Linux 4.9.29
[linux/fpc-iii.git] / fs / btrfs / tree-log.c
blobb89004513c09a9828be2ff88174ed8aab3adb864
1 /*
2 * Copyright (C) 2008 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/blkdev.h>
22 #include <linux/list_sort.h>
23 #include "tree-log.h"
24 #include "disk-io.h"
25 #include "locking.h"
26 #include "print-tree.h"
27 #include "backref.h"
28 #include "hash.h"
29 #include "compression.h"
30 #include "qgroup.h"
32 /* magic values for the inode_only field in btrfs_log_inode:
34 * LOG_INODE_ALL means to log everything
35 * LOG_INODE_EXISTS means to log just enough to recreate the inode
36 * during log replay
38 #define LOG_INODE_ALL 0
39 #define LOG_INODE_EXISTS 1
42 * directory trouble cases
44 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
45 * log, we must force a full commit before doing an fsync of the directory
46 * where the unlink was done.
47 * ---> record transid of last unlink/rename per directory
49 * mkdir foo/some_dir
50 * normal commit
51 * rename foo/some_dir foo2/some_dir
52 * mkdir foo/some_dir
53 * fsync foo/some_dir/some_file
55 * The fsync above will unlink the original some_dir without recording
56 * it in its new location (foo2). After a crash, some_dir will be gone
57 * unless the fsync of some_file forces a full commit
59 * 2) we must log any new names for any file or dir that is in the fsync
60 * log. ---> check inode while renaming/linking.
62 * 2a) we must log any new names for any file or dir during rename
63 * when the directory they are being removed from was logged.
64 * ---> check inode and old parent dir during rename
66 * 2a is actually the more important variant. With the extra logging
67 * a crash might unlink the old name without recreating the new one
69 * 3) after a crash, we must go through any directories with a link count
70 * of zero and redo the rm -rf
72 * mkdir f1/foo
73 * normal commit
74 * rm -rf f1/foo
75 * fsync(f1)
77 * The directory f1 was fully removed from the FS, but fsync was never
78 * called on f1, only its parent dir. After a crash the rm -rf must
79 * be replayed. This must be able to recurse down the entire
80 * directory tree. The inode link count fixup code takes care of the
81 * ugly details.
85 * stages for the tree walking. The first
86 * stage (0) is to only pin down the blocks we find
87 * the second stage (1) is to make sure that all the inodes
88 * we find in the log are created in the subvolume.
90 * The last stage is to deal with directories and links and extents
91 * and all the other fun semantics
93 #define LOG_WALK_PIN_ONLY 0
94 #define LOG_WALK_REPLAY_INODES 1
95 #define LOG_WALK_REPLAY_DIR_INDEX 2
96 #define LOG_WALK_REPLAY_ALL 3
98 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
99 struct btrfs_root *root, struct inode *inode,
100 int inode_only,
101 const loff_t start,
102 const loff_t end,
103 struct btrfs_log_ctx *ctx);
104 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
105 struct btrfs_root *root,
106 struct btrfs_path *path, u64 objectid);
107 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
108 struct btrfs_root *root,
109 struct btrfs_root *log,
110 struct btrfs_path *path,
111 u64 dirid, int del_all);
114 * tree logging is a special write ahead log used to make sure that
115 * fsyncs and O_SYNCs can happen without doing full tree commits.
117 * Full tree commits are expensive because they require commonly
118 * modified blocks to be recowed, creating many dirty pages in the
119 * extent tree an 4x-6x higher write load than ext3.
121 * Instead of doing a tree commit on every fsync, we use the
122 * key ranges and transaction ids to find items for a given file or directory
123 * that have changed in this transaction. Those items are copied into
124 * a special tree (one per subvolume root), that tree is written to disk
125 * and then the fsync is considered complete.
127 * After a crash, items are copied out of the log-tree back into the
128 * subvolume tree. Any file data extents found are recorded in the extent
129 * allocation tree, and the log-tree freed.
131 * The log tree is read three times, once to pin down all the extents it is
132 * using in ram and once, once to create all the inodes logged in the tree
133 * and once to do all the other items.
137 * start a sub transaction and setup the log tree
138 * this increments the log tree writer count to make the people
139 * syncing the tree wait for us to finish
141 static int start_log_trans(struct btrfs_trans_handle *trans,
142 struct btrfs_root *root,
143 struct btrfs_log_ctx *ctx)
145 int ret = 0;
147 mutex_lock(&root->log_mutex);
149 if (root->log_root) {
150 if (btrfs_need_log_full_commit(root->fs_info, trans)) {
151 ret = -EAGAIN;
152 goto out;
155 if (!root->log_start_pid) {
156 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
157 root->log_start_pid = current->pid;
158 } else if (root->log_start_pid != current->pid) {
159 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
161 } else {
162 mutex_lock(&root->fs_info->tree_log_mutex);
163 if (!root->fs_info->log_root_tree)
164 ret = btrfs_init_log_root_tree(trans, root->fs_info);
165 mutex_unlock(&root->fs_info->tree_log_mutex);
166 if (ret)
167 goto out;
169 ret = btrfs_add_log_tree(trans, root);
170 if (ret)
171 goto out;
173 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
174 root->log_start_pid = current->pid;
177 atomic_inc(&root->log_batch);
178 atomic_inc(&root->log_writers);
179 if (ctx) {
180 int index = root->log_transid % 2;
181 list_add_tail(&ctx->list, &root->log_ctxs[index]);
182 ctx->log_transid = root->log_transid;
185 out:
186 mutex_unlock(&root->log_mutex);
187 return ret;
191 * returns 0 if there was a log transaction running and we were able
192 * to join, or returns -ENOENT if there were not transactions
193 * in progress
195 static int join_running_log_trans(struct btrfs_root *root)
197 int ret = -ENOENT;
199 smp_mb();
200 if (!root->log_root)
201 return -ENOENT;
203 mutex_lock(&root->log_mutex);
204 if (root->log_root) {
205 ret = 0;
206 atomic_inc(&root->log_writers);
208 mutex_unlock(&root->log_mutex);
209 return ret;
213 * This either makes the current running log transaction wait
214 * until you call btrfs_end_log_trans() or it makes any future
215 * log transactions wait until you call btrfs_end_log_trans()
217 int btrfs_pin_log_trans(struct btrfs_root *root)
219 int ret = -ENOENT;
221 mutex_lock(&root->log_mutex);
222 atomic_inc(&root->log_writers);
223 mutex_unlock(&root->log_mutex);
224 return ret;
228 * indicate we're done making changes to the log tree
229 * and wake up anyone waiting to do a sync
231 void btrfs_end_log_trans(struct btrfs_root *root)
233 if (atomic_dec_and_test(&root->log_writers)) {
235 * Implicit memory barrier after atomic_dec_and_test
237 if (waitqueue_active(&root->log_writer_wait))
238 wake_up(&root->log_writer_wait);
244 * the walk control struct is used to pass state down the chain when
245 * processing the log tree. The stage field tells us which part
246 * of the log tree processing we are currently doing. The others
247 * are state fields used for that specific part
249 struct walk_control {
250 /* should we free the extent on disk when done? This is used
251 * at transaction commit time while freeing a log tree
253 int free;
255 /* should we write out the extent buffer? This is used
256 * while flushing the log tree to disk during a sync
258 int write;
260 /* should we wait for the extent buffer io to finish? Also used
261 * while flushing the log tree to disk for a sync
263 int wait;
265 /* pin only walk, we record which extents on disk belong to the
266 * log trees
268 int pin;
270 /* what stage of the replay code we're currently in */
271 int stage;
273 /* the root we are currently replaying */
274 struct btrfs_root *replay_dest;
276 /* the trans handle for the current replay */
277 struct btrfs_trans_handle *trans;
279 /* the function that gets used to process blocks we find in the
280 * tree. Note the extent_buffer might not be up to date when it is
281 * passed in, and it must be checked or read if you need the data
282 * inside it
284 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
285 struct walk_control *wc, u64 gen);
289 * process_func used to pin down extents, write them or wait on them
291 static int process_one_buffer(struct btrfs_root *log,
292 struct extent_buffer *eb,
293 struct walk_control *wc, u64 gen)
295 int ret = 0;
298 * If this fs is mixed then we need to be able to process the leaves to
299 * pin down any logged extents, so we have to read the block.
301 if (btrfs_fs_incompat(log->fs_info, MIXED_GROUPS)) {
302 ret = btrfs_read_buffer(eb, gen);
303 if (ret)
304 return ret;
307 if (wc->pin)
308 ret = btrfs_pin_extent_for_log_replay(log->fs_info->extent_root,
309 eb->start, eb->len);
311 if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
312 if (wc->pin && btrfs_header_level(eb) == 0)
313 ret = btrfs_exclude_logged_extents(log, eb);
314 if (wc->write)
315 btrfs_write_tree_block(eb);
316 if (wc->wait)
317 btrfs_wait_tree_block_writeback(eb);
319 return ret;
323 * Item overwrite used by replay and tree logging. eb, slot and key all refer
324 * to the src data we are copying out.
326 * root is the tree we are copying into, and path is a scratch
327 * path for use in this function (it should be released on entry and
328 * will be released on exit).
330 * If the key is already in the destination tree the existing item is
331 * overwritten. If the existing item isn't big enough, it is extended.
332 * If it is too large, it is truncated.
334 * If the key isn't in the destination yet, a new item is inserted.
336 static noinline int overwrite_item(struct btrfs_trans_handle *trans,
337 struct btrfs_root *root,
338 struct btrfs_path *path,
339 struct extent_buffer *eb, int slot,
340 struct btrfs_key *key)
342 int ret;
343 u32 item_size;
344 u64 saved_i_size = 0;
345 int save_old_i_size = 0;
346 unsigned long src_ptr;
347 unsigned long dst_ptr;
348 int overwrite_root = 0;
349 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
351 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
352 overwrite_root = 1;
354 item_size = btrfs_item_size_nr(eb, slot);
355 src_ptr = btrfs_item_ptr_offset(eb, slot);
357 /* look for the key in the destination tree */
358 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
359 if (ret < 0)
360 return ret;
362 if (ret == 0) {
363 char *src_copy;
364 char *dst_copy;
365 u32 dst_size = btrfs_item_size_nr(path->nodes[0],
366 path->slots[0]);
367 if (dst_size != item_size)
368 goto insert;
370 if (item_size == 0) {
371 btrfs_release_path(path);
372 return 0;
374 dst_copy = kmalloc(item_size, GFP_NOFS);
375 src_copy = kmalloc(item_size, GFP_NOFS);
376 if (!dst_copy || !src_copy) {
377 btrfs_release_path(path);
378 kfree(dst_copy);
379 kfree(src_copy);
380 return -ENOMEM;
383 read_extent_buffer(eb, src_copy, src_ptr, item_size);
385 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
386 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
387 item_size);
388 ret = memcmp(dst_copy, src_copy, item_size);
390 kfree(dst_copy);
391 kfree(src_copy);
393 * they have the same contents, just return, this saves
394 * us from cowing blocks in the destination tree and doing
395 * extra writes that may not have been done by a previous
396 * sync
398 if (ret == 0) {
399 btrfs_release_path(path);
400 return 0;
404 * We need to load the old nbytes into the inode so when we
405 * replay the extents we've logged we get the right nbytes.
407 if (inode_item) {
408 struct btrfs_inode_item *item;
409 u64 nbytes;
410 u32 mode;
412 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
413 struct btrfs_inode_item);
414 nbytes = btrfs_inode_nbytes(path->nodes[0], item);
415 item = btrfs_item_ptr(eb, slot,
416 struct btrfs_inode_item);
417 btrfs_set_inode_nbytes(eb, item, nbytes);
420 * If this is a directory we need to reset the i_size to
421 * 0 so that we can set it up properly when replaying
422 * the rest of the items in this log.
424 mode = btrfs_inode_mode(eb, item);
425 if (S_ISDIR(mode))
426 btrfs_set_inode_size(eb, item, 0);
428 } else if (inode_item) {
429 struct btrfs_inode_item *item;
430 u32 mode;
433 * New inode, set nbytes to 0 so that the nbytes comes out
434 * properly when we replay the extents.
436 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
437 btrfs_set_inode_nbytes(eb, item, 0);
440 * If this is a directory we need to reset the i_size to 0 so
441 * that we can set it up properly when replaying the rest of
442 * the items in this log.
444 mode = btrfs_inode_mode(eb, item);
445 if (S_ISDIR(mode))
446 btrfs_set_inode_size(eb, item, 0);
448 insert:
449 btrfs_release_path(path);
450 /* try to insert the key into the destination tree */
451 path->skip_release_on_error = 1;
452 ret = btrfs_insert_empty_item(trans, root, path,
453 key, item_size);
454 path->skip_release_on_error = 0;
456 /* make sure any existing item is the correct size */
457 if (ret == -EEXIST || ret == -EOVERFLOW) {
458 u32 found_size;
459 found_size = btrfs_item_size_nr(path->nodes[0],
460 path->slots[0]);
461 if (found_size > item_size)
462 btrfs_truncate_item(root, path, item_size, 1);
463 else if (found_size < item_size)
464 btrfs_extend_item(root, path,
465 item_size - found_size);
466 } else if (ret) {
467 return ret;
469 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
470 path->slots[0]);
472 /* don't overwrite an existing inode if the generation number
473 * was logged as zero. This is done when the tree logging code
474 * is just logging an inode to make sure it exists after recovery.
476 * Also, don't overwrite i_size on directories during replay.
477 * log replay inserts and removes directory items based on the
478 * state of the tree found in the subvolume, and i_size is modified
479 * as it goes
481 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
482 struct btrfs_inode_item *src_item;
483 struct btrfs_inode_item *dst_item;
485 src_item = (struct btrfs_inode_item *)src_ptr;
486 dst_item = (struct btrfs_inode_item *)dst_ptr;
488 if (btrfs_inode_generation(eb, src_item) == 0) {
489 struct extent_buffer *dst_eb = path->nodes[0];
490 const u64 ino_size = btrfs_inode_size(eb, src_item);
493 * For regular files an ino_size == 0 is used only when
494 * logging that an inode exists, as part of a directory
495 * fsync, and the inode wasn't fsynced before. In this
496 * case don't set the size of the inode in the fs/subvol
497 * tree, otherwise we would be throwing valid data away.
499 if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
500 S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
501 ino_size != 0) {
502 struct btrfs_map_token token;
504 btrfs_init_map_token(&token);
505 btrfs_set_token_inode_size(dst_eb, dst_item,
506 ino_size, &token);
508 goto no_copy;
511 if (overwrite_root &&
512 S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
513 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
514 save_old_i_size = 1;
515 saved_i_size = btrfs_inode_size(path->nodes[0],
516 dst_item);
520 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
521 src_ptr, item_size);
523 if (save_old_i_size) {
524 struct btrfs_inode_item *dst_item;
525 dst_item = (struct btrfs_inode_item *)dst_ptr;
526 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
529 /* make sure the generation is filled in */
530 if (key->type == BTRFS_INODE_ITEM_KEY) {
531 struct btrfs_inode_item *dst_item;
532 dst_item = (struct btrfs_inode_item *)dst_ptr;
533 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
534 btrfs_set_inode_generation(path->nodes[0], dst_item,
535 trans->transid);
538 no_copy:
539 btrfs_mark_buffer_dirty(path->nodes[0]);
540 btrfs_release_path(path);
541 return 0;
545 * simple helper to read an inode off the disk from a given root
546 * This can only be called for subvolume roots and not for the log
548 static noinline struct inode *read_one_inode(struct btrfs_root *root,
549 u64 objectid)
551 struct btrfs_key key;
552 struct inode *inode;
554 key.objectid = objectid;
555 key.type = BTRFS_INODE_ITEM_KEY;
556 key.offset = 0;
557 inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
558 if (IS_ERR(inode)) {
559 inode = NULL;
560 } else if (is_bad_inode(inode)) {
561 iput(inode);
562 inode = NULL;
564 return inode;
567 /* replays a single extent in 'eb' at 'slot' with 'key' into the
568 * subvolume 'root'. path is released on entry and should be released
569 * on exit.
571 * extents in the log tree have not been allocated out of the extent
572 * tree yet. So, this completes the allocation, taking a reference
573 * as required if the extent already exists or creating a new extent
574 * if it isn't in the extent allocation tree yet.
576 * The extent is inserted into the file, dropping any existing extents
577 * from the file that overlap the new one.
579 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
580 struct btrfs_root *root,
581 struct btrfs_path *path,
582 struct extent_buffer *eb, int slot,
583 struct btrfs_key *key)
585 int found_type;
586 u64 extent_end;
587 u64 start = key->offset;
588 u64 nbytes = 0;
589 struct btrfs_file_extent_item *item;
590 struct inode *inode = NULL;
591 unsigned long size;
592 int ret = 0;
594 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
595 found_type = btrfs_file_extent_type(eb, item);
597 if (found_type == BTRFS_FILE_EXTENT_REG ||
598 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
599 nbytes = btrfs_file_extent_num_bytes(eb, item);
600 extent_end = start + nbytes;
603 * We don't add to the inodes nbytes if we are prealloc or a
604 * hole.
606 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
607 nbytes = 0;
608 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
609 size = btrfs_file_extent_inline_len(eb, slot, item);
610 nbytes = btrfs_file_extent_ram_bytes(eb, item);
611 extent_end = ALIGN(start + size, root->sectorsize);
612 } else {
613 ret = 0;
614 goto out;
617 inode = read_one_inode(root, key->objectid);
618 if (!inode) {
619 ret = -EIO;
620 goto out;
624 * first check to see if we already have this extent in the
625 * file. This must be done before the btrfs_drop_extents run
626 * so we don't try to drop this extent.
628 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
629 start, 0);
631 if (ret == 0 &&
632 (found_type == BTRFS_FILE_EXTENT_REG ||
633 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
634 struct btrfs_file_extent_item cmp1;
635 struct btrfs_file_extent_item cmp2;
636 struct btrfs_file_extent_item *existing;
637 struct extent_buffer *leaf;
639 leaf = path->nodes[0];
640 existing = btrfs_item_ptr(leaf, path->slots[0],
641 struct btrfs_file_extent_item);
643 read_extent_buffer(eb, &cmp1, (unsigned long)item,
644 sizeof(cmp1));
645 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
646 sizeof(cmp2));
649 * we already have a pointer to this exact extent,
650 * we don't have to do anything
652 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
653 btrfs_release_path(path);
654 goto out;
657 btrfs_release_path(path);
659 /* drop any overlapping extents */
660 ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
661 if (ret)
662 goto out;
664 if (found_type == BTRFS_FILE_EXTENT_REG ||
665 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
666 u64 offset;
667 unsigned long dest_offset;
668 struct btrfs_key ins;
670 ret = btrfs_insert_empty_item(trans, root, path, key,
671 sizeof(*item));
672 if (ret)
673 goto out;
674 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
675 path->slots[0]);
676 copy_extent_buffer(path->nodes[0], eb, dest_offset,
677 (unsigned long)item, sizeof(*item));
679 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
680 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
681 ins.type = BTRFS_EXTENT_ITEM_KEY;
682 offset = key->offset - btrfs_file_extent_offset(eb, item);
685 * Manually record dirty extent, as here we did a shallow
686 * file extent item copy and skip normal backref update,
687 * but modifying extent tree all by ourselves.
688 * So need to manually record dirty extent for qgroup,
689 * as the owner of the file extent changed from log tree
690 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
692 ret = btrfs_qgroup_insert_dirty_extent(trans, root->fs_info,
693 btrfs_file_extent_disk_bytenr(eb, item),
694 btrfs_file_extent_disk_num_bytes(eb, item),
695 GFP_NOFS);
696 if (ret < 0)
697 goto out;
699 if (ins.objectid > 0) {
700 u64 csum_start;
701 u64 csum_end;
702 LIST_HEAD(ordered_sums);
704 * is this extent already allocated in the extent
705 * allocation tree? If so, just add a reference
707 ret = btrfs_lookup_data_extent(root, ins.objectid,
708 ins.offset);
709 if (ret == 0) {
710 ret = btrfs_inc_extent_ref(trans, root,
711 ins.objectid, ins.offset,
712 0, root->root_key.objectid,
713 key->objectid, offset);
714 if (ret)
715 goto out;
716 } else {
718 * insert the extent pointer in the extent
719 * allocation tree
721 ret = btrfs_alloc_logged_file_extent(trans,
722 root, root->root_key.objectid,
723 key->objectid, offset, &ins);
724 if (ret)
725 goto out;
727 btrfs_release_path(path);
729 if (btrfs_file_extent_compression(eb, item)) {
730 csum_start = ins.objectid;
731 csum_end = csum_start + ins.offset;
732 } else {
733 csum_start = ins.objectid +
734 btrfs_file_extent_offset(eb, item);
735 csum_end = csum_start +
736 btrfs_file_extent_num_bytes(eb, item);
739 ret = btrfs_lookup_csums_range(root->log_root,
740 csum_start, csum_end - 1,
741 &ordered_sums, 0);
742 if (ret)
743 goto out;
745 * Now delete all existing cums in the csum root that
746 * cover our range. We do this because we can have an
747 * extent that is completely referenced by one file
748 * extent item and partially referenced by another
749 * file extent item (like after using the clone or
750 * extent_same ioctls). In this case if we end up doing
751 * the replay of the one that partially references the
752 * extent first, and we do not do the csum deletion
753 * below, we can get 2 csum items in the csum tree that
754 * overlap each other. For example, imagine our log has
755 * the two following file extent items:
757 * key (257 EXTENT_DATA 409600)
758 * extent data disk byte 12845056 nr 102400
759 * extent data offset 20480 nr 20480 ram 102400
761 * key (257 EXTENT_DATA 819200)
762 * extent data disk byte 12845056 nr 102400
763 * extent data offset 0 nr 102400 ram 102400
765 * Where the second one fully references the 100K extent
766 * that starts at disk byte 12845056, and the log tree
767 * has a single csum item that covers the entire range
768 * of the extent:
770 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
772 * After the first file extent item is replayed, the
773 * csum tree gets the following csum item:
775 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
777 * Which covers the 20K sub-range starting at offset 20K
778 * of our extent. Now when we replay the second file
779 * extent item, if we do not delete existing csum items
780 * that cover any of its blocks, we end up getting two
781 * csum items in our csum tree that overlap each other:
783 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
784 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
786 * Which is a problem, because after this anyone trying
787 * to lookup up for the checksum of any block of our
788 * extent starting at an offset of 40K or higher, will
789 * end up looking at the second csum item only, which
790 * does not contain the checksum for any block starting
791 * at offset 40K or higher of our extent.
