2 * Copyright (C) 2008 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/blkdev.h>
22 #include <linux/list_sort.h>
26 #include "print-tree.h"
29 #include "compression.h"
32 /* magic values for the inode_only field in btrfs_log_inode:
34 * LOG_INODE_ALL means to log everything
35 * LOG_INODE_EXISTS means to log just enough to recreate the inode
38 #define LOG_INODE_ALL 0
39 #define LOG_INODE_EXISTS 1
42 * directory trouble cases
44 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
45 * log, we must force a full commit before doing an fsync of the directory
46 * where the unlink was done.
47 * ---> record transid of last unlink/rename per directory
51 * rename foo/some_dir foo2/some_dir
53 * fsync foo/some_dir/some_file
55 * The fsync above will unlink the original some_dir without recording
56 * it in its new location (foo2). After a crash, some_dir will be gone
57 * unless the fsync of some_file forces a full commit
59 * 2) we must log any new names for any file or dir that is in the fsync
60 * log. ---> check inode while renaming/linking.
62 * 2a) we must log any new names for any file or dir during rename
63 * when the directory they are being removed from was logged.
64 * ---> check inode and old parent dir during rename
66 * 2a is actually the more important variant. With the extra logging
67 * a crash might unlink the old name without recreating the new one
69 * 3) after a crash, we must go through any directories with a link count
70 * of zero and redo the rm -rf
77 * The directory f1 was fully removed from the FS, but fsync was never
78 * called on f1, only its parent dir. After a crash the rm -rf must
79 * be replayed. This must be able to recurse down the entire
80 * directory tree. The inode link count fixup code takes care of the
85 * stages for the tree walking. The first
86 * stage (0) is to only pin down the blocks we find
87 * the second stage (1) is to make sure that all the inodes
88 * we find in the log are created in the subvolume.
90 * The last stage is to deal with directories and links and extents
91 * and all the other fun semantics
93 #define LOG_WALK_PIN_ONLY 0
94 #define LOG_WALK_REPLAY_INODES 1
95 #define LOG_WALK_REPLAY_DIR_INDEX 2
96 #define LOG_WALK_REPLAY_ALL 3
98 static int btrfs_log_inode(struct btrfs_trans_handle
*trans
,
99 struct btrfs_root
*root
, struct inode
*inode
,
103 struct btrfs_log_ctx
*ctx
);
104 static int link_to_fixup_dir(struct btrfs_trans_handle
*trans
,
105 struct btrfs_root
*root
,
106 struct btrfs_path
*path
, u64 objectid
);
107 static noinline
int replay_dir_deletes(struct btrfs_trans_handle
*trans
,
108 struct btrfs_root
*root
,
109 struct btrfs_root
*log
,
110 struct btrfs_path
*path
,
111 u64 dirid
, int del_all
);
114 * tree logging is a special write ahead log used to make sure that
115 * fsyncs and O_SYNCs can happen without doing full tree commits.
117 * Full tree commits are expensive because they require commonly
118 * modified blocks to be recowed, creating many dirty pages in the
119 * extent tree an 4x-6x higher write load than ext3.
121 * Instead of doing a tree commit on every fsync, we use the
122 * key ranges and transaction ids to find items for a given file or directory
123 * that have changed in this transaction. Those items are copied into
124 * a special tree (one per subvolume root), that tree is written to disk
125 * and then the fsync is considered complete.
127 * After a crash, items are copied out of the log-tree back into the
128 * subvolume tree. Any file data extents found are recorded in the extent
129 * allocation tree, and the log-tree freed.
131 * The log tree is read three times, once to pin down all the extents it is
132 * using in ram and once, once to create all the inodes logged in the tree
133 * and once to do all the other items.
137 * start a sub transaction and setup the log tree
138 * this increments the log tree writer count to make the people
139 * syncing the tree wait for us to finish
141 static int start_log_trans(struct btrfs_trans_handle
*trans
,
142 struct btrfs_root
*root
,
143 struct btrfs_log_ctx
*ctx
)
147 mutex_lock(&root
->log_mutex
);
149 if (root
->log_root
) {
150 if (btrfs_need_log_full_commit(root
->fs_info
, trans
)) {
155 if (!root
->log_start_pid
) {
156 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS
, &root
->state
);
157 root
->log_start_pid
= current
->pid
;
158 } else if (root
->log_start_pid
!= current
->pid
) {
159 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS
, &root
->state
);
162 mutex_lock(&root
->fs_info
->tree_log_mutex
);
163 if (!root
->fs_info
->log_root_tree
)
164 ret
= btrfs_init_log_root_tree(trans
, root
->fs_info
);
165 mutex_unlock(&root
->fs_info
->tree_log_mutex
);
169 ret
= btrfs_add_log_tree(trans
, root
);
173 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS
, &root
->state
);
174 root
->log_start_pid
= current
->pid
;
177 atomic_inc(&root
->log_batch
);
178 atomic_inc(&root
->log_writers
);
180 int index
= root
->log_transid
% 2;
181 list_add_tail(&ctx
->list
, &root
->log_ctxs
[index
]);
182 ctx
->log_transid
= root
->log_transid
;
186 mutex_unlock(&root
->log_mutex
);
191 * returns 0 if there was a log transaction running and we were able
192 * to join, or returns -ENOENT if there were not transactions
195 static int join_running_log_trans(struct btrfs_root
*root
)
203 mutex_lock(&root
->log_mutex
);
204 if (root
->log_root
) {
206 atomic_inc(&root
->log_writers
);
208 mutex_unlock(&root
->log_mutex
);
213 * This either makes the current running log transaction wait
214 * until you call btrfs_end_log_trans() or it makes any future
215 * log transactions wait until you call btrfs_end_log_trans()
217 int btrfs_pin_log_trans(struct btrfs_root
*root
)
221 mutex_lock(&root
->log_mutex
);
222 atomic_inc(&root
->log_writers
);
223 mutex_unlock(&root
->log_mutex
);
228 * indicate we're done making changes to the log tree
229 * and wake up anyone waiting to do a sync
231 void btrfs_end_log_trans(struct btrfs_root
*root
)
233 if (atomic_dec_and_test(&root
->log_writers
)) {
235 * Implicit memory barrier after atomic_dec_and_test
237 if (waitqueue_active(&root
->log_writer_wait
))
238 wake_up(&root
->log_writer_wait
);
244 * the walk control struct is used to pass state down the chain when
245 * processing the log tree. The stage field tells us which part
246 * of the log tree processing we are currently doing. The others
247 * are state fields used for that specific part
249 struct walk_control
{
250 /* should we free the extent on disk when done? This is used
251 * at transaction commit time while freeing a log tree
255 /* should we write out the extent buffer? This is used
256 * while flushing the log tree to disk during a sync
260 /* should we wait for the extent buffer io to finish? Also used
261 * while flushing the log tree to disk for a sync
265 /* pin only walk, we record which extents on disk belong to the
270 /* what stage of the replay code we're currently in */
273 /* the root we are currently replaying */
274 struct btrfs_root
*replay_dest
;
276 /* the trans handle for the current replay */
277 struct btrfs_trans_handle
*trans
;
279 /* the function that gets used to process blocks we find in the
280 * tree. Note the extent_buffer might not be up to date when it is
281 * passed in, and it must be checked or read if you need the data
284 int (*process_func
)(struct btrfs_root
*log
, struct extent_buffer
*eb
,
285 struct walk_control
*wc
, u64 gen
);
289 * process_func used to pin down extents, write them or wait on them
291 static int process_one_buffer(struct btrfs_root
*log
,
292 struct extent_buffer
*eb
,
293 struct walk_control
*wc
, u64 gen
)
298 * If this fs is mixed then we need to be able to process the leaves to
299 * pin down any logged extents, so we have to read the block.
301 if (btrfs_fs_incompat(log
->fs_info
, MIXED_GROUPS
)) {
302 ret
= btrfs_read_buffer(eb
, gen
);
308 ret
= btrfs_pin_extent_for_log_replay(log
->fs_info
->extent_root
,
311 if (!ret
&& btrfs_buffer_uptodate(eb
, gen
, 0)) {
312 if (wc
->pin
&& btrfs_header_level(eb
) == 0)
313 ret
= btrfs_exclude_logged_extents(log
, eb
);
315 btrfs_write_tree_block(eb
);
317 btrfs_wait_tree_block_writeback(eb
);
323 * Item overwrite used by replay and tree logging. eb, slot and key all refer
324 * to the src data we are copying out.
326 * root is the tree we are copying into, and path is a scratch
327 * path for use in this function (it should be released on entry and
328 * will be released on exit).
330 * If the key is already in the destination tree the existing item is
331 * overwritten. If the existing item isn't big enough, it is extended.
332 * If it is too large, it is truncated.
334 * If the key isn't in the destination yet, a new item is inserted.
336 static noinline
int overwrite_item(struct btrfs_trans_handle
*trans
,
337 struct btrfs_root
*root
,
338 struct btrfs_path
*path
,
339 struct extent_buffer
*eb
, int slot
,
340 struct btrfs_key
*key
)
344 u64 saved_i_size
= 0;
345 int save_old_i_size
= 0;
346 unsigned long src_ptr
;
347 unsigned long dst_ptr
;
348 int overwrite_root
= 0;
349 bool inode_item
= key
->type
== BTRFS_INODE_ITEM_KEY
;
351 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
)
354 item_size
= btrfs_item_size_nr(eb
, slot
);
355 src_ptr
= btrfs_item_ptr_offset(eb
, slot
);
357 /* look for the key in the destination tree */
358 ret
= btrfs_search_slot(NULL
, root
, key
, path
, 0, 0);
365 u32 dst_size
= btrfs_item_size_nr(path
->nodes
[0],
367 if (dst_size
!= item_size
)
370 if (item_size
== 0) {
371 btrfs_release_path(path
);
374 dst_copy
= kmalloc(item_size
, GFP_NOFS
);
375 src_copy
= kmalloc(item_size
, GFP_NOFS
);
376 if (!dst_copy
|| !src_copy
) {
377 btrfs_release_path(path
);
383 read_extent_buffer(eb
, src_copy
, src_ptr
, item_size
);
385 dst_ptr
= btrfs_item_ptr_offset(path
->nodes
[0], path
->slots
[0]);
386 read_extent_buffer(path
->nodes
[0], dst_copy
, dst_ptr
,
388 ret
= memcmp(dst_copy
, src_copy
, item_size
);
393 * they have the same contents, just return, this saves
394 * us from cowing blocks in the destination tree and doing
395 * extra writes that may not have been done by a previous
399 btrfs_release_path(path
);
404 * We need to load the old nbytes into the inode so when we
405 * replay the extents we've logged we get the right nbytes.
408 struct btrfs_inode_item
*item
;
412 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
413 struct btrfs_inode_item
);
414 nbytes
= btrfs_inode_nbytes(path
->nodes
[0], item
);
415 item
= btrfs_item_ptr(eb
, slot
,
416 struct btrfs_inode_item
);
417 btrfs_set_inode_nbytes(eb
, item
, nbytes
);
420 * If this is a directory we need to reset the i_size to
421 * 0 so that we can set it up properly when replaying
422 * the rest of the items in this log.
424 mode
= btrfs_inode_mode(eb
, item
);
426 btrfs_set_inode_size(eb
, item
, 0);
428 } else if (inode_item
) {
429 struct btrfs_inode_item
*item
;
433 * New inode, set nbytes to 0 so that the nbytes comes out
434 * properly when we replay the extents.
436 item
= btrfs_item_ptr(eb
, slot
, struct btrfs_inode_item
);
437 btrfs_set_inode_nbytes(eb
, item
, 0);
440 * If this is a directory we need to reset the i_size to 0 so
441 * that we can set it up properly when replaying the rest of
442 * the items in this log.
444 mode
= btrfs_inode_mode(eb
, item
);
446 btrfs_set_inode_size(eb
, item
, 0);
449 btrfs_release_path(path
);
450 /* try to insert the key into the destination tree */
451 path
->skip_release_on_error
= 1;
452 ret
= btrfs_insert_empty_item(trans
, root
, path
,
454 path
->skip_release_on_error
= 0;
456 /* make sure any existing item is the correct size */
457 if (ret
== -EEXIST
|| ret
== -EOVERFLOW
) {
459 found_size
= btrfs_item_size_nr(path
->nodes
[0],
461 if (found_size
> item_size
)
462 btrfs_truncate_item(root
, path
, item_size
, 1);
463 else if (found_size
< item_size
)
464 btrfs_extend_item(root
, path
,
465 item_size
- found_size
);
469 dst_ptr
= btrfs_item_ptr_offset(path
->nodes
[0],
472 /* don't overwrite an existing inode if the generation number
473 * was logged as zero. This is done when the tree logging code
474 * is just logging an inode to make sure it exists after recovery.
476 * Also, don't overwrite i_size on directories during replay.
477 * log replay inserts and removes directory items based on the
478 * state of the tree found in the subvolume, and i_size is modified
481 if (key
->type
== BTRFS_INODE_ITEM_KEY
&& ret
== -EEXIST
) {
482 struct btrfs_inode_item
*src_item
;
483 struct btrfs_inode_item
*dst_item
;
485 src_item
= (struct btrfs_inode_item
*)src_ptr
;
486 dst_item
= (struct btrfs_inode_item
*)dst_ptr
;
488 if (btrfs_inode_generation(eb
, src_item
) == 0) {
489 struct extent_buffer
*dst_eb
= path
->nodes
[0];
490 const u64 ino_size
= btrfs_inode_size(eb
, src_item
);
493 * For regular files an ino_size == 0 is used only when
494 * logging that an inode exists, as part of a directory
495 * fsync, and the inode wasn't fsynced before. In this
496 * case don't set the size of the inode in the fs/subvol
497 * tree, otherwise we would be throwing valid data away.
499 if (S_ISREG(btrfs_inode_mode(eb
, src_item
)) &&
500 S_ISREG(btrfs_inode_mode(dst_eb
, dst_item
)) &&
502 struct btrfs_map_token token
;
504 btrfs_init_map_token(&token
);
505 btrfs_set_token_inode_size(dst_eb
, dst_item
,
511 if (overwrite_root
&&
512 S_ISDIR(btrfs_inode_mode(eb
, src_item
)) &&
513 S_ISDIR(btrfs_inode_mode(path
->nodes
[0], dst_item
))) {
515 saved_i_size
= btrfs_inode_size(path
->nodes
[0],
520 copy_extent_buffer(path
->nodes
[0], eb
, dst_ptr
,
523 if (save_old_i_size
) {
524 struct btrfs_inode_item
*dst_item
;
525 dst_item
= (struct btrfs_inode_item
*)dst_ptr
;
526 btrfs_set_inode_size(path
->nodes
[0], dst_item
, saved_i_size
);
529 /* make sure the generation is filled in */
530 if (key
->type
== BTRFS_INODE_ITEM_KEY
) {
531 struct btrfs_inode_item
*dst_item
;
532 dst_item
= (struct btrfs_inode_item
*)dst_ptr
;
533 if (btrfs_inode_generation(path
->nodes
[0], dst_item
) == 0) {
534 btrfs_set_inode_generation(path
->nodes
[0], dst_item
,
539 btrfs_mark_buffer_dirty(path
->nodes
[0]);
540 btrfs_release_path(path
);
545 * simple helper to read an inode off the disk from a given root
546 * This can only be called for subvolume roots and not for the log
548 static noinline
struct inode
*read_one_inode(struct btrfs_root
*root
,
551 struct btrfs_key key
;
554 key
.objectid
= objectid
;
555 key
.type
= BTRFS_INODE_ITEM_KEY
;
557 inode
= btrfs_iget(root
->fs_info
->sb
, &key
, root
, NULL
);
560 } else if (is_bad_inode(inode
)) {
567 /* replays a single extent in 'eb' at 'slot' with 'key' into the
568 * subvolume 'root'. path is released on entry and should be released
571 * extents in the log tree have not been allocated out of the extent
572 * tree yet. So, this completes the allocation, taking a reference
573 * as required if the extent already exists or creating a new extent
574 * if it isn't in the extent allocation tree yet.
576 * The extent is inserted into the file, dropping any existing extents
577 * from the file that overlap the new one.
579 static noinline
int replay_one_extent(struct btrfs_trans_handle
*trans
,
580 struct btrfs_root
*root
,
581 struct btrfs_path
*path
,
582 struct extent_buffer
*eb
, int slot
,
583 struct btrfs_key
*key
)
587 u64 start
= key
->offset
;
589 struct btrfs_file_extent_item
*item
;
590 struct inode
*inode
= NULL
;
594 item
= btrfs_item_ptr(eb
, slot
, struct btrfs_file_extent_item
);
595 found_type
= btrfs_file_extent_type(eb
, item
);
597 if (found_type
== BTRFS_FILE_EXTENT_REG
||
598 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
599 nbytes
= btrfs_file_extent_num_bytes(eb
, item
);
600 extent_end
= start
+ nbytes
;
603 * We don't add to the inodes nbytes if we are prealloc or a
606 if (btrfs_file_extent_disk_bytenr(eb
, item
) == 0)
608 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
609 size
= btrfs_file_extent_inline_len(eb
, slot
, item
);
610 nbytes
= btrfs_file_extent_ram_bytes(eb
, item
);
611 extent_end
= ALIGN(start
+ size
, root
->sectorsize
);
617 inode
= read_one_inode(root
, key
->objectid
);
624 * first check to see if we already have this extent in the
625 * file. This must be done before the btrfs_drop_extents run
626 * so we don't try to drop this extent.
628 ret
= btrfs_lookup_file_extent(trans
, root
, path
, btrfs_ino(inode
),
632 (found_type
== BTRFS_FILE_EXTENT_REG
||
633 found_type
== BTRFS_FILE_EXTENT_PREALLOC
)) {
634 struct btrfs_file_extent_item cmp1
;
635 struct btrfs_file_extent_item cmp2
;
636 struct btrfs_file_extent_item
*existing
;
637 struct extent_buffer
*leaf
;
639 leaf
= path
->nodes
[0];
640 existing
= btrfs_item_ptr(leaf
, path
->slots
[0],
641 struct btrfs_file_extent_item
);
643 read_extent_buffer(eb
, &cmp1
, (unsigned long)item
,
645 read_extent_buffer(leaf
, &cmp2
, (unsigned long)existing
,
649 * we already have a pointer to this exact extent,
650 * we don't have to do anything
652 if (memcmp(&cmp1
, &cmp2
, sizeof(cmp1
)) == 0) {
653 btrfs_release_path(path
);
657 btrfs_release_path(path
);
659 /* drop any overlapping extents */
660 ret
= btrfs_drop_extents(trans
, root
, inode
, start
, extent_end
, 1);
664 if (found_type
== BTRFS_FILE_EXTENT_REG
||
665 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
667 unsigned long dest_offset
;
668 struct btrfs_key ins
;
670 ret
= btrfs_insert_empty_item(trans
, root
, path
, key
,
674 dest_offset
= btrfs_item_ptr_offset(path
->nodes
[0],
676 copy_extent_buffer(path
->nodes
[0], eb
, dest_offset
,
677 (unsigned long)item
, sizeof(*item
));
679 ins
.objectid
= btrfs_file_extent_disk_bytenr(eb
, item
);
680 ins
.offset
= btrfs_file_extent_disk_num_bytes(eb
, item
);
681 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
682 offset
= key
->offset
- btrfs_file_extent_offset(eb
, item
);
685 * Manually record dirty extent, as here we did a shallow
686 * file extent item copy and skip normal backref update,
687 * but modifying extent tree all by ourselves.
