_err(i2c->dev,
222 "Failed to get PIO reg. write descriptor.\n");
223 goto select_init_dma_fail;
226 /* Queue the DMA data transfer. */
227 sg_init_one(&i2c->sg_io[1], msg->buf, msg->len);
228 dma_map_sg(i2c->dev, &i2c->sg_io[1], 1, DMA_FROM_DEVICE);
229 desc = dmaengine_prep_slave_sg(i2c->dmach, &i2c->sg_io[1], 1,
230 DMA_DEV_TO_MEM,
231 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
232 if (!desc) {
233 dev_err(i2c->dev,
234 "Failed to get DMA data write descriptor.\n");
235 goto read_init_dma_fail;
237 } else {
238 i2c->dma_read = false;
241 * WRITE command.
244 /* Queue the PIO register write transfer. */
245 i2c->pio_data[0] = flags | MXS_CMD_I2C_WRITE |
246 MXS_I2C_CTRL0_XFER_COUNT(msg->len + 1);
247 desc = dmaengine_prep_slave_sg(i2c->dmach,
248 (struct scatterlist *)&i2c->pio_data[0],
249 1, DMA_TRANS_NONE, 0);
250 if (!desc) {
251 dev_err(i2c->dev,
252 "Failed to get PIO reg. write descriptor.\n");
253 goto write_init_pio_fail;
256 /* Queue the DMA data transfer. */
257 sg_init_table(i2c->sg_io, 2);
258 sg_set_buf(&i2c->sg_io[0], &i2c->addr_data, 1);
259 sg_set_buf(&i2c->sg_io[1], msg->buf, msg->len);
260 dma_map_sg(i2c->dev, i2c->sg_io, 2, DMA_TO_DEVICE);
261 desc = dmaengine_prep_slave_sg(i2c->dmach, i2c->sg_io, 2,
262 DMA_MEM_TO_DEV,
263 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
264 if (!desc) {
265 dev_err(i2c->dev,
266 "Failed to get DMA data write descriptor.\n");
267 goto write_init_dma_fail;
272 * The last descriptor must have this callback,
273 * to finish the DMA transaction.
275 desc->callback = mxs_i2c_dma_irq_callback;
276 desc->callback_param = i2c;
278 /* Start the transfer. */
279 dmaengine_submit(desc);
280 dma_async_issue_pending(i2c->dmach);
281 return 0;
283 /* Read failpath. */
284 read_init_dma_fail:
285 dma_unmap_sg(i2c->dev, &i2c->sg_io[1], 1, DMA_FROM_DEVICE);
286 select_init_dma_fail:
287 dma_unmap_sg(i2c->dev, &i2c->sg_io[0], 1, DMA_TO_DEVICE);
288 select_init_pio_fail:
289 dmaengine_terminate_all(i2c->dmach);
290 return -EINVAL;
292 /* Write failpath. */
293 write_init_dma_fail:
294 dma_unmap_sg(i2c->dev, i2c->sg_io, 2, DMA_TO_DEVICE);
295 write_init_pio_fail:
296 dmaengine_terminate_all(i2c->dmach);
297 return -EINVAL;
300 static int mxs_i2c_pio_wait_xfer_end(struct mxs_i2c_dev *i2c)
302 unsigned long timeout = jiffies + msecs_to_jiffies(1000);
304 while (readl(i2c->regs + MXS_I2C_CTRL0) & MXS_I2C_CTRL0_RUN) {
305 if (readl(i2c->regs + MXS_I2C_CTRL1) &
306 MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ)
307 return -ENXIO;
308 if (time_after(jiffies, timeout))
309 return -ETIMEDOUT;
310 cond_resched();
313 return 0;
316 static int mxs_i2c_pio_check_error_state(struct mxs_i2c_dev *i2c)
318 u32 state;
320 state = readl(i2c->regs + MXS_I2C_CTRL1_CLR) & MXS_I2C_IRQ_MASK;
322 if (state & MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ)
323 i2c->cmd_err = -ENXIO;
324 else if (state & (MXS_I2C_CTRL1_EARLY_TERM_IRQ |
325 MXS_I2C_CTRL1_MASTER_LOSS_IRQ |
326 MXS_I2C_CTRL1_SLAVE_STOP_IRQ |
327 MXS_I2C_CTRL1_SLAVE_IRQ))
328 i2c->cmd_err = -EIO;
330 return i2c->cmd_err;
333 static void mxs_i2c_pio_trigger_cmd(struct mxs_i2c_dev *i2c, u32 cmd)
335 u32 reg;
337 writel(cmd, i2c->regs + MXS_I2C_CTRL0);
339 /* readback makes sure the write is latched into hardware */
340 reg = readl(i2c->regs + MXS_I2C_CTRL0);
341 reg |= MXS_I2C_CTRL0_RUN;
342 writel(reg, i2c->regs + MXS_I2C_CTRL0);
346 * Start WRITE transaction on the I2C bus. By studying i.MX23 datasheet,
347 * CTRL0::PIO_MODE bit description clarifies the order in which the registers
348 * must be written during PIO mode operation. First, the CTRL0 register has
349 * to be programmed with all the necessary bits but the RUN bit. Then the
350 * payload has to be written into the DATA register. Finally, the transmission
351 * is executed by setting the RUN bit in CTRL0.
