arm64: bpf: Fix branch offset in JIT
[linux/fpc-iii.git] / mm / slab_common.c
blobe36dd36c7076a32894fe59d21a28ffa86aeacb83
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Slab allocator functions that are independent of the allocator strategy
5 * (C) 2012 Christoph Lameter <cl@linux.com>
6 */
7 #include <linux/slab.h>
9 #include <linux/mm.h>
10 #include <linux/poison.h>
11 #include <linux/interrupt.h>
12 #include <linux/memory.h>
13 #include <linux/cache.h>
14 #include <linux/compiler.h>
15 #include <linux/module.h>
16 #include <linux/cpu.h>
17 #include <linux/uaccess.h>
18 #include <linux/seq_file.h>
19 #include <linux/proc_fs.h>
20 #include <linux/debugfs.h>
21 #include <asm/cacheflush.h>
22 #include <asm/tlbflush.h>
23 #include <asm/page.h>
24 #include <linux/memcontrol.h>
26 #define CREATE_TRACE_POINTS
27 #include <trace/events/kmem.h>
29 #include "slab.h"
31 enum slab_state slab_state;
32 LIST_HEAD(slab_caches);
33 DEFINE_MUTEX(slab_mutex);
34 struct kmem_cache *kmem_cache;
36 #ifdef CONFIG_HARDENED_USERCOPY
37 bool usercopy_fallback __ro_after_init =
38 IS_ENABLED(CONFIG_HARDENED_USERCOPY_FALLBACK);
39 module_param(usercopy_fallback, bool, 0400);
40 MODULE_PARM_DESC(usercopy_fallback,
41 "WARN instead of reject usercopy whitelist violations");
42 #endif
44 static LIST_HEAD(slab_caches_to_rcu_destroy);
45 static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
46 static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
47 slab_caches_to_rcu_destroy_workfn);
50 * Set of flags that will prevent slab merging
52 #define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
53 SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
54 SLAB_FAILSLAB | SLAB_KASAN)
56 #define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
57 SLAB_CACHE_DMA32 | SLAB_ACCOUNT)
60 * Merge control. If this is set then no merging of slab caches will occur.
62 static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT);
64 static int __init setup_slab_nomerge(char *str)
66 slab_nomerge = true;
67 return 1;
70 #ifdef CONFIG_SLUB
71 __setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
72 #endif
74 __setup("slab_nomerge", setup_slab_nomerge);
77 * Determine the size of a slab object
79 unsigned int kmem_cache_size(struct kmem_cache *s)
81 return s->object_size;
83 EXPORT_SYMBOL(kmem_cache_size);
85 #ifdef CONFIG_DEBUG_VM
86 static int kmem_cache_sanity_check(const char *name, unsigned int size)
88 if (!name || in_interrupt() || size < sizeof(void *) ||
89 size > KMALLOC_MAX_SIZE) {
90 pr_err("kmem_cache_create(%s) integrity check failed\n", name);
91 return -EINVAL;
94 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
95 return 0;
97 #else
98 static inline int kmem_cache_sanity_check(const char *name, unsigned int size)
100 return 0;
102 #endif
104 void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p)
106 size_t i;
108 for (i = 0; i < nr; i++) {
109 if (s)
110 kmem_cache_free(s, p[i]);
111 else
112 kfree(p[i]);
116 int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr,
117 void **p)
119 size_t i;
121 for (i = 0; i < nr; i++) {
122 void *x = p[i] = kmem_cache_alloc(s, flags);
123 if (!x) {
124 __kmem_cache_free_bulk(s, i, p);
125 return 0;
128 return i;
131 #ifdef CONFIG_MEMCG_KMEM
133 LIST_HEAD(slab_root_caches);
134 static DEFINE_SPINLOCK(memcg_kmem_wq_lock);
136 static void kmemcg_cache_shutdown(struct percpu_ref *percpu_ref);
138 void slab_init_memcg_params(struct kmem_cache *s)
140 s->memcg_params.root_cache = NULL;
141 RCU_INIT_POINTER(s->memcg_params.memcg_caches, NULL);
142 INIT_LIST_HEAD(&s->memcg_params.children);
143 s->memcg_params.dying = false;
146 static int init_memcg_params(struct kmem_cache *s,
147 struct kmem_cache *root_cache)
149 struct memcg_cache_array *arr;
151 if (root_cache) {
152 int ret = percpu_ref_init(&s->memcg_params.refcnt,
153 kmemcg_cache_shutdown,
154 0, GFP_KERNEL);
155 if (ret)
156 return ret;
158 s->memcg_params.root_cache = root_cache;
159 INIT_LIST_HEAD(&s->memcg_params.children_node);
160 INIT_LIST_HEAD(&s->memcg_params.kmem_caches_node);
161 return 0;
164 slab_init_memcg_params(s);
166 if (!memcg_nr_cache_ids)
167 return 0;
169 arr = kvzalloc(sizeof(struct memcg_cache_array) +
170 memcg_nr_cache_ids * sizeof(void *),
171 GFP_KERNEL);
172 if (!arr)
173 return -ENOMEM;
175 RCU_INIT_POINTER(s->memcg_params.memcg_caches, arr);
176 return 0;
179 static void destroy_memcg_params(struct kmem_cache *s)
181 if (is_root_cache(s)) {
182 kvfree(rcu_access_pointer(s->memcg_params.memcg_caches));
183 } else {
184 mem_cgroup_put(s->memcg_params.memcg);
185 WRITE_ONCE(s->memcg_params.memcg, NULL);
186 percpu_ref_exit(&s->memcg_params.refcnt);
190 static void free_memcg_params(struct rcu_head *rcu)
192 struct memcg_cache_array *old;
194 old = container_of(rcu, struct memcg_cache_array, rcu);
195 kvfree(old);
198 static int update_memcg_params(struct kmem_cache *s, int new_array_size)
200 struct memcg_cache_array *old, *new;
202 new = kvzalloc(sizeof(struct memcg_cache_array) +
203 new_array_size * sizeof(void *), GFP_KERNEL);
204 if (!new)
205 return -ENOMEM;
207 old = rcu_dereference_protected(s->memcg_params.memcg_caches,
208 lockdep_is_held(&slab_mutex));
209 if (old)
210 memcpy(new->entries, old->entries,
211 memcg_nr_cache_ids * sizeof(void *));
213 rcu_assign_pointer(s->memcg_params.memcg_caches, new);
214 if (old)
215 call_rcu(&old->rcu, free_memcg_params);
216 return 0;
219 int memcg_update_all_caches(int num_memcgs)
221 struct kmem_cache *s;
222 int ret = 0;
224 mutex_lock(&slab_mutex);
225 list_for_each_entry(s, &slab_root_caches, root_caches_node) {
226 ret = update_memcg_params(s, num_memcgs);
228 * Instead of freeing the memory, we'll just leave the caches
229 * up to this point in an updated state.
