1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) 2009 Red Hat, Inc.
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 #include <linux/sched.h>
10 #include <linux/sched/coredump.h>
11 #include <linux/sched/numa_balancing.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/swapops.h>
20 #include <linux/dax.h>
21 #include <linux/khugepaged.h>
22 #include <linux/freezer.h>
23 #include <linux/pfn_t.h>
24 #include <linux/mman.h>
25 #include <linux/memremap.h>
26 #include <linux/pagemap.h>
27 #include <linux/debugfs.h>
28 #include <linux/migrate.h>
29 #include <linux/hashtable.h>
30 #include <linux/userfaultfd_k.h>
31 #include <linux/page_idle.h>
32 #include <linux/shmem_fs.h>
33 #include <linux/oom.h>
34 #include <linux/numa.h>
35 #include <linux/page_owner.h>
38 #include <asm/pgalloc.h>
42 * By default, transparent hugepage support is disabled in order to avoid
43 * risking an increased memory footprint for applications that are not
44 * guaranteed to benefit from it. When transparent hugepage support is
45 * enabled, it is for all mappings, and khugepaged scans all mappings.
46 * Defrag is invoked by khugepaged hugepage allocations and by page faults
47 * for all hugepage allocations.
49 unsigned long transparent_hugepage_flags __read_mostly
=
50 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
51 (1<<TRANSPARENT_HUGEPAGE_FLAG
)|
53 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
54 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
)|
56 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG
)|
57 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG
)|
58 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG
);
60 static struct shrinker deferred_split_shrinker
;
62 static atomic_t huge_zero_refcount
;
63 struct page
*huge_zero_page __read_mostly
;
65 bool transparent_hugepage_enabled(struct vm_area_struct
*vma
)
67 /* The addr is used to check if the vma size fits */
68 unsigned long addr
= (vma
->vm_end
& HPAGE_PMD_MASK
) - HPAGE_PMD_SIZE
;
70 if (!transhuge_vma_suitable(vma
, addr
))
72 if (vma_is_anonymous(vma
))
73 return __transparent_hugepage_enabled(vma
);
74 if (vma_is_shmem(vma
))
75 return shmem_huge_enabled(vma
);
80 static struct page
*get_huge_zero_page(void)
82 struct page
*zero_page
;
84 if (likely(atomic_inc_not_zero(&huge_zero_refcount
)))
85 return READ_ONCE(huge_zero_page
);
87 zero_page
= alloc_pages((GFP_TRANSHUGE
| __GFP_ZERO
) & ~__GFP_MOVABLE
,
90 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED
);
93 count_vm_event(THP_ZERO_PAGE_ALLOC
);
95 if (cmpxchg(&huge_zero_page
, NULL
, zero_page
)) {
97 __free_pages(zero_page
, compound_order(zero_page
));
101 /* We take additional reference here. It will be put back by shrinker */
102 atomic_set(&huge_zero_refcount
, 2);
104 return READ_ONCE(huge_zero_page
);
107 static void put_huge_zero_page(void)
110 * Counter should never go to zero here. Only shrinker can put
113 BUG_ON(atomic_dec_and_test(&huge_zero_refcount
));
116 struct page
*mm_get_huge_zero_page(struct mm_struct
*mm
)
118 if (test_bit(MMF_HUGE_ZERO_PAGE
, &mm
->flags
))
119 return READ_ONCE(huge_zero_page
);
121 if (!get_huge_zero_page())
124 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE
, &mm
->flags
))
125 put_huge_zero_page();
127 return READ_ONCE(huge_zero_page
);
130 void mm_put_huge_zero_page(struct mm_struct
*mm
)
132 if (test_bit(MMF_HUGE_ZERO_PAGE
, &mm
->flags
))
133 put_huge_zero_page();
136 static unsigned long shrink_huge_zero_page_count(struct shrinker
*shrink
,
137 struct shrink_control
*sc
)
139 /* we can free zero page only if last reference remains */
140 return atomic_read(&huge_zero_refcount
) == 1 ? HPAGE_PMD_NR
: 0;
143 static unsigned long shrink_huge_zero_page_scan(struct shrinker
*shrink
,
144 struct shrink_control
*sc
)
146 if (atomic_cmpxchg(&huge_zero_refcount
, 1, 0) == 1) {
147 struct page
*zero_page
= xchg(&huge_zero_page
, NULL
);
148 BUG_ON(zero_page
== NULL
);
149 __free_pages(zero_page
, compound_order(zero_page
));
156 static struct shrinker huge_zero_page_shrinker
= {
157 .count_objects
= shrink_huge_zero_page_count
,
158 .scan_objects
= shrink_huge_zero_page_scan
,
159 .seeks
= DEFAULT_SEEKS
,
163 static ssize_t
enabled_show(struct kobject
*kobj
,
164 struct kobj_attribute
*attr
, char *buf
)
166 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG
, &transparent_hugepage_flags
))
167 return sprintf(buf
, "[always] madvise never\n");
168 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
, &transparent_hugepage_flags
))
169 return sprintf(buf
, "always [madvise] never\n");
171 return sprintf(buf
, "always madvise [never]\n");
174 static ssize_t
enabled_store(struct kobject
*kobj
,
175 struct kobj_attribute
*attr
,
176 const char *buf
, size_t count
)
180 if (sysfs_streq(buf
, "always")) {
181 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
, &transparent_hugepage_flags
);
182 set_bit(TRANSPARENT_HUGEPAGE_FLAG
, &transparent_hugepage_flags
);
183 } else if (sysfs_streq(buf
, "madvise")) {
184 clear_bit(TRANSPARENT_HUGEPAGE_FLAG
, &transparent_hugepage_flags
);
185 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
, &transparent_hugepage_flags
);
186 } else if (sysfs_streq(buf
, "never")) {
187 clear_bit(TRANSPARENT_HUGEPAGE_FLAG
, &transparent_hugepage_flags
);
188 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
, &transparent_hugepage_flags
);
193 int err
= start_stop_khugepaged();
199 static struct kobj_attribute enabled_attr
=
200 __ATTR(enabled
, 0644, enabled_show
, enabled_store
);
202 ssize_t
single_hugepage_flag_show(struct kobject
*kobj
,
203 struct kobj_attribute
*attr
, char *buf
,
204 enum transparent_hugepage_flag flag
)
206 return sprintf(buf
, "%d\n",
207 !!test_bit(flag
, &transparent_hugepage_flags
));
210 ssize_t
single_hugepage_flag_store(struct kobject
*kobj
,
211 struct kobj_attribute
*attr
,
212 const char *buf
, size_t count
,
213 enum transparent_hugepage_flag flag
)
218 ret
= kstrtoul(buf
, 10, &value
);
225 set_bit(flag
, &transparent_hugepage_flags
);
227 clear_bit(flag
, &transparent_hugepage_flags
);
232 static ssize_t
defrag_show(struct kobject
*kobj
,
233 struct kobj_attribute
*attr
, char *buf
)
235 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG
, &transparent_hugepage_flags
))
236 return sprintf(buf
, "[always] defer defer+madvise madvise never\n");
237 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG
, &transparent_hugepage_flags
))
238 return sprintf(buf
, "always [defer] defer+madvise madvise never\n");
239 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG
, &transparent_hugepage_flags
))
240 return sprintf(buf
, "always defer [defer+madvise] madvise never\n");
241 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG
, &transparent_hugepage_flags
))
242 return sprintf(buf
, "always defer defer+madvise [madvise] never\n");
243 return sprintf(buf
, "always defer defer+madvise madvise [never]\n");
246 static ssize_t
defrag_store(struct kobject
*kobj
,
247 struct kobj_attribute
*attr
,
248 const char *buf
, size_t count
)
250 if (sysfs_streq(buf
, "always")) {
251 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG
, &transparent_hugepage_flags
);
252 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG
, &transparent_hugepage_flags
);
253 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG
, &transparent_hugepage_flags
);
254 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG
, &transparent_hugepage_flags
);
255 } else if (sysfs_streq(buf
, "defer+madvise")) {
256 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG
, &transparent_hugepage_flags
);
257 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG
, &transparent_hugepage_flags
);
258 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG
, &transparent_hugepage_flags
);
259 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG
, &transparent_hugepage_flags
);
260 } else if (sysfs_streq(buf
, "defer")) {
261 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG
, &transparent_hugepage_flags
);
262 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG
, &transparent_hugepage_flags
);
263 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG
, &transparent_hugepage_flags
);
264 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG
, &transparent_hugepage_flags
);
265 } else if (sysfs_streq(buf
, "madvise")) {
266 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG
, &transparent_hugepage_flags
);
267 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG
, &transparent_hugepage_flags
);
268 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG
, &transparent_hugepage_flags
);
269 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG
, &transparent_hugepage_flags
);
270 } else if (sysfs_streq(buf
, "never")) {
271 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG
, &transparent_hugepage_flags
);
272 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG
, &transparent_hugepage_flags
);
273 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG
, &transparent_hugepage_flags
);
274 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG
, &transparent_hugepage_flags
);
280 static struct kobj_attribute defrag_attr
=
281 __ATTR(defrag
, 0644, defrag_show
, defrag_store
);
283 static ssize_t
use_zero_page_show(struct kobject
*kobj
,
284 struct kobj_attribute
*attr
, char *buf
)
286 return single_hugepage_flag_show(kobj
, attr
, buf
,
287 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG
);
289 static ssize_t
use_zero_page_store(struct kobject
*kobj
,
290 struct kobj_attribute
*attr
, const char *buf
, size_t count
)
292 return single_hugepage_flag_store(kobj
, attr
, buf
, count
,
293 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG
);
295 static struct kobj_attribute use_zero_page_attr
=
296 __ATTR(use_zero_page
, 0644, use_zero_page_show
, use_zero_page_store
);
298 static ssize_t
hpage_pmd_size_show(struct kobject
*kobj
,
299 struct kobj_attribute
*attr
, char *buf
)
301 return sprintf(buf
, "%lu\n", HPAGE_PMD_SIZE
);
303 static struct kobj_attribute hpage_pmd_size_attr
=
304 __ATTR_RO(hpage_pmd_size
);
306 #ifdef CONFIG_DEBUG_VM
307 static ssize_t
debug_cow_show(struct kobject
*kobj
,
308 struct kobj_attribute
*attr
, char *buf
)
310 return single_hugepage_flag_show(kobj
, attr
, buf
,
311 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG
);
313 static ssize_t
debug_cow_store(struct kobject
*kobj
,
314 struct kobj_attribute
*attr
,
315 const char *buf
, size_t count
)
317 return single_hugepage_flag_store(kobj
, attr
, buf
, count
,
318 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG
);
320 static struct kobj_attribute debug_cow_attr
=
321 __ATTR(debug_cow
, 0644, debug_cow_show
, debug_cow_store
);
322 #endif /* CONFIG_DEBUG_VM */
324 static struct attribute
*hugepage_attr
[] = {
327 &use_zero_page_attr
.attr
,
328 &hpage_pmd_size_attr
.attr
,
329 #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
330 &shmem_enabled_attr
.attr
,
332 #ifdef CONFIG_DEBUG_VM
333 &debug_cow_attr
.attr
,
338 static const struct attribute_group hugepage_attr_group
= {
339 .attrs
= hugepage_attr
,
342 static int __init
hugepage_init_sysfs(struct kobject
**hugepage_kobj
)
346 *hugepage_kobj
= kobject_create_and_add("transparent_hugepage", mm_kobj
);
347 if (unlikely(!*hugepage_kobj
)) {
348 pr_err("failed to create transparent hugepage kobject\n");
352 err
= sysfs_create_group(*hugepage_kobj
, &hugepage_attr_group
);
354 pr_err("failed to register transparent hugepage group\n");
358 err
= sysfs_create_group(*hugepage_kobj
, &khugepaged_attr_group
);
360 pr_err("failed to register transparent hugepage group\n");
361 goto remove_hp_group
;
367 sysfs_remove_group(*hugepage_kobj
, &hugepage_attr_group
);
369 kobject_put(*hugepage_kobj
);
373 static void __init
hugepage_exit_sysfs(struct kobject
*hugepage_kobj
)
375 sysfs_remove_group(hugepage_kobj
, &khugepaged_attr_group
);
376 sysfs_remove_group(hugepage_kobj
, &hugepage_attr_group
);
377 kobject_put(hugepage_kobj
);
380 static inline int hugepage_init_sysfs(struct kobject
**hugepage_kobj
)
385 static inline void hugepage_exit_sysfs(struct kobject
*hugepage_kobj
)
388 #endif /* CONFIG_SYSFS */
390 static int __init
hugepage_init(void)
393 struct kobject
*hugepage_kobj
;
395 if (!has_transparent_hugepage()) {
396 transparent_hugepage_flags
= 0;
401 * hugepages can't be allocated by the buddy allocator
403 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER
>= MAX_ORDER
);
405 * we use page->mapping and page->index in second tail page
406 * as list_head: assuming THP order >= 2
408 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER
< 2);
410 err
= hugepage_init_sysfs(&hugepage_kobj
);
414 err
= khugepaged_init();
418 err
= register_shrinker(&huge_zero_page_shrinker
);
420 goto err_hzp_shrinker
;
421 err
= register_shrinker(&deferred_split_shrinker
);
423 goto err_split_shrinker
;
426 * By default disable transparent hugepages on smaller systems,
427 * where the extra memory used could hurt more than TLB overhead
428 * is likely to save. The admin can still enable it through /sys.