353 static void mxs_i2c_pio_trigger_write_cmd(struct mxs_i2c_dev *i2c, u32 cmd,
354 u32 data)
356 writel(cmd, i2c->regs + MXS_I2C_CTRL0);
358 if (i2c->dev_type == MXS_I2C_V1)
359 writel(MXS_I2C_CTRL0_PIO_MODE, i2c->regs + MXS_I2C_CTRL0_SET);
361 writel(data, i2c->regs + MXS_I2C_DATA(i2c));
362 writel(MXS_I2C_CTRL0_RUN, i2c->regs + MXS_I2C_CTRL0_SET);
365 static int mxs_i2c_pio_setup_xfer(struct i2c_adapter *adap,
366 struct i2c_msg *msg, uint32_t flags)
368 struct mxs_i2c_dev *i2c = i2c_get_adapdata(adap);
369 uint32_t addr_data = i2c_8bit_addr_from_msg(msg);
370 uint32_t data = 0;
371 int i, ret, xlen = 0, xmit = 0;
372 uint32_t start;
374 /* Mute IRQs coming from this block. */
375 writel(MXS_I2C_IRQ_MASK << 8, i2c->regs + MXS_I2C_CTRL1_CLR);
378 * MX23 idea:
379 * - Enable CTRL0::PIO_MODE (1 << 24)
380 * - Enable CTRL1::ACK_MODE (1 << 27)
382 * WARNING! The MX23 is broken in some way, even if it claims
383 * to support PIO, when we try to transfer any amount of data
384 * that is not aligned to 4 bytes, the DMA engine will have
385 * bits in DEBUG1::DMA_BYTES_ENABLES still set even after the
386 * transfer. This in turn will mess up the next transfer as
387 * the block it emit one byte write onto the bus terminated
388 * with a NAK+STOP. A possible workaround is to reset the IP
389 * block after every PIO transmission, which might just work.
391 * NOTE: The CTRL0::PIO_MODE description is important, since
392 * it outlines how the PIO mode is really supposed to work.
394 if (msg->flags & I2C_M_RD) {
396 * PIO READ transfer:
398 * This transfer MUST be limited to 4 bytes maximum. It is not
399 * possible to transfer more than four bytes via PIO, since we
400 * can not in any way make sure we can read the data from the
401 * DATA register fast enough. Besides, the RX FIFO is only four
402 * bytes deep, thus we can only really read up to four bytes at
403 * time. Finally, there is no bit indicating us that new data
404 * arrived at the FIFO and can thus be fetched from the DATA
405 * register.
407 BUG_ON(msg->len > 4);
409 /* SELECT command. */
410 mxs_i2c_pio_trigger_write_cmd(i2c, MXS_CMD_I2C_SELECT,
411 addr_data);
413 ret = mxs_i2c_pio_wait_xfer_end(i2c);
414 if (ret) {
415 dev_dbg(i2c->dev,
416 "PIO: Failed to send SELECT command!\n");
417 goto cleanup;
420 /* READ command. */
421 mxs_i2c_pio_trigger_cmd(i2c,
422 MXS_CMD_I2C_READ | flags |
423 MXS_I2C_CTRL0_XFER_COUNT(msg->len));
425 ret = mxs_i2c_pio_wait_xfer_end(i2c);
426 if (ret) {
427 dev_dbg(i2c->dev,
428 "PIO: Failed to send READ command!\n");
429 goto cleanup;
432 data = readl(i2c->regs + MXS_I2C_DATA(i2c));
433 for (i = 0; i < msg->len; i++) {
434 msg->buf[i] = data & 0xff;
435 data >>= 8;
437 } else {
439 * PIO WRITE transfer:
441 * The code below implements clock stretching to circumvent
442 * the possibility of kernel not being able to supply data
443 * fast enough. It is possible to transfer arbitrary amount
444 * of data using PIO write.
