4 * Copyright (C) 2002, Linus Torvalds.
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
11 * 10Apr2002 Andrew Morton
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/tracepoint.h>
32 * 4MB minimal write chunk size
34 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_CACHE_SHIFT - 10))
37 * Passed into wb_writeback(), essentially a subset of writeback_control
39 struct wb_writeback_work
{
41 struct super_block
*sb
;
42 unsigned long *older_than_this
;
43 enum writeback_sync_modes sync_mode
;
44 unsigned int tagged_writepages
:1;
45 unsigned int for_kupdate
:1;
46 unsigned int range_cyclic
:1;
47 unsigned int for_background
:1;
48 enum wb_reason reason
; /* why was writeback initiated? */
50 struct list_head list
; /* pending work list */
51 struct completion
*done
; /* set if the caller waits */
55 * writeback_in_progress - determine whether there is writeback in progress
56 * @bdi: the device's backing_dev_info structure.
58 * Determine whether there is writeback waiting to be handled against a
61 int writeback_in_progress(struct backing_dev_info
*bdi
)
63 return test_bit(BDI_writeback_running
, &bdi
->state
);
65 EXPORT_SYMBOL(writeback_in_progress
);
67 static inline struct backing_dev_info
*inode_to_bdi(struct inode
*inode
)
69 struct super_block
*sb
= inode
->i_sb
;
71 if (strcmp(sb
->s_type
->name
, "bdev") == 0)
72 return inode
->i_mapping
->backing_dev_info
;
77 static inline struct inode
*wb_inode(struct list_head
*head
)
79 return list_entry(head
, struct inode
, i_wb_list
);
83 * Include the creation of the trace points after defining the
84 * wb_writeback_work structure and inline functions so that the definition
85 * remains local to this file.
87 #define CREATE_TRACE_POINTS
88 #include <trace/events/writeback.h>
90 static void bdi_queue_work(struct backing_dev_info
*bdi
,
91 struct wb_writeback_work
*work
)
93 trace_writeback_queue(bdi
, work
);
95 spin_lock_bh(&bdi
->wb_lock
);
96 list_add_tail(&work
->list
, &bdi
->work_list
);
97 spin_unlock_bh(&bdi
->wb_lock
);
99 mod_delayed_work(bdi_wq
, &bdi
->wb
.dwork
, 0);
103 __bdi_start_writeback(struct backing_dev_info
*bdi
, long nr_pages
,
104 bool range_cyclic
, enum wb_reason reason
)
106 struct wb_writeback_work
*work
;
109 * This is WB_SYNC_NONE writeback, so if allocation fails just
110 * wakeup the thread for old dirty data writeback
112 work
= kzalloc(sizeof(*work
), GFP_ATOMIC
);
114 trace_writeback_nowork(bdi
);
115 mod_delayed_work(bdi_wq
, &bdi
->wb
.dwork
, 0);
119 work
->sync_mode
= WB_SYNC_NONE
;
120 work
->nr_pages
= nr_pages
;
121 work
->range_cyclic
= range_cyclic
;
122 work
->reason
= reason
;
124 bdi_queue_work(bdi
, work
);
128 * bdi_start_writeback - start writeback
129 * @bdi: the backing device to write from
130 * @nr_pages: the number of pages to write
131 * @reason: reason why some writeback work was initiated
134 * This does WB_SYNC_NONE opportunistic writeback. The IO is only
135 * started when this function returns, we make no guarantees on
136 * completion. Caller need not hold sb s_umount semaphore.
139 void bdi_start_writeback(struct backing_dev_info
*bdi
, long nr_pages
,
140 enum wb_reason reason
)
142 __bdi_start_writeback(bdi
, nr_pages
, true, reason
);
146 * bdi_start_background_writeback - start background writeback
147 * @bdi: the backing device to write from
150 * This makes sure WB_SYNC_NONE background writeback happens. When
151 * this function returns, it is only guaranteed that for given BDI
152 * some IO is happening if we are over background dirty threshold.
153 * Caller need not hold sb s_umount semaphore.
155 void bdi_start_background_writeback(struct backing_dev_info
*bdi
)
158 * We just wake up the flusher thread. It will perform background
159 * writeback as soon as there is no other work to do.
161 trace_writeback_wake_background(bdi
);
162 mod_delayed_work(bdi_wq
, &bdi
->wb
.dwork
, 0);
166 * Remove the inode from the writeback list it is on.
168 void inode_wb_list_del(struct inode
*inode
)
170 struct backing_dev_info
*bdi
= inode_to_bdi(inode
);
172 spin_lock(&bdi
->wb
.list_lock
);
173 list_del_init(&inode
->i_wb_list
);
174 spin_unlock(&bdi
->wb
.list_lock
);
178 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
179 * furthest end of its superblock's dirty-inode list.
181 * Before stamping the inode's ->dirtied_when, we check to see whether it is
182 * already the most-recently-dirtied inode on the b_dirty list. If that is
183 * the case then the inode must have been redirtied while it was being written
184 * out and we don't reset its dirtied_when.
186 static void redirty_tail(struct inode
*inode
, struct bdi_writeback
*wb
)
188 assert_spin_locked(&wb
->list_lock
);
189 if (!list_empty(&wb
->b_dirty
)) {
192 tail
= wb_inode(wb
->b_dirty
.next
);
193 if (time_before(inode
->dirtied_when
, tail
->dirtied_when
))
194 inode
->dirtied_when
= jiffies
;
196 list_move(&inode
->i_wb_list
, &wb
->b_dirty
);
200 * requeue inode for re-scanning after bdi->b_io list is exhausted.