231 if (ret)
232 break;
234 mutex_unlock(&slab_mutex);
235 return ret;
238 void memcg_link_cache(struct kmem_cache *s, struct mem_cgroup *memcg)
240 if (is_root_cache(s)) {
241 list_add(&s->root_caches_node, &slab_root_caches);
242 } else {
243 css_get(&memcg->css);
244 s->memcg_params.memcg = memcg;
245 list_add(&s->memcg_params.children_node,
246 &s->memcg_params.root_cache->memcg_params.children);
247 list_add(&s->memcg_params.kmem_caches_node,
248 &s->memcg_params.memcg->kmem_caches);
252 static void memcg_unlink_cache(struct kmem_cache *s)
254 if (is_root_cache(s)) {
255 list_del(&s->root_caches_node);
256 } else {
257 list_del(&s->memcg_params.children_node);
258 list_del(&s->memcg_params.kmem_caches_node);
261 #else
262 static inline int init_memcg_params(struct kmem_cache *s,
263 struct kmem_cache *root_cache)
265 return 0;
268 static inline void destroy_memcg_params(struct kmem_cache *s)
272 static inline void memcg_unlink_cache(struct kmem_cache *s)
275 #endif /* CONFIG_MEMCG_KMEM */
278 * Figure out what the alignment of the objects will be given a set of
279 * flags, a user specified alignment and the size of the objects.
281 static unsigned int calculate_alignment(slab_flags_t flags,
282 unsigned int align, unsigned int size)
285 * If the user wants hardware cache aligned objects then follow that
286 * suggestion if the object is sufficiently large.
288 * The hardware cache alignment cannot override the specified
289 * alignment though. If that is greater then use it.
291 if (flags & SLAB_HWCACHE_ALIGN) {
292 unsigned int ralign;
294 ralign = cache_line_size();
295 while (size <= ralign / 2)
296 ralign /= 2;
297 align = max(align, ralign);
300 if (align < ARCH_SLAB_MINALIGN)
301 align = ARCH_SLAB_MINALIGN;
303 return ALIGN(align, sizeof(void *));
307 * Find a mergeable slab cache
309 int slab_unmergeable(struct kmem_cache *s)
311 if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
312 return 1;
314 if (!is_root_cache(s))
315 return 1;
317 if (s->ctor)
318 return 1;
320 if (s->usersize)
321 return 1;
324 * We may have set a slab to be unmergeable during bootstrap.
326 if (s->refcount < 0)
327 return 1;
329 #ifdef CONFIG_MEMCG_KMEM
331 * Skip the dying kmem_cache.
333 if (s->memcg_params.dying)
334 return 1;
335 #endif
337 return 0;
340 struct kmem_cache *find_mergeable(unsigned int size, unsigned int align,
341 slab_flags_t flags, const char *name, void (*ctor)(void *))
343 struct kmem_cache *s;
345 if (slab_nomerge)
346 return NULL;
348 if (ctor)
349 return NULL;
351 size = ALIGN(size, sizeof(void *));
352 align = calculate_alignment(flags, align, size);
353 size = ALIGN(size, align);
354 flags = kmem_cache_flags(size, flags, name, NULL);
356 if (flags & SLAB_NEVER_MERGE)
357 return NULL;
359 list_for_each_entry_reverse(s, &slab_root_caches, root_caches_node) {
360 if (slab_unmergeable(s))
361 continue;
363 if (size > s->size)
364 continue;
366 if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
367 continue;
369 * Check if alignment is compatible.
370 * Courtesy of Adrian Drzewiecki
372 if ((s->size & ~(align - 1)) != s->size)
373 continue;
375 if (s->size - size >= sizeof(void *))
376 continue;
378 if (IS_ENABLED(CONFIG_SLAB) && align &&
379 (align > s->align || s->align % align))
380 continue;
382 return s;
384 return NULL;
387 static struct kmem_cache *create_cache(const char *name,
388 unsigned int object_size, unsigned int align,
389 slab_flags_t flags, unsigned int useroffset,
390 unsigned int usersize, void (*ctor)(void *),
391 struct mem_cgroup *memcg, struct kmem_cache *root_cache)
393 struct kmem_cache *s;
394 int err;
396 if (WARN_ON(useroffset + usersize > object_size))
397 useroffset = usersize = 0;
399 err = -ENOMEM;
400 s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
401 if (!s)
402 goto out;
404 s->name = name;
405 s->size = s->object_size = object_size;
406 s->align = align;
407 s->ctor = ctor;
408 s->useroffset = useroffset;
409 s->usersize = usersize;
411 err = init_memcg_params(s, root_cache);
412 if (err)
413 goto out_free_cache;
415 err = __kmem_cache_create(s, flags);
416 if (err)
417 goto out_free_cache;
419 s->refcount = 1;
420 list_add(&s->list, &slab_caches);
421 memcg_link_cache(s, memcg);
422 out:
423 if (err)
424 return ERR_PTR(err);
425 return s;
427 out_free_cache:
428 destroy_memcg_params(s);
429 kmem_cache_free(kmem_cache, s);
430 goto out;
434 * kmem_cache_create_usercopy - Create a cache with a region suitable
435 * for copying to userspace
436 * @name: A string which is used in /proc/slabinfo to identify this cache.
437 * @size: The size of objects to be created in this cache.
438 * @align: The required alignment for the objects.
439 * @flags: SLAB flags
440 * @useroffset: Usercopy region offset
441 * @usersize: Usercopy region size
442 * @ctor: A constructor for the objects.
444 * Cannot be called within a interrupt, but can be interrupted.
445 * The @ctor is run when new pages are allocated by the cache.
447 * The flags are
449 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
450 * to catch references to uninitialised memory.
452 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
453 * for buffer overruns.
455 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
456 * cacheline. This can be beneficial if you're counting cycles as closely
457 * as davem.
459 * Return: a pointer to the cache on success, NULL on failure.
461 struct kmem_cache *
462 kmem_cache_create_usercopy(const char *name,
463 unsigned int size, unsigned int align,
464 slab_flags_t flags,
465 unsigned int useroffset, unsigned int usersize,
466 void (*ctor)(void *))
468 struct kmem_cache *s = NULL;
469 const char *cache_name;
470 int err;
472 get_online_cpus();
473 get_online_mems();
474 memcg_get_cache_ids();
476 mutex_lock(&slab_mutex);
478 err = kmem_cache_sanity_check(name, size);
479 if (err) {
480 goto out_unlock;
483 /* Refuse requests with allocator specific flags */
484 if (flags & ~SLAB_FLAGS_PERMITTED) {
485 err = -EINVAL;
486 goto out_unlock;
490 * Some allocators will constraint the set of valid flags to a subset
491 * of all flags. We expect them to define CACHE_CREATE_MASK in this
492 * case, and we'll just provide them with a sanitized version of the
493 * passed flags.