688 * So need to manually record dirty extent for qgroup,
689 * as the owner of the file extent changed from log tree
690 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
692 ret
= btrfs_qgroup_insert_dirty_extent(trans
, root
->fs_info
,
693 btrfs_file_extent_disk_bytenr(eb
, item
),
694 btrfs_file_extent_disk_num_bytes(eb
, item
),
699 if (ins
.objectid
> 0) {
702 LIST_HEAD(ordered_sums
);
704 * is this extent already allocated in the extent
705 * allocation tree? If so, just add a reference
707 ret
= btrfs_lookup_data_extent(root
, ins
.objectid
,
710 ret
= btrfs_inc_extent_ref(trans
, root
,
711 ins
.objectid
, ins
.offset
,
712 0, root
->root_key
.objectid
,
713 key
->objectid
, offset
);
718 * insert the extent pointer in the extent
721 ret
= btrfs_alloc_logged_file_extent(trans
,
722 root
, root
->root_key
.objectid
,
723 key
->objectid
, offset
, &ins
);
727 btrfs_release_path(path
);
729 if (btrfs_file_extent_compression(eb
, item
)) {
730 csum_start
= ins
.objectid
;
731 csum_end
= csum_start
+ ins
.offset
;
733 csum_start
= ins
.objectid
+
734 btrfs_file_extent_offset(eb
, item
);
735 csum_end
= csum_start
+
736 btrfs_file_extent_num_bytes(eb
, item
);
739 ret
= btrfs_lookup_csums_range(root
->log_root
,
740 csum_start
, csum_end
- 1,
745 * Now delete all existing cums in the csum root that
746 * cover our range. We do this because we can have an
747 * extent that is completely referenced by one file
748 * extent item and partially referenced by another
749 * file extent item (like after using the clone or
750 * extent_same ioctls). In this case if we end up doing
751 * the replay of the one that partially references the
752 * extent first, and we do not do the csum deletion
753 * below, we can get 2 csum items in the csum tree that
754 * overlap each other. For example, imagine our log has
755 * the two following file extent items:
757 * key (257 EXTENT_DATA 409600)
758 * extent data disk byte 12845056 nr 102400
759 * extent data offset 20480 nr 20480 ram 102400
761 * key (257 EXTENT_DATA 819200)
762 * extent data disk byte 12845056 nr 102400
763 * extent data offset 0 nr 102400 ram 102400
765 * Where the second one fully references the 100K extent
766 * that starts at disk byte 12845056, and the log tree
767 * has a single csum item that covers the entire range
770 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
772 * After the first file extent item is replayed, the
773 * csum tree gets the following csum item:
775 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
777 * Which covers the 20K sub-range starting at offset 20K
778 * of our extent. Now when we replay the second file
779 * extent item, if we do not delete existing csum items
780 * that cover any of its blocks, we end up getting two
781 * csum items in our csum tree that overlap each other:
783 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
784 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
786 * Which is a problem, because after this anyone trying
787 * to lookup up for the checksum of any block of our
788 * extent starting at an offset of 40K or higher, will
789 * end up looking at the second csum item only, which
790 * does not contain the checksum for any block starting
791 * at offset 40K or higher of our extent.
793 while (!list_empty(&ordered_sums
)) {
794 struct btrfs_ordered_sum
*sums
;
795 sums
= list_entry(ordered_sums
.next
,
796 struct btrfs_ordered_sum
,
799 ret
= btrfs_del_csums(trans
,
800 root
->fs_info
->csum_root
,
804 ret
= btrfs_csum_file_blocks(trans
,
805 root
->fs_info
->csum_root
,
807 list_del(&sums
->list
);
813 btrfs_release_path(path
);
815 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
816 /* inline extents are easy, we just overwrite them */
817 ret
= overwrite_item(trans
, root
, path
, eb
, slot
, key
);
822 inode_add_bytes(inode
, nbytes
);
823 ret
= btrfs_update_inode(trans
, root
, inode
);
831 * when cleaning up conflicts between the directory names in the
832 * subvolume, directory names in the log and directory names in the
833 * inode back references, we may have to unlink inodes from directories.
835 * This is a helper function to do the unlink of a specific directory
838 static noinline
int drop_one_dir_item(struct btrfs_trans_handle
*trans
,
839 struct btrfs_root
*root
,
840 struct btrfs_path
*path
,
842 struct btrfs_dir_item
*di
)
847 struct extent_buffer
*leaf
;
848 struct btrfs_key location
;
851 leaf
= path
->nodes
[0];
853 btrfs_dir_item_key_to_cpu(leaf
, di
, &location
);
854 name_len
= btrfs_dir_name_len(leaf
, di
);
855 name
= kmalloc(name_len
, GFP_NOFS
);
859 read_extent_buffer(leaf
, name
, (unsigned long)(di
+ 1), name_len
);
860 btrfs_release_path(path
);
862 inode
= read_one_inode(root
, location
.objectid
);
868 ret
= link_to_fixup_dir(trans
, root
, path
, location
.objectid
);
872 ret
= btrfs_unlink_inode(trans
, root
, dir
, inode
, name
, name_len
);
876 ret
= btrfs_run_delayed_items(trans
, root
);
884 * helper function to see if a given name and sequence number found
885 * in an inode back reference are already in a directory and correctly
886 * point to this inode
888 static noinline
int inode_in_dir(struct btrfs_root
*root
,
889 struct btrfs_path
*path
,
890 u64 dirid
, u64 objectid
, u64 index
,
891 const char *name
, int name_len
)
893 struct btrfs_dir_item
*di
;
894 struct btrfs_key location
;
897 di
= btrfs_lookup_dir_index_item(NULL
, root
, path
, dirid
,
898 index
, name
, name_len
, 0);
899 if (di
&& !IS_ERR(di
)) {
900 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, &location
);
901 if (location
.objectid
!= objectid
)
905 btrfs_release_path(path
);
907 di
= btrfs_lookup_dir_item(NULL
, root
, path
, dirid
, name
, name_len
, 0);
908 if (di
&& !IS_ERR(di
)) {
909 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, &location
);
910 if (location
.objectid
!= objectid
)
916 btrfs_release_path(path
);
921 * helper function to check a log tree for a named back reference in
922 * an inode. This is used to decide if a back reference that is
923 * found in the subvolume conflicts with what we find in the log.
925 * inode backreferences may have multiple refs in a single item,
926 * during replay we process one reference at a time, and we don't
927 * want to delete valid links to a file from the subvolume if that
928 * link is also in the log.
930 static noinline
int backref_in_log(struct btrfs_root
*log
,
931 struct btrfs_key
*key
,
933 const char *name
, int namelen
)
935 struct btrfs_path
*path
;
936 struct btrfs_inode_ref
*ref
;
938 unsigned long ptr_end
;
939 unsigned long name_ptr
;
945 path
= btrfs_alloc_path();
949 ret
= btrfs_search_slot(NULL
, log
, key
, path
, 0, 0);
953 ptr
= btrfs_item_ptr_offset(path
->nodes
[0], path
->slots
[0]);
955 if (key
->type
== BTRFS_INODE_EXTREF_KEY
) {
956 if (btrfs_find_name_in_ext_backref(path
, ref_objectid
,
957 name
, namelen
, NULL
))
963 item_size
= btrfs_item_size_nr(path
->nodes
[0], path
->slots
[0]);
964 ptr_end
= ptr
+ item_size
;
965 while (ptr
< ptr_end
) {
966 ref
= (struct btrfs_inode_ref
*)ptr
;
967 found_name_len
= btrfs_inode_ref_name_len(path
->nodes
[0], ref
);
968 if (found_name_len
== namelen
) {
969 name_ptr
= (unsigned long)(ref
+ 1);
970 ret
= memcmp_extent_buffer(path
->nodes
[0], name
,
977 ptr
= (unsigned long)(ref
+ 1) + found_name_len
;
980 btrfs_free_path(path
);
984 static inline int __add_inode_ref(struct btrfs_trans_handle
*trans
,
985 struct btrfs_root
*root
,
986 struct btrfs_path
*path
,
987 struct btrfs_root
*log_root
,
988 struct inode
*dir
, struct inode
*inode
,
989 struct extent_buffer
*eb
,
990 u64 inode_objectid
, u64 parent_objectid
,
991 u64 ref_index
, char *name
, int namelen
,
997 struct extent_buffer
*leaf
;
998 struct btrfs_dir_item
*di
;
999 struct btrfs_key search_key
;
1000 struct btrfs_inode_extref
*extref
;
1003 /* Search old style refs */
1004 search_key
.objectid
= inode_objectid
;
1005 search_key
.type
= BTRFS_INODE_REF_KEY
;
1006 search_key
.offset
= parent_objectid
;
1007 ret
= btrfs_search_slot(NULL
, root
, &search_key
, path
, 0, 0);
1009 struct btrfs_inode_ref
*victim_ref
;
1011 unsigned long ptr_end
;
1013 leaf
= path
->nodes
[0];
1015 /* are we trying to overwrite a back ref for the root directory
1016 * if so, just jump out, we're done
1018 if (search_key
.objectid
== search_key
.offset
)
1021 /* check all the names in this back reference to see
1022 * if they are in the log. if so, we allow them to stay
1023 * otherwise they must be unlinked as a conflict
1025 ptr
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
1026 ptr_end
= ptr
+ btrfs_item_size_nr(leaf
, path
->slots
[0]);
1027 while (ptr
< ptr_end
) {
1028 victim_ref
= (struct btrfs_inode_ref
*)ptr
;
1029 victim_name_len
= btrfs_inode_ref_name_len(leaf
,
1031 victim_name
= kmalloc(victim_name_len
, GFP_NOFS
);
1035 read_extent_buffer(leaf
, victim_name
,
1036 (unsigned long)(victim_ref
+ 1),
1039 if (!backref_in_log(log_root
, &search_key
,
1044 btrfs_release_path(path
);
1046 ret
= btrfs_unlink_inode(trans
, root
, dir
,
1052 ret
= btrfs_run_delayed_items(trans
, root
);
1060 ptr
= (unsigned long)(victim_ref
+ 1) + victim_name_len
;
1064 * NOTE: we have searched root tree and checked the
1065 * corresponding ref, it does not need to check again.
1069 btrfs_release_path(path
);
1071 /* Same search but for extended refs */
1072 extref
= btrfs_lookup_inode_extref(NULL
, root
, path
, name
, namelen
,
1073 inode_objectid
, parent_objectid
, 0,
1075 if (!IS_ERR_OR_NULL(extref
)) {
1079 struct inode
*victim_parent
;
1081 leaf
= path
->nodes
[0];
1083 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1084 base
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
1086 while (cur_offset
< item_size
) {
1087 extref
= (struct btrfs_inode_extref
*)(base
+ cur_offset
);
1089 victim_name_len
= btrfs_inode_extref_name_len(leaf
, extref
);
1091 if (btrfs_inode_extref_parent(leaf
, extref
) != parent_objectid
)
1094 victim_name
= kmalloc(victim_name_len
, GFP_NOFS
);
1097 read_extent_buffer(leaf
, victim_name
, (unsigned long)&extref
->name
,
1100 search_key
.objectid
= inode_objectid
;
1101 search_key
.type
= BTRFS_INODE_EXTREF_KEY
;
1102 search_key
.offset
= btrfs_extref_hash(parent_objectid
,
1106 if (!backref_in_log(log_root
, &search_key
,
1107 parent_objectid
, victim_name
,
1110 victim_parent
= read_one_inode(root
,
1112 if (victim_parent
) {
1114 btrfs_release_path(path
);
1116 ret
= btrfs_unlink_inode(trans
, root
,
1122 ret
= btrfs_run_delayed_items(
1125 iput(victim_parent
);
1136 cur_offset
+= victim_name_len
+ sizeof(*extref
);
1140 btrfs_release_path(path
);
1142 /* look for a conflicting sequence number */
1143 di
= btrfs_lookup_dir_index_item(trans
, root
, path
, btrfs_ino(dir
),
1144 ref_index
, name
, namelen
, 0);
1145 if (di
&& !IS_ERR(di
)) {
1146 ret
= drop_one_dir_item(trans
, root
, path
, dir
, di
);
1150 btrfs_release_path(path
);
1152 /* look for a conflicing name */
1153 di
= btrfs_lookup_dir_item(trans
, root
, path
, btrfs_ino(dir
),
1155 if (di
&& !IS_ERR(di
)) {
1156 ret
= drop_one_dir_item(trans
, root
, path
, dir
, di
);
1160 btrfs_release_path(path
);
1165 static int extref_get_fields(struct extent_buffer
*eb
, unsigned long ref_ptr
,
1166 u32
*namelen
, char **name
, u64
*index
,
1167 u64
*parent_objectid
)
1169 struct btrfs_inode_extref
*extref
;
1171 extref
= (struct btrfs_inode_extref
*)ref_ptr
;
1173 *namelen
= btrfs_inode_extref_name_len(eb
, extref
);
1174 *name
= kmalloc(*namelen
, GFP_NOFS
);
1178 read_extent_buffer(eb
, *name
, (unsigned long)&extref
->name
,
1181 *index
= btrfs_inode_extref_index(eb
, extref
);
1182 if (parent_objectid
)
1183 *parent_objectid
= btrfs_inode_extref_parent(eb
, extref
);
1188 static int ref_get_fields(struct extent_buffer
*eb
, unsigned long ref_ptr
,
1189 u32
*namelen
, char **name
, u64
*index
)
1191 struct btrfs_inode_ref
*ref
;
1193 ref
= (struct btrfs_inode_ref
*)ref_ptr
;
1195 *namelen
= btrfs_inode_ref_name_len(eb
, ref
);
1196 *name
= kmalloc(*namelen
, GFP_NOFS
);
1200 read_extent_buffer(eb
, *name
, (unsigned long)(ref
+ 1), *namelen
);
1202 *index
= btrfs_inode_ref_index(eb
, ref
);
1208 * replay one inode back reference item found in the log tree.
1209 * eb, slot and key refer to the buffer and key found in the log tree.
1210 * root is the destination we are replaying into, and path is for temp
1211 * use by this function. (it should be released on return).
1213 static noinline
int add_inode_ref(struct btrfs_trans_handle
*trans
,
1214 struct btrfs_root
*root
,
1215 struct btrfs_root
*log
,
1216 struct btrfs_path
*path
,
1217 struct extent_buffer
*eb
, int slot
,
1218 struct btrfs_key
*key
)
1220 struct inode
*dir
= NULL
;
1221 struct inode
*inode
= NULL
;
1222 unsigned long ref_ptr
;
1223 unsigned long ref_end
;
1227 int search_done
= 0;
1228 int log_ref_ver
= 0;
1229 u64 parent_objectid
;
1232 int ref_struct_size
;
1234 ref_ptr
= btrfs_item_ptr_offset(eb
, slot
);
1235 ref_end
= ref_ptr
+ btrfs_item_size_nr(eb
, slot
);
1237 if (key
->type
== BTRFS_INODE_EXTREF_KEY
) {
1238 struct btrfs_inode_extref
*r
;
1240 ref_struct_size
= sizeof(struct btrfs_inode_extref
);
1242 r
= (struct btrfs_inode_extref
*)ref_ptr
;
1243 parent_objectid
= btrfs_inode_extref_parent(eb
, r
);
1245 ref_struct_size
= sizeof(struct btrfs_inode_ref
);
1246 parent_objectid
= key
->offset
;
1248 inode_objectid
= key
->objectid
;
1251 * it is possible that we didn't log all the parent directories
1252 * for a given inode. If we don't find the dir, just don't
1253 * copy the back ref in. The link count fixup code will take
1256 dir
= read_one_inode(root
, parent_objectid
);
1262 inode
= read_one_inode(root
, inode_objectid
);
1268 while (ref_ptr
< ref_end
) {
1270 ret
= extref_get_fields(eb
, ref_ptr
, &namelen
, &name
,
1271 &ref_index
, &parent_objectid
);
1273 * parent object can change from one array
1277 dir
= read_one_inode(root
, parent_objectid
);
1283 ret
= ref_get_fields(eb
, ref_ptr
, &namelen
, &name
,
1289 /* if we already have a perfect match, we're done */
1290 if (!inode_in_dir(root
, path
, btrfs_ino(dir
), btrfs_ino(inode
),
1291 ref_index
, name
, namelen
)) {
1293 * look for a conflicting back reference in the
1294 * metadata. if we find one we have to unlink that name
1295 * of the file before we add our new link. Later on, we
1296 * overwrite any existing back reference, and we don't
1297 * want to create dangling pointers in the directory.
1301 ret
= __add_inode_ref(trans
, root
, path
, log
,
1305 ref_index
, name
, namelen
,
1314 /* insert our name */
1315 ret
= btrfs_add_link(trans
, dir
, inode
, name
, namelen
,
1320 btrfs_update_inode(trans
, root
, inode
);
1323 ref_ptr
= (unsigned long)(ref_ptr
+ ref_struct_size
) + namelen
;
1332 /* finally write the back reference in the inode */
1333 ret
= overwrite_item(trans
, root
, path
, eb
, slot
, key
);
1335 btrfs_release_path(path
);
1342 static int insert_orphan_item(struct btrfs_trans_handle
*trans
,
1343 struct btrfs_root
*root
, u64 ino
)
1347 ret
= btrfs_insert_orphan_item(trans
, root
, ino
);
1354 static int count_inode_extrefs(struct btrfs_root
*root
,
1355 struct inode
*inode
, struct btrfs_path
*path
)
1359 unsigned int nlink
= 0;
1362 u64 inode_objectid
= btrfs_ino(inode
);
1365 struct btrfs_inode_extref
*extref
;
1366 struct extent_buffer
*leaf
;
1369 ret
= btrfs_find_one_extref(root
, inode_objectid
, offset
, path
,
1374 leaf
= path
->nodes
[0];
1375 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1376 ptr
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
1379 while (cur_offset
< item_size
) {
1380 extref
= (struct btrfs_inode_extref
*) (ptr
+ cur_offset
);
1381 name_len
= btrfs_inode_extref_name_len(leaf
, extref
);
1385 cur_offset
+= name_len
+ sizeof(*extref
);
1389 btrfs_release_path(path
);
1391 btrfs_release_path(path
);
1393 if (ret
< 0 && ret
!= -ENOENT
)
1398 static int count_inode_refs(struct btrfs_root
*root
,
1399 struct inode
*inode
, struct btrfs_path
*path
)
1402 struct btrfs_key key
;
1403 unsigned int nlink
= 0;
1405 unsigned long ptr_end
;
1407 u64 ino
= btrfs_ino(inode
);
1410 key
.type
= BTRFS_INODE_REF_KEY
;
1411 key
.offset
= (u64
)-1;
1414 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1418 if (path
->slots
[0] == 0)
1423 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
1425 if (key
.objectid
!= ino
||
1426 key
.type
!= BTRFS_INODE_REF_KEY
)
1428 ptr
= btrfs_item_ptr_offset(path
->nodes
[0], path
->slots
[0]);
1429 ptr_end
= ptr
+ btrfs_item_size_nr(path
->nodes
[0],
1431 while (ptr
< ptr_end
) {
1432 struct btrfs_inode_ref
*ref
;
1434 ref
= (struct btrfs_inode_ref
*)ptr
;
1435 name_len
= btrfs_inode_ref_name_len(path
->nodes
[0],
1437 ptr
= (unsigned long)(ref
+ 1) + name_len
;
1441 if (key
.offset
== 0)
1443 if (path
->slots
[0] > 0) {
1448 btrfs_release_path(path
);
1450 btrfs_release_path(path
);
1456 * There are a few corners where the link count of the file can't
1457 * be properly maintained during replay. So, instead of adding
1458 * lots of complexity to the log code, we just scan the backrefs
1459 * for any file that has been through replay.
1461 * The scan will update the link count on the inode to reflect the
1462 * number of back refs found. If it goes down to zero, the iput
1463 * will free the inode.
1465 static noinline
int fixup_inode_link_count(struct btrfs_trans_handle
*trans
,
1466 struct btrfs_root
*root
,
1467 struct inode
*inode
)
1469 struct btrfs_path
*path
;
1472 u64 ino
= btrfs_ino(inode
);
1474 path
= btrfs_alloc_path();
1478 ret
= count_inode_refs(root
, inode
, path
);
1484 ret
= count_inode_extrefs(root
, inode
, path
);
1492 if (nlink
!= inode
->i_nlink
) {
1493 set_nlink(inode
, nlink
);
1494 btrfs_update_inode(trans
, root
, inode
);
1496 BTRFS_I(inode
)->index_cnt
= (u64
)-1;
1498 if (inode
->i_nlink
== 0) {
1499 if (S_ISDIR(inode
->i_mode
)) {
1500 ret
= replay_dir_deletes(trans
, root
, NULL
, path
,
1505 ret
= insert_orphan_item(trans
, root
, ino
);
1509 btrfs_free_path(path
);
1513 static noinline
int fixup_inode_link_counts(struct btrfs_trans_handle
*trans
,
1514 struct btrfs_root
*root
,
1515 struct btrfs_path
*path
)
1518 struct btrfs_key key
;
1519 struct inode
*inode
;
1521 key
.objectid
= BTRFS_TREE_LOG_FIXUP_OBJECTID
;
1522 key
.type
= BTRFS_ORPHAN_ITEM_KEY
;
1523 key
.offset
= (u64
)-1;
1525 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1530 if (path
->slots
[0] == 0)
1535 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
1536 if (key
.objectid
!= BTRFS_TREE_LOG_FIXUP_OBJECTID
||
1537 key
.type
!= BTRFS_ORPHAN_ITEM_KEY
)
1540 ret
= btrfs_del_item(trans
, root
, path
);
1544 btrfs_release_path(path
);
1545 inode
= read_one_inode(root
, key
.offset
);
1549 ret
= fixup_inode_link_count(trans
, root
, inode
);
1555 * fixup on a directory may create new entries,
1556 * make sure we always look for the highset possible
1559 key
.offset
= (u64
)-1;
1563 btrfs_release_path(path
);
1569 * record a given inode in the fixup dir so we can check its link
1570 * count when replay is done. The link count is incremented here
1571 * so the inode won't go away until we check it
1573 static noinline
int link_to_fixup_dir(struct btrfs_trans_handle
*trans
,
1574 struct btrfs_root
*root
,
1575 struct btrfs_path
*path
,
1578 struct btrfs_key key
;
1580 struct inode
*inode
;
1582 inode
= read_one_inode(root
, objectid
);
1586 key
.objectid
= BTRFS_TREE_LOG_FIXUP_OBJECTID
;
1587 key
.type
= BTRFS_ORPHAN_ITEM_KEY
;
1588 key
.offset
= objectid
;
1590 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
, 0);
1592 btrfs_release_path(path
);
1594 if (!inode
->i_nlink
)
1595 set_nlink(inode
, 1);
1598 ret
= btrfs_update_inode(trans
, root
, inode
);
1599 } else if (ret
== -EEXIST
) {
1602 BUG(); /* Logic Error */
1610 * when replaying the log for a directory, we only insert names
1611 * for inodes that actually exist. This means an fsync on a directory
1612 * does not implicitly fsync all the new files in it
1614 static noinline
int insert_one_name(struct btrfs_trans_handle
*trans
,
1615 struct btrfs_root
*root
,
1616 u64 dirid
, u64 index
,
1617 char *name
, int name_len
,
1618 struct btrfs_key
*location
)
1620 struct inode
*inode
;
1624 inode
= read_one_inode(root
, location
->objectid
);
1628 dir
= read_one_inode(root
, dirid
);
1634 ret
= btrfs_add_link(trans
, dir
, inode
, name
, name_len
, 1, index
);
1636 /* FIXME, put inode into FIXUP list */
1644 * Return true if an inode reference exists in the log for the given name,
1645 * inode and parent inode.