202 static void requeue_io(struct inode
*inode
, struct bdi_writeback
*wb
)
204 assert_spin_locked(&wb
->list_lock
);
205 list_move(&inode
->i_wb_list
, &wb
->b_more_io
);
208 static void inode_sync_complete(struct inode
*inode
)
210 inode
->i_state
&= ~I_SYNC
;
211 /* If inode is clean an unused, put it into LRU now... */
212 inode_add_lru(inode
);
213 /* Waiters must see I_SYNC cleared before being woken up */
215 wake_up_bit(&inode
->i_state
, __I_SYNC
);
218 static bool inode_dirtied_after(struct inode
*inode
, unsigned long t
)
220 bool ret
= time_after(inode
->dirtied_when
, t
);
223 * For inodes being constantly redirtied, dirtied_when can get stuck.
224 * It _appears_ to be in the future, but is actually in distant past.
225 * This test is necessary to prevent such wrapped-around relative times
226 * from permanently stopping the whole bdi writeback.
228 ret
= ret
&& time_before_eq(inode
->dirtied_when
, jiffies
);
234 * Move expired (dirtied before work->older_than_this) dirty inodes from
235 * @delaying_queue to @dispatch_queue.
237 static int move_expired_inodes(struct list_head
*delaying_queue
,
238 struct list_head
*dispatch_queue
,
239 struct wb_writeback_work
*work
)
242 struct list_head
*pos
, *node
;
243 struct super_block
*sb
= NULL
;
248 while (!list_empty(delaying_queue
)) {
249 inode
= wb_inode(delaying_queue
->prev
);
250 if (work
->older_than_this
&&
251 inode_dirtied_after(inode
, *work
->older_than_this
))
253 if (sb
&& sb
!= inode
->i_sb
)
256 list_move(&inode
->i_wb_list
, &tmp
);
260 /* just one sb in list, splice to dispatch_queue and we're done */
262 list_splice(&tmp
, dispatch_queue
);
266 /* Move inodes from one superblock together */
267 while (!list_empty(&tmp
)) {
268 sb
= wb_inode(tmp
.prev
)->i_sb
;
269 list_for_each_prev_safe(pos
, node
, &tmp
) {
270 inode
= wb_inode(pos
);
271 if (inode
->i_sb
== sb
)
272 list_move(&inode
->i_wb_list
, dispatch_queue
);
280 * Queue all expired dirty inodes for io, eldest first.
282 * newly dirtied b_dirty b_io b_more_io
283 * =============> gf edc BA
285 * newly dirtied b_dirty b_io b_more_io
286 * =============> g fBAedc
288 * +--> dequeue for IO
290 static void queue_io(struct bdi_writeback
*wb
, struct wb_writeback_work
*work
)
293 assert_spin_locked(&wb
->list_lock
);
294 list_splice_init(&wb
->b_more_io
, &wb
->b_io
);
295 moved
= move_expired_inodes(&wb
->b_dirty
, &wb
->b_io
, work
);
296 trace_writeback_queue_io(wb
, work
, moved
);
299 static int write_inode(struct inode
*inode
, struct writeback_control
*wbc
)
303 if (inode
->i_sb
->s_op
->write_inode
&& !is_bad_inode(inode
)) {
304 trace_writeback_write_inode_start(inode
, wbc
);
305 ret
= inode
->i_sb
->s_op
->write_inode(inode
, wbc
);
306 trace_writeback_write_inode(inode
, wbc
);
313 * Wait for writeback on an inode to complete. Called with i_lock held.
314 * Caller must make sure inode cannot go away when we drop i_lock.
316 static void __inode_wait_for_writeback(struct inode
*inode
)
317 __releases(inode
->i_lock
)
318 __acquires(inode
->i_lock
)
320 DEFINE_WAIT_BIT(wq
, &inode
->i_state
, __I_SYNC
);
321 wait_queue_head_t
*wqh
;
323 wqh
= bit_waitqueue(&inode
->i_state
, __I_SYNC
);
324 while (inode
->i_state
& I_SYNC
) {
325 spin_unlock(&inode
->i_lock
);
326 __wait_on_bit(wqh
, &wq
, inode_wait
, TASK_UNINTERRUPTIBLE
);
327 spin_lock(&inode
->i_lock
);
332 * Wait for writeback on an inode to complete. Caller must have inode pinned.
334 void inode_wait_for_writeback(struct inode
*inode
)
336 spin_lock(&inode
->i_lock
);
337 __inode_wait_for_writeback(inode
);
338 spin_unlock(&inode
->i_lock
);
342 * Sleep until I_SYNC is cleared. This function must be called with i_lock
343 * held and drops it. It is aimed for callers not holding any inode reference
344 * so once i_lock is dropped, inode can go away.
346 static void inode_sleep_on_writeback(struct inode
*inode
)
347 __releases(inode
->i_lock
)
350 wait_queue_head_t
*wqh
= bit_waitqueue(&inode
->i_state
, __I_SYNC
);
353 prepare_to_wait(wqh
, &wait
, TASK_UNINTERRUPTIBLE
);
354 sleep
= inode
->i_state
& I_SYNC
;
355 spin_unlock(&inode
->i_lock
);
358 finish_wait(wqh
, &wait
);
362 * Find proper writeback list for the inode depending on its current state and
363 * possibly also change of its state while we were doing writeback. Here we
364 * handle things such as livelock prevention or fairness of writeback among
365 * inodes. This function can be called only by flusher thread - noone else
366 * processes all inodes in writeback lists and requeueing inodes behind flusher
367 * thread's back can have unexpected consequences.