430 if (totalram_pages() < (512 << (20 - PAGE_SHIFT
))) {
431 transparent_hugepage_flags
= 0;
435 err
= start_stop_khugepaged();
441 unregister_shrinker(&deferred_split_shrinker
);
443 unregister_shrinker(&huge_zero_page_shrinker
);
445 khugepaged_destroy();
447 hugepage_exit_sysfs(hugepage_kobj
);
451 subsys_initcall(hugepage_init
);
453 static int __init
setup_transparent_hugepage(char *str
)
458 if (!strcmp(str
, "always")) {
459 set_bit(TRANSPARENT_HUGEPAGE_FLAG
,
460 &transparent_hugepage_flags
);
461 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
,
462 &transparent_hugepage_flags
);
464 } else if (!strcmp(str
, "madvise")) {
465 clear_bit(TRANSPARENT_HUGEPAGE_FLAG
,
466 &transparent_hugepage_flags
);
467 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
,
468 &transparent_hugepage_flags
);
470 } else if (!strcmp(str
, "never")) {
471 clear_bit(TRANSPARENT_HUGEPAGE_FLAG
,
472 &transparent_hugepage_flags
);
473 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
,
474 &transparent_hugepage_flags
);
479 pr_warn("transparent_hugepage= cannot parse, ignored\n");
482 __setup("transparent_hugepage=", setup_transparent_hugepage
);
484 pmd_t
maybe_pmd_mkwrite(pmd_t pmd
, struct vm_area_struct
*vma
)
486 if (likely(vma
->vm_flags
& VM_WRITE
))
487 pmd
= pmd_mkwrite(pmd
);
492 static inline struct deferred_split
*get_deferred_split_queue(struct page
*page
)
494 struct mem_cgroup
*memcg
= compound_head(page
)->mem_cgroup
;
495 struct pglist_data
*pgdat
= NODE_DATA(page_to_nid(page
));
498 return &memcg
->deferred_split_queue
;
500 return &pgdat
->deferred_split_queue
;
503 static inline struct deferred_split
*get_deferred_split_queue(struct page
*page
)
505 struct pglist_data
*pgdat
= NODE_DATA(page_to_nid(page
));
507 return &pgdat
->deferred_split_queue
;
511 void prep_transhuge_page(struct page
*page
)
514 * we use page->mapping and page->indexlru in second tail page
515 * as list_head: assuming THP order >= 2
518 INIT_LIST_HEAD(page_deferred_list(page
));
519 set_compound_page_dtor(page
, TRANSHUGE_PAGE_DTOR
);
522 static unsigned long __thp_get_unmapped_area(struct file
*filp
,
523 unsigned long addr
, unsigned long len
,
524 loff_t off
, unsigned long flags
, unsigned long size
)
526 loff_t off_end
= off
+ len
;
527 loff_t off_align
= round_up(off
, size
);
528 unsigned long len_pad
, ret
;
530 if (off_end
<= off_align
|| (off_end
- off_align
) < size
)
533 len_pad
= len
+ size
;
534 if (len_pad
< len
|| (off
+ len_pad
) < off
)
537 ret
= current
->mm
->get_unmapped_area(filp
, addr
, len_pad
,
538 off
>> PAGE_SHIFT
, flags
);
541 * The failure might be due to length padding. The caller will retry
542 * without the padding.
544 if (IS_ERR_VALUE(ret
))
548 * Do not try to align to THP boundary if allocation at the address
554 ret
+= (off
- ret
) & (size
- 1);
558 unsigned long thp_get_unmapped_area(struct file
*filp
, unsigned long addr
,
559 unsigned long len
, unsigned long pgoff
, unsigned long flags
)
562 loff_t off
= (loff_t
)pgoff
<< PAGE_SHIFT
;
564 if (!IS_DAX(filp
->f_mapping
->host
) || !IS_ENABLED(CONFIG_FS_DAX_PMD
))
567 ret
= __thp_get_unmapped_area(filp
, addr
, len
, off
, flags
, PMD_SIZE
);
571 return current
->mm
->get_unmapped_area(filp
, addr
, len
, pgoff
, flags
);
573 EXPORT_SYMBOL_GPL(thp_get_unmapped_area
);
575 static vm_fault_t
__do_huge_pmd_anonymous_page(struct vm_fault
*vmf
,
576 struct page
*page
, gfp_t gfp
)
578 struct vm_area_struct
*vma
= vmf
->vma
;
579 struct mem_cgroup
*memcg
;
581 unsigned long haddr
= vmf
->address
& HPAGE_PMD_MASK
;
584 VM_BUG_ON_PAGE(!PageCompound(page
), page
);
586 if (mem_cgroup_try_charge_delay(page
, vma
->vm_mm
, gfp
, &memcg
, true)) {
588 count_vm_event(THP_FAULT_FALLBACK
);
589 return VM_FAULT_FALLBACK
;
592 pgtable
= pte_alloc_one(vma
->vm_mm
);
593 if (unlikely(!pgtable
)) {
598 clear_huge_page(page
, vmf
->address
, HPAGE_PMD_NR
);
600 * The memory barrier inside __SetPageUptodate makes sure that
601 * clear_huge_page writes become visible before the set_pmd_at()
604 __SetPageUptodate(page
);
606 vmf
->ptl
= pmd_lock(vma
->vm_mm
, vmf
->pmd
);
607 if (unlikely(!pmd_none(*vmf
->pmd
))) {
612 ret
= check_stable_address_space(vma
->vm_mm
);
616 /* Deliver the page fault to userland */
617 if (userfaultfd_missing(vma
)) {
620 spin_unlock(vmf
->ptl
);
621 mem_cgroup_cancel_charge(page
, memcg
, true);
623 pte_free(vma
->vm_mm
, pgtable
);
624 ret2
= handle_userfault(vmf
, VM_UFFD_MISSING
);
625 VM_BUG_ON(ret2
& VM_FAULT_FALLBACK
);
629 entry
= mk_huge_pmd(page
, vma
->vm_page_prot
);
630 entry
= maybe_pmd_mkwrite(pmd_mkdirty(entry
), vma
);
631 page_add_new_anon_rmap(page
, vma
, haddr
, true);
632 mem_cgroup_commit_charge(page
, memcg
, false, true);
633 lru_cache_add_active_or_unevictable(page
, vma
);
634 pgtable_trans_huge_deposit(vma
->vm_mm
, vmf
->pmd
, pgtable
);
635 set_pmd_at(vma
->vm_mm
, haddr
, vmf
->pmd
, entry
);
636 add_mm_counter(vma
->vm_mm
, MM_ANONPAGES
, HPAGE_PMD_NR
);
637 mm_inc_nr_ptes(vma
->vm_mm
);
638 spin_unlock(vmf
->ptl
);
639 count_vm_event(THP_FAULT_ALLOC
);
640 count_memcg_events(memcg
, THP_FAULT_ALLOC
, 1);
645 spin_unlock(vmf
->ptl
);
648 pte_free(vma
->vm_mm
, pgtable
);
649 mem_cgroup_cancel_charge(page
, memcg
, true);
656 * always: directly stall for all thp allocations
657 * defer: wake kswapd and fail if not immediately available
658 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
659 * fail if not immediately available
660 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
662 * never: never stall for any thp allocation
664 static inline gfp_t
alloc_hugepage_direct_gfpmask(struct vm_area_struct
*vma
)
666 const bool vma_madvised
= !!(vma
->vm_flags
& VM_HUGEPAGE
);
668 /* Always do synchronous compaction */
669 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG
, &transparent_hugepage_flags
))
670 return GFP_TRANSHUGE
| (vma_madvised
? 0 : __GFP_NORETRY
);
672 /* Kick kcompactd and fail quickly */
673 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG
, &transparent_hugepage_flags
))
674 return GFP_TRANSHUGE_LIGHT
| __GFP_KSWAPD_RECLAIM
;
676 /* Synchronous compaction if madvised, otherwise kick kcompactd */
677 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG
, &transparent_hugepage_flags
))
678 return GFP_TRANSHUGE_LIGHT
|
679 (vma_madvised
? __GFP_DIRECT_RECLAIM
:
680 __GFP_KSWAPD_RECLAIM
);
682 /* Only do synchronous compaction if madvised */
683 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG
, &transparent_hugepage_flags
))
684 return GFP_TRANSHUGE_LIGHT
|
685 (vma_madvised
? __GFP_DIRECT_RECLAIM
: 0);
687 return GFP_TRANSHUGE_LIGHT
;
690 /* Caller must hold page table lock. */
691 static bool set_huge_zero_page(pgtable_t pgtable
, struct mm_struct
*mm
,
692 struct vm_area_struct
*vma
, unsigned long haddr
, pmd_t
*pmd
,
693 struct page
*zero_page
)
698 entry
= mk_pmd(zero_page
, vma
->vm_page_prot
);
699 entry
= pmd_mkhuge(entry
);
701 pgtable_trans_huge_deposit(mm
, pmd
, pgtable
);
702 set_pmd_at(mm
, haddr
, pmd
, entry
);
707 vm_fault_t
do_huge_pmd_anonymous_page(struct vm_fault
*vmf
)
709 struct vm_area_struct
*vma
= vmf
->vma
;
712 unsigned long haddr
= vmf
->address
& HPAGE_PMD_MASK
;
714 if (!transhuge_vma_suitable(vma
, haddr
))
715 return VM_FAULT_FALLBACK
;
716 if (unlikely(anon_vma_prepare(vma
)))
718 if (unlikely(khugepaged_enter(vma
, vma
->vm_flags
)))
720 if (!(vmf
->flags
& FAULT_FLAG_WRITE
) &&
721 !mm_forbids_zeropage(vma
->vm_mm
) &&
722 transparent_hugepage_use_zero_page()) {
724 struct page
*zero_page
;
727 pgtable
= pte_alloc_one(vma
->vm_mm
);
728 if (unlikely(!pgtable
))
730 zero_page
= mm_get_huge_zero_page(vma
->vm_mm
);
731 if (unlikely(!zero_page
)) {
732 pte_free(vma
->vm_mm
, pgtable
);
733 count_vm_event(THP_FAULT_FALLBACK
);
734 return VM_FAULT_FALLBACK
;
736 vmf
->ptl
= pmd_lock(vma
->vm_mm
, vmf
->pmd
);
739 if (pmd_none(*vmf
->pmd
)) {
740 ret
= check_stable_address_space(vma
->vm_mm
);
742 spin_unlock(vmf
->ptl
);
743 } else if (userfaultfd_missing(vma
)) {
744 spin_unlock(vmf
->ptl
);
745 ret
= handle_userfault(vmf
, VM_UFFD_MISSING
);
746 VM_BUG_ON(ret
& VM_FAULT_FALLBACK
);
748 set_huge_zero_page(pgtable
, vma
->vm_mm
, vma
,
749 haddr
, vmf
->pmd
, zero_page
);
750 spin_unlock(vmf
->ptl
);
754 spin_unlock(vmf
->ptl
);
756 pte_free(vma
->vm_mm
, pgtable
);
759 gfp
= alloc_hugepage_direct_gfpmask(vma
);
760 page
= alloc_hugepage_vma(gfp
, vma
, haddr
, HPAGE_PMD_ORDER
);
761 if (unlikely(!page
)) {
762 count_vm_event(THP_FAULT_FALLBACK
);
763 return VM_FAULT_FALLBACK
;
765 prep_transhuge_page(page
);
766 return __do_huge_pmd_anonymous_page(vmf
, page
, gfp
);
769 static void insert_pfn_pmd(struct vm_area_struct
*vma
, unsigned long addr
,
770 pmd_t
*pmd
, pfn_t pfn
, pgprot_t prot
, bool write
,
773 struct mm_struct
*mm
= vma
->vm_mm
;
777 ptl
= pmd_lock(mm
, pmd
);
778 if (!pmd_none(*pmd
)) {
780 if (pmd_pfn(*pmd
) != pfn_t_to_pfn(pfn
)) {
781 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd
));
784 entry
= pmd_mkyoung(*pmd
);
785 entry
= maybe_pmd_mkwrite(pmd_mkdirty(entry
), vma
);
786 if (pmdp_set_access_flags(vma
, addr
, pmd
, entry
, 1))
787 update_mmu_cache_pmd(vma
, addr
, pmd
);
793 entry
= pmd_mkhuge(pfn_t_pmd(pfn
, prot
));
794 if (pfn_t_devmap(pfn
))
795 entry
= pmd_mkdevmap(entry
);
797 entry
= pmd_mkyoung(pmd_mkdirty(entry
));
798 entry
= maybe_pmd_mkwrite(entry
, vma
);
802 pgtable_trans_huge_deposit(mm
, pmd
, pgtable
);
807 set_pmd_at(mm
, addr
, pmd
, entry
);
808 update_mmu_cache_pmd(vma
, addr
, pmd
);
813 pte_free(mm
, pgtable
);
816 vm_fault_t
vmf_insert_pfn_pmd(struct vm_fault
*vmf
, pfn_t pfn
, bool write
)
818 unsigned long addr
= vmf
->address
& PMD_MASK
;
819 struct vm_area_struct
*vma
= vmf
->vma
;
820 pgprot_t pgprot
= vma
->vm_page_prot
;
821 pgtable_t pgtable
= NULL
;
824 * If we had pmd_special, we could avoid all these restrictions,
825 * but we need to be consistent with PTEs and architectures that
826 * can't support a 'special' bit.