1647 static bool name_in_log_ref(struct btrfs_root
*log_root
,
1648 const char *name
, const int name_len
,
1649 const u64 dirid
, const u64 ino
)
1651 struct btrfs_key search_key
;
1653 search_key
.objectid
= ino
;
1654 search_key
.type
= BTRFS_INODE_REF_KEY
;
1655 search_key
.offset
= dirid
;
1656 if (backref_in_log(log_root
, &search_key
, dirid
, name
, name_len
))
1659 search_key
.type
= BTRFS_INODE_EXTREF_KEY
;
1660 search_key
.offset
= btrfs_extref_hash(dirid
, name
, name_len
);
1661 if (backref_in_log(log_root
, &search_key
, dirid
, name
, name_len
))
1668 * take a single entry in a log directory item and replay it into
1671 * if a conflicting item exists in the subdirectory already,
1672 * the inode it points to is unlinked and put into the link count
1675 * If a name from the log points to a file or directory that does
1676 * not exist in the FS, it is skipped. fsyncs on directories
1677 * do not force down inodes inside that directory, just changes to the
1678 * names or unlinks in a directory.
1680 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1681 * non-existing inode) and 1 if the name was replayed.
1683 static noinline
int replay_one_name(struct btrfs_trans_handle
*trans
,
1684 struct btrfs_root
*root
,
1685 struct btrfs_path
*path
,
1686 struct extent_buffer
*eb
,
1687 struct btrfs_dir_item
*di
,
1688 struct btrfs_key
*key
)
1692 struct btrfs_dir_item
*dst_di
;
1693 struct btrfs_key found_key
;
1694 struct btrfs_key log_key
;
1699 bool update_size
= (key
->type
== BTRFS_DIR_INDEX_KEY
);
1700 bool name_added
= false;
1702 dir
= read_one_inode(root
, key
->objectid
);
1706 name_len
= btrfs_dir_name_len(eb
, di
);
1707 name
= kmalloc(name_len
, GFP_NOFS
);
1713 log_type
= btrfs_dir_type(eb
, di
);
1714 read_extent_buffer(eb
, name
, (unsigned long)(di
+ 1),
1717 btrfs_dir_item_key_to_cpu(eb
, di
, &log_key
);
1718 exists
= btrfs_lookup_inode(trans
, root
, path
, &log_key
, 0);
1723 btrfs_release_path(path
);
1725 if (key
->type
== BTRFS_DIR_ITEM_KEY
) {
1726 dst_di
= btrfs_lookup_dir_item(trans
, root
, path
, key
->objectid
,
1728 } else if (key
->type
== BTRFS_DIR_INDEX_KEY
) {
1729 dst_di
= btrfs_lookup_dir_index_item(trans
, root
, path
,
1738 if (IS_ERR_OR_NULL(dst_di
)) {
1739 /* we need a sequence number to insert, so we only
1740 * do inserts for the BTRFS_DIR_INDEX_KEY types
1742 if (key
->type
!= BTRFS_DIR_INDEX_KEY
)
1747 btrfs_dir_item_key_to_cpu(path
->nodes
[0], dst_di
, &found_key
);
1748 /* the existing item matches the logged item */
1749 if (found_key
.objectid
== log_key
.objectid
&&
1750 found_key
.type
== log_key
.type
&&
1751 found_key
.offset
== log_key
.offset
&&
1752 btrfs_dir_type(path
->nodes
[0], dst_di
) == log_type
) {
1753 update_size
= false;
1758 * don't drop the conflicting directory entry if the inode
1759 * for the new entry doesn't exist
1764 ret
= drop_one_dir_item(trans
, root
, path
, dir
, dst_di
);
1768 if (key
->type
== BTRFS_DIR_INDEX_KEY
)
1771 btrfs_release_path(path
);
1772 if (!ret
&& update_size
) {
1773 btrfs_i_size_write(dir
, dir
->i_size
+ name_len
* 2);
1774 ret
= btrfs_update_inode(trans
, root
, dir
);
1778 if (!ret
&& name_added
)
1783 if (name_in_log_ref(root
->log_root
, name
, name_len
,
1784 key
->objectid
, log_key
.objectid
)) {
1785 /* The dentry will be added later. */
1787 update_size
= false;
1790 btrfs_release_path(path
);
1791 ret
= insert_one_name(trans
, root
, key
->objectid
, key
->offset
,
1792 name
, name_len
, &log_key
);
1793 if (ret
&& ret
!= -ENOENT
&& ret
!= -EEXIST
)
1797 update_size
= false;
1803 * find all the names in a directory item and reconcile them into
1804 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
1805 * one name in a directory item, but the same code gets used for
1806 * both directory index types
1808 static noinline
int replay_one_dir_item(struct btrfs_trans_handle
*trans
,
1809 struct btrfs_root
*root
,
1810 struct btrfs_path
*path
,
1811 struct extent_buffer
*eb
, int slot
,
1812 struct btrfs_key
*key
)
1815 u32 item_size
= btrfs_item_size_nr(eb
, slot
);
1816 struct btrfs_dir_item
*di
;
1819 unsigned long ptr_end
;
1820 struct btrfs_path
*fixup_path
= NULL
;
1822 ptr
= btrfs_item_ptr_offset(eb
, slot
);
1823 ptr_end
= ptr
+ item_size
;
1824 while (ptr
< ptr_end
) {
1825 di
= (struct btrfs_dir_item
*)ptr
;
1826 if (verify_dir_item(root
, eb
, di
))
1828 name_len
= btrfs_dir_name_len(eb
, di
);
1829 ret
= replay_one_name(trans
, root
, path
, eb
, di
, key
);
1832 ptr
= (unsigned long)(di
+ 1);
1836 * If this entry refers to a non-directory (directories can not
1837 * have a link count > 1) and it was added in the transaction
1838 * that was not committed, make sure we fixup the link count of
1839 * the inode it the entry points to. Otherwise something like
1840 * the following would result in a directory pointing to an
1841 * inode with a wrong link that does not account for this dir
1849 * ln testdir/bar testdir/bar_link
1850 * ln testdir/foo testdir/foo_link
1851 * xfs_io -c "fsync" testdir/bar
1855 * mount fs, log replay happens
1857 * File foo would remain with a link count of 1 when it has two
1858 * entries pointing to it in the directory testdir. This would
1859 * make it impossible to ever delete the parent directory has
1860 * it would result in stale dentries that can never be deleted.
1862 if (ret
== 1 && btrfs_dir_type(eb
, di
) != BTRFS_FT_DIR
) {
1863 struct btrfs_key di_key
;
1866 fixup_path
= btrfs_alloc_path();
1873 btrfs_dir_item_key_to_cpu(eb
, di
, &di_key
);
1874 ret
= link_to_fixup_dir(trans
, root
, fixup_path
,
1881 btrfs_free_path(fixup_path
);
1886 * directory replay has two parts. There are the standard directory
1887 * items in the log copied from the subvolume, and range items
1888 * created in the log while the subvolume was logged.
1890 * The range items tell us which parts of the key space the log
1891 * is authoritative for. During replay, if a key in the subvolume
1892 * directory is in a logged range item, but not actually in the log
1893 * that means it was deleted from the directory before the fsync
1894 * and should be removed.
1896 static noinline
int find_dir_range(struct btrfs_root
*root
,
1897 struct btrfs_path
*path
,
1898 u64 dirid
, int key_type
,
1899 u64
*start_ret
, u64
*end_ret
)
1901 struct btrfs_key key
;
1903 struct btrfs_dir_log_item
*item
;
1907 if (*start_ret
== (u64
)-1)
1910 key
.objectid
= dirid
;
1911 key
.type
= key_type
;
1912 key
.offset
= *start_ret
;
1914 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1918 if (path
->slots
[0] == 0)
1923 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
1925 if (key
.type
!= key_type
|| key
.objectid
!= dirid
) {
1929 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
1930 struct btrfs_dir_log_item
);
1931 found_end
= btrfs_dir_log_end(path
->nodes
[0], item
);
1933 if (*start_ret
>= key
.offset
&& *start_ret
<= found_end
) {
1935 *start_ret
= key
.offset
;
1936 *end_ret
= found_end
;
1941 /* check the next slot in the tree to see if it is a valid item */
1942 nritems
= btrfs_header_nritems(path
->nodes
[0]);
1944 if (path
->slots
[0] >= nritems
) {
1945 ret
= btrfs_next_leaf(root
, path
);
1950 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
1952 if (key
.type
!= key_type
|| key
.objectid
!= dirid
) {
1956 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
1957 struct btrfs_dir_log_item
);
1958 found_end
= btrfs_dir_log_end(path
->nodes
[0], item
);
1959 *start_ret
= key
.offset
;
1960 *end_ret
= found_end
;
1963 btrfs_release_path(path
);
1968 * this looks for a given directory item in the log. If the directory
1969 * item is not in the log, the item is removed and the inode it points
1972 static noinline
int check_item_in_log(struct btrfs_trans_handle
*trans
,
1973 struct btrfs_root
*root
,
1974 struct btrfs_root
*log
,
1975 struct btrfs_path
*path
,
1976 struct btrfs_path
*log_path
,
1978 struct btrfs_key
*dir_key
)
1981 struct extent_buffer
*eb
;
1984 struct btrfs_dir_item
*di
;
1985 struct btrfs_dir_item
*log_di
;
1988 unsigned long ptr_end
;
1990 struct inode
*inode
;
1991 struct btrfs_key location
;
1994 eb
= path
->nodes
[0];
1995 slot
= path
->slots
[0];
1996 item_size
= btrfs_item_size_nr(eb
, slot
);
1997 ptr
= btrfs_item_ptr_offset(eb
, slot
);
1998 ptr_end
= ptr
+ item_size
;
1999 while (ptr
< ptr_end
) {
2000 di
= (struct btrfs_dir_item
*)ptr
;
2001 if (verify_dir_item(root
, eb
, di
)) {
2006 name_len
= btrfs_dir_name_len(eb
, di
);
2007 name
= kmalloc(name_len
, GFP_NOFS
);
2012 read_extent_buffer(eb
, name
, (unsigned long)(di
+ 1),
2015 if (log
&& dir_key
->type
== BTRFS_DIR_ITEM_KEY
) {
2016 log_di
= btrfs_lookup_dir_item(trans
, log
, log_path
,
2019 } else if (log
&& dir_key
->type
== BTRFS_DIR_INDEX_KEY
) {
2020 log_di
= btrfs_lookup_dir_index_item(trans
, log
,
2026 if (!log_di
|| (IS_ERR(log_di
) && PTR_ERR(log_di
) == -ENOENT
)) {
2027 btrfs_dir_item_key_to_cpu(eb
, di
, &location
);
2028 btrfs_release_path(path
);
2029 btrfs_release_path(log_path
);
2030 inode
= read_one_inode(root
, location
.objectid
);
2036 ret
= link_to_fixup_dir(trans
, root
,
2037 path
, location
.objectid
);
2045 ret
= btrfs_unlink_inode(trans
, root
, dir
, inode
,
2048 ret
= btrfs_run_delayed_items(trans
, root
);
2054 /* there might still be more names under this key
2055 * check and repeat if required
2057 ret
= btrfs_search_slot(NULL
, root
, dir_key
, path
,
2063 } else if (IS_ERR(log_di
)) {
2065 return PTR_ERR(log_di
);
2067 btrfs_release_path(log_path
);
2070 ptr
= (unsigned long)(di
+ 1);
2075 btrfs_release_path(path
);
2076 btrfs_release_path(log_path
);
2080 static int replay_xattr_deletes(struct btrfs_trans_handle
*trans
,
2081 struct btrfs_root
*root
,
2082 struct btrfs_root
*log
,
2083 struct btrfs_path
*path
,
2086 struct btrfs_key search_key
;
2087 struct btrfs_path
*log_path
;
2092 log_path
= btrfs_alloc_path();
2096 search_key
.objectid
= ino
;
2097 search_key
.type
= BTRFS_XATTR_ITEM_KEY
;
2098 search_key
.offset
= 0;
2100 ret
= btrfs_search_slot(NULL
, root
, &search_key
, path
, 0, 0);
2104 nritems
= btrfs_header_nritems(path
->nodes
[0]);
2105 for (i
= path
->slots
[0]; i
< nritems
; i
++) {
2106 struct btrfs_key key
;
2107 struct btrfs_dir_item
*di
;
2108 struct btrfs_dir_item
*log_di
;
2112 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, i
);
2113 if (key
.objectid
!= ino
|| key
.type
!= BTRFS_XATTR_ITEM_KEY
) {
2118 di
= btrfs_item_ptr(path
->nodes
[0], i
, struct btrfs_dir_item
);
2119 total_size
= btrfs_item_size_nr(path
->nodes
[0], i
);
2121 while (cur
< total_size
) {
2122 u16 name_len
= btrfs_dir_name_len(path
->nodes
[0], di
);
2123 u16 data_len
= btrfs_dir_data_len(path
->nodes
[0], di
);
2124 u32 this_len
= sizeof(*di
) + name_len
+ data_len
;
2127 name
= kmalloc(name_len
, GFP_NOFS
);
2132 read_extent_buffer(path
->nodes
[0], name
,
2133 (unsigned long)(di
+ 1), name_len
);
2135 log_di
= btrfs_lookup_xattr(NULL
, log
, log_path
, ino
,
2137 btrfs_release_path(log_path
);
2139 /* Doesn't exist in log tree, so delete it. */
2140 btrfs_release_path(path
);
2141 di
= btrfs_lookup_xattr(trans
, root
, path
, ino
,
2142 name
, name_len
, -1);
2149 ret
= btrfs_delete_one_dir_name(trans
, root
,
2153 btrfs_release_path(path
);
2158 if (IS_ERR(log_di
)) {
2159 ret
= PTR_ERR(log_di
);
2163 di
= (struct btrfs_dir_item
*)((char *)di
+ this_len
);
2166 ret
= btrfs_next_leaf(root
, path
);
2172 btrfs_free_path(log_path
);
2173 btrfs_release_path(path
);
2179 * deletion replay happens before we copy any new directory items
2180 * out of the log or out of backreferences from inodes. It
2181 * scans the log to find ranges of keys that log is authoritative for,
2182 * and then scans the directory to find items in those ranges that are
2183 * not present in the log.
2185 * Anything we don't find in the log is unlinked and removed from the
2188 static noinline
int replay_dir_deletes(struct btrfs_trans_handle
*trans
,
2189 struct btrfs_root
*root
,
2190 struct btrfs_root
*log
,
2191 struct btrfs_path
*path
,
2192 u64 dirid
, int del_all
)
2196 int key_type
= BTRFS_DIR_LOG_ITEM_KEY
;
2198 struct btrfs_key dir_key
;
2199 struct btrfs_key found_key
;
2200 struct btrfs_path
*log_path
;
2203 dir_key
.objectid
= dirid
;
2204 dir_key
.type
= BTRFS_DIR_ITEM_KEY
;
2205 log_path
= btrfs_alloc_path();
2209 dir
= read_one_inode(root
, dirid
);
2210 /* it isn't an error if the inode isn't there, that can happen
2211 * because we replay the deletes before we copy in the inode item
2215 btrfs_free_path(log_path
);
2223 range_end
= (u64
)-1;
2225 ret
= find_dir_range(log
, path
, dirid
, key_type
,
2226 &range_start
, &range_end
);
2231 dir_key
.offset
= range_start
;
2234 ret
= btrfs_search_slot(NULL
, root
, &dir_key
, path
,
2239 nritems
= btrfs_header_nritems(path
->nodes
[0]);
2240 if (path
->slots
[0] >= nritems
) {
2241 ret
= btrfs_next_leaf(root
, path
);
2245 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
2247 if (found_key
.objectid
!= dirid
||
2248 found_key
.type
!= dir_key
.type
)
2251 if (found_key
.offset
> range_end
)
2254 ret
= check_item_in_log(trans
, root
, log
, path
,
2259 if (found_key
.offset
== (u64
)-1)
2261 dir_key
.offset
= found_key
.offset
+ 1;
2263 btrfs_release_path(path
);
2264 if (range_end
== (u64
)-1)
2266 range_start
= range_end
+ 1;
2271 if (key_type
== BTRFS_DIR_LOG_ITEM_KEY
) {
2272 key_type
= BTRFS_DIR_LOG_INDEX_KEY
;
2273 dir_key
.type
= BTRFS_DIR_INDEX_KEY
;
2274 btrfs_release_path(path
);
2278 btrfs_release_path(path
);
2279 btrfs_free_path(log_path
);
2285 * the process_func used to replay items from the log tree. This
2286 * gets called in two different stages. The first stage just looks
2287 * for inodes and makes sure they are all copied into the subvolume.
2289 * The second stage copies all the other item types from the log into
2290 * the subvolume. The two stage approach is slower, but gets rid of
2291 * lots of complexity around inodes referencing other inodes that exist
2292 * only in the log (references come from either directory items or inode
2295 static int replay_one_buffer(struct btrfs_root
*log
, struct extent_buffer
*eb
,
2296 struct walk_control
*wc
, u64 gen
)
2299 struct btrfs_path
*path
;
2300 struct btrfs_root
*root
= wc
->replay_dest
;
2301 struct btrfs_key key
;
2306 ret
= btrfs_read_buffer(eb
, gen
);
2310 level
= btrfs_header_level(eb
);
2315 path
= btrfs_alloc_path();
2319 nritems
= btrfs_header_nritems(eb
);
2320 for (i
= 0; i
< nritems
; i
++) {
2321 btrfs_item_key_to_cpu(eb
, &key
, i
);
2323 /* inode keys are done during the first stage */
2324 if (key
.type
== BTRFS_INODE_ITEM_KEY
&&
2325 wc
->stage
== LOG_WALK_REPLAY_INODES
) {
2326 struct btrfs_inode_item
*inode_item
;
2329 inode_item
= btrfs_item_ptr(eb
, i
,
2330 struct btrfs_inode_item
);
2331 ret
= replay_xattr_deletes(wc
->trans
, root
, log
,
2332 path
, key
.objectid
);
2335 mode
= btrfs_inode_mode(eb
, inode_item
);
2336 if (S_ISDIR(mode
)) {
2337 ret
= replay_dir_deletes(wc
->trans
,
2338 root
, log
, path
, key
.objectid
, 0);
2342 ret
= overwrite_item(wc
->trans
, root
, path
,
2347 /* for regular files, make sure corresponding
2348 * orphan item exist. extents past the new EOF
2349 * will be truncated later by orphan cleanup.
