2 * Performance events core code:
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 * For licensing details see kernel-base/COPYING
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
52 #include <asm/irq_regs.h>
54 typedef int (*remote_function_f
)(void *);
56 struct remote_function_call
{
57 struct task_struct
*p
;
58 remote_function_f func
;
63 static void remote_function(void *data
)
65 struct remote_function_call
*tfc
= data
;
66 struct task_struct
*p
= tfc
->p
;
70 if (task_cpu(p
) != smp_processor_id())
74 * Now that we're on right CPU with IRQs disabled, we can test
75 * if we hit the right task without races.
78 tfc
->ret
= -ESRCH
; /* No such (running) process */
83 tfc
->ret
= tfc
->func(tfc
->info
);
87 * task_function_call - call a function on the cpu on which a task runs
88 * @p: the task to evaluate
89 * @func: the function to be called
90 * @info: the function call argument
92 * Calls the function @func when the task is currently running. This might
93 * be on the current CPU, which just calls the function directly
95 * returns: @func return value, or
96 * -ESRCH - when the process isn't running
97 * -EAGAIN - when the process moved away
100 task_function_call(struct task_struct
*p
, remote_function_f func
, void *info
)
102 struct remote_function_call data
= {
111 ret
= smp_call_function_single(task_cpu(p
), remote_function
, &data
, 1);
114 } while (ret
== -EAGAIN
);
120 * cpu_function_call - call a function on the cpu
121 * @func: the function to be called
122 * @info: the function call argument
124 * Calls the function @func on the remote cpu.
126 * returns: @func return value or -ENXIO when the cpu is offline
128 static int cpu_function_call(int cpu
, remote_function_f func
, void *info
)
130 struct remote_function_call data
= {
134 .ret
= -ENXIO
, /* No such CPU */
137 smp_call_function_single(cpu
, remote_function
, &data
, 1);
142 static inline struct perf_cpu_context
*
143 __get_cpu_context(struct perf_event_context
*ctx
)
145 return this_cpu_ptr(ctx
->pmu
->pmu_cpu_context
);
148 static void perf_ctx_lock(struct perf_cpu_context
*cpuctx
,
149 struct perf_event_context
*ctx
)
151 raw_spin_lock(&cpuctx
->ctx
.lock
);
153 raw_spin_lock(&ctx
->lock
);
156 static void perf_ctx_unlock(struct perf_cpu_context
*cpuctx
,
157 struct perf_event_context
*ctx
)
160 raw_spin_unlock(&ctx
->lock
);
161 raw_spin_unlock(&cpuctx
->ctx
.lock
);
164 #define TASK_TOMBSTONE ((void *)-1L)
166 static bool is_kernel_event(struct perf_event
*event
)
168 return READ_ONCE(event
->owner
) == TASK_TOMBSTONE
;
172 * On task ctx scheduling...
174 * When !ctx->nr_events a task context will not be scheduled. This means
175 * we can disable the scheduler hooks (for performance) without leaving
176 * pending task ctx state.
178 * This however results in two special cases:
180 * - removing the last event from a task ctx; this is relatively straight
181 * forward and is done in __perf_remove_from_context.
183 * - adding the first event to a task ctx; this is tricky because we cannot
184 * rely on ctx->is_active and therefore cannot use event_function_call().
185 * See perf_install_in_context().
187 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
190 typedef void (*event_f
)(struct perf_event
*, struct perf_cpu_context
*,
191 struct perf_event_context
*, void *);
193 struct event_function_struct
{
194 struct perf_event
*event
;
199 static int event_function(void *info
)
201 struct event_function_struct
*efs
= info
;
202 struct perf_event
*event
= efs
->event
;
203 struct perf_event_context
*ctx
= event
->ctx
;
204 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
205 struct perf_event_context
*task_ctx
= cpuctx
->task_ctx
;
208 WARN_ON_ONCE(!irqs_disabled());
210 perf_ctx_lock(cpuctx
, task_ctx
);
212 * Since we do the IPI call without holding ctx->lock things can have
213 * changed, double check we hit the task we set out to hit.
216 if (ctx
->task
!= current
) {
222 * We only use event_function_call() on established contexts,
223 * and event_function() is only ever called when active (or
224 * rather, we'll have bailed in task_function_call() or the
225 * above ctx->task != current test), therefore we must have
226 * ctx->is_active here.
228 WARN_ON_ONCE(!ctx
->is_active
);
230 * And since we have ctx->is_active, cpuctx->task_ctx must
233 WARN_ON_ONCE(task_ctx
!= ctx
);
235 WARN_ON_ONCE(&cpuctx
->ctx
!= ctx
);
238 efs
->func(event
, cpuctx
, ctx
, efs
->data
);
240 perf_ctx_unlock(cpuctx
, task_ctx
);
245 static void event_function_call(struct perf_event
*event
, event_f func
, void *data
)
247 struct perf_event_context
*ctx
= event
->ctx
;
248 struct task_struct
*task
= READ_ONCE(ctx
->task
); /* verified in event_function */
249 struct event_function_struct efs
= {
255 if (!event
->parent
) {
257 * If this is a !child event, we must hold ctx::mutex to
258 * stabilize the the event->ctx relation. See
259 * perf_event_ctx_lock().
261 lockdep_assert_held(&ctx
->mutex
);
265 cpu_function_call(event
->cpu
, event_function
, &efs
);
269 if (task
== TASK_TOMBSTONE
)
273 if (!task_function_call(task
, event_function
, &efs
))
276 raw_spin_lock_irq(&ctx
->lock
);
278 * Reload the task pointer, it might have been changed by
279 * a concurrent perf_event_context_sched_out().
282 if (task
== TASK_TOMBSTONE
) {
283 raw_spin_unlock_irq(&ctx
->lock
);
286 if (ctx
->is_active
) {
287 raw_spin_unlock_irq(&ctx
->lock
);
290 func(event
, NULL
, ctx
, data
);
291 raw_spin_unlock_irq(&ctx
->lock
);
295 * Similar to event_function_call() + event_function(), but hard assumes IRQs
296 * are already disabled and we're on the right CPU.
298 static void event_function_local(struct perf_event
*event
, event_f func
, void *data
)
300 struct perf_event_context
*ctx
= event
->ctx
;
301 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
302 struct task_struct
*task
= READ_ONCE(ctx
->task
);
303 struct perf_event_context
*task_ctx
= NULL
;
305 WARN_ON_ONCE(!irqs_disabled());
308 if (task
== TASK_TOMBSTONE
)
314 perf_ctx_lock(cpuctx
, task_ctx
);
317 if (task
== TASK_TOMBSTONE
)
322 * We must be either inactive or active and the right task,
323 * otherwise we're screwed, since we cannot IPI to somewhere
326 if (ctx
->is_active
) {
327 if (WARN_ON_ONCE(task
!= current
))
330 if (WARN_ON_ONCE(cpuctx
->task_ctx
!= ctx
))
334 WARN_ON_ONCE(&cpuctx
->ctx
!= ctx
);
337 func(event
, cpuctx
, ctx
, data
);
339 perf_ctx_unlock(cpuctx
, task_ctx
);
342 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
343 PERF_FLAG_FD_OUTPUT |\
344 PERF_FLAG_PID_CGROUP |\
345 PERF_FLAG_FD_CLOEXEC)
348 * branch priv levels that need permission checks
350 #define PERF_SAMPLE_BRANCH_PERM_PLM \
351 (PERF_SAMPLE_BRANCH_KERNEL |\
352 PERF_SAMPLE_BRANCH_HV)
355 EVENT_FLEXIBLE
= 0x1,
358 EVENT_ALL
= EVENT_FLEXIBLE
| EVENT_PINNED
,
362 * perf_sched_events : >0 events exist
363 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
366 static void perf_sched_delayed(struct work_struct
*work
);
367 DEFINE_STATIC_KEY_FALSE(perf_sched_events
);
368 static DECLARE_DELAYED_WORK(perf_sched_work
, perf_sched_delayed
);
369 static DEFINE_MUTEX(perf_sched_mutex
);
370 static atomic_t perf_sched_count
;
372 static DEFINE_PER_CPU(atomic_t
, perf_cgroup_events
);
373 static DEFINE_PER_CPU(int, perf_sched_cb_usages
);
374 static DEFINE_PER_CPU(struct pmu_event_list
, pmu_sb_events
);
376 static atomic_t nr_mmap_events __read_mostly
;
377 static atomic_t nr_comm_events __read_mostly
;
378 static atomic_t nr_task_events __read_mostly
;
379 static atomic_t nr_freq_events __read_mostly
;
380 static atomic_t nr_switch_events __read_mostly
;
382 static LIST_HEAD(pmus
);
383 static DEFINE_MUTEX(pmus_lock
);
384 static struct srcu_struct pmus_srcu
;
387 * perf event paranoia level:
388 * -1 - not paranoid at all
389 * 0 - disallow raw tracepoint access for unpriv
390 * 1 - disallow cpu events for unpriv
391 * 2 - disallow kernel profiling for unpriv
393 int sysctl_perf_event_paranoid __read_mostly
= 2;
395 /* Minimum for 512 kiB + 1 user control page */
396 int sysctl_perf_event_mlock __read_mostly
= 512 + (PAGE_SIZE
/ 1024); /* 'free' kiB per user */
399 * max perf event sample rate
401 #define DEFAULT_MAX_SAMPLE_RATE 100000
402 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
403 #define DEFAULT_CPU_TIME_MAX_PERCENT 25
405 int sysctl_perf_event_sample_rate __read_mostly
= DEFAULT_MAX_SAMPLE_RATE
;
407 static int max_samples_per_tick __read_mostly
= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE
, HZ
);
408 static int perf_sample_period_ns __read_mostly
= DEFAULT_SAMPLE_PERIOD_NS
;
410 static int perf_sample_allowed_ns __read_mostly
=
411 DEFAULT_SAMPLE_PERIOD_NS
* DEFAULT_CPU_TIME_MAX_PERCENT
/ 100;
413 static void update_perf_cpu_limits(void)
415 u64 tmp
= perf_sample_period_ns
;
417 tmp
*= sysctl_perf_cpu_time_max_percent
;
418 tmp
= div_u64(tmp
, 100);
422 WRITE_ONCE(perf_sample_allowed_ns
, tmp
);
425 static int perf_rotate_context(struct perf_cpu_context
*cpuctx
);
427 int perf_proc_update_handler(struct ctl_table
*table
, int write
,
428 void __user
*buffer
, size_t *lenp
,
431 int ret
= proc_dointvec_minmax(table
, write
, buffer
, lenp
, ppos
);
437 * If throttling is disabled don't allow the write:
439 if (sysctl_perf_cpu_time_max_percent
== 100 ||
440 sysctl_perf_cpu_time_max_percent
== 0)
443 max_samples_per_tick
= DIV_ROUND_UP(sysctl_perf_event_sample_rate
, HZ
);
444 perf_sample_period_ns
= NSEC_PER_SEC
/ sysctl_perf_event_sample_rate
;
445 update_perf_cpu_limits();
450 int sysctl_perf_cpu_time_max_percent __read_mostly
= DEFAULT_CPU_TIME_MAX_PERCENT
;
452 int perf_cpu_time_max_percent_handler(struct ctl_table
*table
, int write
,
453 void __user
*buffer
, size_t *lenp
,
456 int ret
= proc_dointvec(table
, write
, buffer
, lenp
, ppos
);
461 if (sysctl_perf_cpu_time_max_percent
== 100 ||
462 sysctl_perf_cpu_time_max_percent
== 0) {
464 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
465 WRITE_ONCE(perf_sample_allowed_ns
, 0);
467 update_perf_cpu_limits();
474 * perf samples are done in some very critical code paths (NMIs).
475 * If they take too much CPU time, the system can lock up and not
476 * get any real work done. This will drop the sample rate when
477 * we detect that events are taking too long.
479 #define NR_ACCUMULATED_SAMPLES 128
480 static DEFINE_PER_CPU(u64
, running_sample_length
);
482 static u64 __report_avg
;
483 static u64 __report_allowed
;
485 static void perf_duration_warn(struct irq_work
*w
)
487 printk_ratelimited(KERN_INFO
488 "perf: interrupt took too long (%lld > %lld), lowering "
489 "kernel.perf_event_max_sample_rate to %d\n",
490 __report_avg
, __report_allowed
,
491 sysctl_perf_event_sample_rate
);
494 static DEFINE_IRQ_WORK(perf_duration_work
, perf_duration_warn
);
496 void perf_sample_event_took(u64 sample_len_ns
)
498 u64 max_len
= READ_ONCE(perf_sample_allowed_ns
);
506 /* Decay the counter by 1 average sample. */
507 running_len
= __this_cpu_read(running_sample_length
);
508 running_len
-= running_len
/NR_ACCUMULATED_SAMPLES
;
509 running_len
+= sample_len_ns
;
510 __this_cpu_write(running_sample_length
, running_len
);
513 * Note: this will be biased artifically low until we have
514 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
515 * from having to maintain a count.
517 avg_len
= running_len
/NR_ACCUMULATED_SAMPLES
;
518 if (avg_len
<= max_len
)
521 __report_avg
= avg_len
;
522 __report_allowed
= max_len
;
525 * Compute a throttle threshold 25% below the current duration.
527 avg_len
+= avg_len
/ 4;
528 max
= (TICK_NSEC
/ 100) * sysctl_perf_cpu_time_max_percent
;
534 WRITE_ONCE(perf_sample_allowed_ns
, avg_len
);
535 WRITE_ONCE(max_samples_per_tick
, max
);
537 sysctl_perf_event_sample_rate
= max
* HZ
;
538 perf_sample_period_ns
= NSEC_PER_SEC
/ sysctl_perf_event_sample_rate
;
540 if (!irq_work_queue(&perf_duration_work
)) {
541 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
542 "kernel.perf_event_max_sample_rate to %d\n",
543 __report_avg
, __report_allowed
,
544 sysctl_perf_event_sample_rate
);
548 static atomic64_t perf_event_id
;
550 static void cpu_ctx_sched_out(struct perf_cpu_context
*cpuctx
,
551 enum event_type_t event_type
);
553 static void cpu_ctx_sched_in(struct perf_cpu_context
*cpuctx
,
554 enum event_type_t event_type
,
555 struct task_struct
*task
);
557 static void update_context_time(struct perf_event_context
*ctx
);
558 static u64
perf_event_time(struct perf_event
*event
);
560 void __weak
perf_event_print_debug(void) { }
562 extern __weak
const char *perf_pmu_name(void)
567 static inline u64
perf_clock(void)
569 return local_clock();
572 static inline u64
perf_event_clock(struct perf_event
*event
)
574 return event
->clock();
577 #ifdef CONFIG_CGROUP_PERF
580 perf_cgroup_match(struct perf_event
*event
)
582 struct perf_event_context
*ctx
= event
->ctx
;
583 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
585 /* @event doesn't care about cgroup */
589 /* wants specific cgroup scope but @cpuctx isn't associated with any */
594 * Cgroup scoping is recursive. An event enabled for a cgroup is
595 * also enabled for all its descendant cgroups. If @cpuctx's
596 * cgroup is a descendant of @event's (the test covers identity
597 * case), it's a match.
599 return cgroup_is_descendant(cpuctx
->cgrp
->css
.cgroup
,
600 event
->cgrp
->css
.cgroup
);
603 static inline void perf_detach_cgroup(struct perf_event
*event
)
605 css_put(&event
->cgrp
->css
);
609 static inline int is_cgroup_event(struct perf_event
*event
)
611 return event
->cgrp
!= NULL
;
614 static inline u64
perf_cgroup_event_time(struct perf_event
*event
)
616 struct perf_cgroup_info
*t
;
618 t
= per_cpu_ptr(event
->cgrp
->info
, event
->cpu
);
622 static inline void __update_cgrp_time(struct perf_cgroup
*cgrp
)
624 struct perf_cgroup_info
*info
;
629 info
= this_cpu_ptr(cgrp
->info
);
631 info
->time
+= now
- info
->timestamp
;
632 info
->timestamp
= now
;
635 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context
*cpuctx
)
637 struct perf_cgroup
*cgrp_out
= cpuctx
->cgrp
;
639 __update_cgrp_time(cgrp_out
);
642 static inline void update_cgrp_time_from_event(struct perf_event
*event
)
644 struct perf_cgroup
*cgrp
;
647 * ensure we access cgroup data only when needed and
648 * when we know the cgroup is pinned (css_get)
650 if (!is_cgroup_event(event
))
653 cgrp
= perf_cgroup_from_task(current
, event
->ctx
);
655 * Do not update time when cgroup is not active
657 if (cgrp
== event
->cgrp
)
658 __update_cgrp_time(event
->cgrp
);
662 perf_cgroup_set_timestamp(struct task_struct
*task
,
663 struct perf_event_context
*ctx
)
665 struct perf_cgroup
*cgrp
;
666 struct perf_cgroup_info
*info
;
669 * ctx->lock held by caller
670 * ensure we do not access cgroup data
671 * unless we have the cgroup pinned (css_get)
673 if (!task
|| !ctx
->nr_cgroups
)
676 cgrp
= perf_cgroup_from_task(task
, ctx
);
677 info
= this_cpu_ptr(cgrp
->info
);
678 info
->timestamp
= ctx
->timestamp
;
681 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
682 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
685 * reschedule events based on the cgroup constraint of task.
687 * mode SWOUT : schedule out everything
688 * mode SWIN : schedule in based on cgroup for next
690 static void perf_cgroup_switch(struct task_struct
*task
, int mode
)
692 struct perf_cpu_context
*cpuctx
;
697 * disable interrupts to avoid geting nr_cgroup
698 * changes via __perf_event_disable(). Also
701 local_irq_save(flags
);
704 * we reschedule only in the presence of cgroup
705 * constrained events.
708 list_for_each_entry_rcu(pmu
, &pmus
, entry
) {
709 cpuctx
= this_cpu_ptr(pmu
->pmu_cpu_context
);
710 if (cpuctx
->unique_pmu
!= pmu
)
711 continue; /* ensure we process each cpuctx once */
714 * perf_cgroup_events says at least one
715 * context on this CPU has cgroup events.
717 * ctx->nr_cgroups reports the number of cgroup
718 * events for a context.
720 if (cpuctx
->ctx
.nr_cgroups
> 0) {
721 perf_ctx_lock(cpuctx
, cpuctx
->task_ctx
);
722 perf_pmu_disable(cpuctx
->ctx
.pmu
);
724 if (mode
& PERF_CGROUP_SWOUT
) {
725 cpu_ctx_sched_out(cpuctx
, EVENT_ALL
);
727 * must not be done before ctxswout due
728 * to event_filter_match() in event_sched_out()
733 if (mode
& PERF_CGROUP_SWIN
) {
734 WARN_ON_ONCE(cpuctx
->cgrp
);
736 * set cgrp before ctxsw in to allow
737 * event_filter_match() to not have to pass
739 * we pass the cpuctx->ctx to perf_cgroup_from_task()
740 * because cgorup events are only per-cpu
742 cpuctx
->cgrp
= perf_cgroup_from_task(task
, &cpuctx
->ctx
);
743 cpu_ctx_sched_in(cpuctx
, EVENT_ALL
, task
);
745 perf_pmu_enable(cpuctx
->ctx
.pmu
);
746 perf_ctx_unlock(cpuctx
, cpuctx
->task_ctx
);
750 local_irq_restore(flags
);
753 static inline void perf_cgroup_sched_out(struct task_struct
*task
,
754 struct task_struct
*next
)
756 struct perf_cgroup
*cgrp1
;
757 struct perf_cgroup
*cgrp2
= NULL
;
761 * we come here when we know perf_cgroup_events > 0
762 * we do not need to pass the ctx here because we know
763 * we are holding the rcu lock
765 cgrp1
= perf_cgroup_from_task(task
, NULL
);
766 cgrp2
= perf_cgroup_from_task(next
, NULL
);
769 * only schedule out current cgroup events if we know
770 * that we are switching to a different cgroup. Otherwise,
771 * do no touch the cgroup events.
774 perf_cgroup_switch(task
, PERF_CGROUP_SWOUT
);
779 static inline void perf_cgroup_sched_in(struct task_struct
*prev
,
780 struct task_struct
*task
)
782 struct perf_cgroup
*cgrp1
;
783 struct perf_cgroup
*cgrp2
= NULL
;
787 * we come here when we know perf_cgroup_events > 0
788 * we do not need to pass the ctx here because we know
789 * we are holding the rcu lock
791 cgrp1
= perf_cgroup_from_task(task
, NULL
);
792 cgrp2
= perf_cgroup_from_task(prev
, NULL
);
795 * only need to schedule in cgroup events if we are changing
796 * cgroup during ctxsw. Cgroup events were not scheduled
797 * out of ctxsw out if that was not the case.