828 BUG_ON(!(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)) &&
830 BUG_ON((vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)) ==
831 (VM_PFNMAP
|VM_MIXEDMAP
));
832 BUG_ON((vma
->vm_flags
& VM_PFNMAP
) && is_cow_mapping(vma
->vm_flags
));
834 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
835 return VM_FAULT_SIGBUS
;
837 if (arch_needs_pgtable_deposit()) {
838 pgtable
= pte_alloc_one(vma
->vm_mm
);
843 track_pfn_insert(vma
, &pgprot
, pfn
);
845 insert_pfn_pmd(vma
, addr
, vmf
->pmd
, pfn
, pgprot
, write
, pgtable
);
846 return VM_FAULT_NOPAGE
;
848 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd
);
850 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
851 static pud_t
maybe_pud_mkwrite(pud_t pud
, struct vm_area_struct
*vma
)
853 if (likely(vma
->vm_flags
& VM_WRITE
))
854 pud
= pud_mkwrite(pud
);
858 static void insert_pfn_pud(struct vm_area_struct
*vma
, unsigned long addr
,
859 pud_t
*pud
, pfn_t pfn
, pgprot_t prot
, bool write
)
861 struct mm_struct
*mm
= vma
->vm_mm
;
865 ptl
= pud_lock(mm
, pud
);
866 if (!pud_none(*pud
)) {
868 if (pud_pfn(*pud
) != pfn_t_to_pfn(pfn
)) {
869 WARN_ON_ONCE(!is_huge_zero_pud(*pud
));
872 entry
= pud_mkyoung(*pud
);
873 entry
= maybe_pud_mkwrite(pud_mkdirty(entry
), vma
);
874 if (pudp_set_access_flags(vma
, addr
, pud
, entry
, 1))
875 update_mmu_cache_pud(vma
, addr
, pud
);
880 entry
= pud_mkhuge(pfn_t_pud(pfn
, prot
));
881 if (pfn_t_devmap(pfn
))
882 entry
= pud_mkdevmap(entry
);
884 entry
= pud_mkyoung(pud_mkdirty(entry
));
885 entry
= maybe_pud_mkwrite(entry
, vma
);
887 set_pud_at(mm
, addr
, pud
, entry
);
888 update_mmu_cache_pud(vma
, addr
, pud
);
894 vm_fault_t
vmf_insert_pfn_pud(struct vm_fault
*vmf
, pfn_t pfn
, bool write
)
896 unsigned long addr
= vmf
->address
& PUD_MASK
;
897 struct vm_area_struct
*vma
= vmf
->vma
;
898 pgprot_t pgprot
= vma
->vm_page_prot
;
901 * If we had pud_special, we could avoid all these restrictions,
902 * but we need to be consistent with PTEs and architectures that
903 * can't support a 'special' bit.
905 BUG_ON(!(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)) &&
907 BUG_ON((vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)) ==
908 (VM_PFNMAP
|VM_MIXEDMAP
));
909 BUG_ON((vma
->vm_flags
& VM_PFNMAP
) && is_cow_mapping(vma
->vm_flags
));
911 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
912 return VM_FAULT_SIGBUS
;
914 track_pfn_insert(vma
, &pgprot
, pfn
);
916 insert_pfn_pud(vma
, addr
, vmf
->pud
, pfn
, pgprot
, write
);
917 return VM_FAULT_NOPAGE
;
919 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud
);
920 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
922 static void touch_pmd(struct vm_area_struct
*vma
, unsigned long addr
,
923 pmd_t
*pmd
, int flags
)
927 _pmd
= pmd_mkyoung(*pmd
);
928 if (flags
& FOLL_WRITE
)
929 _pmd
= pmd_mkdirty(_pmd
);
930 if (pmdp_set_access_flags(vma
, addr
& HPAGE_PMD_MASK
,
931 pmd
, _pmd
, flags
& FOLL_WRITE
))
932 update_mmu_cache_pmd(vma
, addr
, pmd
);
935 struct page
*follow_devmap_pmd(struct vm_area_struct
*vma
, unsigned long addr
,
936 pmd_t
*pmd
, int flags
, struct dev_pagemap
**pgmap
)
938 unsigned long pfn
= pmd_pfn(*pmd
);
939 struct mm_struct
*mm
= vma
->vm_mm
;
942 assert_spin_locked(pmd_lockptr(mm
, pmd
));
945 * When we COW a devmap PMD entry, we split it into PTEs, so we should
946 * not be in this function with `flags & FOLL_COW` set.
948 WARN_ONCE(flags
& FOLL_COW
, "mm: In follow_devmap_pmd with FOLL_COW set");
950 if (flags
& FOLL_WRITE
&& !pmd_write(*pmd
))
953 if (pmd_present(*pmd
) && pmd_devmap(*pmd
))
958 if (flags
& FOLL_TOUCH
)
959 touch_pmd(vma
, addr
, pmd
, flags
);
962 * device mapped pages can only be returned if the
963 * caller will manage the page reference count.
965 if (!(flags
& FOLL_GET
))
966 return ERR_PTR(-EEXIST
);
968 pfn
+= (addr
& ~PMD_MASK
) >> PAGE_SHIFT
;
969 *pgmap
= get_dev_pagemap(pfn
, *pgmap
);
971 return ERR_PTR(-EFAULT
);
972 page
= pfn_to_page(pfn
);
978 int copy_huge_pmd(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
979 pmd_t
*dst_pmd
, pmd_t
*src_pmd
, unsigned long addr
,
980 struct vm_area_struct
*vma
)
982 spinlock_t
*dst_ptl
, *src_ptl
;
983 struct page
*src_page
;
985 pgtable_t pgtable
= NULL
;
988 /* Skip if can be re-fill on fault */
989 if (!vma_is_anonymous(vma
))
992 pgtable
= pte_alloc_one(dst_mm
);
993 if (unlikely(!pgtable
))
996 dst_ptl
= pmd_lock(dst_mm
, dst_pmd
);
997 src_ptl
= pmd_lockptr(src_mm
, src_pmd
);
998 spin_lock_nested(src_ptl
, SINGLE_DEPTH_NESTING
);
1003 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1004 if (unlikely(is_swap_pmd(pmd
))) {
1005 swp_entry_t entry
= pmd_to_swp_entry(pmd
);
1007 VM_BUG_ON(!is_pmd_migration_entry(pmd
));
1008 if (is_write_migration_entry(entry
)) {
1009 make_migration_entry_read(&entry
);
1010 pmd
= swp_entry_to_pmd(entry
);
1011 if (pmd_swp_soft_dirty(*src_pmd
))
1012 pmd
= pmd_swp_mksoft_dirty(pmd
);
1013 set_pmd_at(src_mm
, addr
, src_pmd
, pmd
);
1015 add_mm_counter(dst_mm
, MM_ANONPAGES
, HPAGE_PMD_NR
);
1016 mm_inc_nr_ptes(dst_mm
);
1017 pgtable_trans_huge_deposit(dst_mm
, dst_pmd
, pgtable
);
1018 set_pmd_at(dst_mm
, addr
, dst_pmd
, pmd
);
1024 if (unlikely(!pmd_trans_huge(pmd
))) {
1025 pte_free(dst_mm
, pgtable
);
1029 * When page table lock is held, the huge zero pmd should not be
1030 * under splitting since we don't split the page itself, only pmd to
1033 if (is_huge_zero_pmd(pmd
)) {
1034 struct page
*zero_page
;
1036 * get_huge_zero_page() will never allocate a new page here,
1037 * since we already have a zero page to copy. It just takes a
1040 zero_page
= mm_get_huge_zero_page(dst_mm
);
1041 set_huge_zero_page(pgtable
, dst_mm
, vma
, addr
, dst_pmd
,
1047 src_page
= pmd_page(pmd
);
1048 VM_BUG_ON_PAGE(!PageHead(src_page
), src_page
);
1050 page_dup_rmap(src_page
, true);
1051 add_mm_counter(dst_mm
, MM_ANONPAGES
, HPAGE_PMD_NR
);
1052 mm_inc_nr_ptes(dst_mm
);
1053 pgtable_trans_huge_deposit(dst_mm
, dst_pmd
, pgtable
);
1055 pmdp_set_wrprotect(src_mm
, addr
, src_pmd
);
1056 pmd
= pmd_mkold(pmd_wrprotect(pmd
));
1057 set_pmd_at(dst_mm
, addr
, dst_pmd
, pmd
);
1061 spin_unlock(src_ptl
);
1062 spin_unlock(dst_ptl
);
1067 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1068 static void touch_pud(struct vm_area_struct
*vma
, unsigned long addr
,
1069 pud_t
*pud
, int flags
)
1073 _pud
= pud_mkyoung(*pud
);
1074 if (flags
& FOLL_WRITE
)
1075 _pud
= pud_mkdirty(_pud
);
1076 if (pudp_set_access_flags(vma
, addr
& HPAGE_PUD_MASK
,
1077 pud
, _pud
, flags
& FOLL_WRITE
))
1078 update_mmu_cache_pud(vma
, addr
, pud
);
1081 struct page
*follow_devmap_pud(struct vm_area_struct
*vma
, unsigned long addr
,
1082 pud_t
*pud
, int flags
, struct dev_pagemap
**pgmap
)
1084 unsigned long pfn
= pud_pfn(*pud
);
1085 struct mm_struct
*mm
= vma
->vm_mm
;
1088 assert_spin_locked(pud_lockptr(mm
, pud
));
1090 if (flags
& FOLL_WRITE
&& !pud_write(*pud
))
1093 if (pud_present(*pud
) && pud_devmap(*pud
))
1098 if (flags
& FOLL_TOUCH
)
1099 touch_pud(vma
, addr
, pud
, flags
);
1102 * device mapped pages can only be returned if the
1103 * caller will manage the page reference count.
1105 if (!(flags
& FOLL_GET
))
1106 return ERR_PTR(-EEXIST
);
1108 pfn
+= (addr
& ~PUD_MASK
) >> PAGE_SHIFT
;
1109 *pgmap
= get_dev_pagemap(pfn
, *pgmap
);
1111 return ERR_PTR(-EFAULT
);
1112 page
= pfn_to_page(pfn
);
1118 int copy_huge_pud(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
1119 pud_t
*dst_pud
, pud_t
*src_pud
, unsigned long addr
,
1120 struct vm_area_struct
*vma
)
1122 spinlock_t
*dst_ptl
, *src_ptl
;
1126 dst_ptl
= pud_lock(dst_mm
, dst_pud
);
1127 src_ptl
= pud_lockptr(src_mm
, src_pud
);
1128 spin_lock_nested(src_ptl
, SINGLE_DEPTH_NESTING
);
1132 if (unlikely(!pud_trans_huge(pud
) && !pud_devmap(pud
)))
1136 * When page table lock is held, the huge zero pud should not be
1137 * under splitting since we don't split the page itself, only pud to
1140 if (is_huge_zero_pud(pud
)) {
1141 /* No huge zero pud yet */
1144 pudp_set_wrprotect(src_mm
, addr
, src_pud
);
1145 pud
= pud_mkold(pud_wrprotect(pud
));
1146 set_pud_at(dst_mm
, addr
, dst_pud
, pud
);
1150 spin_unlock(src_ptl
);
1151 spin_unlock(dst_ptl
);
1155 void huge_pud_set_accessed(struct vm_fault
*vmf
, pud_t orig_pud
)
1158 unsigned long haddr
;
1159 bool write
= vmf
->flags
& FAULT_FLAG_WRITE
;
1161 vmf
->ptl
= pud_lock(vmf
->vma
->vm_mm
, vmf
->pud
);
1162 if (unlikely(!pud_same(*vmf
->pud
, orig_pud
)))
1165 entry
= pud_mkyoung(orig_pud
);
1167 entry
= pud_mkdirty(entry
);
1168 haddr
= vmf
->address
& HPAGE_PUD_MASK
;
1169 if (pudp_set_access_flags(vmf
->vma
, haddr
, vmf
->pud
, entry
, write
))
1170 update_mmu_cache_pud(vmf
->vma
, vmf
->address
, vmf
->pud
);
1173 spin_unlock(vmf
->ptl
);
1175 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1177 void huge_pmd_set_accessed(struct vm_fault
*vmf
, pmd_t orig_pmd
)
1180 unsigned long haddr
;
1181 bool write
= vmf
->flags
& FAULT_FLAG_WRITE
;
1183 vmf
->ptl
= pmd_lock(vmf
->vma
->vm_mm
, vmf
->pmd
);
1184 if (unlikely(!pmd_same(*vmf
->pmd
, orig_pmd
)))
1187 entry
= pmd_mkyoung(orig_pmd
);
1189 entry
= pmd_mkdirty(entry
);
1190 haddr
= vmf
->address
& HPAGE_PMD_MASK
;
1191 if (pmdp_set_access_flags(vmf
->vma
, haddr
, vmf
->pmd
, entry
, write
))
1192 update_mmu_cache_pmd(vmf
->vma
, vmf
->address
, vmf
->pmd
);
1195 spin_unlock(vmf
->ptl
);
1198 static vm_fault_t
do_huge_pmd_wp_page_fallback(struct vm_fault
*vmf
,
1199 pmd_t orig_pmd
, struct page
*page
)
1201 struct vm_area_struct
*vma
= vmf
->vma
;
1202 unsigned long haddr
= vmf
->address
& HPAGE_PMD_MASK
;
1203 struct mem_cgroup
*memcg
;
1208 struct page
**pages
;
1209 struct mmu_notifier_range range
;
1211 pages
= kmalloc_array(HPAGE_PMD_NR
, sizeof(struct page
*),
1213 if (unlikely(!pages
)) {
1214 ret
|= VM_FAULT_OOM
;
1218 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
1219 pages
[i
] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE
, vma
,
1220 vmf
->address
, page_to_nid(page
));
1221 if (unlikely(!pages
[i
] ||
1222 mem_cgroup_try_charge_delay(pages
[i
], vma
->vm_mm
,
1223 GFP_KERNEL
, &memcg
, false))) {
1227 memcg
= (void *)page_private(pages
[i
]);
1228 set_page_private(pages
[i
], 0);
1229 mem_cgroup_cancel_charge(pages
[i
], memcg
,
1234 ret
|= VM_FAULT_OOM
;
1237 set_page_private(pages
[i
], (unsigned long)memcg
);
1240 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
1241 copy_user_highpage(pages
[i
], page
+ i
,
1242 haddr
+ PAGE_SIZE
* i
, vma
);
1243 __SetPageUptodate(pages
[i
]);
1247 mmu_notifier_range_init(&range
, MMU_NOTIFY_CLEAR
, 0, vma
, vma
->vm_mm
,
1248 haddr
, haddr
+ HPAGE_PMD_SIZE
);
1249 mmu_notifier_invalidate_range_start(&range
);
1251 vmf
->ptl
= pmd_lock(vma
->vm_mm
, vmf
->pmd
);
1252 if (unlikely(!pmd_same(*vmf
->pmd
, orig_pmd
)))
1253 goto out_free_pages
;
1254 VM_BUG_ON_PAGE(!PageHead(page
), page
);
1257 * Leave pmd empty until pte is filled note we must notify here as
1258 * concurrent CPU thread might write to new page before the call to
1259 * mmu_notifier_invalidate_range_end() happens which can lead to a
1260 * device seeing memory write in different order than CPU.