448 * The LSB of data buffer is the first byte blasted across
449 * the bus. Higher order bytes follow. Thus the following
450 * filling schematic.
453 data = addr_data << 24;
455 /* Start the transfer with START condition. */
456 start = MXS_I2C_CTRL0_PRE_SEND_START;
458 /* If the transfer is long, use clock stretching. */
459 if (msg->len > 3)
460 start |= MXS_I2C_CTRL0_RETAIN_CLOCK;
462 for (i = 0; i < msg->len; i++) {
463 data >>= 8;
464 data |= (msg->buf[i] << 24);
466 xmit = 0;
468 /* This is the last transfer of the message. */
469 if (i + 1 == msg->len) {
470 /* Add optional STOP flag. */
471 start |= flags;
472 /* Remove RETAIN_CLOCK bit. */
473 start &= ~MXS_I2C_CTRL0_RETAIN_CLOCK;
474 xmit = 1;
477 /* Four bytes are ready in the "data" variable. */
478 if ((i & 3) == 2)
479 xmit = 1;
481 /* Nothing interesting happened, continue stuffing. */
482 if (!xmit)
483 continue;
486 * Compute the size of the transfer and shift the
487 * data accordingly.
489 * i = (4k + 0) .... xlen = 2
490 * i = (4k + 1) .... xlen = 3
491 * i = (4k + 2) .... xlen = 4
492 * i = (4k + 3) .... xlen = 1
495 if ((i % 4) == 3)
496 xlen = 1;
497 else
498 xlen = (i % 4) + 2;
500 data >>= (4 - xlen) * 8;
502 dev_dbg(i2c->dev,
503 "PIO: len=%i pos=%i total=%i [W%s%s%s]\n",
504 xlen, i, msg->len,
505 start & MXS_I2C_CTRL0_PRE_SEND_START ? "S" : "",
506 start & MXS_I2C_CTRL0_POST_SEND_STOP ? "E" : "",
507 start & MXS_I2C_CTRL0_RETAIN_CLOCK ? "C" : "");
509 writel(MXS_I2C_DEBUG0_DMAREQ,
510 i2c->regs + MXS_I2C_DEBUG0_CLR(i2c));
512 mxs_i2c_pio_trigger_write_cmd(i2c,
513 start | MXS_I2C_CTRL0_MASTER_MODE |
514 MXS_I2C_CTRL0_DIRECTION |
515 MXS_I2C_CTRL0_XFER_COUNT(xlen), data);
517 /* The START condition is sent only once. */
518 start &= ~MXS_I2C_CTRL0_PRE_SEND_START;
520 /* Wait for the end of the transfer. */
521 ret = mxs_i2c_pio_wait_xfer_end(i2c);
522 if (ret) {
523 dev_dbg(i2c->dev,
524 "PIO: Failed to finish WRITE cmd!\n");
525 break;
528 /* Check NAK here. */
529 ret = readl(i2c->regs + MXS_I2C_STAT) &
530 MXS_I2C_STAT_GOT_A_NAK;
531 if (ret) {
532 ret = -ENXIO;
533 goto cleanup;
538 /* make sure we capture any occurred error into cmd_err */
539 ret = mxs_i2c_pio_check_error_state(i2c);
541 cleanup:
542 /* Clear any dangling IRQs and re-enable interrupts. */
543 writel(MXS_I2C_IRQ_MASK, i2c->regs + MXS_I2C_CTRL1_CLR);
544 writel(MXS_I2C_IRQ_MASK << 8, i2c->regs + MXS_I2C_CTRL1_SET);
546 /* Clear the PIO_MODE on i.MX23 */
547 if (i2c->dev_type == MXS_I2C_V1)
548 writel(MXS_I2C_CTRL0_PIO_MODE, i2c->regs + MXS_I2C_CTRL0_CLR);
550 return ret;
554 * Low level master read/write transaction.