800 perf_cgroup_switch(task
, PERF_CGROUP_SWIN
);
805 static inline int perf_cgroup_connect(int fd
, struct perf_event
*event
,
806 struct perf_event_attr
*attr
,
807 struct perf_event
*group_leader
)
809 struct perf_cgroup
*cgrp
;
810 struct cgroup_subsys_state
*css
;
811 struct fd f
= fdget(fd
);
817 css
= css_tryget_online_from_dir(f
.file
->f_path
.dentry
,
818 &perf_event_cgrp_subsys
);
824 cgrp
= container_of(css
, struct perf_cgroup
, css
);
828 * all events in a group must monitor
829 * the same cgroup because a task belongs
830 * to only one perf cgroup at a time
832 if (group_leader
&& group_leader
->cgrp
!= cgrp
) {
833 perf_detach_cgroup(event
);
842 perf_cgroup_set_shadow_time(struct perf_event
*event
, u64 now
)
844 struct perf_cgroup_info
*t
;
845 t
= per_cpu_ptr(event
->cgrp
->info
, event
->cpu
);
846 event
->shadow_ctx_time
= now
- t
->timestamp
;
850 perf_cgroup_defer_enabled(struct perf_event
*event
)
853 * when the current task's perf cgroup does not match
854 * the event's, we need to remember to call the
855 * perf_mark_enable() function the first time a task with
856 * a matching perf cgroup is scheduled in.
858 if (is_cgroup_event(event
) && !perf_cgroup_match(event
))
859 event
->cgrp_defer_enabled
= 1;
863 perf_cgroup_mark_enabled(struct perf_event
*event
,
864 struct perf_event_context
*ctx
)
866 struct perf_event
*sub
;
867 u64 tstamp
= perf_event_time(event
);
869 if (!event
->cgrp_defer_enabled
)
872 event
->cgrp_defer_enabled
= 0;
874 event
->tstamp_enabled
= tstamp
- event
->total_time_enabled
;
875 list_for_each_entry(sub
, &event
->sibling_list
, group_entry
) {
876 if (sub
->state
>= PERF_EVENT_STATE_INACTIVE
) {
877 sub
->tstamp_enabled
= tstamp
- sub
->total_time_enabled
;
878 sub
->cgrp_defer_enabled
= 0;
884 * Update cpuctx->cgrp so that it is set when first cgroup event is added and
885 * cleared when last cgroup event is removed.
888 list_update_cgroup_event(struct perf_event
*event
,
889 struct perf_event_context
*ctx
, bool add
)
891 struct perf_cpu_context
*cpuctx
;
893 if (!is_cgroup_event(event
))
896 if (add
&& ctx
->nr_cgroups
++)
898 else if (!add
&& --ctx
->nr_cgroups
)
901 * Because cgroup events are always per-cpu events,
902 * this will always be called from the right CPU.
904 cpuctx
= __get_cpu_context(ctx
);
907 * cpuctx->cgrp is NULL until a cgroup event is sched in or
908 * ctx->nr_cgroup == 0 .
910 if (add
&& perf_cgroup_from_task(current
, ctx
) == event
->cgrp
)
911 cpuctx
->cgrp
= event
->cgrp
;
916 #else /* !CONFIG_CGROUP_PERF */
919 perf_cgroup_match(struct perf_event
*event
)
924 static inline void perf_detach_cgroup(struct perf_event
*event
)
927 static inline int is_cgroup_event(struct perf_event
*event
)
932 static inline u64
perf_cgroup_event_cgrp_time(struct perf_event
*event
)
937 static inline void update_cgrp_time_from_event(struct perf_event
*event
)
941 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context
*cpuctx
)
945 static inline void perf_cgroup_sched_out(struct task_struct
*task
,
946 struct task_struct
*next
)
950 static inline void perf_cgroup_sched_in(struct task_struct
*prev
,
951 struct task_struct
*task
)
955 static inline int perf_cgroup_connect(pid_t pid
, struct perf_event
*event
,
956 struct perf_event_attr
*attr
,
957 struct perf_event
*group_leader
)
963 perf_cgroup_set_timestamp(struct task_struct
*task
,
964 struct perf_event_context
*ctx
)
969 perf_cgroup_switch(struct task_struct
*task
, struct task_struct
*next
)
974 perf_cgroup_set_shadow_time(struct perf_event
*event
, u64 now
)
978 static inline u64
perf_cgroup_event_time(struct perf_event
*event
)
984 perf_cgroup_defer_enabled(struct perf_event
*event
)
989 perf_cgroup_mark_enabled(struct perf_event
*event
,
990 struct perf_event_context
*ctx
)
995 list_update_cgroup_event(struct perf_event
*event
,
996 struct perf_event_context
*ctx
, bool add
)
1003 * set default to be dependent on timer tick just
1004 * like original code
1006 #define PERF_CPU_HRTIMER (1000 / HZ)
1008 * function must be called with interrupts disbled
1010 static enum hrtimer_restart
perf_mux_hrtimer_handler(struct hrtimer
*hr
)
1012 struct perf_cpu_context
*cpuctx
;
1015 WARN_ON(!irqs_disabled());
1017 cpuctx
= container_of(hr
, struct perf_cpu_context
, hrtimer
);
1018 rotations
= perf_rotate_context(cpuctx
);
1020 raw_spin_lock(&cpuctx
->hrtimer_lock
);
1022 hrtimer_forward_now(hr
, cpuctx
->hrtimer_interval
);
1024 cpuctx
->hrtimer_active
= 0;
1025 raw_spin_unlock(&cpuctx
->hrtimer_lock
);
1027 return rotations
? HRTIMER_RESTART
: HRTIMER_NORESTART
;
1030 static void __perf_mux_hrtimer_init(struct perf_cpu_context
*cpuctx
, int cpu
)
1032 struct hrtimer
*timer
= &cpuctx
->hrtimer
;
1033 struct pmu
*pmu
= cpuctx
->ctx
.pmu
;
1036 /* no multiplexing needed for SW PMU */
1037 if (pmu
->task_ctx_nr
== perf_sw_context
)
1041 * check default is sane, if not set then force to
1042 * default interval (1/tick)
1044 interval
= pmu
->hrtimer_interval_ms
;
1046 interval
= pmu
->hrtimer_interval_ms
= PERF_CPU_HRTIMER
;
1048 cpuctx
->hrtimer_interval
= ns_to_ktime(NSEC_PER_MSEC
* interval
);
1050 raw_spin_lock_init(&cpuctx
->hrtimer_lock
);
1051 hrtimer_init(timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_ABS_PINNED
);
1052 timer
->function
= perf_mux_hrtimer_handler
;
1055 static int perf_mux_hrtimer_restart(struct perf_cpu_context
*cpuctx
)
1057 struct hrtimer
*timer
= &cpuctx
->hrtimer
;
1058 struct pmu
*pmu
= cpuctx
->ctx
.pmu
;
1059 unsigned long flags
;
1061 /* not for SW PMU */
1062 if (pmu
->task_ctx_nr
== perf_sw_context
)
1065 raw_spin_lock_irqsave(&cpuctx
->hrtimer_lock
, flags
);
1066 if (!cpuctx
->hrtimer_active
) {
1067 cpuctx
->hrtimer_active
= 1;
1068 hrtimer_forward_now(timer
, cpuctx
->hrtimer_interval
);
1069 hrtimer_start_expires(timer
, HRTIMER_MODE_ABS_PINNED
);
1071 raw_spin_unlock_irqrestore(&cpuctx
->hrtimer_lock
, flags
);
1076 void perf_pmu_disable(struct pmu
*pmu
)
1078 int *count
= this_cpu_ptr(pmu
->pmu_disable_count
);
1080 pmu
->pmu_disable(pmu
);
1083 void perf_pmu_enable(struct pmu
*pmu
)
1085 int *count
= this_cpu_ptr(pmu
->pmu_disable_count
);
1087 pmu
->pmu_enable(pmu
);
1090 static DEFINE_PER_CPU(struct list_head
, active_ctx_list
);
1093 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1094 * perf_event_task_tick() are fully serialized because they're strictly cpu
1095 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1096 * disabled, while perf_event_task_tick is called from IRQ context.
1098 static void perf_event_ctx_activate(struct perf_event_context
*ctx
)
1100 struct list_head
*head
= this_cpu_ptr(&active_ctx_list
);
1102 WARN_ON(!irqs_disabled());
1104 WARN_ON(!list_empty(&ctx
->active_ctx_list
));
1106 list_add(&ctx
->active_ctx_list
, head
);
1109 static void perf_event_ctx_deactivate(struct perf_event_context
*ctx
)
1111 WARN_ON(!irqs_disabled());
1113 WARN_ON(list_empty(&ctx
->active_ctx_list
));
1115 list_del_init(&ctx
->active_ctx_list
);
1118 static void get_ctx(struct perf_event_context
*ctx
)
1120 WARN_ON(!atomic_inc_not_zero(&ctx
->refcount
));
1123 static void free_ctx(struct rcu_head
*head
)
1125 struct perf_event_context
*ctx
;
1127 ctx
= container_of(head
, struct perf_event_context
, rcu_head
);
1128 kfree(ctx
->task_ctx_data
);
1132 static void put_ctx(struct perf_event_context
*ctx
)
1134 if (atomic_dec_and_test(&ctx
->refcount
)) {
1135 if (ctx
->parent_ctx
)
1136 put_ctx(ctx
->parent_ctx
);
1137 if (ctx
->task
&& ctx
->task
!= TASK_TOMBSTONE
)
1138 put_task_struct(ctx
->task
);
1139 call_rcu(&ctx
->rcu_head
, free_ctx
);
1144 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1145 * perf_pmu_migrate_context() we need some magic.
1147 * Those places that change perf_event::ctx will hold both
1148 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1150 * Lock ordering is by mutex address. There are two other sites where
1151 * perf_event_context::mutex nests and those are:
1153 * - perf_event_exit_task_context() [ child , 0 ]
1154 * perf_event_exit_event()
1155 * put_event() [ parent, 1 ]
1157 * - perf_event_init_context() [ parent, 0 ]
1158 * inherit_task_group()
1161 * perf_event_alloc()
1163 * perf_try_init_event() [ child , 1 ]
1165 * While it appears there is an obvious deadlock here -- the parent and child
1166 * nesting levels are inverted between the two. This is in fact safe because
1167 * life-time rules separate them. That is an exiting task cannot fork, and a
1168 * spawning task cannot (yet) exit.
1170 * But remember that that these are parent<->child context relations, and
1171 * migration does not affect children, therefore these two orderings should not
1174 * The change in perf_event::ctx does not affect children (as claimed above)
1175 * because the sys_perf_event_open() case will install a new event and break
1176 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1177 * concerned with cpuctx and that doesn't have children.
1179 * The places that change perf_event::ctx will issue:
1181 * perf_remove_from_context();
1182 * synchronize_rcu();
1183 * perf_install_in_context();
1185 * to affect the change. The remove_from_context() + synchronize_rcu() should
1186 * quiesce the event, after which we can install it in the new location. This
1187 * means that only external vectors (perf_fops, prctl) can perturb the event
1188 * while in transit. Therefore all such accessors should also acquire
1189 * perf_event_context::mutex to serialize against this.
1191 * However; because event->ctx can change while we're waiting to acquire
1192 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1197 * task_struct::perf_event_mutex
1198 * perf_event_context::mutex
1199 * perf_event::child_mutex;
1200 * perf_event_context::lock
1201 * perf_event::mmap_mutex
1204 static struct perf_event_context
*
1205 perf_event_ctx_lock_nested(struct perf_event
*event
, int nesting
)
1207 struct perf_event_context
*ctx
;
1211 ctx
= ACCESS_ONCE(event
->ctx
);
1212 if (!atomic_inc_not_zero(&ctx
->refcount
)) {
1218 mutex_lock_nested(&ctx
->mutex
, nesting
);
1219 if (event
->ctx
!= ctx
) {
1220 mutex_unlock(&ctx
->mutex
);
1228 static inline struct perf_event_context
*
1229 perf_event_ctx_lock(struct perf_event
*event
)
1231 return perf_event_ctx_lock_nested(event
, 0);
1234 static void perf_event_ctx_unlock(struct perf_event
*event
,
1235 struct perf_event_context
*ctx
)
1237 mutex_unlock(&ctx
->mutex
);
1242 * This must be done under the ctx->lock, such as to serialize against
1243 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1244 * calling scheduler related locks and ctx->lock nests inside those.
1246 static __must_check
struct perf_event_context
*
1247 unclone_ctx(struct perf_event_context
*ctx
)
1249 struct perf_event_context
*parent_ctx
= ctx
->parent_ctx
;
1251 lockdep_assert_held(&ctx
->lock
);
1254 ctx
->parent_ctx
= NULL
;
1260 static u32
perf_event_pid(struct perf_event
*event
, struct task_struct
*p
)
1263 * only top level events have the pid namespace they were created in
1266 event
= event
->parent
;
1268 return task_tgid_nr_ns(p
, event
->ns
);
1271 static u32
perf_event_tid(struct perf_event
*event
, struct task_struct
*p
)
1274 * only top level events have the pid namespace they were created in
1277 event
= event
->parent
;
1279 return task_pid_nr_ns(p
, event
->ns
);
1283 * If we inherit events we want to return the parent event id
1286 static u64
primary_event_id(struct perf_event
*event
)
1291 id
= event
->parent
->id
;
1297 * Get the perf_event_context for a task and lock it.
1299 * This has to cope with with the fact that until it is locked,
1300 * the context could get moved to another task.
1302 static struct perf_event_context
*
1303 perf_lock_task_context(struct task_struct
*task
, int ctxn
, unsigned long *flags
)
1305 struct perf_event_context
*ctx
;
1309 * One of the few rules of preemptible RCU is that one cannot do
1310 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1311 * part of the read side critical section was irqs-enabled -- see
1312 * rcu_read_unlock_special().
1314 * Since ctx->lock nests under rq->lock we must ensure the entire read
1315 * side critical section has interrupts disabled.
1317 local_irq_save(*flags
);
1319 ctx
= rcu_dereference(task
->perf_event_ctxp
[ctxn
]);
1322 * If this context is a clone of another, it might
1323 * get swapped for another underneath us by
1324 * perf_event_task_sched_out, though the
1325 * rcu_read_lock() protects us from any context
1326 * getting freed. Lock the context and check if it
1327 * got swapped before we could get the lock, and retry
1328 * if so. If we locked the right context, then it
1329 * can't get swapped on us any more.
1331 raw_spin_lock(&ctx
->lock
);
1332 if (ctx
!= rcu_dereference(task
->perf_event_ctxp
[ctxn
])) {
1333 raw_spin_unlock(&ctx
->lock
);
1335 local_irq_restore(*flags
);
1339 if (ctx
->task
== TASK_TOMBSTONE
||
1340 !atomic_inc_not_zero(&ctx
->refcount
)) {
1341 raw_spin_unlock(&ctx
->lock
);
1344 WARN_ON_ONCE(ctx
->task
!= task
);
1349 local_irq_restore(*flags
);
1354 * Get the context for a task and increment its pin_count so it
1355 * can't get swapped to another task. This also increments its
1356 * reference count so that the context can't get freed.
1358 static struct perf_event_context
*
1359 perf_pin_task_context(struct task_struct
*task
, int ctxn
)
1361 struct perf_event_context
*ctx
;
1362 unsigned long flags
;
1364 ctx
= perf_lock_task_context(task
, ctxn
, &flags
);
1367 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
1372 static void perf_unpin_context(struct perf_event_context
*ctx
)
1374 unsigned long flags
;
1376 raw_spin_lock_irqsave(&ctx
->lock
, flags
);
1378 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
1382 * Update the record of the current time in a context.
1384 static void update_context_time(struct perf_event_context
*ctx
)
1386 u64 now
= perf_clock();
1388 ctx
->time
+= now
- ctx
->timestamp
;
1389 ctx
->timestamp
= now
;
1392 static u64
perf_event_time(struct perf_event
*event
)
1394 struct perf_event_context
*ctx
= event
->ctx
;
1396 if (is_cgroup_event(event
))
1397 return perf_cgroup_event_time(event
);
1399 return ctx
? ctx
->time
: 0;
1403 * Update the total_time_enabled and total_time_running fields for a event.
1405 static void update_event_times(struct perf_event
*event
)
1407 struct perf_event_context
*ctx
= event
->ctx
;
1410 lockdep_assert_held(&ctx
->lock
);
1412 if (event
->state
< PERF_EVENT_STATE_INACTIVE
||
1413 event
->group_leader
->state
< PERF_EVENT_STATE_INACTIVE
)
1417 * in cgroup mode, time_enabled represents
1418 * the time the event was enabled AND active
1419 * tasks were in the monitored cgroup. This is
1420 * independent of the activity of the context as
1421 * there may be a mix of cgroup and non-cgroup events.
1423 * That is why we treat cgroup events differently
1426 if (is_cgroup_event(event
))
1427 run_end
= perf_cgroup_event_time(event
);
1428 else if (ctx
->is_active
)
1429 run_end
= ctx
->time
;
1431 run_end
= event
->tstamp_stopped
;
1433 event
->total_time_enabled
= run_end
- event
->tstamp_enabled
;
1435 if (event
->state
== PERF_EVENT_STATE_INACTIVE
)
1436 run_end
= event
->tstamp_stopped
;
1438 run_end
= perf_event_time(event
);
1440 event
->total_time_running
= run_end
- event
->tstamp_running
;
1445 * Update total_time_enabled and total_time_running for all events in a group.
1447 static void update_group_times(struct perf_event
*leader
)
1449 struct perf_event
*event
;
1451 update_event_times(leader
);
1452 list_for_each_entry(event
, &leader
->sibling_list
, group_entry
)
1453 update_event_times(event
);
1456 static struct list_head
*
1457 ctx_group_list(struct perf_event
*event
, struct perf_event_context
*ctx
)
1459 if (event
->attr
.pinned
)
1460 return &ctx
->pinned_groups
;
1462 return &ctx
->flexible_groups
;
1466 * Add a event from the lists for its context.
1467 * Must be called with ctx->mutex and ctx->lock held.
1470 list_add_event(struct perf_event
*event
, struct perf_event_context
*ctx
)
1472 lockdep_assert_held(&ctx
->lock
);
1474 WARN_ON_ONCE(event
->attach_state
& PERF_ATTACH_CONTEXT
);
1475 event
->attach_state
|= PERF_ATTACH_CONTEXT
;
1478 * If we're a stand alone event or group leader, we go to the context
1479 * list, group events are kept attached to the group so that
1480 * perf_group_detach can, at all times, locate all siblings.
1482 if (event
->group_leader
== event
) {
1483 struct list_head
*list
;
1485 event
->group_caps
= event
->event_caps
;
1487 list
= ctx_group_list(event
, ctx
);
1488 list_add_tail(&event
->group_entry
, list
);
1491 list_update_cgroup_event(event
, ctx
, true);
1493 list_add_rcu(&event
->event_entry
, &ctx
->event_list
);
1495 if (event
->attr
.inherit_stat
)
1502 * Initialize event state based on the perf_event_attr::disabled.