1262 * See Documentation/vm/mmu_notifier.rst
1264 pmdp_huge_clear_flush_notify(vma
, haddr
, vmf
->pmd
);
1266 pgtable
= pgtable_trans_huge_withdraw(vma
->vm_mm
, vmf
->pmd
);
1267 pmd_populate(vma
->vm_mm
, &_pmd
, pgtable
);
1269 for (i
= 0; i
< HPAGE_PMD_NR
; i
++, haddr
+= PAGE_SIZE
) {
1271 entry
= mk_pte(pages
[i
], vma
->vm_page_prot
);
1272 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
1273 memcg
= (void *)page_private(pages
[i
]);
1274 set_page_private(pages
[i
], 0);
1275 page_add_new_anon_rmap(pages
[i
], vmf
->vma
, haddr
, false);
1276 mem_cgroup_commit_charge(pages
[i
], memcg
, false, false);
1277 lru_cache_add_active_or_unevictable(pages
[i
], vma
);
1278 vmf
->pte
= pte_offset_map(&_pmd
, haddr
);
1279 VM_BUG_ON(!pte_none(*vmf
->pte
));
1280 set_pte_at(vma
->vm_mm
, haddr
, vmf
->pte
, entry
);
1281 pte_unmap(vmf
->pte
);
1285 smp_wmb(); /* make pte visible before pmd */
1286 pmd_populate(vma
->vm_mm
, vmf
->pmd
, pgtable
);
1287 page_remove_rmap(page
, true);
1288 spin_unlock(vmf
->ptl
);
1291 * No need to double call mmu_notifier->invalidate_range() callback as
1292 * the above pmdp_huge_clear_flush_notify() did already call it.
1294 mmu_notifier_invalidate_range_only_end(&range
);
1296 ret
|= VM_FAULT_WRITE
;
1303 spin_unlock(vmf
->ptl
);
1304 mmu_notifier_invalidate_range_end(&range
);
1305 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
1306 memcg
= (void *)page_private(pages
[i
]);
1307 set_page_private(pages
[i
], 0);
1308 mem_cgroup_cancel_charge(pages
[i
], memcg
, false);
1315 vm_fault_t
do_huge_pmd_wp_page(struct vm_fault
*vmf
, pmd_t orig_pmd
)
1317 struct vm_area_struct
*vma
= vmf
->vma
;
1318 struct page
*page
= NULL
, *new_page
;
1319 struct mem_cgroup
*memcg
;
1320 unsigned long haddr
= vmf
->address
& HPAGE_PMD_MASK
;
1321 struct mmu_notifier_range range
;
1322 gfp_t huge_gfp
; /* for allocation and charge */
1325 vmf
->ptl
= pmd_lockptr(vma
->vm_mm
, vmf
->pmd
);
1326 VM_BUG_ON_VMA(!vma
->anon_vma
, vma
);
1327 if (is_huge_zero_pmd(orig_pmd
))
1329 spin_lock(vmf
->ptl
);
1330 if (unlikely(!pmd_same(*vmf
->pmd
, orig_pmd
)))
1333 page
= pmd_page(orig_pmd
);
1334 VM_BUG_ON_PAGE(!PageCompound(page
) || !PageHead(page
), page
);
1336 * We can only reuse the page if nobody else maps the huge page or it's
1339 if (!trylock_page(page
)) {
1341 spin_unlock(vmf
->ptl
);
1343 spin_lock(vmf
->ptl
);
1344 if (unlikely(!pmd_same(*vmf
->pmd
, orig_pmd
))) {
1351 if (reuse_swap_page(page
, NULL
)) {
1353 entry
= pmd_mkyoung(orig_pmd
);
1354 entry
= maybe_pmd_mkwrite(pmd_mkdirty(entry
), vma
);
1355 if (pmdp_set_access_flags(vma
, haddr
, vmf
->pmd
, entry
, 1))
1356 update_mmu_cache_pmd(vma
, vmf
->address
, vmf
->pmd
);
1357 ret
|= VM_FAULT_WRITE
;
1363 spin_unlock(vmf
->ptl
);
1365 if (__transparent_hugepage_enabled(vma
) &&
1366 !transparent_hugepage_debug_cow()) {
1367 huge_gfp
= alloc_hugepage_direct_gfpmask(vma
);
1368 new_page
= alloc_hugepage_vma(huge_gfp
, vma
, haddr
, HPAGE_PMD_ORDER
);
1372 if (likely(new_page
)) {
1373 prep_transhuge_page(new_page
);
1376 split_huge_pmd(vma
, vmf
->pmd
, vmf
->address
);
1377 ret
|= VM_FAULT_FALLBACK
;
1379 ret
= do_huge_pmd_wp_page_fallback(vmf
, orig_pmd
, page
);
1380 if (ret
& VM_FAULT_OOM
) {
1381 split_huge_pmd(vma
, vmf
->pmd
, vmf
->address
);
1382 ret
|= VM_FAULT_FALLBACK
;
1386 count_vm_event(THP_FAULT_FALLBACK
);
1390 if (unlikely(mem_cgroup_try_charge_delay(new_page
, vma
->vm_mm
,
1391 huge_gfp
, &memcg
, true))) {
1393 split_huge_pmd(vma
, vmf
->pmd
, vmf
->address
);
1396 ret
|= VM_FAULT_FALLBACK
;
1397 count_vm_event(THP_FAULT_FALLBACK
);
1401 count_vm_event(THP_FAULT_ALLOC
);
1402 count_memcg_events(memcg
, THP_FAULT_ALLOC
, 1);
1405 clear_huge_page(new_page
, vmf
->address
, HPAGE_PMD_NR
);
1407 copy_user_huge_page(new_page
, page
, vmf
->address
,
1409 __SetPageUptodate(new_page
);
1411 mmu_notifier_range_init(&range
, MMU_NOTIFY_CLEAR
, 0, vma
, vma
->vm_mm
,
1412 haddr
, haddr
+ HPAGE_PMD_SIZE
);
1413 mmu_notifier_invalidate_range_start(&range
);
1415 spin_lock(vmf
->ptl
);
1418 if (unlikely(!pmd_same(*vmf
->pmd
, orig_pmd
))) {
1419 spin_unlock(vmf
->ptl
);
1420 mem_cgroup_cancel_charge(new_page
, memcg
, true);
1425 entry
= mk_huge_pmd(new_page
, vma
->vm_page_prot
);
1426 entry
= maybe_pmd_mkwrite(pmd_mkdirty(entry
), vma
);
1427 pmdp_huge_clear_flush_notify(vma
, haddr
, vmf
->pmd
);
1428 page_add_new_anon_rmap(new_page
, vma
, haddr
, true);
1429 mem_cgroup_commit_charge(new_page
, memcg
, false, true);
1430 lru_cache_add_active_or_unevictable(new_page
, vma
);
1431 set_pmd_at(vma
->vm_mm
, haddr
, vmf
->pmd
, entry
);
1432 update_mmu_cache_pmd(vma
, vmf
->address
, vmf
->pmd
);
1434 add_mm_counter(vma
->vm_mm
, MM_ANONPAGES
, HPAGE_PMD_NR
);
1436 VM_BUG_ON_PAGE(!PageHead(page
), page
);
1437 page_remove_rmap(page
, true);
1440 ret
|= VM_FAULT_WRITE
;
1442 spin_unlock(vmf
->ptl
);
1445 * No need to double call mmu_notifier->invalidate_range() callback as
1446 * the above pmdp_huge_clear_flush_notify() did already call it.
1448 mmu_notifier_invalidate_range_only_end(&range
);
1452 spin_unlock(vmf
->ptl
);
1457 * FOLL_FORCE or a forced COW break can write even to unwritable pmd's,
1458 * but only after we've gone through a COW cycle and they are dirty.
1460 static inline bool can_follow_write_pmd(pmd_t pmd
, unsigned int flags
)
1462 return pmd_write(pmd
) || ((flags
& FOLL_COW
) && pmd_dirty(pmd
));
1465 struct page
*follow_trans_huge_pmd(struct vm_area_struct
*vma
,
1470 struct mm_struct
*mm
= vma
->vm_mm
;
1471 struct page
*page
= NULL
;
1473 assert_spin_locked(pmd_lockptr(mm
, pmd
));
1475 if (flags
& FOLL_WRITE
&& !can_follow_write_pmd(*pmd
, flags
))
1478 /* Avoid dumping huge zero page */
1479 if ((flags
& FOLL_DUMP
) && is_huge_zero_pmd(*pmd
))
1480 return ERR_PTR(-EFAULT
);
1482 /* Full NUMA hinting faults to serialise migration in fault paths */
1483 if ((flags
& FOLL_NUMA
) && pmd_protnone(*pmd
))
1486 page
= pmd_page(*pmd
);
1487 VM_BUG_ON_PAGE(!PageHead(page
) && !is_zone_device_page(page
), page
);
1488 if (flags
& FOLL_TOUCH
)
1489 touch_pmd(vma
, addr
, pmd
, flags
);
1490 if ((flags
& FOLL_MLOCK
) && (vma
->vm_flags
& VM_LOCKED
)) {
1492 * We don't mlock() pte-mapped THPs. This way we can avoid
1493 * leaking mlocked pages into non-VM_LOCKED VMAs.
1497 * In most cases the pmd is the only mapping of the page as we
1498 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1499 * writable private mappings in populate_vma_page_range().
1501 * The only scenario when we have the page shared here is if we
1502 * mlocking read-only mapping shared over fork(). We skip
1503 * mlocking such pages.
1507 * We can expect PageDoubleMap() to be stable under page lock:
1508 * for file pages we set it in page_add_file_rmap(), which
1509 * requires page to be locked.
1512 if (PageAnon(page
) && compound_mapcount(page
) != 1)
1514 if (PageDoubleMap(page
) || !page
->mapping
)
1516 if (!trylock_page(page
))
1519 if (page
->mapping
&& !PageDoubleMap(page
))
1520 mlock_vma_page(page
);
1524 page
+= (addr
& ~HPAGE_PMD_MASK
) >> PAGE_SHIFT
;
1525 VM_BUG_ON_PAGE(!PageCompound(page
) && !is_zone_device_page(page
), page
);
1526 if (flags
& FOLL_GET
)
1533 /* NUMA hinting page fault entry point for trans huge pmds */
1534 vm_fault_t
do_huge_pmd_numa_page(struct vm_fault
*vmf
, pmd_t pmd
)
1536 struct vm_area_struct
*vma
= vmf
->vma
;
1537 struct anon_vma
*anon_vma
= NULL
;
1539 unsigned long haddr
= vmf
->address
& HPAGE_PMD_MASK
;
1540 int page_nid
= NUMA_NO_NODE
, this_nid
= numa_node_id();
1541 int target_nid
, last_cpupid
= -1;
1543 bool migrated
= false;
1547 vmf
->ptl
= pmd_lock(vma
->vm_mm
, vmf
->pmd
);
1548 if (unlikely(!pmd_same(pmd
, *vmf
->pmd
)))
1552 * If there are potential migrations, wait for completion and retry
1553 * without disrupting NUMA hinting information. Do not relock and
1554 * check_same as the page may no longer be mapped.