793 while (!list_empty(&ordered_sums)) {
794 struct btrfs_ordered_sum *sums;
795 sums = list_entry(ordered_sums.next,
796 struct btrfs_ordered_sum,
797 list);
798 if (!ret)
799 ret = btrfs_del_csums(trans,
800 root->fs_info->csum_root,
801 sums->bytenr,
802 sums->len);
803 if (!ret)
804 ret = btrfs_csum_file_blocks(trans,
805 root->fs_info->csum_root,
806 sums);
807 list_del(&sums->list);
808 kfree(sums);
810 if (ret)
811 goto out;
812 } else {
813 btrfs_release_path(path);
815 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
816 /* inline extents are easy, we just overwrite them */
817 ret = overwrite_item(trans, root, path, eb, slot, key);
818 if (ret)
819 goto out;
822 inode_add_bytes(inode, nbytes);
823 ret = btrfs_update_inode(trans, root, inode);
824 out:
825 if (inode)
826 iput(inode);
827 return ret;
831 * when cleaning up conflicts between the directory names in the
832 * subvolume, directory names in the log and directory names in the
833 * inode back references, we may have to unlink inodes from directories.
835 * This is a helper function to do the unlink of a specific directory
836 * item
838 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
839 struct btrfs_root *root,
840 struct btrfs_path *path,
841 struct inode *dir,
842 struct btrfs_dir_item *di)
844 struct inode *inode;
845 char *name;
846 int name_len;
847 struct extent_buffer *leaf;
848 struct btrfs_key location;
849 int ret;
851 leaf = path->nodes[0];
853 btrfs_dir_item_key_to_cpu(leaf, di, &location);
854 name_len = btrfs_dir_name_len(leaf, di);
855 name = kmalloc(name_len, GFP_NOFS);
856 if (!name)
857 return -ENOMEM;
859 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
860 btrfs_release_path(path);
862 inode = read_one_inode(root, location.objectid);
863 if (!inode) {
864 ret = -EIO;
865 goto out;
868 ret = link_to_fixup_dir(trans, root, path, location.objectid);
869 if (ret)
870 goto out;
872 ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
873 if (ret)
874 goto out;
875 else
876 ret = btrfs_run_delayed_items(trans, root);
877 out:
878 kfree(name);
879 iput(inode);
880 return ret;
884 * helper function to see if a given name and sequence number found
885 * in an inode back reference are already in a directory and correctly
886 * point to this inode
888 static noinline int inode_in_dir(struct btrfs_root *root,
889 struct btrfs_path *path,
890 u64 dirid, u64 objectid, u64 index,
891 const char *name, int name_len)
893 struct btrfs_dir_item *di;
894 struct btrfs_key location;
895 int match = 0;
897 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
898 index, name, name_len, 0);
899 if (di && !IS_ERR(di)) {
900 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
901 if (location.objectid != objectid)
902 goto out;
903 } else
904 goto out;
905 btrfs_release_path(path);
907 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
908 if (di && !IS_ERR(di)) {
909 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
910 if (location.objectid != objectid)
911 goto out;
912 } else
913 goto out;
914 match = 1;
915 out:
916 btrfs_release_path(path);
917 return match;
921 * helper function to check a log tree for a named back reference in
922 * an inode. This is used to decide if a back reference that is
923 * found in the subvolume conflicts with what we find in the log.
925 * inode backreferences may have multiple refs in a single item,
926 * during replay we process one reference at a time, and we don't
927 * want to delete valid links to a file from the subvolume if that
928 * link is also in the log.
930 static noinline int backref_in_log(struct btrfs_root *log,
931 struct btrfs_key *key,
932 u64 ref_objectid,
933 const char *name, int namelen)
935 struct btrfs_path *path;
936 struct btrfs_inode_ref *ref;
937 unsigned long ptr;
938 unsigned long ptr_end;
939 unsigned long name_ptr;
940 int found_name_len;
941 int item_size;
942 int ret;
943 int match = 0;
945 path = btrfs_alloc_path();
946 if (!path)
947 return -ENOMEM;
949 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
950 if (ret != 0)
951 goto out;
953 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
955 if (key->type == BTRFS_INODE_EXTREF_KEY) {
956 if (btrfs_find_name_in_ext_backref(path, ref_objectid,
957 name, namelen, NULL))
958 match = 1;
960 goto out;
963 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
964 ptr_end = ptr + item_size;
965 while (ptr < ptr_end) {
966 ref = (struct btrfs_inode_ref *)ptr;
967 found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
968 if (found_name_len == namelen) {
969 name_ptr = (unsigned long)(ref + 1);
970 ret = memcmp_extent_buffer(path->nodes[0], name,
971 name_ptr, namelen);
972 if (ret == 0) {
973 match = 1;
974 goto out;
977 ptr = (unsigned long)(ref + 1) + found_name_len;
979 out:
980 btrfs_free_path(path);
981 return match;
984 static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
985 struct btrfs_root *root,
986 struct btrfs_path *path,
987 struct btrfs_root *log_root,
988 struct inode *dir, struct inode *inode,
989 struct extent_buffer *eb,
990 u64 inode_objectid, u64 parent_objectid,
991 u64 ref_index, char *name, int namelen,
992 int *search_done)
994 int ret;
995 char *victim_name;
996 int victim_name_len;
997 struct extent_buffer *leaf;
998 struct btrfs_dir_item *di;
999 struct btrfs_key search_key;
1000 struct btrfs_inode_extref *extref;
1002 again:
1003 /* Search old style refs */
1004 search_key.objectid = inode_objectid;
1005 search_key.type = BTRFS_INODE_REF_KEY;
1006 search_key.offset = parent_objectid;
1007 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
1008 if (ret == 0) {
1009 struct btrfs_inode_ref *victim_ref;
1010 unsigned long ptr;
1011 unsigned long ptr_end;
1013 leaf = path->nodes[0];
1015 /* are we trying to overwrite a back ref for the root directory
1016 * if so, just jump out, we're done
1018 if (search_key.objectid == search_key.offset)
1019 return 1;
1021 /* check all the names in this back reference to see
1022 * if they are in the log. if so, we allow them to stay
1023 * otherwise they must be unlinked as a conflict
1025 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1026 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
1027 while (ptr < ptr_end) {
1028 victim_ref = (struct btrfs_inode_ref *)ptr;
1029 victim_name_len = btrfs_inode_ref_name_len(leaf,
1030 victim_ref);
1031 victim_name = kmalloc(victim_name_len, GFP_NOFS);
1032 if (!victim_name)
1033 return -ENOMEM;
1035 read_extent_buffer(leaf, victim_name,
1036 (unsigned long)(victim_ref + 1),
1037 victim_name_len);
1039 if (!backref_in_log(log_root, &search_key,
1040 parent_objectid,
1041 victim_name,
1042 victim_name_len)) {
1043 inc_nlink(inode);
1044 btrfs_release_path(path);
1046 ret = btrfs_unlink_inode(trans, root, dir,
1047 inode, victim_name,
1048 victim_name_len);
1049 kfree(victim_name);
1050 if (ret)
1051 return ret;
1052 ret = btrfs_run_delayed_items(trans, root);
1053 if (ret)
1054 return ret;
1055 *search_done = 1;
1056 goto again;
1058 kfree(victim_name);
1060 ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
1064 * NOTE: we have searched root tree and checked the
1065 * corresponding ref, it does not need to check again.
1067 *search_done = 1;
1069 btrfs_release_path(path);
1071 /* Same search but for extended refs */
1072 extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1073 inode_objectid, parent_objectid, 0,
1075 if (!IS_ERR_OR_NULL(extref)) {
1076 u32 item_size;
1077 u32 cur_offset = 0;
1078 unsigned long base;
1079 struct inode *victim_parent;
1081 leaf = path->nodes[0];
1083 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1084 base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1086 while (cur_offset < item_size) {
1087 extref = (struct btrfs_inode_extref *)(base + cur_offset);
1089 victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1091 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1092 goto next;
1094 victim_name = kmalloc(victim_name_len, GFP_NOFS);
1095 if (!victim_name)
1096 return -ENOMEM;
1097 read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1098 victim_name_len);
1100 search_key.objectid = inode_objectid;
1101 search_key.type = BTRFS_INODE_EXTREF_KEY;
1102 search_key.offset = btrfs_extref_hash(parent_objectid,
1103 victim_name,
1104 victim_name_len);
1105 ret = 0;
1106 if (!backref_in_log(log_root, &search_key,
1107 parent_objectid, victim_name,
1108 victim_name_len)) {
1109 ret = -ENOENT;
1110 victim_parent = read_one_inode(root,
1111 parent_objectid);
1112 if (victim_parent) {
1113 inc_nlink(inode);
1114 btrfs_release_path(path);
1116 ret = btrfs_unlink_inode(trans, root,
1117 victim_parent,
1118 inode,
1119 victim_name,
1120 victim_name_len);
1121 if (!ret)
1122 ret = btrfs_run_delayed_items(
1123 trans, root);
1125 iput(victim_parent);
1126 kfree(victim_name);
1127 if (ret)
1128 return ret;
1129 *search_done = 1;
1130 goto again;
1132 kfree(victim_name);
1133 if (ret)
1134 return ret;
1135 next:
1136 cur_offset += victim_name_len + sizeof(*extref);
1138 *search_done = 1;
1140 btrfs_release_path(path);
1142 /* look for a conflicting sequence number */
1143 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1144 ref_index, name, namelen, 0);
1145 if (di && !IS_ERR(di)) {
1146 ret = drop_one_dir_item(trans, root, path, dir, di);
1147 if (ret)
1148 return ret;
1150 btrfs_release_path(path);
1152 /* look for a conflicing name */
1153 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1154 name, namelen, 0);
1155 if (di && !IS_ERR(di)) {
1156 ret = drop_one_dir_item(trans, root, path, dir, di);
1157 if (ret)
1158 return ret;
1160 btrfs_release_path(path);
1162 return 0;
1165 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1166 u32 *namelen, char **name, u64 *index,
1167 u64 *parent_objectid)
1169 struct btrfs_inode_extref *extref;
1171 extref = (struct btrfs_inode_extref *)ref_ptr;
1173 *namelen = btrfs_inode_extref_name_len(eb, extref);
1174 *name = kmalloc(*namelen, GFP_NOFS);
1175 if (*name == NULL)
1176 return -ENOMEM;
1178 read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1179 *namelen);
1181 *index = btrfs_inode_extref_index(eb, extref);
1182 if (parent_objectid)
1183 *parent_objectid = btrfs_inode_extref_parent(eb, extref);
1185 return 0;
1188 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1189 u32 *namelen, char **name, u64 *index)
1191 struct btrfs_inode_ref *ref;
1193 ref = (struct btrfs_inode_ref *)ref_ptr;
1195 *namelen = btrfs_inode_ref_name_len(eb, ref);
1196 *name = kmalloc(*namelen, GFP_NOFS);
1197 if (*name == NULL)
1198 return -ENOMEM;
1200 read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1202 *index = btrfs_inode_ref_index(eb, ref);
1204 return 0;
1208 * replay one inode back reference item found in the log tree.
1209 * eb, slot and key refer to the buffer and key found in the log tree.
1210 * root is the destination we are replaying into, and path is for temp
1211 * use by this function. (it should be released on return).
1213 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1214 struct btrfs_root *root,
1215 struct btrfs_root *log,
1216 struct btrfs_path *path,
1217 struct extent_buffer *eb, int slot,
1218 struct btrfs_key *key)
1220 struct inode *dir = NULL;
1221 struct inode *inode = NULL;
1222 unsigned long ref_ptr;
1223 unsigned long ref_end;
1224 char *name = NULL;
1225 int namelen;
1226 int ret;
1227 int search_done = 0;
1228 int log_ref_ver = 0;
1229 u64 parent_objectid;
1230 u64 inode_objectid;
1231 u64 ref_index = 0;
1232 int ref_struct_size;
1234 ref_ptr = btrfs_item_ptr_offset(eb, slot);
1235 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1237 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1238 struct btrfs_inode_extref *r;
1240 ref_struct_size = sizeof(struct btrfs_inode_extref);
1241 log_ref_ver = 1;
1242 r = (struct btrfs_inode_extref *)ref_ptr;
1243 parent_objectid = btrfs_inode_extref_parent(eb, r);
1244 } else {
1245 ref_struct_size = sizeof(struct btrfs_inode_ref);
1246 parent_objectid = key->offset;
1248 inode_objectid = key->objectid;
1251 * it is possible that we didn't log all the parent directories
1252 * for a given inode. If we don't find the dir, just don't
1253 * copy the back ref in. The link count fixup code will take
1254 * care of the rest
1256 dir = read_one_inode(root, parent_objectid);
1257 if (!dir) {
1258 ret = -ENOENT;
1259 goto out;
1262 inode = read_one_inode(root, inode_objectid);
1263 if (!inode) {
1264 ret = -EIO;
1265 goto out;
1268 while (ref_ptr < ref_end) {
1269 if (log_ref_ver) {
1270 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1271 &ref_index, &parent_objectid);
1273 * parent object can change from one array
1274 * item to another.
1276 if (!dir)
1277 dir = read_one_inode(root, parent_objectid);
1278 if (!dir) {
1279 ret = -ENOENT;
1280 goto out;
1282 } else {
1283 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1284 &ref_index);
1286 if (ret)
1287 goto out;
1289 /* if we already have a perfect match, we're done */
1290 if (!inode_in_dir(root, path, btrfs_ino(dir), btrfs_ino(inode),
1291 ref_index, name, namelen)) {
1293 * look for a conflicting back reference in the
1294 * metadata. if we find one we have to unlink that name
1295 * of the file before we add our new link. Later on, we
1296 * overwrite any existing back reference, and we don't
1297 * want to create dangling pointers in the directory.
1300 if (!search_done) {
1301 ret = __add_inode_ref(trans, root, path, log,
1302 dir, inode, eb,
1303 inode_objectid,
1304 parent_objectid,
1305 ref_index, name, namelen,
1306 &search_done);
1307 if (ret) {
1308 if (ret == 1)
1309 ret = 0;
1310 goto out;
1314 /* insert our name */
1315 ret = btrfs_add_link(trans, dir, inode, name, namelen,
1316 0, ref_index);
1317 if (ret)
1318 goto out;
1320 btrfs_update_inode(trans, root, inode);
1323 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1324 kfree(name);
1325 name = NULL;
1326 if (log_ref_ver) {
1327 iput(dir);
1328 dir = NULL;
1332 /* finally write the back reference in the inode */
1333 ret = overwrite_item(trans, root, path, eb, slot, key);
1334 out:
1335 btrfs_release_path(path);
1336 kfree(name);
1337 iput(dir);
1338 iput(inode);
1339 return ret;
1342 static int insert_orphan_item(struct btrfs_trans_handle *trans,
1343 struct btrfs_root *root, u64 ino)
1345 int ret;
1347 ret = btrfs_insert_orphan_item(trans, root, ino);
1348 if (ret == -EEXIST)
1349 ret = 0;
1351 return ret;
1354 static int count_inode_extrefs(struct btrfs_root *root,
1355 struct inode *inode, struct btrfs_path *path)
1357 int ret = 0;
1358 int name_len;
1359 unsigned int nlink = 0;
1360 u32 item_size;
1361 u32 cur_offset = 0;
1362 u64 inode_objectid = btrfs_ino(inode);
1363 u64 offset = 0;
1364 unsigned long ptr;
1365 struct btrfs_inode_extref *extref;
1366 struct extent_buffer *leaf;
1368 while (1) {
1369 ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1370 &extref, &offset);
1371 if (ret)
1372 break;
1374 leaf = path->nodes[0];
1375 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1376 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1377 cur_offset = 0;
1379 while (cur_offset < item_size) {
1380 extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1381 name_len = btrfs_inode_extref_name_len(leaf, extref);
1383 nlink++;
1385 cur_offset += name_len + sizeof(*extref);
1388 offset++;
1389 btrfs_release_path(path);
1391 btrfs_release_path(path);
1393 if (ret < 0 && ret != -ENOENT)
1394 return ret;
1395 return nlink;
1398 static int count_inode_refs(struct btrfs_root *root,
1399 struct inode *inode, struct btrfs_path *path)
1401 int ret;
1402 struct btrfs_key key;
1403 unsigned int nlink = 0;
1404 unsigned long ptr;
1405 unsigned long ptr_end;
1406 int name_len;
1407 u64 ino = btrfs_ino(inode);
1409 key.objectid = ino;
1410 key.type = BTRFS_INODE_REF_KEY;
1411 key.offset = (u64)-1;
1413 while (1) {
1414 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1415 if (ret < 0)
1416 break;
1417 if (ret > 0) {
1418 if (path->slots[0] == 0)
1419 break;
1420 path->slots[0]--;
1422 process_slot:
1423 btrfs_item_key_to_cpu(path->nodes[0], &key,
1424 path->slots[0]);
1425 if (key.objectid != ino ||
1426 key.type != BTRFS_INODE_REF_KEY)
1427 break;
1428 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1429 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1430 path->slots[0]);
1431 while (ptr < ptr_end) {
1432 struct btrfs_inode_ref *ref;
1434 ref = (struct btrfs_inode_ref *)ptr;
1435 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1436 ref);
1437 ptr = (unsigned long)(ref + 1) + name_len;
1438 nlink++;
1441 if (key.offset == 0)
1442 break;
1443 if (path->slots[0] > 0) {
1444 path->slots[0]--;
1445 goto process_slot;
1447 key.offset--;
1448 btrfs_release_path(path);
1450 btrfs_release_path(path);
1452 return nlink;
1456 * There are a few corners where the link count of the file can't
1457 * be properly maintained during replay. So, instead of adding
1458 * lots of complexity to the log code, we just scan the backrefs
1459 * for any file that has been through replay.
1461 * The scan will update the link count on the inode to reflect the
1462 * number of back refs found. If it goes down to zero, the iput
1463 * will free the inode.
1465 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1466 struct btrfs_root *root,
1467 struct inode *inode)
1469 struct btrfs_path *path;
1470 int ret;
1471 u64 nlink = 0;
1472 u64 ino = btrfs_ino(inode);
1474 path = btrfs_alloc_path();
1475 if (!path)
1476 return -ENOMEM;
1478 ret = count_inode_refs(root, inode, path);
1479 if (ret < 0)
1480 goto out;
1482 nlink = ret;
1484 ret = count_inode_extrefs(root, inode, path);
1485 if (ret < 0)
1486 goto out;
1488 nlink += ret;
1490 ret = 0;
1492 if (nlink != inode->i_nlink) {
1493 set_nlink(inode, nlink);
1494 btrfs_update_inode(trans, root, inode);
1496 BTRFS_I(inode)->index_cnt = (u64)-1;
1498 if (inode->i_nlink == 0) {
1499 if (S_ISDIR(inode->i_mode)) {
1500 ret = replay_dir_deletes(trans, root, NULL, path,
1501 ino, 1);
1502 if (ret)
1503 goto out;
1505 ret = insert_orphan_item(trans, root, ino);
1508 out:
1509 btrfs_free_path(path);
1510 return ret;
1513 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1514 struct btrfs_root *root,
1515 struct btrfs_path *path)
1517 int ret;
1518 struct btrfs_key key;
1519 struct inode *inode;
1521 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1522 key.type = BTRFS_ORPHAN_ITEM_KEY;
1523 key.offset = (u64)-1;
1524 while (1) {
1525 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1526 if (ret < 0)
1527 break;
1529 if (ret == 1) {
1530 if (path->slots[0] == 0)
1531 break;
1532 path->slots[0]--;
1535 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1536 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1537 key.type != BTRFS_ORPHAN_ITEM_KEY)
1538 break;
1540 ret = btrfs_del_item(trans, root, path);
1541 if (ret)
1542 goto out;
1544 btrfs_release_path(path);
1545 inode = read_one_inode(root, key.offset);
1546 if (!inode)
1547 return -EIO;
1549 ret = fixup_inode_link_count(trans, root, inode);
1550 iput(inode);
1551 if (ret)
1552 goto out;
1555 * fixup on a directory may create new entries,
1556 * make sure we always look for the highset possible
1557 * offset
1559 key.offset = (u64)-1;
1561 ret = 0;
1562 out:
1563 btrfs_release_path(path);
1564 return ret;
1569 * record a given inode in the fixup dir so we can check its link
1570 * count when replay is done. The link count is incremented here
1571 * so the inode won't go away until we check it
1573 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1574 struct btrfs_root *root,
1575 struct btrfs_path *path,
1576 u64 objectid)
1578 struct btrfs_key key;
1579 int ret = 0;
1580 struct inode *inode;
1582 inode = read_one_inode(root, objectid);
1583 if (!inode)
1584 return -EIO;
1586 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1587 key.type = BTRFS_ORPHAN_ITEM_KEY;
1588 key.offset = objectid;
1590 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1592 btrfs_release_path(path);
1593 if (ret == 0) {
1594 if (!inode->i_nlink)
1595 set_nlink(inode, 1);
1596 else
1597 inc_nlink(inode);
1598 ret = btrfs_update_inode(trans, root, inode);
1599 } else if (ret == -EEXIST) {
1600 ret = 0;
1601 } else {
1602 BUG(); /* Logic Error */
1604 iput(inode);
1606 return ret;
1610 * when replaying the log for a directory, we only insert names
1611 * for inodes that actually exist. This means an fsync on a directory
1612 * does not implicitly fsync all the new files in it
1614 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1615 struct btrfs_root *root,
1616 u64 dirid, u64 index,
1617 char *name, int name_len,
1618 struct btrfs_key *location)
1620 struct inode *inode;
1621 struct inode *dir;
1622 int ret;
1624 inode = read_one_inode(root, location->objectid);
1625 if (!inode)
1626 return -ENOENT;
1628 dir = read_one_inode(root, dirid);
1629 if (!dir) {
1630 iput(inode);
1631 return -EIO;
1634 ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
1636 /* FIXME, put inode into FIXUP list */
1638 iput(inode);
1639 iput(dir);
1640 return ret;
1644 * Return true if an inode reference exists in the log for the given name,
1645 * inode and parent inode.