1504 static inline void perf_event__state_init(struct perf_event
*event
)
1506 event
->state
= event
->attr
.disabled
? PERF_EVENT_STATE_OFF
:
1507 PERF_EVENT_STATE_INACTIVE
;
1510 static void __perf_event_read_size(struct perf_event
*event
, int nr_siblings
)
1512 int entry
= sizeof(u64
); /* value */
1516 if (event
->attr
.read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
1517 size
+= sizeof(u64
);
1519 if (event
->attr
.read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
1520 size
+= sizeof(u64
);
1522 if (event
->attr
.read_format
& PERF_FORMAT_ID
)
1523 entry
+= sizeof(u64
);
1525 if (event
->attr
.read_format
& PERF_FORMAT_GROUP
) {
1527 size
+= sizeof(u64
);
1531 event
->read_size
= size
;
1534 static void __perf_event_header_size(struct perf_event
*event
, u64 sample_type
)
1536 struct perf_sample_data
*data
;
1539 if (sample_type
& PERF_SAMPLE_IP
)
1540 size
+= sizeof(data
->ip
);
1542 if (sample_type
& PERF_SAMPLE_ADDR
)
1543 size
+= sizeof(data
->addr
);
1545 if (sample_type
& PERF_SAMPLE_PERIOD
)
1546 size
+= sizeof(data
->period
);
1548 if (sample_type
& PERF_SAMPLE_WEIGHT
)
1549 size
+= sizeof(data
->weight
);
1551 if (sample_type
& PERF_SAMPLE_READ
)
1552 size
+= event
->read_size
;
1554 if (sample_type
& PERF_SAMPLE_DATA_SRC
)
1555 size
+= sizeof(data
->data_src
.val
);
1557 if (sample_type
& PERF_SAMPLE_TRANSACTION
)
1558 size
+= sizeof(data
->txn
);
1560 event
->header_size
= size
;
1564 * Called at perf_event creation and when events are attached/detached from a
1567 static void perf_event__header_size(struct perf_event
*event
)
1569 __perf_event_read_size(event
,
1570 event
->group_leader
->nr_siblings
);
1571 __perf_event_header_size(event
, event
->attr
.sample_type
);
1574 static void perf_event__id_header_size(struct perf_event
*event
)
1576 struct perf_sample_data
*data
;
1577 u64 sample_type
= event
->attr
.sample_type
;
1580 if (sample_type
& PERF_SAMPLE_TID
)
1581 size
+= sizeof(data
->tid_entry
);
1583 if (sample_type
& PERF_SAMPLE_TIME
)
1584 size
+= sizeof(data
->time
);
1586 if (sample_type
& PERF_SAMPLE_IDENTIFIER
)
1587 size
+= sizeof(data
->id
);
1589 if (sample_type
& PERF_SAMPLE_ID
)
1590 size
+= sizeof(data
->id
);
1592 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
1593 size
+= sizeof(data
->stream_id
);
1595 if (sample_type
& PERF_SAMPLE_CPU
)
1596 size
+= sizeof(data
->cpu_entry
);
1598 event
->id_header_size
= size
;
1601 static bool perf_event_validate_size(struct perf_event
*event
)
1604 * The values computed here will be over-written when we actually
1607 __perf_event_read_size(event
, event
->group_leader
->nr_siblings
+ 1);
1608 __perf_event_header_size(event
, event
->attr
.sample_type
& ~PERF_SAMPLE_READ
);
1609 perf_event__id_header_size(event
);
1612 * Sum the lot; should not exceed the 64k limit we have on records.
1613 * Conservative limit to allow for callchains and other variable fields.
1615 if (event
->read_size
+ event
->header_size
+
1616 event
->id_header_size
+ sizeof(struct perf_event_header
) >= 16*1024)
1622 static void perf_group_attach(struct perf_event
*event
)
1624 struct perf_event
*group_leader
= event
->group_leader
, *pos
;
1626 lockdep_assert_held(&event
->ctx
->lock
);
1629 * We can have double attach due to group movement in perf_event_open.
1631 if (event
->attach_state
& PERF_ATTACH_GROUP
)
1634 event
->attach_state
|= PERF_ATTACH_GROUP
;
1636 if (group_leader
== event
)
1639 WARN_ON_ONCE(group_leader
->ctx
!= event
->ctx
);
1641 group_leader
->group_caps
&= event
->event_caps
;
1643 list_add_tail(&event
->group_entry
, &group_leader
->sibling_list
);
1644 group_leader
->nr_siblings
++;
1646 perf_event__header_size(group_leader
);
1648 list_for_each_entry(pos
, &group_leader
->sibling_list
, group_entry
)
1649 perf_event__header_size(pos
);
1653 * Remove a event from the lists for its context.
1654 * Must be called with ctx->mutex and ctx->lock held.
1657 list_del_event(struct perf_event
*event
, struct perf_event_context
*ctx
)
1659 WARN_ON_ONCE(event
->ctx
!= ctx
);
1660 lockdep_assert_held(&ctx
->lock
);
1663 * We can have double detach due to exit/hot-unplug + close.
1665 if (!(event
->attach_state
& PERF_ATTACH_CONTEXT
))
1668 event
->attach_state
&= ~PERF_ATTACH_CONTEXT
;
1670 list_update_cgroup_event(event
, ctx
, false);
1673 if (event
->attr
.inherit_stat
)
1676 list_del_rcu(&event
->event_entry
);
1678 if (event
->group_leader
== event
)
1679 list_del_init(&event
->group_entry
);
1681 update_group_times(event
);
1684 * If event was in error state, then keep it
1685 * that way, otherwise bogus counts will be
1686 * returned on read(). The only way to get out
1687 * of error state is by explicit re-enabling
1690 if (event
->state
> PERF_EVENT_STATE_OFF
)
1691 event
->state
= PERF_EVENT_STATE_OFF
;
1696 static void perf_group_detach(struct perf_event
*event
)
1698 struct perf_event
*sibling
, *tmp
;
1699 struct list_head
*list
= NULL
;
1701 lockdep_assert_held(&event
->ctx
->lock
);
1704 * We can have double detach due to exit/hot-unplug + close.
1706 if (!(event
->attach_state
& PERF_ATTACH_GROUP
))
1709 event
->attach_state
&= ~PERF_ATTACH_GROUP
;
1712 * If this is a sibling, remove it from its group.
1714 if (event
->group_leader
!= event
) {
1715 list_del_init(&event
->group_entry
);
1716 event
->group_leader
->nr_siblings
--;
1720 if (!list_empty(&event
->group_entry
))
1721 list
= &event
->group_entry
;
1724 * If this was a group event with sibling events then
1725 * upgrade the siblings to singleton events by adding them
1726 * to whatever list we are on.
1728 list_for_each_entry_safe(sibling
, tmp
, &event
->sibling_list
, group_entry
) {
1730 list_move_tail(&sibling
->group_entry
, list
);
1731 sibling
->group_leader
= sibling
;
1733 /* Inherit group flags from the previous leader */
1734 sibling
->group_caps
= event
->group_caps
;
1736 WARN_ON_ONCE(sibling
->ctx
!= event
->ctx
);
1740 perf_event__header_size(event
->group_leader
);
1742 list_for_each_entry(tmp
, &event
->group_leader
->sibling_list
, group_entry
)
1743 perf_event__header_size(tmp
);
1746 static bool is_orphaned_event(struct perf_event
*event
)
1748 return event
->state
== PERF_EVENT_STATE_DEAD
;
1751 static inline int __pmu_filter_match(struct perf_event
*event
)
1753 struct pmu
*pmu
= event
->pmu
;
1754 return pmu
->filter_match
? pmu
->filter_match(event
) : 1;
1758 * Check whether we should attempt to schedule an event group based on
1759 * PMU-specific filtering. An event group can consist of HW and SW events,
1760 * potentially with a SW leader, so we must check all the filters, to
1761 * determine whether a group is schedulable:
1763 static inline int pmu_filter_match(struct perf_event
*event
)
1765 struct perf_event
*child
;
1767 if (!__pmu_filter_match(event
))
1770 list_for_each_entry(child
, &event
->sibling_list
, group_entry
) {
1771 if (!__pmu_filter_match(child
))
1779 event_filter_match(struct perf_event
*event
)
1781 return (event
->cpu
== -1 || event
->cpu
== smp_processor_id()) &&
1782 perf_cgroup_match(event
) && pmu_filter_match(event
);
1786 event_sched_out(struct perf_event
*event
,
1787 struct perf_cpu_context
*cpuctx
,
1788 struct perf_event_context
*ctx
)
1790 u64 tstamp
= perf_event_time(event
);
1793 WARN_ON_ONCE(event
->ctx
!= ctx
);
1794 lockdep_assert_held(&ctx
->lock
);
1797 * An event which could not be activated because of
1798 * filter mismatch still needs to have its timings
1799 * maintained, otherwise bogus information is return
1800 * via read() for time_enabled, time_running:
1802 if (event
->state
== PERF_EVENT_STATE_INACTIVE
&&
1803 !event_filter_match(event
)) {
1804 delta
= tstamp
- event
->tstamp_stopped
;
1805 event
->tstamp_running
+= delta
;
1806 event
->tstamp_stopped
= tstamp
;
1809 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
1812 perf_pmu_disable(event
->pmu
);
1814 event
->tstamp_stopped
= tstamp
;
1815 event
->pmu
->del(event
, 0);
1817 event
->state
= PERF_EVENT_STATE_INACTIVE
;
1818 if (event
->pending_disable
) {
1819 event
->pending_disable
= 0;
1820 event
->state
= PERF_EVENT_STATE_OFF
;
1823 if (!is_software_event(event
))
1824 cpuctx
->active_oncpu
--;
1825 if (!--ctx
->nr_active
)
1826 perf_event_ctx_deactivate(ctx
);
1827 if (event
->attr
.freq
&& event
->attr
.sample_freq
)
1829 if (event
->attr
.exclusive
|| !cpuctx
->active_oncpu
)
1830 cpuctx
->exclusive
= 0;
1832 perf_pmu_enable(event
->pmu
);
1836 group_sched_out(struct perf_event
*group_event
,
1837 struct perf_cpu_context
*cpuctx
,
1838 struct perf_event_context
*ctx
)
1840 struct perf_event
*event
;
1841 int state
= group_event
->state
;
1843 perf_pmu_disable(ctx
->pmu
);
1845 event_sched_out(group_event
, cpuctx
, ctx
);
1848 * Schedule out siblings (if any):
1850 list_for_each_entry(event
, &group_event
->sibling_list
, group_entry
)
1851 event_sched_out(event
, cpuctx
, ctx
);
1853 perf_pmu_enable(ctx
->pmu
);
1855 if (state
== PERF_EVENT_STATE_ACTIVE
&& group_event
->attr
.exclusive
)
1856 cpuctx
->exclusive
= 0;
1859 #define DETACH_GROUP 0x01UL
1862 * Cross CPU call to remove a performance event
1864 * We disable the event on the hardware level first. After that we
1865 * remove it from the context list.
1868 __perf_remove_from_context(struct perf_event
*event
,
1869 struct perf_cpu_context
*cpuctx
,
1870 struct perf_event_context
*ctx
,
1873 unsigned long flags
= (unsigned long)info
;
1875 event_sched_out(event
, cpuctx
, ctx
);
1876 if (flags
& DETACH_GROUP
)
1877 perf_group_detach(event
);
1878 list_del_event(event
, ctx
);
1880 if (!ctx
->nr_events
&& ctx
->is_active
) {
1883 WARN_ON_ONCE(cpuctx
->task_ctx
!= ctx
);
1884 cpuctx
->task_ctx
= NULL
;
1890 * Remove the event from a task's (or a CPU's) list of events.
1892 * If event->ctx is a cloned context, callers must make sure that
1893 * every task struct that event->ctx->task could possibly point to
1894 * remains valid. This is OK when called from perf_release since
1895 * that only calls us on the top-level context, which can't be a clone.
1896 * When called from perf_event_exit_task, it's OK because the
1897 * context has been detached from its task.
1899 static void perf_remove_from_context(struct perf_event
*event
, unsigned long flags
)
1901 struct perf_event_context
*ctx
= event
->ctx
;
1903 lockdep_assert_held(&ctx
->mutex
);
1905 event_function_call(event
, __perf_remove_from_context
, (void *)flags
);
1908 * The above event_function_call() can NO-OP when it hits
1909 * TASK_TOMBSTONE. In that case we must already have been detached
1910 * from the context (by perf_event_exit_event()) but the grouping
1911 * might still be in-tact.
1913 WARN_ON_ONCE(event
->attach_state
& PERF_ATTACH_CONTEXT
);
1914 if ((flags
& DETACH_GROUP
) &&
1915 (event
->attach_state
& PERF_ATTACH_GROUP
)) {
1917 * Since in that case we cannot possibly be scheduled, simply
1920 raw_spin_lock_irq(&ctx
->lock
);
1921 perf_group_detach(event
);
1922 raw_spin_unlock_irq(&ctx
->lock
);
1927 * Cross CPU call to disable a performance event
1929 static void __perf_event_disable(struct perf_event
*event
,
1930 struct perf_cpu_context
*cpuctx
,
1931 struct perf_event_context
*ctx
,
1934 if (event
->state
< PERF_EVENT_STATE_INACTIVE
)
1937 update_context_time(ctx
);
1938 update_cgrp_time_from_event(event
);
1939 update_group_times(event
);
1940 if (event
== event
->group_leader
)
1941 group_sched_out(event
, cpuctx
, ctx
);
1943 event_sched_out(event
, cpuctx
, ctx
);
1944 event
->state
= PERF_EVENT_STATE_OFF
;
1950 * If event->ctx is a cloned context, callers must make sure that
1951 * every task struct that event->ctx->task could possibly point to
1952 * remains valid. This condition is satisifed when called through
1953 * perf_event_for_each_child or perf_event_for_each because they
1954 * hold the top-level event's child_mutex, so any descendant that
1955 * goes to exit will block in perf_event_exit_event().
1957 * When called from perf_pending_event it's OK because event->ctx
1958 * is the current context on this CPU and preemption is disabled,
1959 * hence we can't get into perf_event_task_sched_out for this context.
1961 static void _perf_event_disable(struct perf_event
*event
)
1963 struct perf_event_context
*ctx
= event
->ctx
;
1965 raw_spin_lock_irq(&ctx
->lock
);
1966 if (event
->state
<= PERF_EVENT_STATE_OFF
) {
1967 raw_spin_unlock_irq(&ctx
->lock
);
1970 raw_spin_unlock_irq(&ctx
->lock
);
1972 event_function_call(event
, __perf_event_disable
, NULL
);
1975 void perf_event_disable_local(struct perf_event
*event
)
1977 event_function_local(event
, __perf_event_disable
, NULL
);
1981 * Strictly speaking kernel users cannot create groups and therefore this
1982 * interface does not need the perf_event_ctx_lock() magic.
1984 void perf_event_disable(struct perf_event
*event
)
1986 struct perf_event_context
*ctx
;
1988 ctx
= perf_event_ctx_lock(event
);
1989 _perf_event_disable(event
);
1990 perf_event_ctx_unlock(event
, ctx
);
1992 EXPORT_SYMBOL_GPL(perf_event_disable
);
1994 void perf_event_disable_inatomic(struct perf_event
*event
)
1996 event
->pending_disable
= 1;
1997 irq_work_queue(&event
->pending
);
2000 static void perf_set_shadow_time(struct perf_event
*event
,
2001 struct perf_event_context
*ctx
,
2005 * use the correct time source for the time snapshot
2007 * We could get by without this by leveraging the
2008 * fact that to get to this function, the caller
2009 * has most likely already called update_context_time()
2010 * and update_cgrp_time_xx() and thus both timestamp
2011 * are identical (or very close). Given that tstamp is,
2012 * already adjusted for cgroup, we could say that:
2013 * tstamp - ctx->timestamp
2015 * tstamp - cgrp->timestamp.
2017 * Then, in perf_output_read(), the calculation would
2018 * work with no changes because:
2019 * - event is guaranteed scheduled in
2020 * - no scheduled out in between
2021 * - thus the timestamp would be the same
2023 * But this is a bit hairy.
2025 * So instead, we have an explicit cgroup call to remain
2026 * within the time time source all along. We believe it
2027 * is cleaner and simpler to understand.
2029 if (is_cgroup_event(event
))
2030 perf_cgroup_set_shadow_time(event
, tstamp
);
2032 event
->shadow_ctx_time
= tstamp
- ctx
->timestamp
;
2035 #define MAX_INTERRUPTS (~0ULL)
2037 static void perf_log_throttle(struct perf_event
*event
, int enable
);
2038 static void perf_log_itrace_start(struct perf_event
*event
);
2041 event_sched_in(struct perf_event
*event
,
2042 struct perf_cpu_context
*cpuctx
,
2043 struct perf_event_context
*ctx
)
2045 u64 tstamp
= perf_event_time(event
);
2048 lockdep_assert_held(&ctx
->lock
);
2050 if (event
->state
<= PERF_EVENT_STATE_OFF
)
2053 WRITE_ONCE(event
->oncpu
, smp_processor_id());
2055 * Order event::oncpu write to happen before the ACTIVE state
2059 WRITE_ONCE(event
->state
, PERF_EVENT_STATE_ACTIVE
);
2062 * Unthrottle events, since we scheduled we might have missed several
2063 * ticks already, also for a heavily scheduling task there is little
2064 * guarantee it'll get a tick in a timely manner.
2066 if (unlikely(event
->hw
.interrupts
== MAX_INTERRUPTS
)) {
2067 perf_log_throttle(event
, 1);
2068 event
->hw
.interrupts
= 0;
2072 * The new state must be visible before we turn it on in the hardware:
2076 perf_pmu_disable(event
->pmu
);
2078 perf_set_shadow_time(event
, ctx
, tstamp
);
2080 perf_log_itrace_start(event
);
2082 if (event
->pmu
->add(event
, PERF_EF_START
)) {
2083 event
->state
= PERF_EVENT_STATE_INACTIVE
;
2089 event
->tstamp_running
+= tstamp
- event
->tstamp_stopped
;
2091 if (!is_software_event(event
))
2092 cpuctx
->active_oncpu
++;
2093 if (!ctx
->nr_active
++)
2094 perf_event_ctx_activate(ctx
);
2095 if (event
->attr
.freq
&& event
->attr
.sample_freq
)
2098 if (event
->attr
.exclusive
)
2099 cpuctx
->exclusive
= 1;
2102 perf_pmu_enable(event
->pmu
);
2108 group_sched_in(struct perf_event
*group_event
,
2109 struct perf_cpu_context
*cpuctx
,
2110 struct perf_event_context
*ctx
)
2112 struct perf_event
*event
, *partial_group
= NULL
;
2113 struct pmu
*pmu
= ctx
->pmu
;
2114 u64 now
= ctx
->time
;
2115 bool simulate
= false;
2117 if (group_event
->state
== PERF_EVENT_STATE_OFF
)
2120 pmu
->start_txn(pmu
, PERF_PMU_TXN_ADD
);
2122 if (event_sched_in(group_event
, cpuctx
, ctx
)) {
2123 pmu
->cancel_txn(pmu
);
2124 perf_mux_hrtimer_restart(cpuctx
);
2129 * Schedule in siblings as one group (if any):
2131 list_for_each_entry(event
, &group_event
->sibling_list
, group_entry
) {
2132 if (event_sched_in(event
, cpuctx
, ctx
)) {
2133 partial_group
= event
;
2138 if (!pmu
->commit_txn(pmu
))
2143 * Groups can be scheduled in as one unit only, so undo any
2144 * partial group before returning:
2145 * The events up to the failed event are scheduled out normally,
2146 * tstamp_stopped will be updated.
2148 * The failed events and the remaining siblings need to have
2149 * their timings updated as if they had gone thru event_sched_in()
2150 * and event_sched_out(). This is required to get consistent timings
2151 * across the group. This also takes care of the case where the group
2152 * could never be scheduled by ensuring tstamp_stopped is set to mark
2153 * the time the event was actually stopped, such that time delta
2154 * calculation in update_event_times() is correct.
2156 list_for_each_entry(event
, &group_event
->sibling_list
, group_entry
) {
2157 if (event
== partial_group
)
2161 event
->tstamp_running
+= now
- event
->tstamp_stopped
;
2162 event
->tstamp_stopped
= now
;
2164 event_sched_out(event
, cpuctx
, ctx
);
2167 event_sched_out(group_event
, cpuctx
, ctx
);
2169 pmu
->cancel_txn(pmu
);
2171 perf_mux_hrtimer_restart(cpuctx
);
2177 * Work out whether we can put this event group on the CPU now.
2179 static int group_can_go_on(struct perf_event
*event
,
2180 struct perf_cpu_context
*cpuctx
,
2184 * Groups consisting entirely of software events can always go on.
2186 if (event
->group_caps
& PERF_EV_CAP_SOFTWARE
)
2189 * If an exclusive group is already on, no other hardware
2192 if (cpuctx
->exclusive
)
2195 * If this group is exclusive and there are already
2196 * events on the CPU, it can't go on.