495 flags &= CACHE_CREATE_MASK;
497 /* Fail closed on bad usersize of useroffset values. */
498 if (WARN_ON(!usersize && useroffset) ||
499 WARN_ON(size < usersize || size - usersize < useroffset))
500 usersize = useroffset = 0;
502 if (!usersize)
503 s = __kmem_cache_alias(name, size, align, flags, ctor);
504 if (s)
505 goto out_unlock;
507 cache_name = kstrdup_const(name, GFP_KERNEL);
508 if (!cache_name) {
509 err = -ENOMEM;
510 goto out_unlock;
513 s = create_cache(cache_name, size,
514 calculate_alignment(flags, align, size),
515 flags, useroffset, usersize, ctor, NULL, NULL);
516 if (IS_ERR(s)) {
517 err = PTR_ERR(s);
518 kfree_const(cache_name);
521 out_unlock:
522 mutex_unlock(&slab_mutex);
524 memcg_put_cache_ids();
525 put_online_mems();
526 put_online_cpus();
528 if (err) {
529 if (flags & SLAB_PANIC)
530 panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
531 name, err);
532 else {
533 pr_warn("kmem_cache_create(%s) failed with error %d\n",
534 name, err);
535 dump_stack();
537 return NULL;
539 return s;
541 EXPORT_SYMBOL(kmem_cache_create_usercopy);
544 * kmem_cache_create - Create a cache.
545 * @name: A string which is used in /proc/slabinfo to identify this cache.
546 * @size: The size of objects to be created in this cache.
547 * @align: The required alignment for the objects.
548 * @flags: SLAB flags
549 * @ctor: A constructor for the objects.
551 * Cannot be called within a interrupt, but can be interrupted.
552 * The @ctor is run when new pages are allocated by the cache.
554 * The flags are
556 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
557 * to catch references to uninitialised memory.
559 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
560 * for buffer overruns.
562 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
563 * cacheline. This can be beneficial if you're counting cycles as closely
564 * as davem.
566 * Return: a pointer to the cache on success, NULL on failure.
568 struct kmem_cache *
569 kmem_cache_create(const char *name, unsigned int size, unsigned int align,
570 slab_flags_t flags, void (*ctor)(void *))
572 return kmem_cache_create_usercopy(name, size, align, flags, 0, 0,
573 ctor);
575 EXPORT_SYMBOL(kmem_cache_create);
577 static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
579 LIST_HEAD(to_destroy);
580 struct kmem_cache *s, *s2;
583 * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
584 * @slab_caches_to_rcu_destroy list. The slab pages are freed
585 * through RCU and and the associated kmem_cache are dereferenced
586 * while freeing the pages, so the kmem_caches should be freed only
587 * after the pending RCU operations are finished. As rcu_barrier()
588 * is a pretty slow operation, we batch all pending destructions
589 * asynchronously.
591 mutex_lock(&slab_mutex);
592 list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
593 mutex_unlock(&slab_mutex);
595 if (list_empty(&to_destroy))
596 return;
598 rcu_barrier();
600 list_for_each_entry_safe(s, s2, &to_destroy, list) {
601 #ifdef SLAB_SUPPORTS_SYSFS
602 sysfs_slab_release(s);
603 #else
604 slab_kmem_cache_release(s);
605 #endif
609 static int shutdown_cache(struct kmem_cache *s)
611 /* free asan quarantined objects */
612 kasan_cache_shutdown(s);
614 if (__kmem_cache_shutdown(s) != 0)
615 return -EBUSY;
617 memcg_unlink_cache(s);
618 list_del(&s->list);
620 if (s->flags & SLAB_TYPESAFE_BY_RCU) {
621 #ifdef SLAB_SUPPORTS_SYSFS
622 sysfs_slab_unlink(s);
623 #endif
624 list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
625 schedule_work(&slab_caches_to_rcu_destroy_work);
626 } else {
627 #ifdef SLAB_SUPPORTS_SYSFS
628 sysfs_slab_unlink(s);
629 sysfs_slab_release(s);
630 #else
631 slab_kmem_cache_release(s);
632 #endif
635 return 0;
638 #ifdef CONFIG_MEMCG_KMEM
640 * memcg_create_kmem_cache - Create a cache for a memory cgroup.
641 * @memcg: The memory cgroup the new cache is for.
642 * @root_cache: The parent of the new cache.
644 * This function attempts to create a kmem cache that will serve allocation
645 * requests going from @memcg to @root_cache. The new cache inherits properties
646 * from its parent.
648 void memcg_create_kmem_cache(struct mem_cgroup *memcg,
649 struct kmem_cache *root_cache)
651 static char memcg_name_buf[NAME_MAX + 1]; /* protected by slab_mutex */
652 struct cgroup_subsys_state *css = &memcg->css;
653 struct memcg_cache_array *arr;
654 struct kmem_cache *s = NULL;
655 char *cache_name;
656 int idx;
658 get_online_cpus();
659 get_online_mems();
661 mutex_lock(&slab_mutex);
664 * The memory cgroup could have been offlined while the cache
665 * creation work was pending.
667 if (memcg->kmem_state != KMEM_ONLINE)
668 goto out_unlock;
670 idx = memcg_cache_id(memcg);
671 arr = rcu_dereference_protected(root_cache->memcg_params.memcg_caches,
672 lockdep_is_held(&slab_mutex));
675 * Since per-memcg caches are created asynchronously on first
676 * allocation (see memcg_kmem_get_cache()), several threads can try to
677 * create the same cache, but only one of them may succeed.
679 if (arr->entries[idx])
680 goto out_unlock;
682 cgroup_name(css->cgroup, memcg_name_buf, sizeof(memcg_name_buf));
683 cache_name = kasprintf(GFP_KERNEL, "%s(%llu:%s)", root_cache->name,
684 css->serial_nr, memcg_name_buf);
685 if (!cache_name)
686 goto out_unlock;
688 s = create_cache(cache_name, root_cache->object_size,
689 root_cache->align,
690 root_cache->flags & CACHE_CREATE_MASK,
691 root_cache->useroffset, root_cache->usersize,
692 root_cache->ctor, memcg, root_cache);
694 * If we could not create a memcg cache, do not complain, because
695 * that's not critical at all as we can always proceed with the root
696 * cache.
698 if (IS_ERR(s)) {
699 kfree(cache_name);
700 goto out_unlock;
704 * Since readers won't lock (see memcg_kmem_get_cache()), we need a
705 * barrier here to ensure nobody will see the kmem_cache partially
706 * initialized.