1647 static bool name_in_log_ref(struct btrfs_root *log_root,
1648 const char *name, const int name_len,
1649 const u64 dirid, const u64 ino)
1651 struct btrfs_key search_key;
1653 search_key.objectid = ino;
1654 search_key.type = BTRFS_INODE_REF_KEY;
1655 search_key.offset = dirid;
1656 if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1657 return true;
1659 search_key.type = BTRFS_INODE_EXTREF_KEY;
1660 search_key.offset = btrfs_extref_hash(dirid, name, name_len);
1661 if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1662 return true;
1664 return false;
1668 * take a single entry in a log directory item and replay it into
1669 * the subvolume.
1671 * if a conflicting item exists in the subdirectory already,
1672 * the inode it points to is unlinked and put into the link count
1673 * fix up tree.
1675 * If a name from the log points to a file or directory that does
1676 * not exist in the FS, it is skipped. fsyncs on directories
1677 * do not force down inodes inside that directory, just changes to the
1678 * names or unlinks in a directory.
1680 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1681 * non-existing inode) and 1 if the name was replayed.
1683 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1684 struct btrfs_root *root,
1685 struct btrfs_path *path,
1686 struct extent_buffer *eb,
1687 struct btrfs_dir_item *di,
1688 struct btrfs_key *key)
1690 char *name;
1691 int name_len;
1692 struct btrfs_dir_item *dst_di;
1693 struct btrfs_key found_key;
1694 struct btrfs_key log_key;
1695 struct inode *dir;
1696 u8 log_type;
1697 int exists;
1698 int ret = 0;
1699 bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
1700 bool name_added = false;
1702 dir = read_one_inode(root, key->objectid);
1703 if (!dir)
1704 return -EIO;
1706 name_len = btrfs_dir_name_len(eb, di);
1707 name = kmalloc(name_len, GFP_NOFS);
1708 if (!name) {
1709 ret = -ENOMEM;
1710 goto out;
1713 log_type = btrfs_dir_type(eb, di);
1714 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1715 name_len);
1717 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1718 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1719 if (exists == 0)
1720 exists = 1;
1721 else
1722 exists = 0;
1723 btrfs_release_path(path);
1725 if (key->type == BTRFS_DIR_ITEM_KEY) {
1726 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1727 name, name_len, 1);
1728 } else if (key->type == BTRFS_DIR_INDEX_KEY) {
1729 dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1730 key->objectid,
1731 key->offset, name,
1732 name_len, 1);
1733 } else {
1734 /* Corruption */
1735 ret = -EINVAL;
1736 goto out;
1738 if (IS_ERR_OR_NULL(dst_di)) {
1739 /* we need a sequence number to insert, so we only
1740 * do inserts for the BTRFS_DIR_INDEX_KEY types
1742 if (key->type != BTRFS_DIR_INDEX_KEY)
1743 goto out;
1744 goto insert;
1747 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1748 /* the existing item matches the logged item */
1749 if (found_key.objectid == log_key.objectid &&
1750 found_key.type == log_key.type &&
1751 found_key.offset == log_key.offset &&
1752 btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1753 update_size = false;
1754 goto out;
1758 * don't drop the conflicting directory entry if the inode
1759 * for the new entry doesn't exist
1761 if (!exists)
1762 goto out;
1764 ret = drop_one_dir_item(trans, root, path, dir, dst_di);
1765 if (ret)
1766 goto out;
1768 if (key->type == BTRFS_DIR_INDEX_KEY)
1769 goto insert;
1770 out:
1771 btrfs_release_path(path);
1772 if (!ret && update_size) {
1773 btrfs_i_size_write(dir, dir->i_size + name_len * 2);
1774 ret = btrfs_update_inode(trans, root, dir);
1776 kfree(name);
1777 iput(dir);
1778 if (!ret && name_added)
1779 ret = 1;
1780 return ret;
1782 insert:
1783 if (name_in_log_ref(root->log_root, name, name_len,
1784 key->objectid, log_key.objectid)) {
1785 /* The dentry will be added later. */
1786 ret = 0;
1787 update_size = false;
1788 goto out;
1790 btrfs_release_path(path);
1791 ret = insert_one_name(trans, root, key->objectid, key->offset,
1792 name, name_len, &log_key);
1793 if (ret && ret != -ENOENT && ret != -EEXIST)
1794 goto out;
1795 if (!ret)
1796 name_added = true;
1797 update_size = false;
1798 ret = 0;
1799 goto out;
1803 * find all the names in a directory item and reconcile them into
1804 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
1805 * one name in a directory item, but the same code gets used for
1806 * both directory index types
1808 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1809 struct btrfs_root *root,
1810 struct btrfs_path *path,
1811 struct extent_buffer *eb, int slot,
1812 struct btrfs_key *key)
1814 int ret = 0;
1815 u32 item_size = btrfs_item_size_nr(eb, slot);
1816 struct btrfs_dir_item *di;
1817 int name_len;
1818 unsigned long ptr;
1819 unsigned long ptr_end;
1820 struct btrfs_path *fixup_path = NULL;
1822 ptr = btrfs_item_ptr_offset(eb, slot);
1823 ptr_end = ptr + item_size;
1824 while (ptr < ptr_end) {
1825 di = (struct btrfs_dir_item *)ptr;
1826 if (verify_dir_item(root, eb, di))
1827 return -EIO;
1828 name_len = btrfs_dir_name_len(eb, di);
1829 ret = replay_one_name(trans, root, path, eb, di, key);
1830 if (ret < 0)
1831 break;
1832 ptr = (unsigned long)(di + 1);
1833 ptr += name_len;
1836 * If this entry refers to a non-directory (directories can not
1837 * have a link count > 1) and it was added in the transaction
1838 * that was not committed, make sure we fixup the link count of
1839 * the inode it the entry points to. Otherwise something like
1840 * the following would result in a directory pointing to an
1841 * inode with a wrong link that does not account for this dir
1842 * entry:
1844 * mkdir testdir
1845 * touch testdir/foo
1846 * touch testdir/bar
1847 * sync
1849 * ln testdir/bar testdir/bar_link
1850 * ln testdir/foo testdir/foo_link
1851 * xfs_io -c "fsync" testdir/bar
1853 * <power failure>
1855 * mount fs, log replay happens
1857 * File foo would remain with a link count of 1 when it has two
1858 * entries pointing to it in the directory testdir. This would
1859 * make it impossible to ever delete the parent directory has
1860 * it would result in stale dentries that can never be deleted.
1862 if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
1863 struct btrfs_key di_key;
1865 if (!fixup_path) {
1866 fixup_path = btrfs_alloc_path();
1867 if (!fixup_path) {
1868 ret = -ENOMEM;
1869 break;
1873 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1874 ret = link_to_fixup_dir(trans, root, fixup_path,
1875 di_key.objectid);
1876 if (ret)
1877 break;
1879 ret = 0;
1881 btrfs_free_path(fixup_path);
1882 return ret;
1886 * directory replay has two parts. There are the standard directory
1887 * items in the log copied from the subvolume, and range items
1888 * created in the log while the subvolume was logged.
1890 * The range items tell us which parts of the key space the log
1891 * is authoritative for. During replay, if a key in the subvolume
1892 * directory is in a logged range item, but not actually in the log
1893 * that means it was deleted from the directory before the fsync
1894 * and should be removed.
1896 static noinline int find_dir_range(struct btrfs_root *root,
1897 struct btrfs_path *path,
1898 u64 dirid, int key_type,
1899 u64 *start_ret, u64 *end_ret)
1901 struct btrfs_key key;
1902 u64 found_end;
1903 struct btrfs_dir_log_item *item;
1904 int ret;
1905 int nritems;
1907 if (*start_ret == (u64)-1)
1908 return 1;
1910 key.objectid = dirid;
1911 key.type = key_type;
1912 key.offset = *start_ret;
1914 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1915 if (ret < 0)
1916 goto out;
1917 if (ret > 0) {
1918 if (path->slots[0] == 0)
1919 goto out;
1920 path->slots[0]--;
1922 if (ret != 0)
1923 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1925 if (key.type != key_type || key.objectid != dirid) {
1926 ret = 1;
1927 goto next;
1929 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1930 struct btrfs_dir_log_item);
1931 found_end = btrfs_dir_log_end(path->nodes[0], item);
1933 if (*start_ret >= key.offset && *start_ret <= found_end) {
1934 ret = 0;
1935 *start_ret = key.offset;
1936 *end_ret = found_end;
1937 goto out;
1939 ret = 1;
1940 next:
1941 /* check the next slot in the tree to see if it is a valid item */
1942 nritems = btrfs_header_nritems(path->nodes[0]);
1943 path->slots[0]++;
1944 if (path->slots[0] >= nritems) {
1945 ret = btrfs_next_leaf(root, path);
1946 if (ret)
1947 goto out;
1950 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1952 if (key.type != key_type || key.objectid != dirid) {
1953 ret = 1;
1954 goto out;
1956 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1957 struct btrfs_dir_log_item);
1958 found_end = btrfs_dir_log_end(path->nodes[0], item);
1959 *start_ret = key.offset;
1960 *end_ret = found_end;
1961 ret = 0;
1962 out:
1963 btrfs_release_path(path);
1964 return ret;
1968 * this looks for a given directory item in the log. If the directory
1969 * item is not in the log, the item is removed and the inode it points
1970 * to is unlinked
1972 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1973 struct btrfs_root *root,
1974 struct btrfs_root *log,
1975 struct btrfs_path *path,
1976 struct btrfs_path *log_path,
1977 struct inode *dir,
1978 struct btrfs_key *dir_key)
1980 int ret;
1981 struct extent_buffer *eb;
1982 int slot;
1983 u32 item_size;
1984 struct btrfs_dir_item *di;
1985 struct btrfs_dir_item *log_di;
1986 int name_len;
1987 unsigned long ptr;
1988 unsigned long ptr_end;
1989 char *name;
1990 struct inode *inode;
1991 struct btrfs_key location;
1993 again:
1994 eb = path->nodes[0];
1995 slot = path->slots[0];
1996 item_size = btrfs_item_size_nr(eb, slot);
1997 ptr = btrfs_item_ptr_offset(eb, slot);
1998 ptr_end = ptr + item_size;
1999 while (ptr < ptr_end) {
2000 di = (struct btrfs_dir_item *)ptr;
2001 if (verify_dir_item(root, eb, di)) {
2002 ret = -EIO;
2003 goto out;
2006 name_len = btrfs_dir_name_len(eb, di);
2007 name = kmalloc(name_len, GFP_NOFS);
2008 if (!name) {
2009 ret = -ENOMEM;
2010 goto out;
2012 read_extent_buffer(eb, name, (unsigned long)(di + 1),
2013 name_len);
2014 log_di = NULL;
2015 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
2016 log_di = btrfs_lookup_dir_item(trans, log, log_path,
2017 dir_key->objectid,
2018 name, name_len, 0);
2019 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
2020 log_di = btrfs_lookup_dir_index_item(trans, log,
2021 log_path,
2022 dir_key->objectid,
2023 dir_key->offset,
2024 name, name_len, 0);
2026 if (!log_di || (IS_ERR(log_di) && PTR_ERR(log_di) == -ENOENT)) {
2027 btrfs_dir_item_key_to_cpu(eb, di, &location);
2028 btrfs_release_path(path);
2029 btrfs_release_path(log_path);
2030 inode = read_one_inode(root, location.objectid);
2031 if (!inode) {
2032 kfree(name);
2033 return -EIO;
2036 ret = link_to_fixup_dir(trans, root,
2037 path, location.objectid);
2038 if (ret) {
2039 kfree(name);
2040 iput(inode);
2041 goto out;
2044 inc_nlink(inode);
2045 ret = btrfs_unlink_inode(trans, root, dir, inode,
2046 name, name_len);
2047 if (!ret)
2048 ret = btrfs_run_delayed_items(trans, root);
2049 kfree(name);
2050 iput(inode);
2051 if (ret)
2052 goto out;
2054 /* there might still be more names under this key
2055 * check and repeat if required
2057 ret = btrfs_search_slot(NULL, root, dir_key, path,
2058 0, 0);
2059 if (ret == 0)
2060 goto again;
2061 ret = 0;
2062 goto out;
2063 } else if (IS_ERR(log_di)) {
2064 kfree(name);
2065 return PTR_ERR(log_di);
2067 btrfs_release_path(log_path);
2068 kfree(name);
2070 ptr = (unsigned long)(di + 1);
2071 ptr += name_len;
2073 ret = 0;
2074 out:
2075 btrfs_release_path(path);
2076 btrfs_release_path(log_path);
2077 return ret;
2080 static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2081 struct btrfs_root *root,
2082 struct btrfs_root *log,
2083 struct btrfs_path *path,
2084 const u64 ino)
2086 struct btrfs_key search_key;
2087 struct btrfs_path *log_path;
2088 int i;
2089 int nritems;
2090 int ret;
2092 log_path = btrfs_alloc_path();
2093 if (!log_path)
2094 return -ENOMEM;
2096 search_key.objectid = ino;
2097 search_key.type = BTRFS_XATTR_ITEM_KEY;
2098 search_key.offset = 0;
2099 again:
2100 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2101 if (ret < 0)
2102 goto out;
2103 process_leaf:
2104 nritems = btrfs_header_nritems(path->nodes[0]);
2105 for (i = path->slots[0]; i < nritems; i++) {
2106 struct btrfs_key key;
2107 struct btrfs_dir_item *di;
2108 struct btrfs_dir_item *log_di;
2109 u32 total_size;
2110 u32 cur;
2112 btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2113 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2114 ret = 0;
2115 goto out;
2118 di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2119 total_size = btrfs_item_size_nr(path->nodes[0], i);
2120 cur = 0;
2121 while (cur < total_size) {
2122 u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2123 u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2124 u32 this_len = sizeof(*di) + name_len + data_len;
2125 char *name;
2127 name = kmalloc(name_len, GFP_NOFS);
2128 if (!name) {
2129 ret = -ENOMEM;
2130 goto out;
2132 read_extent_buffer(path->nodes[0], name,
2133 (unsigned long)(di + 1), name_len);
2135 log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2136 name, name_len, 0);
2137 btrfs_release_path(log_path);
2138 if (!log_di) {
2139 /* Doesn't exist in log tree, so delete it. */
2140 btrfs_release_path(path);
2141 di = btrfs_lookup_xattr(trans, root, path, ino,
2142 name, name_len, -1);
2143 kfree(name);
2144 if (IS_ERR(di)) {
2145 ret = PTR_ERR(di);
2146 goto out;
2148 ASSERT(di);
2149 ret = btrfs_delete_one_dir_name(trans, root,
2150 path, di);
2151 if (ret)
2152 goto out;
2153 btrfs_release_path(path);
2154 search_key = key;
2155 goto again;
2157 kfree(name);
2158 if (IS_ERR(log_di)) {
2159 ret = PTR_ERR(log_di);
2160 goto out;
2162 cur += this_len;
2163 di = (struct btrfs_dir_item *)((char *)di + this_len);
2166 ret = btrfs_next_leaf(root, path);
2167 if (ret > 0)
2168 ret = 0;
2169 else if (ret == 0)
2170 goto process_leaf;
2171 out:
2172 btrfs_free_path(log_path);
2173 btrfs_release_path(path);
2174 return ret;
2179 * deletion replay happens before we copy any new directory items
2180 * out of the log or out of backreferences from inodes. It
2181 * scans the log to find ranges of keys that log is authoritative for,
2182 * and then scans the directory to find items in those ranges that are
2183 * not present in the log.
2185 * Anything we don't find in the log is unlinked and removed from the
2186 * directory.
2188 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2189 struct btrfs_root *root,
2190 struct btrfs_root *log,
2191 struct btrfs_path *path,
2192 u64 dirid, int del_all)
2194 u64 range_start;
2195 u64 range_end;
2196 int key_type = BTRFS_DIR_LOG_ITEM_KEY;
2197 int ret = 0;
2198 struct btrfs_key dir_key;
2199 struct btrfs_key found_key;
2200 struct btrfs_path *log_path;
2201 struct inode *dir;
2203 dir_key.objectid = dirid;
2204 dir_key.type = BTRFS_DIR_ITEM_KEY;
2205 log_path = btrfs_alloc_path();
2206 if (!log_path)
2207 return -ENOMEM;
2209 dir = read_one_inode(root, dirid);
2210 /* it isn't an error if the inode isn't there, that can happen
2211 * because we replay the deletes before we copy in the inode item
2212 * from the log
2214 if (!dir) {
2215 btrfs_free_path(log_path);
2216 return 0;
2218 again:
2219 range_start = 0;
2220 range_end = 0;
2221 while (1) {
2222 if (del_all)
2223 range_end = (u64)-1;
2224 else {
2225 ret = find_dir_range(log, path, dirid, key_type,
2226 &range_start, &range_end);
2227 if (ret != 0)
2228 break;
2231 dir_key.offset = range_start;
2232 while (1) {
2233 int nritems;
2234 ret = btrfs_search_slot(NULL, root, &dir_key, path,
2235 0, 0);
2236 if (ret < 0)
2237 goto out;
2239 nritems = btrfs_header_nritems(path->nodes[0]);
2240 if (path->slots[0] >= nritems) {
2241 ret = btrfs_next_leaf(root, path);
2242 if (ret)
2243 break;
2245 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2246 path->slots[0]);
2247 if (found_key.objectid != dirid ||
2248 found_key.type != dir_key.type)
2249 goto next_type;
2251 if (found_key.offset > range_end)
2252 break;
2254 ret = check_item_in_log(trans, root, log, path,
2255 log_path, dir,
2256 &found_key);
2257 if (ret)
2258 goto out;
2259 if (found_key.offset == (u64)-1)
2260 break;
2261 dir_key.offset = found_key.offset + 1;
2263 btrfs_release_path(path);
2264 if (range_end == (u64)-1)
2265 break;
2266 range_start = range_end + 1;
2269 next_type:
2270 ret = 0;
2271 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2272 key_type = BTRFS_DIR_LOG_INDEX_KEY;
2273 dir_key.type = BTRFS_DIR_INDEX_KEY;
2274 btrfs_release_path(path);
2275 goto again;
2277 out:
2278 btrfs_release_path(path);
2279 btrfs_free_path(log_path);
2280 iput(dir);
2281 return ret;
2285 * the process_func used to replay items from the log tree. This
2286 * gets called in two different stages. The first stage just looks
2287 * for inodes and makes sure they are all copied into the subvolume.
2289 * The second stage copies all the other item types from the log into
2290 * the subvolume. The two stage approach is slower, but gets rid of
2291 * lots of complexity around inodes referencing other inodes that exist
2292 * only in the log (references come from either directory items or inode
2293 * back refs).
2295 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2296 struct walk_control *wc, u64 gen)
2298 int nritems;
2299 struct btrfs_path *path;
2300 struct btrfs_root *root = wc->replay_dest;
2301 struct btrfs_key key;
2302 int level;
2303 int i;
2304 int ret;
2306 ret = btrfs_read_buffer(eb, gen);
2307 if (ret)
2308 return ret;
2310 level = btrfs_header_level(eb);
2312 if (level != 0)
2313 return 0;
2315 path = btrfs_alloc_path();
2316 if (!path)
2317 return -ENOMEM;
2319 nritems = btrfs_header_nritems(eb);
2320 for (i = 0; i < nritems; i++) {
2321 btrfs_item_key_to_cpu(eb, &key, i);
2323 /* inode keys are done during the first stage */
2324 if (key.type == BTRFS_INODE_ITEM_KEY &&
2325 wc->stage == LOG_WALK_REPLAY_INODES) {
2326 struct btrfs_inode_item *inode_item;
2327 u32 mode;
2329 inode_item = btrfs_item_ptr(eb, i,
2330 struct btrfs_inode_item);
2331 ret = replay_xattr_deletes(wc->trans, root, log,
2332 path, key.objectid);
2333 if (ret)
2334 break;
2335 mode = btrfs_inode_mode(eb, inode_item);
2336 if (S_ISDIR(mode)) {
2337 ret = replay_dir_deletes(wc->trans,
2338 root, log, path, key.objectid, 0);
2339 if (ret)
2340 break;
2342 ret = overwrite_item(wc->trans, root, path,
2343 eb, i, &key);
2344 if (ret)
2345 break;
2347 /* for regular files, make sure corresponding
2348 * orphan item exist. extents past the new EOF
2349 * will be truncated later by orphan cleanup.