556 static int mxs_i2c_xfer_msg(struct i2c_adapter *adap, struct i2c_msg *msg,
557 int stop)
559 struct mxs_i2c_dev *i2c = i2c_get_adapdata(adap);
560 int ret;
561 int flags;
562 int use_pio = 0;
563 unsigned long time_left;
565 flags = stop ? MXS_I2C_CTRL0_POST_SEND_STOP : 0;
567 dev_dbg(i2c->dev, "addr: 0x%04x, len: %d, flags: 0x%x, stop: %d\n",
568 msg->addr, msg->len, msg->flags, stop);
570 if (msg->len == 0)
571 return -EINVAL;
574 * The MX28 I2C IP block can only do PIO READ for transfer of to up
575 * 4 bytes of length. The write transfer is not limited as it can use
576 * clock stretching to avoid FIFO underruns.
578 if ((msg->flags & I2C_M_RD) && (msg->len <= 4))
579 use_pio = 1;
580 if (!(msg->flags & I2C_M_RD) && (msg->len < 7))
581 use_pio = 1;
583 i2c->cmd_err = 0;
584 if (use_pio) {
585 ret = mxs_i2c_pio_setup_xfer(adap, msg, flags);
586 /* No need to reset the block if NAK was received. */
587 if (ret && (ret != -ENXIO))
588 mxs_i2c_reset(i2c);
589 } else {
590 reinit_completion(&i2c->cmd_complete);
591 ret = mxs_i2c_dma_setup_xfer(adap, msg, flags);
592 if (ret)
593 return ret;
595 time_left = wait_for_completion_timeout(&i2c->cmd_complete,
596 msecs_to_jiffies(1000));
597 if (!time_left)
598 goto timeout;
600 ret = i2c->cmd_err;
603 if (ret == -ENXIO) {
605 * If the transfer fails with a NAK from the slave the
606 * controller halts until it gets told to return to idle state.
608 writel(MXS_I2C_CTRL1_CLR_GOT_A_NAK,
609 i2c->regs + MXS_I2C_CTRL1_SET);
613 * WARNING!
614 * The i.MX23 is strange. After each and every operation, it's I2C IP
615 * block must be reset, otherwise the IP block will misbehave. This can
616 * be observed on the bus by the block sending out one single byte onto
617 * the bus. In case such an error happens, bit 27 will be set in the
618 * DEBUG0 register. This bit is not documented in the i.MX23 datasheet
619 * and is marked as "TBD" instead. To reset this bit to a correct state,
620 * reset the whole block. Since the block reset does not take long, do
621 * reset the block after every transfer to play safe.
623 if (i2c->dev_type == MXS_I2C_V1)
624 mxs_i2c_reset(i2c);
626 dev_dbg(i2c->dev, "Done with err=%d\n", ret);
628 return ret;
630 timeout:
631 dev_dbg(i2c->dev, "Timeout!\n");
632 mxs_i2c_dma_finish(i2c);
633 ret = mxs_i2c_reset(i2c);
634 if (ret)
635 return ret;
637 return -ETIMEDOUT;
640 static int mxs_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg msgs[],
641 int num)
643 int i;
644 int err;
646 for (i = 0; i < num; i++) {
647 err = mxs_i2c_xfer_msg(adap, &msgs[i], i == (num - 1));
648 if (err)
649 return err;
652 return num;
655 static u32 mxs_i2c_func(struct i2c_adapter *adap)
657 return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
660 static irqreturn_t mxs_i2c_isr(int this_irq, void *dev_id)
662 struct mxs_i2c_dev *i2c = dev_id;
663 u32 stat = readl(i2c->regs + MXS_I2C_CTRL1) & MXS_I2C_IRQ_MASK;
665 if (!stat)
666 return IRQ_NONE;
668 if (stat & MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ)
669 i2c->cmd_err = -ENXIO;
670 else if (stat & (MXS_I2C_CTRL1_EARLY_TERM_IRQ |
671 MXS_I2C_CTRL1_MASTER_LOSS_IRQ |
672 MXS_I2C_CTRL1_SLAVE_STOP_IRQ | MXS_I2C_CTRL1_SLAVE_IRQ))