708 smp_wmb();
709 arr->entries[idx] = s;
711 out_unlock:
712 mutex_unlock(&slab_mutex);
714 put_online_mems();
715 put_online_cpus();
718 static void kmemcg_workfn(struct work_struct *work)
720 struct kmem_cache *s = container_of(work, struct kmem_cache,
721 memcg_params.work);
723 get_online_cpus();
724 get_online_mems();
726 mutex_lock(&slab_mutex);
727 s->memcg_params.work_fn(s);
728 mutex_unlock(&slab_mutex);
730 put_online_mems();
731 put_online_cpus();
734 static void kmemcg_rcufn(struct rcu_head *head)
736 struct kmem_cache *s = container_of(head, struct kmem_cache,
737 memcg_params.rcu_head);
740 * We need to grab blocking locks. Bounce to ->work. The
741 * work item shares the space with the RCU head and can't be
742 * initialized eariler.
744 INIT_WORK(&s->memcg_params.work, kmemcg_workfn);
745 queue_work(memcg_kmem_cache_wq, &s->memcg_params.work);
748 static void kmemcg_cache_shutdown_fn(struct kmem_cache *s)
750 WARN_ON(shutdown_cache(s));
753 static void kmemcg_cache_shutdown(struct percpu_ref *percpu_ref)
755 struct kmem_cache *s = container_of(percpu_ref, struct kmem_cache,
756 memcg_params.refcnt);
757 unsigned long flags;
759 spin_lock_irqsave(&memcg_kmem_wq_lock, flags);
760 if (s->memcg_params.root_cache->memcg_params.dying)
761 goto unlock;
763 s->memcg_params.work_fn = kmemcg_cache_shutdown_fn;
764 INIT_WORK(&s->memcg_params.work, kmemcg_workfn);
765 queue_work(memcg_kmem_cache_wq, &s->memcg_params.work);
767 unlock:
768 spin_unlock_irqrestore(&memcg_kmem_wq_lock, flags);
771 static void kmemcg_cache_deactivate_after_rcu(struct kmem_cache *s)
773 __kmemcg_cache_deactivate_after_rcu(s);
774 percpu_ref_kill(&s->memcg_params.refcnt);
777 static void kmemcg_cache_deactivate(struct kmem_cache *s)
779 if (WARN_ON_ONCE(is_root_cache(s)))
780 return;
782 __kmemcg_cache_deactivate(s);
783 s->flags |= SLAB_DEACTIVATED;
786 * memcg_kmem_wq_lock is used to synchronize memcg_params.dying
787 * flag and make sure that no new kmem_cache deactivation tasks
788 * are queued (see flush_memcg_workqueue() ).
790 spin_lock_irq(&memcg_kmem_wq_lock);
791 if (s->memcg_params.root_cache->memcg_params.dying)
792 goto unlock;
794 s->memcg_params.work_fn = kmemcg_cache_deactivate_after_rcu;
795 call_rcu(&s->memcg_params.rcu_head, kmemcg_rcufn);
796 unlock:
797 spin_unlock_irq(&memcg_kmem_wq_lock);
800 void memcg_deactivate_kmem_caches(struct mem_cgroup *memcg,
801 struct mem_cgroup *parent)
803 int idx;
804 struct memcg_cache_array *arr;
805 struct kmem_cache *s, *c;
806 unsigned int nr_reparented;
808 idx = memcg_cache_id(memcg);
810 get_online_cpus();
811 get_online_mems();
813 mutex_lock(&slab_mutex);
814 list_for_each_entry(s, &slab_root_caches, root_caches_node) {
815 arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
816 lockdep_is_held(&slab_mutex));
817 c = arr->entries[idx];
818 if (!c)
819 continue;
821 kmemcg_cache_deactivate(c);
822 arr->entries[idx] = NULL;
824 nr_reparented = 0;
825 list_for_each_entry(s, &memcg->kmem_caches,
826 memcg_params.kmem_caches_node) {
827 WRITE_ONCE(s->memcg_params.memcg, parent);
828 css_put(&memcg->css);
829 nr_reparented++;
831 if (nr_reparented) {
832 list_splice_init(&memcg->kmem_caches,
833 &parent->kmem_caches);
834 css_get_many(&parent->css, nr_reparented);
836 mutex_unlock(&slab_mutex);
838 put_online_mems();
839 put_online_cpus();
842 static int shutdown_memcg_caches(struct kmem_cache *s)
844 struct memcg_cache_array *arr;
845 struct kmem_cache *c, *c2;
846 LIST_HEAD(busy);
847 int i;
849 BUG_ON(!is_root_cache(s));
852 * First, shutdown active caches, i.e. caches that belong to online
853 * memory cgroups.
855 arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
856 lockdep_is_held(&slab_mutex));
857 for_each_memcg_cache_index(i) {
858 c = arr->entries[i];
859 if (!c)
860 continue;
861 if (shutdown_cache(c))
863 * The cache still has objects. Move it to a temporary
864 * list so as not to try to destroy it for a second
865 * time while iterating over inactive caches below.
867 list_move(&c->memcg_params.children_node, &busy);
868 else
870 * The cache is empty and will be destroyed soon. Clear
871 * the pointer to it in the memcg_caches array so that
872 * it will never be accessed even if the root cache
873 * stays alive.
875 arr->entries[i] = NULL;
879 * Second, shutdown all caches left from memory cgroups that are now
880 * offline.
882 list_for_each_entry_safe(c, c2, &s->memcg_params.children,
883 memcg_params.children_node)
884 shutdown_cache(c);
886 list_splice(&busy, &s->memcg_params.children);
889 * A cache being destroyed must be empty. In particular, this means
890 * that all per memcg caches attached to it must be empty too.
892 if (!list_empty(&s->memcg_params.children))
893 return -EBUSY;
894 return 0;
897 static void memcg_set_kmem_cache_dying(struct kmem_cache *s)
899 spin_lock_irq(&memcg_kmem_wq_lock);
900 s->memcg_params.dying = true;
901 spin_unlock_irq(&memcg_kmem_wq_lock);
904 static void flush_memcg_workqueue(struct kmem_cache *s)
907 * SLAB and SLUB deactivate the kmem_caches through call_rcu. Make
908 * sure all registered rcu callbacks have been invoked.
910 rcu_barrier();
913 * SLAB and SLUB create memcg kmem_caches through workqueue and SLUB
914 * deactivates the memcg kmem_caches through workqueue. Make sure all
915 * previous workitems on workqueue are processed.
917 if (likely(memcg_kmem_cache_wq))
918 flush_workqueue(memcg_kmem_cache_wq);
921 * If we're racing with children kmem_cache deactivation, it might
922 * take another rcu grace period to complete their destruction.
923 * At this moment the corresponding percpu_ref_kill() call should be
924 * done, but it might take another rcu grace period to complete
925 * switching to the atomic mode.
926 * Please, note that we check without grabbing the slab_mutex. It's safe
927 * because at this moment the children list can't grow.