1556 if (unlikely(pmd_trans_migrating(*vmf
->pmd
))) {
1557 page
= pmd_page(*vmf
->pmd
);
1558 if (!get_page_unless_zero(page
))
1560 spin_unlock(vmf
->ptl
);
1561 put_and_wait_on_page_locked(page
);
1565 page
= pmd_page(pmd
);
1566 BUG_ON(is_huge_zero_page(page
));
1567 page_nid
= page_to_nid(page
);
1568 last_cpupid
= page_cpupid_last(page
);
1569 count_vm_numa_event(NUMA_HINT_FAULTS
);
1570 if (page_nid
== this_nid
) {
1571 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL
);
1572 flags
|= TNF_FAULT_LOCAL
;
1575 /* See similar comment in do_numa_page for explanation */
1576 if (!pmd_savedwrite(pmd
))
1577 flags
|= TNF_NO_GROUP
;
1580 * Acquire the page lock to serialise THP migrations but avoid dropping
1581 * page_table_lock if at all possible
1583 page_locked
= trylock_page(page
);
1584 target_nid
= mpol_misplaced(page
, vma
, haddr
);
1585 if (target_nid
== NUMA_NO_NODE
) {
1586 /* If the page was locked, there are no parallel migrations */
1591 /* Migration could have started since the pmd_trans_migrating check */
1593 page_nid
= NUMA_NO_NODE
;
1594 if (!get_page_unless_zero(page
))
1596 spin_unlock(vmf
->ptl
);
1597 put_and_wait_on_page_locked(page
);
1602 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1603 * to serialises splits
1606 spin_unlock(vmf
->ptl
);
1607 anon_vma
= page_lock_anon_vma_read(page
);
1609 /* Confirm the PMD did not change while page_table_lock was released */
1610 spin_lock(vmf
->ptl
);
1611 if (unlikely(!pmd_same(pmd
, *vmf
->pmd
))) {
1614 page_nid
= NUMA_NO_NODE
;
1618 /* Bail if we fail to protect against THP splits for any reason */
1619 if (unlikely(!anon_vma
)) {
1621 page_nid
= NUMA_NO_NODE
;
1626 * Since we took the NUMA fault, we must have observed the !accessible
1627 * bit. Make sure all other CPUs agree with that, to avoid them
1628 * modifying the page we're about to migrate.
1630 * Must be done under PTL such that we'll observe the relevant
1631 * inc_tlb_flush_pending().
1633 * We are not sure a pending tlb flush here is for a huge page
1634 * mapping or not. Hence use the tlb range variant
1636 if (mm_tlb_flush_pending(vma
->vm_mm
)) {
1637 flush_tlb_range(vma
, haddr
, haddr
+ HPAGE_PMD_SIZE
);
1639 * change_huge_pmd() released the pmd lock before
1640 * invalidating the secondary MMUs sharing the primary
1641 * MMU pagetables (with ->invalidate_range()). The
1642 * mmu_notifier_invalidate_range_end() (which
1643 * internally calls ->invalidate_range()) in
1644 * change_pmd_range() will run after us, so we can't
1645 * rely on it here and we need an explicit invalidate.
1647 mmu_notifier_invalidate_range(vma
->vm_mm
, haddr
,
1648 haddr
+ HPAGE_PMD_SIZE
);
1652 * Migrate the THP to the requested node, returns with page unlocked
1653 * and access rights restored.
1655 spin_unlock(vmf
->ptl
);
1657 migrated
= migrate_misplaced_transhuge_page(vma
->vm_mm
, vma
,
1658 vmf
->pmd
, pmd
, vmf
->address
, page
, target_nid
);
1660 flags
|= TNF_MIGRATED
;
1661 page_nid
= target_nid
;
1663 flags
|= TNF_MIGRATE_FAIL
;
1667 BUG_ON(!PageLocked(page
));
1668 was_writable
= pmd_savedwrite(pmd
);
1669 pmd
= pmd_modify(pmd
, vma
->vm_page_prot
);
1670 pmd
= pmd_mkyoung(pmd
);
1672 pmd
= pmd_mkwrite(pmd
);
1673 set_pmd_at(vma
->vm_mm
, haddr
, vmf
->pmd
, pmd
);
1674 update_mmu_cache_pmd(vma
, vmf
->address
, vmf
->pmd
);
1677 spin_unlock(vmf
->ptl
);
1681 page_unlock_anon_vma_read(anon_vma
);
1683 if (page_nid
!= NUMA_NO_NODE
)
1684 task_numa_fault(last_cpupid
, page_nid
, HPAGE_PMD_NR
,
1691 * Return true if we do MADV_FREE successfully on entire pmd page.
1692 * Otherwise, return false.
1694 bool madvise_free_huge_pmd(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
1695 pmd_t
*pmd
, unsigned long addr
, unsigned long next
)
1700 struct mm_struct
*mm
= tlb
->mm
;
1703 tlb_change_page_size(tlb
, HPAGE_PMD_SIZE
);
1705 ptl
= pmd_trans_huge_lock(pmd
, vma
);
1710 if (is_huge_zero_pmd(orig_pmd
))
1713 if (unlikely(!pmd_present(orig_pmd
))) {
1714 VM_BUG_ON(thp_migration_supported() &&
1715 !is_pmd_migration_entry(orig_pmd
));
1719 page
= pmd_page(orig_pmd
);
1721 * If other processes are mapping this page, we couldn't discard
1722 * the page unless they all do MADV_FREE so let's skip the page.
1724 if (page_mapcount(page
) != 1)
1727 if (!trylock_page(page
))
1731 * If user want to discard part-pages of THP, split it so MADV_FREE
1732 * will deactivate only them.
1734 if (next
- addr
!= HPAGE_PMD_SIZE
) {
1737 split_huge_page(page
);
1743 if (PageDirty(page
))
1744 ClearPageDirty(page
);
1747 if (pmd_young(orig_pmd
) || pmd_dirty(orig_pmd
)) {
1748 pmdp_invalidate(vma
, addr
, pmd
);
1749 orig_pmd
= pmd_mkold(orig_pmd
);
1750 orig_pmd
= pmd_mkclean(orig_pmd
);
1752 set_pmd_at(mm
, addr
, pmd
, orig_pmd
);
1753 tlb_remove_pmd_tlb_entry(tlb
, pmd
, addr
);
1756 mark_page_lazyfree(page
);
1764 static inline void zap_deposited_table(struct mm_struct
*mm
, pmd_t
*pmd
)
1768 pgtable
= pgtable_trans_huge_withdraw(mm
, pmd
);
1769 pte_free(mm
, pgtable
);
1773 int zap_huge_pmd(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
1774 pmd_t
*pmd
, unsigned long addr
)
1779 tlb_change_page_size(tlb
, HPAGE_PMD_SIZE
);
1781 ptl
= __pmd_trans_huge_lock(pmd
, vma
);
1785 * For architectures like ppc64 we look at deposited pgtable
1786 * when calling pmdp_huge_get_and_clear. So do the
1787 * pgtable_trans_huge_withdraw after finishing pmdp related
1790 orig_pmd
= pmdp_huge_get_and_clear_full(tlb
->mm
, addr
, pmd
,
1792 tlb_remove_pmd_tlb_entry(tlb
, pmd
, addr
);
1793 if (vma_is_dax(vma
)) {
1794 if (arch_needs_pgtable_deposit())
1795 zap_deposited_table(tlb
->mm
, pmd
);
1797 if (is_huge_zero_pmd(orig_pmd
))
1798 tlb_remove_page_size(tlb
, pmd_page(orig_pmd
), HPAGE_PMD_SIZE
);
1799 } else if (is_huge_zero_pmd(orig_pmd
)) {
1800 zap_deposited_table(tlb
->mm
, pmd
);
1802 tlb_remove_page_size(tlb
, pmd_page(orig_pmd
), HPAGE_PMD_SIZE
);
1804 struct page
*page
= NULL
;
1805 int flush_needed
= 1;
1807 if (pmd_present(orig_pmd
)) {
1808 page
= pmd_page(orig_pmd
);
1809 page_remove_rmap(page
, true);
1810 VM_BUG_ON_PAGE(page_mapcount(page
) < 0, page
);
1811 VM_BUG_ON_PAGE(!PageHead(page
), page
);
1812 } else if (thp_migration_supported()) {
1815 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd
));
1816 entry
= pmd_to_swp_entry(orig_pmd
);
1817 page
= pfn_to_page(swp_offset(entry
));
1820 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1822 if (PageAnon(page
)) {
1823 zap_deposited_table(tlb
->mm
, pmd
);
1824 add_mm_counter(tlb
->mm
, MM_ANONPAGES
, -HPAGE_PMD_NR
);
1826 if (arch_needs_pgtable_deposit())
1827 zap_deposited_table(tlb
->mm
, pmd
);
1828 add_mm_counter(tlb
->mm
, mm_counter_file(page
), -HPAGE_PMD_NR
);
1833 tlb_remove_page_size(tlb
, page
, HPAGE_PMD_SIZE
);
1838 #ifndef pmd_move_must_withdraw
1839 static inline int pmd_move_must_withdraw(spinlock_t
*new_pmd_ptl
,
1840 spinlock_t
*old_pmd_ptl
,
1841 struct vm_area_struct
*vma
)
1844 * With split pmd lock we also need to move preallocated
1845 * PTE page table if new_pmd is on different PMD page table.
1847 * We also don't deposit and withdraw tables for file pages.
1849 return (new_pmd_ptl
!= old_pmd_ptl
) && vma_is_anonymous(vma
);
1853 static pmd_t
move_soft_dirty_pmd(pmd_t pmd
)
1855 #ifdef CONFIG_MEM_SOFT_DIRTY
1856 if (unlikely(is_pmd_migration_entry(pmd
)))
1857 pmd
= pmd_swp_mksoft_dirty(pmd
);
1858 else if (pmd_present(pmd
))
1859 pmd
= pmd_mksoft_dirty(pmd
);
1864 bool move_huge_pmd(struct vm_area_struct
*vma
, unsigned long old_addr
,
1865 unsigned long new_addr
, unsigned long old_end
,
1866 pmd_t
*old_pmd
, pmd_t
*new_pmd
)
1868 spinlock_t
*old_ptl
, *new_ptl
;
1870 struct mm_struct
*mm
= vma
->vm_mm
;
1871 bool force_flush
= false;
1873 if ((old_addr
& ~HPAGE_PMD_MASK
) ||
1874 (new_addr
& ~HPAGE_PMD_MASK
) ||
1875 old_end
- old_addr
< HPAGE_PMD_SIZE
)
1879 * The destination pmd shouldn't be established, free_pgtables()
1880 * should have release it.
1882 if (WARN_ON(!pmd_none(*new_pmd
))) {
1883 VM_BUG_ON(pmd_trans_huge(*new_pmd
));
1888 * We don't have to worry about the ordering of src and dst
1889 * ptlocks because exclusive mmap_sem prevents deadlock.
1891 old_ptl
= __pmd_trans_huge_lock(old_pmd
, vma
);
1893 new_ptl
= pmd_lockptr(mm
, new_pmd
);
1894 if (new_ptl
!= old_ptl
)
1895 spin_lock_nested(new_ptl
, SINGLE_DEPTH_NESTING
);
1896 pmd
= pmdp_huge_get_and_clear(mm
, old_addr
, old_pmd
);
1897 if (pmd_present(pmd
))
1899 VM_BUG_ON(!pmd_none(*new_pmd
));
1901 if (pmd_move_must_withdraw(new_ptl
, old_ptl
, vma
)) {
1903 pgtable
= pgtable_trans_huge_withdraw(mm
, old_pmd
);
1904 pgtable_trans_huge_deposit(mm
, new_pmd
, pgtable
);
1906 pmd
= move_soft_dirty_pmd(pmd
);
1907 set_pmd_at(mm
, new_addr
, new_pmd
, pmd
);
1909 flush_tlb_range(vma
, old_addr
, old_addr
+ PMD_SIZE
);
1910 if (new_ptl
!= old_ptl
)
1911 spin_unlock(new_ptl
);
1912 spin_unlock(old_ptl
);
1920 * - 0 if PMD could not be locked
1921 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1922 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1924 int change_huge_pmd(struct vm_area_struct
*vma
, pmd_t
*pmd
,
1925 unsigned long addr
, pgprot_t newprot
, int prot_numa
)
1927 struct mm_struct
*mm
= vma
->vm_mm
;
1930 bool preserve_write
;
1933 ptl
= __pmd_trans_huge_lock(pmd
, vma
);
1937 preserve_write
= prot_numa
&& pmd_write(*pmd
);
1940 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1941 if (is_swap_pmd(*pmd
)) {
1942 swp_entry_t entry
= pmd_to_swp_entry(*pmd
);
1944 VM_BUG_ON(!is_pmd_migration_entry(*pmd
));
1945 if (is_write_migration_entry(entry
)) {
1948 * A protection check is difficult so
1949 * just be safe and disable write
1951 make_migration_entry_read(&entry
);
1952 newpmd
= swp_entry_to_pmd(entry
);
1953 if (pmd_swp_soft_dirty(*pmd
))
1954 newpmd
= pmd_swp_mksoft_dirty(newpmd
);
1955 set_pmd_at(mm
, addr
, pmd
, newpmd
);
1962 * Avoid trapping faults against the zero page. The read-only
1963 * data is likely to be read-cached on the local CPU and
1964 * local/remote hits to the zero page are not interesting.