2351 if (S_ISREG(mode)) {
2352 ret = insert_orphan_item(wc->trans, root,
2353 key.objectid);
2354 if (ret)
2355 break;
2358 ret = link_to_fixup_dir(wc->trans, root,
2359 path, key.objectid);
2360 if (ret)
2361 break;
2364 if (key.type == BTRFS_DIR_INDEX_KEY &&
2365 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2366 ret = replay_one_dir_item(wc->trans, root, path,
2367 eb, i, &key);
2368 if (ret)
2369 break;
2372 if (wc->stage < LOG_WALK_REPLAY_ALL)
2373 continue;
2375 /* these keys are simply copied */
2376 if (key.type == BTRFS_XATTR_ITEM_KEY) {
2377 ret = overwrite_item(wc->trans, root, path,
2378 eb, i, &key);
2379 if (ret)
2380 break;
2381 } else if (key.type == BTRFS_INODE_REF_KEY ||
2382 key.type == BTRFS_INODE_EXTREF_KEY) {
2383 ret = add_inode_ref(wc->trans, root, log, path,
2384 eb, i, &key);
2385 if (ret && ret != -ENOENT)
2386 break;
2387 ret = 0;
2388 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2389 ret = replay_one_extent(wc->trans, root, path,
2390 eb, i, &key);
2391 if (ret)
2392 break;
2393 } else if (key.type == BTRFS_DIR_ITEM_KEY) {
2394 ret = replay_one_dir_item(wc->trans, root, path,
2395 eb, i, &key);
2396 if (ret)
2397 break;
2400 btrfs_free_path(path);
2401 return ret;
2404 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2405 struct btrfs_root *root,
2406 struct btrfs_path *path, int *level,
2407 struct walk_control *wc)
2409 u64 root_owner;
2410 u64 bytenr;
2411 u64 ptr_gen;
2412 struct extent_buffer *next;
2413 struct extent_buffer *cur;
2414 struct extent_buffer *parent;
2415 u32 blocksize;
2416 int ret = 0;
2418 WARN_ON(*level < 0);
2419 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2421 while (*level > 0) {
2422 WARN_ON(*level < 0);
2423 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2424 cur = path->nodes[*level];
2426 WARN_ON(btrfs_header_level(cur) != *level);
2428 if (path->slots[*level] >=
2429 btrfs_header_nritems(cur))
2430 break;
2432 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2433 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2434 blocksize = root->nodesize;
2436 parent = path->nodes[*level];
2437 root_owner = btrfs_header_owner(parent);
2439 next = btrfs_find_create_tree_block(root, bytenr);
2440 if (IS_ERR(next))
2441 return PTR_ERR(next);
2443 if (*level == 1) {
2444 ret = wc->process_func(root, next, wc, ptr_gen);
2445 if (ret) {
2446 free_extent_buffer(next);
2447 return ret;
2450 path->slots[*level]++;
2451 if (wc->free) {
2452 ret = btrfs_read_buffer(next, ptr_gen);
2453 if (ret) {
2454 free_extent_buffer(next);
2455 return ret;
2458 if (trans) {
2459 btrfs_tree_lock(next);
2460 btrfs_set_lock_blocking(next);
2461 clean_tree_block(trans, root->fs_info,
2462 next);
2463 btrfs_wait_tree_block_writeback(next);
2464 btrfs_tree_unlock(next);
2467 WARN_ON(root_owner !=
2468 BTRFS_TREE_LOG_OBJECTID);
2469 ret = btrfs_free_and_pin_reserved_extent(root,
2470 bytenr, blocksize);
2471 if (ret) {
2472 free_extent_buffer(next);
2473 return ret;
2476 free_extent_buffer(next);
2477 continue;
2479 ret = btrfs_read_buffer(next, ptr_gen);
2480 if (ret) {
2481 free_extent_buffer(next);
2482 return ret;
2485 WARN_ON(*level <= 0);
2486 if (path->nodes[*level-1])
2487 free_extent_buffer(path->nodes[*level-1]);
2488 path->nodes[*level-1] = next;
2489 *level = btrfs_header_level(next);
2490 path->slots[*level] = 0;
2491 cond_resched();
2493 WARN_ON(*level < 0);
2494 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2496 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2498 cond_resched();
2499 return 0;
2502 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2503 struct btrfs_root *root,
2504 struct btrfs_path *path, int *level,
2505 struct walk_control *wc)
2507 u64 root_owner;
2508 int i;
2509 int slot;
2510 int ret;
2512 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2513 slot = path->slots[i];
2514 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2515 path->slots[i]++;
2516 *level = i;
2517 WARN_ON(*level == 0);
2518 return 0;
2519 } else {
2520 struct extent_buffer *parent;
2521 if (path->nodes[*level] == root->node)
2522 parent = path->nodes[*level];
2523 else
2524 parent = path->nodes[*level + 1];
2526 root_owner = btrfs_header_owner(parent);
2527 ret = wc->process_func(root, path->nodes[*level], wc,
2528 btrfs_header_generation(path->nodes[*level]));
2529 if (ret)
2530 return ret;
2532 if (wc->free) {
2533 struct extent_buffer *next;
2535 next = path->nodes[*level];
2537 if (trans) {
2538 btrfs_tree_lock(next);
2539 btrfs_set_lock_blocking(next);
2540 clean_tree_block(trans, root->fs_info,
2541 next);
2542 btrfs_wait_tree_block_writeback(next);
2543 btrfs_tree_unlock(next);
2546 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
2547 ret = btrfs_free_and_pin_reserved_extent(root,
2548 path->nodes[*level]->start,
2549 path->nodes[*level]->len);
2550 if (ret)
2551 return ret;
2553 free_extent_buffer(path->nodes[*level]);
2554 path->nodes[*level] = NULL;
2555 *level = i + 1;
2558 return 1;
2562 * drop the reference count on the tree rooted at 'snap'. This traverses
2563 * the tree freeing any blocks that have a ref count of zero after being
2564 * decremented.
2566 static int walk_log_tree(struct btrfs_trans_handle *trans,
2567 struct btrfs_root *log, struct walk_control *wc)
2569 int ret = 0;
2570 int wret;
2571 int level;
2572 struct btrfs_path *path;
2573 int orig_level;
2575 path = btrfs_alloc_path();
2576 if (!path)
2577 return -ENOMEM;
2579 level = btrfs_header_level(log->node);
2580 orig_level = level;
2581 path->nodes[level] = log->node;
2582 extent_buffer_get(log->node);
2583 path->slots[level] = 0;
2585 while (1) {
2586 wret = walk_down_log_tree(trans, log, path, &level, wc);
2587 if (wret > 0)
2588 break;
2589 if (wret < 0) {
2590 ret = wret;
2591 goto out;
2594 wret = walk_up_log_tree(trans, log, path, &level, wc);
2595 if (wret > 0)
2596 break;
2597 if (wret < 0) {
2598 ret = wret;
2599 goto out;
2603 /* was the root node processed? if not, catch it here */
2604 if (path->nodes[orig_level]) {
2605 ret = wc->process_func(log, path->nodes[orig_level], wc,
2606 btrfs_header_generation(path->nodes[orig_level]));
2607 if (ret)
2608 goto out;
2609 if (wc->free) {
2610 struct extent_buffer *next;
2612 next = path->nodes[orig_level];
2614 if (trans) {
2615 btrfs_tree_lock(next);
2616 btrfs_set_lock_blocking(next);
2617 clean_tree_block(trans, log->fs_info, next);
2618 btrfs_wait_tree_block_writeback(next);
2619 btrfs_tree_unlock(next);
2622 WARN_ON(log->root_key.objectid !=
2623 BTRFS_TREE_LOG_OBJECTID);
2624 ret = btrfs_free_and_pin_reserved_extent(log, next->start,
2625 next->len);
2626 if (ret)
2627 goto out;
2631 out:
2632 btrfs_free_path(path);
2633 return ret;
2637 * helper function to update the item for a given subvolumes log root
2638 * in the tree of log roots
2640 static int update_log_root(struct btrfs_trans_handle *trans,
2641 struct btrfs_root *log)
2643 int ret;
2645 if (log->log_transid == 1) {
2646 /* insert root item on the first sync */
2647 ret = btrfs_insert_root(trans, log->fs_info->log_root_tree,
2648 &log->root_key, &log->root_item);
2649 } else {
2650 ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
2651 &log->root_key, &log->root_item);
2653 return ret;
2656 static void wait_log_commit(struct btrfs_root *root, int transid)
2658 DEFINE_WAIT(wait);
2659 int index = transid % 2;
2662 * we only allow two pending log transactions at a time,
2663 * so we know that if ours is more than 2 older than the
2664 * current transaction, we're done
2666 do {
2667 prepare_to_wait(&root->log_commit_wait[index],
2668 &wait, TASK_UNINTERRUPTIBLE);
2669 mutex_unlock(&root->log_mutex);
2671 if (root->log_transid_committed < transid &&
2672 atomic_read(&root->log_commit[index]))
2673 schedule();
2675 finish_wait(&root->log_commit_wait[index], &wait);
2676 mutex_lock(&root->log_mutex);
2677 } while (root->log_transid_committed < transid &&
2678 atomic_read(&root->log_commit[index]));
2681 static void wait_for_writer(struct btrfs_root *root)
2683 DEFINE_WAIT(wait);
2685 while (atomic_read(&root->log_writers)) {
2686 prepare_to_wait(&root->log_writer_wait,
2687 &wait, TASK_UNINTERRUPTIBLE);
2688 mutex_unlock(&root->log_mutex);
2689 if (atomic_read(&root->log_writers))
2690 schedule();
2691 finish_wait(&root->log_writer_wait, &wait);
2692 mutex_lock(&root->log_mutex);
2696 static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2697 struct btrfs_log_ctx *ctx)
2699 if (!ctx)
2700 return;
2702 mutex_lock(&root->log_mutex);
2703 list_del_init(&ctx->list);
2704 mutex_unlock(&root->log_mutex);
2708 * Invoked in log mutex context, or be sure there is no other task which
2709 * can access the list.
2711 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2712 int index, int error)
2714 struct btrfs_log_ctx *ctx;
2715 struct btrfs_log_ctx *safe;
2717 list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
2718 list_del_init(&ctx->list);
2719 ctx->log_ret = error;
2722 INIT_LIST_HEAD(&root->log_ctxs[index]);
2726 * btrfs_sync_log does sends a given tree log down to the disk and
2727 * updates the super blocks to record it. When this call is done,
2728 * you know that any inodes previously logged are safely on disk only
2729 * if it returns 0.
2731 * Any other return value means you need to call btrfs_commit_transaction.
2732 * Some of the edge cases for fsyncing directories that have had unlinks
2733 * or renames done in the past mean that sometimes the only safe
2734 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
2735 * that has happened.
2737 int btrfs_sync_log(struct btrfs_trans_handle *trans,
2738 struct btrfs_root *root, struct btrfs_log_ctx *ctx)
2740 int index1;
2741 int index2;
2742 int mark;
2743 int ret;
2744 struct btrfs_root *log = root->log_root;
2745 struct btrfs_root *log_root_tree = root->fs_info->log_root_tree;
2746 int log_transid = 0;
2747 struct btrfs_log_ctx root_log_ctx;
2748 struct blk_plug plug;
2750 mutex_lock(&root->log_mutex);
2751 log_transid = ctx->log_transid;
2752 if (root->log_transid_committed >= log_transid) {
2753 mutex_unlock(&root->log_mutex);
2754 return ctx->log_ret;
2757 index1 = log_transid % 2;
2758 if (atomic_read(&root->log_commit[index1])) {
2759 wait_log_commit(root, log_transid);
2760 mutex_unlock(&root->log_mutex);
2761 return ctx->log_ret;
2763 ASSERT(log_transid == root->log_transid);
2764 atomic_set(&root->log_commit[index1], 1);
2766 /* wait for previous tree log sync to complete */
2767 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2768 wait_log_commit(root, log_transid - 1);
2770 while (1) {
2771 int batch = atomic_read(&root->log_batch);
2772 /* when we're on an ssd, just kick the log commit out */
2773 if (!btrfs_test_opt(root->fs_info, SSD) &&
2774 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
2775 mutex_unlock(&root->log_mutex);
2776 schedule_timeout_uninterruptible(1);
2777 mutex_lock(&root->log_mutex);
2779 wait_for_writer(root);
2780 if (batch == atomic_read(&root->log_batch))
2781 break;
2784 /* bail out if we need to do a full commit */
2785 if (btrfs_need_log_full_commit(root->fs_info, trans)) {
2786 ret = -EAGAIN;
2787 btrfs_free_logged_extents(log, log_transid);
2788 mutex_unlock(&root->log_mutex);
2789 goto out;
2792 if (log_transid % 2 == 0)
2793 mark = EXTENT_DIRTY;
2794 else
2795 mark = EXTENT_NEW;
2797 /* we start IO on all the marked extents here, but we don't actually
2798 * wait for them until later.
2800 blk_start_plug(&plug);
2801 ret = btrfs_write_marked_extents(log, &log->dirty_log_pages, mark);
2802 if (ret) {
2803 blk_finish_plug(&plug);
2804 btrfs_abort_transaction(trans, ret);
2805 btrfs_free_logged_extents(log, log_transid);
2806 btrfs_set_log_full_commit(root->fs_info, trans);
2807 mutex_unlock(&root->log_mutex);
2808 goto out;
2811 btrfs_set_root_node(&log->root_item, log->node);
2813 root->log_transid++;
2814 log->log_transid = root->log_transid;
2815 root->log_start_pid = 0;
2817 * IO has been started, blocks of the log tree have WRITTEN flag set
2818 * in their headers. new modifications of the log will be written to
2819 * new positions. so it's safe to allow log writers to go in.
2821 mutex_unlock(&root->log_mutex);
2823 btrfs_init_log_ctx(&root_log_ctx, NULL);
2825 mutex_lock(&log_root_tree->log_mutex);
2826 atomic_inc(&log_root_tree->log_batch);
2827 atomic_inc(&log_root_tree->log_writers);
2829 index2 = log_root_tree->log_transid % 2;
2830 list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
2831 root_log_ctx.log_transid = log_root_tree->log_transid;
2833 mutex_unlock(&log_root_tree->log_mutex);
2835 ret = update_log_root(trans, log);
2837 mutex_lock(&log_root_tree->log_mutex);
2838 if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2840 * Implicit memory barrier after atomic_dec_and_test
2842 if (waitqueue_active(&log_root_tree->log_writer_wait))
2843 wake_up(&log_root_tree->log_writer_wait);
2846 if (ret) {
2847 if (!list_empty(&root_log_ctx.list))
2848 list_del_init(&root_log_ctx.list);
2850 blk_finish_plug(&plug);
2851 btrfs_set_log_full_commit(root->fs_info, trans);
2853 if (ret != -ENOSPC) {
2854 btrfs_abort_transaction(trans, ret);
2855 mutex_unlock(&log_root_tree->log_mutex);
2856 goto out;
2858 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2859 btrfs_free_logged_extents(log, log_transid);
2860 mutex_unlock(&log_root_tree->log_mutex);
2861 ret = -EAGAIN;
2862 goto out;
2865 if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
2866 blk_finish_plug(&plug);
2867 list_del_init(&root_log_ctx.list);
2868 mutex_unlock(&log_root_tree->log_mutex);
2869 ret = root_log_ctx.log_ret;
2870 goto out;
2873 index2 = root_log_ctx.log_transid % 2;
2874 if (atomic_read(&log_root_tree->log_commit[index2])) {
2875 blk_finish_plug(&plug);
2876 ret = btrfs_wait_marked_extents(log, &log->dirty_log_pages,
2877 mark);
2878 btrfs_wait_logged_extents(trans, log, log_transid);
2879 wait_log_commit(log_root_tree,
2880 root_log_ctx.log_transid);
2881 mutex_unlock(&log_root_tree->log_mutex);
2882 if (!ret)
2883 ret = root_log_ctx.log_ret;
2884 goto out;
2886 ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
2887 atomic_set(&log_root_tree->log_commit[index2], 1);
2889 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
2890 wait_log_commit(log_root_tree,
2891 root_log_ctx.log_transid - 1);
2894 wait_for_writer(log_root_tree);
2897 * now that we've moved on to the tree of log tree roots,
2898 * check the full commit flag again
2900 if (btrfs_need_log_full_commit(root->fs_info, trans)) {
2901 blk_finish_plug(&plug);
2902 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2903 btrfs_free_logged_extents(log, log_transid);
2904 mutex_unlock(&log_root_tree->log_mutex);
2905 ret = -EAGAIN;
2906 goto out_wake_log_root;
2909 ret = btrfs_write_marked_extents(log_root_tree,
2910 &log_root_tree->dirty_log_pages,
2911 EXTENT_DIRTY | EXTENT_NEW);
2912 blk_finish_plug(&plug);
2913 if (ret) {
2914 btrfs_set_log_full_commit(root->fs_info, trans);
2915 btrfs_abort_transaction(trans, ret);
2916 btrfs_free_logged_extents(log, log_transid);
2917 mutex_unlock(&log_root_tree->log_mutex);
2918 goto out_wake_log_root;
2920 ret = btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2921 if (!ret)
2922 ret = btrfs_wait_marked_extents(log_root_tree,
2923 &log_root_tree->dirty_log_pages,
2924 EXTENT_NEW | EXTENT_DIRTY);
2925 if (ret) {
2926 btrfs_set_log_full_commit(root->fs_info, trans);
2927 btrfs_free_logged_extents(log, log_transid);
2928 mutex_unlock(&log_root_tree->log_mutex);
2929 goto out_wake_log_root;
2931 btrfs_wait_logged_extents(trans, log, log_transid);
2933 btrfs_set_super_log_root(root->fs_info->super_for_commit,
2934 log_root_tree->node->start);
2935 btrfs_set_super_log_root_level(root->fs_info->super_for_commit,
2936 btrfs_header_level(log_root_tree->node));
2938 log_root_tree->log_transid++;
2939 mutex_unlock(&log_root_tree->log_mutex);
2942 * nobody else is going to jump in and write the the ctree
2943 * super here because the log_commit atomic below is protecting
2944 * us. We must be called with a transaction handle pinning
2945 * the running transaction open, so a full commit can't hop
2946 * in and cause problems either.
2948 ret = write_ctree_super(trans, root->fs_info->tree_root, 1);
2949 if (ret) {
2950 btrfs_set_log_full_commit(root->fs_info, trans);
2951 btrfs_abort_transaction(trans, ret);
2952 goto out_wake_log_root;
2955 mutex_lock(&root->log_mutex);
2956 if (root->last_log_commit < log_transid)
2957 root->last_log_commit = log_transid;
2958 mutex_unlock(&root->log_mutex);
2960 out_wake_log_root:
2961 mutex_lock(&log_root_tree->log_mutex);
2962 btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
2964 log_root_tree->log_transid_committed++;
2965 atomic_set(&log_root_tree->log_commit[index2], 0);
2966 mutex_unlock(&log_root_tree->log_mutex);
2969 * The barrier before waitqueue_active is implied by mutex_unlock
2971 if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
2972 wake_up(&log_root_tree->log_commit_wait[index2]);
2973 out:
2974 mutex_lock(&root->log_mutex);
2975 btrfs_remove_all_log_ctxs(root, index1, ret);
2976 root->log_transid_committed++;
2977 atomic_set(&root->log_commit[index1], 0);
2978 mutex_unlock(&root->log_mutex);
2981 * The barrier before waitqueue_active is implied by mutex_unlock
2983 if (waitqueue_active(&root->log_commit_wait[index1]))
2984 wake_up(&root->log_commit_wait[index1]);
2985 return ret;
2988 static void free_log_tree(struct btrfs_trans_handle *trans,
2989 struct btrfs_root *log)
2991 int ret;
2992 u64 start;
2993 u64 end;
2994 struct walk_control wc = {
2995 .free = 1,
2996 .process_func = process_one_buffer
2999 ret = walk_log_tree(trans, log, &wc);
3000 /* I don't think this can happen but just in case */
3001 if (ret)
3002 btrfs_abort_transaction(trans, ret);
3004 while (1) {
3005 ret = find_first_extent_bit(&log->dirty_log_pages,
3006 0, &start, &end, EXTENT_DIRTY | EXTENT_NEW,
3007 NULL);
3008 if (ret)
3009 break;
3011 clear_extent_bits(&log->dirty_log_pages, start, end,
3012 EXTENT_DIRTY | EXTENT_NEW);
3016 * We may have short-circuited the log tree with the full commit logic
3017 * and left ordered extents on our list, so clear these out to keep us
3018 * from leaking inodes and memory.