2198 if (event
->attr
.exclusive
&& cpuctx
->active_oncpu
)
2201 * Otherwise, try to add it if all previous groups were able
2207 static void add_event_to_ctx(struct perf_event
*event
,
2208 struct perf_event_context
*ctx
)
2210 u64 tstamp
= perf_event_time(event
);
2212 list_add_event(event
, ctx
);
2213 perf_group_attach(event
);
2214 event
->tstamp_enabled
= tstamp
;
2215 event
->tstamp_running
= tstamp
;
2216 event
->tstamp_stopped
= tstamp
;
2219 static void ctx_sched_out(struct perf_event_context
*ctx
,
2220 struct perf_cpu_context
*cpuctx
,
2221 enum event_type_t event_type
);
2223 ctx_sched_in(struct perf_event_context
*ctx
,
2224 struct perf_cpu_context
*cpuctx
,
2225 enum event_type_t event_type
,
2226 struct task_struct
*task
);
2228 static void task_ctx_sched_out(struct perf_cpu_context
*cpuctx
,
2229 struct perf_event_context
*ctx
)
2231 if (!cpuctx
->task_ctx
)
2234 if (WARN_ON_ONCE(ctx
!= cpuctx
->task_ctx
))
2237 ctx_sched_out(ctx
, cpuctx
, EVENT_ALL
);
2240 static void perf_event_sched_in(struct perf_cpu_context
*cpuctx
,
2241 struct perf_event_context
*ctx
,
2242 struct task_struct
*task
)
2244 cpu_ctx_sched_in(cpuctx
, EVENT_PINNED
, task
);
2246 ctx_sched_in(ctx
, cpuctx
, EVENT_PINNED
, task
);
2247 cpu_ctx_sched_in(cpuctx
, EVENT_FLEXIBLE
, task
);
2249 ctx_sched_in(ctx
, cpuctx
, EVENT_FLEXIBLE
, task
);
2252 static void ctx_resched(struct perf_cpu_context
*cpuctx
,
2253 struct perf_event_context
*task_ctx
)
2255 perf_pmu_disable(cpuctx
->ctx
.pmu
);
2257 task_ctx_sched_out(cpuctx
, task_ctx
);
2258 cpu_ctx_sched_out(cpuctx
, EVENT_ALL
);
2259 perf_event_sched_in(cpuctx
, task_ctx
, current
);
2260 perf_pmu_enable(cpuctx
->ctx
.pmu
);
2264 * Cross CPU call to install and enable a performance event
2266 * Very similar to remote_function() + event_function() but cannot assume that
2267 * things like ctx->is_active and cpuctx->task_ctx are set.
2269 static int __perf_install_in_context(void *info
)
2271 struct perf_event
*event
= info
;
2272 struct perf_event_context
*ctx
= event
->ctx
;
2273 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
2274 struct perf_event_context
*task_ctx
= cpuctx
->task_ctx
;
2275 bool activate
= true;
2278 raw_spin_lock(&cpuctx
->ctx
.lock
);
2280 raw_spin_lock(&ctx
->lock
);
2283 /* If we're on the wrong CPU, try again */
2284 if (task_cpu(ctx
->task
) != smp_processor_id()) {
2290 * If we're on the right CPU, see if the task we target is
2291 * current, if not we don't have to activate the ctx, a future
2292 * context switch will do that for us.
2294 if (ctx
->task
!= current
)
2297 WARN_ON_ONCE(cpuctx
->task_ctx
&& cpuctx
->task_ctx
!= ctx
);
2299 } else if (task_ctx
) {
2300 raw_spin_lock(&task_ctx
->lock
);
2304 ctx_sched_out(ctx
, cpuctx
, EVENT_TIME
);
2305 add_event_to_ctx(event
, ctx
);
2306 ctx_resched(cpuctx
, task_ctx
);
2308 add_event_to_ctx(event
, ctx
);
2312 perf_ctx_unlock(cpuctx
, task_ctx
);
2318 * Attach a performance event to a context.
2320 * Very similar to event_function_call, see comment there.
2323 perf_install_in_context(struct perf_event_context
*ctx
,
2324 struct perf_event
*event
,
2327 struct task_struct
*task
= READ_ONCE(ctx
->task
);
2329 lockdep_assert_held(&ctx
->mutex
);
2331 if (event
->cpu
!= -1)
2335 * Ensures that if we can observe event->ctx, both the event and ctx
2336 * will be 'complete'. See perf_iterate_sb_cpu().
2338 smp_store_release(&event
->ctx
, ctx
);
2341 cpu_function_call(cpu
, __perf_install_in_context
, event
);
2346 * Should not happen, we validate the ctx is still alive before calling.
2348 if (WARN_ON_ONCE(task
== TASK_TOMBSTONE
))
2352 * Installing events is tricky because we cannot rely on ctx->is_active
2353 * to be set in case this is the nr_events 0 -> 1 transition.
2357 * Cannot use task_function_call() because we need to run on the task's
2358 * CPU regardless of whether its current or not.
2360 if (!cpu_function_call(task_cpu(task
), __perf_install_in_context
, event
))
2363 raw_spin_lock_irq(&ctx
->lock
);
2365 if (WARN_ON_ONCE(task
== TASK_TOMBSTONE
)) {
2367 * Cannot happen because we already checked above (which also
2368 * cannot happen), and we hold ctx->mutex, which serializes us
2369 * against perf_event_exit_task_context().
2371 raw_spin_unlock_irq(&ctx
->lock
);
2374 raw_spin_unlock_irq(&ctx
->lock
);
2376 * Since !ctx->is_active doesn't mean anything, we must IPI
2383 * Put a event into inactive state and update time fields.
2384 * Enabling the leader of a group effectively enables all
2385 * the group members that aren't explicitly disabled, so we
2386 * have to update their ->tstamp_enabled also.
2387 * Note: this works for group members as well as group leaders
2388 * since the non-leader members' sibling_lists will be empty.
2390 static void __perf_event_mark_enabled(struct perf_event
*event
)
2392 struct perf_event
*sub
;
2393 u64 tstamp
= perf_event_time(event
);
2395 event
->state
= PERF_EVENT_STATE_INACTIVE
;
2396 event
->tstamp_enabled
= tstamp
- event
->total_time_enabled
;
2397 list_for_each_entry(sub
, &event
->sibling_list
, group_entry
) {
2398 if (sub
->state
>= PERF_EVENT_STATE_INACTIVE
)
2399 sub
->tstamp_enabled
= tstamp
- sub
->total_time_enabled
;
2404 * Cross CPU call to enable a performance event
2406 static void __perf_event_enable(struct perf_event
*event
,
2407 struct perf_cpu_context
*cpuctx
,
2408 struct perf_event_context
*ctx
,
2411 struct perf_event
*leader
= event
->group_leader
;
2412 struct perf_event_context
*task_ctx
;
2414 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
||
2415 event
->state
<= PERF_EVENT_STATE_ERROR
)
2419 ctx_sched_out(ctx
, cpuctx
, EVENT_TIME
);
2421 __perf_event_mark_enabled(event
);
2423 if (!ctx
->is_active
)
2426 if (!event_filter_match(event
)) {
2427 if (is_cgroup_event(event
))
2428 perf_cgroup_defer_enabled(event
);
2429 ctx_sched_in(ctx
, cpuctx
, EVENT_TIME
, current
);
2434 * If the event is in a group and isn't the group leader,
2435 * then don't put it on unless the group is on.
2437 if (leader
!= event
&& leader
->state
!= PERF_EVENT_STATE_ACTIVE
) {
2438 ctx_sched_in(ctx
, cpuctx
, EVENT_TIME
, current
);
2442 task_ctx
= cpuctx
->task_ctx
;
2444 WARN_ON_ONCE(task_ctx
!= ctx
);
2446 ctx_resched(cpuctx
, task_ctx
);
2452 * If event->ctx is a cloned context, callers must make sure that
2453 * every task struct that event->ctx->task could possibly point to
2454 * remains valid. This condition is satisfied when called through
2455 * perf_event_for_each_child or perf_event_for_each as described
2456 * for perf_event_disable.
2458 static void _perf_event_enable(struct perf_event
*event
)
2460 struct perf_event_context
*ctx
= event
->ctx
;
2462 raw_spin_lock_irq(&ctx
->lock
);
2463 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
||
2464 event
->state
< PERF_EVENT_STATE_ERROR
) {
2465 raw_spin_unlock_irq(&ctx
->lock
);
2470 * If the event is in error state, clear that first.
2472 * That way, if we see the event in error state below, we know that it
2473 * has gone back into error state, as distinct from the task having
2474 * been scheduled away before the cross-call arrived.
2476 if (event
->state
== PERF_EVENT_STATE_ERROR
)
2477 event
->state
= PERF_EVENT_STATE_OFF
;
2478 raw_spin_unlock_irq(&ctx
->lock
);
2480 event_function_call(event
, __perf_event_enable
, NULL
);
2484 * See perf_event_disable();
2486 void perf_event_enable(struct perf_event
*event
)
2488 struct perf_event_context
*ctx
;
2490 ctx
= perf_event_ctx_lock(event
);
2491 _perf_event_enable(event
);
2492 perf_event_ctx_unlock(event
, ctx
);
2494 EXPORT_SYMBOL_GPL(perf_event_enable
);
2496 struct stop_event_data
{
2497 struct perf_event
*event
;
2498 unsigned int restart
;
2501 static int __perf_event_stop(void *info
)
2503 struct stop_event_data
*sd
= info
;
2504 struct perf_event
*event
= sd
->event
;
2506 /* if it's already INACTIVE, do nothing */
2507 if (READ_ONCE(event
->state
) != PERF_EVENT_STATE_ACTIVE
)
2510 /* matches smp_wmb() in event_sched_in() */
2514 * There is a window with interrupts enabled before we get here,
2515 * so we need to check again lest we try to stop another CPU's event.
2517 if (READ_ONCE(event
->oncpu
) != smp_processor_id())
2520 event
->pmu
->stop(event
, PERF_EF_UPDATE
);
2523 * May race with the actual stop (through perf_pmu_output_stop()),
2524 * but it is only used for events with AUX ring buffer, and such
2525 * events will refuse to restart because of rb::aux_mmap_count==0,
2526 * see comments in perf_aux_output_begin().
2528 * Since this is happening on a event-local CPU, no trace is lost
2532 event
->pmu
->start(event
, 0);
2537 static int perf_event_stop(struct perf_event
*event
, int restart
)
2539 struct stop_event_data sd
= {
2546 if (READ_ONCE(event
->state
) != PERF_EVENT_STATE_ACTIVE
)
2549 /* matches smp_wmb() in event_sched_in() */
2553 * We only want to restart ACTIVE events, so if the event goes
2554 * inactive here (event->oncpu==-1), there's nothing more to do;
2555 * fall through with ret==-ENXIO.
2557 ret
= cpu_function_call(READ_ONCE(event
->oncpu
),
2558 __perf_event_stop
, &sd
);
2559 } while (ret
== -EAGAIN
);
2565 * In order to contain the amount of racy and tricky in the address filter
2566 * configuration management, it is a two part process:
2568 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2569 * we update the addresses of corresponding vmas in
2570 * event::addr_filters_offs array and bump the event::addr_filters_gen;
2571 * (p2) when an event is scheduled in (pmu::add), it calls
2572 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2573 * if the generation has changed since the previous call.
2575 * If (p1) happens while the event is active, we restart it to force (p2).
2577 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2578 * pre-existing mappings, called once when new filters arrive via SET_FILTER
2580 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2581 * registered mapping, called for every new mmap(), with mm::mmap_sem down
2583 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2586 void perf_event_addr_filters_sync(struct perf_event
*event
)
2588 struct perf_addr_filters_head
*ifh
= perf_event_addr_filters(event
);
2590 if (!has_addr_filter(event
))
2593 raw_spin_lock(&ifh
->lock
);
2594 if (event
->addr_filters_gen
!= event
->hw
.addr_filters_gen
) {
2595 event
->pmu
->addr_filters_sync(event
);
2596 event
->hw
.addr_filters_gen
= event
->addr_filters_gen
;
2598 raw_spin_unlock(&ifh
->lock
);
2600 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync
);
2602 static int _perf_event_refresh(struct perf_event
*event
, int refresh
)
2605 * not supported on inherited events
2607 if (event
->attr
.inherit
|| !is_sampling_event(event
))
2610 atomic_add(refresh
, &event
->event_limit
);
2611 _perf_event_enable(event
);
2617 * See perf_event_disable()
2619 int perf_event_refresh(struct perf_event
*event
, int refresh
)
2621 struct perf_event_context
*ctx
;
2624 ctx
= perf_event_ctx_lock(event
);
2625 ret
= _perf_event_refresh(event
, refresh
);
2626 perf_event_ctx_unlock(event
, ctx
);
2630 EXPORT_SYMBOL_GPL(perf_event_refresh
);
2632 static void ctx_sched_out(struct perf_event_context
*ctx
,
2633 struct perf_cpu_context
*cpuctx
,
2634 enum event_type_t event_type
)
2636 int is_active
= ctx
->is_active
;
2637 struct perf_event
*event
;
2639 lockdep_assert_held(&ctx
->lock
);
2641 if (likely(!ctx
->nr_events
)) {
2643 * See __perf_remove_from_context().
2645 WARN_ON_ONCE(ctx
->is_active
);
2647 WARN_ON_ONCE(cpuctx
->task_ctx
);
2651 ctx
->is_active
&= ~event_type
;
2652 if (!(ctx
->is_active
& EVENT_ALL
))
2656 WARN_ON_ONCE(cpuctx
->task_ctx
!= ctx
);
2657 if (!ctx
->is_active
)
2658 cpuctx
->task_ctx
= NULL
;
2662 * Always update time if it was set; not only when it changes.
2663 * Otherwise we can 'forget' to update time for any but the last
2664 * context we sched out. For example:
2666 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2667 * ctx_sched_out(.event_type = EVENT_PINNED)
2669 * would only update time for the pinned events.
2671 if (is_active
& EVENT_TIME
) {
2672 /* update (and stop) ctx time */
2673 update_context_time(ctx
);
2674 update_cgrp_time_from_cpuctx(cpuctx
);
2677 is_active
^= ctx
->is_active
; /* changed bits */
2679 if (!ctx
->nr_active
|| !(is_active
& EVENT_ALL
))
2682 perf_pmu_disable(ctx
->pmu
);
2683 if (is_active
& EVENT_PINNED
) {
2684 list_for_each_entry(event
, &ctx
->pinned_groups
, group_entry
)
2685 group_sched_out(event
, cpuctx
, ctx
);
2688 if (is_active
& EVENT_FLEXIBLE
) {
2689 list_for_each_entry(event
, &ctx
->flexible_groups
, group_entry
)
2690 group_sched_out(event
, cpuctx
, ctx
);
2692 perf_pmu_enable(ctx
->pmu
);
2696 * Test whether two contexts are equivalent, i.e. whether they have both been
2697 * cloned from the same version of the same context.
2699 * Equivalence is measured using a generation number in the context that is
2700 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2701 * and list_del_event().
2703 static int context_equiv(struct perf_event_context
*ctx1
,
2704 struct perf_event_context
*ctx2
)
2706 lockdep_assert_held(&ctx1
->lock
);
2707 lockdep_assert_held(&ctx2
->lock
);
2709 /* Pinning disables the swap optimization */
2710 if (ctx1
->pin_count
|| ctx2
->pin_count
)
2713 /* If ctx1 is the parent of ctx2 */
2714 if (ctx1
== ctx2
->parent_ctx
&& ctx1
->generation
== ctx2
->parent_gen
)
2717 /* If ctx2 is the parent of ctx1 */
2718 if (ctx1
->parent_ctx
== ctx2
&& ctx1
->parent_gen
== ctx2
->generation
)
2722 * If ctx1 and ctx2 have the same parent; we flatten the parent
2723 * hierarchy, see perf_event_init_context().
2725 if (ctx1
->parent_ctx
&& ctx1
->parent_ctx
== ctx2
->parent_ctx
&&
2726 ctx1
->parent_gen
== ctx2
->parent_gen
)
2733 static void __perf_event_sync_stat(struct perf_event
*event
,
2734 struct perf_event
*next_event
)
2738 if (!event
->attr
.inherit_stat
)
2742 * Update the event value, we cannot use perf_event_read()
2743 * because we're in the middle of a context switch and have IRQs
2744 * disabled, which upsets smp_call_function_single(), however
2745 * we know the event must be on the current CPU, therefore we
2746 * don't need to use it.
2748 switch (event
->state
) {
2749 case PERF_EVENT_STATE_ACTIVE
:
2750 event
->pmu
->read(event
);
2753 case PERF_EVENT_STATE_INACTIVE
:
2754 update_event_times(event
);
2762 * In order to keep per-task stats reliable we need to flip the event
2763 * values when we flip the contexts.
2765 value
= local64_read(&next_event
->count
);
2766 value
= local64_xchg(&event
->count
, value
);
2767 local64_set(&next_event
->count
, value
);
2769 swap(event
->total_time_enabled
, next_event
->total_time_enabled
);
2770 swap(event
->total_time_running
, next_event
->total_time_running
);
2773 * Since we swizzled the values, update the user visible data too.
2775 perf_event_update_userpage(event
);
2776 perf_event_update_userpage(next_event
);
2779 static void perf_event_sync_stat(struct perf_event_context
*ctx
,
2780 struct perf_event_context
*next_ctx
)
2782 struct perf_event
*event
, *next_event
;
2787 update_context_time(ctx
);
2789 event
= list_first_entry(&ctx
->event_list
,
2790 struct perf_event
, event_entry
);
2792 next_event
= list_first_entry(&next_ctx
->event_list
,
2793 struct perf_event
, event_entry
);
2795 while (&event
->event_entry
!= &ctx
->event_list
&&
2796 &next_event
->event_entry
!= &next_ctx
->event_list
) {
2798 __perf_event_sync_stat(event
, next_event
);
2800 event
= list_next_entry(event
, event_entry
);
2801 next_event
= list_next_entry(next_event
, event_entry
);
2805 static void perf_event_context_sched_out(struct task_struct
*task
, int ctxn
,
2806 struct task_struct
*next
)
2808 struct perf_event_context
*ctx
= task
->perf_event_ctxp
[ctxn
];
2809 struct perf_event_context
*next_ctx
;
2810 struct perf_event_context
*parent
, *next_parent
;
2811 struct perf_cpu_context
*cpuctx
;
2817 cpuctx
= __get_cpu_context(ctx
);
2818 if (!cpuctx
->task_ctx
)
2822 next_ctx
= next
->perf_event_ctxp
[ctxn
];
2826 parent
= rcu_dereference(ctx
->parent_ctx
);
2827 next_parent
= rcu_dereference(next_ctx
->parent_ctx
);
2829 /* If neither context have a parent context; they cannot be clones. */
2830 if (!parent
&& !next_parent
)
2833 if (next_parent
== ctx
|| next_ctx
== parent
|| next_parent
== parent
) {
2835 * Looks like the two contexts are clones, so we might be
2836 * able to optimize the context switch. We lock both
2837 * contexts and check that they are clones under the
2838 * lock (including re-checking that neither has been
2839 * uncloned in the meantime). It doesn't matter which
2840 * order we take the locks because no other cpu could
2841 * be trying to lock both of these tasks.
2843 raw_spin_lock(&ctx
->lock
);
2844 raw_spin_lock_nested(&next_ctx
->lock
, SINGLE_DEPTH_NESTING
);
2845 if (context_equiv(ctx
, next_ctx
)) {
2846 WRITE_ONCE(ctx
->task
, next
);
2847 WRITE_ONCE(next_ctx
->task
, task
);
2849 swap(ctx
->task_ctx_data
, next_ctx
->task_ctx_data
);
2852 * RCU_INIT_POINTER here is safe because we've not
2853 * modified the ctx and the above modification of
2854 * ctx->task and ctx->task_ctx_data are immaterial
2855 * since those values are always verified under
2856 * ctx->lock which we're now holding.
2858 RCU_INIT_POINTER(task
->perf_event_ctxp
[ctxn
], next_ctx
);
2859 RCU_INIT_POINTER(next
->perf_event_ctxp
[ctxn
], ctx
);
2863 perf_event_sync_stat(ctx
, next_ctx
);
2865 raw_spin_unlock(&next_ctx
->lock
);
2866 raw_spin_unlock(&ctx
->lock
);
2872 raw_spin_lock(&ctx
->lock
);
2873 task_ctx_sched_out(cpuctx
, ctx
);
2874 raw_spin_unlock(&ctx
->lock
);
2878 static DEFINE_PER_CPU(struct list_head
, sched_cb_list
);
2880 void perf_sched_cb_dec(struct pmu
*pmu
)
2882 struct perf_cpu_context
*cpuctx
= this_cpu_ptr(pmu
->pmu_cpu_context
);
2884 this_cpu_dec(perf_sched_cb_usages
);
2886 if (!--cpuctx
->sched_cb_usage
)
2887 list_del(&cpuctx
->sched_cb_entry
);
2891 void perf_sched_cb_inc(struct pmu
*pmu
)
2893 struct perf_cpu_context
*cpuctx
= this_cpu_ptr(pmu
->pmu_cpu_context
);
2895 if (!cpuctx
->sched_cb_usage
++)
2896 list_add(&cpuctx
->sched_cb_entry
, this_cpu_ptr(&sched_cb_list
));
2898 this_cpu_inc(perf_sched_cb_usages
);
2902 * This function provides the context switch callback to the lower code
2903 * layer. It is invoked ONLY when the context switch callback is enabled.