2351 if (S_ISREG(mode
)) {
2352 ret
= insert_orphan_item(wc
->trans
, root
,
2358 ret
= link_to_fixup_dir(wc
->trans
, root
,
2359 path
, key
.objectid
);
2364 if (key
.type
== BTRFS_DIR_INDEX_KEY
&&
2365 wc
->stage
== LOG_WALK_REPLAY_DIR_INDEX
) {
2366 ret
= replay_one_dir_item(wc
->trans
, root
, path
,
2372 if (wc
->stage
< LOG_WALK_REPLAY_ALL
)
2375 /* these keys are simply copied */
2376 if (key
.type
== BTRFS_XATTR_ITEM_KEY
) {
2377 ret
= overwrite_item(wc
->trans
, root
, path
,
2381 } else if (key
.type
== BTRFS_INODE_REF_KEY
||
2382 key
.type
== BTRFS_INODE_EXTREF_KEY
) {
2383 ret
= add_inode_ref(wc
->trans
, root
, log
, path
,
2385 if (ret
&& ret
!= -ENOENT
)
2388 } else if (key
.type
== BTRFS_EXTENT_DATA_KEY
) {
2389 ret
= replay_one_extent(wc
->trans
, root
, path
,
2393 } else if (key
.type
== BTRFS_DIR_ITEM_KEY
) {
2394 ret
= replay_one_dir_item(wc
->trans
, root
, path
,
2400 btrfs_free_path(path
);
2404 static noinline
int walk_down_log_tree(struct btrfs_trans_handle
*trans
,
2405 struct btrfs_root
*root
,
2406 struct btrfs_path
*path
, int *level
,
2407 struct walk_control
*wc
)
2412 struct extent_buffer
*next
;
2413 struct extent_buffer
*cur
;
2414 struct extent_buffer
*parent
;
2418 WARN_ON(*level
< 0);
2419 WARN_ON(*level
>= BTRFS_MAX_LEVEL
);
2421 while (*level
> 0) {
2422 WARN_ON(*level
< 0);
2423 WARN_ON(*level
>= BTRFS_MAX_LEVEL
);
2424 cur
= path
->nodes
[*level
];
2426 WARN_ON(btrfs_header_level(cur
) != *level
);
2428 if (path
->slots
[*level
] >=
2429 btrfs_header_nritems(cur
))
2432 bytenr
= btrfs_node_blockptr(cur
, path
->slots
[*level
]);
2433 ptr_gen
= btrfs_node_ptr_generation(cur
, path
->slots
[*level
]);
2434 blocksize
= root
->nodesize
;
2436 parent
= path
->nodes
[*level
];
2437 root_owner
= btrfs_header_owner(parent
);
2439 next
= btrfs_find_create_tree_block(root
, bytenr
);
2441 return PTR_ERR(next
);
2444 ret
= wc
->process_func(root
, next
, wc
, ptr_gen
);
2446 free_extent_buffer(next
);
2450 path
->slots
[*level
]++;
2452 ret
= btrfs_read_buffer(next
, ptr_gen
);
2454 free_extent_buffer(next
);
2459 btrfs_tree_lock(next
);
2460 btrfs_set_lock_blocking(next
);
2461 clean_tree_block(trans
, root
->fs_info
,
2463 btrfs_wait_tree_block_writeback(next
);
2464 btrfs_tree_unlock(next
);
2467 WARN_ON(root_owner
!=
2468 BTRFS_TREE_LOG_OBJECTID
);
2469 ret
= btrfs_free_and_pin_reserved_extent(root
,
2472 free_extent_buffer(next
);
2476 free_extent_buffer(next
);
2479 ret
= btrfs_read_buffer(next
, ptr_gen
);
2481 free_extent_buffer(next
);
2485 WARN_ON(*level
<= 0);
2486 if (path
->nodes
[*level
-1])
2487 free_extent_buffer(path
->nodes
[*level
-1]);
2488 path
->nodes
[*level
-1] = next
;
2489 *level
= btrfs_header_level(next
);
2490 path
->slots
[*level
] = 0;
2493 WARN_ON(*level
< 0);
2494 WARN_ON(*level
>= BTRFS_MAX_LEVEL
);
2496 path
->slots
[*level
] = btrfs_header_nritems(path
->nodes
[*level
]);
2502 static noinline
int walk_up_log_tree(struct btrfs_trans_handle
*trans
,
2503 struct btrfs_root
*root
,
2504 struct btrfs_path
*path
, int *level
,
2505 struct walk_control
*wc
)
2512 for (i
= *level
; i
< BTRFS_MAX_LEVEL
- 1 && path
->nodes
[i
]; i
++) {
2513 slot
= path
->slots
[i
];
2514 if (slot
+ 1 < btrfs_header_nritems(path
->nodes
[i
])) {
2517 WARN_ON(*level
== 0);
2520 struct extent_buffer
*parent
;
2521 if (path
->nodes
[*level
] == root
->node
)
2522 parent
= path
->nodes
[*level
];
2524 parent
= path
->nodes
[*level
+ 1];
2526 root_owner
= btrfs_header_owner(parent
);
2527 ret
= wc
->process_func(root
, path
->nodes
[*level
], wc
,
2528 btrfs_header_generation(path
->nodes
[*level
]));
2533 struct extent_buffer
*next
;
2535 next
= path
->nodes
[*level
];
2538 btrfs_tree_lock(next
);
2539 btrfs_set_lock_blocking(next
);
2540 clean_tree_block(trans
, root
->fs_info
,
2542 btrfs_wait_tree_block_writeback(next
);
2543 btrfs_tree_unlock(next
);
2546 WARN_ON(root_owner
!= BTRFS_TREE_LOG_OBJECTID
);
2547 ret
= btrfs_free_and_pin_reserved_extent(root
,
2548 path
->nodes
[*level
]->start
,
2549 path
->nodes
[*level
]->len
);
2553 free_extent_buffer(path
->nodes
[*level
]);
2554 path
->nodes
[*level
] = NULL
;
2562 * drop the reference count on the tree rooted at 'snap'. This traverses
2563 * the tree freeing any blocks that have a ref count of zero after being
2566 static int walk_log_tree(struct btrfs_trans_handle
*trans
,
2567 struct btrfs_root
*log
, struct walk_control
*wc
)
2572 struct btrfs_path
*path
;
2575 path
= btrfs_alloc_path();
2579 level
= btrfs_header_level(log
->node
);
2581 path
->nodes
[level
] = log
->node
;
2582 extent_buffer_get(log
->node
);
2583 path
->slots
[level
] = 0;
2586 wret
= walk_down_log_tree(trans
, log
, path
, &level
, wc
);
2594 wret
= walk_up_log_tree(trans
, log
, path
, &level
, wc
);
2603 /* was the root node processed? if not, catch it here */
2604 if (path
->nodes
[orig_level
]) {
2605 ret
= wc
->process_func(log
, path
->nodes
[orig_level
], wc
,
2606 btrfs_header_generation(path
->nodes
[orig_level
]));
2610 struct extent_buffer
*next
;
2612 next
= path
->nodes
[orig_level
];
2615 btrfs_tree_lock(next
);
2616 btrfs_set_lock_blocking(next
);
2617 clean_tree_block(trans
, log
->fs_info
, next
);
2618 btrfs_wait_tree_block_writeback(next
);
2619 btrfs_tree_unlock(next
);
2622 WARN_ON(log
->root_key
.objectid
!=
2623 BTRFS_TREE_LOG_OBJECTID
);
2624 ret
= btrfs_free_and_pin_reserved_extent(log
, next
->start
,
2632 btrfs_free_path(path
);
2637 * helper function to update the item for a given subvolumes log root
2638 * in the tree of log roots
2640 static int update_log_root(struct btrfs_trans_handle
*trans
,
2641 struct btrfs_root
*log
)
2645 if (log
->log_transid
== 1) {
2646 /* insert root item on the first sync */
2647 ret
= btrfs_insert_root(trans
, log
->fs_info
->log_root_tree
,
2648 &log
->root_key
, &log
->root_item
);
2650 ret
= btrfs_update_root(trans
, log
->fs_info
->log_root_tree
,
2651 &log
->root_key
, &log
->root_item
);
2656 static void wait_log_commit(struct btrfs_root
*root
, int transid
)
2659 int index
= transid
% 2;
2662 * we only allow two pending log transactions at a time,
2663 * so we know that if ours is more than 2 older than the
2664 * current transaction, we're done
2667 prepare_to_wait(&root
->log_commit_wait
[index
],
2668 &wait
, TASK_UNINTERRUPTIBLE
);
2669 mutex_unlock(&root
->log_mutex
);
2671 if (root
->log_transid_committed
< transid
&&
2672 atomic_read(&root
->log_commit
[index
]))
2675 finish_wait(&root
->log_commit_wait
[index
], &wait
);
2676 mutex_lock(&root
->log_mutex
);
2677 } while (root
->log_transid_committed
< transid
&&
2678 atomic_read(&root
->log_commit
[index
]));
2681 static void wait_for_writer(struct btrfs_root
*root
)
2685 while (atomic_read(&root
->log_writers
)) {
2686 prepare_to_wait(&root
->log_writer_wait
,
2687 &wait
, TASK_UNINTERRUPTIBLE
);
2688 mutex_unlock(&root
->log_mutex
);
2689 if (atomic_read(&root
->log_writers
))
2691 finish_wait(&root
->log_writer_wait
, &wait
);
2692 mutex_lock(&root
->log_mutex
);
2696 static inline void btrfs_remove_log_ctx(struct btrfs_root
*root
,
2697 struct btrfs_log_ctx
*ctx
)
2702 mutex_lock(&root
->log_mutex
);
2703 list_del_init(&ctx
->list
);
2704 mutex_unlock(&root
->log_mutex
);
2708 * Invoked in log mutex context, or be sure there is no other task which
2709 * can access the list.
2711 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root
*root
,
2712 int index
, int error
)
2714 struct btrfs_log_ctx
*ctx
;
2715 struct btrfs_log_ctx
*safe
;
2717 list_for_each_entry_safe(ctx
, safe
, &root
->log_ctxs
[index
], list
) {
2718 list_del_init(&ctx
->list
);
2719 ctx
->log_ret
= error
;
2722 INIT_LIST_HEAD(&root
->log_ctxs
[index
]);
2726 * btrfs_sync_log does sends a given tree log down to the disk and
2727 * updates the super blocks to record it. When this call is done,
2728 * you know that any inodes previously logged are safely on disk only
2731 * Any other return value means you need to call btrfs_commit_transaction.
2732 * Some of the edge cases for fsyncing directories that have had unlinks
2733 * or renames done in the past mean that sometimes the only safe
2734 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
2735 * that has happened.
2737 int btrfs_sync_log(struct btrfs_trans_handle
*trans
,
2738 struct btrfs_root
*root
, struct btrfs_log_ctx
*ctx
)
2744 struct btrfs_root
*log
= root
->log_root
;
2745 struct btrfs_root
*log_root_tree
= root
->fs_info
->log_root_tree
;
2746 int log_transid
= 0;
2747 struct btrfs_log_ctx root_log_ctx
;
2748 struct blk_plug plug
;
2750 mutex_lock(&root
->log_mutex
);
2751 log_transid
= ctx
->log_transid
;
2752 if (root
->log_transid_committed
>= log_transid
) {
2753 mutex_unlock(&root
->log_mutex
);
2754 return ctx
->log_ret
;
2757 index1
= log_transid
% 2;
2758 if (atomic_read(&root
->log_commit
[index1
])) {
2759 wait_log_commit(root
, log_transid
);
2760 mutex_unlock(&root
->log_mutex
);
2761 return ctx
->log_ret
;
2763 ASSERT(log_transid
== root
->log_transid
);
2764 atomic_set(&root
->log_commit
[index1
], 1);
2766 /* wait for previous tree log sync to complete */
2767 if (atomic_read(&root
->log_commit
[(index1
+ 1) % 2]))
2768 wait_log_commit(root
, log_transid
- 1);
2771 int batch
= atomic_read(&root
->log_batch
);
2772 /* when we're on an ssd, just kick the log commit out */
2773 if (!btrfs_test_opt(root
->fs_info
, SSD
) &&
2774 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS
, &root
->state
)) {
2775 mutex_unlock(&root
->log_mutex
);
2776 schedule_timeout_uninterruptible(1);
2777 mutex_lock(&root
->log_mutex
);
2779 wait_for_writer(root
);
2780 if (batch
== atomic_read(&root
->log_batch
))
2784 /* bail out if we need to do a full commit */
2785 if (btrfs_need_log_full_commit(root
->fs_info
, trans
)) {
2787 btrfs_free_logged_extents(log
, log_transid
);
2788 mutex_unlock(&root
->log_mutex
);
2792 if (log_transid
% 2 == 0)
2793 mark
= EXTENT_DIRTY
;
2797 /* we start IO on all the marked extents here, but we don't actually
2798 * wait for them until later.
2800 blk_start_plug(&plug
);
2801 ret
= btrfs_write_marked_extents(log
, &log
->dirty_log_pages
, mark
);
2803 blk_finish_plug(&plug
);
2804 btrfs_abort_transaction(trans
, ret
);
2805 btrfs_free_logged_extents(log
, log_transid
);
2806 btrfs_set_log_full_commit(root
->fs_info
, trans
);
2807 mutex_unlock(&root
->log_mutex
);
2811 btrfs_set_root_node(&log
->root_item
, log
->node
);
2813 root
->log_transid
++;
2814 log
->log_transid
= root
->log_transid
;
2815 root
->log_start_pid
= 0;
2817 * IO has been started, blocks of the log tree have WRITTEN flag set
2818 * in their headers. new modifications of the log will be written to
2819 * new positions. so it's safe to allow log writers to go in.
2821 mutex_unlock(&root
->log_mutex
);
2823 btrfs_init_log_ctx(&root_log_ctx
, NULL
);
2825 mutex_lock(&log_root_tree
->log_mutex
);
2826 atomic_inc(&log_root_tree
->log_batch
);
2827 atomic_inc(&log_root_tree
->log_writers
);
2829 index2
= log_root_tree
->log_transid
% 2;
2830 list_add_tail(&root_log_ctx
.list
, &log_root_tree
->log_ctxs
[index2
]);
2831 root_log_ctx
.log_transid
= log_root_tree
->log_transid
;
2833 mutex_unlock(&log_root_tree
->log_mutex
);
2835 ret
= update_log_root(trans
, log
);
2837 mutex_lock(&log_root_tree
->log_mutex
);
2838 if (atomic_dec_and_test(&log_root_tree
->log_writers
)) {
2840 * Implicit memory barrier after atomic_dec_and_test
2842 if (waitqueue_active(&log_root_tree
->log_writer_wait
))
2843 wake_up(&log_root_tree
->log_writer_wait
);
2847 if (!list_empty(&root_log_ctx
.list
))
2848 list_del_init(&root_log_ctx
.list
);
2850 blk_finish_plug(&plug
);
2851 btrfs_set_log_full_commit(root
->fs_info
, trans
);
2853 if (ret
!= -ENOSPC
) {
2854 btrfs_abort_transaction(trans
, ret
);
2855 mutex_unlock(&log_root_tree
->log_mutex
);
2858 btrfs_wait_marked_extents(log
, &log
->dirty_log_pages
, mark
);
2859 btrfs_free_logged_extents(log
, log_transid
);
2860 mutex_unlock(&log_root_tree
->log_mutex
);
2865 if (log_root_tree
->log_transid_committed
>= root_log_ctx
.log_transid
) {
2866 blk_finish_plug(&plug
);
2867 list_del_init(&root_log_ctx
.list
);
2868 mutex_unlock(&log_root_tree
->log_mutex
);
2869 ret
= root_log_ctx
.log_ret
;
2873 index2
= root_log_ctx
.log_transid
% 2;
2874 if (atomic_read(&log_root_tree
->log_commit
[index2
])) {
2875 blk_finish_plug(&plug
);
2876 ret
= btrfs_wait_marked_extents(log
, &log
->dirty_log_pages
,
2878 btrfs_wait_logged_extents(trans
, log
, log_transid
);
2879 wait_log_commit(log_root_tree
,
2880 root_log_ctx
.log_transid
);
2881 mutex_unlock(&log_root_tree
->log_mutex
);
2883 ret
= root_log_ctx
.log_ret
;
2886 ASSERT(root_log_ctx
.log_transid
== log_root_tree
->log_transid
);
2887 atomic_set(&log_root_tree
->log_commit
[index2
], 1);
2889 if (atomic_read(&log_root_tree
->log_commit
[(index2
+ 1) % 2])) {
2890 wait_log_commit(log_root_tree
,
2891 root_log_ctx
.log_transid
- 1);
2894 wait_for_writer(log_root_tree
);
2897 * now that we've moved on to the tree of log tree roots,
2898 * check the full commit flag again
2900 if (btrfs_need_log_full_commit(root
->fs_info
, trans
)) {
2901 blk_finish_plug(&plug
);
2902 btrfs_wait_marked_extents(log
, &log
->dirty_log_pages
, mark
);
2903 btrfs_free_logged_extents(log
, log_transid
);
2904 mutex_unlock(&log_root_tree
->log_mutex
);
2906 goto out_wake_log_root
;
2909 ret
= btrfs_write_marked_extents(log_root_tree
,
2910 &log_root_tree
->dirty_log_pages
,
2911 EXTENT_DIRTY
| EXTENT_NEW
);
2912 blk_finish_plug(&plug
);
2914 btrfs_set_log_full_commit(root
->fs_info
, trans
);
2915 btrfs_abort_transaction(trans
, ret
);
2916 btrfs_free_logged_extents(log
, log_transid
);
2917 mutex_unlock(&log_root_tree
->log_mutex
);
2918 goto out_wake_log_root
;
2920 ret
= btrfs_wait_marked_extents(log
, &log
->dirty_log_pages
, mark
);
2922 ret
= btrfs_wait_marked_extents(log_root_tree
,
2923 &log_root_tree
->dirty_log_pages
,
2924 EXTENT_NEW
| EXTENT_DIRTY
);
2926 btrfs_set_log_full_commit(root
->fs_info
, trans
);
2927 btrfs_free_logged_extents(log
, log_transid
);
2928 mutex_unlock(&log_root_tree
->log_mutex
);
2929 goto out_wake_log_root
;
2931 btrfs_wait_logged_extents(trans
, log
, log_transid
);
2933 btrfs_set_super_log_root(root
->fs_info
->super_for_commit
,
2934 log_root_tree
->node
->start
);
2935 btrfs_set_super_log_root_level(root
->fs_info
->super_for_commit
,
2936 btrfs_header_level(log_root_tree
->node
));
2938 log_root_tree
->log_transid
++;
2939 mutex_unlock(&log_root_tree
->log_mutex
);
2942 * nobody else is going to jump in and write the the ctree
2943 * super here because the log_commit atomic below is protecting
2944 * us. We must be called with a transaction handle pinning
2945 * the running transaction open, so a full commit can't hop
2946 * in and cause problems either.
2948 ret
= write_ctree_super(trans
, root
->fs_info
->tree_root
, 1);
2950 btrfs_set_log_full_commit(root
->fs_info
, trans
);
2951 btrfs_abort_transaction(trans
, ret
);
2952 goto out_wake_log_root
;
2955 mutex_lock(&root
->log_mutex
);
2956 if (root
->last_log_commit
< log_transid
)
2957 root
->last_log_commit
= log_transid
;
2958 mutex_unlock(&root
->log_mutex
);
2961 mutex_lock(&log_root_tree
->log_mutex
);
2962 btrfs_remove_all_log_ctxs(log_root_tree
, index2
, ret
);
2964 log_root_tree
->log_transid_committed
++;
2965 atomic_set(&log_root_tree
->log_commit
[index2
], 0);
2966 mutex_unlock(&log_root_tree
->log_mutex
);
2969 * The barrier before waitqueue_active is implied by mutex_unlock
2971 if (waitqueue_active(&log_root_tree
->log_commit_wait
[index2
]))
2972 wake_up(&log_root_tree
->log_commit_wait
[index2
]);
2974 mutex_lock(&root
->log_mutex
);
2975 btrfs_remove_all_log_ctxs(root
, index1
, ret
);
2976 root
->log_transid_committed
++;
2977 atomic_set(&root
->log_commit
[index1
], 0);
2978 mutex_unlock(&root
->log_mutex
);
2981 * The barrier before waitqueue_active is implied by mutex_unlock
2983 if (waitqueue_active(&root
->log_commit_wait
[index1
]))
2984 wake_up(&root
->log_commit_wait
[index1
]);
2988 static void free_log_tree(struct btrfs_trans_handle
*trans
,
2989 struct btrfs_root
*log
)
2994 struct walk_control wc
= {
2996 .process_func
= process_one_buffer
2999 ret
= walk_log_tree(trans
, log
, &wc
);
3000 /* I don't think this can happen but just in case */
3002 btrfs_abort_transaction(trans
, ret
);
3005 ret
= find_first_extent_bit(&log
->dirty_log_pages
,
3006 0, &start
, &end
, EXTENT_DIRTY
| EXTENT_NEW
,
3011 clear_extent_bits(&log
->dirty_log_pages
, start
, end
,
3012 EXTENT_DIRTY
| EXTENT_NEW
);
3016 * We may have short-circuited the log tree with the full commit logic
3017 * and left ordered extents on our list, so clear these out to keep us
3018 * from leaking inodes and memory.