3020 btrfs_free_logged_extents(log, 0);
3021 btrfs_free_logged_extents(log, 1);
3023 free_extent_buffer(log->node);
3024 kfree(log);
3028 * free all the extents used by the tree log. This should be called
3029 * at commit time of the full transaction
3031 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3033 if (root->log_root) {
3034 free_log_tree(trans, root->log_root);
3035 root->log_root = NULL;
3037 return 0;
3040 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3041 struct btrfs_fs_info *fs_info)
3043 if (fs_info->log_root_tree) {
3044 free_log_tree(trans, fs_info->log_root_tree);
3045 fs_info->log_root_tree = NULL;
3047 return 0;
3051 * If both a file and directory are logged, and unlinks or renames are
3052 * mixed in, we have a few interesting corners:
3054 * create file X in dir Y
3055 * link file X to X.link in dir Y
3056 * fsync file X
3057 * unlink file X but leave X.link
3058 * fsync dir Y
3060 * After a crash we would expect only X.link to exist. But file X
3061 * didn't get fsync'd again so the log has back refs for X and X.link.
3063 * We solve this by removing directory entries and inode backrefs from the
3064 * log when a file that was logged in the current transaction is
3065 * unlinked. Any later fsync will include the updated log entries, and
3066 * we'll be able to reconstruct the proper directory items from backrefs.
3068 * This optimizations allows us to avoid relogging the entire inode
3069 * or the entire directory.
3071 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3072 struct btrfs_root *root,
3073 const char *name, int name_len,
3074 struct inode *dir, u64 index)
3076 struct btrfs_root *log;
3077 struct btrfs_dir_item *di;
3078 struct btrfs_path *path;
3079 int ret;
3080 int err = 0;
3081 int bytes_del = 0;
3082 u64 dir_ino = btrfs_ino(dir);
3084 if (BTRFS_I(dir)->logged_trans < trans->transid)
3085 return 0;
3087 ret = join_running_log_trans(root);
3088 if (ret)
3089 return 0;
3091 mutex_lock(&BTRFS_I(dir)->log_mutex);
3093 log = root->log_root;
3094 path = btrfs_alloc_path();
3095 if (!path) {
3096 err = -ENOMEM;
3097 goto out_unlock;
3100 di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
3101 name, name_len, -1);
3102 if (IS_ERR(di)) {
3103 err = PTR_ERR(di);
3104 goto fail;
3106 if (di) {
3107 ret = btrfs_delete_one_dir_name(trans, log, path, di);
3108 bytes_del += name_len;
3109 if (ret) {
3110 err = ret;
3111 goto fail;
3114 btrfs_release_path(path);
3115 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3116 index, name, name_len, -1);
3117 if (IS_ERR(di)) {
3118 err = PTR_ERR(di);
3119 goto fail;
3121 if (di) {
3122 ret = btrfs_delete_one_dir_name(trans, log, path, di);
3123 bytes_del += name_len;
3124 if (ret) {
3125 err = ret;
3126 goto fail;
3130 /* update the directory size in the log to reflect the names
3131 * we have removed
3133 if (bytes_del) {
3134 struct btrfs_key key;
3136 key.objectid = dir_ino;
3137 key.offset = 0;
3138 key.type = BTRFS_INODE_ITEM_KEY;
3139 btrfs_release_path(path);
3141 ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
3142 if (ret < 0) {
3143 err = ret;
3144 goto fail;
3146 if (ret == 0) {
3147 struct btrfs_inode_item *item;
3148 u64 i_size;
3150 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3151 struct btrfs_inode_item);
3152 i_size = btrfs_inode_size(path->nodes[0], item);
3153 if (i_size > bytes_del)
3154 i_size -= bytes_del;
3155 else
3156 i_size = 0;
3157 btrfs_set_inode_size(path->nodes[0], item, i_size);
3158 btrfs_mark_buffer_dirty(path->nodes[0]);
3159 } else
3160 ret = 0;
3161 btrfs_release_path(path);
3163 fail:
3164 btrfs_free_path(path);
3165 out_unlock:
3166 mutex_unlock(&BTRFS_I(dir)->log_mutex);
3167 if (ret == -ENOSPC) {
3168 btrfs_set_log_full_commit(root->fs_info, trans);
3169 ret = 0;
3170 } else if (ret < 0)
3171 btrfs_abort_transaction(trans, ret);
3173 btrfs_end_log_trans(root);
3175 return err;
3178 /* see comments for btrfs_del_dir_entries_in_log */
3179 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3180 struct btrfs_root *root,
3181 const char *name, int name_len,
3182 struct inode *inode, u64 dirid)
3184 struct btrfs_root *log;
3185 u64 index;
3186 int ret;
3188 if (BTRFS_I(inode)->logged_trans < trans->transid)
3189 return 0;
3191 ret = join_running_log_trans(root);
3192 if (ret)
3193 return 0;
3194 log = root->log_root;
3195 mutex_lock(&BTRFS_I(inode)->log_mutex);
3197 ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
3198 dirid, &index);
3199 mutex_unlock(&BTRFS_I(inode)->log_mutex);
3200 if (ret == -ENOSPC) {
3201 btrfs_set_log_full_commit(root->fs_info, trans);
3202 ret = 0;
3203 } else if (ret < 0 && ret != -ENOENT)
3204 btrfs_abort_transaction(trans, ret);
3205 btrfs_end_log_trans(root);
3207 return ret;
3211 * creates a range item in the log for 'dirid'. first_offset and
3212 * last_offset tell us which parts of the key space the log should
3213 * be considered authoritative for.
3215 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3216 struct btrfs_root *log,
3217 struct btrfs_path *path,
3218 int key_type, u64 dirid,
3219 u64 first_offset, u64 last_offset)
3221 int ret;
3222 struct btrfs_key key;
3223 struct btrfs_dir_log_item *item;
3225 key.objectid = dirid;
3226 key.offset = first_offset;
3227 if (key_type == BTRFS_DIR_ITEM_KEY)
3228 key.type = BTRFS_DIR_LOG_ITEM_KEY;
3229 else
3230 key.type = BTRFS_DIR_LOG_INDEX_KEY;
3231 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3232 if (ret)
3233 return ret;
3235 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3236 struct btrfs_dir_log_item);
3237 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3238 btrfs_mark_buffer_dirty(path->nodes[0]);
3239 btrfs_release_path(path);
3240 return 0;
3244 * log all the items included in the current transaction for a given
3245 * directory. This also creates the range items in the log tree required
3246 * to replay anything deleted before the fsync
3248 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3249 struct btrfs_root *root, struct inode *inode,
3250 struct btrfs_path *path,
3251 struct btrfs_path *dst_path, int key_type,
3252 struct btrfs_log_ctx *ctx,
3253 u64 min_offset, u64 *last_offset_ret)
3255 struct btrfs_key min_key;
3256 struct btrfs_root *log = root->log_root;
3257 struct extent_buffer *src;
3258 int err = 0;
3259 int ret;
3260 int i;
3261 int nritems;
3262 u64 first_offset = min_offset;
3263 u64 last_offset = (u64)-1;
3264 u64 ino = btrfs_ino(inode);
3266 log = root->log_root;
3268 min_key.objectid = ino;
3269 min_key.type = key_type;
3270 min_key.offset = min_offset;
3272 ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3275 * we didn't find anything from this transaction, see if there
3276 * is anything at all
3278 if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
3279 min_key.objectid = ino;
3280 min_key.type = key_type;
3281 min_key.offset = (u64)-1;
3282 btrfs_release_path(path);
3283 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3284 if (ret < 0) {
3285 btrfs_release_path(path);
3286 return ret;
3288 ret = btrfs_previous_item(root, path, ino, key_type);
3290 /* if ret == 0 there are items for this type,
3291 * create a range to tell us the last key of this type.
3292 * otherwise, there are no items in this directory after
3293 * *min_offset, and we create a range to indicate that.
3295 if (ret == 0) {
3296 struct btrfs_key tmp;
3297 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3298 path->slots[0]);
3299 if (key_type == tmp.type)
3300 first_offset = max(min_offset, tmp.offset) + 1;
3302 goto done;
3305 /* go backward to find any previous key */
3306 ret = btrfs_previous_item(root, path, ino, key_type);
3307 if (ret == 0) {
3308 struct btrfs_key tmp;
3309 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3310 if (key_type == tmp.type) {
3311 first_offset = tmp.offset;
3312 ret = overwrite_item(trans, log, dst_path,
3313 path->nodes[0], path->slots[0],
3314 &tmp);
3315 if (ret) {
3316 err = ret;
3317 goto done;
3321 btrfs_release_path(path);
3323 /* find the first key from this transaction again */
3324 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3325 if (WARN_ON(ret != 0))
3326 goto done;
3329 * we have a block from this transaction, log every item in it
3330 * from our directory
3332 while (1) {
3333 struct btrfs_key tmp;
3334 src = path->nodes[0];
3335 nritems = btrfs_header_nritems(src);
3336 for (i = path->slots[0]; i < nritems; i++) {
3337 struct btrfs_dir_item *di;
3339 btrfs_item_key_to_cpu(src, &min_key, i);
3341 if (min_key.objectid != ino || min_key.type != key_type)
3342 goto done;
3343 ret = overwrite_item(trans, log, dst_path, src, i,
3344 &min_key);
3345 if (ret) {
3346 err = ret;
3347 goto done;
3351 * We must make sure that when we log a directory entry,
3352 * the corresponding inode, after log replay, has a
3353 * matching link count. For example:
3355 * touch foo
3356 * mkdir mydir
3357 * sync
3358 * ln foo mydir/bar
3359 * xfs_io -c "fsync" mydir
3360 * <crash>
3361 * <mount fs and log replay>
3363 * Would result in a fsync log that when replayed, our
3364 * file inode would have a link count of 1, but we get
3365 * two directory entries pointing to the same inode.
3366 * After removing one of the names, it would not be
3367 * possible to remove the other name, which resulted
3368 * always in stale file handle errors, and would not
3369 * be possible to rmdir the parent directory, since
3370 * its i_size could never decrement to the value
3371 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
3373 di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3374 btrfs_dir_item_key_to_cpu(src, di, &tmp);
3375 if (ctx &&
3376 (btrfs_dir_transid(src, di) == trans->transid ||
3377 btrfs_dir_type(src, di) == BTRFS_FT_DIR) &&
3378 tmp.type != BTRFS_ROOT_ITEM_KEY)
3379 ctx->log_new_dentries = true;
3381 path->slots[0] = nritems;
3384 * look ahead to the next item and see if it is also
3385 * from this directory and from this transaction
3387 ret = btrfs_next_leaf(root, path);
3388 if (ret == 1) {
3389 last_offset = (u64)-1;
3390 goto done;
3392 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3393 if (tmp.objectid != ino || tmp.type != key_type) {
3394 last_offset = (u64)-1;
3395 goto done;
3397 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3398 ret = overwrite_item(trans, log, dst_path,
3399 path->nodes[0], path->slots[0],
3400 &tmp);
3401 if (ret)
3402 err = ret;
3403 else
3404 last_offset = tmp.offset;
3405 goto done;
3408 done:
3409 btrfs_release_path(path);
3410 btrfs_release_path(dst_path);
3412 if (err == 0) {
3413 *last_offset_ret = last_offset;
3415 * insert the log range keys to indicate where the log
3416 * is valid
3418 ret = insert_dir_log_key(trans, log, path, key_type,
3419 ino, first_offset, last_offset);
3420 if (ret)
3421 err = ret;
3423 return err;
3427 * logging directories is very similar to logging inodes, We find all the items
3428 * from the current transaction and write them to the log.
3430 * The recovery code scans the directory in the subvolume, and if it finds a
3431 * key in the range logged that is not present in the log tree, then it means
3432 * that dir entry was unlinked during the transaction.
3434 * In order for that scan to work, we must include one key smaller than
3435 * the smallest logged by this transaction and one key larger than the largest
3436 * key logged by this transaction.
3438 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
3439 struct btrfs_root *root, struct inode *inode,
3440 struct btrfs_path *path,
3441 struct btrfs_path *dst_path,
3442 struct btrfs_log_ctx *ctx)
3444 u64 min_key;
3445 u64 max_key;
3446 int ret;
3447 int key_type = BTRFS_DIR_ITEM_KEY;
3449 again:
3450 min_key = 0;
3451 max_key = 0;
3452 while (1) {
3453 ret = log_dir_items(trans, root, inode, path,
3454 dst_path, key_type, ctx, min_key,
3455 &max_key);
3456 if (ret)
3457 return ret;
3458 if (max_key == (u64)-1)
3459 break;
3460 min_key = max_key + 1;
3463 if (key_type == BTRFS_DIR_ITEM_KEY) {
3464 key_type = BTRFS_DIR_INDEX_KEY;
3465 goto again;
3467 return 0;
3471 * a helper function to drop items from the log before we relog an
3472 * inode. max_key_type indicates the highest item type to remove.
3473 * This cannot be run for file data extents because it does not
3474 * free the extents they point to.
3476 static int drop_objectid_items(struct btrfs_trans_handle *trans,
3477 struct btrfs_root *log,
3478 struct btrfs_path *path,
3479 u64 objectid, int max_key_type)
3481 int ret;
3482 struct btrfs_key key;
3483 struct btrfs_key found_key;
3484 int start_slot;
3486 key.objectid = objectid;
3487 key.type = max_key_type;
3488 key.offset = (u64)-1;
3490 while (1) {
3491 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3492 BUG_ON(ret == 0); /* Logic error */
3493 if (ret < 0)
3494 break;
3496 if (path->slots[0] == 0)
3497 break;
3499 path->slots[0]--;
3500 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3501 path->slots[0]);
3503 if (found_key.objectid != objectid)
3504 break;
3506 found_key.offset = 0;
3507 found_key.type = 0;
3508 ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
3509 &start_slot);
3511 ret = btrfs_del_items(trans, log, path, start_slot,
3512 path->slots[0] - start_slot + 1);
3514 * If start slot isn't 0 then we don't need to re-search, we've
3515 * found the last guy with the objectid in this tree.
3517 if (ret || start_slot != 0)
3518 break;
3519 btrfs_release_path(path);
3521 btrfs_release_path(path);
3522 if (ret > 0)
3523 ret = 0;
3524 return ret;
3527 static void fill_inode_item(struct btrfs_trans_handle *trans,
3528 struct extent_buffer *leaf,
3529 struct btrfs_inode_item *item,
3530 struct inode *inode, int log_inode_only,
3531 u64 logged_isize)
3533 struct btrfs_map_token token;
3535 btrfs_init_map_token(&token);
3537 if (log_inode_only) {
3538 /* set the generation to zero so the recover code
3539 * can tell the difference between an logging
3540 * just to say 'this inode exists' and a logging
3541 * to say 'update this inode with these values'
3543 btrfs_set_token_inode_generation(leaf, item, 0, &token);
3544 btrfs_set_token_inode_size(leaf, item, logged_isize, &token);
3545 } else {
3546 btrfs_set_token_inode_generation(leaf, item,
3547 BTRFS_I(inode)->generation,
3548 &token);
3549 btrfs_set_token_inode_size(leaf, item, inode->i_size, &token);
3552 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3553 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3554 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3555 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3557 btrfs_set_token_timespec_sec(leaf, &item->atime,
3558 inode->i_atime.tv_sec, &token);
3559 btrfs_set_token_timespec_nsec(leaf, &item->atime,
3560 inode->i_atime.tv_nsec, &token);
3562 btrfs_set_token_timespec_sec(leaf, &item->mtime,
3563 inode->i_mtime.tv_sec, &token);
3564 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3565 inode->i_mtime.tv_nsec, &token);
3567 btrfs_set_token_timespec_sec(leaf, &item->ctime,
3568 inode->i_ctime.tv_sec, &token);
3569 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3570 inode->i_ctime.tv_nsec, &token);
3572 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3573 &token);
3575 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3576 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3577 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3578 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3579 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3582 static int log_inode_item(struct btrfs_trans_handle *trans,
3583 struct btrfs_root *log, struct btrfs_path *path,
3584 struct inode *inode)
3586 struct btrfs_inode_item *inode_item;
3587 int ret;
3589 ret = btrfs_insert_empty_item(trans, log, path,
3590 &BTRFS_I(inode)->location,
3591 sizeof(*inode_item));
3592 if (ret && ret != -EEXIST)
3593 return ret;
3594 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3595 struct btrfs_inode_item);
3596 fill_inode_item(trans, path->nodes[0], inode_item, inode, 0, 0);
3597 btrfs_release_path(path);
3598 return 0;
3601 static noinline int copy_items(struct btrfs_trans_handle *trans,
3602 struct inode *inode,
3603 struct btrfs_path *dst_path,
3604 struct btrfs_path *src_path, u64 *last_extent,
3605 int start_slot, int nr, int inode_only,
3606 u64 logged_isize)
3608 unsigned long src_offset;
3609 unsigned long dst_offset;
3610 struct btrfs_root *log = BTRFS_I(inode)->root->log_root;
3611 struct btrfs_file_extent_item *extent;
3612 struct btrfs_inode_item *inode_item;
3613 struct extent_buffer *src = src_path->nodes[0];
3614 struct btrfs_key first_key, last_key, key;
3615 int ret;
3616 struct btrfs_key *ins_keys;
3617 u32 *ins_sizes;
3618 char *ins_data;
3619 int i;
3620 struct list_head ordered_sums;
3621 int skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
3622 bool has_extents = false;
3623 bool need_find_last_extent = true;
3624 bool done = false;
3626 INIT_LIST_HEAD(&ordered_sums);
3628 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3629 nr * sizeof(u32), GFP_NOFS);
3630 if (!ins_data)
3631 return -ENOMEM;
3633 first_key.objectid = (u64)-1;
3635 ins_sizes = (u32 *)ins_data;
3636 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3638 for (i = 0; i < nr; i++) {
3639 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3640 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3642 ret = btrfs_insert_empty_items(trans, log, dst_path,
3643 ins_keys, ins_sizes, nr);
3644 if (ret) {
3645 kfree(ins_data);
3646 return ret;
3649 for (i = 0; i < nr; i++, dst_path->slots[0]++) {
3650 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3651 dst_path->slots[0]);
3653 src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3655 if ((i == (nr - 1)))
3656 last_key = ins_keys[i];
3658 if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
3659 inode_item = btrfs_item_ptr(dst_path->nodes[0],
3660 dst_path->slots[0],
3661 struct btrfs_inode_item);
3662 fill_inode_item(trans, dst_path->nodes[0], inode_item,
3663 inode, inode_only == LOG_INODE_EXISTS,
3664 logged_isize);
3665 } else {
3666 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
3667 src_offset, ins_sizes[i]);
3671 * We set need_find_last_extent here in case we know we were
3672 * processing other items and then walk into the first extent in
3673 * the inode. If we don't hit an extent then nothing changes,
3674 * we'll do the last search the next time around.
3676 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY) {
3677 has_extents = true;
3678 if (first_key.objectid == (u64)-1)
3679 first_key = ins_keys[i];
3680 } else {
3681 need_find_last_extent = false;
3684 /* take a reference on file data extents so that truncates
3685 * or deletes of this inode don't have to relog the inode
3686 * again
3688 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
3689 !skip_csum) {
3690 int found_type;
3691 extent = btrfs_item_ptr(src, start_slot + i,
3692 struct btrfs_file_extent_item);
3694 if (btrfs_file_extent_generation(src, extent) < trans->transid)
3695 continue;
3697 found_type = btrfs_file_extent_type(src, extent);
3698 if (found_type == BTRFS_FILE_EXTENT_REG) {
3699 u64 ds, dl, cs, cl;
3700 ds = btrfs_file_extent_disk_bytenr(src,
3701 extent);
3702 /* ds == 0 is a hole */
3703 if (ds == 0)
3704 continue;
3706 dl = btrfs_file_extent_disk_num_bytes(src,
3707 extent);
3708 cs = btrfs_file_extent_offset(src, extent);
3709 cl = btrfs_file_extent_num_bytes(src,
3710 extent);
3711 if (btrfs_file_extent_compression(src,
3712 extent)) {
3713 cs = 0;
3714 cl = dl;
3717 ret = btrfs_lookup_csums_range(
3718 log->fs_info->csum_root,
3719 ds + cs, ds + cs + cl - 1,
3720 &ordered_sums, 0);
3721 if (ret) {
3722 btrfs_release_path(dst_path);
3723 kfree(ins_data);
3724 return ret;
3730 btrfs_mark_buffer_dirty(dst_path->nodes[0]);
3731 btrfs_release_path(dst_path);
3732 kfree(ins_data);
3735 * we have to do this after the loop above to avoid changing the
3736 * log tree while trying to change the log tree.
3738 ret = 0;
3739 while (!list_empty(&ordered_sums)) {
3740 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3741 struct btrfs_ordered_sum,
3742 list);
3743 if (!ret)
3744 ret = btrfs_csum_file_blocks(trans, log, sums);
3745 list_del(&sums->list);
3746 kfree(sums);
3749 if (!has_extents)
3750 return ret;
3752 if (need_find_last_extent && *last_extent == first_key.offset) {
3754 * We don't have any leafs between our current one and the one
3755 * we processed before that can have file extent items for our
3756 * inode (and have a generation number smaller than our current
3757 * transaction id).
3759 need_find_last_extent = false;
3763 * Because we use btrfs_search_forward we could skip leaves that were
3764 * not modified and then assume *last_extent is valid when it really
3765 * isn't. So back up to the previous leaf and read the end of the last
3766 * extent before we go and fill in holes.