673 /* MXS_I2C_CTRL1_OVERSIZE_XFER_TERM_IRQ is only for slaves */
674 i2c->cmd_err = -EIO;
676 writel(stat, i2c->regs + MXS_I2C_CTRL1_CLR);
678 return IRQ_HANDLED;
681 static const struct i2c_algorithm mxs_i2c_algo = {
682 .master_xfer = mxs_i2c_xfer,
683 .functionality = mxs_i2c_func,
686 static void mxs_i2c_derive_timing(struct mxs_i2c_dev *i2c, uint32_t speed)
688 /* The I2C block clock runs at 24MHz */
689 const uint32_t clk = 24000000;
690 uint32_t divider;
691 uint16_t high_count, low_count, rcv_count, xmit_count;
692 uint32_t bus_free, leadin;
693 struct device *dev = i2c->dev;
695 divider = DIV_ROUND_UP(clk, speed);
697 if (divider < 25) {
699 * limit the divider, so that min(low_count, high_count)
700 * is >= 1
702 divider = 25;
703 dev_warn(dev,
704 "Speed too high (%u.%03u kHz), using %u.%03u kHz\n",
705 speed / 1000, speed % 1000,
706 clk / divider / 1000, clk / divider % 1000);
707 } else if (divider > 1897) {
709 * limit the divider, so that max(low_count, high_count)
710 * cannot exceed 1023
712 divider = 1897;
713 dev_warn(dev,
714 "Speed too low (%u.%03u kHz), using %u.%03u kHz\n",
715 speed / 1000, speed % 1000,
716 clk / divider / 1000, clk / divider % 1000);
720 * The I2C spec specifies the following timing data:
721 * standard mode fast mode Bitfield name
722 * tLOW (SCL LOW period) 4700 ns 1300 ns
723 * tHIGH (SCL HIGH period) 4000 ns 600 ns
724 * tSU;DAT (data setup time) 250 ns 100 ns
725 * tHD;STA (START hold time) 4000 ns 600 ns
726 * tBUF (bus free time) 4700 ns 1300 ns
728 * The hardware (of the i.MX28 at least) seems to add 2 additional
729 * clock cycles to the low_count and 7 cycles to the high_count.
730 * This is compensated for by subtracting the respective constants
731 * from the values written to the timing registers.
733 if (speed > 100000) {
734 /* fast mode */
735 low_count = DIV_ROUND_CLOSEST(divider * 13, (13 + 6));
736 high_count = DIV_ROUND_CLOSEST(divider * 6, (13 + 6));
737 leadin = DIV_ROUND_UP(600 * (clk / 1000000), 1000);
738 bus_free = DIV_ROUND_UP(1300 * (clk / 1000000), 1000);
739 } else {
740 /* normal mode */
741 low_count = DIV_ROUND_CLOSEST(divider * 47, (47 + 40));
742 high_count = DIV_ROUND_CLOSEST(divider * 40, (47 + 40));
743 leadin = DIV_ROUND_UP(4700 * (clk / 1000000), 1000);
744 bus_free = DIV_ROUND_UP(4700 * (clk / 1000000), 1000);
746 rcv_count = high_count * 3 / 8;
747 xmit_count = low_count * 3 / 8;
749 dev_dbg(dev,
750 "speed=%u(actual %u) divider=%u low=%u high=%u xmit=%u rcv=%u leadin=%u bus_free=%u\n",
751 speed, clk / divider, divider, low_count, high_count,
752 xmit_count, rcv_count, leadin, bus_free);
754 low_count -= 2;
755 high_count -= 7;
756 i2c->timing0 = (high_count << 16) | rcv_count;
757 i2c->timing1 = (low_count << 16) | xmit_count;
758 i2c->timing2 = (bus_free << 16 | leadin);
761 static int mxs_i2c_get_ofdata(struct mxs_i2c_dev *i2c)
763 uint32_t speed;
764 struct device *dev = i2c->dev;
765 struct device_node *node = dev->of_node;
766 int ret;
768 ret = of_property_read_u32(node, "clock-frequency", &speed);
769 if (ret) {
770 dev_warn(dev, "No I2C speed selected, using 100kHz\n");
771 speed = 100000;
774 mxs_i2c_derive_timing(i2c, speed);
776 return 0;