3020 btrfs_free_logged_extents(log
, 0);
3021 btrfs_free_logged_extents(log
, 1);
3023 free_extent_buffer(log
->node
);
3028 * free all the extents used by the tree log. This should be called
3029 * at commit time of the full transaction
3031 int btrfs_free_log(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
)
3033 if (root
->log_root
) {
3034 free_log_tree(trans
, root
->log_root
);
3035 root
->log_root
= NULL
;
3040 int btrfs_free_log_root_tree(struct btrfs_trans_handle
*trans
,
3041 struct btrfs_fs_info
*fs_info
)
3043 if (fs_info
->log_root_tree
) {
3044 free_log_tree(trans
, fs_info
->log_root_tree
);
3045 fs_info
->log_root_tree
= NULL
;
3051 * If both a file and directory are logged, and unlinks or renames are
3052 * mixed in, we have a few interesting corners:
3054 * create file X in dir Y
3055 * link file X to X.link in dir Y
3057 * unlink file X but leave X.link
3060 * After a crash we would expect only X.link to exist. But file X
3061 * didn't get fsync'd again so the log has back refs for X and X.link.
3063 * We solve this by removing directory entries and inode backrefs from the
3064 * log when a file that was logged in the current transaction is
3065 * unlinked. Any later fsync will include the updated log entries, and
3066 * we'll be able to reconstruct the proper directory items from backrefs.
3068 * This optimizations allows us to avoid relogging the entire inode
3069 * or the entire directory.
3071 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle
*trans
,
3072 struct btrfs_root
*root
,
3073 const char *name
, int name_len
,
3074 struct inode
*dir
, u64 index
)
3076 struct btrfs_root
*log
;
3077 struct btrfs_dir_item
*di
;
3078 struct btrfs_path
*path
;
3082 u64 dir_ino
= btrfs_ino(dir
);
3084 if (BTRFS_I(dir
)->logged_trans
< trans
->transid
)
3087 ret
= join_running_log_trans(root
);
3091 mutex_lock(&BTRFS_I(dir
)->log_mutex
);
3093 log
= root
->log_root
;
3094 path
= btrfs_alloc_path();
3100 di
= btrfs_lookup_dir_item(trans
, log
, path
, dir_ino
,
3101 name
, name_len
, -1);
3107 ret
= btrfs_delete_one_dir_name(trans
, log
, path
, di
);
3108 bytes_del
+= name_len
;
3114 btrfs_release_path(path
);
3115 di
= btrfs_lookup_dir_index_item(trans
, log
, path
, dir_ino
,
3116 index
, name
, name_len
, -1);
3122 ret
= btrfs_delete_one_dir_name(trans
, log
, path
, di
);
3123 bytes_del
+= name_len
;
3130 /* update the directory size in the log to reflect the names
3134 struct btrfs_key key
;
3136 key
.objectid
= dir_ino
;
3138 key
.type
= BTRFS_INODE_ITEM_KEY
;
3139 btrfs_release_path(path
);
3141 ret
= btrfs_search_slot(trans
, log
, &key
, path
, 0, 1);
3147 struct btrfs_inode_item
*item
;
3150 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
3151 struct btrfs_inode_item
);
3152 i_size
= btrfs_inode_size(path
->nodes
[0], item
);
3153 if (i_size
> bytes_del
)
3154 i_size
-= bytes_del
;
3157 btrfs_set_inode_size(path
->nodes
[0], item
, i_size
);
3158 btrfs_mark_buffer_dirty(path
->nodes
[0]);
3161 btrfs_release_path(path
);
3164 btrfs_free_path(path
);
3166 mutex_unlock(&BTRFS_I(dir
)->log_mutex
);
3167 if (ret
== -ENOSPC
) {
3168 btrfs_set_log_full_commit(root
->fs_info
, trans
);
3171 btrfs_abort_transaction(trans
, ret
);
3173 btrfs_end_log_trans(root
);
3178 /* see comments for btrfs_del_dir_entries_in_log */
3179 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle
*trans
,
3180 struct btrfs_root
*root
,
3181 const char *name
, int name_len
,
3182 struct inode
*inode
, u64 dirid
)
3184 struct btrfs_root
*log
;
3188 if (BTRFS_I(inode
)->logged_trans
< trans
->transid
)
3191 ret
= join_running_log_trans(root
);
3194 log
= root
->log_root
;
3195 mutex_lock(&BTRFS_I(inode
)->log_mutex
);
3197 ret
= btrfs_del_inode_ref(trans
, log
, name
, name_len
, btrfs_ino(inode
),
3199 mutex_unlock(&BTRFS_I(inode
)->log_mutex
);
3200 if (ret
== -ENOSPC
) {
3201 btrfs_set_log_full_commit(root
->fs_info
, trans
);
3203 } else if (ret
< 0 && ret
!= -ENOENT
)
3204 btrfs_abort_transaction(trans
, ret
);
3205 btrfs_end_log_trans(root
);
3211 * creates a range item in the log for 'dirid'. first_offset and
3212 * last_offset tell us which parts of the key space the log should
3213 * be considered authoritative for.
3215 static noinline
int insert_dir_log_key(struct btrfs_trans_handle
*trans
,
3216 struct btrfs_root
*log
,
3217 struct btrfs_path
*path
,
3218 int key_type
, u64 dirid
,
3219 u64 first_offset
, u64 last_offset
)
3222 struct btrfs_key key
;
3223 struct btrfs_dir_log_item
*item
;
3225 key
.objectid
= dirid
;
3226 key
.offset
= first_offset
;
3227 if (key_type
== BTRFS_DIR_ITEM_KEY
)
3228 key
.type
= BTRFS_DIR_LOG_ITEM_KEY
;
3230 key
.type
= BTRFS_DIR_LOG_INDEX_KEY
;
3231 ret
= btrfs_insert_empty_item(trans
, log
, path
, &key
, sizeof(*item
));
3235 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
3236 struct btrfs_dir_log_item
);
3237 btrfs_set_dir_log_end(path
->nodes
[0], item
, last_offset
);
3238 btrfs_mark_buffer_dirty(path
->nodes
[0]);
3239 btrfs_release_path(path
);
3244 * log all the items included in the current transaction for a given
3245 * directory. This also creates the range items in the log tree required
3246 * to replay anything deleted before the fsync
3248 static noinline
int log_dir_items(struct btrfs_trans_handle
*trans
,
3249 struct btrfs_root
*root
, struct inode
*inode
,
3250 struct btrfs_path
*path
,
3251 struct btrfs_path
*dst_path
, int key_type
,
3252 struct btrfs_log_ctx
*ctx
,
3253 u64 min_offset
, u64
*last_offset_ret
)
3255 struct btrfs_key min_key
;
3256 struct btrfs_root
*log
= root
->log_root
;
3257 struct extent_buffer
*src
;
3262 u64 first_offset
= min_offset
;
3263 u64 last_offset
= (u64
)-1;
3264 u64 ino
= btrfs_ino(inode
);
3266 log
= root
->log_root
;
3268 min_key
.objectid
= ino
;
3269 min_key
.type
= key_type
;
3270 min_key
.offset
= min_offset
;
3272 ret
= btrfs_search_forward(root
, &min_key
, path
, trans
->transid
);
3275 * we didn't find anything from this transaction, see if there
3276 * is anything at all
3278 if (ret
!= 0 || min_key
.objectid
!= ino
|| min_key
.type
!= key_type
) {
3279 min_key
.objectid
= ino
;
3280 min_key
.type
= key_type
;
3281 min_key
.offset
= (u64
)-1;
3282 btrfs_release_path(path
);
3283 ret
= btrfs_search_slot(NULL
, root
, &min_key
, path
, 0, 0);
3285 btrfs_release_path(path
);
3288 ret
= btrfs_previous_item(root
, path
, ino
, key_type
);
3290 /* if ret == 0 there are items for this type,
3291 * create a range to tell us the last key of this type.
3292 * otherwise, there are no items in this directory after
3293 * *min_offset, and we create a range to indicate that.
3296 struct btrfs_key tmp
;
3297 btrfs_item_key_to_cpu(path
->nodes
[0], &tmp
,
3299 if (key_type
== tmp
.type
)
3300 first_offset
= max(min_offset
, tmp
.offset
) + 1;
3305 /* go backward to find any previous key */
3306 ret
= btrfs_previous_item(root
, path
, ino
, key_type
);
3308 struct btrfs_key tmp
;
3309 btrfs_item_key_to_cpu(path
->nodes
[0], &tmp
, path
->slots
[0]);
3310 if (key_type
== tmp
.type
) {
3311 first_offset
= tmp
.offset
;
3312 ret
= overwrite_item(trans
, log
, dst_path
,
3313 path
->nodes
[0], path
->slots
[0],
3321 btrfs_release_path(path
);
3323 /* find the first key from this transaction again */
3324 ret
= btrfs_search_slot(NULL
, root
, &min_key
, path
, 0, 0);
3325 if (WARN_ON(ret
!= 0))
3329 * we have a block from this transaction, log every item in it
3330 * from our directory
3333 struct btrfs_key tmp
;
3334 src
= path
->nodes
[0];
3335 nritems
= btrfs_header_nritems(src
);
3336 for (i
= path
->slots
[0]; i
< nritems
; i
++) {
3337 struct btrfs_dir_item
*di
;
3339 btrfs_item_key_to_cpu(src
, &min_key
, i
);
3341 if (min_key
.objectid
!= ino
|| min_key
.type
!= key_type
)
3343 ret
= overwrite_item(trans
, log
, dst_path
, src
, i
,
3351 * We must make sure that when we log a directory entry,
3352 * the corresponding inode, after log replay, has a
3353 * matching link count. For example:
3359 * xfs_io -c "fsync" mydir
3361 * <mount fs and log replay>
3363 * Would result in a fsync log that when replayed, our
3364 * file inode would have a link count of 1, but we get
3365 * two directory entries pointing to the same inode.
3366 * After removing one of the names, it would not be
3367 * possible to remove the other name, which resulted
3368 * always in stale file handle errors, and would not
3369 * be possible to rmdir the parent directory, since
3370 * its i_size could never decrement to the value
3371 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
3373 di
= btrfs_item_ptr(src
, i
, struct btrfs_dir_item
);
3374 btrfs_dir_item_key_to_cpu(src
, di
, &tmp
);
3376 (btrfs_dir_transid(src
, di
) == trans
->transid
||
3377 btrfs_dir_type(src
, di
) == BTRFS_FT_DIR
) &&
3378 tmp
.type
!= BTRFS_ROOT_ITEM_KEY
)
3379 ctx
->log_new_dentries
= true;
3381 path
->slots
[0] = nritems
;
3384 * look ahead to the next item and see if it is also
3385 * from this directory and from this transaction
3387 ret
= btrfs_next_leaf(root
, path
);
3389 last_offset
= (u64
)-1;
3392 btrfs_item_key_to_cpu(path
->nodes
[0], &tmp
, path
->slots
[0]);
3393 if (tmp
.objectid
!= ino
|| tmp
.type
!= key_type
) {
3394 last_offset
= (u64
)-1;
3397 if (btrfs_header_generation(path
->nodes
[0]) != trans
->transid
) {
3398 ret
= overwrite_item(trans
, log
, dst_path
,
3399 path
->nodes
[0], path
->slots
[0],
3404 last_offset
= tmp
.offset
;
3409 btrfs_release_path(path
);
3410 btrfs_release_path(dst_path
);
3413 *last_offset_ret
= last_offset
;
3415 * insert the log range keys to indicate where the log
3418 ret
= insert_dir_log_key(trans
, log
, path
, key_type
,
3419 ino
, first_offset
, last_offset
);
3427 * logging directories is very similar to logging inodes, We find all the items
3428 * from the current transaction and write them to the log.
3430 * The recovery code scans the directory in the subvolume, and if it finds a
3431 * key in the range logged that is not present in the log tree, then it means
3432 * that dir entry was unlinked during the transaction.
3434 * In order for that scan to work, we must include one key smaller than
3435 * the smallest logged by this transaction and one key larger than the largest
3436 * key logged by this transaction.
3438 static noinline
int log_directory_changes(struct btrfs_trans_handle
*trans
,
3439 struct btrfs_root
*root
, struct inode
*inode
,
3440 struct btrfs_path
*path
,
3441 struct btrfs_path
*dst_path
,
3442 struct btrfs_log_ctx
*ctx
)
3447 int key_type
= BTRFS_DIR_ITEM_KEY
;
3453 ret
= log_dir_items(trans
, root
, inode
, path
,
3454 dst_path
, key_type
, ctx
, min_key
,
3458 if (max_key
== (u64
)-1)
3460 min_key
= max_key
+ 1;
3463 if (key_type
== BTRFS_DIR_ITEM_KEY
) {
3464 key_type
= BTRFS_DIR_INDEX_KEY
;
3471 * a helper function to drop items from the log before we relog an
3472 * inode. max_key_type indicates the highest item type to remove.
3473 * This cannot be run for file data extents because it does not
3474 * free the extents they point to.
3476 static int drop_objectid_items(struct btrfs_trans_handle
*trans
,
3477 struct btrfs_root
*log
,
3478 struct btrfs_path
*path
,
3479 u64 objectid
, int max_key_type
)
3482 struct btrfs_key key
;
3483 struct btrfs_key found_key
;
3486 key
.objectid
= objectid
;
3487 key
.type
= max_key_type
;
3488 key
.offset
= (u64
)-1;
3491 ret
= btrfs_search_slot(trans
, log
, &key
, path
, -1, 1);
3492 BUG_ON(ret
== 0); /* Logic error */
3496 if (path
->slots
[0] == 0)
3500 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
3503 if (found_key
.objectid
!= objectid
)
3506 found_key
.offset
= 0;
3508 ret
= btrfs_bin_search(path
->nodes
[0], &found_key
, 0,
3511 ret
= btrfs_del_items(trans
, log
, path
, start_slot
,
3512 path
->slots
[0] - start_slot
+ 1);
3514 * If start slot isn't 0 then we don't need to re-search, we've
3515 * found the last guy with the objectid in this tree.
3517 if (ret
|| start_slot
!= 0)
3519 btrfs_release_path(path
);
3521 btrfs_release_path(path
);
3527 static void fill_inode_item(struct btrfs_trans_handle
*trans
,
3528 struct extent_buffer
*leaf
,
3529 struct btrfs_inode_item
*item
,
3530 struct inode
*inode
, int log_inode_only
,
3533 struct btrfs_map_token token
;
3535 btrfs_init_map_token(&token
);
3537 if (log_inode_only
) {
3538 /* set the generation to zero so the recover code
3539 * can tell the difference between an logging
3540 * just to say 'this inode exists' and a logging
3541 * to say 'update this inode with these values'
3543 btrfs_set_token_inode_generation(leaf
, item
, 0, &token
);
3544 btrfs_set_token_inode_size(leaf
, item
, logged_isize
, &token
);
3546 btrfs_set_token_inode_generation(leaf
, item
,
3547 BTRFS_I(inode
)->generation
,
3549 btrfs_set_token_inode_size(leaf
, item
, inode
->i_size
, &token
);
3552 btrfs_set_token_inode_uid(leaf
, item
, i_uid_read(inode
), &token
);
3553 btrfs_set_token_inode_gid(leaf
, item
, i_gid_read(inode
), &token
);
3554 btrfs_set_token_inode_mode(leaf
, item
, inode
->i_mode
, &token
);
3555 btrfs_set_token_inode_nlink(leaf
, item
, inode
->i_nlink
, &token
);
3557 btrfs_set_token_timespec_sec(leaf
, &item
->atime
,
3558 inode
->i_atime
.tv_sec
, &token
);
3559 btrfs_set_token_timespec_nsec(leaf
, &item
->atime
,
3560 inode
->i_atime
.tv_nsec
, &token
);
3562 btrfs_set_token_timespec_sec(leaf
, &item
->mtime
,
3563 inode
->i_mtime
.tv_sec
, &token
);
3564 btrfs_set_token_timespec_nsec(leaf
, &item
->mtime
,
3565 inode
->i_mtime
.tv_nsec
, &token
);
3567 btrfs_set_token_timespec_sec(leaf
, &item
->ctime
,
3568 inode
->i_ctime
.tv_sec
, &token
);
3569 btrfs_set_token_timespec_nsec(leaf
, &item
->ctime
,
3570 inode
->i_ctime
.tv_nsec
, &token
);
3572 btrfs_set_token_inode_nbytes(leaf
, item
, inode_get_bytes(inode
),
3575 btrfs_set_token_inode_sequence(leaf
, item
, inode
->i_version
, &token
);
3576 btrfs_set_token_inode_transid(leaf
, item
, trans
->transid
, &token
);
3577 btrfs_set_token_inode_rdev(leaf
, item
, inode
->i_rdev
, &token
);
3578 btrfs_set_token_inode_flags(leaf
, item
, BTRFS_I(inode
)->flags
, &token
);
3579 btrfs_set_token_inode_block_group(leaf
, item
, 0, &token
);
3582 static int log_inode_item(struct btrfs_trans_handle
*trans
,
3583 struct btrfs_root
*log
, struct btrfs_path
*path
,
3584 struct inode
*inode
)
3586 struct btrfs_inode_item
*inode_item
;
3589 ret
= btrfs_insert_empty_item(trans
, log
, path
,
3590 &BTRFS_I(inode
)->location
,
3591 sizeof(*inode_item
));
3592 if (ret
&& ret
!= -EEXIST
)
3594 inode_item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
3595 struct btrfs_inode_item
);
3596 fill_inode_item(trans
, path
->nodes
[0], inode_item
, inode
, 0, 0);
3597 btrfs_release_path(path
);
3601 static noinline
int copy_items(struct btrfs_trans_handle
*trans
,
3602 struct inode
*inode
,
3603 struct btrfs_path
*dst_path
,
3604 struct btrfs_path
*src_path
, u64
*last_extent
,
3605 int start_slot
, int nr
, int inode_only
,
3608 unsigned long src_offset
;
3609 unsigned long dst_offset
;
3610 struct btrfs_root
*log
= BTRFS_I(inode
)->root
->log_root
;
3611 struct btrfs_file_extent_item
*extent
;
3612 struct btrfs_inode_item
*inode_item
;
3613 struct extent_buffer
*src
= src_path
->nodes
[0];
3614 struct btrfs_key first_key
, last_key
, key
;
3616 struct btrfs_key
*ins_keys
;
3620 struct list_head ordered_sums
;
3621 int skip_csum
= BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
;
3622 bool has_extents
= false;
3623 bool need_find_last_extent
= true;
3626 INIT_LIST_HEAD(&ordered_sums
);
3628 ins_data
= kmalloc(nr
* sizeof(struct btrfs_key
) +
3629 nr
* sizeof(u32
), GFP_NOFS
);
3633 first_key
.objectid
= (u64
)-1;
3635 ins_sizes
= (u32
*)ins_data
;
3636 ins_keys
= (struct btrfs_key
*)(ins_data
+ nr
* sizeof(u32
));
3638 for (i
= 0; i
< nr
; i
++) {
3639 ins_sizes
[i
] = btrfs_item_size_nr(src
, i
+ start_slot
);
3640 btrfs_item_key_to_cpu(src
, ins_keys
+ i
, i
+ start_slot
);
3642 ret
= btrfs_insert_empty_items(trans
, log
, dst_path
,
3643 ins_keys
, ins_sizes
, nr
);
3649 for (i
= 0; i
< nr
; i
++, dst_path
->slots
[0]++) {
3650 dst_offset
= btrfs_item_ptr_offset(dst_path
->nodes
[0],
3651 dst_path
->slots
[0]);
3653 src_offset
= btrfs_item_ptr_offset(src
, start_slot
+ i
);
3655 if ((i
== (nr
- 1)))
3656 last_key
= ins_keys
[i
];
3658 if (ins_keys
[i
].type
== BTRFS_INODE_ITEM_KEY
) {
3659 inode_item
= btrfs_item_ptr(dst_path
->nodes
[0],
3661 struct btrfs_inode_item
);
3662 fill_inode_item(trans
, dst_path
->nodes
[0], inode_item
,
3663 inode
, inode_only
== LOG_INODE_EXISTS
,
3666 copy_extent_buffer(dst_path
->nodes
[0], src
, dst_offset
,
3667 src_offset
, ins_sizes
[i
]);
3671 * We set need_find_last_extent here in case we know we were
3672 * processing other items and then walk into the first extent in
3673 * the inode. If we don't hit an extent then nothing changes,
3674 * we'll do the last search the next time around.