3768 if (need_find_last_extent) {
3769 u64 len;
3771 ret = btrfs_prev_leaf(BTRFS_I(inode)->root, src_path);
3772 if (ret < 0)
3773 return ret;
3774 if (ret)
3775 goto fill_holes;
3776 if (src_path->slots[0])
3777 src_path->slots[0]--;
3778 src = src_path->nodes[0];
3779 btrfs_item_key_to_cpu(src, &key, src_path->slots[0]);
3780 if (key.objectid != btrfs_ino(inode) ||
3781 key.type != BTRFS_EXTENT_DATA_KEY)
3782 goto fill_holes;
3783 extent = btrfs_item_ptr(src, src_path->slots[0],
3784 struct btrfs_file_extent_item);
3785 if (btrfs_file_extent_type(src, extent) ==
3786 BTRFS_FILE_EXTENT_INLINE) {
3787 len = btrfs_file_extent_inline_len(src,
3788 src_path->slots[0],
3789 extent);
3790 *last_extent = ALIGN(key.offset + len,
3791 log->sectorsize);
3792 } else {
3793 len = btrfs_file_extent_num_bytes(src, extent);
3794 *last_extent = key.offset + len;
3797 fill_holes:
3798 /* So we did prev_leaf, now we need to move to the next leaf, but a few
3799 * things could have happened
3801 * 1) A merge could have happened, so we could currently be on a leaf
3802 * that holds what we were copying in the first place.
3803 * 2) A split could have happened, and now not all of the items we want
3804 * are on the same leaf.
3806 * So we need to adjust how we search for holes, we need to drop the
3807 * path and re-search for the first extent key we found, and then walk
3808 * forward until we hit the last one we copied.
3810 if (need_find_last_extent) {
3811 /* btrfs_prev_leaf could return 1 without releasing the path */
3812 btrfs_release_path(src_path);
3813 ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &first_key,
3814 src_path, 0, 0);
3815 if (ret < 0)
3816 return ret;
3817 ASSERT(ret == 0);
3818 src = src_path->nodes[0];
3819 i = src_path->slots[0];
3820 } else {
3821 i = start_slot;
3825 * Ok so here we need to go through and fill in any holes we may have
3826 * to make sure that holes are punched for those areas in case they had
3827 * extents previously.
3829 while (!done) {
3830 u64 offset, len;
3831 u64 extent_end;
3833 if (i >= btrfs_header_nritems(src_path->nodes[0])) {
3834 ret = btrfs_next_leaf(BTRFS_I(inode)->root, src_path);
3835 if (ret < 0)
3836 return ret;
3837 ASSERT(ret == 0);
3838 src = src_path->nodes[0];
3839 i = 0;
3842 btrfs_item_key_to_cpu(src, &key, i);
3843 if (!btrfs_comp_cpu_keys(&key, &last_key))
3844 done = true;
3845 if (key.objectid != btrfs_ino(inode) ||
3846 key.type != BTRFS_EXTENT_DATA_KEY) {
3847 i++;
3848 continue;
3850 extent = btrfs_item_ptr(src, i, struct btrfs_file_extent_item);
3851 if (btrfs_file_extent_type(src, extent) ==
3852 BTRFS_FILE_EXTENT_INLINE) {
3853 len = btrfs_file_extent_inline_len(src, i, extent);
3854 extent_end = ALIGN(key.offset + len, log->sectorsize);
3855 } else {
3856 len = btrfs_file_extent_num_bytes(src, extent);
3857 extent_end = key.offset + len;
3859 i++;
3861 if (*last_extent == key.offset) {
3862 *last_extent = extent_end;
3863 continue;
3865 offset = *last_extent;
3866 len = key.offset - *last_extent;
3867 ret = btrfs_insert_file_extent(trans, log, btrfs_ino(inode),
3868 offset, 0, 0, len, 0, len, 0,
3869 0, 0);
3870 if (ret)
3871 break;
3872 *last_extent = extent_end;
3875 * Need to let the callers know we dropped the path so they should
3876 * re-search.
3878 if (!ret && need_find_last_extent)
3879 ret = 1;
3880 return ret;
3883 static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
3885 struct extent_map *em1, *em2;
3887 em1 = list_entry(a, struct extent_map, list);
3888 em2 = list_entry(b, struct extent_map, list);
3890 if (em1->start < em2->start)
3891 return -1;
3892 else if (em1->start > em2->start)
3893 return 1;
3894 return 0;
3897 static int wait_ordered_extents(struct btrfs_trans_handle *trans,
3898 struct inode *inode,
3899 struct btrfs_root *root,
3900 const struct extent_map *em,
3901 const struct list_head *logged_list,
3902 bool *ordered_io_error)
3904 struct btrfs_ordered_extent *ordered;
3905 struct btrfs_root *log = root->log_root;
3906 u64 mod_start = em->mod_start;
3907 u64 mod_len = em->mod_len;
3908 const bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
3909 u64 csum_offset;
3910 u64 csum_len;
3911 LIST_HEAD(ordered_sums);
3912 int ret = 0;
3914 *ordered_io_error = false;
3916 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
3917 em->block_start == EXTENT_MAP_HOLE)
3918 return 0;
3921 * Wait far any ordered extent that covers our extent map. If it
3922 * finishes without an error, first check and see if our csums are on
3923 * our outstanding ordered extents.
3925 list_for_each_entry(ordered, logged_list, log_list) {
3926 struct btrfs_ordered_sum *sum;
3928 if (!mod_len)
3929 break;
3931 if (ordered->file_offset + ordered->len <= mod_start ||
3932 mod_start + mod_len <= ordered->file_offset)
3933 continue;
3935 if (!test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) &&
3936 !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) &&
3937 !test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) {
3938 const u64 start = ordered->file_offset;
3939 const u64 end = ordered->file_offset + ordered->len - 1;
3941 WARN_ON(ordered->inode != inode);
3942 filemap_fdatawrite_range(inode->i_mapping, start, end);
3945 wait_event(ordered->wait,
3946 (test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) ||
3947 test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)));
3949 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)) {
3951 * Clear the AS_EIO/AS_ENOSPC flags from the inode's
3952 * i_mapping flags, so that the next fsync won't get
3953 * an outdated io error too.
3955 filemap_check_errors(inode->i_mapping);
3956 *ordered_io_error = true;
3957 break;
3960 * We are going to copy all the csums on this ordered extent, so
3961 * go ahead and adjust mod_start and mod_len in case this
3962 * ordered extent has already been logged.
3964 if (ordered->file_offset > mod_start) {
3965 if (ordered->file_offset + ordered->len >=
3966 mod_start + mod_len)
3967 mod_len = ordered->file_offset - mod_start;
3969 * If we have this case
3971 * |--------- logged extent ---------|
3972 * |----- ordered extent ----|
3974 * Just don't mess with mod_start and mod_len, we'll
3975 * just end up logging more csums than we need and it
3976 * will be ok.
3978 } else {
3979 if (ordered->file_offset + ordered->len <
3980 mod_start + mod_len) {
3981 mod_len = (mod_start + mod_len) -
3982 (ordered->file_offset + ordered->len);
3983 mod_start = ordered->file_offset +
3984 ordered->len;
3985 } else {
3986 mod_len = 0;
3990 if (skip_csum)
3991 continue;
3994 * To keep us from looping for the above case of an ordered
3995 * extent that falls inside of the logged extent.
3997 if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM,
3998 &ordered->flags))
3999 continue;
4001 list_for_each_entry(sum, &ordered->list, list) {
4002 ret = btrfs_csum_file_blocks(trans, log, sum);
4003 if (ret)
4004 break;
4008 if (*ordered_io_error || !mod_len || ret || skip_csum)
4009 return ret;
4011 if (em->compress_type) {
4012 csum_offset = 0;
4013 csum_len = max(em->block_len, em->orig_block_len);
4014 } else {
4015 csum_offset = mod_start - em->start;
4016 csum_len = mod_len;
4019 /* block start is already adjusted for the file extent offset. */
4020 ret = btrfs_lookup_csums_range(log->fs_info->csum_root,
4021 em->block_start + csum_offset,
4022 em->block_start + csum_offset +
4023 csum_len - 1, &ordered_sums, 0);
4024 if (ret)
4025 return ret;
4027 while (!list_empty(&ordered_sums)) {
4028 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4029 struct btrfs_ordered_sum,
4030 list);
4031 if (!ret)
4032 ret = btrfs_csum_file_blocks(trans, log, sums);
4033 list_del(&sums->list);
4034 kfree(sums);
4037 return ret;
4040 static int log_one_extent(struct btrfs_trans_handle *trans,
4041 struct inode *inode, struct btrfs_root *root,
4042 const struct extent_map *em,
4043 struct btrfs_path *path,
4044 const struct list_head *logged_list,
4045 struct btrfs_log_ctx *ctx)
4047 struct btrfs_root *log = root->log_root;
4048 struct btrfs_file_extent_item *fi;
4049 struct extent_buffer *leaf;
4050 struct btrfs_map_token token;
4051 struct btrfs_key key;
4052 u64 extent_offset = em->start - em->orig_start;
4053 u64 block_len;
4054 int ret;
4055 int extent_inserted = 0;
4056 bool ordered_io_err = false;
4058 ret = wait_ordered_extents(trans, inode, root, em, logged_list,
4059 &ordered_io_err);
4060 if (ret)
4061 return ret;
4063 if (ordered_io_err) {
4064 ctx->io_err = -EIO;
4065 return 0;
4068 btrfs_init_map_token(&token);
4070 ret = __btrfs_drop_extents(trans, log, inode, path, em->start,
4071 em->start + em->len, NULL, 0, 1,
4072 sizeof(*fi), &extent_inserted);
4073 if (ret)
4074 return ret;
4076 if (!extent_inserted) {
4077 key.objectid = btrfs_ino(inode);
4078 key.type = BTRFS_EXTENT_DATA_KEY;
4079 key.offset = em->start;
4081 ret = btrfs_insert_empty_item(trans, log, path, &key,
4082 sizeof(*fi));
4083 if (ret)
4084 return ret;
4086 leaf = path->nodes[0];
4087 fi = btrfs_item_ptr(leaf, path->slots[0],
4088 struct btrfs_file_extent_item);
4090 btrfs_set_token_file_extent_generation(leaf, fi, trans->transid,
4091 &token);
4092 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4093 btrfs_set_token_file_extent_type(leaf, fi,
4094 BTRFS_FILE_EXTENT_PREALLOC,
4095 &token);
4096 else
4097 btrfs_set_token_file_extent_type(leaf, fi,
4098 BTRFS_FILE_EXTENT_REG,
4099 &token);
4101 block_len = max(em->block_len, em->orig_block_len);
4102 if (em->compress_type != BTRFS_COMPRESS_NONE) {
4103 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4104 em->block_start,
4105 &token);
4106 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4107 &token);
4108 } else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4109 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4110 em->block_start -
4111 extent_offset, &token);
4112 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4113 &token);
4114 } else {
4115 btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token);
4116 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0,
4117 &token);
4120 btrfs_set_token_file_extent_offset(leaf, fi, extent_offset, &token);
4121 btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token);
4122 btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token);
4123 btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type,
4124 &token);
4125 btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token);
4126 btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token);
4127 btrfs_mark_buffer_dirty(leaf);
4129 btrfs_release_path(path);
4131 return ret;
4134 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4135 struct btrfs_root *root,
4136 struct inode *inode,
4137 struct btrfs_path *path,
4138 struct list_head *logged_list,
4139 struct btrfs_log_ctx *ctx,
4140 const u64 start,
4141 const u64 end)
4143 struct extent_map *em, *n;
4144 struct list_head extents;
4145 struct extent_map_tree *tree = &BTRFS_I(inode)->extent_tree;
4146 u64 test_gen;
4147 int ret = 0;
4148 int num = 0;
4150 INIT_LIST_HEAD(&extents);
4152 down_write(&BTRFS_I(inode)->dio_sem);
4153 write_lock(&tree->lock);
4154 test_gen = root->fs_info->last_trans_committed;
4156 list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4157 list_del_init(&em->list);
4160 * Just an arbitrary number, this can be really CPU intensive
4161 * once we start getting a lot of extents, and really once we
4162 * have a bunch of extents we just want to commit since it will
4163 * be faster.
4165 if (++num > 32768) {
4166 list_del_init(&tree->modified_extents);
4167 ret = -EFBIG;
4168 goto process;
4171 if (em->generation <= test_gen)
4172 continue;
4173 /* Need a ref to keep it from getting evicted from cache */
4174 atomic_inc(&em->refs);
4175 set_bit(EXTENT_FLAG_LOGGING, &em->flags);
4176 list_add_tail(&em->list, &extents);
4177 num++;
4180 list_sort(NULL, &extents, extent_cmp);
4181 btrfs_get_logged_extents(inode, logged_list, start, end);
4183 * Some ordered extents started by fsync might have completed
4184 * before we could collect them into the list logged_list, which
4185 * means they're gone, not in our logged_list nor in the inode's
4186 * ordered tree. We want the application/user space to know an
4187 * error happened while attempting to persist file data so that
4188 * it can take proper action. If such error happened, we leave
4189 * without writing to the log tree and the fsync must report the
4190 * file data write error and not commit the current transaction.
4192 ret = filemap_check_errors(inode->i_mapping);
4193 if (ret)
4194 ctx->io_err = ret;
4195 process:
4196 while (!list_empty(&extents)) {
4197 em = list_entry(extents.next, struct extent_map, list);
4199 list_del_init(&em->list);
4202 * If we had an error we just need to delete everybody from our
4203 * private list.
4205 if (ret) {
4206 clear_em_logging(tree, em);
4207 free_extent_map(em);
4208 continue;
4211 write_unlock(&tree->lock);
4213 ret = log_one_extent(trans, inode, root, em, path, logged_list,
4214 ctx);
4215 write_lock(&tree->lock);
4216 clear_em_logging(tree, em);
4217 free_extent_map(em);
4219 WARN_ON(!list_empty(&extents));
4220 write_unlock(&tree->lock);
4221 up_write(&BTRFS_I(inode)->dio_sem);
4223 btrfs_release_path(path);
4224 return ret;
4227 static int logged_inode_size(struct btrfs_root *log, struct inode *inode,
4228 struct btrfs_path *path, u64 *size_ret)
4230 struct btrfs_key key;
4231 int ret;
4233 key.objectid = btrfs_ino(inode);
4234 key.type = BTRFS_INODE_ITEM_KEY;
4235 key.offset = 0;
4237 ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4238 if (ret < 0) {
4239 return ret;
4240 } else if (ret > 0) {
4241 *size_ret = 0;
4242 } else {
4243 struct btrfs_inode_item *item;
4245 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4246 struct btrfs_inode_item);
4247 *size_ret = btrfs_inode_size(path->nodes[0], item);
4250 btrfs_release_path(path);
4251 return 0;
4255 * At the moment we always log all xattrs. This is to figure out at log replay
4256 * time which xattrs must have their deletion replayed. If a xattr is missing
4257 * in the log tree and exists in the fs/subvol tree, we delete it. This is
4258 * because if a xattr is deleted, the inode is fsynced and a power failure
4259 * happens, causing the log to be replayed the next time the fs is mounted,
4260 * we want the xattr to not exist anymore (same behaviour as other filesystems
4261 * with a journal, ext3/4, xfs, f2fs, etc).
4263 static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
4264 struct btrfs_root *root,
4265 struct inode *inode,
4266 struct btrfs_path *path,
4267 struct btrfs_path *dst_path)
4269 int ret;
4270 struct btrfs_key key;
4271 const u64 ino = btrfs_ino(inode);
4272 int ins_nr = 0;
4273 int start_slot = 0;
4275 key.objectid = ino;
4276 key.type = BTRFS_XATTR_ITEM_KEY;
4277 key.offset = 0;
4279 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4280 if (ret < 0)
4281 return ret;
4283 while (true) {
4284 int slot = path->slots[0];
4285 struct extent_buffer *leaf = path->nodes[0];
4286 int nritems = btrfs_header_nritems(leaf);
4288 if (slot >= nritems) {
4289 if (ins_nr > 0) {
4290 u64 last_extent = 0;
4292 ret = copy_items(trans, inode, dst_path, path,
4293 &last_extent, start_slot,
4294 ins_nr, 1, 0);
4295 /* can't be 1, extent items aren't processed */
4296 ASSERT(ret <= 0);
4297 if (ret < 0)
4298 return ret;
4299 ins_nr = 0;
4301 ret = btrfs_next_leaf(root, path);
4302 if (ret < 0)
4303 return ret;
4304 else if (ret > 0)
4305 break;
4306 continue;
4309 btrfs_item_key_to_cpu(leaf, &key, slot);
4310 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
4311 break;
4313 if (ins_nr == 0)
4314 start_slot = slot;
4315 ins_nr++;
4316 path->slots[0]++;
4317 cond_resched();
4319 if (ins_nr > 0) {
4320 u64 last_extent = 0;
4322 ret = copy_items(trans, inode, dst_path, path,
4323 &last_extent, start_slot,
4324 ins_nr, 1, 0);
4325 /* can't be 1, extent items aren't processed */
4326 ASSERT(ret <= 0);
4327 if (ret < 0)
4328 return ret;
4331 return 0;
4335 * If the no holes feature is enabled we need to make sure any hole between the
4336 * last extent and the i_size of our inode is explicitly marked in the log. This
4337 * is to make sure that doing something like:
4339 * 1) create file with 128Kb of data
4340 * 2) truncate file to 64Kb
4341 * 3) truncate file to 256Kb
4342 * 4) fsync file
4343 * 5) <crash/power failure>
4344 * 6) mount fs and trigger log replay
4346 * Will give us a file with a size of 256Kb, the first 64Kb of data match what
4347 * the file had in its first 64Kb of data at step 1 and the last 192Kb of the
4348 * file correspond to a hole. The presence of explicit holes in a log tree is
4349 * what guarantees that log replay will remove/adjust file extent items in the
4350 * fs/subvol tree.
4352 * Here we do not need to care about holes between extents, that is already done
4353 * by copy_items(). We also only need to do this in the full sync path, where we
4354 * lookup for extents from the fs/subvol tree only. In the fast path case, we
4355 * lookup the list of modified extent maps and if any represents a hole, we
4356 * insert a corresponding extent representing a hole in the log tree.
4358 static int btrfs_log_trailing_hole(struct btrfs_trans_handle *trans,
4359 struct btrfs_root *root,
4360 struct inode *inode,
4361 struct btrfs_path *path)
4363 int ret;
4364 struct btrfs_key key;
4365 u64 hole_start;
4366 u64 hole_size;
4367 struct extent_buffer *leaf;
4368 struct btrfs_root *log = root->log_root;
4369 const u64 ino = btrfs_ino(inode);
4370 const u64 i_size = i_size_read(inode);
4372 if (!btrfs_fs_incompat(root->fs_info, NO_HOLES))
4373 return 0;
4375 key.objectid = ino;
4376 key.type = BTRFS_EXTENT_DATA_KEY;
4377 key.offset = (u64)-1;
4379 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4380 ASSERT(ret != 0);
4381 if (ret < 0)
4382 return ret;
4384 ASSERT(path->slots[0] > 0);
4385 path->slots[0]--;
4386 leaf = path->nodes[0];
4387 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4389 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) {
4390 /* inode does not have any extents */
4391 hole_start = 0;
4392 hole_size = i_size;
4393 } else {
4394 struct btrfs_file_extent_item *extent;
4395 u64 len;
4398 * If there's an extent beyond i_size, an explicit hole was
4399 * already inserted by copy_items().
4401 if (key.offset >= i_size)
4402 return 0;
4404 extent = btrfs_item_ptr(leaf, path->slots[0],
4405 struct btrfs_file_extent_item);
4407 if (btrfs_file_extent_type(leaf, extent) ==
4408 BTRFS_FILE_EXTENT_INLINE) {
4409 len = btrfs_file_extent_inline_len(leaf,
4410 path->slots[0],
4411 extent);
4412 ASSERT(len == i_size);
4413 return 0;
4416 len = btrfs_file_extent_num_bytes(leaf, extent);
4417 /* Last extent goes beyond i_size, no need to log a hole. */
4418 if (key.offset + len > i_size)
4419 return 0;
4420 hole_start = key.offset + len;
4421 hole_size = i_size - hole_start;
4423 btrfs_release_path(path);
4425 /* Last extent ends at i_size. */
4426 if (hole_size == 0)
4427 return 0;
4429 hole_size = ALIGN(hole_size, root->sectorsize);
4430 ret = btrfs_insert_file_extent(trans, log, ino, hole_start, 0, 0,
4431 hole_size, 0, hole_size, 0, 0, 0);
4432 return ret;
4436 * When we are logging a new inode X, check if it doesn't have a reference that
4437 * matches the reference from some other inode Y created in a past transaction
4438 * and that was renamed in the current transaction. If we don't do this, then at
4439 * log replay time we can lose inode Y (and all its files if it's a directory):
4441 * mkdir /mnt/x
4442 * echo "hello world" > /mnt/x/foobar
4443 * sync
4444 * mv /mnt/x /mnt/y
4445 * mkdir /mnt/x # or touch /mnt/x
4446 * xfs_io -c fsync /mnt/x
4447 * <power fail>
4448 * mount fs, trigger log replay
4450 * After the log replay procedure, we would lose the first directory and all its
4451 * files (file foobar).
4452 * For the case where inode Y is not a directory we simply end up losing it:
4454 * echo "123" > /mnt/foo
4455 * sync
4456 * mv /mnt/foo /mnt/bar
4457 * echo "abc" > /mnt/foo
4458 * xfs_io -c fsync /mnt/foo
4459 * <power fail>
4461 * We also need this for cases where a snapshot entry is replaced by some other
4462 * entry (file or directory) otherwise we end up with an unreplayable log due to
4463 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
4464 * if it were a regular entry:
4466 * mkdir /mnt/x
4467 * btrfs subvolume snapshot /mnt /mnt/x/snap
4468 * btrfs subvolume delete /mnt/x/snap
4469 * rmdir /mnt/x
4470 * mkdir /mnt/x
4471 * fsync /mnt/x or fsync some new file inside it
4472 * <power fail>
4474 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
4475 * the same transaction.