929 if (!list_empty(&s->memcg_params.children))
930 rcu_barrier();
932 #else
933 static inline int shutdown_memcg_caches(struct kmem_cache *s)
935 return 0;
937 #endif /* CONFIG_MEMCG_KMEM */
939 void slab_kmem_cache_release(struct kmem_cache *s)
941 __kmem_cache_release(s);
942 destroy_memcg_params(s);
943 kfree_const(s->name);
944 kmem_cache_free(kmem_cache, s);
947 void kmem_cache_destroy(struct kmem_cache *s)
949 int err;
951 if (unlikely(!s))
952 return;
954 get_online_cpus();
955 get_online_mems();
957 mutex_lock(&slab_mutex);
959 s->refcount--;
960 if (s->refcount)
961 goto out_unlock;
963 #ifdef CONFIG_MEMCG_KMEM
964 memcg_set_kmem_cache_dying(s);
966 mutex_unlock(&slab_mutex);
968 put_online_mems();
969 put_online_cpus();
971 flush_memcg_workqueue(s);
973 get_online_cpus();
974 get_online_mems();
976 mutex_lock(&slab_mutex);
977 #endif
979 err = shutdown_memcg_caches(s);
980 if (!err)
981 err = shutdown_cache(s);
983 if (err) {
984 pr_err("kmem_cache_destroy %s: Slab cache still has objects\n",
985 s->name);
986 dump_stack();
988 out_unlock:
989 mutex_unlock(&slab_mutex);
991 put_online_mems();
992 put_online_cpus();
994 EXPORT_SYMBOL(kmem_cache_destroy);
997 * kmem_cache_shrink - Shrink a cache.
998 * @cachep: The cache to shrink.
1000 * Releases as many slabs as possible for a cache.
1001 * To help debugging, a zero exit status indicates all slabs were released.
1003 * Return: %0 if all slabs were released, non-zero otherwise
1005 int kmem_cache_shrink(struct kmem_cache *cachep)
1007 int ret;
1009 get_online_cpus();
1010 get_online_mems();
1011 kasan_cache_shrink(cachep);
1012 ret = __kmem_cache_shrink(cachep);
1013 put_online_mems();
1014 put_online_cpus();
1015 return ret;
1017 EXPORT_SYMBOL(kmem_cache_shrink);
1020 * kmem_cache_shrink_all - shrink a cache and all memcg caches for root cache
1021 * @s: The cache pointer
1023 void kmem_cache_shrink_all(struct kmem_cache *s)
1025 struct kmem_cache *c;
1027 if (!IS_ENABLED(CONFIG_MEMCG_KMEM) || !is_root_cache(s)) {
1028 kmem_cache_shrink(s);
1029 return;
1032 get_online_cpus();
1033 get_online_mems();
1034 kasan_cache_shrink(s);
1035 __kmem_cache_shrink(s);
1038 * We have to take the slab_mutex to protect from the memcg list
1039 * modification.
1041 mutex_lock(&slab_mutex);
1042 for_each_memcg_cache(c, s) {
1044 * Don't need to shrink deactivated memcg caches.
1046 if (s->flags & SLAB_DEACTIVATED)
1047 continue;
1048 kasan_cache_shrink(c);
1049 __kmem_cache_shrink(c);
1051 mutex_unlock(&slab_mutex);
1052 put_online_mems();
1053 put_online_cpus();
1056 bool slab_is_available(void)
1058 return slab_state >= UP;
1061 #ifndef CONFIG_SLOB
1062 /* Create a cache during boot when no slab services are available yet */
1063 void __init create_boot_cache(struct kmem_cache *s, const char *name,
1064 unsigned int size, slab_flags_t flags,
1065 unsigned int useroffset, unsigned int usersize)
1067 int err;
1068 unsigned int align = ARCH_KMALLOC_MINALIGN;
1070 s->name = name;
1071 s->size = s->object_size = size;
1074 * For power of two sizes, guarantee natural alignment for kmalloc
1075 * caches, regardless of SL*B debugging options.
1077 if (is_power_of_2(size))
1078 align = max(align, size);
1079 s->align = calculate_alignment(flags, align, size);
1081 s->useroffset = useroffset;
1082 s->usersize = usersize;
1084 slab_init_memcg_params(s);
1086 err = __kmem_cache_create(s, flags);
1088 if (err)
1089 panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n",
1090 name, size, err);
1092 s->refcount = -1; /* Exempt from merging for now */
1095 struct kmem_cache *__init create_kmalloc_cache(const char *name,
1096 unsigned int size, slab_flags_t flags,
1097 unsigned int useroffset, unsigned int usersize)
1099 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
1101 if (!s)
1102 panic("Out of memory when creating slab %s\n", name);
1104 create_boot_cache(s, name, size, flags, useroffset, usersize);
1105 list_add(&s->list, &slab_caches);
1106 memcg_link_cache(s, NULL);
1107 s->refcount = 1;
1108 return s;
1111 struct kmem_cache *
1112 kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1] __ro_after_init =
1113 { /* initialization for https://bugs.llvm.org/show_bug.cgi?id=42570 */ };
1114 EXPORT_SYMBOL(kmalloc_caches);
1117 * Conversion table for small slabs sizes / 8 to the index in the
1118 * kmalloc array. This is necessary for slabs < 192 since we have non power
1119 * of two cache sizes there. The size of larger slabs can be determined using
1120 * fls.
1122 static u8 size_index[24] __ro_after_init = {
1123 3, /* 8 */
1124 4, /* 16 */
1125 5, /* 24 */
1126 5, /* 32 */
1127 6, /* 40 */
1128 6, /* 48 */
1129 6, /* 56 */
1130 6, /* 64 */
1131 1, /* 72 */
1132 1, /* 80 */
1133 1, /* 88 */
1134 1, /* 96 */
1135 7, /* 104 */
1136 7, /* 112 */
1137 7, /* 120 */
1138 7, /* 128 */
1139 2, /* 136 */
1140 2, /* 144 */
1141 2, /* 152 */
1142 2, /* 160 */
1143 2, /* 168 */
1144 2, /* 176 */
1145 2, /* 184 */
1146 2 /* 192 */
1149 static inline unsigned int size_index_elem(unsigned int bytes)
1151 return (bytes - 1) / 8;
1155 * Find the kmem_cache structure that serves a given size of
1156 * allocation
1158 struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
1160 unsigned int index;
1162 if (size <= 192) {
1163 if (!size)
1164 return ZERO_SIZE_PTR;
1166 index = size_index[size_index_elem(size)];
1167 } else {
1168 if (WARN_ON_ONCE(size > KMALLOC_MAX_CACHE_SIZE))
1169 return NULL;
1170 index = fls(size - 1);
1173 return kmalloc_caches[kmalloc_type(flags)][index];
1177 * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
1178 * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is
1179 * kmalloc-67108864.