3676 if (ins_keys
[i
].type
== BTRFS_EXTENT_DATA_KEY
) {
3678 if (first_key
.objectid
== (u64
)-1)
3679 first_key
= ins_keys
[i
];
3681 need_find_last_extent
= false;
3684 /* take a reference on file data extents so that truncates
3685 * or deletes of this inode don't have to relog the inode
3688 if (ins_keys
[i
].type
== BTRFS_EXTENT_DATA_KEY
&&
3691 extent
= btrfs_item_ptr(src
, start_slot
+ i
,
3692 struct btrfs_file_extent_item
);
3694 if (btrfs_file_extent_generation(src
, extent
) < trans
->transid
)
3697 found_type
= btrfs_file_extent_type(src
, extent
);
3698 if (found_type
== BTRFS_FILE_EXTENT_REG
) {
3700 ds
= btrfs_file_extent_disk_bytenr(src
,
3702 /* ds == 0 is a hole */
3706 dl
= btrfs_file_extent_disk_num_bytes(src
,
3708 cs
= btrfs_file_extent_offset(src
, extent
);
3709 cl
= btrfs_file_extent_num_bytes(src
,
3711 if (btrfs_file_extent_compression(src
,
3717 ret
= btrfs_lookup_csums_range(
3718 log
->fs_info
->csum_root
,
3719 ds
+ cs
, ds
+ cs
+ cl
- 1,
3722 btrfs_release_path(dst_path
);
3730 btrfs_mark_buffer_dirty(dst_path
->nodes
[0]);
3731 btrfs_release_path(dst_path
);
3735 * we have to do this after the loop above to avoid changing the
3736 * log tree while trying to change the log tree.
3739 while (!list_empty(&ordered_sums
)) {
3740 struct btrfs_ordered_sum
*sums
= list_entry(ordered_sums
.next
,
3741 struct btrfs_ordered_sum
,
3744 ret
= btrfs_csum_file_blocks(trans
, log
, sums
);
3745 list_del(&sums
->list
);
3752 if (need_find_last_extent
&& *last_extent
== first_key
.offset
) {
3754 * We don't have any leafs between our current one and the one
3755 * we processed before that can have file extent items for our
3756 * inode (and have a generation number smaller than our current
3759 need_find_last_extent
= false;
3763 * Because we use btrfs_search_forward we could skip leaves that were
3764 * not modified and then assume *last_extent is valid when it really
3765 * isn't. So back up to the previous leaf and read the end of the last
3766 * extent before we go and fill in holes.
3768 if (need_find_last_extent
) {
3771 ret
= btrfs_prev_leaf(BTRFS_I(inode
)->root
, src_path
);
3776 if (src_path
->slots
[0])
3777 src_path
->slots
[0]--;
3778 src
= src_path
->nodes
[0];
3779 btrfs_item_key_to_cpu(src
, &key
, src_path
->slots
[0]);
3780 if (key
.objectid
!= btrfs_ino(inode
) ||
3781 key
.type
!= BTRFS_EXTENT_DATA_KEY
)
3783 extent
= btrfs_item_ptr(src
, src_path
->slots
[0],
3784 struct btrfs_file_extent_item
);
3785 if (btrfs_file_extent_type(src
, extent
) ==
3786 BTRFS_FILE_EXTENT_INLINE
) {
3787 len
= btrfs_file_extent_inline_len(src
,
3790 *last_extent
= ALIGN(key
.offset
+ len
,
3793 len
= btrfs_file_extent_num_bytes(src
, extent
);
3794 *last_extent
= key
.offset
+ len
;
3798 /* So we did prev_leaf, now we need to move to the next leaf, but a few
3799 * things could have happened
3801 * 1) A merge could have happened, so we could currently be on a leaf
3802 * that holds what we were copying in the first place.
3803 * 2) A split could have happened, and now not all of the items we want
3804 * are on the same leaf.
3806 * So we need to adjust how we search for holes, we need to drop the
3807 * path and re-search for the first extent key we found, and then walk
3808 * forward until we hit the last one we copied.
3810 if (need_find_last_extent
) {
3811 /* btrfs_prev_leaf could return 1 without releasing the path */
3812 btrfs_release_path(src_path
);
3813 ret
= btrfs_search_slot(NULL
, BTRFS_I(inode
)->root
, &first_key
,
3818 src
= src_path
->nodes
[0];
3819 i
= src_path
->slots
[0];
3825 * Ok so here we need to go through and fill in any holes we may have
3826 * to make sure that holes are punched for those areas in case they had
3827 * extents previously.
3833 if (i
>= btrfs_header_nritems(src_path
->nodes
[0])) {
3834 ret
= btrfs_next_leaf(BTRFS_I(inode
)->root
, src_path
);
3838 src
= src_path
->nodes
[0];
3842 btrfs_item_key_to_cpu(src
, &key
, i
);
3843 if (!btrfs_comp_cpu_keys(&key
, &last_key
))
3845 if (key
.objectid
!= btrfs_ino(inode
) ||
3846 key
.type
!= BTRFS_EXTENT_DATA_KEY
) {
3850 extent
= btrfs_item_ptr(src
, i
, struct btrfs_file_extent_item
);
3851 if (btrfs_file_extent_type(src
, extent
) ==
3852 BTRFS_FILE_EXTENT_INLINE
) {
3853 len
= btrfs_file_extent_inline_len(src
, i
, extent
);
3854 extent_end
= ALIGN(key
.offset
+ len
, log
->sectorsize
);
3856 len
= btrfs_file_extent_num_bytes(src
, extent
);
3857 extent_end
= key
.offset
+ len
;
3861 if (*last_extent
== key
.offset
) {
3862 *last_extent
= extent_end
;
3865 offset
= *last_extent
;
3866 len
= key
.offset
- *last_extent
;
3867 ret
= btrfs_insert_file_extent(trans
, log
, btrfs_ino(inode
),
3868 offset
, 0, 0, len
, 0, len
, 0,
3872 *last_extent
= extent_end
;
3875 * Need to let the callers know we dropped the path so they should
3878 if (!ret
&& need_find_last_extent
)
3883 static int extent_cmp(void *priv
, struct list_head
*a
, struct list_head
*b
)
3885 struct extent_map
*em1
, *em2
;
3887 em1
= list_entry(a
, struct extent_map
, list
);
3888 em2
= list_entry(b
, struct extent_map
, list
);
3890 if (em1
->start
< em2
->start
)
3892 else if (em1
->start
> em2
->start
)
3897 static int wait_ordered_extents(struct btrfs_trans_handle
*trans
,
3898 struct inode
*inode
,
3899 struct btrfs_root
*root
,
3900 const struct extent_map
*em
,
3901 const struct list_head
*logged_list
,
3902 bool *ordered_io_error
)
3904 struct btrfs_ordered_extent
*ordered
;
3905 struct btrfs_root
*log
= root
->log_root
;
3906 u64 mod_start
= em
->mod_start
;
3907 u64 mod_len
= em
->mod_len
;
3908 const bool skip_csum
= BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
;
3911 LIST_HEAD(ordered_sums
);
3914 *ordered_io_error
= false;
3916 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
) ||
3917 em
->block_start
== EXTENT_MAP_HOLE
)
3921 * Wait far any ordered extent that covers our extent map. If it
3922 * finishes without an error, first check and see if our csums are on
3923 * our outstanding ordered extents.
3925 list_for_each_entry(ordered
, logged_list
, log_list
) {
3926 struct btrfs_ordered_sum
*sum
;
3931 if (ordered
->file_offset
+ ordered
->len
<= mod_start
||
3932 mod_start
+ mod_len
<= ordered
->file_offset
)
3935 if (!test_bit(BTRFS_ORDERED_IO_DONE
, &ordered
->flags
) &&
3936 !test_bit(BTRFS_ORDERED_IOERR
, &ordered
->flags
) &&
3937 !test_bit(BTRFS_ORDERED_DIRECT
, &ordered
->flags
)) {
3938 const u64 start
= ordered
->file_offset
;
3939 const u64 end
= ordered
->file_offset
+ ordered
->len
- 1;
3941 WARN_ON(ordered
->inode
!= inode
);
3942 filemap_fdatawrite_range(inode
->i_mapping
, start
, end
);
3945 wait_event(ordered
->wait
,
3946 (test_bit(BTRFS_ORDERED_IO_DONE
, &ordered
->flags
) ||
3947 test_bit(BTRFS_ORDERED_IOERR
, &ordered
->flags
)));
3949 if (test_bit(BTRFS_ORDERED_IOERR
, &ordered
->flags
)) {
3951 * Clear the AS_EIO/AS_ENOSPC flags from the inode's
3952 * i_mapping flags, so that the next fsync won't get
3953 * an outdated io error too.
3955 filemap_check_errors(inode
->i_mapping
);
3956 *ordered_io_error
= true;
3960 * We are going to copy all the csums on this ordered extent, so
3961 * go ahead and adjust mod_start and mod_len in case this
3962 * ordered extent has already been logged.
3964 if (ordered
->file_offset
> mod_start
) {
3965 if (ordered
->file_offset
+ ordered
->len
>=
3966 mod_start
+ mod_len
)
3967 mod_len
= ordered
->file_offset
- mod_start
;
3969 * If we have this case
3971 * |--------- logged extent ---------|
3972 * |----- ordered extent ----|
3974 * Just don't mess with mod_start and mod_len, we'll
3975 * just end up logging more csums than we need and it
3979 if (ordered
->file_offset
+ ordered
->len
<
3980 mod_start
+ mod_len
) {
3981 mod_len
= (mod_start
+ mod_len
) -
3982 (ordered
->file_offset
+ ordered
->len
);
3983 mod_start
= ordered
->file_offset
+
3994 * To keep us from looping for the above case of an ordered
3995 * extent that falls inside of the logged extent.
3997 if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM
,
4001 list_for_each_entry(sum
, &ordered
->list
, list
) {
4002 ret
= btrfs_csum_file_blocks(trans
, log
, sum
);
4008 if (*ordered_io_error
|| !mod_len
|| ret
|| skip_csum
)
4011 if (em
->compress_type
) {
4013 csum_len
= max(em
->block_len
, em
->orig_block_len
);
4015 csum_offset
= mod_start
- em
->start
;
4019 /* block start is already adjusted for the file extent offset. */
4020 ret
= btrfs_lookup_csums_range(log
->fs_info
->csum_root
,
4021 em
->block_start
+ csum_offset
,
4022 em
->block_start
+ csum_offset
+
4023 csum_len
- 1, &ordered_sums
, 0);
4027 while (!list_empty(&ordered_sums
)) {
4028 struct btrfs_ordered_sum
*sums
= list_entry(ordered_sums
.next
,
4029 struct btrfs_ordered_sum
,
4032 ret
= btrfs_csum_file_blocks(trans
, log
, sums
);
4033 list_del(&sums
->list
);
4040 static int log_one_extent(struct btrfs_trans_handle
*trans
,
4041 struct inode
*inode
, struct btrfs_root
*root
,
4042 const struct extent_map
*em
,
4043 struct btrfs_path
*path
,
4044 const struct list_head
*logged_list
,
4045 struct btrfs_log_ctx
*ctx
)
4047 struct btrfs_root
*log
= root
->log_root
;
4048 struct btrfs_file_extent_item
*fi
;
4049 struct extent_buffer
*leaf
;
4050 struct btrfs_map_token token
;
4051 struct btrfs_key key
;
4052 u64 extent_offset
= em
->start
- em
->orig_start
;
4055 int extent_inserted
= 0;
4056 bool ordered_io_err
= false;
4058 ret
= wait_ordered_extents(trans
, inode
, root
, em
, logged_list
,
4063 if (ordered_io_err
) {
4068 btrfs_init_map_token(&token
);
4070 ret
= __btrfs_drop_extents(trans
, log
, inode
, path
, em
->start
,
4071 em
->start
+ em
->len
, NULL
, 0, 1,
4072 sizeof(*fi
), &extent_inserted
);
4076 if (!extent_inserted
) {
4077 key
.objectid
= btrfs_ino(inode
);
4078 key
.type
= BTRFS_EXTENT_DATA_KEY
;
4079 key
.offset
= em
->start
;
4081 ret
= btrfs_insert_empty_item(trans
, log
, path
, &key
,
4086 leaf
= path
->nodes
[0];
4087 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
4088 struct btrfs_file_extent_item
);
4090 btrfs_set_token_file_extent_generation(leaf
, fi
, trans
->transid
,
4092 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
4093 btrfs_set_token_file_extent_type(leaf
, fi
,
4094 BTRFS_FILE_EXTENT_PREALLOC
,
4097 btrfs_set_token_file_extent_type(leaf
, fi
,
4098 BTRFS_FILE_EXTENT_REG
,
4101 block_len
= max(em
->block_len
, em
->orig_block_len
);
4102 if (em
->compress_type
!= BTRFS_COMPRESS_NONE
) {
4103 btrfs_set_token_file_extent_disk_bytenr(leaf
, fi
,
4106 btrfs_set_token_file_extent_disk_num_bytes(leaf
, fi
, block_len
,
4108 } else if (em
->block_start
< EXTENT_MAP_LAST_BYTE
) {
4109 btrfs_set_token_file_extent_disk_bytenr(leaf
, fi
,
4111 extent_offset
, &token
);
4112 btrfs_set_token_file_extent_disk_num_bytes(leaf
, fi
, block_len
,
4115 btrfs_set_token_file_extent_disk_bytenr(leaf
, fi
, 0, &token
);
4116 btrfs_set_token_file_extent_disk_num_bytes(leaf
, fi
, 0,
4120 btrfs_set_token_file_extent_offset(leaf
, fi
, extent_offset
, &token
);
4121 btrfs_set_token_file_extent_num_bytes(leaf
, fi
, em
->len
, &token
);
4122 btrfs_set_token_file_extent_ram_bytes(leaf
, fi
, em
->ram_bytes
, &token
);
4123 btrfs_set_token_file_extent_compression(leaf
, fi
, em
->compress_type
,
4125 btrfs_set_token_file_extent_encryption(leaf
, fi
, 0, &token
);
4126 btrfs_set_token_file_extent_other_encoding(leaf
, fi
, 0, &token
);
4127 btrfs_mark_buffer_dirty(leaf
);
4129 btrfs_release_path(path
);
4134 static int btrfs_log_changed_extents(struct btrfs_trans_handle
*trans
,
4135 struct btrfs_root
*root
,
4136 struct inode
*inode
,
4137 struct btrfs_path
*path
,
4138 struct list_head
*logged_list
,
4139 struct btrfs_log_ctx
*ctx
,
4143 struct extent_map
*em
, *n
;
4144 struct list_head extents
;
4145 struct extent_map_tree
*tree
= &BTRFS_I(inode
)->extent_tree
;
4150 INIT_LIST_HEAD(&extents
);
4152 down_write(&BTRFS_I(inode
)->dio_sem
);
4153 write_lock(&tree
->lock
);
4154 test_gen
= root
->fs_info
->last_trans_committed
;
4156 list_for_each_entry_safe(em
, n
, &tree
->modified_extents
, list
) {
4157 list_del_init(&em
->list
);
4160 * Just an arbitrary number, this can be really CPU intensive
4161 * once we start getting a lot of extents, and really once we
4162 * have a bunch of extents we just want to commit since it will
4165 if (++num
> 32768) {
4166 list_del_init(&tree
->modified_extents
);
4171 if (em
->generation
<= test_gen
)
4173 /* Need a ref to keep it from getting evicted from cache */
4174 atomic_inc(&em
->refs
);
4175 set_bit(EXTENT_FLAG_LOGGING
, &em
->flags
);
4176 list_add_tail(&em
->list
, &extents
);
4180 list_sort(NULL
, &extents
, extent_cmp
);
4181 btrfs_get_logged_extents(inode
, logged_list
, start
, end
);
4183 * Some ordered extents started by fsync might have completed
4184 * before we could collect them into the list logged_list, which
4185 * means they're gone, not in our logged_list nor in the inode's
4186 * ordered tree. We want the application/user space to know an
4187 * error happened while attempting to persist file data so that
4188 * it can take proper action. If such error happened, we leave
4189 * without writing to the log tree and the fsync must report the
4190 * file data write error and not commit the current transaction.
4192 ret
= filemap_check_errors(inode
->i_mapping
);
4196 while (!list_empty(&extents
)) {
4197 em
= list_entry(extents
.next
, struct extent_map
, list
);
4199 list_del_init(&em
->list
);
4202 * If we had an error we just need to delete everybody from our
4206 clear_em_logging(tree
, em
);
4207 free_extent_map(em
);
4211 write_unlock(&tree
->lock
);
4213 ret
= log_one_extent(trans
, inode
, root
, em
, path
, logged_list
,
4215 write_lock(&tree
->lock
);
4216 clear_em_logging(tree
, em
);
4217 free_extent_map(em
);
4219 WARN_ON(!list_empty(&extents
));
4220 write_unlock(&tree
->lock
);
4221 up_write(&BTRFS_I(inode
)->dio_sem
);
4223 btrfs_release_path(path
);
4227 static int logged_inode_size(struct btrfs_root
*log
, struct inode
*inode
,
4228 struct btrfs_path
*path
, u64
*size_ret
)
4230 struct btrfs_key key
;
4233 key
.objectid
= btrfs_ino(inode
);
4234 key
.type
= BTRFS_INODE_ITEM_KEY
;
4237 ret
= btrfs_search_slot(NULL
, log
, &key
, path
, 0, 0);
4240 } else if (ret
> 0) {
4243 struct btrfs_inode_item
*item
;
4245 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
4246 struct btrfs_inode_item
);
4247 *size_ret
= btrfs_inode_size(path
->nodes
[0], item
);
4250 btrfs_release_path(path
);
4255 * At the moment we always log all xattrs. This is to figure out at log replay
4256 * time which xattrs must have their deletion replayed. If a xattr is missing
4257 * in the log tree and exists in the fs/subvol tree, we delete it. This is
4258 * because if a xattr is deleted, the inode is fsynced and a power failure
4259 * happens, causing the log to be replayed the next time the fs is mounted,
4260 * we want the xattr to not exist anymore (same behaviour as other filesystems
4261 * with a journal, ext3/4, xfs, f2fs, etc).
4263 static int btrfs_log_all_xattrs(struct btrfs_trans_handle
*trans
,
4264 struct btrfs_root
*root
,
4265 struct inode
*inode
,
4266 struct btrfs_path
*path
,
4267 struct btrfs_path
*dst_path
)
4270 struct btrfs_key key
;
4271 const u64 ino
= btrfs_ino(inode
);
4276 key
.type
= BTRFS_XATTR_ITEM_KEY
;
4279 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
4284 int slot
= path
->slots
[0];
4285 struct extent_buffer
*leaf
= path
->nodes
[0];
4286 int nritems
= btrfs_header_nritems(leaf
);
4288 if (slot
>= nritems
) {
4290 u64 last_extent
= 0;
4292 ret
= copy_items(trans
, inode
, dst_path
, path
,
4293 &last_extent
, start_slot
,
4295 /* can't be 1, extent items aren't processed */
4301 ret
= btrfs_next_leaf(root
, path
);
4309 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
4310 if (key
.objectid
!= ino
|| key
.type
!= BTRFS_XATTR_ITEM_KEY
)
4320 u64 last_extent
= 0;
4322 ret
= copy_items(trans
, inode
, dst_path
, path
,
4323 &last_extent
, start_slot
,
4325 /* can't be 1, extent items aren't processed */
4335 * If the no holes feature is enabled we need to make sure any hole between the
4336 * last extent and the i_size of our inode is explicitly marked in the log. This
4337 * is to make sure that doing something like:
4339 * 1) create file with 128Kb of data
4340 * 2) truncate file to 64Kb
4341 * 3) truncate file to 256Kb
4343 * 5) <crash/power failure>
4344 * 6) mount fs and trigger log replay
4346 * Will give us a file with a size of 256Kb, the first 64Kb of data match what
4347 * the file had in its first 64Kb of data at step 1 and the last 192Kb of the
4348 * file correspond to a hole. The presence of explicit holes in a log tree is
4349 * what guarantees that log replay will remove/adjust file extent items in the
4352 * Here we do not need to care about holes between extents, that is already done
4353 * by copy_items(). We also only need to do this in the full sync path, where we
4354 * lookup for extents from the fs/subvol tree only. In the fast path case, we
4355 * lookup the list of modified extent maps and if any represents a hole, we
4356 * insert a corresponding extent representing a hole in the log tree.
4358 static int btrfs_log_trailing_hole(struct btrfs_trans_handle
*trans
,
4359 struct btrfs_root
*root
,
4360 struct inode
*inode
,
4361 struct btrfs_path
*path
)
4364 struct btrfs_key key
;
4367 struct extent_buffer
*leaf
;
4368 struct btrfs_root
*log
= root
->log_root
;
4369 const u64 ino
= btrfs_ino(inode
);
4370 const u64 i_size
= i_size_read(inode
);
4372 if (!btrfs_fs_incompat(root
->fs_info
, NO_HOLES
))
4376 key
.type
= BTRFS_EXTENT_DATA_KEY
;
4377 key
.offset
= (u64
)-1;
4379 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
4384 ASSERT(path
->slots
[0] > 0);
4386 leaf
= path
->nodes
[0];
4387 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
4389 if (key
.objectid
!= ino
|| key
.type
!= BTRFS_EXTENT_DATA_KEY
) {
4390 /* inode does not have any extents */
4394 struct btrfs_file_extent_item
*extent
;
4398 * If there's an extent beyond i_size, an explicit hole was
4399 * already inserted by copy_items().