369 static void requeue_inode(struct inode
*inode
, struct bdi_writeback
*wb
,
370 struct writeback_control
*wbc
)
372 if (inode
->i_state
& I_FREEING
)
376 * Sync livelock prevention. Each inode is tagged and synced in one
377 * shot. If still dirty, it will be redirty_tail()'ed below. Update
378 * the dirty time to prevent enqueue and sync it again.
380 if ((inode
->i_state
& I_DIRTY
) &&
381 (wbc
->sync_mode
== WB_SYNC_ALL
|| wbc
->tagged_writepages
))
382 inode
->dirtied_when
= jiffies
;
384 if (wbc
->pages_skipped
) {
386 * writeback is not making progress due to locked
387 * buffers. Skip this inode for now.
389 redirty_tail(inode
, wb
);
393 if (mapping_tagged(inode
->i_mapping
, PAGECACHE_TAG_DIRTY
)) {
395 * We didn't write back all the pages. nfs_writepages()
396 * sometimes bales out without doing anything.
398 if (wbc
->nr_to_write
<= 0) {
399 /* Slice used up. Queue for next turn. */
400 requeue_io(inode
, wb
);
403 * Writeback blocked by something other than
404 * congestion. Delay the inode for some time to
405 * avoid spinning on the CPU (100% iowait)
406 * retrying writeback of the dirty page/inode
407 * that cannot be performed immediately.
409 redirty_tail(inode
, wb
);
411 } else if (inode
->i_state
& I_DIRTY
) {
413 * Filesystems can dirty the inode during writeback operations,
414 * such as delayed allocation during submission or metadata
415 * updates after data IO completion.
417 redirty_tail(inode
, wb
);
419 /* The inode is clean. Remove from writeback lists. */
420 list_del_init(&inode
->i_wb_list
);
425 * Write out an inode and its dirty pages. Do not update the writeback list
426 * linkage. That is left to the caller. The caller is also responsible for
427 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
430 __writeback_single_inode(struct inode
*inode
, struct writeback_control
*wbc
)
432 struct address_space
*mapping
= inode
->i_mapping
;
433 long nr_to_write
= wbc
->nr_to_write
;
437 WARN_ON(!(inode
->i_state
& I_SYNC
));
439 trace_writeback_single_inode_start(inode
, wbc
, nr_to_write
);
441 ret
= do_writepages(mapping
, wbc
);
444 * Make sure to wait on the data before writing out the metadata.
445 * This is important for filesystems that modify metadata on data
448 if (wbc
->sync_mode
== WB_SYNC_ALL
) {
449 int err
= filemap_fdatawait(mapping
);
455 * Some filesystems may redirty the inode during the writeback
456 * due to delalloc, clear dirty metadata flags right before
459 spin_lock(&inode
->i_lock
);
460 /* Clear I_DIRTY_PAGES if we've written out all dirty pages */
461 if (!mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
))
462 inode
->i_state
&= ~I_DIRTY_PAGES
;
463 dirty
= inode
->i_state
& I_DIRTY
;
464 inode
->i_state
&= ~(I_DIRTY_SYNC
| I_DIRTY_DATASYNC
);
465 spin_unlock(&inode
->i_lock
);
466 /* Don't write the inode if only I_DIRTY_PAGES was set */
467 if (dirty
& (I_DIRTY_SYNC
| I_DIRTY_DATASYNC
)) {
468 int err
= write_inode(inode
, wbc
);
472 trace_writeback_single_inode(inode
, wbc
, nr_to_write
);
477 * Write out an inode's dirty pages. Either the caller has an active reference
478 * on the inode or the inode has I_WILL_FREE set.
480 * This function is designed to be called for writing back one inode which
481 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
482 * and does more profound writeback list handling in writeback_sb_inodes().
485 writeback_single_inode(struct inode
*inode
, struct bdi_writeback
*wb
,
486 struct writeback_control
*wbc
)
490 spin_lock(&inode
->i_lock
);
491 if (!atomic_read(&inode
->i_count
))
492 WARN_ON(!(inode
->i_state
& (I_WILL_FREE
|I_FREEING
)));
494 WARN_ON(inode
->i_state
& I_WILL_FREE
);
496 if (inode
->i_state
& I_SYNC
) {
497 if (wbc
->sync_mode
!= WB_SYNC_ALL
)
500 * It's a data-integrity sync. We must wait. Since callers hold
501 * inode reference or inode has I_WILL_FREE set, it cannot go
504 __inode_wait_for_writeback(inode
);
506 WARN_ON(inode
->i_state
& I_SYNC
);
508 * Skip inode if it is clean. We don't want to mess with writeback
509 * lists in this function since flusher thread may be doing for example
510 * sync in parallel and if we move the inode, it could get skipped. So
511 * here we make sure inode is on some writeback list and leave it there
512 * unless we have completely cleaned the inode.
514 if (!(inode
->i_state
& I_DIRTY
))
516 inode
->i_state
|= I_SYNC
;
517 spin_unlock(&inode
->i_lock
);
519 ret
= __writeback_single_inode(inode
, wbc
);
521 spin_lock(&wb
->list_lock
);
522 spin_lock(&inode
->i_lock
);
524 * If inode is clean, remove it from writeback lists. Otherwise don't
525 * touch it. See comment above for explanation.
527 if (!(inode
->i_state
& I_DIRTY
))
528 list_del_init(&inode
->i_wb_list
);
529 spin_unlock(&wb
->list_lock
);
530 inode_sync_complete(inode
);
532 spin_unlock(&inode
->i_lock
);
536 static long writeback_chunk_size(struct backing_dev_info
*bdi
,
537 struct wb_writeback_work
*work
)
542 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
543 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
544 * here avoids calling into writeback_inodes_wb() more than once.