1966 if (prot_numa
&& is_huge_zero_pmd(*pmd
))
1969 if (prot_numa
&& pmd_protnone(*pmd
))
1973 * In case prot_numa, we are under down_read(mmap_sem). It's critical
1974 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1975 * which is also under down_read(mmap_sem):
1978 * change_huge_pmd(prot_numa=1)
1979 * pmdp_huge_get_and_clear_notify()
1980 * madvise_dontneed()
1982 * pmd_trans_huge(*pmd) == 0 (without ptl)
1985 * // pmd is re-established
1987 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1988 * which may break userspace.
1990 * pmdp_invalidate() is required to make sure we don't miss
1991 * dirty/young flags set by hardware.
1993 entry
= pmdp_invalidate(vma
, addr
, pmd
);
1995 entry
= pmd_modify(entry
, newprot
);
1997 entry
= pmd_mk_savedwrite(entry
);
1999 set_pmd_at(mm
, addr
, pmd
, entry
);
2000 BUG_ON(vma_is_anonymous(vma
) && !preserve_write
&& pmd_write(entry
));
2007 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
2009 * Note that if it returns page table lock pointer, this routine returns without
2010 * unlocking page table lock. So callers must unlock it.
2012 spinlock_t
*__pmd_trans_huge_lock(pmd_t
*pmd
, struct vm_area_struct
*vma
)
2015 ptl
= pmd_lock(vma
->vm_mm
, pmd
);
2016 if (likely(is_swap_pmd(*pmd
) || pmd_trans_huge(*pmd
) ||
2024 * Returns true if a given pud maps a thp, false otherwise.
2026 * Note that if it returns true, this routine returns without unlocking page
2027 * table lock. So callers must unlock it.
2029 spinlock_t
*__pud_trans_huge_lock(pud_t
*pud
, struct vm_area_struct
*vma
)
2033 ptl
= pud_lock(vma
->vm_mm
, pud
);
2034 if (likely(pud_trans_huge(*pud
) || pud_devmap(*pud
)))
2040 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
2041 int zap_huge_pud(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
2042 pud_t
*pud
, unsigned long addr
)
2046 ptl
= __pud_trans_huge_lock(pud
, vma
);
2050 * For architectures like ppc64 we look at deposited pgtable
2051 * when calling pudp_huge_get_and_clear. So do the
2052 * pgtable_trans_huge_withdraw after finishing pudp related
2055 pudp_huge_get_and_clear_full(tlb
->mm
, addr
, pud
, tlb
->fullmm
);
2056 tlb_remove_pud_tlb_entry(tlb
, pud
, addr
);
2057 if (vma_is_dax(vma
)) {
2059 /* No zero page support yet */
2061 /* No support for anonymous PUD pages yet */
2067 static void __split_huge_pud_locked(struct vm_area_struct
*vma
, pud_t
*pud
,
2068 unsigned long haddr
)
2070 VM_BUG_ON(haddr
& ~HPAGE_PUD_MASK
);
2071 VM_BUG_ON_VMA(vma
->vm_start
> haddr
, vma
);
2072 VM_BUG_ON_VMA(vma
->vm_end
< haddr
+ HPAGE_PUD_SIZE
, vma
);
2073 VM_BUG_ON(!pud_trans_huge(*pud
) && !pud_devmap(*pud
));
2075 count_vm_event(THP_SPLIT_PUD
);
2077 pudp_huge_clear_flush_notify(vma
, haddr
, pud
);
2080 void __split_huge_pud(struct vm_area_struct
*vma
, pud_t
*pud
,
2081 unsigned long address
)
2084 struct mmu_notifier_range range
;
2086 mmu_notifier_range_init(&range
, MMU_NOTIFY_CLEAR
, 0, vma
, vma
->vm_mm
,
2087 address
& HPAGE_PUD_MASK
,
2088 (address
& HPAGE_PUD_MASK
) + HPAGE_PUD_SIZE
);
2089 mmu_notifier_invalidate_range_start(&range
);
2090 ptl
= pud_lock(vma
->vm_mm
, pud
);
2091 if (unlikely(!pud_trans_huge(*pud
) && !pud_devmap(*pud
)))
2093 __split_huge_pud_locked(vma
, pud
, range
.start
);
2098 * No need to double call mmu_notifier->invalidate_range() callback as
2099 * the above pudp_huge_clear_flush_notify() did already call it.
2101 mmu_notifier_invalidate_range_only_end(&range
);
2103 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2105 static void __split_huge_zero_page_pmd(struct vm_area_struct
*vma
,
2106 unsigned long haddr
, pmd_t
*pmd
)
2108 struct mm_struct
*mm
= vma
->vm_mm
;
2114 * Leave pmd empty until pte is filled note that it is fine to delay
2115 * notification until mmu_notifier_invalidate_range_end() as we are
2116 * replacing a zero pmd write protected page with a zero pte write
2119 * See Documentation/vm/mmu_notifier.rst
2121 pmdp_huge_clear_flush(vma
, haddr
, pmd
);
2123 pgtable
= pgtable_trans_huge_withdraw(mm
, pmd
);
2124 pmd_populate(mm
, &_pmd
, pgtable
);
2126 for (i
= 0; i
< HPAGE_PMD_NR
; i
++, haddr
+= PAGE_SIZE
) {
2128 entry
= pfn_pte(my_zero_pfn(haddr
), vma
->vm_page_prot
);
2129 entry
= pte_mkspecial(entry
);
2130 pte
= pte_offset_map(&_pmd
, haddr
);
2131 VM_BUG_ON(!pte_none(*pte
));
2132 set_pte_at(mm
, haddr
, pte
, entry
);
2135 smp_wmb(); /* make pte visible before pmd */
2136 pmd_populate(mm
, pmd
, pgtable
);
2139 static void __split_huge_pmd_locked(struct vm_area_struct
*vma
, pmd_t
*pmd
,
2140 unsigned long haddr
, bool freeze
)
2142 struct mm_struct
*mm
= vma
->vm_mm
;
2145 pmd_t old_pmd
, _pmd
;
2146 bool young
, write
, soft_dirty
, pmd_migration
= false;
2150 VM_BUG_ON(haddr
& ~HPAGE_PMD_MASK
);
2151 VM_BUG_ON_VMA(vma
->vm_start
> haddr
, vma
);
2152 VM_BUG_ON_VMA(vma
->vm_end
< haddr
+ HPAGE_PMD_SIZE
, vma
);
2153 VM_BUG_ON(!is_pmd_migration_entry(*pmd
) && !pmd_trans_huge(*pmd
)
2154 && !pmd_devmap(*pmd
));
2156 count_vm_event(THP_SPLIT_PMD
);
2158 if (!vma_is_anonymous(vma
)) {
2159 _pmd
= pmdp_huge_clear_flush_notify(vma
, haddr
, pmd
);
2161 * We are going to unmap this huge page. So
2162 * just go ahead and zap it
2164 if (arch_needs_pgtable_deposit())
2165 zap_deposited_table(mm
, pmd
);
2166 if (vma_is_dax(vma
))
2168 page
= pmd_page(_pmd
);
2169 if (!PageDirty(page
) && pmd_dirty(_pmd
))
2170 set_page_dirty(page
);
2171 if (!PageReferenced(page
) && pmd_young(_pmd
))
2172 SetPageReferenced(page
);
2173 page_remove_rmap(page
, true);
2175 add_mm_counter(mm
, mm_counter_file(page
), -HPAGE_PMD_NR
);
2177 } else if (is_huge_zero_pmd(*pmd
)) {
2179 * FIXME: Do we want to invalidate secondary mmu by calling
2180 * mmu_notifier_invalidate_range() see comments below inside
2181 * __split_huge_pmd() ?
2183 * We are going from a zero huge page write protected to zero
2184 * small page also write protected so it does not seems useful
2185 * to invalidate secondary mmu at this time.
2187 return __split_huge_zero_page_pmd(vma
, haddr
, pmd
);
2191 * Up to this point the pmd is present and huge and userland has the
2192 * whole access to the hugepage during the split (which happens in
2193 * place). If we overwrite the pmd with the not-huge version pointing
2194 * to the pte here (which of course we could if all CPUs were bug
2195 * free), userland could trigger a small page size TLB miss on the
2196 * small sized TLB while the hugepage TLB entry is still established in
2197 * the huge TLB. Some CPU doesn't like that.
2198 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2199 * 383 on page 93. Intel should be safe but is also warns that it's
2200 * only safe if the permission and cache attributes of the two entries
2201 * loaded in the two TLB is identical (which should be the case here).
2202 * But it is generally safer to never allow small and huge TLB entries
2203 * for the same virtual address to be loaded simultaneously. So instead
2204 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2205 * current pmd notpresent (atomically because here the pmd_trans_huge
2206 * must remain set at all times on the pmd until the split is complete
2207 * for this pmd), then we flush the SMP TLB and finally we write the
2208 * non-huge version of the pmd entry with pmd_populate.
2210 old_pmd
= pmdp_invalidate(vma
, haddr
, pmd
);
2212 pmd_migration
= is_pmd_migration_entry(old_pmd
);
2213 if (unlikely(pmd_migration
)) {
2216 entry
= pmd_to_swp_entry(old_pmd
);
2217 page
= pfn_to_page(swp_offset(entry
));
2218 write
= is_write_migration_entry(entry
);
2220 soft_dirty
= pmd_swp_soft_dirty(old_pmd
);
2222 page
= pmd_page(old_pmd
);
2223 if (pmd_dirty(old_pmd
))
2225 write
= pmd_write(old_pmd
);
2226 young
= pmd_young(old_pmd
);
2227 soft_dirty
= pmd_soft_dirty(old_pmd
);
2229 VM_BUG_ON_PAGE(!page_count(page
), page
);
2230 page_ref_add(page
, HPAGE_PMD_NR
- 1);
2233 * Withdraw the table only after we mark the pmd entry invalid.
2234 * This's critical for some architectures (Power).
2236 pgtable
= pgtable_trans_huge_withdraw(mm
, pmd
);
2237 pmd_populate(mm
, &_pmd
, pgtable
);
2239 for (i
= 0, addr
= haddr
; i
< HPAGE_PMD_NR
; i
++, addr
+= PAGE_SIZE
) {
2242 * Note that NUMA hinting access restrictions are not
2243 * transferred to avoid any possibility of altering
2244 * permissions across VMAs.
2246 if (freeze
|| pmd_migration
) {
2247 swp_entry_t swp_entry
;
2248 swp_entry
= make_migration_entry(page
+ i
, write
);
2249 entry
= swp_entry_to_pte(swp_entry
);
2251 entry
= pte_swp_mksoft_dirty(entry
);
2253 entry
= mk_pte(page
+ i
, READ_ONCE(vma
->vm_page_prot
));
2254 entry
= maybe_mkwrite(entry
, vma
);
2256 entry
= pte_wrprotect(entry
);
2258 entry
= pte_mkold(entry
);
2260 entry
= pte_mksoft_dirty(entry
);
2262 pte
= pte_offset_map(&_pmd
, addr
);
2263 BUG_ON(!pte_none(*pte
));
2264 set_pte_at(mm
, addr
, pte
, entry
);
2265 atomic_inc(&page
[i
]._mapcount
);
2270 * Set PG_double_map before dropping compound_mapcount to avoid
2271 * false-negative page_mapped().
2273 if (compound_mapcount(page
) > 1 && !TestSetPageDoubleMap(page
)) {
2274 for (i
= 0; i
< HPAGE_PMD_NR
; i
++)
2275 atomic_inc(&page
[i
]._mapcount
);
2278 if (atomic_add_negative(-1, compound_mapcount_ptr(page
))) {
2279 /* Last compound_mapcount is gone. */
2280 __dec_node_page_state(page
, NR_ANON_THPS
);
2281 if (TestClearPageDoubleMap(page
)) {
2282 /* No need in mapcount reference anymore */
2283 for (i
= 0; i
< HPAGE_PMD_NR
; i
++)
2284 atomic_dec(&page
[i
]._mapcount
);
2288 smp_wmb(); /* make pte visible before pmd */
2289 pmd_populate(mm
, pmd
, pgtable
);
2292 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
2293 page_remove_rmap(page
+ i
, false);
2299 void __split_huge_pmd(struct vm_area_struct
*vma
, pmd_t
*pmd
,
2300 unsigned long address
, bool freeze
, struct page
*page
)
2303 struct mmu_notifier_range range
;
2304 bool was_locked
= false;
2307 mmu_notifier_range_init(&range
, MMU_NOTIFY_CLEAR
, 0, vma
, vma
->vm_mm
,
2308 address
& HPAGE_PMD_MASK
,
2309 (address
& HPAGE_PMD_MASK
) + HPAGE_PMD_SIZE
);
2310 mmu_notifier_invalidate_range_start(&range
);
2311 ptl
= pmd_lock(vma
->vm_mm
, pmd
);
2314 * If caller asks to setup a migration entries, we need a page to check
2315 * pmd against. Otherwise we can end up replacing wrong page.