2905 * This callback is relevant even to per-cpu events; for example multi event
2906 * PEBS requires this to provide PID/TID information. This requires we flush
2907 * all queued PEBS records before we context switch to a new task.
2909 static void perf_pmu_sched_task(struct task_struct
*prev
,
2910 struct task_struct
*next
,
2913 struct perf_cpu_context
*cpuctx
;
2919 list_for_each_entry(cpuctx
, this_cpu_ptr(&sched_cb_list
), sched_cb_entry
) {
2920 pmu
= cpuctx
->unique_pmu
; /* software PMUs will not have sched_task */
2922 if (WARN_ON_ONCE(!pmu
->sched_task
))
2925 perf_ctx_lock(cpuctx
, cpuctx
->task_ctx
);
2926 perf_pmu_disable(pmu
);
2928 pmu
->sched_task(cpuctx
->task_ctx
, sched_in
);
2930 perf_pmu_enable(pmu
);
2931 perf_ctx_unlock(cpuctx
, cpuctx
->task_ctx
);
2935 static void perf_event_switch(struct task_struct
*task
,
2936 struct task_struct
*next_prev
, bool sched_in
);
2938 #define for_each_task_context_nr(ctxn) \
2939 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2942 * Called from scheduler to remove the events of the current task,
2943 * with interrupts disabled.
2945 * We stop each event and update the event value in event->count.
2947 * This does not protect us against NMI, but disable()
2948 * sets the disabled bit in the control field of event _before_
2949 * accessing the event control register. If a NMI hits, then it will
2950 * not restart the event.
2952 void __perf_event_task_sched_out(struct task_struct
*task
,
2953 struct task_struct
*next
)
2957 if (__this_cpu_read(perf_sched_cb_usages
))
2958 perf_pmu_sched_task(task
, next
, false);
2960 if (atomic_read(&nr_switch_events
))
2961 perf_event_switch(task
, next
, false);
2963 for_each_task_context_nr(ctxn
)
2964 perf_event_context_sched_out(task
, ctxn
, next
);
2967 * if cgroup events exist on this CPU, then we need
2968 * to check if we have to switch out PMU state.
2969 * cgroup event are system-wide mode only
2971 if (atomic_read(this_cpu_ptr(&perf_cgroup_events
)))
2972 perf_cgroup_sched_out(task
, next
);
2976 * Called with IRQs disabled
2978 static void cpu_ctx_sched_out(struct perf_cpu_context
*cpuctx
,
2979 enum event_type_t event_type
)
2981 ctx_sched_out(&cpuctx
->ctx
, cpuctx
, event_type
);
2985 ctx_pinned_sched_in(struct perf_event_context
*ctx
,
2986 struct perf_cpu_context
*cpuctx
)
2988 struct perf_event
*event
;
2990 list_for_each_entry(event
, &ctx
->pinned_groups
, group_entry
) {
2991 if (event
->state
<= PERF_EVENT_STATE_OFF
)
2993 if (!event_filter_match(event
))
2996 /* may need to reset tstamp_enabled */
2997 if (is_cgroup_event(event
))
2998 perf_cgroup_mark_enabled(event
, ctx
);
3000 if (group_can_go_on(event
, cpuctx
, 1))
3001 group_sched_in(event
, cpuctx
, ctx
);
3004 * If this pinned group hasn't been scheduled,
3005 * put it in error state.
3007 if (event
->state
== PERF_EVENT_STATE_INACTIVE
) {
3008 update_group_times(event
);
3009 event
->state
= PERF_EVENT_STATE_ERROR
;
3015 ctx_flexible_sched_in(struct perf_event_context
*ctx
,
3016 struct perf_cpu_context
*cpuctx
)
3018 struct perf_event
*event
;
3021 list_for_each_entry(event
, &ctx
->flexible_groups
, group_entry
) {
3022 /* Ignore events in OFF or ERROR state */
3023 if (event
->state
<= PERF_EVENT_STATE_OFF
)
3026 * Listen to the 'cpu' scheduling filter constraint
3029 if (!event_filter_match(event
))
3032 /* may need to reset tstamp_enabled */
3033 if (is_cgroup_event(event
))
3034 perf_cgroup_mark_enabled(event
, ctx
);
3036 if (group_can_go_on(event
, cpuctx
, can_add_hw
)) {
3037 if (group_sched_in(event
, cpuctx
, ctx
))
3044 ctx_sched_in(struct perf_event_context
*ctx
,
3045 struct perf_cpu_context
*cpuctx
,
3046 enum event_type_t event_type
,
3047 struct task_struct
*task
)
3049 int is_active
= ctx
->is_active
;
3052 lockdep_assert_held(&ctx
->lock
);
3054 if (likely(!ctx
->nr_events
))
3057 ctx
->is_active
|= (event_type
| EVENT_TIME
);
3060 cpuctx
->task_ctx
= ctx
;
3062 WARN_ON_ONCE(cpuctx
->task_ctx
!= ctx
);
3065 is_active
^= ctx
->is_active
; /* changed bits */
3067 if (is_active
& EVENT_TIME
) {
3068 /* start ctx time */
3070 ctx
->timestamp
= now
;
3071 perf_cgroup_set_timestamp(task
, ctx
);
3075 * First go through the list and put on any pinned groups
3076 * in order to give them the best chance of going on.
3078 if (is_active
& EVENT_PINNED
)
3079 ctx_pinned_sched_in(ctx
, cpuctx
);
3081 /* Then walk through the lower prio flexible groups */
3082 if (is_active
& EVENT_FLEXIBLE
)
3083 ctx_flexible_sched_in(ctx
, cpuctx
);
3086 static void cpu_ctx_sched_in(struct perf_cpu_context
*cpuctx
,
3087 enum event_type_t event_type
,
3088 struct task_struct
*task
)
3090 struct perf_event_context
*ctx
= &cpuctx
->ctx
;
3092 ctx_sched_in(ctx
, cpuctx
, event_type
, task
);
3095 static void perf_event_context_sched_in(struct perf_event_context
*ctx
,
3096 struct task_struct
*task
)
3098 struct perf_cpu_context
*cpuctx
;
3100 cpuctx
= __get_cpu_context(ctx
);
3101 if (cpuctx
->task_ctx
== ctx
)
3104 perf_ctx_lock(cpuctx
, ctx
);
3105 perf_pmu_disable(ctx
->pmu
);
3107 * We want to keep the following priority order:
3108 * cpu pinned (that don't need to move), task pinned,
3109 * cpu flexible, task flexible.
3111 cpu_ctx_sched_out(cpuctx
, EVENT_FLEXIBLE
);
3112 perf_event_sched_in(cpuctx
, ctx
, task
);
3113 perf_pmu_enable(ctx
->pmu
);
3114 perf_ctx_unlock(cpuctx
, ctx
);
3118 * Called from scheduler to add the events of the current task
3119 * with interrupts disabled.
3121 * We restore the event value and then enable it.
3123 * This does not protect us against NMI, but enable()
3124 * sets the enabled bit in the control field of event _before_
3125 * accessing the event control register. If a NMI hits, then it will
3126 * keep the event running.
3128 void __perf_event_task_sched_in(struct task_struct
*prev
,
3129 struct task_struct
*task
)
3131 struct perf_event_context
*ctx
;
3135 * If cgroup events exist on this CPU, then we need to check if we have
3136 * to switch in PMU state; cgroup event are system-wide mode only.
3138 * Since cgroup events are CPU events, we must schedule these in before
3139 * we schedule in the task events.
3141 if (atomic_read(this_cpu_ptr(&perf_cgroup_events
)))
3142 perf_cgroup_sched_in(prev
, task
);
3144 for_each_task_context_nr(ctxn
) {
3145 ctx
= task
->perf_event_ctxp
[ctxn
];
3149 perf_event_context_sched_in(ctx
, task
);
3152 if (atomic_read(&nr_switch_events
))
3153 perf_event_switch(task
, prev
, true);
3155 if (__this_cpu_read(perf_sched_cb_usages
))
3156 perf_pmu_sched_task(prev
, task
, true);
3159 static u64
perf_calculate_period(struct perf_event
*event
, u64 nsec
, u64 count
)
3161 u64 frequency
= event
->attr
.sample_freq
;
3162 u64 sec
= NSEC_PER_SEC
;
3163 u64 divisor
, dividend
;
3165 int count_fls
, nsec_fls
, frequency_fls
, sec_fls
;
3167 count_fls
= fls64(count
);
3168 nsec_fls
= fls64(nsec
);
3169 frequency_fls
= fls64(frequency
);
3173 * We got @count in @nsec, with a target of sample_freq HZ
3174 * the target period becomes:
3177 * period = -------------------
3178 * @nsec * sample_freq
3183 * Reduce accuracy by one bit such that @a and @b converge
3184 * to a similar magnitude.
3186 #define REDUCE_FLS(a, b) \
3188 if (a##_fls > b##_fls) { \
3198 * Reduce accuracy until either term fits in a u64, then proceed with
3199 * the other, so that finally we can do a u64/u64 division.
3201 while (count_fls
+ sec_fls
> 64 && nsec_fls
+ frequency_fls
> 64) {
3202 REDUCE_FLS(nsec
, frequency
);
3203 REDUCE_FLS(sec
, count
);
3206 if (count_fls
+ sec_fls
> 64) {
3207 divisor
= nsec
* frequency
;
3209 while (count_fls
+ sec_fls
> 64) {
3210 REDUCE_FLS(count
, sec
);
3214 dividend
= count
* sec
;
3216 dividend
= count
* sec
;
3218 while (nsec_fls
+ frequency_fls
> 64) {
3219 REDUCE_FLS(nsec
, frequency
);
3223 divisor
= nsec
* frequency
;
3229 return div64_u64(dividend
, divisor
);
3232 static DEFINE_PER_CPU(int, perf_throttled_count
);
3233 static DEFINE_PER_CPU(u64
, perf_throttled_seq
);
3235 static void perf_adjust_period(struct perf_event
*event
, u64 nsec
, u64 count
, bool disable
)
3237 struct hw_perf_event
*hwc
= &event
->hw
;
3238 s64 period
, sample_period
;
3241 period
= perf_calculate_period(event
, nsec
, count
);
3243 delta
= (s64
)(period
- hwc
->sample_period
);
3244 delta
= (delta
+ 7) / 8; /* low pass filter */
3246 sample_period
= hwc
->sample_period
+ delta
;
3251 hwc
->sample_period
= sample_period
;
3253 if (local64_read(&hwc
->period_left
) > 8*sample_period
) {
3255 event
->pmu
->stop(event
, PERF_EF_UPDATE
);
3257 local64_set(&hwc
->period_left
, 0);
3260 event
->pmu
->start(event
, PERF_EF_RELOAD
);
3265 * combine freq adjustment with unthrottling to avoid two passes over the
3266 * events. At the same time, make sure, having freq events does not change
3267 * the rate of unthrottling as that would introduce bias.
3269 static void perf_adjust_freq_unthr_context(struct perf_event_context
*ctx
,
3272 struct perf_event
*event
;
3273 struct hw_perf_event
*hwc
;
3274 u64 now
, period
= TICK_NSEC
;
3278 * only need to iterate over all events iff:
3279 * - context have events in frequency mode (needs freq adjust)
3280 * - there are events to unthrottle on this cpu
3282 if (!(ctx
->nr_freq
|| needs_unthr
))
3285 raw_spin_lock(&ctx
->lock
);
3286 perf_pmu_disable(ctx
->pmu
);
3288 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
3289 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
3292 if (!event_filter_match(event
))
3295 perf_pmu_disable(event
->pmu
);
3299 if (hwc
->interrupts
== MAX_INTERRUPTS
) {
3300 hwc
->interrupts
= 0;
3301 perf_log_throttle(event
, 1);
3302 event
->pmu
->start(event
, 0);
3305 if (!event
->attr
.freq
|| !event
->attr
.sample_freq
)
3309 * stop the event and update event->count
3311 event
->pmu
->stop(event
, PERF_EF_UPDATE
);
3313 now
= local64_read(&event
->count
);
3314 delta
= now
- hwc
->freq_count_stamp
;
3315 hwc
->freq_count_stamp
= now
;
3319 * reload only if value has changed
3320 * we have stopped the event so tell that
3321 * to perf_adjust_period() to avoid stopping it
3325 perf_adjust_period(event
, period
, delta
, false);
3327 event
->pmu
->start(event
, delta
> 0 ? PERF_EF_RELOAD
: 0);
3329 perf_pmu_enable(event
->pmu
);
3332 perf_pmu_enable(ctx
->pmu
);
3333 raw_spin_unlock(&ctx
->lock
);
3337 * Round-robin a context's events:
3339 static void rotate_ctx(struct perf_event_context
*ctx
)
3342 * Rotate the first entry last of non-pinned groups. Rotation might be
3343 * disabled by the inheritance code.
3345 if (!ctx
->rotate_disable
)
3346 list_rotate_left(&ctx
->flexible_groups
);
3349 static int perf_rotate_context(struct perf_cpu_context
*cpuctx
)
3351 struct perf_event_context
*ctx
= NULL
;
3354 if (cpuctx
->ctx
.nr_events
) {
3355 if (cpuctx
->ctx
.nr_events
!= cpuctx
->ctx
.nr_active
)
3359 ctx
= cpuctx
->task_ctx
;
3360 if (ctx
&& ctx
->nr_events
) {
3361 if (ctx
->nr_events
!= ctx
->nr_active
)
3368 perf_ctx_lock(cpuctx
, cpuctx
->task_ctx
);
3369 perf_pmu_disable(cpuctx
->ctx
.pmu
);
3371 cpu_ctx_sched_out(cpuctx
, EVENT_FLEXIBLE
);
3373 ctx_sched_out(ctx
, cpuctx
, EVENT_FLEXIBLE
);
3375 rotate_ctx(&cpuctx
->ctx
);
3379 perf_event_sched_in(cpuctx
, ctx
, current
);
3381 perf_pmu_enable(cpuctx
->ctx
.pmu
);
3382 perf_ctx_unlock(cpuctx
, cpuctx
->task_ctx
);
3388 void perf_event_task_tick(void)
3390 struct list_head
*head
= this_cpu_ptr(&active_ctx_list
);
3391 struct perf_event_context
*ctx
, *tmp
;
3394 WARN_ON(!irqs_disabled());
3396 __this_cpu_inc(perf_throttled_seq
);
3397 throttled
= __this_cpu_xchg(perf_throttled_count
, 0);
3398 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS
);
3400 list_for_each_entry_safe(ctx
, tmp
, head
, active_ctx_list
)
3401 perf_adjust_freq_unthr_context(ctx
, throttled
);
3404 static int event_enable_on_exec(struct perf_event
*event
,
3405 struct perf_event_context
*ctx
)
3407 if (!event
->attr
.enable_on_exec
)
3410 event
->attr
.enable_on_exec
= 0;
3411 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
)
3414 __perf_event_mark_enabled(event
);
3420 * Enable all of a task's events that have been marked enable-on-exec.
3421 * This expects task == current.
3423 static void perf_event_enable_on_exec(int ctxn
)
3425 struct perf_event_context
*ctx
, *clone_ctx
= NULL
;
3426 struct perf_cpu_context
*cpuctx
;
3427 struct perf_event
*event
;
3428 unsigned long flags
;
3431 local_irq_save(flags
);
3432 ctx
= current
->perf_event_ctxp
[ctxn
];
3433 if (!ctx
|| !ctx
->nr_events
)
3436 cpuctx
= __get_cpu_context(ctx
);
3437 perf_ctx_lock(cpuctx
, ctx
);
3438 ctx_sched_out(ctx
, cpuctx
, EVENT_TIME
);
3439 list_for_each_entry(event
, &ctx
->event_list
, event_entry
)
3440 enabled
|= event_enable_on_exec(event
, ctx
);
3443 * Unclone and reschedule this context if we enabled any event.
3446 clone_ctx
= unclone_ctx(ctx
);
3447 ctx_resched(cpuctx
, ctx
);
3449 perf_ctx_unlock(cpuctx
, ctx
);
3452 local_irq_restore(flags
);
3458 struct perf_read_data
{
3459 struct perf_event
*event
;
3464 static int __perf_event_read_cpu(struct perf_event
*event
, int event_cpu
)
3466 u16 local_pkg
, event_pkg
;
3468 if (event
->group_caps
& PERF_EV_CAP_READ_ACTIVE_PKG
) {
3469 int local_cpu
= smp_processor_id();
3471 event_pkg
= topology_physical_package_id(event_cpu
);
3472 local_pkg
= topology_physical_package_id(local_cpu
);
3474 if (event_pkg
== local_pkg
)
3482 * Cross CPU call to read the hardware event
3484 static void __perf_event_read(void *info
)
3486 struct perf_read_data
*data
= info
;
3487 struct perf_event
*sub
, *event
= data
->event
;
3488 struct perf_event_context
*ctx
= event
->ctx
;
3489 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
3490 struct pmu
*pmu
= event
->pmu
;
3493 * If this is a task context, we need to check whether it is
3494 * the current task context of this cpu. If not it has been
3495 * scheduled out before the smp call arrived. In that case
3496 * event->count would have been updated to a recent sample
3497 * when the event was scheduled out.
3499 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
)
3502 raw_spin_lock(&ctx
->lock
);
3503 if (ctx
->is_active
) {
3504 update_context_time(ctx
);
3505 update_cgrp_time_from_event(event
);
3508 update_event_times(event
);
3509 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
3518 pmu
->start_txn(pmu
, PERF_PMU_TXN_READ
);
3522 list_for_each_entry(sub
, &event
->sibling_list
, group_entry
) {
3523 update_event_times(sub
);
3524 if (sub
->state
== PERF_EVENT_STATE_ACTIVE
) {
3526 * Use sibling's PMU rather than @event's since
3527 * sibling could be on different (eg: software) PMU.
3529 sub
->pmu
->read(sub
);
3533 data
->ret
= pmu
->commit_txn(pmu
);
3536 raw_spin_unlock(&ctx
->lock
);
3539 static inline u64
perf_event_count(struct perf_event
*event
)
3541 if (event
->pmu
->count
)
3542 return event
->pmu
->count(event
);
3544 return __perf_event_count(event
);
3548 * NMI-safe method to read a local event, that is an event that
3550 * - either for the current task, or for this CPU
3551 * - does not have inherit set, for inherited task events
3552 * will not be local and we cannot read them atomically
3553 * - must not have a pmu::count method
3555 u64
perf_event_read_local(struct perf_event
*event
)
3557 unsigned long flags
;
3561 * Disabling interrupts avoids all counter scheduling (context
3562 * switches, timer based rotation and IPIs).
3564 local_irq_save(flags
);
3566 /* If this is a per-task event, it must be for current */
3567 WARN_ON_ONCE((event
->attach_state
& PERF_ATTACH_TASK
) &&
3568 event
->hw
.target
!= current
);
3570 /* If this is a per-CPU event, it must be for this CPU */
3571 WARN_ON_ONCE(!(event
->attach_state
& PERF_ATTACH_TASK
) &&
3572 event
->cpu
!= smp_processor_id());
3575 * It must not be an event with inherit set, we cannot read
3576 * all child counters from atomic context.
3578 WARN_ON_ONCE(event
->attr
.inherit
);
3581 * It must not have a pmu::count method, those are not
3584 WARN_ON_ONCE(event
->pmu
->count
);
3587 * If the event is currently on this CPU, its either a per-task event,
3588 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3591 if (event
->oncpu
== smp_processor_id())
3592 event
->pmu
->read(event
);
3594 val
= local64_read(&event
->count
);
3595 local_irq_restore(flags
);
3600 static int perf_event_read(struct perf_event
*event
, bool group
)
3602 int event_cpu
, ret
= 0;
3605 * If event is enabled and currently active on a CPU, update the
3606 * value in the event structure:
3608 if (event
->state
== PERF_EVENT_STATE_ACTIVE
) {
3609 struct perf_read_data data
= {
3615 event_cpu
= READ_ONCE(event
->oncpu
);
3616 if ((unsigned)event_cpu
>= nr_cpu_ids
)
3620 event_cpu
= __perf_event_read_cpu(event
, event_cpu
);
3623 * Purposely ignore the smp_call_function_single() return
3626 * If event_cpu isn't a valid CPU it means the event got
3627 * scheduled out and that will have updated the event count.