546 * The intended call sequence for WB_SYNC_ALL writeback is:
549 * writeback_sb_inodes() <== called only once
550 * write_cache_pages() <== called once for each inode
551 * (quickly) tag currently dirty pages
552 * (maybe slowly) sync all tagged pages
554 if (work
->sync_mode
== WB_SYNC_ALL
|| work
->tagged_writepages
)
557 pages
= min(bdi
->avg_write_bandwidth
/ 2,
558 global_dirty_limit
/ DIRTY_SCOPE
);
559 pages
= min(pages
, work
->nr_pages
);
560 pages
= round_down(pages
+ MIN_WRITEBACK_PAGES
,
561 MIN_WRITEBACK_PAGES
);
568 * Write a portion of b_io inodes which belong to @sb.
570 * Return the number of pages and/or inodes written.
572 static long writeback_sb_inodes(struct super_block
*sb
,
573 struct bdi_writeback
*wb
,
574 struct wb_writeback_work
*work
)
576 struct writeback_control wbc
= {
577 .sync_mode
= work
->sync_mode
,
578 .tagged_writepages
= work
->tagged_writepages
,
579 .for_kupdate
= work
->for_kupdate
,
580 .for_background
= work
->for_background
,
581 .range_cyclic
= work
->range_cyclic
,
583 .range_end
= LLONG_MAX
,
585 unsigned long start_time
= jiffies
;
587 long wrote
= 0; /* count both pages and inodes */
589 while (!list_empty(&wb
->b_io
)) {
590 struct inode
*inode
= wb_inode(wb
->b_io
.prev
);
592 if (inode
->i_sb
!= sb
) {
595 * We only want to write back data for this
596 * superblock, move all inodes not belonging
597 * to it back onto the dirty list.
599 redirty_tail(inode
, wb
);
604 * The inode belongs to a different superblock.
605 * Bounce back to the caller to unpin this and
606 * pin the next superblock.
612 * Don't bother with new inodes or inodes being freed, first
613 * kind does not need periodic writeout yet, and for the latter
614 * kind writeout is handled by the freer.
616 spin_lock(&inode
->i_lock
);
617 if (inode
->i_state
& (I_NEW
| I_FREEING
| I_WILL_FREE
)) {
618 spin_unlock(&inode
->i_lock
);
619 redirty_tail(inode
, wb
);
622 if ((inode
->i_state
& I_SYNC
) && wbc
.sync_mode
!= WB_SYNC_ALL
) {
624 * If this inode is locked for writeback and we are not
625 * doing writeback-for-data-integrity, move it to
626 * b_more_io so that writeback can proceed with the
627 * other inodes on s_io.
629 * We'll have another go at writing back this inode
630 * when we completed a full scan of b_io.
632 spin_unlock(&inode
->i_lock
);
633 requeue_io(inode
, wb
);
634 trace_writeback_sb_inodes_requeue(inode
);
637 spin_unlock(&wb
->list_lock
);
640 * We already requeued the inode if it had I_SYNC set and we
641 * are doing WB_SYNC_NONE writeback. So this catches only the
644 if (inode
->i_state
& I_SYNC
) {
645 /* Wait for I_SYNC. This function drops i_lock... */
646 inode_sleep_on_writeback(inode
);
647 /* Inode may be gone, start again */
648 spin_lock(&wb
->list_lock
);
651 inode
->i_state
|= I_SYNC
;
652 spin_unlock(&inode
->i_lock
);
654 write_chunk
= writeback_chunk_size(wb
->bdi
, work
);
655 wbc
.nr_to_write
= write_chunk
;
656 wbc
.pages_skipped
= 0;
659 * We use I_SYNC to pin the inode in memory. While it is set
660 * evict_inode() will wait so the inode cannot be freed.
662 __writeback_single_inode(inode
, &wbc
);
664 work
->nr_pages
-= write_chunk
- wbc
.nr_to_write
;
665 wrote
+= write_chunk
- wbc
.nr_to_write
;
666 spin_lock(&wb
->list_lock
);
667 spin_lock(&inode
->i_lock
);
668 if (!(inode
->i_state
& I_DIRTY
))
670 requeue_inode(inode
, wb
, &wbc
);
671 inode_sync_complete(inode
);
672 spin_unlock(&inode
->i_lock
);
673 cond_resched_lock(&wb
->list_lock
);
675 * bail out to wb_writeback() often enough to check
676 * background threshold and other termination conditions.
679 if (time_is_before_jiffies(start_time
+ HZ
/ 10UL))
681 if (work
->nr_pages
<= 0)
688 static long __writeback_inodes_wb(struct bdi_writeback
*wb
,
689 struct wb_writeback_work
*work
)
691 unsigned long start_time
= jiffies
;
694 while (!list_empty(&wb
->b_io
)) {
695 struct inode
*inode
= wb_inode(wb
->b_io
.prev
);
696 struct super_block
*sb
= inode
->i_sb
;
698 if (!grab_super_passive(sb
)) {
700 * grab_super_passive() may fail consistently due to
701 * s_umount being grabbed by someone else. Don't use
702 * requeue_io() to avoid busy retrying the inode/sb.