4401 if (key
.offset
>= i_size
)
4404 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
4405 struct btrfs_file_extent_item
);
4407 if (btrfs_file_extent_type(leaf
, extent
) ==
4408 BTRFS_FILE_EXTENT_INLINE
) {
4409 len
= btrfs_file_extent_inline_len(leaf
,
4412 ASSERT(len
== i_size
);
4416 len
= btrfs_file_extent_num_bytes(leaf
, extent
);
4417 /* Last extent goes beyond i_size, no need to log a hole. */
4418 if (key
.offset
+ len
> i_size
)
4420 hole_start
= key
.offset
+ len
;
4421 hole_size
= i_size
- hole_start
;
4423 btrfs_release_path(path
);
4425 /* Last extent ends at i_size. */
4429 hole_size
= ALIGN(hole_size
, root
->sectorsize
);
4430 ret
= btrfs_insert_file_extent(trans
, log
, ino
, hole_start
, 0, 0,
4431 hole_size
, 0, hole_size
, 0, 0, 0);
4436 * When we are logging a new inode X, check if it doesn't have a reference that
4437 * matches the reference from some other inode Y created in a past transaction
4438 * and that was renamed in the current transaction. If we don't do this, then at
4439 * log replay time we can lose inode Y (and all its files if it's a directory):
4442 * echo "hello world" > /mnt/x/foobar
4445 * mkdir /mnt/x # or touch /mnt/x
4446 * xfs_io -c fsync /mnt/x
4448 * mount fs, trigger log replay
4450 * After the log replay procedure, we would lose the first directory and all its
4451 * files (file foobar).
4452 * For the case where inode Y is not a directory we simply end up losing it:
4454 * echo "123" > /mnt/foo
4456 * mv /mnt/foo /mnt/bar
4457 * echo "abc" > /mnt/foo
4458 * xfs_io -c fsync /mnt/foo
4461 * We also need this for cases where a snapshot entry is replaced by some other
4462 * entry (file or directory) otherwise we end up with an unreplayable log due to
4463 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
4464 * if it were a regular entry:
4467 * btrfs subvolume snapshot /mnt /mnt/x/snap
4468 * btrfs subvolume delete /mnt/x/snap
4471 * fsync /mnt/x or fsync some new file inside it
4474 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
4475 * the same transaction.
4477 static int btrfs_check_ref_name_override(struct extent_buffer
*eb
,
4479 const struct btrfs_key
*key
,
4480 struct inode
*inode
,
4484 struct btrfs_path
*search_path
;
4487 u32 item_size
= btrfs_item_size_nr(eb
, slot
);
4489 unsigned long ptr
= btrfs_item_ptr_offset(eb
, slot
);
4491 search_path
= btrfs_alloc_path();
4494 search_path
->search_commit_root
= 1;
4495 search_path
->skip_locking
= 1;
4497 while (cur_offset
< item_size
) {
4501 unsigned long name_ptr
;
4502 struct btrfs_dir_item
*di
;
4504 if (key
->type
== BTRFS_INODE_REF_KEY
) {
4505 struct btrfs_inode_ref
*iref
;
4507 iref
= (struct btrfs_inode_ref
*)(ptr
+ cur_offset
);
4508 parent
= key
->offset
;
4509 this_name_len
= btrfs_inode_ref_name_len(eb
, iref
);
4510 name_ptr
= (unsigned long)(iref
+ 1);
4511 this_len
= sizeof(*iref
) + this_name_len
;
4513 struct btrfs_inode_extref
*extref
;
4515 extref
= (struct btrfs_inode_extref
*)(ptr
+
4517 parent
= btrfs_inode_extref_parent(eb
, extref
);
4518 this_name_len
= btrfs_inode_extref_name_len(eb
, extref
);
4519 name_ptr
= (unsigned long)&extref
->name
;
4520 this_len
= sizeof(*extref
) + this_name_len
;
4523 if (this_name_len
> name_len
) {
4526 new_name
= krealloc(name
, this_name_len
, GFP_NOFS
);
4531 name_len
= this_name_len
;
4535 read_extent_buffer(eb
, name
, name_ptr
, this_name_len
);
4536 di
= btrfs_lookup_dir_item(NULL
, BTRFS_I(inode
)->root
,
4537 search_path
, parent
,
4538 name
, this_name_len
, 0);
4539 if (di
&& !IS_ERR(di
)) {
4540 struct btrfs_key di_key
;
4542 btrfs_dir_item_key_to_cpu(search_path
->nodes
[0],
4544 if (di_key
.type
== BTRFS_INODE_ITEM_KEY
) {
4546 *other_ino
= di_key
.objectid
;
4551 } else if (IS_ERR(di
)) {
4555 btrfs_release_path(search_path
);
4557 cur_offset
+= this_len
;
4561 btrfs_free_path(search_path
);
4566 /* log a single inode in the tree log.
4567 * At least one parent directory for this inode must exist in the tree
4568 * or be logged already.
4570 * Any items from this inode changed by the current transaction are copied
4571 * to the log tree. An extra reference is taken on any extents in this
4572 * file, allowing us to avoid a whole pile of corner cases around logging
4573 * blocks that have been removed from the tree.
4575 * See LOG_INODE_ALL and related defines for a description of what inode_only
4578 * This handles both files and directories.
4580 static int btrfs_log_inode(struct btrfs_trans_handle
*trans
,
4581 struct btrfs_root
*root
, struct inode
*inode
,
4585 struct btrfs_log_ctx
*ctx
)
4587 struct btrfs_path
*path
;
4588 struct btrfs_path
*dst_path
;
4589 struct btrfs_key min_key
;
4590 struct btrfs_key max_key
;
4591 struct btrfs_root
*log
= root
->log_root
;
4592 struct extent_buffer
*src
= NULL
;
4593 LIST_HEAD(logged_list
);
4594 u64 last_extent
= 0;
4598 int ins_start_slot
= 0;
4600 bool fast_search
= false;
4601 u64 ino
= btrfs_ino(inode
);
4602 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
4603 u64 logged_isize
= 0;
4604 bool need_log_inode_item
= true;
4606 path
= btrfs_alloc_path();
4609 dst_path
= btrfs_alloc_path();
4611 btrfs_free_path(path
);
4615 min_key
.objectid
= ino
;
4616 min_key
.type
= BTRFS_INODE_ITEM_KEY
;
4619 max_key
.objectid
= ino
;
4622 /* today the code can only do partial logging of directories */
4623 if (S_ISDIR(inode
->i_mode
) ||
4624 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
4625 &BTRFS_I(inode
)->runtime_flags
) &&
4626 inode_only
== LOG_INODE_EXISTS
))
4627 max_key
.type
= BTRFS_XATTR_ITEM_KEY
;
4629 max_key
.type
= (u8
)-1;
4630 max_key
.offset
= (u64
)-1;
4633 * Only run delayed items if we are a dir or a new file.
4634 * Otherwise commit the delayed inode only, which is needed in
4635 * order for the log replay code to mark inodes for link count
4636 * fixup (create temporary BTRFS_TREE_LOG_FIXUP_OBJECTID items).
4638 if (S_ISDIR(inode
->i_mode
) ||
4639 BTRFS_I(inode
)->generation
> root
->fs_info
->last_trans_committed
)
4640 ret
= btrfs_commit_inode_delayed_items(trans
, inode
);
4642 ret
= btrfs_commit_inode_delayed_inode(inode
);
4645 btrfs_free_path(path
);
4646 btrfs_free_path(dst_path
);
4650 mutex_lock(&BTRFS_I(inode
)->log_mutex
);
4653 * a brute force approach to making sure we get the most uptodate
4654 * copies of everything.
4656 if (S_ISDIR(inode
->i_mode
)) {
4657 int max_key_type
= BTRFS_DIR_LOG_INDEX_KEY
;
4659 if (inode_only
== LOG_INODE_EXISTS
)
4660 max_key_type
= BTRFS_XATTR_ITEM_KEY
;
4661 ret
= drop_objectid_items(trans
, log
, path
, ino
, max_key_type
);
4663 if (inode_only
== LOG_INODE_EXISTS
) {
4665 * Make sure the new inode item we write to the log has
4666 * the same isize as the current one (if it exists).
4667 * This is necessary to prevent data loss after log
4668 * replay, and also to prevent doing a wrong expanding
4669 * truncate - for e.g. create file, write 4K into offset
4670 * 0, fsync, write 4K into offset 4096, add hard link,
4671 * fsync some other file (to sync log), power fail - if
4672 * we use the inode's current i_size, after log replay
4673 * we get a 8Kb file, with the last 4Kb extent as a hole
4674 * (zeroes), as if an expanding truncate happened,
4675 * instead of getting a file of 4Kb only.
4677 err
= logged_inode_size(log
, inode
, path
,
4682 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
4683 &BTRFS_I(inode
)->runtime_flags
)) {
4684 if (inode_only
== LOG_INODE_EXISTS
) {
4685 max_key
.type
= BTRFS_XATTR_ITEM_KEY
;
4686 ret
= drop_objectid_items(trans
, log
, path
, ino
,
4689 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
4690 &BTRFS_I(inode
)->runtime_flags
);
4691 clear_bit(BTRFS_INODE_COPY_EVERYTHING
,
4692 &BTRFS_I(inode
)->runtime_flags
);
4694 ret
= btrfs_truncate_inode_items(trans
,
4700 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING
,
4701 &BTRFS_I(inode
)->runtime_flags
) ||
4702 inode_only
== LOG_INODE_EXISTS
) {
4703 if (inode_only
== LOG_INODE_ALL
)
4705 max_key
.type
= BTRFS_XATTR_ITEM_KEY
;
4706 ret
= drop_objectid_items(trans
, log
, path
, ino
,
4709 if (inode_only
== LOG_INODE_ALL
)
4722 ret
= btrfs_search_forward(root
, &min_key
,
4723 path
, trans
->transid
);
4731 /* note, ins_nr might be > 0 here, cleanup outside the loop */
4732 if (min_key
.objectid
!= ino
)
4734 if (min_key
.type
> max_key
.type
)
4737 if (min_key
.type
== BTRFS_INODE_ITEM_KEY
)
4738 need_log_inode_item
= false;
4740 if ((min_key
.type
== BTRFS_INODE_REF_KEY
||
4741 min_key
.type
== BTRFS_INODE_EXTREF_KEY
) &&
4742 BTRFS_I(inode
)->generation
== trans
->transid
) {
4745 ret
= btrfs_check_ref_name_override(path
->nodes
[0],
4752 } else if (ret
> 0 && ctx
&&
4753 other_ino
!= btrfs_ino(ctx
->inode
)) {
4754 struct btrfs_key inode_key
;
4755 struct inode
*other_inode
;
4761 ins_start_slot
= path
->slots
[0];
4763 ret
= copy_items(trans
, inode
, dst_path
, path
,
4764 &last_extent
, ins_start_slot
,
4772 btrfs_release_path(path
);
4773 inode_key
.objectid
= other_ino
;
4774 inode_key
.type
= BTRFS_INODE_ITEM_KEY
;
4775 inode_key
.offset
= 0;
4776 other_inode
= btrfs_iget(root
->fs_info
->sb
,
4780 * If the other inode that had a conflicting dir
4781 * entry was deleted in the current transaction,
4782 * we don't need to do more work nor fallback to
4783 * a transaction commit.
4785 if (IS_ERR(other_inode
) &&
4786 PTR_ERR(other_inode
) == -ENOENT
) {
4788 } else if (IS_ERR(other_inode
)) {
4789 err
= PTR_ERR(other_inode
);
4793 * We are safe logging the other inode without
4794 * acquiring its i_mutex as long as we log with
4795 * the LOG_INODE_EXISTS mode. We're safe against
4796 * concurrent renames of the other inode as well
4797 * because during a rename we pin the log and
4798 * update the log with the new name before we
4801 err
= btrfs_log_inode(trans
, root
, other_inode
,
4812 /* Skip xattrs, we log them later with btrfs_log_all_xattrs() */
4813 if (min_key
.type
== BTRFS_XATTR_ITEM_KEY
) {
4816 ret
= copy_items(trans
, inode
, dst_path
, path
,
4817 &last_extent
, ins_start_slot
,
4818 ins_nr
, inode_only
, logged_isize
);
4825 btrfs_release_path(path
);
4831 src
= path
->nodes
[0];
4832 if (ins_nr
&& ins_start_slot
+ ins_nr
== path
->slots
[0]) {
4835 } else if (!ins_nr
) {
4836 ins_start_slot
= path
->slots
[0];
4841 ret
= copy_items(trans
, inode
, dst_path
, path
, &last_extent
,
4842 ins_start_slot
, ins_nr
, inode_only
,
4850 btrfs_release_path(path
);
4854 ins_start_slot
= path
->slots
[0];
4857 nritems
= btrfs_header_nritems(path
->nodes
[0]);
4859 if (path
->slots
[0] < nritems
) {
4860 btrfs_item_key_to_cpu(path
->nodes
[0], &min_key
,
4865 ret
= copy_items(trans
, inode
, dst_path
, path
,
4866 &last_extent
, ins_start_slot
,
4867 ins_nr
, inode_only
, logged_isize
);
4875 btrfs_release_path(path
);
4877 if (min_key
.offset
< (u64
)-1) {
4879 } else if (min_key
.type
< max_key
.type
) {
4887 ret
= copy_items(trans
, inode
, dst_path
, path
, &last_extent
,
4888 ins_start_slot
, ins_nr
, inode_only
,
4898 btrfs_release_path(path
);
4899 btrfs_release_path(dst_path
);
4900 err
= btrfs_log_all_xattrs(trans
, root
, inode
, path
, dst_path
);
4903 if (max_key
.type
>= BTRFS_EXTENT_DATA_KEY
&& !fast_search
) {
4904 btrfs_release_path(path
);
4905 btrfs_release_path(dst_path
);
4906 err
= btrfs_log_trailing_hole(trans
, root
, inode
, path
);
4911 btrfs_release_path(path
);
4912 btrfs_release_path(dst_path
);
4913 if (need_log_inode_item
) {
4914 err
= log_inode_item(trans
, log
, dst_path
, inode
);
4919 ret
= btrfs_log_changed_extents(trans
, root
, inode
, dst_path
,
4920 &logged_list
, ctx
, start
, end
);
4925 } else if (inode_only
== LOG_INODE_ALL
) {
4926 struct extent_map
*em
, *n
;
4928 write_lock(&em_tree
->lock
);
4930 * We can't just remove every em if we're called for a ranged
4931 * fsync - that is, one that doesn't cover the whole possible
4932 * file range (0 to LLONG_MAX). This is because we can have
4933 * em's that fall outside the range we're logging and therefore
4934 * their ordered operations haven't completed yet
4935 * (btrfs_finish_ordered_io() not invoked yet). This means we
4936 * didn't get their respective file extent item in the fs/subvol
4937 * tree yet, and need to let the next fast fsync (one which
4938 * consults the list of modified extent maps) find the em so
4939 * that it logs a matching file extent item and waits for the
4940 * respective ordered operation to complete (if it's still
4943 * Removing every em outside the range we're logging would make
4944 * the next fast fsync not log their matching file extent items,
4945 * therefore making us lose data after a log replay.
4947 list_for_each_entry_safe(em
, n
, &em_tree
->modified_extents
,
4949 const u64 mod_end
= em
->mod_start
+ em
->mod_len
- 1;
4951 if (em
->mod_start
>= start
&& mod_end
<= end
)
4952 list_del_init(&em
->list
);
4954 write_unlock(&em_tree
->lock
);
4957 if (inode_only
== LOG_INODE_ALL
&& S_ISDIR(inode
->i_mode
)) {
4958 ret
= log_directory_changes(trans
, root
, inode
, path
, dst_path
,
4966 spin_lock(&BTRFS_I(inode
)->lock
);
4967 BTRFS_I(inode
)->logged_trans
= trans
->transid
;
4968 BTRFS_I(inode
)->last_log_commit
= BTRFS_I(inode
)->last_sub_trans
;
4969 spin_unlock(&BTRFS_I(inode
)->lock
);
4972 btrfs_put_logged_extents(&logged_list
);
4974 btrfs_submit_logged_extents(&logged_list
, log
);
4975 mutex_unlock(&BTRFS_I(inode
)->log_mutex
);
4977 btrfs_free_path(path
);
4978 btrfs_free_path(dst_path
);
4983 * Check if we must fallback to a transaction commit when logging an inode.
4984 * This must be called after logging the inode and is used only in the context
4985 * when fsyncing an inode requires the need to log some other inode - in which
4986 * case we can't lock the i_mutex of each other inode we need to log as that
4987 * can lead to deadlocks with concurrent fsync against other inodes (as we can
4988 * log inodes up or down in the hierarchy) or rename operations for example. So
4989 * we take the log_mutex of the inode after we have logged it and then check for
4990 * its last_unlink_trans value - this is safe because any task setting
4991 * last_unlink_trans must take the log_mutex and it must do this before it does
4992 * the actual unlink operation, so if we do this check before a concurrent task
4993 * sets last_unlink_trans it means we've logged a consistent version/state of
4994 * all the inode items, otherwise we are not sure and must do a transaction
4995 * commit (the concurrent task might have only updated last_unlink_trans before
4996 * we logged the inode or it might have also done the unlink).
4998 static bool btrfs_must_commit_transaction(struct btrfs_trans_handle
*trans
,
4999 struct inode
*inode
)
5001 struct btrfs_fs_info
*fs_info
= BTRFS_I(inode
)->root
->fs_info
;
5004 mutex_lock(&BTRFS_I(inode
)->log_mutex
);
5005 if (BTRFS_I(inode
)->last_unlink_trans
> fs_info
->last_trans_committed
) {
5007 * Make sure any commits to the log are forced to be full
5010 btrfs_set_log_full_commit(fs_info
, trans
);
5013 mutex_unlock(&BTRFS_I(inode
)->log_mutex
);
5019 * follow the dentry parent pointers up the chain and see if any
5020 * of the directories in it require a full commit before they can
5021 * be logged. Returns zero if nothing special needs to be done or 1 if
5022 * a full commit is required.
5024 static noinline
int check_parent_dirs_for_sync(struct btrfs_trans_handle
*trans
,
5025 struct inode
*inode
,
5026 struct dentry
*parent
,
5027 struct super_block
*sb
,
5031 struct dentry
*old_parent
= NULL
;
5032 struct inode
*orig_inode
= inode
;
5035 * for regular files, if its inode is already on disk, we don't
5036 * have to worry about the parents at all. This is because
5037 * we can use the last_unlink_trans field to record renames
5038 * and other fun in this file.
5040 if (S_ISREG(inode
->i_mode
) &&
5041 BTRFS_I(inode
)->generation
<= last_committed
&&
5042 BTRFS_I(inode
)->last_unlink_trans
<= last_committed
)
5045 if (!S_ISDIR(inode
->i_mode
)) {
5046 if (!parent
|| d_really_is_negative(parent
) || sb
!= parent
->d_sb
)
5048 inode
= d_inode(parent
);
5053 * If we are logging a directory then we start with our inode,
5054 * not our parent's inode, so we need to skip setting the
5055 * logged_trans so that further down in the log code we don't
5056 * think this inode has already been logged.
5058 if (inode
!= orig_inode
)
5059 BTRFS_I(inode
)->logged_trans
= trans
->transid
;
5062 if (btrfs_must_commit_transaction(trans
, inode
)) {
5067 if (!parent
|| d_really_is_negative(parent
) || sb
!= parent
->d_sb
)
5070 if (IS_ROOT(parent
)) {
5071 inode
= d_inode(parent
);
5072 if (btrfs_must_commit_transaction(trans
, inode
))
5077 parent
= dget_parent(parent
);
5079 old_parent
= parent
;
5080 inode
= d_inode(parent
);
5088 struct btrfs_dir_list
{
5090 struct list_head list
;
5094 * Log the inodes of the new dentries of a directory. See log_dir_items() for
5095 * details about the why it is needed.
5096 * This is a recursive operation - if an existing dentry corresponds to a
5097 * directory, that directory's new entries are logged too (same behaviour as
5098 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5099 * the dentries point to we do not lock their i_mutex, otherwise lockdep
5100 * complains about the following circular lock dependency / possible deadlock:
5104 * lock(&type->i_mutex_dir_key#3/2);
5105 * lock(sb_internal#2);
5106 * lock(&type->i_mutex_dir_key#3/2);
5107 * lock(&sb->s_type->i_mutex_key#14);
5109 * Where sb_internal is the lock (a counter that works as a lock) acquired by
5110 * sb_start_intwrite() in btrfs_start_transaction().