2317 VM_BUG_ON(freeze
&& !page
);
2319 VM_WARN_ON_ONCE(!PageLocked(page
));
2321 if (page
!= pmd_page(*pmd
))
2326 if (pmd_trans_huge(*pmd
)) {
2328 page
= pmd_page(*pmd
);
2329 if (unlikely(!trylock_page(page
))) {
2335 if (unlikely(!pmd_same(*pmd
, _pmd
))) {
2344 if (PageMlocked(page
))
2345 clear_page_mlock(page
);
2346 } else if (!(pmd_devmap(*pmd
) || is_pmd_migration_entry(*pmd
)))
2348 __split_huge_pmd_locked(vma
, pmd
, range
.start
, freeze
);
2351 if (!was_locked
&& page
)
2354 * No need to double call mmu_notifier->invalidate_range() callback.
2355 * They are 3 cases to consider inside __split_huge_pmd_locked():
2356 * 1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2357 * 2) __split_huge_zero_page_pmd() read only zero page and any write
2358 * fault will trigger a flush_notify before pointing to a new page
2359 * (it is fine if the secondary mmu keeps pointing to the old zero
2360 * page in the meantime)
2361 * 3) Split a huge pmd into pte pointing to the same page. No need
2362 * to invalidate secondary tlb entry they are all still valid.
2363 * any further changes to individual pte will notify. So no need
2364 * to call mmu_notifier->invalidate_range()
2366 mmu_notifier_invalidate_range_only_end(&range
);
2369 void split_huge_pmd_address(struct vm_area_struct
*vma
, unsigned long address
,
2370 bool freeze
, struct page
*page
)
2377 pgd
= pgd_offset(vma
->vm_mm
, address
);
2378 if (!pgd_present(*pgd
))
2381 p4d
= p4d_offset(pgd
, address
);
2382 if (!p4d_present(*p4d
))
2385 pud
= pud_offset(p4d
, address
);
2386 if (!pud_present(*pud
))
2389 pmd
= pmd_offset(pud
, address
);
2391 __split_huge_pmd(vma
, pmd
, address
, freeze
, page
);
2394 void vma_adjust_trans_huge(struct vm_area_struct
*vma
,
2395 unsigned long start
,
2400 * If the new start address isn't hpage aligned and it could
2401 * previously contain an hugepage: check if we need to split
2404 if (start
& ~HPAGE_PMD_MASK
&&
2405 (start
& HPAGE_PMD_MASK
) >= vma
->vm_start
&&
2406 (start
& HPAGE_PMD_MASK
) + HPAGE_PMD_SIZE
<= vma
->vm_end
)
2407 split_huge_pmd_address(vma
, start
, false, NULL
);
2410 * If the new end address isn't hpage aligned and it could
2411 * previously contain an hugepage: check if we need to split
2414 if (end
& ~HPAGE_PMD_MASK
&&
2415 (end
& HPAGE_PMD_MASK
) >= vma
->vm_start
&&
2416 (end
& HPAGE_PMD_MASK
) + HPAGE_PMD_SIZE
<= vma
->vm_end
)
2417 split_huge_pmd_address(vma
, end
, false, NULL
);
2420 * If we're also updating the vma->vm_next->vm_start, if the new
2421 * vm_next->vm_start isn't page aligned and it could previously
2422 * contain an hugepage: check if we need to split an huge pmd.
2424 if (adjust_next
> 0) {
2425 struct vm_area_struct
*next
= vma
->vm_next
;
2426 unsigned long nstart
= next
->vm_start
;
2427 nstart
+= adjust_next
<< PAGE_SHIFT
;
2428 if (nstart
& ~HPAGE_PMD_MASK
&&
2429 (nstart
& HPAGE_PMD_MASK
) >= next
->vm_start
&&
2430 (nstart
& HPAGE_PMD_MASK
) + HPAGE_PMD_SIZE
<= next
->vm_end
)
2431 split_huge_pmd_address(next
, nstart
, false, NULL
);
2435 static void unmap_page(struct page
*page
)
2437 enum ttu_flags ttu_flags
= TTU_IGNORE_MLOCK
| TTU_IGNORE_ACCESS
|
2438 TTU_RMAP_LOCKED
| TTU_SPLIT_HUGE_PMD
;
2441 VM_BUG_ON_PAGE(!PageHead(page
), page
);
2444 ttu_flags
|= TTU_SPLIT_FREEZE
;
2446 unmap_success
= try_to_unmap(page
, ttu_flags
);
2447 VM_BUG_ON_PAGE(!unmap_success
, page
);
2450 static void remap_page(struct page
*page
)
2453 if (PageTransHuge(page
)) {
2454 remove_migration_ptes(page
, page
, true);
2456 for (i
= 0; i
< HPAGE_PMD_NR
; i
++)
2457 remove_migration_ptes(page
+ i
, page
+ i
, true);
2461 static void __split_huge_page_tail(struct page
*head
, int tail
,
2462 struct lruvec
*lruvec
, struct list_head
*list
)
2464 struct page
*page_tail
= head
+ tail
;
2466 VM_BUG_ON_PAGE(atomic_read(&page_tail
->_mapcount
) != -1, page_tail
);
2469 * Clone page flags before unfreezing refcount.
2471 * After successful get_page_unless_zero() might follow flags change,
2472 * for exmaple lock_page() which set PG_waiters.
2474 page_tail
->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
;
2475 page_tail
->flags
|= (head
->flags
&
2476 ((1L << PG_referenced
) |
2477 (1L << PG_swapbacked
) |
2478 (1L << PG_swapcache
) |
2479 (1L << PG_mlocked
) |
2480 (1L << PG_uptodate
) |
2482 (1L << PG_workingset
) |
2484 (1L << PG_unevictable
) |
2487 /* ->mapping in first tail page is compound_mapcount */
2488 VM_BUG_ON_PAGE(tail
> 2 && page_tail
->mapping
!= TAIL_MAPPING
,
2490 page_tail
->mapping
= head
->mapping
;
2491 page_tail
->index
= head
->index
+ tail
;
2493 /* Page flags must be visible before we make the page non-compound. */
2497 * Clear PageTail before unfreezing page refcount.
2499 * After successful get_page_unless_zero() might follow put_page()
2500 * which needs correct compound_head().
2502 clear_compound_head(page_tail
);
2504 /* Finally unfreeze refcount. Additional reference from page cache. */
2505 page_ref_unfreeze(page_tail
, 1 + (!PageAnon(head
) ||
2506 PageSwapCache(head
)));
2508 if (page_is_young(head
))
2509 set_page_young(page_tail
);
2510 if (page_is_idle(head
))
2511 set_page_idle(page_tail
);
2513 page_cpupid_xchg_last(page_tail
, page_cpupid_last(head
));
2516 * always add to the tail because some iterators expect new
2517 * pages to show after the currently processed elements - e.g.
2520 lru_add_page_tail(head
, page_tail
, lruvec
, list
);
2523 static void __split_huge_page(struct page
*page
, struct list_head
*list
,
2524 pgoff_t end
, unsigned long flags
)
2526 struct page
*head
= compound_head(page
);
2527 pg_data_t
*pgdat
= page_pgdat(head
);
2528 struct lruvec
*lruvec
;
2529 struct address_space
*swap_cache
= NULL
;
2530 unsigned long offset
= 0;
2533 lruvec
= mem_cgroup_page_lruvec(head
, pgdat
);
2535 /* complete memcg works before add pages to LRU */
2536 mem_cgroup_split_huge_fixup(head
);
2538 if (PageAnon(head
) && PageSwapCache(head
)) {
2539 swp_entry_t entry
= { .val
= page_private(head
) };
2541 offset
= swp_offset(entry
);
2542 swap_cache
= swap_address_space(entry
);
2543 xa_lock(&swap_cache
->i_pages
);
2546 for (i
= HPAGE_PMD_NR
- 1; i
>= 1; i
--) {
2547 __split_huge_page_tail(head
, i
, lruvec
, list
);
2548 /* Some pages can be beyond i_size: drop them from page cache */
2549 if (head
[i
].index
>= end
) {
2550 ClearPageDirty(head
+ i
);
2551 __delete_from_page_cache(head
+ i
, NULL
);
2552 if (IS_ENABLED(CONFIG_SHMEM
) && PageSwapBacked(head
))
2553 shmem_uncharge(head
->mapping
->host
, 1);
2555 } else if (!PageAnon(page
)) {
2556 __xa_store(&head
->mapping
->i_pages
, head
[i
].index
,
2558 } else if (swap_cache
) {
2559 __xa_store(&swap_cache
->i_pages
, offset
+ i
,
2564 ClearPageCompound(head
);
2566 split_page_owner(head
, HPAGE_PMD_ORDER
);
2568 /* See comment in __split_huge_page_tail() */
2569 if (PageAnon(head
)) {
2570 /* Additional pin to swap cache */
2571 if (PageSwapCache(head
)) {
2572 page_ref_add(head
, 2);
2573 xa_unlock(&swap_cache
->i_pages
);
2578 /* Additional pin to page cache */
2579 page_ref_add(head
, 2);
2580 xa_unlock(&head
->mapping
->i_pages
);
2583 spin_unlock_irqrestore(&pgdat
->lru_lock
, flags
);
2587 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
2588 struct page
*subpage
= head
+ i
;
2589 if (subpage
== page
)
2591 unlock_page(subpage
);
2594 * Subpages may be freed if there wasn't any mapping
2595 * like if add_to_swap() is running on a lru page that
2596 * had its mapping zapped. And freeing these pages
2597 * requires taking the lru_lock so we do the put_page
2598 * of the tail pages after the split is complete.
2604 int total_mapcount(struct page
*page
)
2606 int i
, compound
, ret
;
2608 VM_BUG_ON_PAGE(PageTail(page
), page
);
2610 if (likely(!PageCompound(page
)))
2611 return atomic_read(&page
->_mapcount
) + 1;
2613 compound
= compound_mapcount(page
);
2617 for (i
= 0; i
< HPAGE_PMD_NR
; i
++)
2618 ret
+= atomic_read(&page
[i
]._mapcount
) + 1;
2619 /* File pages has compound_mapcount included in _mapcount */
2620 if (!PageAnon(page
))
2621 return ret
- compound
* HPAGE_PMD_NR
;
2622 if (PageDoubleMap(page
))
2623 ret
-= HPAGE_PMD_NR
;
2628 * This calculates accurately how many mappings a transparent hugepage
2629 * has (unlike page_mapcount() which isn't fully accurate). This full
2630 * accuracy is primarily needed to know if copy-on-write faults can
2631 * reuse the page and change the mapping to read-write instead of
2632 * copying them. At the same time this returns the total_mapcount too.
2634 * The function returns the highest mapcount any one of the subpages
2635 * has. If the return value is one, even if different processes are
2636 * mapping different subpages of the transparent hugepage, they can
2637 * all reuse it, because each process is reusing a different subpage.
2639 * The total_mapcount is instead counting all virtual mappings of the
2640 * subpages. If the total_mapcount is equal to "one", it tells the
2641 * caller all mappings belong to the same "mm" and in turn the
2642 * anon_vma of the transparent hugepage can become the vma->anon_vma
2643 * local one as no other process may be mapping any of the subpages.
2645 * It would be more accurate to replace page_mapcount() with
2646 * page_trans_huge_mapcount(), however we only use
2647 * page_trans_huge_mapcount() in the copy-on-write faults where we
2648 * need full accuracy to avoid breaking page pinning, because
2649 * page_trans_huge_mapcount() is slower than page_mapcount().
2651 int page_trans_huge_mapcount(struct page
*page
, int *total_mapcount
)
2653 int i
, ret
, _total_mapcount
, mapcount
;
2655 /* hugetlbfs shouldn't call it */
2656 VM_BUG_ON_PAGE(PageHuge(page
), page
);
2658 if (likely(!PageTransCompound(page
))) {
2659 mapcount
= atomic_read(&page
->_mapcount
) + 1;
2661 *total_mapcount
= mapcount
;
2665 page
= compound_head(page
);
2667 _total_mapcount
= ret
= 0;
2668 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
2669 mapcount
= atomic_read(&page
[i
]._mapcount
) + 1;
2670 ret
= max(ret
, mapcount
);
2671 _total_mapcount
+= mapcount
;
2673 if (PageDoubleMap(page
)) {
2675 _total_mapcount
-= HPAGE_PMD_NR
;
2677 mapcount
= compound_mapcount(page
);
2679 _total_mapcount
+= mapcount
;
2681 *total_mapcount
= _total_mapcount
;
2685 /* Racy check whether the huge page can be split */
2686 bool can_split_huge_page(struct page
*page
, int *pextra_pins
)
2690 /* Additional pins from page cache */
2692 extra_pins
= PageSwapCache(page
) ? HPAGE_PMD_NR
: 0;
2694 extra_pins
= HPAGE_PMD_NR
;
2696 *pextra_pins
= extra_pins
;
2697 return total_mapcount(page
) == page_count(page
) - extra_pins
- 1;
2701 * This function splits huge page into normal pages. @page can point to any
2702 * subpage of huge page to split. Split doesn't change the position of @page.