704 redirty_tail(inode
, wb
);
707 wrote
+= writeback_sb_inodes(sb
, wb
, work
);
710 /* refer to the same tests at the end of writeback_sb_inodes */
712 if (time_is_before_jiffies(start_time
+ HZ
/ 10UL))
714 if (work
->nr_pages
<= 0)
718 /* Leave any unwritten inodes on b_io */
722 long writeback_inodes_wb(struct bdi_writeback
*wb
, long nr_pages
,
723 enum wb_reason reason
)
725 struct wb_writeback_work work
= {
726 .nr_pages
= nr_pages
,
727 .sync_mode
= WB_SYNC_NONE
,
732 spin_lock(&wb
->list_lock
);
733 if (list_empty(&wb
->b_io
))
735 __writeback_inodes_wb(wb
, &work
);
736 spin_unlock(&wb
->list_lock
);
738 return nr_pages
- work
.nr_pages
;
741 static bool over_bground_thresh(struct backing_dev_info
*bdi
)
743 unsigned long background_thresh
, dirty_thresh
;
745 global_dirty_limits(&background_thresh
, &dirty_thresh
);
747 if (global_page_state(NR_FILE_DIRTY
) +
748 global_page_state(NR_UNSTABLE_NFS
) > background_thresh
)
751 if (bdi_stat(bdi
, BDI_RECLAIMABLE
) >
752 bdi_dirty_limit(bdi
, background_thresh
))
759 * Called under wb->list_lock. If there are multiple wb per bdi,
760 * only the flusher working on the first wb should do it.
762 static void wb_update_bandwidth(struct bdi_writeback
*wb
,
763 unsigned long start_time
)
765 __bdi_update_bandwidth(wb
->bdi
, 0, 0, 0, 0, 0, start_time
);
769 * Explicit flushing or periodic writeback of "old" data.
771 * Define "old": the first time one of an inode's pages is dirtied, we mark the
772 * dirtying-time in the inode's address_space. So this periodic writeback code
773 * just walks the superblock inode list, writing back any inodes which are
774 * older than a specific point in time.
776 * Try to run once per dirty_writeback_interval. But if a writeback event
777 * takes longer than a dirty_writeback_interval interval, then leave a
780 * older_than_this takes precedence over nr_to_write. So we'll only write back
781 * all dirty pages if they are all attached to "old" mappings.
783 static long wb_writeback(struct bdi_writeback
*wb
,
784 struct wb_writeback_work
*work
)
786 unsigned long wb_start
= jiffies
;
787 long nr_pages
= work
->nr_pages
;
788 unsigned long oldest_jif
;
792 oldest_jif
= jiffies
;
793 work
->older_than_this
= &oldest_jif
;
795 spin_lock(&wb
->list_lock
);
798 * Stop writeback when nr_pages has been consumed
800 if (work
->nr_pages
<= 0)
804 * Background writeout and kupdate-style writeback may
805 * run forever. Stop them if there is other work to do
806 * so that e.g. sync can proceed. They'll be restarted
807 * after the other works are all done.
809 if ((work
->for_background
|| work
->for_kupdate
) &&
810 !list_empty(&wb
->bdi
->work_list
))
814 * For background writeout, stop when we are below the
815 * background dirty threshold
817 if (work
->for_background
&& !over_bground_thresh(wb
->bdi
))
821 * Kupdate and background works are special and we want to
822 * include all inodes that need writing. Livelock avoidance is
823 * handled by these works yielding to any other work so we are
826 if (work
->for_kupdate
) {
827 oldest_jif
= jiffies
-
828 msecs_to_jiffies(dirty_expire_interval
* 10);
829 } else if (work
->for_background
)
830 oldest_jif
= jiffies
;
832 trace_writeback_start(wb
->bdi
, work
);
833 if (list_empty(&wb
->b_io
))
836 progress
= writeback_sb_inodes(work
->sb
, wb
, work
);
838 progress
= __writeback_inodes_wb(wb
, work
);
839 trace_writeback_written(wb
->bdi
, work
);
841 wb_update_bandwidth(wb
, wb_start
);
844 * Did we write something? Try for more
846 * Dirty inodes are moved to b_io for writeback in batches.
847 * The completion of the current batch does not necessarily
848 * mean the overall work is done. So we keep looping as long
849 * as made some progress on cleaning pages or inodes.
854 * No more inodes for IO, bail
856 if (list_empty(&wb
->b_more_io
))
859 * Nothing written. Wait for some inode to
860 * become available for writeback. Otherwise
861 * we'll just busyloop.
863 if (!list_empty(&wb
->b_more_io
)) {
864 trace_writeback_wait(wb
->bdi
, work
);
865 inode
= wb_inode(wb
->b_more_io
.prev
);
866 spin_lock(&inode
->i_lock
);
867 spin_unlock(&wb
->list_lock
);
868 /* This function drops i_lock... */
869 inode_sleep_on_writeback(inode
);
870 spin_lock(&wb
->list_lock
);
873 spin_unlock(&wb
->list_lock
);
875 return nr_pages
- work
->nr_pages
;
879 * Return the next wb_writeback_work struct that hasn't been processed yet.
881 static struct wb_writeback_work
*
882 get_next_work_item(struct backing_dev_info
*bdi
)
884 struct wb_writeback_work
*work
= NULL
;
886 spin_lock_bh(&bdi
->wb_lock
);
887 if (!list_empty(&bdi
->work_list
)) {
888 work
= list_entry(bdi
->work_list
.next
,
889 struct wb_writeback_work
, list
);
890 list_del_init(&work
->list
);
892 spin_unlock_bh(&bdi
->wb_lock
);
897 * Add in the number of potentially dirty inodes, because each inode
898 * write can dirty pagecache in the underlying blockdev.