3629 * Therefore, either way, we'll have an up-to-date event count
3632 (void)smp_call_function_single(event_cpu
, __perf_event_read
, &data
, 1);
3635 } else if (event
->state
== PERF_EVENT_STATE_INACTIVE
) {
3636 struct perf_event_context
*ctx
= event
->ctx
;
3637 unsigned long flags
;
3639 raw_spin_lock_irqsave(&ctx
->lock
, flags
);
3641 * may read while context is not active
3642 * (e.g., thread is blocked), in that case
3643 * we cannot update context time
3645 if (ctx
->is_active
) {
3646 update_context_time(ctx
);
3647 update_cgrp_time_from_event(event
);
3650 update_group_times(event
);
3652 update_event_times(event
);
3653 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
3660 * Initialize the perf_event context in a task_struct:
3662 static void __perf_event_init_context(struct perf_event_context
*ctx
)
3664 raw_spin_lock_init(&ctx
->lock
);
3665 mutex_init(&ctx
->mutex
);
3666 INIT_LIST_HEAD(&ctx
->active_ctx_list
);
3667 INIT_LIST_HEAD(&ctx
->pinned_groups
);
3668 INIT_LIST_HEAD(&ctx
->flexible_groups
);
3669 INIT_LIST_HEAD(&ctx
->event_list
);
3670 atomic_set(&ctx
->refcount
, 1);
3673 static struct perf_event_context
*
3674 alloc_perf_context(struct pmu
*pmu
, struct task_struct
*task
)
3676 struct perf_event_context
*ctx
;
3678 ctx
= kzalloc(sizeof(struct perf_event_context
), GFP_KERNEL
);
3682 __perf_event_init_context(ctx
);
3685 get_task_struct(task
);
3692 static struct task_struct
*
3693 find_lively_task_by_vpid(pid_t vpid
)
3695 struct task_struct
*task
;
3701 task
= find_task_by_vpid(vpid
);
3703 get_task_struct(task
);
3707 return ERR_PTR(-ESRCH
);
3713 * Returns a matching context with refcount and pincount.
3715 static struct perf_event_context
*
3716 find_get_context(struct pmu
*pmu
, struct task_struct
*task
,
3717 struct perf_event
*event
)
3719 struct perf_event_context
*ctx
, *clone_ctx
= NULL
;
3720 struct perf_cpu_context
*cpuctx
;
3721 void *task_ctx_data
= NULL
;
3722 unsigned long flags
;
3724 int cpu
= event
->cpu
;
3727 /* Must be root to operate on a CPU event: */
3728 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN
))
3729 return ERR_PTR(-EACCES
);
3732 * We could be clever and allow to attach a event to an
3733 * offline CPU and activate it when the CPU comes up, but
3736 if (!cpu_online(cpu
))
3737 return ERR_PTR(-ENODEV
);
3739 cpuctx
= per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
);
3748 ctxn
= pmu
->task_ctx_nr
;
3752 if (event
->attach_state
& PERF_ATTACH_TASK_DATA
) {
3753 task_ctx_data
= kzalloc(pmu
->task_ctx_size
, GFP_KERNEL
);
3754 if (!task_ctx_data
) {
3761 ctx
= perf_lock_task_context(task
, ctxn
, &flags
);
3763 clone_ctx
= unclone_ctx(ctx
);
3766 if (task_ctx_data
&& !ctx
->task_ctx_data
) {
3767 ctx
->task_ctx_data
= task_ctx_data
;
3768 task_ctx_data
= NULL
;
3770 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
3775 ctx
= alloc_perf_context(pmu
, task
);
3780 if (task_ctx_data
) {
3781 ctx
->task_ctx_data
= task_ctx_data
;
3782 task_ctx_data
= NULL
;
3786 mutex_lock(&task
->perf_event_mutex
);
3788 * If it has already passed perf_event_exit_task().
3789 * we must see PF_EXITING, it takes this mutex too.
3791 if (task
->flags
& PF_EXITING
)
3793 else if (task
->perf_event_ctxp
[ctxn
])
3798 rcu_assign_pointer(task
->perf_event_ctxp
[ctxn
], ctx
);
3800 mutex_unlock(&task
->perf_event_mutex
);
3802 if (unlikely(err
)) {
3811 kfree(task_ctx_data
);
3815 kfree(task_ctx_data
);
3816 return ERR_PTR(err
);
3819 static void perf_event_free_filter(struct perf_event
*event
);
3820 static void perf_event_free_bpf_prog(struct perf_event
*event
);
3822 static void free_event_rcu(struct rcu_head
*head
)
3824 struct perf_event
*event
;
3826 event
= container_of(head
, struct perf_event
, rcu_head
);
3828 put_pid_ns(event
->ns
);
3829 perf_event_free_filter(event
);
3833 static void ring_buffer_attach(struct perf_event
*event
,
3834 struct ring_buffer
*rb
);
3836 static void detach_sb_event(struct perf_event
*event
)
3838 struct pmu_event_list
*pel
= per_cpu_ptr(&pmu_sb_events
, event
->cpu
);
3840 raw_spin_lock(&pel
->lock
);
3841 list_del_rcu(&event
->sb_list
);
3842 raw_spin_unlock(&pel
->lock
);
3845 static bool is_sb_event(struct perf_event
*event
)
3847 struct perf_event_attr
*attr
= &event
->attr
;
3852 if (event
->attach_state
& PERF_ATTACH_TASK
)
3855 if (attr
->mmap
|| attr
->mmap_data
|| attr
->mmap2
||
3856 attr
->comm
|| attr
->comm_exec
||
3858 attr
->context_switch
)
3863 static void unaccount_pmu_sb_event(struct perf_event
*event
)
3865 if (is_sb_event(event
))
3866 detach_sb_event(event
);
3869 static void unaccount_event_cpu(struct perf_event
*event
, int cpu
)
3874 if (is_cgroup_event(event
))
3875 atomic_dec(&per_cpu(perf_cgroup_events
, cpu
));
3878 #ifdef CONFIG_NO_HZ_FULL
3879 static DEFINE_SPINLOCK(nr_freq_lock
);
3882 static void unaccount_freq_event_nohz(void)
3884 #ifdef CONFIG_NO_HZ_FULL
3885 spin_lock(&nr_freq_lock
);
3886 if (atomic_dec_and_test(&nr_freq_events
))
3887 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS
);
3888 spin_unlock(&nr_freq_lock
);
3892 static void unaccount_freq_event(void)
3894 if (tick_nohz_full_enabled())
3895 unaccount_freq_event_nohz();
3897 atomic_dec(&nr_freq_events
);
3900 static void unaccount_event(struct perf_event
*event
)
3907 if (event
->attach_state
& PERF_ATTACH_TASK
)
3909 if (event
->attr
.mmap
|| event
->attr
.mmap_data
)
3910 atomic_dec(&nr_mmap_events
);
3911 if (event
->attr
.comm
)
3912 atomic_dec(&nr_comm_events
);
3913 if (event
->attr
.task
)
3914 atomic_dec(&nr_task_events
);
3915 if (event
->attr
.freq
)
3916 unaccount_freq_event();
3917 if (event
->attr
.context_switch
) {
3919 atomic_dec(&nr_switch_events
);
3921 if (is_cgroup_event(event
))
3923 if (has_branch_stack(event
))
3927 if (!atomic_add_unless(&perf_sched_count
, -1, 1))
3928 schedule_delayed_work(&perf_sched_work
, HZ
);
3931 unaccount_event_cpu(event
, event
->cpu
);
3933 unaccount_pmu_sb_event(event
);
3936 static void perf_sched_delayed(struct work_struct
*work
)
3938 mutex_lock(&perf_sched_mutex
);
3939 if (atomic_dec_and_test(&perf_sched_count
))
3940 static_branch_disable(&perf_sched_events
);
3941 mutex_unlock(&perf_sched_mutex
);
3945 * The following implement mutual exclusion of events on "exclusive" pmus
3946 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3947 * at a time, so we disallow creating events that might conflict, namely:
3949 * 1) cpu-wide events in the presence of per-task events,
3950 * 2) per-task events in the presence of cpu-wide events,
3951 * 3) two matching events on the same context.
3953 * The former two cases are handled in the allocation path (perf_event_alloc(),
3954 * _free_event()), the latter -- before the first perf_install_in_context().
3956 static int exclusive_event_init(struct perf_event
*event
)
3958 struct pmu
*pmu
= event
->pmu
;
3960 if (!(pmu
->capabilities
& PERF_PMU_CAP_EXCLUSIVE
))
3964 * Prevent co-existence of per-task and cpu-wide events on the
3965 * same exclusive pmu.
3967 * Negative pmu::exclusive_cnt means there are cpu-wide
3968 * events on this "exclusive" pmu, positive means there are
3971 * Since this is called in perf_event_alloc() path, event::ctx
3972 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3973 * to mean "per-task event", because unlike other attach states it
3974 * never gets cleared.
3976 if (event
->attach_state
& PERF_ATTACH_TASK
) {
3977 if (!atomic_inc_unless_negative(&pmu
->exclusive_cnt
))
3980 if (!atomic_dec_unless_positive(&pmu
->exclusive_cnt
))
3987 static void exclusive_event_destroy(struct perf_event
*event
)
3989 struct pmu
*pmu
= event
->pmu
;
3991 if (!(pmu
->capabilities
& PERF_PMU_CAP_EXCLUSIVE
))
3994 /* see comment in exclusive_event_init() */
3995 if (event
->attach_state
& PERF_ATTACH_TASK
)
3996 atomic_dec(&pmu
->exclusive_cnt
);
3998 atomic_inc(&pmu
->exclusive_cnt
);
4001 static bool exclusive_event_match(struct perf_event
*e1
, struct perf_event
*e2
)
4003 if ((e1
->pmu
== e2
->pmu
) &&
4004 (e1
->cpu
== e2
->cpu
||
4011 /* Called under the same ctx::mutex as perf_install_in_context() */
4012 static bool exclusive_event_installable(struct perf_event
*event
,
4013 struct perf_event_context
*ctx
)
4015 struct perf_event
*iter_event
;
4016 struct pmu
*pmu
= event
->pmu
;
4018 if (!(pmu
->capabilities
& PERF_PMU_CAP_EXCLUSIVE
))
4021 list_for_each_entry(iter_event
, &ctx
->event_list
, event_entry
) {
4022 if (exclusive_event_match(iter_event
, event
))
4029 static void perf_addr_filters_splice(struct perf_event
*event
,
4030 struct list_head
*head
);
4032 static void _free_event(struct perf_event
*event
)
4034 irq_work_sync(&event
->pending
);
4036 unaccount_event(event
);
4040 * Can happen when we close an event with re-directed output.
4042 * Since we have a 0 refcount, perf_mmap_close() will skip
4043 * over us; possibly making our ring_buffer_put() the last.
4045 mutex_lock(&event
->mmap_mutex
);
4046 ring_buffer_attach(event
, NULL
);
4047 mutex_unlock(&event
->mmap_mutex
);
4050 if (is_cgroup_event(event
))
4051 perf_detach_cgroup(event
);
4053 if (!event
->parent
) {
4054 if (event
->attr
.sample_type
& PERF_SAMPLE_CALLCHAIN
)
4055 put_callchain_buffers();
4058 perf_event_free_bpf_prog(event
);
4059 perf_addr_filters_splice(event
, NULL
);
4060 kfree(event
->addr_filters_offs
);
4063 event
->destroy(event
);
4066 put_ctx(event
->ctx
);
4068 exclusive_event_destroy(event
);
4069 module_put(event
->pmu
->module
);
4071 call_rcu(&event
->rcu_head
, free_event_rcu
);
4075 * Used to free events which have a known refcount of 1, such as in error paths
4076 * where the event isn't exposed yet and inherited events.
4078 static void free_event(struct perf_event
*event
)
4080 if (WARN(atomic_long_cmpxchg(&event
->refcount
, 1, 0) != 1,
4081 "unexpected event refcount: %ld; ptr=%p\n",
4082 atomic_long_read(&event
->refcount
), event
)) {
4083 /* leak to avoid use-after-free */
4091 * Remove user event from the owner task.
4093 static void perf_remove_from_owner(struct perf_event
*event
)
4095 struct task_struct
*owner
;
4099 * Matches the smp_store_release() in perf_event_exit_task(). If we
4100 * observe !owner it means the list deletion is complete and we can
4101 * indeed free this event, otherwise we need to serialize on
4102 * owner->perf_event_mutex.
4104 owner
= lockless_dereference(event
->owner
);
4107 * Since delayed_put_task_struct() also drops the last
4108 * task reference we can safely take a new reference
4109 * while holding the rcu_read_lock().
4111 get_task_struct(owner
);
4117 * If we're here through perf_event_exit_task() we're already
4118 * holding ctx->mutex which would be an inversion wrt. the
4119 * normal lock order.
4121 * However we can safely take this lock because its the child
4124 mutex_lock_nested(&owner
->perf_event_mutex
, SINGLE_DEPTH_NESTING
);
4127 * We have to re-check the event->owner field, if it is cleared
4128 * we raced with perf_event_exit_task(), acquiring the mutex
4129 * ensured they're done, and we can proceed with freeing the
4133 list_del_init(&event
->owner_entry
);
4134 smp_store_release(&event
->owner
, NULL
);
4136 mutex_unlock(&owner
->perf_event_mutex
);
4137 put_task_struct(owner
);
4141 static void put_event(struct perf_event
*event
)
4143 if (!atomic_long_dec_and_test(&event
->refcount
))
4150 * Kill an event dead; while event:refcount will preserve the event
4151 * object, it will not preserve its functionality. Once the last 'user'
4152 * gives up the object, we'll destroy the thing.
4154 int perf_event_release_kernel(struct perf_event
*event
)
4156 struct perf_event_context
*ctx
= event
->ctx
;
4157 struct perf_event
*child
, *tmp
;
4160 * If we got here through err_file: fput(event_file); we will not have
4161 * attached to a context yet.
4164 WARN_ON_ONCE(event
->attach_state
&
4165 (PERF_ATTACH_CONTEXT
|PERF_ATTACH_GROUP
));
4169 if (!is_kernel_event(event
))
4170 perf_remove_from_owner(event
);
4172 ctx
= perf_event_ctx_lock(event
);
4173 WARN_ON_ONCE(ctx
->parent_ctx
);
4174 perf_remove_from_context(event
, DETACH_GROUP
);
4176 raw_spin_lock_irq(&ctx
->lock
);
4178 * Mark this even as STATE_DEAD, there is no external reference to it
4181 * Anybody acquiring event->child_mutex after the below loop _must_
4182 * also see this, most importantly inherit_event() which will avoid
4183 * placing more children on the list.
4185 * Thus this guarantees that we will in fact observe and kill _ALL_
4188 event
->state
= PERF_EVENT_STATE_DEAD
;
4189 raw_spin_unlock_irq(&ctx
->lock
);
4191 perf_event_ctx_unlock(event
, ctx
);
4194 mutex_lock(&event
->child_mutex
);
4195 list_for_each_entry(child
, &event
->child_list
, child_list
) {
4198 * Cannot change, child events are not migrated, see the
4199 * comment with perf_event_ctx_lock_nested().
4201 ctx
= lockless_dereference(child
->ctx
);
4203 * Since child_mutex nests inside ctx::mutex, we must jump
4204 * through hoops. We start by grabbing a reference on the ctx.
4206 * Since the event cannot get freed while we hold the
4207 * child_mutex, the context must also exist and have a !0
4213 * Now that we have a ctx ref, we can drop child_mutex, and
4214 * acquire ctx::mutex without fear of it going away. Then we
4215 * can re-acquire child_mutex.
4217 mutex_unlock(&event
->child_mutex
);
4218 mutex_lock(&ctx
->mutex
);
4219 mutex_lock(&event
->child_mutex
);
4222 * Now that we hold ctx::mutex and child_mutex, revalidate our
4223 * state, if child is still the first entry, it didn't get freed
4224 * and we can continue doing so.
4226 tmp
= list_first_entry_or_null(&event
->child_list
,
4227 struct perf_event
, child_list
);
4229 perf_remove_from_context(child
, DETACH_GROUP
);
4230 list_del(&child
->child_list
);
4233 * This matches the refcount bump in inherit_event();
4234 * this can't be the last reference.
4239 mutex_unlock(&event
->child_mutex
);
4240 mutex_unlock(&ctx
->mutex
);
4244 mutex_unlock(&event
->child_mutex
);
4247 put_event(event
); /* Must be the 'last' reference */
4250 EXPORT_SYMBOL_GPL(perf_event_release_kernel
);
4253 * Called when the last reference to the file is gone.
4255 static int perf_release(struct inode
*inode
, struct file
*file
)
4257 perf_event_release_kernel(file
->private_data
);
4261 u64
perf_event_read_value(struct perf_event
*event
, u64
*enabled
, u64
*running
)
4263 struct perf_event
*child
;
4269 mutex_lock(&event
->child_mutex
);
4271 (void)perf_event_read(event
, false);
4272 total
+= perf_event_count(event
);
4274 *enabled
+= event
->total_time_enabled
+
4275 atomic64_read(&event
->child_total_time_enabled
);
4276 *running
+= event
->total_time_running
+
4277 atomic64_read(&event
->child_total_time_running
);
4279 list_for_each_entry(child
, &event
->child_list
, child_list
) {
4280 (void)perf_event_read(child
, false);
4281 total
+= perf_event_count(child
);
4282 *enabled
+= child
->total_time_enabled
;
4283 *running
+= child
->total_time_running
;
4285 mutex_unlock(&event
->child_mutex
);
4289 EXPORT_SYMBOL_GPL(perf_event_read_value
);
4291 static int __perf_read_group_add(struct perf_event
*leader
,
4292 u64 read_format
, u64
*values
)
4294 struct perf_event
*sub
;
4295 int n
= 1; /* skip @nr */
4298 ret
= perf_event_read(leader
, true);
4303 * Since we co-schedule groups, {enabled,running} times of siblings
4304 * will be identical to those of the leader, so we only publish one
4307 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
) {
4308 values
[n
++] += leader
->total_time_enabled
+
4309 atomic64_read(&leader
->child_total_time_enabled
);
4312 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
) {
4313 values
[n
++] += leader
->total_time_running
+
4314 atomic64_read(&leader
->child_total_time_running
);
4318 * Write {count,id} tuples for every sibling.
4320 values
[n
++] += perf_event_count(leader
);
4321 if (read_format
& PERF_FORMAT_ID
)
4322 values
[n
++] = primary_event_id(leader
);
4324 list_for_each_entry(sub
, &leader
->sibling_list
, group_entry
) {
4325 values
[n
++] += perf_event_count(sub
);
4326 if (read_format
& PERF_FORMAT_ID
)
4327 values
[n
++] = primary_event_id(sub
);
4333 static int perf_read_group(struct perf_event
*event
,
4334 u64 read_format
, char __user
*buf
)
4336 struct perf_event
*leader
= event
->group_leader
, *child
;
4337 struct perf_event_context
*ctx
= leader
->ctx
;
4341 lockdep_assert_held(&ctx
->mutex
);
4343 values
= kzalloc(event
->read_size
, GFP_KERNEL
);
4347 values
[0] = 1 + leader
->nr_siblings
;
4350 * By locking the child_mutex of the leader we effectively
4351 * lock the child list of all siblings.. XXX explain how.
4353 mutex_lock(&leader
->child_mutex
);
4355 ret
= __perf_read_group_add(leader
, read_format
, values
);
4359 list_for_each_entry(child
, &leader
->child_list
, child_list
) {
4360 ret
= __perf_read_group_add(child
, read_format
, values
);
4365 mutex_unlock(&leader
->child_mutex
);
4367 ret
= event
->read_size
;
4368 if (copy_to_user(buf
, values
, event
->read_size
))
4373 mutex_unlock(&leader
->child_mutex
);
4379 static int perf_read_one(struct perf_event
*event
,
4380 u64 read_format
, char __user
*buf
)
4382 u64 enabled
, running
;
4386 values
[n
++] = perf_event_read_value(event
, &enabled
, &running
);
4387 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
4388 values
[n
++] = enabled
;
4389 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
4390 values
[n
++] = running
;
4391 if (read_format
& PERF_FORMAT_ID
)
4392 values
[n
++] = primary_event_id(event
);
4394 if (copy_to_user(buf
, values
, n
* sizeof(u64
)))
4397 return n
* sizeof(u64
);
4400 static bool is_event_hup(struct perf_event
*event
)
4404 if (event
->state
> PERF_EVENT_STATE_EXIT
)
4407 mutex_lock(&event
->child_mutex
);
4408 no_children
= list_empty(&event
->child_list
);
4409 mutex_unlock(&event
->child_mutex
);
4414 * Read the performance event - simple non blocking version for now
4417 __perf_read(struct perf_event
*event
, char __user
*buf
, size_t count
)
4419 u64 read_format
= event
->attr
.read_format
;
4423 * Return end-of-file for a read on a event that is in
4424 * error state (i.e. because it was pinned but it couldn't be
4425 * scheduled on to the CPU at some point).