4477 static int btrfs_check_ref_name_override(struct extent_buffer *eb,
4478 const int slot,
4479 const struct btrfs_key *key,
4480 struct inode *inode,
4481 u64 *other_ino)
4483 int ret;
4484 struct btrfs_path *search_path;
4485 char *name = NULL;
4486 u32 name_len = 0;
4487 u32 item_size = btrfs_item_size_nr(eb, slot);
4488 u32 cur_offset = 0;
4489 unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
4491 search_path = btrfs_alloc_path();
4492 if (!search_path)
4493 return -ENOMEM;
4494 search_path->search_commit_root = 1;
4495 search_path->skip_locking = 1;
4497 while (cur_offset < item_size) {
4498 u64 parent;
4499 u32 this_name_len;
4500 u32 this_len;
4501 unsigned long name_ptr;
4502 struct btrfs_dir_item *di;
4504 if (key->type == BTRFS_INODE_REF_KEY) {
4505 struct btrfs_inode_ref *iref;
4507 iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
4508 parent = key->offset;
4509 this_name_len = btrfs_inode_ref_name_len(eb, iref);
4510 name_ptr = (unsigned long)(iref + 1);
4511 this_len = sizeof(*iref) + this_name_len;
4512 } else {
4513 struct btrfs_inode_extref *extref;
4515 extref = (struct btrfs_inode_extref *)(ptr +
4516 cur_offset);
4517 parent = btrfs_inode_extref_parent(eb, extref);
4518 this_name_len = btrfs_inode_extref_name_len(eb, extref);
4519 name_ptr = (unsigned long)&extref->name;
4520 this_len = sizeof(*extref) + this_name_len;
4523 if (this_name_len > name_len) {
4524 char *new_name;
4526 new_name = krealloc(name, this_name_len, GFP_NOFS);
4527 if (!new_name) {
4528 ret = -ENOMEM;
4529 goto out;
4531 name_len = this_name_len;
4532 name = new_name;
4535 read_extent_buffer(eb, name, name_ptr, this_name_len);
4536 di = btrfs_lookup_dir_item(NULL, BTRFS_I(inode)->root,
4537 search_path, parent,
4538 name, this_name_len, 0);
4539 if (di && !IS_ERR(di)) {
4540 struct btrfs_key di_key;
4542 btrfs_dir_item_key_to_cpu(search_path->nodes[0],
4543 di, &di_key);
4544 if (di_key.type == BTRFS_INODE_ITEM_KEY) {
4545 ret = 1;
4546 *other_ino = di_key.objectid;
4547 } else {
4548 ret = -EAGAIN;
4550 goto out;
4551 } else if (IS_ERR(di)) {
4552 ret = PTR_ERR(di);
4553 goto out;
4555 btrfs_release_path(search_path);
4557 cur_offset += this_len;
4559 ret = 0;
4560 out:
4561 btrfs_free_path(search_path);
4562 kfree(name);
4563 return ret;
4566 /* log a single inode in the tree log.
4567 * At least one parent directory for this inode must exist in the tree
4568 * or be logged already.
4570 * Any items from this inode changed by the current transaction are copied
4571 * to the log tree. An extra reference is taken on any extents in this
4572 * file, allowing us to avoid a whole pile of corner cases around logging
4573 * blocks that have been removed from the tree.
4575 * See LOG_INODE_ALL and related defines for a description of what inode_only
4576 * does.
4578 * This handles both files and directories.
4580 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
4581 struct btrfs_root *root, struct inode *inode,
4582 int inode_only,
4583 const loff_t start,
4584 const loff_t end,
4585 struct btrfs_log_ctx *ctx)
4587 struct btrfs_path *path;
4588 struct btrfs_path *dst_path;
4589 struct btrfs_key min_key;
4590 struct btrfs_key max_key;
4591 struct btrfs_root *log = root->log_root;
4592 struct extent_buffer *src = NULL;
4593 LIST_HEAD(logged_list);
4594 u64 last_extent = 0;
4595 int err = 0;
4596 int ret;
4597 int nritems;
4598 int ins_start_slot = 0;
4599 int ins_nr;
4600 bool fast_search = false;
4601 u64 ino = btrfs_ino(inode);
4602 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4603 u64 logged_isize = 0;
4604 bool need_log_inode_item = true;
4606 path = btrfs_alloc_path();
4607 if (!path)
4608 return -ENOMEM;
4609 dst_path = btrfs_alloc_path();
4610 if (!dst_path) {
4611 btrfs_free_path(path);
4612 return -ENOMEM;
4615 min_key.objectid = ino;
4616 min_key.type = BTRFS_INODE_ITEM_KEY;
4617 min_key.offset = 0;
4619 max_key.objectid = ino;
4622 /* today the code can only do partial logging of directories */
4623 if (S_ISDIR(inode->i_mode) ||
4624 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4625 &BTRFS_I(inode)->runtime_flags) &&
4626 inode_only == LOG_INODE_EXISTS))
4627 max_key.type = BTRFS_XATTR_ITEM_KEY;
4628 else
4629 max_key.type = (u8)-1;
4630 max_key.offset = (u64)-1;
4633 * Only run delayed items if we are a dir or a new file.
4634 * Otherwise commit the delayed inode only, which is needed in
4635 * order for the log replay code to mark inodes for link count
4636 * fixup (create temporary BTRFS_TREE_LOG_FIXUP_OBJECTID items).
4638 if (S_ISDIR(inode->i_mode) ||
4639 BTRFS_I(inode)->generation > root->fs_info->last_trans_committed)
4640 ret = btrfs_commit_inode_delayed_items(trans, inode);
4641 else
4642 ret = btrfs_commit_inode_delayed_inode(inode);
4644 if (ret) {
4645 btrfs_free_path(path);
4646 btrfs_free_path(dst_path);
4647 return ret;
4650 mutex_lock(&BTRFS_I(inode)->log_mutex);
4653 * a brute force approach to making sure we get the most uptodate
4654 * copies of everything.
4656 if (S_ISDIR(inode->i_mode)) {
4657 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
4659 if (inode_only == LOG_INODE_EXISTS)
4660 max_key_type = BTRFS_XATTR_ITEM_KEY;
4661 ret = drop_objectid_items(trans, log, path, ino, max_key_type);
4662 } else {
4663 if (inode_only == LOG_INODE_EXISTS) {
4665 * Make sure the new inode item we write to the log has
4666 * the same isize as the current one (if it exists).
4667 * This is necessary to prevent data loss after log
4668 * replay, and also to prevent doing a wrong expanding
4669 * truncate - for e.g. create file, write 4K into offset
4670 * 0, fsync, write 4K into offset 4096, add hard link,
4671 * fsync some other file (to sync log), power fail - if
4672 * we use the inode's current i_size, after log replay
4673 * we get a 8Kb file, with the last 4Kb extent as a hole
4674 * (zeroes), as if an expanding truncate happened,
4675 * instead of getting a file of 4Kb only.
4677 err = logged_inode_size(log, inode, path,
4678 &logged_isize);
4679 if (err)
4680 goto out_unlock;
4682 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4683 &BTRFS_I(inode)->runtime_flags)) {
4684 if (inode_only == LOG_INODE_EXISTS) {
4685 max_key.type = BTRFS_XATTR_ITEM_KEY;
4686 ret = drop_objectid_items(trans, log, path, ino,
4687 max_key.type);
4688 } else {
4689 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4690 &BTRFS_I(inode)->runtime_flags);
4691 clear_bit(BTRFS_INODE_COPY_EVERYTHING,
4692 &BTRFS_I(inode)->runtime_flags);
4693 while(1) {
4694 ret = btrfs_truncate_inode_items(trans,
4695 log, inode, 0, 0);
4696 if (ret != -EAGAIN)
4697 break;
4700 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
4701 &BTRFS_I(inode)->runtime_flags) ||
4702 inode_only == LOG_INODE_EXISTS) {
4703 if (inode_only == LOG_INODE_ALL)
4704 fast_search = true;
4705 max_key.type = BTRFS_XATTR_ITEM_KEY;
4706 ret = drop_objectid_items(trans, log, path, ino,
4707 max_key.type);
4708 } else {
4709 if (inode_only == LOG_INODE_ALL)
4710 fast_search = true;
4711 goto log_extents;
4715 if (ret) {
4716 err = ret;
4717 goto out_unlock;
4720 while (1) {
4721 ins_nr = 0;
4722 ret = btrfs_search_forward(root, &min_key,
4723 path, trans->transid);
4724 if (ret < 0) {
4725 err = ret;
4726 goto out_unlock;
4728 if (ret != 0)
4729 break;
4730 again:
4731 /* note, ins_nr might be > 0 here, cleanup outside the loop */
4732 if (min_key.objectid != ino)
4733 break;
4734 if (min_key.type > max_key.type)
4735 break;
4737 if (min_key.type == BTRFS_INODE_ITEM_KEY)
4738 need_log_inode_item = false;
4740 if ((min_key.type == BTRFS_INODE_REF_KEY ||
4741 min_key.type == BTRFS_INODE_EXTREF_KEY) &&
4742 BTRFS_I(inode)->generation == trans->transid) {
4743 u64 other_ino = 0;
4745 ret = btrfs_check_ref_name_override(path->nodes[0],
4746 path->slots[0],
4747 &min_key, inode,
4748 &other_ino);
4749 if (ret < 0) {
4750 err = ret;
4751 goto out_unlock;
4752 } else if (ret > 0 && ctx &&
4753 other_ino != btrfs_ino(ctx->inode)) {
4754 struct btrfs_key inode_key;
4755 struct inode *other_inode;
4757 if (ins_nr > 0) {
4758 ins_nr++;
4759 } else {
4760 ins_nr = 1;
4761 ins_start_slot = path->slots[0];
4763 ret = copy_items(trans, inode, dst_path, path,
4764 &last_extent, ins_start_slot,
4765 ins_nr, inode_only,
4766 logged_isize);
4767 if (ret < 0) {
4768 err = ret;
4769 goto out_unlock;
4771 ins_nr = 0;
4772 btrfs_release_path(path);
4773 inode_key.objectid = other_ino;
4774 inode_key.type = BTRFS_INODE_ITEM_KEY;
4775 inode_key.offset = 0;
4776 other_inode = btrfs_iget(root->fs_info->sb,
4777 &inode_key, root,
4778 NULL);
4780 * If the other inode that had a conflicting dir
4781 * entry was deleted in the current transaction,
4782 * we don't need to do more work nor fallback to
4783 * a transaction commit.
4785 if (IS_ERR(other_inode) &&
4786 PTR_ERR(other_inode) == -ENOENT) {
4787 goto next_key;
4788 } else if (IS_ERR(other_inode)) {
4789 err = PTR_ERR(other_inode);
4790 goto out_unlock;
4793 * We are safe logging the other inode without
4794 * acquiring its i_mutex as long as we log with
4795 * the LOG_INODE_EXISTS mode. We're safe against
4796 * concurrent renames of the other inode as well
4797 * because during a rename we pin the log and
4798 * update the log with the new name before we
4799 * unpin it.
4801 err = btrfs_log_inode(trans, root, other_inode,
4802 LOG_INODE_EXISTS,
4803 0, LLONG_MAX, ctx);
4804 iput(other_inode);
4805 if (err)
4806 goto out_unlock;
4807 else
4808 goto next_key;
4812 /* Skip xattrs, we log them later with btrfs_log_all_xattrs() */
4813 if (min_key.type == BTRFS_XATTR_ITEM_KEY) {
4814 if (ins_nr == 0)
4815 goto next_slot;
4816 ret = copy_items(trans, inode, dst_path, path,
4817 &last_extent, ins_start_slot,
4818 ins_nr, inode_only, logged_isize);
4819 if (ret < 0) {
4820 err = ret;
4821 goto out_unlock;
4823 ins_nr = 0;
4824 if (ret) {
4825 btrfs_release_path(path);
4826 continue;
4828 goto next_slot;
4831 src = path->nodes[0];
4832 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
4833 ins_nr++;
4834 goto next_slot;
4835 } else if (!ins_nr) {
4836 ins_start_slot = path->slots[0];
4837 ins_nr = 1;
4838 goto next_slot;
4841 ret = copy_items(trans, inode, dst_path, path, &last_extent,
4842 ins_start_slot, ins_nr, inode_only,
4843 logged_isize);
4844 if (ret < 0) {
4845 err = ret;
4846 goto out_unlock;
4848 if (ret) {
4849 ins_nr = 0;
4850 btrfs_release_path(path);
4851 continue;
4853 ins_nr = 1;
4854 ins_start_slot = path->slots[0];
4855 next_slot:
4857 nritems = btrfs_header_nritems(path->nodes[0]);
4858 path->slots[0]++;
4859 if (path->slots[0] < nritems) {
4860 btrfs_item_key_to_cpu(path->nodes[0], &min_key,
4861 path->slots[0]);
4862 goto again;
4864 if (ins_nr) {
4865 ret = copy_items(trans, inode, dst_path, path,
4866 &last_extent, ins_start_slot,
4867 ins_nr, inode_only, logged_isize);
4868 if (ret < 0) {
4869 err = ret;
4870 goto out_unlock;
4872 ret = 0;
4873 ins_nr = 0;
4875 btrfs_release_path(path);
4876 next_key:
4877 if (min_key.offset < (u64)-1) {
4878 min_key.offset++;
4879 } else if (min_key.type < max_key.type) {
4880 min_key.type++;
4881 min_key.offset = 0;
4882 } else {
4883 break;
4886 if (ins_nr) {
4887 ret = copy_items(trans, inode, dst_path, path, &last_extent,
4888 ins_start_slot, ins_nr, inode_only,
4889 logged_isize);
4890 if (ret < 0) {
4891 err = ret;
4892 goto out_unlock;
4894 ret = 0;
4895 ins_nr = 0;
4898 btrfs_release_path(path);
4899 btrfs_release_path(dst_path);
4900 err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path);
4901 if (err)
4902 goto out_unlock;
4903 if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
4904 btrfs_release_path(path);
4905 btrfs_release_path(dst_path);
4906 err = btrfs_log_trailing_hole(trans, root, inode, path);
4907 if (err)
4908 goto out_unlock;
4910 log_extents:
4911 btrfs_release_path(path);
4912 btrfs_release_path(dst_path);
4913 if (need_log_inode_item) {
4914 err = log_inode_item(trans, log, dst_path, inode);
4915 if (err)
4916 goto out_unlock;
4918 if (fast_search) {
4919 ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
4920 &logged_list, ctx, start, end);
4921 if (ret) {
4922 err = ret;
4923 goto out_unlock;
4925 } else if (inode_only == LOG_INODE_ALL) {
4926 struct extent_map *em, *n;
4928 write_lock(&em_tree->lock);
4930 * We can't just remove every em if we're called for a ranged
4931 * fsync - that is, one that doesn't cover the whole possible
4932 * file range (0 to LLONG_MAX). This is because we can have
4933 * em's that fall outside the range we're logging and therefore
4934 * their ordered operations haven't completed yet
4935 * (btrfs_finish_ordered_io() not invoked yet). This means we
4936 * didn't get their respective file extent item in the fs/subvol
4937 * tree yet, and need to let the next fast fsync (one which
4938 * consults the list of modified extent maps) find the em so
4939 * that it logs a matching file extent item and waits for the
4940 * respective ordered operation to complete (if it's still
4941 * running).
4943 * Removing every em outside the range we're logging would make
4944 * the next fast fsync not log their matching file extent items,
4945 * therefore making us lose data after a log replay.
4947 list_for_each_entry_safe(em, n, &em_tree->modified_extents,
4948 list) {
4949 const u64 mod_end = em->mod_start + em->mod_len - 1;
4951 if (em->mod_start >= start && mod_end <= end)
4952 list_del_init(&em->list);
4954 write_unlock(&em_tree->lock);
4957 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
4958 ret = log_directory_changes(trans, root, inode, path, dst_path,
4959 ctx);
4960 if (ret) {
4961 err = ret;
4962 goto out_unlock;
4966 spin_lock(&BTRFS_I(inode)->lock);
4967 BTRFS_I(inode)->logged_trans = trans->transid;
4968 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->last_sub_trans;
4969 spin_unlock(&BTRFS_I(inode)->lock);
4970 out_unlock:
4971 if (unlikely(err))
4972 btrfs_put_logged_extents(&logged_list);
4973 else
4974 btrfs_submit_logged_extents(&logged_list, log);
4975 mutex_unlock(&BTRFS_I(inode)->log_mutex);
4977 btrfs_free_path(path);
4978 btrfs_free_path(dst_path);
4979 return err;
4983 * Check if we must fallback to a transaction commit when logging an inode.
4984 * This must be called after logging the inode and is used only in the context
4985 * when fsyncing an inode requires the need to log some other inode - in which
4986 * case we can't lock the i_mutex of each other inode we need to log as that
4987 * can lead to deadlocks with concurrent fsync against other inodes (as we can
4988 * log inodes up or down in the hierarchy) or rename operations for example. So
4989 * we take the log_mutex of the inode after we have logged it and then check for
4990 * its last_unlink_trans value - this is safe because any task setting
4991 * last_unlink_trans must take the log_mutex and it must do this before it does
4992 * the actual unlink operation, so if we do this check before a concurrent task
4993 * sets last_unlink_trans it means we've logged a consistent version/state of
4994 * all the inode items, otherwise we are not sure and must do a transaction
4995 * commit (the concurrent task might have only updated last_unlink_trans before
4996 * we logged the inode or it might have also done the unlink).
4998 static bool btrfs_must_commit_transaction(struct btrfs_trans_handle *trans,
4999 struct inode *inode)
5001 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
5002 bool ret = false;
5004 mutex_lock(&BTRFS_I(inode)->log_mutex);
5005 if (BTRFS_I(inode)->last_unlink_trans > fs_info->last_trans_committed) {
5007 * Make sure any commits to the log are forced to be full
5008 * commits.
5010 btrfs_set_log_full_commit(fs_info, trans);
5011 ret = true;
5013 mutex_unlock(&BTRFS_I(inode)->log_mutex);
5015 return ret;
5019 * follow the dentry parent pointers up the chain and see if any
5020 * of the directories in it require a full commit before they can
5021 * be logged. Returns zero if nothing special needs to be done or 1 if
5022 * a full commit is required.
5024 static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
5025 struct inode *inode,
5026 struct dentry *parent,
5027 struct super_block *sb,
5028 u64 last_committed)
5030 int ret = 0;
5031 struct dentry *old_parent = NULL;
5032 struct inode *orig_inode = inode;
5035 * for regular files, if its inode is already on disk, we don't
5036 * have to worry about the parents at all. This is because
5037 * we can use the last_unlink_trans field to record renames
5038 * and other fun in this file.
5040 if (S_ISREG(inode->i_mode) &&
5041 BTRFS_I(inode)->generation <= last_committed &&
5042 BTRFS_I(inode)->last_unlink_trans <= last_committed)
5043 goto out;
5045 if (!S_ISDIR(inode->i_mode)) {
5046 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5047 goto out;
5048 inode = d_inode(parent);
5051 while (1) {
5053 * If we are logging a directory then we start with our inode,
5054 * not our parent's inode, so we need to skip setting the
5055 * logged_trans so that further down in the log code we don't
5056 * think this inode has already been logged.
5058 if (inode != orig_inode)
5059 BTRFS_I(inode)->logged_trans = trans->transid;
5060 smp_mb();
5062 if (btrfs_must_commit_transaction(trans, inode)) {
5063 ret = 1;
5064 break;
5067 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5068 break;
5070 if (IS_ROOT(parent)) {
5071 inode = d_inode(parent);
5072 if (btrfs_must_commit_transaction(trans, inode))
5073 ret = 1;
5074 break;
5077 parent = dget_parent(parent);
5078 dput(old_parent);
5079 old_parent = parent;
5080 inode = d_inode(parent);
5083 dput(old_parent);
5084 out:
5085 return ret;
5088 struct btrfs_dir_list {
5089 u64 ino;
5090 struct list_head list;
5094 * Log the inodes of the new dentries of a directory. See log_dir_items() for
5095 * details about the why it is needed.
5096 * This is a recursive operation - if an existing dentry corresponds to a
5097 * directory, that directory's new entries are logged too (same behaviour as
5098 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5099 * the dentries point to we do not lock their i_mutex, otherwise lockdep
5100 * complains about the following circular lock dependency / possible deadlock:
5102 * CPU0 CPU1
5103 * ---- ----
5104 * lock(&type->i_mutex_dir_key#3/2);
5105 * lock(sb_internal#2);
5106 * lock(&type->i_mutex_dir_key#3/2);
5107 * lock(&sb->s_type->i_mutex_key#14);
5109 * Where sb_internal is the lock (a counter that works as a lock) acquired by
5110 * sb_start_intwrite() in btrfs_start_transaction().