2704 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2705 * The huge page must be locked.
2707 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2709 * Both head page and tail pages will inherit mapping, flags, and so on from
2712 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2713 * they are not mapped.
2715 * Returns 0 if the hugepage is split successfully.
2716 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2719 int split_huge_page_to_list(struct page
*page
, struct list_head
*list
)
2721 struct page
*head
= compound_head(page
);
2722 struct pglist_data
*pgdata
= NODE_DATA(page_to_nid(head
));
2723 struct deferred_split
*ds_queue
= get_deferred_split_queue(page
);
2724 struct anon_vma
*anon_vma
= NULL
;
2725 struct address_space
*mapping
= NULL
;
2726 int count
, mapcount
, extra_pins
, ret
;
2728 unsigned long flags
;
2731 VM_BUG_ON_PAGE(is_huge_zero_page(head
), head
);
2732 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
2733 VM_BUG_ON_PAGE(!PageCompound(page
), page
);
2735 if (PageWriteback(page
))
2738 if (PageAnon(head
)) {
2740 * The caller does not necessarily hold an mmap_sem that would
2741 * prevent the anon_vma disappearing so we first we take a
2742 * reference to it and then lock the anon_vma for write. This
2743 * is similar to page_lock_anon_vma_read except the write lock
2744 * is taken to serialise against parallel split or collapse
2747 anon_vma
= page_get_anon_vma(head
);
2754 anon_vma_lock_write(anon_vma
);
2756 mapping
= head
->mapping
;
2765 i_mmap_lock_read(mapping
);
2768 *__split_huge_page() may need to trim off pages beyond EOF:
2769 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2770 * which cannot be nested inside the page tree lock. So note
2771 * end now: i_size itself may be changed at any moment, but
2772 * head page lock is good enough to serialize the trimming.
2774 end
= DIV_ROUND_UP(i_size_read(mapping
->host
), PAGE_SIZE
);
2778 * Racy check if we can split the page, before unmap_page() will
2781 if (!can_split_huge_page(head
, &extra_pins
)) {
2786 mlocked
= PageMlocked(page
);
2788 VM_BUG_ON_PAGE(compound_mapcount(head
), head
);
2790 /* Make sure the page is not on per-CPU pagevec as it takes pin */
2794 /* prevent PageLRU to go away from under us, and freeze lru stats */
2795 spin_lock_irqsave(&pgdata
->lru_lock
, flags
);
2798 XA_STATE(xas
, &mapping
->i_pages
, page_index(head
));
2801 * Check if the head page is present in page cache.
2802 * We assume all tail are present too, if head is there.
2804 xa_lock(&mapping
->i_pages
);
2805 if (xas_load(&xas
) != head
)
2809 /* Prevent deferred_split_scan() touching ->_refcount */
2810 spin_lock(&ds_queue
->split_queue_lock
);
2811 count
= page_count(head
);
2812 mapcount
= total_mapcount(head
);
2813 if (!mapcount
&& page_ref_freeze(head
, 1 + extra_pins
)) {
2814 if (!list_empty(page_deferred_list(head
))) {
2815 ds_queue
->split_queue_len
--;
2816 list_del(page_deferred_list(head
));
2819 if (PageSwapBacked(page
))
2820 __dec_node_page_state(page
, NR_SHMEM_THPS
);
2822 __dec_node_page_state(page
, NR_FILE_THPS
);
2825 spin_unlock(&ds_queue
->split_queue_lock
);
2826 __split_huge_page(page
, list
, end
, flags
);
2827 if (PageSwapCache(head
)) {
2828 swp_entry_t entry
= { .val
= page_private(head
) };
2830 ret
= split_swap_cluster(entry
);
2834 if (IS_ENABLED(CONFIG_DEBUG_VM
) && mapcount
) {
2835 pr_alert("total_mapcount: %u, page_count(): %u\n",
2838 dump_page(head
, NULL
);
2839 dump_page(page
, "total_mapcount(head) > 0");
2842 spin_unlock(&ds_queue
->split_queue_lock
);
2844 xa_unlock(&mapping
->i_pages
);
2845 spin_unlock_irqrestore(&pgdata
->lru_lock
, flags
);
2852 anon_vma_unlock_write(anon_vma
);
2853 put_anon_vma(anon_vma
);
2856 i_mmap_unlock_read(mapping
);
2858 count_vm_event(!ret
? THP_SPLIT_PAGE
: THP_SPLIT_PAGE_FAILED
);
2862 void free_transhuge_page(struct page
*page
)
2864 struct deferred_split
*ds_queue
= get_deferred_split_queue(page
);
2865 unsigned long flags
;
2867 spin_lock_irqsave(&ds_queue
->split_queue_lock
, flags
);
2868 if (!list_empty(page_deferred_list(page
))) {
2869 ds_queue
->split_queue_len
--;
2870 list_del(page_deferred_list(page
));
2872 spin_unlock_irqrestore(&ds_queue
->split_queue_lock
, flags
);
2873 free_compound_page(page
);
2876 void deferred_split_huge_page(struct page
*page
)
2878 struct deferred_split
*ds_queue
= get_deferred_split_queue(page
);
2880 struct mem_cgroup
*memcg
= compound_head(page
)->mem_cgroup
;
2882 unsigned long flags
;
2884 VM_BUG_ON_PAGE(!PageTransHuge(page
), page
);
2887 * The try_to_unmap() in page reclaim path might reach here too,
2888 * this may cause a race condition to corrupt deferred split queue.
2889 * And, if page reclaim is already handling the same page, it is
2890 * unnecessary to handle it again in shrinker.
2892 * Check PageSwapCache to determine if the page is being
2893 * handled by page reclaim since THP swap would add the page into
2894 * swap cache before calling try_to_unmap().
2896 if (PageSwapCache(page
))
2899 spin_lock_irqsave(&ds_queue
->split_queue_lock
, flags
);
2900 if (list_empty(page_deferred_list(page
))) {
2901 count_vm_event(THP_DEFERRED_SPLIT_PAGE
);
2902 list_add_tail(page_deferred_list(page
), &ds_queue
->split_queue
);
2903 ds_queue
->split_queue_len
++;
2906 memcg_set_shrinker_bit(memcg
, page_to_nid(page
),
2907 deferred_split_shrinker
.id
);
2910 spin_unlock_irqrestore(&ds_queue
->split_queue_lock
, flags
);
2913 static unsigned long deferred_split_count(struct shrinker
*shrink
,
2914 struct shrink_control
*sc
)
2916 struct pglist_data
*pgdata
= NODE_DATA(sc
->nid
);
2917 struct deferred_split
*ds_queue
= &pgdata
->deferred_split_queue
;
2921 ds_queue
= &sc
->memcg
->deferred_split_queue
;
2923 return READ_ONCE(ds_queue
->split_queue_len
);
2926 static unsigned long deferred_split_scan(struct shrinker
*shrink
,
2927 struct shrink_control
*sc
)
2929 struct pglist_data
*pgdata
= NODE_DATA(sc
->nid
);
2930 struct deferred_split
*ds_queue
= &pgdata
->deferred_split_queue
;
2931 unsigned long flags
;
2932 LIST_HEAD(list
), *pos
, *next
;
2938 ds_queue
= &sc
->memcg
->deferred_split_queue
;
2941 spin_lock_irqsave(&ds_queue
->split_queue_lock
, flags
);
2942 /* Take pin on all head pages to avoid freeing them under us */
2943 list_for_each_safe(pos
, next
, &ds_queue
->split_queue
) {
2944 page
= list_entry((void *)pos
, struct page
, mapping
);
2945 page
= compound_head(page
);
2946 if (get_page_unless_zero(page
)) {
2947 list_move(page_deferred_list(page
), &list
);
2949 /* We lost race with put_compound_page() */
2950 list_del_init(page_deferred_list(page
));
2951 ds_queue
->split_queue_len
--;
2953 if (!--sc
->nr_to_scan
)
2956 spin_unlock_irqrestore(&ds_queue
->split_queue_lock
, flags
);
2958 list_for_each_safe(pos
, next
, &list
) {
2959 page
= list_entry((void *)pos
, struct page
, mapping
);
2960 if (!trylock_page(page
))
2962 /* split_huge_page() removes page from list on success */
2963 if (!split_huge_page(page
))
2970 spin_lock_irqsave(&ds_queue
->split_queue_lock
, flags
);
2971 list_splice_tail(&list
, &ds_queue
->split_queue
);
2972 spin_unlock_irqrestore(&ds_queue
->split_queue_lock
, flags
);
2975 * Stop shrinker if we didn't split any page, but the queue is empty.
2976 * This can happen if pages were freed under us.
2978 if (!split
&& list_empty(&ds_queue
->split_queue
))
2983 static struct shrinker deferred_split_shrinker
= {
2984 .count_objects
= deferred_split_count
,
2985 .scan_objects
= deferred_split_scan
,
2986 .seeks
= DEFAULT_SEEKS
,
2987 .flags
= SHRINKER_NUMA_AWARE
| SHRINKER_MEMCG_AWARE
|
2991 #ifdef CONFIG_DEBUG_FS
2992 static int split_huge_pages_set(void *data
, u64 val
)
2996 unsigned long pfn
, max_zone_pfn
;
2997 unsigned long total
= 0, split
= 0;
3002 for_each_populated_zone(zone
) {
3003 max_zone_pfn
= zone_end_pfn(zone
);
3004 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++) {
3005 if (!pfn_valid(pfn
))
3008 page
= pfn_to_page(pfn
);
3009 if (!get_page_unless_zero(page
))
3012 if (zone
!= page_zone(page
))
3015 if (!PageHead(page
) || PageHuge(page
) || !PageLRU(page
))
3020 if (!split_huge_page(page
))
3028 pr_info("%lu of %lu THP split\n", split
, total
);
3032 DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops
, NULL
, split_huge_pages_set
,
3035 static int __init
split_huge_pages_debugfs(void)
3037 debugfs_create_file("split_huge_pages", 0200, NULL
, NULL
,
3038 &split_huge_pages_fops
);
3041 late_initcall(split_huge_pages_debugfs
);
3044 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
3045 void set_pmd_migration_entry(struct page_vma_mapped_walk
*pvmw
,
3048 struct vm_area_struct
*vma
= pvmw
->vma
;
3049 struct mm_struct
*mm
= vma
->vm_mm
;
3050 unsigned long address
= pvmw
->address
;
3055 if (!(pvmw
->pmd
&& !pvmw
->pte
))
3058 flush_cache_range(vma
, address
, address
+ HPAGE_PMD_SIZE
);
3059 pmdval
= pmdp_invalidate(vma
, address
, pvmw
->pmd
);
3060 if (pmd_dirty(pmdval
))
3061 set_page_dirty(page
);
3062 entry
= make_migration_entry(page
, pmd_write(pmdval
));
3063 pmdswp
= swp_entry_to_pmd(entry
);
3064 if (pmd_soft_dirty(pmdval
))
3065 pmdswp
= pmd_swp_mksoft_dirty(pmdswp
);
3066 set_pmd_at(mm
, address
, pvmw
->pmd
, pmdswp
);
3067 page_remove_rmap(page
, true);
3071 void remove_migration_pmd(struct page_vma_mapped_walk
*pvmw
, struct page
*new)
3073 struct vm_area_struct
*vma
= pvmw
->vma
;
3074 struct mm_struct
*mm
= vma
->vm_mm
;
3075 unsigned long address
= pvmw
->address
;
3076 unsigned long mmun_start
= address
& HPAGE_PMD_MASK
;
3080 if (!(pvmw
->pmd
&& !pvmw
->pte
))
3083 entry
= pmd_to_swp_entry(*pvmw
->pmd
);
3085 pmde
= pmd_mkold(mk_huge_pmd(new, vma
->vm_page_prot
));
3086 if (pmd_swp_soft_dirty(*pvmw
->pmd
))
3087 pmde
= pmd_mksoft_dirty(pmde
);
3088 if (is_write_migration_entry(entry
))
3089 pmde
= maybe_pmd_mkwrite(pmde
, vma
);
3091 flush_cache_range(vma
, mmun_start
, mmun_start
+ HPAGE_PMD_SIZE
);
3093 page_add_anon_rmap(new, vma
, mmun_start
, true);
3095 page_add_file_rmap(new, true);
3096 set_pmd_at(mm
, mmun_start
, pvmw
->pmd
, pmde
);
3097 if ((vma
->vm_flags
& VM_LOCKED
) && !PageDoubleMap(new))
3098 mlock_vma_page(new);
3099 update_mmu_cache_pmd(vma
, address
, pvmw
->pmd
);