4427 if (event
->state
== PERF_EVENT_STATE_ERROR
)
4430 if (count
< event
->read_size
)
4433 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
4434 if (read_format
& PERF_FORMAT_GROUP
)
4435 ret
= perf_read_group(event
, read_format
, buf
);
4437 ret
= perf_read_one(event
, read_format
, buf
);
4443 perf_read(struct file
*file
, char __user
*buf
, size_t count
, loff_t
*ppos
)
4445 struct perf_event
*event
= file
->private_data
;
4446 struct perf_event_context
*ctx
;
4449 ctx
= perf_event_ctx_lock(event
);
4450 ret
= __perf_read(event
, buf
, count
);
4451 perf_event_ctx_unlock(event
, ctx
);
4456 static unsigned int perf_poll(struct file
*file
, poll_table
*wait
)
4458 struct perf_event
*event
= file
->private_data
;
4459 struct ring_buffer
*rb
;
4460 unsigned int events
= POLLHUP
;
4462 poll_wait(file
, &event
->waitq
, wait
);
4464 if (is_event_hup(event
))
4468 * Pin the event->rb by taking event->mmap_mutex; otherwise
4469 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4471 mutex_lock(&event
->mmap_mutex
);
4474 events
= atomic_xchg(&rb
->poll
, 0);
4475 mutex_unlock(&event
->mmap_mutex
);
4479 static void _perf_event_reset(struct perf_event
*event
)
4481 (void)perf_event_read(event
, false);
4482 local64_set(&event
->count
, 0);
4483 perf_event_update_userpage(event
);
4487 * Holding the top-level event's child_mutex means that any
4488 * descendant process that has inherited this event will block
4489 * in perf_event_exit_event() if it goes to exit, thus satisfying the
4490 * task existence requirements of perf_event_enable/disable.
4492 static void perf_event_for_each_child(struct perf_event
*event
,
4493 void (*func
)(struct perf_event
*))
4495 struct perf_event
*child
;
4497 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
4499 mutex_lock(&event
->child_mutex
);
4501 list_for_each_entry(child
, &event
->child_list
, child_list
)
4503 mutex_unlock(&event
->child_mutex
);
4506 static void perf_event_for_each(struct perf_event
*event
,
4507 void (*func
)(struct perf_event
*))
4509 struct perf_event_context
*ctx
= event
->ctx
;
4510 struct perf_event
*sibling
;
4512 lockdep_assert_held(&ctx
->mutex
);
4514 event
= event
->group_leader
;
4516 perf_event_for_each_child(event
, func
);
4517 list_for_each_entry(sibling
, &event
->sibling_list
, group_entry
)
4518 perf_event_for_each_child(sibling
, func
);
4521 static void __perf_event_period(struct perf_event
*event
,
4522 struct perf_cpu_context
*cpuctx
,
4523 struct perf_event_context
*ctx
,
4526 u64 value
= *((u64
*)info
);
4529 if (event
->attr
.freq
) {
4530 event
->attr
.sample_freq
= value
;
4532 event
->attr
.sample_period
= value
;
4533 event
->hw
.sample_period
= value
;
4536 active
= (event
->state
== PERF_EVENT_STATE_ACTIVE
);
4538 perf_pmu_disable(ctx
->pmu
);
4540 * We could be throttled; unthrottle now to avoid the tick
4541 * trying to unthrottle while we already re-started the event.
4543 if (event
->hw
.interrupts
== MAX_INTERRUPTS
) {
4544 event
->hw
.interrupts
= 0;
4545 perf_log_throttle(event
, 1);
4547 event
->pmu
->stop(event
, PERF_EF_UPDATE
);
4550 local64_set(&event
->hw
.period_left
, 0);
4553 event
->pmu
->start(event
, PERF_EF_RELOAD
);
4554 perf_pmu_enable(ctx
->pmu
);
4558 static int perf_event_period(struct perf_event
*event
, u64 __user
*arg
)
4562 if (!is_sampling_event(event
))
4565 if (copy_from_user(&value
, arg
, sizeof(value
)))
4571 if (event
->attr
.freq
&& value
> sysctl_perf_event_sample_rate
)
4574 event_function_call(event
, __perf_event_period
, &value
);
4579 static const struct file_operations perf_fops
;
4581 static inline int perf_fget_light(int fd
, struct fd
*p
)
4583 struct fd f
= fdget(fd
);
4587 if (f
.file
->f_op
!= &perf_fops
) {
4595 static int perf_event_set_output(struct perf_event
*event
,
4596 struct perf_event
*output_event
);
4597 static int perf_event_set_filter(struct perf_event
*event
, void __user
*arg
);
4598 static int perf_event_set_bpf_prog(struct perf_event
*event
, u32 prog_fd
);
4600 static long _perf_ioctl(struct perf_event
*event
, unsigned int cmd
, unsigned long arg
)
4602 void (*func
)(struct perf_event
*);
4606 case PERF_EVENT_IOC_ENABLE
:
4607 func
= _perf_event_enable
;
4609 case PERF_EVENT_IOC_DISABLE
:
4610 func
= _perf_event_disable
;
4612 case PERF_EVENT_IOC_RESET
:
4613 func
= _perf_event_reset
;
4616 case PERF_EVENT_IOC_REFRESH
:
4617 return _perf_event_refresh(event
, arg
);
4619 case PERF_EVENT_IOC_PERIOD
:
4620 return perf_event_period(event
, (u64 __user
*)arg
);
4622 case PERF_EVENT_IOC_ID
:
4624 u64 id
= primary_event_id(event
);
4626 if (copy_to_user((void __user
*)arg
, &id
, sizeof(id
)))
4631 case PERF_EVENT_IOC_SET_OUTPUT
:
4635 struct perf_event
*output_event
;
4637 ret
= perf_fget_light(arg
, &output
);
4640 output_event
= output
.file
->private_data
;
4641 ret
= perf_event_set_output(event
, output_event
);
4644 ret
= perf_event_set_output(event
, NULL
);
4649 case PERF_EVENT_IOC_SET_FILTER
:
4650 return perf_event_set_filter(event
, (void __user
*)arg
);
4652 case PERF_EVENT_IOC_SET_BPF
:
4653 return perf_event_set_bpf_prog(event
, arg
);
4655 case PERF_EVENT_IOC_PAUSE_OUTPUT
: {
4656 struct ring_buffer
*rb
;
4659 rb
= rcu_dereference(event
->rb
);
4660 if (!rb
|| !rb
->nr_pages
) {
4664 rb_toggle_paused(rb
, !!arg
);
4672 if (flags
& PERF_IOC_FLAG_GROUP
)
4673 perf_event_for_each(event
, func
);
4675 perf_event_for_each_child(event
, func
);
4680 static long perf_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
)
4682 struct perf_event
*event
= file
->private_data
;
4683 struct perf_event_context
*ctx
;
4686 ctx
= perf_event_ctx_lock(event
);
4687 ret
= _perf_ioctl(event
, cmd
, arg
);
4688 perf_event_ctx_unlock(event
, ctx
);
4693 #ifdef CONFIG_COMPAT
4694 static long perf_compat_ioctl(struct file
*file
, unsigned int cmd
,
4697 switch (_IOC_NR(cmd
)) {
4698 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER
):
4699 case _IOC_NR(PERF_EVENT_IOC_ID
):
4700 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4701 if (_IOC_SIZE(cmd
) == sizeof(compat_uptr_t
)) {
4702 cmd
&= ~IOCSIZE_MASK
;
4703 cmd
|= sizeof(void *) << IOCSIZE_SHIFT
;
4707 return perf_ioctl(file
, cmd
, arg
);
4710 # define perf_compat_ioctl NULL
4713 int perf_event_task_enable(void)
4715 struct perf_event_context
*ctx
;
4716 struct perf_event
*event
;
4718 mutex_lock(¤t
->perf_event_mutex
);
4719 list_for_each_entry(event
, ¤t
->perf_event_list
, owner_entry
) {
4720 ctx
= perf_event_ctx_lock(event
);
4721 perf_event_for_each_child(event
, _perf_event_enable
);
4722 perf_event_ctx_unlock(event
, ctx
);
4724 mutex_unlock(¤t
->perf_event_mutex
);
4729 int perf_event_task_disable(void)
4731 struct perf_event_context
*ctx
;
4732 struct perf_event
*event
;
4734 mutex_lock(¤t
->perf_event_mutex
);
4735 list_for_each_entry(event
, ¤t
->perf_event_list
, owner_entry
) {
4736 ctx
= perf_event_ctx_lock(event
);
4737 perf_event_for_each_child(event
, _perf_event_disable
);
4738 perf_event_ctx_unlock(event
, ctx
);
4740 mutex_unlock(¤t
->perf_event_mutex
);
4745 static int perf_event_index(struct perf_event
*event
)
4747 if (event
->hw
.state
& PERF_HES_STOPPED
)
4750 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
4753 return event
->pmu
->event_idx(event
);
4756 static void calc_timer_values(struct perf_event
*event
,
4763 *now
= perf_clock();
4764 ctx_time
= event
->shadow_ctx_time
+ *now
;
4765 *enabled
= ctx_time
- event
->tstamp_enabled
;
4766 *running
= ctx_time
- event
->tstamp_running
;
4769 static void perf_event_init_userpage(struct perf_event
*event
)
4771 struct perf_event_mmap_page
*userpg
;
4772 struct ring_buffer
*rb
;
4775 rb
= rcu_dereference(event
->rb
);
4779 userpg
= rb
->user_page
;
4781 /* Allow new userspace to detect that bit 0 is deprecated */
4782 userpg
->cap_bit0_is_deprecated
= 1;
4783 userpg
->size
= offsetof(struct perf_event_mmap_page
, __reserved
);
4784 userpg
->data_offset
= PAGE_SIZE
;
4785 userpg
->data_size
= perf_data_size(rb
);
4791 void __weak
arch_perf_update_userpage(
4792 struct perf_event
*event
, struct perf_event_mmap_page
*userpg
, u64 now
)
4797 * Callers need to ensure there can be no nesting of this function, otherwise
4798 * the seqlock logic goes bad. We can not serialize this because the arch
4799 * code calls this from NMI context.
4801 void perf_event_update_userpage(struct perf_event
*event
)
4803 struct perf_event_mmap_page
*userpg
;
4804 struct ring_buffer
*rb
;
4805 u64 enabled
, running
, now
;
4808 rb
= rcu_dereference(event
->rb
);
4813 * compute total_time_enabled, total_time_running
4814 * based on snapshot values taken when the event
4815 * was last scheduled in.
4817 * we cannot simply called update_context_time()
4818 * because of locking issue as we can be called in
4821 calc_timer_values(event
, &now
, &enabled
, &running
);
4823 userpg
= rb
->user_page
;
4825 * Disable preemption so as to not let the corresponding user-space
4826 * spin too long if we get preempted.
4831 userpg
->index
= perf_event_index(event
);
4832 userpg
->offset
= perf_event_count(event
);
4834 userpg
->offset
-= local64_read(&event
->hw
.prev_count
);
4836 userpg
->time_enabled
= enabled
+
4837 atomic64_read(&event
->child_total_time_enabled
);
4839 userpg
->time_running
= running
+
4840 atomic64_read(&event
->child_total_time_running
);
4842 arch_perf_update_userpage(event
, userpg
, now
);
4851 static int perf_mmap_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
4853 struct perf_event
*event
= vma
->vm_file
->private_data
;
4854 struct ring_buffer
*rb
;
4855 int ret
= VM_FAULT_SIGBUS
;
4857 if (vmf
->flags
& FAULT_FLAG_MKWRITE
) {
4858 if (vmf
->pgoff
== 0)
4864 rb
= rcu_dereference(event
->rb
);
4868 if (vmf
->pgoff
&& (vmf
->flags
& FAULT_FLAG_WRITE
))
4871 vmf
->page
= perf_mmap_to_page(rb
, vmf
->pgoff
);
4875 get_page(vmf
->page
);
4876 vmf
->page
->mapping
= vma
->vm_file
->f_mapping
;
4877 vmf
->page
->index
= vmf
->pgoff
;
4886 static void ring_buffer_attach(struct perf_event
*event
,
4887 struct ring_buffer
*rb
)
4889 struct ring_buffer
*old_rb
= NULL
;
4890 unsigned long flags
;
4894 * Should be impossible, we set this when removing
4895 * event->rb_entry and wait/clear when adding event->rb_entry.
4897 WARN_ON_ONCE(event
->rcu_pending
);
4900 spin_lock_irqsave(&old_rb
->event_lock
, flags
);
4901 list_del_rcu(&event
->rb_entry
);
4902 spin_unlock_irqrestore(&old_rb
->event_lock
, flags
);
4904 event
->rcu_batches
= get_state_synchronize_rcu();
4905 event
->rcu_pending
= 1;
4909 if (event
->rcu_pending
) {
4910 cond_synchronize_rcu(event
->rcu_batches
);
4911 event
->rcu_pending
= 0;
4914 spin_lock_irqsave(&rb
->event_lock
, flags
);
4915 list_add_rcu(&event
->rb_entry
, &rb
->event_list
);
4916 spin_unlock_irqrestore(&rb
->event_lock
, flags
);
4920 * Avoid racing with perf_mmap_close(AUX): stop the event
4921 * before swizzling the event::rb pointer; if it's getting
4922 * unmapped, its aux_mmap_count will be 0 and it won't
4923 * restart. See the comment in __perf_pmu_output_stop().
4925 * Data will inevitably be lost when set_output is done in
4926 * mid-air, but then again, whoever does it like this is
4927 * not in for the data anyway.
4930 perf_event_stop(event
, 0);
4932 rcu_assign_pointer(event
->rb
, rb
);
4935 ring_buffer_put(old_rb
);
4937 * Since we detached before setting the new rb, so that we
4938 * could attach the new rb, we could have missed a wakeup.
4941 wake_up_all(&event
->waitq
);
4945 static void ring_buffer_wakeup(struct perf_event
*event
)
4947 struct ring_buffer
*rb
;
4950 rb
= rcu_dereference(event
->rb
);
4952 list_for_each_entry_rcu(event
, &rb
->event_list
, rb_entry
)
4953 wake_up_all(&event
->waitq
);
4958 struct ring_buffer
*ring_buffer_get(struct perf_event
*event
)
4960 struct ring_buffer
*rb
;
4963 rb
= rcu_dereference(event
->rb
);
4965 if (!atomic_inc_not_zero(&rb
->refcount
))
4973 void ring_buffer_put(struct ring_buffer
*rb
)
4975 if (!atomic_dec_and_test(&rb
->refcount
))
4978 WARN_ON_ONCE(!list_empty(&rb
->event_list
));
4980 call_rcu(&rb
->rcu_head
, rb_free_rcu
);
4983 static void perf_mmap_open(struct vm_area_struct
*vma
)
4985 struct perf_event
*event
= vma
->vm_file
->private_data
;
4987 atomic_inc(&event
->mmap_count
);
4988 atomic_inc(&event
->rb
->mmap_count
);
4991 atomic_inc(&event
->rb
->aux_mmap_count
);
4993 if (event
->pmu
->event_mapped
)
4994 event
->pmu
->event_mapped(event
);
4997 static void perf_pmu_output_stop(struct perf_event
*event
);
5000 * A buffer can be mmap()ed multiple times; either directly through the same
5001 * event, or through other events by use of perf_event_set_output().
5003 * In order to undo the VM accounting done by perf_mmap() we need to destroy
5004 * the buffer here, where we still have a VM context. This means we need
5005 * to detach all events redirecting to us.
5007 static void perf_mmap_close(struct vm_area_struct
*vma
)
5009 struct perf_event
*event
= vma
->vm_file
->private_data
;
5011 struct ring_buffer
*rb
= ring_buffer_get(event
);
5012 struct user_struct
*mmap_user
= rb
->mmap_user
;
5013 int mmap_locked
= rb
->mmap_locked
;
5014 unsigned long size
= perf_data_size(rb
);
5016 if (event
->pmu
->event_unmapped
)
5017 event
->pmu
->event_unmapped(event
);
5020 * rb->aux_mmap_count will always drop before rb->mmap_count and
5021 * event->mmap_count, so it is ok to use event->mmap_mutex to
5022 * serialize with perf_mmap here.
5024 if (rb_has_aux(rb
) && vma
->vm_pgoff
== rb
->aux_pgoff
&&
5025 atomic_dec_and_mutex_lock(&rb
->aux_mmap_count
, &event
->mmap_mutex
)) {
5027 * Stop all AUX events that are writing to this buffer,
5028 * so that we can free its AUX pages and corresponding PMU
5029 * data. Note that after rb::aux_mmap_count dropped to zero,
5030 * they won't start any more (see perf_aux_output_begin()).
5032 perf_pmu_output_stop(event
);
5034 /* now it's safe to free the pages */
5035 atomic_long_sub(rb
->aux_nr_pages
, &mmap_user
->locked_vm
);
5036 vma
->vm_mm
->pinned_vm
-= rb
->aux_mmap_locked
;
5038 /* this has to be the last one */
5040 WARN_ON_ONCE(atomic_read(&rb
->aux_refcount
));
5042 mutex_unlock(&event
->mmap_mutex
);
5045 atomic_dec(&rb
->mmap_count
);
5047 if (!atomic_dec_and_mutex_lock(&event
->mmap_count
, &event
->mmap_mutex
))
5050 ring_buffer_attach(event
, NULL
);
5051 mutex_unlock(&event
->mmap_mutex
);
5053 /* If there's still other mmap()s of this buffer, we're done. */
5054 if (atomic_read(&rb
->mmap_count
))
5058 * No other mmap()s, detach from all other events that might redirect
5059 * into the now unreachable buffer. Somewhat complicated by the
5060 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5064 list_for_each_entry_rcu(event
, &rb
->event_list
, rb_entry
) {
5065 if (!atomic_long_inc_not_zero(&event
->refcount
)) {
5067 * This event is en-route to free_event() which will
5068 * detach it and remove it from the list.
5074 mutex_lock(&event
->mmap_mutex
);
5076 * Check we didn't race with perf_event_set_output() which can
5077 * swizzle the rb from under us while we were waiting to
5078 * acquire mmap_mutex.
5080 * If we find a different rb; ignore this event, a next
5081 * iteration will no longer find it on the list. We have to
5082 * still restart the iteration to make sure we're not now
5083 * iterating the wrong list.
5085 if (event
->rb
== rb
)
5086 ring_buffer_attach(event
, NULL
);
5088 mutex_unlock(&event
->mmap_mutex
);
5092 * Restart the iteration; either we're on the wrong list or
5093 * destroyed its integrity by doing a deletion.
5100 * It could be there's still a few 0-ref events on the list; they'll
5101 * get cleaned up by free_event() -- they'll also still have their
5102 * ref on the rb and will free it whenever they are done with it.
5104 * Aside from that, this buffer is 'fully' detached and unmapped,
5105 * undo the VM accounting.
5108 atomic_long_sub((size
>> PAGE_SHIFT
) + 1, &mmap_user
->locked_vm
);
5109 vma
->vm_mm
->pinned_vm
-= mmap_locked
;
5110 free_uid(mmap_user
);
5113 ring_buffer_put(rb
); /* could be last */
5116 static const struct vm_operations_struct perf_mmap_vmops
= {
5117 .open
= perf_mmap_open
,
5118 .close
= perf_mmap_close
, /* non mergable */
5119 .fault
= perf_mmap_fault
,
5120 .page_mkwrite
= perf_mmap_fault
,
5123 static int perf_mmap(struct file
*file
, struct vm_area_struct
*vma
)
5125 struct perf_event
*event
= file
->private_data
;
5126 unsigned long user_locked
, user_lock_limit
;
5127 struct user_struct
*user
= current_user();
5128 unsigned long locked
, lock_limit
;
5129 struct ring_buffer
*rb
= NULL
;
5130 unsigned long vma_size
;
5131 unsigned long nr_pages
;
5132 long user_extra
= 0, extra
= 0;
5133 int ret
= 0, flags
= 0;
5136 * Don't allow mmap() of inherited per-task counters. This would
5137 * create a performance issue due to all children writing to the
5140 if (event
->cpu
== -1 && event
->attr
.inherit
)
5143 if (!(vma
->vm_flags
& VM_SHARED
))
5146 vma_size
= vma
->vm_end
- vma
->vm_start
;
5148 if (vma
->vm_pgoff
== 0) {
5149 nr_pages
= (vma_size
/ PAGE_SIZE
) - 1;
5152 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5153 * mapped, all subsequent mappings should have the same size
5154 * and offset. Must be above the normal perf buffer.