1181 const struct kmalloc_info_struct kmalloc_info[] __initconst = {
1182 {NULL, 0}, {"kmalloc-96", 96},
1183 {"kmalloc-192", 192}, {"kmalloc-8", 8},
1184 {"kmalloc-16", 16}, {"kmalloc-32", 32},
1185 {"kmalloc-64", 64}, {"kmalloc-128", 128},
1186 {"kmalloc-256", 256}, {"kmalloc-512", 512},
1187 {"kmalloc-1k", 1024}, {"kmalloc-2k", 2048},
1188 {"kmalloc-4k", 4096}, {"kmalloc-8k", 8192},
1189 {"kmalloc-16k", 16384}, {"kmalloc-32k", 32768},
1190 {"kmalloc-64k", 65536}, {"kmalloc-128k", 131072},
1191 {"kmalloc-256k", 262144}, {"kmalloc-512k", 524288},
1192 {"kmalloc-1M", 1048576}, {"kmalloc-2M", 2097152},
1193 {"kmalloc-4M", 4194304}, {"kmalloc-8M", 8388608},
1194 {"kmalloc-16M", 16777216}, {"kmalloc-32M", 33554432},
1195 {"kmalloc-64M", 67108864}
1199 * Patch up the size_index table if we have strange large alignment
1200 * requirements for the kmalloc array. This is only the case for
1201 * MIPS it seems. The standard arches will not generate any code here.
1203 * Largest permitted alignment is 256 bytes due to the way we
1204 * handle the index determination for the smaller caches.
1206 * Make sure that nothing crazy happens if someone starts tinkering
1207 * around with ARCH_KMALLOC_MINALIGN
1209 void __init setup_kmalloc_cache_index_table(void)
1211 unsigned int i;
1213 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
1214 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
1216 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
1217 unsigned int elem = size_index_elem(i);
1219 if (elem >= ARRAY_SIZE(size_index))
1220 break;
1221 size_index[elem] = KMALLOC_SHIFT_LOW;
1224 if (KMALLOC_MIN_SIZE >= 64) {
1226 * The 96 byte size cache is not used if the alignment
1227 * is 64 byte.
1229 for (i = 64 + 8; i <= 96; i += 8)
1230 size_index[size_index_elem(i)] = 7;
1234 if (KMALLOC_MIN_SIZE >= 128) {
1236 * The 192 byte sized cache is not used if the alignment
1237 * is 128 byte. Redirect kmalloc to use the 256 byte cache
1238 * instead.
1240 for (i = 128 + 8; i <= 192; i += 8)
1241 size_index[size_index_elem(i)] = 8;
1245 static const char *
1246 kmalloc_cache_name(const char *prefix, unsigned int size)
1249 static const char units[3] = "\0kM";
1250 int idx = 0;
1252 while (size >= 1024 && (size % 1024 == 0)) {
1253 size /= 1024;
1254 idx++;
1257 return kasprintf(GFP_NOWAIT, "%s-%u%c", prefix, size, units[idx]);
1260 static void __init
1261 new_kmalloc_cache(int idx, int type, slab_flags_t flags)
1263 const char *name;
1265 if (type == KMALLOC_RECLAIM) {
1266 flags |= SLAB_RECLAIM_ACCOUNT;
1267 name = kmalloc_cache_name("kmalloc-rcl",
1268 kmalloc_info[idx].size);
1269 BUG_ON(!name);
1270 } else {
1271 name = kmalloc_info[idx].name;
1274 kmalloc_caches[type][idx] = create_kmalloc_cache(name,
1275 kmalloc_info[idx].size, flags, 0,
1276 kmalloc_info[idx].size);
1280 * Create the kmalloc array. Some of the regular kmalloc arrays
1281 * may already have been created because they were needed to
1282 * enable allocations for slab creation.
1284 void __init create_kmalloc_caches(slab_flags_t flags)
1286 int i, type;
1288 for (type = KMALLOC_NORMAL; type <= KMALLOC_RECLAIM; type++) {
1289 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
1290 if (!kmalloc_caches[type][i])
1291 new_kmalloc_cache(i, type, flags);
1294 * Caches that are not of the two-to-the-power-of size.
1295 * These have to be created immediately after the
1296 * earlier power of two caches
1298 if (KMALLOC_MIN_SIZE <= 32 && i == 6 &&
1299 !kmalloc_caches[type][1])
1300 new_kmalloc_cache(1, type, flags);
1301 if (KMALLOC_MIN_SIZE <= 64 && i == 7 &&
1302 !kmalloc_caches[type][2])
1303 new_kmalloc_cache(2, type, flags);
1307 /* Kmalloc array is now usable */
1308 slab_state = UP;
1310 #ifdef CONFIG_ZONE_DMA
1311 for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
1312 struct kmem_cache *s = kmalloc_caches[KMALLOC_NORMAL][i];
1314 if (s) {
1315 unsigned int size = kmalloc_size(i);
1316 const char *n = kmalloc_cache_name("dma-kmalloc", size);
1318 BUG_ON(!n);
1319 kmalloc_caches[KMALLOC_DMA][i] = create_kmalloc_cache(
1320 n, size, SLAB_CACHE_DMA | flags, 0, 0);
1323 #endif
1325 #endif /* !CONFIG_SLOB */
1328 * To avoid unnecessary overhead, we pass through large allocation requests
1329 * directly to the page allocator. We use __GFP_COMP, because we will need to
1330 * know the allocation order to free the pages properly in kfree.
1332 void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
1334 void *ret = NULL;
1335 struct page *page;
1337 flags |= __GFP_COMP;
1338 page = alloc_pages(flags, order);
1339 if (likely(page)) {
1340 ret = page_address(page);
1341 mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE,
1342 1 << order);
1344 ret = kasan_kmalloc_large(ret, size, flags);
1345 /* As ret might get tagged, call kmemleak hook after KASAN. */
1346 kmemleak_alloc(ret, size, 1, flags);
1347 return ret;
1349 EXPORT_SYMBOL(kmalloc_order);
1351 #ifdef CONFIG_TRACING
1352 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
1354 void *ret = kmalloc_order(size, flags, order);
1355 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
1356 return ret;
1358 EXPORT_SYMBOL(kmalloc_order_trace);
1359 #endif
1361 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1362 /* Randomize a generic freelist */
1363 static void freelist_randomize(struct rnd_state *state, unsigned int *list,
1364 unsigned int count)
1366 unsigned int rand;
1367 unsigned int i;
1369 for (i = 0; i < count; i++)
1370 list[i] = i;
1372 /* Fisher-Yates shuffle */
1373 for (i = count - 1; i > 0; i--) {
1374 rand = prandom_u32_state(state);
1375 rand %= (i + 1);
1376 swap(list[i], list[rand]);
1380 /* Create a random sequence per cache */
1381 int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
1382 gfp_t gfp)
1384 struct rnd_state state;
1386 if (count < 2 || cachep->random_seq)
1387 return 0;
1389 cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
1390 if (!cachep->random_seq)
1391 return -ENOMEM;
1393 /* Get best entropy at this stage of boot */
1394 prandom_seed_state(&state, get_random_long());
1396 freelist_randomize(&state, cachep->random_seq, count);
1397 return 0;
1400 /* Destroy the per-cache random freelist sequence */
1401 void cache_random_seq_destroy(struct kmem_cache *cachep)
1403 kfree(cachep->random_seq);
1404 cachep->random_seq = NULL;
1406 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1408 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
1409 #ifdef CONFIG_SLAB
1410 #define SLABINFO_RIGHTS (0600)
1411 #else
1412 #define SLABINFO_RIGHTS (0400)
1413 #endif
1415 static void print_slabinfo_header(struct seq_file *m)
1418 * Output format version, so at least we can change it
1419 * without _too_ many complaints.