900 static unsigned long get_nr_dirty_pages(void)
902 return global_page_state(NR_FILE_DIRTY
) +
903 global_page_state(NR_UNSTABLE_NFS
) +
904 get_nr_dirty_inodes();
907 static long wb_check_background_flush(struct bdi_writeback
*wb
)
909 if (over_bground_thresh(wb
->bdi
)) {
911 struct wb_writeback_work work
= {
912 .nr_pages
= LONG_MAX
,
913 .sync_mode
= WB_SYNC_NONE
,
916 .reason
= WB_REASON_BACKGROUND
,
919 return wb_writeback(wb
, &work
);
925 static long wb_check_old_data_flush(struct bdi_writeback
*wb
)
927 unsigned long expired
;
931 * When set to zero, disable periodic writeback
933 if (!dirty_writeback_interval
)
936 expired
= wb
->last_old_flush
+
937 msecs_to_jiffies(dirty_writeback_interval
* 10);
938 if (time_before(jiffies
, expired
))
941 wb
->last_old_flush
= jiffies
;
942 nr_pages
= get_nr_dirty_pages();
945 struct wb_writeback_work work
= {
946 .nr_pages
= nr_pages
,
947 .sync_mode
= WB_SYNC_NONE
,
950 .reason
= WB_REASON_PERIODIC
,
953 return wb_writeback(wb
, &work
);
960 * Retrieve work items and do the writeback they describe
962 long wb_do_writeback(struct bdi_writeback
*wb
, int force_wait
)
964 struct backing_dev_info
*bdi
= wb
->bdi
;
965 struct wb_writeback_work
*work
;
968 set_bit(BDI_writeback_running
, &wb
->bdi
->state
);
969 while ((work
= get_next_work_item(bdi
)) != NULL
) {
971 * Override sync mode, in case we must wait for completion
972 * because this thread is exiting now.
975 work
->sync_mode
= WB_SYNC_ALL
;
977 trace_writeback_exec(bdi
, work
);
979 wrote
+= wb_writeback(wb
, work
);
982 * Notify the caller of completion if this is a synchronous
983 * work item, otherwise just free it.
986 complete(work
->done
);
992 * Check for periodic writeback, kupdated() style
994 wrote
+= wb_check_old_data_flush(wb
);
995 wrote
+= wb_check_background_flush(wb
);
996 clear_bit(BDI_writeback_running
, &wb
->bdi
->state
);
1002 * Handle writeback of dirty data for the device backed by this bdi. Also
1003 * reschedules periodically and does kupdated style flushing.
1005 void bdi_writeback_workfn(struct work_struct
*work
)
1007 struct bdi_writeback
*wb
= container_of(to_delayed_work(work
),
1008 struct bdi_writeback
, dwork
);
1009 struct backing_dev_info
*bdi
= wb
->bdi
;
1012 set_worker_desc("flush-%s", dev_name(bdi
->dev
));
1013 current
->flags
|= PF_SWAPWRITE
;
1015 if (likely(!current_is_workqueue_rescuer() ||
1016 list_empty(&bdi
->bdi_list
))) {
1018 * The normal path. Keep writing back @bdi until its
1019 * work_list is empty. Note that this path is also taken
1020 * if @bdi is shutting down even when we're running off the
1021 * rescuer as work_list needs to be drained.
1024 pages_written
= wb_do_writeback(wb
, 0);
1025 trace_writeback_pages_written(pages_written
);
1026 } while (!list_empty(&bdi
->work_list
));
1029 * bdi_wq can't get enough workers and we're running off
1030 * the emergency worker. Don't hog it. Hopefully, 1024 is
1031 * enough for efficient IO.
1033 pages_written
= writeback_inodes_wb(&bdi
->wb
, 1024,
1034 WB_REASON_FORKER_THREAD
);
1035 trace_writeback_pages_written(pages_written
);
1038 if (!list_empty(&bdi
->work_list
) ||
1039 (wb_has_dirty_io(wb
) && dirty_writeback_interval
))
1040 queue_delayed_work(bdi_wq
, &wb
->dwork
,
1041 msecs_to_jiffies(dirty_writeback_interval
* 10));
1043 current
->flags
&= ~PF_SWAPWRITE
;
1047 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
1050 void wakeup_flusher_threads(long nr_pages
, enum wb_reason reason
)
1052 struct backing_dev_info
*bdi
;
1055 nr_pages
= global_page_state(NR_FILE_DIRTY
) +
1056 global_page_state(NR_UNSTABLE_NFS
);
1060 list_for_each_entry_rcu(bdi
, &bdi_list
, bdi_list
) {
1061 if (!bdi_has_dirty_io(bdi
))
1063 __bdi_start_writeback(bdi
, nr_pages
, false, reason
);
1068 static noinline
void block_dump___mark_inode_dirty(struct inode
*inode
)
1070 if (inode
->i_ino
|| strcmp(inode
->i_sb
->s_id
, "bdev")) {
1071 struct dentry
*dentry
;
1072 const char *name
= "?";
1074 dentry
= d_find_alias(inode
);
1076 spin_lock(&dentry
->d_lock
);
1077 name
= (const char *) dentry
->d_name
.name
;
1080 "%s(%d): dirtied inode %lu (%s) on %s\n",
1081 current
->comm
, task_pid_nr(current
), inode
->i_ino
,
1082 name
, inode
->i_sb
->s_id
);
1084 spin_unlock(&dentry
->d_lock
);
1091 * __mark_inode_dirty - internal function
1092 * @inode: inode to mark
1093 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1094 * Mark an inode as dirty. Callers should use mark_inode_dirty or
1095 * mark_inode_dirty_sync.