5111 * Not locking i_mutex of the inodes is still safe because:
5113 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5114 * that while logging the inode new references (names) are added or removed
5115 * from the inode, leaving the logged inode item with a link count that does
5116 * not match the number of logged inode reference items. This is fine because
5117 * at log replay time we compute the real number of links and correct the
5118 * link count in the inode item (see replay_one_buffer() and
5119 * link_to_fixup_dir());
5121 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5122 * while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
5123 * BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
5124 * has a size that doesn't match the sum of the lengths of all the logged
5125 * names. This does not result in a problem because if a dir_item key is
5126 * logged but its matching dir_index key is not logged, at log replay time we
5127 * don't use it to replay the respective name (see replay_one_name()). On the
5128 * other hand if only the dir_index key ends up being logged, the respective
5129 * name is added to the fs/subvol tree with both the dir_item and dir_index
5130 * keys created (see replay_one_name()).
5131 * The directory's inode item with a wrong i_size is not a problem as well,
5132 * since we don't use it at log replay time to set the i_size in the inode
5133 * item of the fs/subvol tree (see overwrite_item()).
5135 static int log_new_dir_dentries(struct btrfs_trans_handle
*trans
,
5136 struct btrfs_root
*root
,
5137 struct inode
*start_inode
,
5138 struct btrfs_log_ctx
*ctx
)
5140 struct btrfs_root
*log
= root
->log_root
;
5141 struct btrfs_path
*path
;
5142 LIST_HEAD(dir_list
);
5143 struct btrfs_dir_list
*dir_elem
;
5146 path
= btrfs_alloc_path();
5150 dir_elem
= kmalloc(sizeof(*dir_elem
), GFP_NOFS
);
5152 btrfs_free_path(path
);
5155 dir_elem
->ino
= btrfs_ino(start_inode
);
5156 list_add_tail(&dir_elem
->list
, &dir_list
);
5158 while (!list_empty(&dir_list
)) {
5159 struct extent_buffer
*leaf
;
5160 struct btrfs_key min_key
;
5164 dir_elem
= list_first_entry(&dir_list
, struct btrfs_dir_list
,
5167 goto next_dir_inode
;
5169 min_key
.objectid
= dir_elem
->ino
;
5170 min_key
.type
= BTRFS_DIR_ITEM_KEY
;
5173 btrfs_release_path(path
);
5174 ret
= btrfs_search_forward(log
, &min_key
, path
, trans
->transid
);
5176 goto next_dir_inode
;
5177 } else if (ret
> 0) {
5179 goto next_dir_inode
;
5183 leaf
= path
->nodes
[0];
5184 nritems
= btrfs_header_nritems(leaf
);
5185 for (i
= path
->slots
[0]; i
< nritems
; i
++) {
5186 struct btrfs_dir_item
*di
;
5187 struct btrfs_key di_key
;
5188 struct inode
*di_inode
;
5189 struct btrfs_dir_list
*new_dir_elem
;
5190 int log_mode
= LOG_INODE_EXISTS
;
5193 btrfs_item_key_to_cpu(leaf
, &min_key
, i
);
5194 if (min_key
.objectid
!= dir_elem
->ino
||
5195 min_key
.type
!= BTRFS_DIR_ITEM_KEY
)
5196 goto next_dir_inode
;
5198 di
= btrfs_item_ptr(leaf
, i
, struct btrfs_dir_item
);
5199 type
= btrfs_dir_type(leaf
, di
);
5200 if (btrfs_dir_transid(leaf
, di
) < trans
->transid
&&
5201 type
!= BTRFS_FT_DIR
)
5203 btrfs_dir_item_key_to_cpu(leaf
, di
, &di_key
);
5204 if (di_key
.type
== BTRFS_ROOT_ITEM_KEY
)
5207 btrfs_release_path(path
);
5208 di_inode
= btrfs_iget(root
->fs_info
->sb
, &di_key
,
5210 if (IS_ERR(di_inode
)) {
5211 ret
= PTR_ERR(di_inode
);
5212 goto next_dir_inode
;
5215 if (btrfs_inode_in_log(di_inode
, trans
->transid
)) {
5220 ctx
->log_new_dentries
= false;
5221 if (type
== BTRFS_FT_DIR
|| type
== BTRFS_FT_SYMLINK
)
5222 log_mode
= LOG_INODE_ALL
;
5223 ret
= btrfs_log_inode(trans
, root
, di_inode
,
5224 log_mode
, 0, LLONG_MAX
, ctx
);
5226 btrfs_must_commit_transaction(trans
, di_inode
))
5230 goto next_dir_inode
;
5231 if (ctx
->log_new_dentries
) {
5232 new_dir_elem
= kmalloc(sizeof(*new_dir_elem
),
5234 if (!new_dir_elem
) {
5236 goto next_dir_inode
;
5238 new_dir_elem
->ino
= di_key
.objectid
;
5239 list_add_tail(&new_dir_elem
->list
, &dir_list
);
5244 ret
= btrfs_next_leaf(log
, path
);
5246 goto next_dir_inode
;
5247 } else if (ret
> 0) {
5249 goto next_dir_inode
;
5253 if (min_key
.offset
< (u64
)-1) {
5258 list_del(&dir_elem
->list
);
5262 btrfs_free_path(path
);
5266 static int btrfs_log_all_parents(struct btrfs_trans_handle
*trans
,
5267 struct inode
*inode
,
5268 struct btrfs_log_ctx
*ctx
)
5271 struct btrfs_path
*path
;
5272 struct btrfs_key key
;
5273 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5274 const u64 ino
= btrfs_ino(inode
);
5276 path
= btrfs_alloc_path();
5279 path
->skip_locking
= 1;
5280 path
->search_commit_root
= 1;
5283 key
.type
= BTRFS_INODE_REF_KEY
;
5285 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
5290 struct extent_buffer
*leaf
= path
->nodes
[0];
5291 int slot
= path
->slots
[0];
5296 if (slot
>= btrfs_header_nritems(leaf
)) {
5297 ret
= btrfs_next_leaf(root
, path
);
5305 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
5306 /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
5307 if (key
.objectid
!= ino
|| key
.type
> BTRFS_INODE_EXTREF_KEY
)
5310 item_size
= btrfs_item_size_nr(leaf
, slot
);
5311 ptr
= btrfs_item_ptr_offset(leaf
, slot
);
5312 while (cur_offset
< item_size
) {
5313 struct btrfs_key inode_key
;
5314 struct inode
*dir_inode
;
5316 inode_key
.type
= BTRFS_INODE_ITEM_KEY
;
5317 inode_key
.offset
= 0;
5319 if (key
.type
== BTRFS_INODE_EXTREF_KEY
) {
5320 struct btrfs_inode_extref
*extref
;
5322 extref
= (struct btrfs_inode_extref
*)
5324 inode_key
.objectid
= btrfs_inode_extref_parent(
5326 cur_offset
+= sizeof(*extref
);
5327 cur_offset
+= btrfs_inode_extref_name_len(leaf
,
5330 inode_key
.objectid
= key
.offset
;
5331 cur_offset
= item_size
;
5334 dir_inode
= btrfs_iget(root
->fs_info
->sb
, &inode_key
,
5336 /* If parent inode was deleted, skip it. */
5337 if (IS_ERR(dir_inode
))
5341 ctx
->log_new_dentries
= false;
5342 ret
= btrfs_log_inode(trans
, root
, dir_inode
,
5343 LOG_INODE_ALL
, 0, LLONG_MAX
, ctx
);
5345 btrfs_must_commit_transaction(trans
, dir_inode
))
5347 if (!ret
&& ctx
&& ctx
->log_new_dentries
)
5348 ret
= log_new_dir_dentries(trans
, root
,
5358 btrfs_free_path(path
);
5363 * helper function around btrfs_log_inode to make sure newly created
5364 * parent directories also end up in the log. A minimal inode and backref
5365 * only logging is done of any parent directories that are older than
5366 * the last committed transaction
5368 static int btrfs_log_inode_parent(struct btrfs_trans_handle
*trans
,
5369 struct btrfs_root
*root
, struct inode
*inode
,
5370 struct dentry
*parent
,
5374 struct btrfs_log_ctx
*ctx
)
5376 int inode_only
= exists_only
? LOG_INODE_EXISTS
: LOG_INODE_ALL
;
5377 struct super_block
*sb
;
5378 struct dentry
*old_parent
= NULL
;
5380 u64 last_committed
= root
->fs_info
->last_trans_committed
;
5381 bool log_dentries
= false;
5382 struct inode
*orig_inode
= inode
;
5386 if (btrfs_test_opt(root
->fs_info
, NOTREELOG
)) {
5392 * The prev transaction commit doesn't complete, we need do
5393 * full commit by ourselves.
5395 if (root
->fs_info
->last_trans_log_full_commit
>
5396 root
->fs_info
->last_trans_committed
) {
5401 if (root
!= BTRFS_I(inode
)->root
||
5402 btrfs_root_refs(&root
->root_item
) == 0) {
5407 ret
= check_parent_dirs_for_sync(trans
, inode
, parent
,
5408 sb
, last_committed
);
5412 if (btrfs_inode_in_log(inode
, trans
->transid
)) {
5413 ret
= BTRFS_NO_LOG_SYNC
;
5417 ret
= start_log_trans(trans
, root
, ctx
);
5421 ret
= btrfs_log_inode(trans
, root
, inode
, inode_only
, start
, end
, ctx
);
5426 * for regular files, if its inode is already on disk, we don't
5427 * have to worry about the parents at all. This is because
5428 * we can use the last_unlink_trans field to record renames
5429 * and other fun in this file.
5431 if (S_ISREG(inode
->i_mode
) &&
5432 BTRFS_I(inode
)->generation
<= last_committed
&&
5433 BTRFS_I(inode
)->last_unlink_trans
<= last_committed
) {
5438 if (S_ISDIR(inode
->i_mode
) && ctx
&& ctx
->log_new_dentries
)
5439 log_dentries
= true;
5442 * On unlink we must make sure all our current and old parent directory
5443 * inodes are fully logged. This is to prevent leaving dangling
5444 * directory index entries in directories that were our parents but are
5445 * not anymore. Not doing this results in old parent directory being
5446 * impossible to delete after log replay (rmdir will always fail with
5447 * error -ENOTEMPTY).
5453 * ln testdir/foo testdir/bar
5455 * unlink testdir/bar
5456 * xfs_io -c fsync testdir/foo
5458 * mount fs, triggers log replay
5460 * If we don't log the parent directory (testdir), after log replay the
5461 * directory still has an entry pointing to the file inode using the bar
5462 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
5463 * the file inode has a link count of 1.
5469 * ln foo testdir/foo2
5470 * ln foo testdir/foo3
5472 * unlink testdir/foo3
5473 * xfs_io -c fsync foo
5475 * mount fs, triggers log replay
5477 * Similar as the first example, after log replay the parent directory
5478 * testdir still has an entry pointing to the inode file with name foo3
5479 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
5480 * and has a link count of 2.
5482 if (BTRFS_I(inode
)->last_unlink_trans
> last_committed
) {
5483 ret
= btrfs_log_all_parents(trans
, orig_inode
, ctx
);
5489 if (!parent
|| d_really_is_negative(parent
) || sb
!= parent
->d_sb
)
5492 inode
= d_inode(parent
);
5493 if (root
!= BTRFS_I(inode
)->root
)
5496 if (BTRFS_I(inode
)->generation
> last_committed
) {
5497 ret
= btrfs_log_inode(trans
, root
, inode
,
5503 if (IS_ROOT(parent
))
5506 parent
= dget_parent(parent
);
5508 old_parent
= parent
;
5511 ret
= log_new_dir_dentries(trans
, root
, orig_inode
, ctx
);
5517 btrfs_set_log_full_commit(root
->fs_info
, trans
);
5522 btrfs_remove_log_ctx(root
, ctx
);
5523 btrfs_end_log_trans(root
);
5529 * it is not safe to log dentry if the chunk root has added new
5530 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
5531 * If this returns 1, you must commit the transaction to safely get your
5534 int btrfs_log_dentry_safe(struct btrfs_trans_handle
*trans
,
5535 struct btrfs_root
*root
, struct dentry
*dentry
,
5538 struct btrfs_log_ctx
*ctx
)
5540 struct dentry
*parent
= dget_parent(dentry
);
5543 ret
= btrfs_log_inode_parent(trans
, root
, d_inode(dentry
), parent
,
5544 start
, end
, 0, ctx
);
5551 * should be called during mount to recover any replay any log trees
5554 int btrfs_recover_log_trees(struct btrfs_root
*log_root_tree
)
5557 struct btrfs_path
*path
;
5558 struct btrfs_trans_handle
*trans
;
5559 struct btrfs_key key
;
5560 struct btrfs_key found_key
;
5561 struct btrfs_key tmp_key
;
5562 struct btrfs_root
*log
;
5563 struct btrfs_fs_info
*fs_info
= log_root_tree
->fs_info
;
5564 struct walk_control wc
= {
5565 .process_func
= process_one_buffer
,
5569 path
= btrfs_alloc_path();
5573 set_bit(BTRFS_FS_LOG_RECOVERING
, &fs_info
->flags
);
5575 trans
= btrfs_start_transaction(fs_info
->tree_root
, 0);
5576 if (IS_ERR(trans
)) {
5577 ret
= PTR_ERR(trans
);
5584 ret
= walk_log_tree(trans
, log_root_tree
, &wc
);
5586 btrfs_handle_fs_error(fs_info
, ret
,
5587 "Failed to pin buffers while recovering log root tree.");
5592 key
.objectid
= BTRFS_TREE_LOG_OBJECTID
;
5593 key
.offset
= (u64
)-1;
5594 key
.type
= BTRFS_ROOT_ITEM_KEY
;
5597 ret
= btrfs_search_slot(NULL
, log_root_tree
, &key
, path
, 0, 0);
5600 btrfs_handle_fs_error(fs_info
, ret
,
5601 "Couldn't find tree log root.");
5605 if (path
->slots
[0] == 0)
5609 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
5611 btrfs_release_path(path
);
5612 if (found_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
)
5615 log
= btrfs_read_fs_root(log_root_tree
, &found_key
);
5618 btrfs_handle_fs_error(fs_info
, ret
,
5619 "Couldn't read tree log root.");
5623 tmp_key
.objectid
= found_key
.offset
;
5624 tmp_key
.type
= BTRFS_ROOT_ITEM_KEY
;
5625 tmp_key
.offset
= (u64
)-1;
5627 wc
.replay_dest
= btrfs_read_fs_root_no_name(fs_info
, &tmp_key
);
5628 if (IS_ERR(wc
.replay_dest
)) {
5629 ret
= PTR_ERR(wc
.replay_dest
);
5630 free_extent_buffer(log
->node
);
5631 free_extent_buffer(log
->commit_root
);
5633 btrfs_handle_fs_error(fs_info
, ret
,
5634 "Couldn't read target root for tree log recovery.");
5638 wc
.replay_dest
->log_root
= log
;
5639 btrfs_record_root_in_trans(trans
, wc
.replay_dest
);
5640 ret
= walk_log_tree(trans
, log
, &wc
);
5642 if (!ret
&& wc
.stage
== LOG_WALK_REPLAY_ALL
) {
5643 ret
= fixup_inode_link_counts(trans
, wc
.replay_dest
,
5647 key
.offset
= found_key
.offset
- 1;
5648 wc
.replay_dest
->log_root
= NULL
;
5649 free_extent_buffer(log
->node
);
5650 free_extent_buffer(log
->commit_root
);
5656 if (found_key
.offset
== 0)
5659 btrfs_release_path(path
);
5661 /* step one is to pin it all, step two is to replay just inodes */
5664 wc
.process_func
= replay_one_buffer
;
5665 wc
.stage
= LOG_WALK_REPLAY_INODES
;
5668 /* step three is to replay everything */
5669 if (wc
.stage
< LOG_WALK_REPLAY_ALL
) {
5674 btrfs_free_path(path
);
5676 /* step 4: commit the transaction, which also unpins the blocks */
5677 ret
= btrfs_commit_transaction(trans
, fs_info
->tree_root
);
5681 free_extent_buffer(log_root_tree
->node
);
5682 log_root_tree
->log_root
= NULL
;
5683 clear_bit(BTRFS_FS_LOG_RECOVERING
, &fs_info
->flags
);
5684 kfree(log_root_tree
);
5689 btrfs_end_transaction(wc
.trans
, fs_info
->tree_root
);
5690 btrfs_free_path(path
);
5695 * there are some corner cases where we want to force a full
5696 * commit instead of allowing a directory to be logged.
5698 * They revolve around files there were unlinked from the directory, and
5699 * this function updates the parent directory so that a full commit is
5700 * properly done if it is fsync'd later after the unlinks are done.
5702 * Must be called before the unlink operations (updates to the subvolume tree,
5703 * inodes, etc) are done.
5705 void btrfs_record_unlink_dir(struct btrfs_trans_handle
*trans
,
5706 struct inode
*dir
, struct inode
*inode
,
5710 * when we're logging a file, if it hasn't been renamed
5711 * or unlinked, and its inode is fully committed on disk,
5712 * we don't have to worry about walking up the directory chain
5713 * to log its parents.
5715 * So, we use the last_unlink_trans field to put this transid
5716 * into the file. When the file is logged we check it and
5717 * don't log the parents if the file is fully on disk.
5719 mutex_lock(&BTRFS_I(inode
)->log_mutex
);
5720 BTRFS_I(inode
)->last_unlink_trans
= trans
->transid
;
5721 mutex_unlock(&BTRFS_I(inode
)->log_mutex
);
5724 * if this directory was already logged any new
5725 * names for this file/dir will get recorded
5728 if (BTRFS_I(dir
)->logged_trans
== trans
->transid
)
5732 * if the inode we're about to unlink was logged,
5733 * the log will be properly updated for any new names
5735 if (BTRFS_I(inode
)->logged_trans
== trans
->transid
)
5739 * when renaming files across directories, if the directory
5740 * there we're unlinking from gets fsync'd later on, there's
5741 * no way to find the destination directory later and fsync it
5742 * properly. So, we have to be conservative and force commits
5743 * so the new name gets discovered.
5748 /* we can safely do the unlink without any special recording */
5752 mutex_lock(&BTRFS_I(dir
)->log_mutex
);
5753 BTRFS_I(dir
)->last_unlink_trans
= trans
->transid
;
5754 mutex_unlock(&BTRFS_I(dir
)->log_mutex
);
5758 * Make sure that if someone attempts to fsync the parent directory of a deleted
5759 * snapshot, it ends up triggering a transaction commit. This is to guarantee
5760 * that after replaying the log tree of the parent directory's root we will not
5761 * see the snapshot anymore and at log replay time we will not see any log tree
5762 * corresponding to the deleted snapshot's root, which could lead to replaying
5763 * it after replaying the log tree of the parent directory (which would replay
5764 * the snapshot delete operation).
5766 * Must be called before the actual snapshot destroy operation (updates to the
5767 * parent root and tree of tree roots trees, etc) are done.
5769 void btrfs_record_snapshot_destroy(struct btrfs_trans_handle
*trans
,
5772 mutex_lock(&BTRFS_I(dir
)->log_mutex
);
5773 BTRFS_I(dir
)->last_unlink_trans
= trans
->transid
;
5774 mutex_unlock(&BTRFS_I(dir
)->log_mutex
);
5778 * Call this after adding a new name for a file and it will properly
5779 * update the log to reflect the new name.
5781 * It will return zero if all goes well, and it will return 1 if a
5782 * full transaction commit is required.
5784 int btrfs_log_new_name(struct btrfs_trans_handle
*trans
,
5785 struct inode
*inode
, struct inode
*old_dir
,
5786 struct dentry
*parent
)
5788 struct btrfs_root
* root
= BTRFS_I(inode
)->root
;
5791 * this will force the logging code to walk the dentry chain
5794 if (S_ISREG(inode
->i_mode
))
5795 BTRFS_I(inode
)->last_unlink_trans
= trans
->transid
;
5798 * if this inode hasn't been logged and directory we're renaming it
5799 * from hasn't been logged, we don't need to log it
5801 if (BTRFS_I(inode
)->logged_trans
<=
5802 root
->fs_info
->last_trans_committed
&&
5803 (!old_dir
|| BTRFS_I(old_dir
)->logged_trans
<=
5804 root
->fs_info
->last_trans_committed
))
5807 return btrfs_log_inode_parent(trans
, root
, inode
, parent
, 0,
5808 LLONG_MAX
, 1, NULL
);