1421 #ifdef CONFIG_DEBUG_SLAB
1422 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1423 #else
1424 seq_puts(m, "slabinfo - version: 2.1\n");
1425 #endif
1426 seq_puts(m, "# name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
1427 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
1428 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1429 #ifdef CONFIG_DEBUG_SLAB
1430 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
1431 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1432 #endif
1433 seq_putc(m, '\n');
1436 void *slab_start(struct seq_file *m, loff_t *pos)
1438 mutex_lock(&slab_mutex);
1439 return seq_list_start(&slab_root_caches, *pos);
1442 void *slab_next(struct seq_file *m, void *p, loff_t *pos)
1444 return seq_list_next(p, &slab_root_caches, pos);
1447 void slab_stop(struct seq_file *m, void *p)
1449 mutex_unlock(&slab_mutex);
1452 static void
1453 memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
1455 struct kmem_cache *c;
1456 struct slabinfo sinfo;
1458 if (!is_root_cache(s))
1459 return;
1461 for_each_memcg_cache(c, s) {
1462 memset(&sinfo, 0, sizeof(sinfo));
1463 get_slabinfo(c, &sinfo);
1465 info->active_slabs += sinfo.active_slabs;
1466 info->num_slabs += sinfo.num_slabs;
1467 info->shared_avail += sinfo.shared_avail;
1468 info->active_objs += sinfo.active_objs;
1469 info->num_objs += sinfo.num_objs;
1473 static void cache_show(struct kmem_cache *s, struct seq_file *m)
1475 struct slabinfo sinfo;
1477 memset(&sinfo, 0, sizeof(sinfo));
1478 get_slabinfo(s, &sinfo);
1480 memcg_accumulate_slabinfo(s, &sinfo);
1482 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
1483 cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
1484 sinfo.objects_per_slab, (1 << sinfo.cache_order));
1486 seq_printf(m, " : tunables %4u %4u %4u",
1487 sinfo.limit, sinfo.batchcount, sinfo.shared);
1488 seq_printf(m, " : slabdata %6lu %6lu %6lu",
1489 sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
1490 slabinfo_show_stats(m, s);
1491 seq_putc(m, '\n');
1494 static int slab_show(struct seq_file *m, void *p)
1496 struct kmem_cache *s = list_entry(p, struct kmem_cache, root_caches_node);
1498 if (p == slab_root_caches.next)
1499 print_slabinfo_header(m);
1500 cache_show(s, m);
1501 return 0;
1504 void dump_unreclaimable_slab(void)
1506 struct kmem_cache *s, *s2;
1507 struct slabinfo sinfo;
1510 * Here acquiring slab_mutex is risky since we don't prefer to get
1511 * sleep in oom path. But, without mutex hold, it may introduce a
1512 * risk of crash.
1513 * Use mutex_trylock to protect the list traverse, dump nothing
1514 * without acquiring the mutex.
1516 if (!mutex_trylock(&slab_mutex)) {
1517 pr_warn("excessive unreclaimable slab but cannot dump stats\n");
1518 return;
1521 pr_info("Unreclaimable slab info:\n");
1522 pr_info("Name Used Total\n");
1524 list_for_each_entry_safe(s, s2, &slab_caches, list) {
1525 if (!is_root_cache(s) || (s->flags & SLAB_RECLAIM_ACCOUNT))
1526 continue;
1528 get_slabinfo(s, &sinfo);
1530 if (sinfo.num_objs > 0)
1531 pr_info("%-17s %10luKB %10luKB\n", cache_name(s),
1532 (sinfo.active_objs * s->size) / 1024,
1533 (sinfo.num_objs * s->size) / 1024);
1535 mutex_unlock(&slab_mutex);
1538 #if defined(CONFIG_MEMCG)
1539 void *memcg_slab_start(struct seq_file *m, loff_t *pos)
1541 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
1543 mutex_lock(&slab_mutex);
1544 return seq_list_start(&memcg->kmem_caches, *pos);
1547 void *memcg_slab_next(struct seq_file *m, void *p, loff_t *pos)
1549 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
1551 return seq_list_next(p, &memcg->kmem_caches, pos);
1554 void memcg_slab_stop(struct seq_file *m, void *p)
1556 mutex_unlock(&slab_mutex);
1559 int memcg_slab_show(struct seq_file *m, void *p)
1561 struct kmem_cache *s = list_entry(p, struct kmem_cache,
1562 memcg_params.kmem_caches_node);
1563 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
1565 if (p == memcg->kmem_caches.next)
1566 print_slabinfo_header(m);
1567 cache_show(s, m);
1568 return 0;
1570 #endif
1573 * slabinfo_op - iterator that generates /proc/slabinfo
1575 * Output layout:
1576 * cache-name
1577 * num-active-objs
1578 * total-objs
1579 * object size
1580 * num-active-slabs
1581 * total-slabs
1582 * num-pages-per-slab
1583 * + further values on SMP and with statistics enabled
1585 static const struct seq_operations slabinfo_op = {
1586 .start = slab_start,
1587 .next = slab_next,
1588 .stop = slab_stop,
1589 .show = slab_show,
1592 static int slabinfo_open(struct inode *inode, struct file *file)
1594 return seq_open(file, &slabinfo_op);
1597 static const struct file_operations proc_slabinfo_operations = {
1598 .open = slabinfo_open,
1599 .read = seq_read,
1600 .write = slabinfo_write,
1601 .llseek = seq_lseek,
1602 .release = seq_release,
1605 static int __init slab_proc_init(void)
1607 proc_create("slabinfo", SLABINFO_RIGHTS, NULL,
1608 &proc_slabinfo_operations);
1609 return 0;
1611 module_init(slab_proc_init);
1613 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_MEMCG_KMEM)
1615 * Display information about kmem caches that have child memcg caches.
1617 static int memcg_slabinfo_show(struct seq_file *m, void *unused)
1619 struct kmem_cache *s, *c;
1620 struct slabinfo sinfo;
1622 mutex_lock(&slab_mutex);
1623 seq_puts(m, "# <name> <css_id[:dead|deact]> <active_objs> <num_objs>");
1624 seq_puts(m, " <active_slabs> <num_slabs>\n");
1625 list_for_each_entry(s, &slab_root_caches, root_caches_node) {
1627 * Skip kmem caches that don't have any memcg children.