1097 * Put the inode on the super block's dirty list.
1099 * CAREFUL! We mark it dirty unconditionally, but move it onto the
1100 * dirty list only if it is hashed or if it refers to a blockdev.
1101 * If it was not hashed, it will never be added to the dirty list
1102 * even if it is later hashed, as it will have been marked dirty already.
1104 * In short, make sure you hash any inodes _before_ you start marking
1107 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1108 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
1109 * the kernel-internal blockdev inode represents the dirtying time of the
1110 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
1111 * page->mapping->host, so the page-dirtying time is recorded in the internal
1114 void __mark_inode_dirty(struct inode
*inode
, int flags
)
1116 struct super_block
*sb
= inode
->i_sb
;
1117 struct backing_dev_info
*bdi
= NULL
;
1120 * Don't do this for I_DIRTY_PAGES - that doesn't actually
1121 * dirty the inode itself
1123 if (flags
& (I_DIRTY_SYNC
| I_DIRTY_DATASYNC
)) {
1124 trace_writeback_dirty_inode_start(inode
, flags
);
1126 if (sb
->s_op
->dirty_inode
)
1127 sb
->s_op
->dirty_inode(inode
, flags
);
1129 trace_writeback_dirty_inode(inode
, flags
);
1133 * make sure that changes are seen by all cpus before we test i_state
1138 /* avoid the locking if we can */
1139 if ((inode
->i_state
& flags
) == flags
)
1142 if (unlikely(block_dump
))
1143 block_dump___mark_inode_dirty(inode
);
1145 spin_lock(&inode
->i_lock
);
1146 if ((inode
->i_state
& flags
) != flags
) {
1147 const int was_dirty
= inode
->i_state
& I_DIRTY
;
1149 inode
->i_state
|= flags
;
1152 * If the inode is being synced, just update its dirty state.
1153 * The unlocker will place the inode on the appropriate
1154 * superblock list, based upon its state.
1156 if (inode
->i_state
& I_SYNC
)
1157 goto out_unlock_inode
;
1160 * Only add valid (hashed) inodes to the superblock's
1161 * dirty list. Add blockdev inodes as well.
1163 if (!S_ISBLK(inode
->i_mode
)) {
1164 if (inode_unhashed(inode
))
1165 goto out_unlock_inode
;
1167 if (inode
->i_state
& I_FREEING
)
1168 goto out_unlock_inode
;
1171 * If the inode was already on b_dirty/b_io/b_more_io, don't
1172 * reposition it (that would break b_dirty time-ordering).
1175 bool wakeup_bdi
= false;
1176 bdi
= inode_to_bdi(inode
);
1178 if (bdi_cap_writeback_dirty(bdi
)) {
1179 WARN(!test_bit(BDI_registered
, &bdi
->state
),
1180 "bdi-%s not registered\n", bdi
->name
);
1183 * If this is the first dirty inode for this
1184 * bdi, we have to wake-up the corresponding
1185 * bdi thread to make sure background
1186 * write-back happens later.
1188 if (!wb_has_dirty_io(&bdi
->wb
))
1192 spin_unlock(&inode
->i_lock
);
1193 spin_lock(&bdi
->wb
.list_lock
);
1194 inode
->dirtied_when
= jiffies
;
1195 list_move(&inode
->i_wb_list
, &bdi
->wb
.b_dirty
);
1196 spin_unlock(&bdi
->wb
.list_lock
);
1199 bdi_wakeup_thread_delayed(bdi
);
1204 spin_unlock(&inode
->i_lock
);
1207 EXPORT_SYMBOL(__mark_inode_dirty
);
1209 static void wait_sb_inodes(struct super_block
*sb
)
1211 struct inode
*inode
, *old_inode
= NULL
;
1214 * We need to be protected against the filesystem going from
1215 * r/o to r/w or vice versa.
1217 WARN_ON(!rwsem_is_locked(&sb
->s_umount
));
1219 spin_lock(&inode_sb_list_lock
);
1222 * Data integrity sync. Must wait for all pages under writeback,
1223 * because there may have been pages dirtied before our sync
1224 * call, but which had writeout started before we write it out.
1225 * In which case, the inode may not be on the dirty list, but
1226 * we still have to wait for that writeout.
1228 list_for_each_entry(inode
, &sb
->s_inodes
, i_sb_list
) {
1229 struct address_space
*mapping
= inode
->i_mapping
;
1231 spin_lock(&inode
->i_lock
);
1232 if ((inode
->i_state
& (I_FREEING
|I_WILL_FREE
|I_NEW
)) ||
1233 (mapping
->nrpages
== 0)) {
1234 spin_unlock(&inode
->i_lock
);
1238 spin_unlock(&inode
->i_lock
);
1239 spin_unlock(&inode_sb_list_lock
);
1242 * We hold a reference to 'inode' so it couldn't have been
1243 * removed from s_inodes list while we dropped the
1244 * inode_sb_list_lock. We cannot iput the inode now as we can
1245 * be holding the last reference and we cannot iput it under
1246 * inode_sb_list_lock. So we keep the reference and iput it
1252 filemap_fdatawait(mapping
);
1256 spin_lock(&inode_sb_list_lock
);
1258 spin_unlock(&inode_sb_list_lock
);
1263 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
1264 * @sb: the superblock
1265 * @nr: the number of pages to write
1266 * @reason: reason why some writeback work initiated
1268 * Start writeback on some inodes on this super_block. No guarantees are made
1269 * on how many (if any) will be written, and this function does not wait
1270 * for IO completion of submitted IO.