779 static const struct platform_device_id mxs_i2c_devtype[] = {
781 .name = "imx23-i2c",
782 .driver_data = MXS_I2C_V1,
783 }, {
784 .name = "imx28-i2c",
785 .driver_data = MXS_I2C_V2,
786 }, { /* sentinel */ }
788 MODULE_DEVICE_TABLE(platform, mxs_i2c_devtype);
790 static const struct of_device_id mxs_i2c_dt_ids[] = {
791 { .compatible = "fsl,imx23-i2c", .data = &mxs_i2c_devtype[0], },
792 { .compatible = "fsl,imx28-i2c", .data = &mxs_i2c_devtype[1], },
793 { /* sentinel */ }
795 MODULE_DEVICE_TABLE(of, mxs_i2c_dt_ids);
797 static int mxs_i2c_probe(struct platform_device *pdev)
799 const struct of_device_id *of_id =
800 of_match_device(mxs_i2c_dt_ids, &pdev->dev);
801 struct device *dev = &pdev->dev;
802 struct mxs_i2c_dev *i2c;
803 struct i2c_adapter *adap;
804 struct resource *res;
805 int err, irq;
807 i2c = devm_kzalloc(dev, sizeof(*i2c), GFP_KERNEL);
808 if (!i2c)
809 return -ENOMEM;
811 if (of_id) {
812 const struct platform_device_id *device_id = of_id->data;
813 i2c->dev_type = device_id->driver_data;
816 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
817 i2c->regs = devm_ioremap_resource(&pdev->dev, res);
818 if (IS_ERR(i2c->regs))
819 return PTR_ERR(i2c->regs);
821 irq = platform_get_irq(pdev, 0);
822 if (irq < 0)
823 return irq;
825 err = devm_request_irq(dev, irq, mxs_i2c_isr, 0, dev_name(dev), i2c);
826 if (err)
827 return err;
829 i2c->dev = dev;
831 init_completion(&i2c->cmd_complete);
833 if (dev->of_node) {
834 err = mxs_i2c_get_ofdata(i2c);
835 if (err)
836 return err;
839 /* Setup the DMA */
840 i2c->dmach = dma_request_slave_channel(dev, "rx-tx");
841 if (!i2c->dmach) {
842 dev_err(dev, "Failed to request dma\n");
843 return -ENODEV;
846 platform_set_drvdata(pdev, i2c);
848 /* Do reset to enforce correct startup after pinmuxing */
849 err = mxs_i2c_reset(i2c);
850 if (err)
851 return err;
853 adap = &i2c->adapter;
854 strlcpy(adap->name, "MXS I2C adapter", sizeof(adap->name));
855 adap->owner = THIS_MODULE;
856 adap->algo = &mxs_i2c_algo;
857 adap->dev.parent = dev;
858 adap->nr = pdev->id;
859 adap->dev.of_node = pdev->dev.of_node;
860 i2c_set_adapdata(adap, i2c);
861 err = i2c_add_numbered_adapter(adap);
862 if (err) {
863 writel(MXS_I2C_CTRL0_SFTRST,
864 i2c->regs + MXS_I2C_CTRL0_SET);
865 return err;
868 return 0;
871 static int mxs_i2c_remove(struct platform_device *pdev)
873 struct mxs_i2c_dev *i2c = platform_get_drvdata(pdev);
875 i2c_del_adapter(&i2c->adapter);
877 if (i2c->dmach)
878 dma_release_channel(i2c->dmach);
880 writel(MXS_I2C_CTRL0_SFTRST, i2c->regs + MXS_I2C_CTRL0_SET);
882 return 0;
885 static struct platform_driver mxs_i2c_driver = {
886 .driver = {
887 .name = DRIVER_NAME,
888 .of_match_table = mxs_i2c_dt_ids,
890 .probe = mxs_i2c_probe,
891 .remove = mxs_i2c_remove,
894 static int __init mxs_i2c_init(void)
896 return platform_driver_register(&mxs_i2c_driver);
898 subsys_initcall(mxs_i2c_init);
900 static void __exit mxs_i2c_exit(void)
902 platform_driver_unregister(&mxs_i2c_driver);
904 module_exit(mxs_i2c_exit);
906 MODULE_AUTHOR("Marek Vasut <marex@denx.de>");
907 MODULE_AUTHOR("Wolfram Sang <kernel@pengutronix.de>");
908 MODULE_DESCRIPTION("MXS I2C Bus Driver");
909 MODULE_LICENSE("GPL");
910 MODULE_ALIAS("platform:" DRIVER_NAME);