5111 * Not locking i_mutex of the inodes is still safe because:
5113 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5114 * that while logging the inode new references (names) are added or removed
5115 * from the inode, leaving the logged inode item with a link count that does
5116 * not match the number of logged inode reference items. This is fine because
5117 * at log replay time we compute the real number of links and correct the
5118 * link count in the inode item (see replay_one_buffer() and
5119 * link_to_fixup_dir());
5121 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5122 * while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
5123 * BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
5124 * has a size that doesn't match the sum of the lengths of all the logged
5125 * names. This does not result in a problem because if a dir_item key is
5126 * logged but its matching dir_index key is not logged, at log replay time we
5127 * don't use it to replay the respective name (see replay_one_name()). On the
5128 * other hand if only the dir_index key ends up being logged, the respective
5129 * name is added to the fs/subvol tree with both the dir_item and dir_index
5130 * keys created (see replay_one_name()).
5131 * The directory's inode item with a wrong i_size is not a problem as well,
5132 * since we don't use it at log replay time to set the i_size in the inode
5133 * item of the fs/subvol tree (see overwrite_item()).
5135 static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5136 struct btrfs_root *root,
5137 struct inode *start_inode,
5138 struct btrfs_log_ctx *ctx)
5140 struct btrfs_root *log = root->log_root;
5141 struct btrfs_path *path;
5142 LIST_HEAD(dir_list);
5143 struct btrfs_dir_list *dir_elem;
5144 int ret = 0;
5146 path = btrfs_alloc_path();
5147 if (!path)
5148 return -ENOMEM;
5150 dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5151 if (!dir_elem) {
5152 btrfs_free_path(path);
5153 return -ENOMEM;
5155 dir_elem->ino = btrfs_ino(start_inode);
5156 list_add_tail(&dir_elem->list, &dir_list);
5158 while (!list_empty(&dir_list)) {
5159 struct extent_buffer *leaf;
5160 struct btrfs_key min_key;
5161 int nritems;
5162 int i;
5164 dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list,
5165 list);
5166 if (ret)
5167 goto next_dir_inode;
5169 min_key.objectid = dir_elem->ino;
5170 min_key.type = BTRFS_DIR_ITEM_KEY;
5171 min_key.offset = 0;
5172 again:
5173 btrfs_release_path(path);
5174 ret = btrfs_search_forward(log, &min_key, path, trans->transid);
5175 if (ret < 0) {
5176 goto next_dir_inode;
5177 } else if (ret > 0) {
5178 ret = 0;
5179 goto next_dir_inode;
5182 process_leaf:
5183 leaf = path->nodes[0];
5184 nritems = btrfs_header_nritems(leaf);
5185 for (i = path->slots[0]; i < nritems; i++) {
5186 struct btrfs_dir_item *di;
5187 struct btrfs_key di_key;
5188 struct inode *di_inode;
5189 struct btrfs_dir_list *new_dir_elem;
5190 int log_mode = LOG_INODE_EXISTS;
5191 int type;
5193 btrfs_item_key_to_cpu(leaf, &min_key, i);
5194 if (min_key.objectid != dir_elem->ino ||
5195 min_key.type != BTRFS_DIR_ITEM_KEY)
5196 goto next_dir_inode;
5198 di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
5199 type = btrfs_dir_type(leaf, di);
5200 if (btrfs_dir_transid(leaf, di) < trans->transid &&
5201 type != BTRFS_FT_DIR)
5202 continue;
5203 btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5204 if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5205 continue;
5207 btrfs_release_path(path);
5208 di_inode = btrfs_iget(root->fs_info->sb, &di_key,
5209 root, NULL);
5210 if (IS_ERR(di_inode)) {
5211 ret = PTR_ERR(di_inode);
5212 goto next_dir_inode;
5215 if (btrfs_inode_in_log(di_inode, trans->transid)) {
5216 iput(di_inode);
5217 break;
5220 ctx->log_new_dentries = false;
5221 if (type == BTRFS_FT_DIR || type == BTRFS_FT_SYMLINK)
5222 log_mode = LOG_INODE_ALL;
5223 ret = btrfs_log_inode(trans, root, di_inode,
5224 log_mode, 0, LLONG_MAX, ctx);
5225 if (!ret &&
5226 btrfs_must_commit_transaction(trans, di_inode))
5227 ret = 1;
5228 iput(di_inode);
5229 if (ret)
5230 goto next_dir_inode;
5231 if (ctx->log_new_dentries) {
5232 new_dir_elem = kmalloc(sizeof(*new_dir_elem),
5233 GFP_NOFS);
5234 if (!new_dir_elem) {
5235 ret = -ENOMEM;
5236 goto next_dir_inode;
5238 new_dir_elem->ino = di_key.objectid;
5239 list_add_tail(&new_dir_elem->list, &dir_list);
5241 break;
5243 if (i == nritems) {
5244 ret = btrfs_next_leaf(log, path);
5245 if (ret < 0) {
5246 goto next_dir_inode;
5247 } else if (ret > 0) {
5248 ret = 0;
5249 goto next_dir_inode;
5251 goto process_leaf;
5253 if (min_key.offset < (u64)-1) {
5254 min_key.offset++;
5255 goto again;
5257 next_dir_inode:
5258 list_del(&dir_elem->list);
5259 kfree(dir_elem);
5262 btrfs_free_path(path);
5263 return ret;
5266 static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
5267 struct inode *inode,
5268 struct btrfs_log_ctx *ctx)
5270 int ret;
5271 struct btrfs_path *path;
5272 struct btrfs_key key;
5273 struct btrfs_root *root = BTRFS_I(inode)->root;
5274 const u64 ino = btrfs_ino(inode);
5276 path = btrfs_alloc_path();
5277 if (!path)
5278 return -ENOMEM;
5279 path->skip_locking = 1;
5280 path->search_commit_root = 1;
5282 key.objectid = ino;
5283 key.type = BTRFS_INODE_REF_KEY;
5284 key.offset = 0;
5285 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5286 if (ret < 0)
5287 goto out;
5289 while (true) {
5290 struct extent_buffer *leaf = path->nodes[0];
5291 int slot = path->slots[0];
5292 u32 cur_offset = 0;
5293 u32 item_size;
5294 unsigned long ptr;
5296 if (slot >= btrfs_header_nritems(leaf)) {
5297 ret = btrfs_next_leaf(root, path);
5298 if (ret < 0)
5299 goto out;
5300 else if (ret > 0)
5301 break;
5302 continue;
5305 btrfs_item_key_to_cpu(leaf, &key, slot);
5306 /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
5307 if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
5308 break;
5310 item_size = btrfs_item_size_nr(leaf, slot);
5311 ptr = btrfs_item_ptr_offset(leaf, slot);
5312 while (cur_offset < item_size) {
5313 struct btrfs_key inode_key;
5314 struct inode *dir_inode;
5316 inode_key.type = BTRFS_INODE_ITEM_KEY;
5317 inode_key.offset = 0;
5319 if (key.type == BTRFS_INODE_EXTREF_KEY) {
5320 struct btrfs_inode_extref *extref;
5322 extref = (struct btrfs_inode_extref *)
5323 (ptr + cur_offset);
5324 inode_key.objectid = btrfs_inode_extref_parent(
5325 leaf, extref);
5326 cur_offset += sizeof(*extref);
5327 cur_offset += btrfs_inode_extref_name_len(leaf,
5328 extref);
5329 } else {
5330 inode_key.objectid = key.offset;
5331 cur_offset = item_size;
5334 dir_inode = btrfs_iget(root->fs_info->sb, &inode_key,
5335 root, NULL);
5336 /* If parent inode was deleted, skip it. */
5337 if (IS_ERR(dir_inode))
5338 continue;
5340 if (ctx)
5341 ctx->log_new_dentries = false;
5342 ret = btrfs_log_inode(trans, root, dir_inode,
5343 LOG_INODE_ALL, 0, LLONG_MAX, ctx);
5344 if (!ret &&
5345 btrfs_must_commit_transaction(trans, dir_inode))
5346 ret = 1;
5347 if (!ret && ctx && ctx->log_new_dentries)
5348 ret = log_new_dir_dentries(trans, root,
5349 dir_inode, ctx);
5350 iput(dir_inode);
5351 if (ret)
5352 goto out;
5354 path->slots[0]++;
5356 ret = 0;
5357 out:
5358 btrfs_free_path(path);
5359 return ret;
5363 * helper function around btrfs_log_inode to make sure newly created
5364 * parent directories also end up in the log. A minimal inode and backref
5365 * only logging is done of any parent directories that are older than
5366 * the last committed transaction
5368 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
5369 struct btrfs_root *root, struct inode *inode,
5370 struct dentry *parent,
5371 const loff_t start,
5372 const loff_t end,
5373 int exists_only,
5374 struct btrfs_log_ctx *ctx)
5376 int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL;
5377 struct super_block *sb;
5378 struct dentry *old_parent = NULL;
5379 int ret = 0;
5380 u64 last_committed = root->fs_info->last_trans_committed;
5381 bool log_dentries = false;
5382 struct inode *orig_inode = inode;
5384 sb = inode->i_sb;
5386 if (btrfs_test_opt(root->fs_info, NOTREELOG)) {
5387 ret = 1;
5388 goto end_no_trans;
5392 * The prev transaction commit doesn't complete, we need do
5393 * full commit by ourselves.
5395 if (root->fs_info->last_trans_log_full_commit >
5396 root->fs_info->last_trans_committed) {
5397 ret = 1;
5398 goto end_no_trans;
5401 if (root != BTRFS_I(inode)->root ||
5402 btrfs_root_refs(&root->root_item) == 0) {
5403 ret = 1;
5404 goto end_no_trans;
5407 ret = check_parent_dirs_for_sync(trans, inode, parent,
5408 sb, last_committed);
5409 if (ret)
5410 goto end_no_trans;
5412 if (btrfs_inode_in_log(inode, trans->transid)) {
5413 ret = BTRFS_NO_LOG_SYNC;
5414 goto end_no_trans;
5417 ret = start_log_trans(trans, root, ctx);
5418 if (ret)
5419 goto end_no_trans;
5421 ret = btrfs_log_inode(trans, root, inode, inode_only, start, end, ctx);
5422 if (ret)
5423 goto end_trans;
5426 * for regular files, if its inode is already on disk, we don't
5427 * have to worry about the parents at all. This is because
5428 * we can use the last_unlink_trans field to record renames
5429 * and other fun in this file.
5431 if (S_ISREG(inode->i_mode) &&
5432 BTRFS_I(inode)->generation <= last_committed &&
5433 BTRFS_I(inode)->last_unlink_trans <= last_committed) {
5434 ret = 0;
5435 goto end_trans;
5438 if (S_ISDIR(inode->i_mode) && ctx && ctx->log_new_dentries)
5439 log_dentries = true;
5442 * On unlink we must make sure all our current and old parent directory
5443 * inodes are fully logged. This is to prevent leaving dangling
5444 * directory index entries in directories that were our parents but are
5445 * not anymore. Not doing this results in old parent directory being
5446 * impossible to delete after log replay (rmdir will always fail with
5447 * error -ENOTEMPTY).
5449 * Example 1:
5451 * mkdir testdir
5452 * touch testdir/foo
5453 * ln testdir/foo testdir/bar
5454 * sync
5455 * unlink testdir/bar
5456 * xfs_io -c fsync testdir/foo
5457 * <power failure>
5458 * mount fs, triggers log replay
5460 * If we don't log the parent directory (testdir), after log replay the
5461 * directory still has an entry pointing to the file inode using the bar
5462 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
5463 * the file inode has a link count of 1.
5465 * Example 2:
5467 * mkdir testdir
5468 * touch foo
5469 * ln foo testdir/foo2
5470 * ln foo testdir/foo3
5471 * sync
5472 * unlink testdir/foo3
5473 * xfs_io -c fsync foo
5474 * <power failure>
5475 * mount fs, triggers log replay
5477 * Similar as the first example, after log replay the parent directory
5478 * testdir still has an entry pointing to the inode file with name foo3
5479 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
5480 * and has a link count of 2.
5482 if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
5483 ret = btrfs_log_all_parents(trans, orig_inode, ctx);
5484 if (ret)
5485 goto end_trans;
5488 while (1) {
5489 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5490 break;
5492 inode = d_inode(parent);
5493 if (root != BTRFS_I(inode)->root)
5494 break;
5496 if (BTRFS_I(inode)->generation > last_committed) {
5497 ret = btrfs_log_inode(trans, root, inode,
5498 LOG_INODE_EXISTS,
5499 0, LLONG_MAX, ctx);
5500 if (ret)
5501 goto end_trans;
5503 if (IS_ROOT(parent))
5504 break;
5506 parent = dget_parent(parent);
5507 dput(old_parent);
5508 old_parent = parent;
5510 if (log_dentries)
5511 ret = log_new_dir_dentries(trans, root, orig_inode, ctx);
5512 else
5513 ret = 0;
5514 end_trans:
5515 dput(old_parent);
5516 if (ret < 0) {
5517 btrfs_set_log_full_commit(root->fs_info, trans);
5518 ret = 1;
5521 if (ret)
5522 btrfs_remove_log_ctx(root, ctx);
5523 btrfs_end_log_trans(root);
5524 end_no_trans:
5525 return ret;
5529 * it is not safe to log dentry if the chunk root has added new
5530 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
5531 * If this returns 1, you must commit the transaction to safely get your
5532 * data on disk.
5534 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
5535 struct btrfs_root *root, struct dentry *dentry,
5536 const loff_t start,
5537 const loff_t end,
5538 struct btrfs_log_ctx *ctx)
5540 struct dentry *parent = dget_parent(dentry);
5541 int ret;
5543 ret = btrfs_log_inode_parent(trans, root, d_inode(dentry), parent,
5544 start, end, 0, ctx);
5545 dput(parent);
5547 return ret;
5551 * should be called during mount to recover any replay any log trees
5552 * from the FS
5554 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
5556 int ret;
5557 struct btrfs_path *path;
5558 struct btrfs_trans_handle *trans;
5559 struct btrfs_key key;
5560 struct btrfs_key found_key;
5561 struct btrfs_key tmp_key;
5562 struct btrfs_root *log;
5563 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
5564 struct walk_control wc = {
5565 .process_func = process_one_buffer,
5566 .stage = 0,
5569 path = btrfs_alloc_path();
5570 if (!path)
5571 return -ENOMEM;
5573 set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
5575 trans = btrfs_start_transaction(fs_info->tree_root, 0);
5576 if (IS_ERR(trans)) {
5577 ret = PTR_ERR(trans);
5578 goto error;
5581 wc.trans = trans;
5582 wc.pin = 1;
5584 ret = walk_log_tree(trans, log_root_tree, &wc);
5585 if (ret) {
5586 btrfs_handle_fs_error(fs_info, ret,
5587 "Failed to pin buffers while recovering log root tree.");
5588 goto error;
5591 again:
5592 key.objectid = BTRFS_TREE_LOG_OBJECTID;
5593 key.offset = (u64)-1;
5594 key.type = BTRFS_ROOT_ITEM_KEY;
5596 while (1) {
5597 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
5599 if (ret < 0) {
5600 btrfs_handle_fs_error(fs_info, ret,
5601 "Couldn't find tree log root.");
5602 goto error;
5604 if (ret > 0) {
5605 if (path->slots[0] == 0)
5606 break;
5607 path->slots[0]--;
5609 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
5610 path->slots[0]);
5611 btrfs_release_path(path);
5612 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
5613 break;
5615 log = btrfs_read_fs_root(log_root_tree, &found_key);
5616 if (IS_ERR(log)) {
5617 ret = PTR_ERR(log);
5618 btrfs_handle_fs_error(fs_info, ret,
5619 "Couldn't read tree log root.");
5620 goto error;
5623 tmp_key.objectid = found_key.offset;
5624 tmp_key.type = BTRFS_ROOT_ITEM_KEY;
5625 tmp_key.offset = (u64)-1;
5627 wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
5628 if (IS_ERR(wc.replay_dest)) {
5629 ret = PTR_ERR(wc.replay_dest);
5630 free_extent_buffer(log->node);
5631 free_extent_buffer(log->commit_root);
5632 kfree(log);
5633 btrfs_handle_fs_error(fs_info, ret,
5634 "Couldn't read target root for tree log recovery.");
5635 goto error;
5638 wc.replay_dest->log_root = log;
5639 btrfs_record_root_in_trans(trans, wc.replay_dest);
5640 ret = walk_log_tree(trans, log, &wc);
5642 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
5643 ret = fixup_inode_link_counts(trans, wc.replay_dest,
5644 path);
5647 key.offset = found_key.offset - 1;
5648 wc.replay_dest->log_root = NULL;
5649 free_extent_buffer(log->node);
5650 free_extent_buffer(log->commit_root);
5651 kfree(log);
5653 if (ret)
5654 goto error;
5656 if (found_key.offset == 0)
5657 break;
5659 btrfs_release_path(path);
5661 /* step one is to pin it all, step two is to replay just inodes */
5662 if (wc.pin) {
5663 wc.pin = 0;
5664 wc.process_func = replay_one_buffer;
5665 wc.stage = LOG_WALK_REPLAY_INODES;
5666 goto again;
5668 /* step three is to replay everything */
5669 if (wc.stage < LOG_WALK_REPLAY_ALL) {
5670 wc.stage++;
5671 goto again;
5674 btrfs_free_path(path);
5676 /* step 4: commit the transaction, which also unpins the blocks */
5677 ret = btrfs_commit_transaction(trans, fs_info->tree_root);
5678 if (ret)
5679 return ret;
5681 free_extent_buffer(log_root_tree->node);
5682 log_root_tree->log_root = NULL;
5683 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
5684 kfree(log_root_tree);
5686 return 0;
5687 error:
5688 if (wc.trans)
5689 btrfs_end_transaction(wc.trans, fs_info->tree_root);
5690 btrfs_free_path(path);
5691 return ret;
5695 * there are some corner cases where we want to force a full
5696 * commit instead of allowing a directory to be logged.
5698 * They revolve around files there were unlinked from the directory, and
5699 * this function updates the parent directory so that a full commit is
5700 * properly done if it is fsync'd later after the unlinks are done.
5702 * Must be called before the unlink operations (updates to the subvolume tree,
5703 * inodes, etc) are done.
5705 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
5706 struct inode *dir, struct inode *inode,
5707 int for_rename)
5710 * when we're logging a file, if it hasn't been renamed
5711 * or unlinked, and its inode is fully committed on disk,
5712 * we don't have to worry about walking up the directory chain
5713 * to log its parents.
5715 * So, we use the last_unlink_trans field to put this transid
5716 * into the file. When the file is logged we check it and
5717 * don't log the parents if the file is fully on disk.
5719 mutex_lock(&BTRFS_I(inode)->log_mutex);
5720 BTRFS_I(inode)->last_unlink_trans = trans->transid;
5721 mutex_unlock(&BTRFS_I(inode)->log_mutex);
5724 * if this directory was already logged any new
5725 * names for this file/dir will get recorded
5727 smp_mb();
5728 if (BTRFS_I(dir)->logged_trans == trans->transid)
5729 return;
5732 * if the inode we're about to unlink was logged,
5733 * the log will be properly updated for any new names
5735 if (BTRFS_I(inode)->logged_trans == trans->transid)
5736 return;
5739 * when renaming files across directories, if the directory
5740 * there we're unlinking from gets fsync'd later on, there's
5741 * no way to find the destination directory later and fsync it
5742 * properly. So, we have to be conservative and force commits
5743 * so the new name gets discovered.
5745 if (for_rename)
5746 goto record;
5748 /* we can safely do the unlink without any special recording */
5749 return;
5751 record:
5752 mutex_lock(&BTRFS_I(dir)->log_mutex);
5753 BTRFS_I(dir)->last_unlink_trans = trans->transid;
5754 mutex_unlock(&BTRFS_I(dir)->log_mutex);
5758 * Make sure that if someone attempts to fsync the parent directory of a deleted
5759 * snapshot, it ends up triggering a transaction commit. This is to guarantee
5760 * that after replaying the log tree of the parent directory's root we will not
5761 * see the snapshot anymore and at log replay time we will not see any log tree
5762 * corresponding to the deleted snapshot's root, which could lead to replaying
5763 * it after replaying the log tree of the parent directory (which would replay
5764 * the snapshot delete operation).
5766 * Must be called before the actual snapshot destroy operation (updates to the
5767 * parent root and tree of tree roots trees, etc) are done.
5769 void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
5770 struct inode *dir)
5772 mutex_lock(&BTRFS_I(dir)->log_mutex);
5773 BTRFS_I(dir)->last_unlink_trans = trans->transid;
5774 mutex_unlock(&BTRFS_I(dir)->log_mutex);
5778 * Call this after adding a new name for a file and it will properly
5779 * update the log to reflect the new name.
5781 * It will return zero if all goes well, and it will return 1 if a
5782 * full transaction commit is required.
5784 int btrfs_log_new_name(struct btrfs_trans_handle *trans,
5785 struct inode *inode, struct inode *old_dir,
5786 struct dentry *parent)
5788 struct btrfs_root * root = BTRFS_I(inode)->root;
5791 * this will force the logging code to walk the dentry chain
5792 * up for the file
5794 if (S_ISREG(inode->i_mode))
5795 BTRFS_I(inode)->last_unlink_trans = trans->transid;
5798 * if this inode hasn't been logged and directory we're renaming it
5799 * from hasn't been logged, we don't need to log it
5801 if (BTRFS_I(inode)->logged_trans <=
5802 root->fs_info->last_trans_committed &&
5803 (!old_dir || BTRFS_I(old_dir)->logged_trans <=
5804 root->fs_info->last_trans_committed))
5805 return 0;
5807 return btrfs_log_inode_parent(trans, root, inode, parent, 0,
5808 LLONG_MAX, 1, NULL);