1629 if (list_empty(&s->memcg_params.children))
1630 continue;
1632 memset(&sinfo, 0, sizeof(sinfo));
1633 get_slabinfo(s, &sinfo);
1634 seq_printf(m, "%-17s root %6lu %6lu %6lu %6lu\n",
1635 cache_name(s), sinfo.active_objs, sinfo.num_objs,
1636 sinfo.active_slabs, sinfo.num_slabs);
1638 for_each_memcg_cache(c, s) {
1639 struct cgroup_subsys_state *css;
1640 char *status = "";
1642 css = &c->memcg_params.memcg->css;
1643 if (!(css->flags & CSS_ONLINE))
1644 status = ":dead";
1645 else if (c->flags & SLAB_DEACTIVATED)
1646 status = ":deact";
1648 memset(&sinfo, 0, sizeof(sinfo));
1649 get_slabinfo(c, &sinfo);
1650 seq_printf(m, "%-17s %4d%-6s %6lu %6lu %6lu %6lu\n",
1651 cache_name(c), css->id, status,
1652 sinfo.active_objs, sinfo.num_objs,
1653 sinfo.active_slabs, sinfo.num_slabs);
1656 mutex_unlock(&slab_mutex);
1657 return 0;
1659 DEFINE_SHOW_ATTRIBUTE(memcg_slabinfo);
1661 static int __init memcg_slabinfo_init(void)
1663 debugfs_create_file("memcg_slabinfo", S_IFREG | S_IRUGO,
1664 NULL, NULL, &memcg_slabinfo_fops);
1665 return 0;
1668 late_initcall(memcg_slabinfo_init);
1669 #endif /* CONFIG_DEBUG_FS && CONFIG_MEMCG_KMEM */
1670 #endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */
1672 static __always_inline void *__do_krealloc(const void *p, size_t new_size,
1673 gfp_t flags)
1675 void *ret;
1676 size_t ks = 0;
1678 if (p)
1679 ks = ksize(p);
1681 if (ks >= new_size) {
1682 p = kasan_krealloc((void *)p, new_size, flags);
1683 return (void *)p;
1686 ret = kmalloc_track_caller(new_size, flags);
1687 if (ret && p)
1688 memcpy(ret, p, ks);
1690 return ret;
1694 * __krealloc - like krealloc() but don't free @p.
1695 * @p: object to reallocate memory for.
1696 * @new_size: how many bytes of memory are required.
1697 * @flags: the type of memory to allocate.
1699 * This function is like krealloc() except it never frees the originally
1700 * allocated buffer. Use this if you don't want to free the buffer immediately
1701 * like, for example, with RCU.
1703 * Return: pointer to the allocated memory or %NULL in case of error
1705 void *__krealloc(const void *p, size_t new_size, gfp_t flags)
1707 if (unlikely(!new_size))
1708 return ZERO_SIZE_PTR;
1710 return __do_krealloc(p, new_size, flags);
1713 EXPORT_SYMBOL(__krealloc);
1716 * krealloc - reallocate memory. The contents will remain unchanged.
1717 * @p: object to reallocate memory for.
1718 * @new_size: how many bytes of memory are required.
1719 * @flags: the type of memory to allocate.
1721 * The contents of the object pointed to are preserved up to the
1722 * lesser of the new and old sizes. If @p is %NULL, krealloc()
1723 * behaves exactly like kmalloc(). If @new_size is 0 and @p is not a
1724 * %NULL pointer, the object pointed to is freed.
1726 * Return: pointer to the allocated memory or %NULL in case of error
1728 void *krealloc(const void *p, size_t new_size, gfp_t flags)
1730 void *ret;
1732 if (unlikely(!new_size)) {
1733 kfree(p);
1734 return ZERO_SIZE_PTR;
1737 ret = __do_krealloc(p, new_size, flags);
1738 if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret))
1739 kfree(p);
1741 return ret;
1743 EXPORT_SYMBOL(krealloc);
1746 * kzfree - like kfree but zero memory
1747 * @p: object to free memory of
1749 * The memory of the object @p points to is zeroed before freed.
1750 * If @p is %NULL, kzfree() does nothing.
1752 * Note: this function zeroes the whole allocated buffer which can be a good
1753 * deal bigger than the requested buffer size passed to kmalloc(). So be
1754 * careful when using this function in performance sensitive code.
1756 void kzfree(const void *p)
1758 size_t ks;
1759 void *mem = (void *)p;
1761 if (unlikely(ZERO_OR_NULL_PTR(mem)))
1762 return;
1763 ks = ksize(mem);
1764 memzero_explicit(mem, ks);
1765 kfree(mem);
1767 EXPORT_SYMBOL(kzfree);
1770 * ksize - get the actual amount of memory allocated for a given object
1771 * @objp: Pointer to the object
1773 * kmalloc may internally round up allocations and return more memory
1774 * than requested. ksize() can be used to determine the actual amount of
1775 * memory allocated. The caller may use this additional memory, even though
1776 * a smaller amount of memory was initially specified with the kmalloc call.
1777 * The caller must guarantee that objp points to a valid object previously
1778 * allocated with either kmalloc() or kmem_cache_alloc(). The object
1779 * must not be freed during the duration of the call.
1781 * Return: size of the actual memory used by @objp in bytes
1783 size_t ksize(const void *objp)
1785 size_t size;
1787 if (WARN_ON_ONCE(!objp))
1788 return 0;
1790 * We need to check that the pointed to object is valid, and only then
1791 * unpoison the shadow memory below. We use __kasan_check_read(), to
1792 * generate a more useful report at the time ksize() is called (rather
1793 * than later where behaviour is undefined due to potential
1794 * use-after-free or double-free).
1796 * If the pointed to memory is invalid we return 0, to avoid users of
1797 * ksize() writing to and potentially corrupting the memory region.
1799 * We want to perform the check before __ksize(), to avoid potentially
1800 * crashing in __ksize() due to accessing invalid metadata.
1802 if (unlikely(objp == ZERO_SIZE_PTR) || !__kasan_check_read(objp, 1))
1803 return 0;
1805 size = __ksize(objp);
1807 * We assume that ksize callers could use whole allocated area,
1808 * so we need to unpoison this area.
1810 kasan_unpoison_shadow(objp, size);
1811 return size;
1813 EXPORT_SYMBOL(ksize);
1815 /* Tracepoints definitions. */
1816 EXPORT_TRACEPOINT_SYMBOL(kmalloc);
1817 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
1818 EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
1819 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
1820 EXPORT_TRACEPOINT_SYMBOL(kfree);
1821 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
1823 int should_failslab(struct kmem_cache *s, gfp_t gfpflags)
1825 if (__should_failslab(s, gfpflags))
1826 return -ENOMEM;
1827 return 0;
1829 ALLOW_ERROR_INJECTION(should_failslab, ERRNO);