1272 void writeback_inodes_sb_nr(struct super_block
*sb
,
1274 enum wb_reason reason
)
1276 DECLARE_COMPLETION_ONSTACK(done
);
1277 struct wb_writeback_work work
= {
1279 .sync_mode
= WB_SYNC_NONE
,
1280 .tagged_writepages
= 1,
1286 if (sb
->s_bdi
== &noop_backing_dev_info
)
1288 WARN_ON(!rwsem_is_locked(&sb
->s_umount
));
1289 bdi_queue_work(sb
->s_bdi
, &work
);
1290 wait_for_completion(&done
);
1292 EXPORT_SYMBOL(writeback_inodes_sb_nr
);
1295 * writeback_inodes_sb - writeback dirty inodes from given super_block
1296 * @sb: the superblock
1297 * @reason: reason why some writeback work was initiated
1299 * Start writeback on some inodes on this super_block. No guarantees are made
1300 * on how many (if any) will be written, and this function does not wait
1301 * for IO completion of submitted IO.
1303 void writeback_inodes_sb(struct super_block
*sb
, enum wb_reason reason
)
1305 return writeback_inodes_sb_nr(sb
, get_nr_dirty_pages(), reason
);
1307 EXPORT_SYMBOL(writeback_inodes_sb
);
1310 * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
1311 * @sb: the superblock
1312 * @nr: the number of pages to write
1313 * @reason: the reason of writeback
1315 * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
1316 * Returns 1 if writeback was started, 0 if not.
1318 int try_to_writeback_inodes_sb_nr(struct super_block
*sb
,
1320 enum wb_reason reason
)
1322 if (writeback_in_progress(sb
->s_bdi
))
1325 if (!down_read_trylock(&sb
->s_umount
))
1328 writeback_inodes_sb_nr(sb
, nr
, reason
);
1329 up_read(&sb
->s_umount
);
1332 EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr
);
1335 * try_to_writeback_inodes_sb - try to start writeback if none underway
1336 * @sb: the superblock
1337 * @reason: reason why some writeback work was initiated
1339 * Implement by try_to_writeback_inodes_sb_nr()
1340 * Returns 1 if writeback was started, 0 if not.
1342 int try_to_writeback_inodes_sb(struct super_block
*sb
, enum wb_reason reason
)
1344 return try_to_writeback_inodes_sb_nr(sb
, get_nr_dirty_pages(), reason
);
1346 EXPORT_SYMBOL(try_to_writeback_inodes_sb
);
1349 * sync_inodes_sb - sync sb inode pages
1350 * @sb: the superblock
1352 * This function writes and waits on any dirty inode belonging to this
1355 void sync_inodes_sb(struct super_block
*sb
)
1357 DECLARE_COMPLETION_ONSTACK(done
);
1358 struct wb_writeback_work work
= {
1360 .sync_mode
= WB_SYNC_ALL
,
1361 .nr_pages
= LONG_MAX
,
1364 .reason
= WB_REASON_SYNC
,
1367 /* Nothing to do? */
1368 if (sb
->s_bdi
== &noop_backing_dev_info
)
1370 WARN_ON(!rwsem_is_locked(&sb
->s_umount
));
1372 bdi_queue_work(sb
->s_bdi
, &work
);
1373 wait_for_completion(&done
);
1377 EXPORT_SYMBOL(sync_inodes_sb
);
1380 * write_inode_now - write an inode to disk
1381 * @inode: inode to write to disk
1382 * @sync: whether the write should be synchronous or not
1384 * This function commits an inode to disk immediately if it is dirty. This is
1385 * primarily needed by knfsd.
1387 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1389 int write_inode_now(struct inode
*inode
, int sync
)
1391 struct bdi_writeback
*wb
= &inode_to_bdi(inode
)->wb
;
1392 struct writeback_control wbc
= {
1393 .nr_to_write
= LONG_MAX
,
1394 .sync_mode
= sync
? WB_SYNC_ALL
: WB_SYNC_NONE
,
1396 .range_end
= LLONG_MAX
,
1399 if (!mapping_cap_writeback_dirty(inode
->i_mapping
))
1400 wbc
.nr_to_write
= 0;
1403 return writeback_single_inode(inode
, wb
, &wbc
);
1405 EXPORT_SYMBOL(write_inode_now
);
1408 * sync_inode - write an inode and its pages to disk.
1409 * @inode: the inode to sync
1410 * @wbc: controls the writeback mode
1412 * sync_inode() will write an inode and its pages to disk. It will also
1413 * correctly update the inode on its superblock's dirty inode lists and will
1414 * update inode->i_state.
1416 * The caller must have a ref on the inode.
1418 int sync_inode(struct inode
*inode
, struct writeback_control
*wbc
)
1420 return writeback_single_inode(inode
, &inode_to_bdi(inode
)->wb
, wbc
);
1422 EXPORT_SYMBOL(sync_inode
);
1425 * sync_inode_metadata - write an inode to disk
1426 * @inode: the inode to sync
1427 * @wait: wait for I/O to complete.
1429 * Write an inode to disk and adjust its dirty state after completion.
1431 * Note: only writes the actual inode, no associated data or other metadata.
1433 int sync_inode_metadata(struct inode
*inode
, int wait
)
1435 struct writeback_control wbc
= {
1436 .sync_mode
= wait
? WB_SYNC_ALL
: WB_SYNC_NONE
,
1437 .nr_to_write
= 0, /* metadata-only */
1440 return sync_inode(inode
, &wbc
);
1442 EXPORT_SYMBOL(sync_inode_metadata
);