5156 u64 aux_offset
, aux_size
;
5161 nr_pages
= vma_size
/ PAGE_SIZE
;
5163 mutex_lock(&event
->mmap_mutex
);
5170 aux_offset
= ACCESS_ONCE(rb
->user_page
->aux_offset
);
5171 aux_size
= ACCESS_ONCE(rb
->user_page
->aux_size
);
5173 if (aux_offset
< perf_data_size(rb
) + PAGE_SIZE
)
5176 if (aux_offset
!= vma
->vm_pgoff
<< PAGE_SHIFT
)
5179 /* already mapped with a different offset */
5180 if (rb_has_aux(rb
) && rb
->aux_pgoff
!= vma
->vm_pgoff
)
5183 if (aux_size
!= vma_size
|| aux_size
!= nr_pages
* PAGE_SIZE
)
5186 /* already mapped with a different size */
5187 if (rb_has_aux(rb
) && rb
->aux_nr_pages
!= nr_pages
)
5190 if (!is_power_of_2(nr_pages
))
5193 if (!atomic_inc_not_zero(&rb
->mmap_count
))
5196 if (rb_has_aux(rb
)) {
5197 atomic_inc(&rb
->aux_mmap_count
);
5202 atomic_set(&rb
->aux_mmap_count
, 1);
5203 user_extra
= nr_pages
;
5209 * If we have rb pages ensure they're a power-of-two number, so we
5210 * can do bitmasks instead of modulo.
5212 if (nr_pages
!= 0 && !is_power_of_2(nr_pages
))
5215 if (vma_size
!= PAGE_SIZE
* (1 + nr_pages
))
5218 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
5220 mutex_lock(&event
->mmap_mutex
);
5222 if (event
->rb
->nr_pages
!= nr_pages
) {
5227 if (!atomic_inc_not_zero(&event
->rb
->mmap_count
)) {
5229 * Raced against perf_mmap_close() through
5230 * perf_event_set_output(). Try again, hope for better
5233 mutex_unlock(&event
->mmap_mutex
);
5240 user_extra
= nr_pages
+ 1;
5243 user_lock_limit
= sysctl_perf_event_mlock
>> (PAGE_SHIFT
- 10);
5246 * Increase the limit linearly with more CPUs:
5248 user_lock_limit
*= num_online_cpus();
5250 user_locked
= atomic_long_read(&user
->locked_vm
) + user_extra
;
5252 if (user_locked
> user_lock_limit
)
5253 extra
= user_locked
- user_lock_limit
;
5255 lock_limit
= rlimit(RLIMIT_MEMLOCK
);
5256 lock_limit
>>= PAGE_SHIFT
;
5257 locked
= vma
->vm_mm
->pinned_vm
+ extra
;
5259 if ((locked
> lock_limit
) && perf_paranoid_tracepoint_raw() &&
5260 !capable(CAP_IPC_LOCK
)) {
5265 WARN_ON(!rb
&& event
->rb
);
5267 if (vma
->vm_flags
& VM_WRITE
)
5268 flags
|= RING_BUFFER_WRITABLE
;
5271 rb
= rb_alloc(nr_pages
,
5272 event
->attr
.watermark
? event
->attr
.wakeup_watermark
: 0,
5280 atomic_set(&rb
->mmap_count
, 1);
5281 rb
->mmap_user
= get_current_user();
5282 rb
->mmap_locked
= extra
;
5284 ring_buffer_attach(event
, rb
);
5286 perf_event_init_userpage(event
);
5287 perf_event_update_userpage(event
);
5289 ret
= rb_alloc_aux(rb
, event
, vma
->vm_pgoff
, nr_pages
,
5290 event
->attr
.aux_watermark
, flags
);
5292 rb
->aux_mmap_locked
= extra
;
5297 atomic_long_add(user_extra
, &user
->locked_vm
);
5298 vma
->vm_mm
->pinned_vm
+= extra
;
5300 atomic_inc(&event
->mmap_count
);
5302 atomic_dec(&rb
->mmap_count
);
5305 mutex_unlock(&event
->mmap_mutex
);
5308 * Since pinned accounting is per vm we cannot allow fork() to copy our
5311 vma
->vm_flags
|= VM_DONTCOPY
| VM_DONTEXPAND
| VM_DONTDUMP
;
5312 vma
->vm_ops
= &perf_mmap_vmops
;
5314 if (event
->pmu
->event_mapped
)
5315 event
->pmu
->event_mapped(event
);
5320 static int perf_fasync(int fd
, struct file
*filp
, int on
)
5322 struct inode
*inode
= file_inode(filp
);
5323 struct perf_event
*event
= filp
->private_data
;
5327 retval
= fasync_helper(fd
, filp
, on
, &event
->fasync
);
5328 inode_unlock(inode
);
5336 static const struct file_operations perf_fops
= {
5337 .llseek
= no_llseek
,
5338 .release
= perf_release
,
5341 .unlocked_ioctl
= perf_ioctl
,
5342 .compat_ioctl
= perf_compat_ioctl
,
5344 .fasync
= perf_fasync
,
5350 * If there's data, ensure we set the poll() state and publish everything
5351 * to user-space before waking everybody up.
5354 static inline struct fasync_struct
**perf_event_fasync(struct perf_event
*event
)
5356 /* only the parent has fasync state */
5358 event
= event
->parent
;
5359 return &event
->fasync
;
5362 void perf_event_wakeup(struct perf_event
*event
)
5364 ring_buffer_wakeup(event
);
5366 if (event
->pending_kill
) {
5367 kill_fasync(perf_event_fasync(event
), SIGIO
, event
->pending_kill
);
5368 event
->pending_kill
= 0;
5372 static void perf_pending_event(struct irq_work
*entry
)
5374 struct perf_event
*event
= container_of(entry
,
5375 struct perf_event
, pending
);
5378 rctx
= perf_swevent_get_recursion_context();
5380 * If we 'fail' here, that's OK, it means recursion is already disabled
5381 * and we won't recurse 'further'.
5384 if (event
->pending_disable
) {
5385 event
->pending_disable
= 0;
5386 perf_event_disable_local(event
);
5389 if (event
->pending_wakeup
) {
5390 event
->pending_wakeup
= 0;
5391 perf_event_wakeup(event
);
5395 perf_swevent_put_recursion_context(rctx
);
5399 * We assume there is only KVM supporting the callbacks.
5400 * Later on, we might change it to a list if there is
5401 * another virtualization implementation supporting the callbacks.
5403 struct perf_guest_info_callbacks
*perf_guest_cbs
;
5405 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks
*cbs
)
5407 perf_guest_cbs
= cbs
;
5410 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks
);
5412 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks
*cbs
)
5414 perf_guest_cbs
= NULL
;
5417 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks
);
5420 perf_output_sample_regs(struct perf_output_handle
*handle
,
5421 struct pt_regs
*regs
, u64 mask
)
5424 DECLARE_BITMAP(_mask
, 64);
5426 bitmap_from_u64(_mask
, mask
);
5427 for_each_set_bit(bit
, _mask
, sizeof(mask
) * BITS_PER_BYTE
) {
5430 val
= perf_reg_value(regs
, bit
);
5431 perf_output_put(handle
, val
);
5435 static void perf_sample_regs_user(struct perf_regs
*regs_user
,
5436 struct pt_regs
*regs
,
5437 struct pt_regs
*regs_user_copy
)
5439 if (user_mode(regs
)) {
5440 regs_user
->abi
= perf_reg_abi(current
);
5441 regs_user
->regs
= regs
;
5442 } else if (current
->mm
) {
5443 perf_get_regs_user(regs_user
, regs
, regs_user_copy
);
5445 regs_user
->abi
= PERF_SAMPLE_REGS_ABI_NONE
;
5446 regs_user
->regs
= NULL
;
5450 static void perf_sample_regs_intr(struct perf_regs
*regs_intr
,
5451 struct pt_regs
*regs
)
5453 regs_intr
->regs
= regs
;
5454 regs_intr
->abi
= perf_reg_abi(current
);
5459 * Get remaining task size from user stack pointer.
5461 * It'd be better to take stack vma map and limit this more
5462 * precisly, but there's no way to get it safely under interrupt,
5463 * so using TASK_SIZE as limit.
5465 static u64
perf_ustack_task_size(struct pt_regs
*regs
)
5467 unsigned long addr
= perf_user_stack_pointer(regs
);
5469 if (!addr
|| addr
>= TASK_SIZE
)
5472 return TASK_SIZE
- addr
;
5476 perf_sample_ustack_size(u16 stack_size
, u16 header_size
,
5477 struct pt_regs
*regs
)
5481 /* No regs, no stack pointer, no dump. */
5486 * Check if we fit in with the requested stack size into the:
5488 * If we don't, we limit the size to the TASK_SIZE.
5490 * - remaining sample size
5491 * If we don't, we customize the stack size to
5492 * fit in to the remaining sample size.
5495 task_size
= min((u64
) USHRT_MAX
, perf_ustack_task_size(regs
));
5496 stack_size
= min(stack_size
, (u16
) task_size
);
5498 /* Current header size plus static size and dynamic size. */
5499 header_size
+= 2 * sizeof(u64
);
5501 /* Do we fit in with the current stack dump size? */
5502 if ((u16
) (header_size
+ stack_size
) < header_size
) {
5504 * If we overflow the maximum size for the sample,
5505 * we customize the stack dump size to fit in.
5507 stack_size
= USHRT_MAX
- header_size
- sizeof(u64
);
5508 stack_size
= round_up(stack_size
, sizeof(u64
));
5515 perf_output_sample_ustack(struct perf_output_handle
*handle
, u64 dump_size
,
5516 struct pt_regs
*regs
)
5518 /* Case of a kernel thread, nothing to dump */
5521 perf_output_put(handle
, size
);
5530 * - the size requested by user or the best one we can fit
5531 * in to the sample max size
5533 * - user stack dump data
5535 * - the actual dumped size
5539 perf_output_put(handle
, dump_size
);
5542 sp
= perf_user_stack_pointer(regs
);
5543 rem
= __output_copy_user(handle
, (void *) sp
, dump_size
);
5544 dyn_size
= dump_size
- rem
;
5546 perf_output_skip(handle
, rem
);
5549 perf_output_put(handle
, dyn_size
);
5553 static void __perf_event_header__init_id(struct perf_event_header
*header
,
5554 struct perf_sample_data
*data
,
5555 struct perf_event
*event
)
5557 u64 sample_type
= event
->attr
.sample_type
;
5559 data
->type
= sample_type
;
5560 header
->size
+= event
->id_header_size
;
5562 if (sample_type
& PERF_SAMPLE_TID
) {
5563 /* namespace issues */
5564 data
->tid_entry
.pid
= perf_event_pid(event
, current
);
5565 data
->tid_entry
.tid
= perf_event_tid(event
, current
);
5568 if (sample_type
& PERF_SAMPLE_TIME
)
5569 data
->time
= perf_event_clock(event
);
5571 if (sample_type
& (PERF_SAMPLE_ID
| PERF_SAMPLE_IDENTIFIER
))
5572 data
->id
= primary_event_id(event
);
5574 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
5575 data
->stream_id
= event
->id
;
5577 if (sample_type
& PERF_SAMPLE_CPU
) {
5578 data
->cpu_entry
.cpu
= raw_smp_processor_id();
5579 data
->cpu_entry
.reserved
= 0;
5583 void perf_event_header__init_id(struct perf_event_header
*header
,
5584 struct perf_sample_data
*data
,
5585 struct perf_event
*event
)
5587 if (event
->attr
.sample_id_all
)
5588 __perf_event_header__init_id(header
, data
, event
);
5591 static void __perf_event__output_id_sample(struct perf_output_handle
*handle
,
5592 struct perf_sample_data
*data
)
5594 u64 sample_type
= data
->type
;
5596 if (sample_type
& PERF_SAMPLE_TID
)
5597 perf_output_put(handle
, data
->tid_entry
);
5599 if (sample_type
& PERF_SAMPLE_TIME
)
5600 perf_output_put(handle
, data
->time
);
5602 if (sample_type
& PERF_SAMPLE_ID
)
5603 perf_output_put(handle
, data
->id
);
5605 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
5606 perf_output_put(handle
, data
->stream_id
);
5608 if (sample_type
& PERF_SAMPLE_CPU
)
5609 perf_output_put(handle
, data
->cpu_entry
);
5611 if (sample_type
& PERF_SAMPLE_IDENTIFIER
)
5612 perf_output_put(handle
, data
->id
);
5615 void perf_event__output_id_sample(struct perf_event
*event
,
5616 struct perf_output_handle
*handle
,
5617 struct perf_sample_data
*sample
)
5619 if (event
->attr
.sample_id_all
)
5620 __perf_event__output_id_sample(handle
, sample
);
5623 static void perf_output_read_one(struct perf_output_handle
*handle
,
5624 struct perf_event
*event
,
5625 u64 enabled
, u64 running
)
5627 u64 read_format
= event
->attr
.read_format
;
5631 values
[n
++] = perf_event_count(event
);
5632 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
) {
5633 values
[n
++] = enabled
+
5634 atomic64_read(&event
->child_total_time_enabled
);
5636 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
) {
5637 values
[n
++] = running
+
5638 atomic64_read(&event
->child_total_time_running
);
5640 if (read_format
& PERF_FORMAT_ID
)
5641 values
[n
++] = primary_event_id(event
);
5643 __output_copy(handle
, values
, n
* sizeof(u64
));
5647 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5649 static void perf_output_read_group(struct perf_output_handle
*handle
,
5650 struct perf_event
*event
,
5651 u64 enabled
, u64 running
)
5653 struct perf_event
*leader
= event
->group_leader
, *sub
;
5654 u64 read_format
= event
->attr
.read_format
;
5658 values
[n
++] = 1 + leader
->nr_siblings
;
5660 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
5661 values
[n
++] = enabled
;
5663 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
5664 values
[n
++] = running
;
5666 if (leader
!= event
)
5667 leader
->pmu
->read(leader
);
5669 values
[n
++] = perf_event_count(leader
);
5670 if (read_format
& PERF_FORMAT_ID
)
5671 values
[n
++] = primary_event_id(leader
);
5673 __output_copy(handle
, values
, n
* sizeof(u64
));
5675 list_for_each_entry(sub
, &leader
->sibling_list
, group_entry
) {
5678 if ((sub
!= event
) &&
5679 (sub
->state
== PERF_EVENT_STATE_ACTIVE
))
5680 sub
->pmu
->read(sub
);
5682 values
[n
++] = perf_event_count(sub
);
5683 if (read_format
& PERF_FORMAT_ID
)
5684 values
[n
++] = primary_event_id(sub
);
5686 __output_copy(handle
, values
, n
* sizeof(u64
));
5690 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5691 PERF_FORMAT_TOTAL_TIME_RUNNING)
5693 static void perf_output_read(struct perf_output_handle
*handle
,
5694 struct perf_event
*event
)
5696 u64 enabled
= 0, running
= 0, now
;
5697 u64 read_format
= event
->attr
.read_format
;
5700 * compute total_time_enabled, total_time_running
5701 * based on snapshot values taken when the event
5702 * was last scheduled in.
5704 * we cannot simply called update_context_time()
5705 * because of locking issue as we are called in
5708 if (read_format
& PERF_FORMAT_TOTAL_TIMES
)
5709 calc_timer_values(event
, &now
, &enabled
, &running
);
5711 if (event
->attr
.read_format
& PERF_FORMAT_GROUP
)
5712 perf_output_read_group(handle
, event
, enabled
, running
);
5714 perf_output_read_one(handle
, event
, enabled
, running
);
5717 void perf_output_sample(struct perf_output_handle
*handle
,
5718 struct perf_event_header
*header
,
5719 struct perf_sample_data
*data
,
5720 struct perf_event
*event
)
5722 u64 sample_type
= data
->type
;
5724 perf_output_put(handle
, *header
);
5726 if (sample_type
& PERF_SAMPLE_IDENTIFIER
)
5727 perf_output_put(handle
, data
->id
);
5729 if (sample_type
& PERF_SAMPLE_IP
)
5730 perf_output_put(handle
, data
->ip
);
5732 if (sample_type
& PERF_SAMPLE_TID
)
5733 perf_output_put(handle
, data
->tid_entry
);
5735 if (sample_type
& PERF_SAMPLE_TIME
)
5736 perf_output_put(handle
, data
->time
);
5738 if (sample_type
& PERF_SAMPLE_ADDR
)
5739 perf_output_put(handle
, data
->addr
);
5741 if (sample_type
& PERF_SAMPLE_ID
)
5742 perf_output_put(handle
, data
->id
);
5744 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
5745 perf_output_put(handle
, data
->stream_id
);
5747 if (sample_type
& PERF_SAMPLE_CPU
)
5748 perf_output_put(handle
, data
->cpu_entry
);
5750 if (sample_type
& PERF_SAMPLE_PERIOD
)
5751 perf_output_put(handle
, data
->period
);
5753 if (sample_type
& PERF_SAMPLE_READ
)
5754 perf_output_read(handle
, event
);
5756 if (sample_type
& PERF_SAMPLE_CALLCHAIN
) {
5757 if (data
->callchain
) {
5760 if (data
->callchain
)
5761 size
+= data
->callchain
->nr
;
5763 size
*= sizeof(u64
);
5765 __output_copy(handle
, data
->callchain
, size
);
5768 perf_output_put(handle
, nr
);
5772 if (sample_type
& PERF_SAMPLE_RAW
) {
5773 struct perf_raw_record
*raw
= data
->raw
;
5776 struct perf_raw_frag
*frag
= &raw
->frag
;
5778 perf_output_put(handle
, raw
->size
);
5781 __output_custom(handle
, frag
->copy
,
5782 frag
->data
, frag
->size
);
5784 __output_copy(handle
, frag
->data
,
5787 if (perf_raw_frag_last(frag
))
5792 __output_skip(handle
, NULL
, frag
->pad
);
5798 .size
= sizeof(u32
),
5801 perf_output_put(handle
, raw
);
5805 if (sample_type
& PERF_SAMPLE_BRANCH_STACK
) {
5806 if (data
->br_stack
) {
5809 size
= data
->br_stack
->nr
5810 * sizeof(struct perf_branch_entry
);
5812 perf_output_put(handle
, data
->br_stack
->nr
);
5813 perf_output_copy(handle
, data
->br_stack
->entries
, size
);
5816 * we always store at least the value of nr
5819 perf_output_put(handle
, nr
);
5823 if (sample_type
& PERF_SAMPLE_REGS_USER
) {
5824 u64 abi
= data
->regs_user
.abi
;
5827 * If there are no regs to dump, notice it through
5828 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5830 perf_output_put(handle
, abi
);
5833 u64 mask
= event
->attr
.sample_regs_user
;
5834 perf_output_sample_regs(handle
,
5835 data
->regs_user
.regs
,
5840 if (sample_type
& PERF_SAMPLE_STACK_USER
) {
5841 perf_output_sample_ustack(handle
,
5842 data
->stack_user_size
,
5843 data
->regs_user
.regs
);
5846 if (sample_type
& PERF_SAMPLE_WEIGHT
)
5847 perf_output_put(handle
, data
->weight
);
5849 if (sample_type
& PERF_SAMPLE_DATA_SRC
)
5850 perf_output_put(handle
, data
->data_src
.val
);
5852 if (sample_type
& PERF_SAMPLE_TRANSACTION
)
5853 perf_output_put(handle
, data
->txn
);
5855 if (sample_type
& PERF_SAMPLE_REGS_INTR
) {
5856 u64 abi
= data
->regs_intr
.abi
;
5858 * If there are no regs to dump, notice it through
5859 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5861 perf_output_put(handle
, abi
);
5864 u64 mask
= event
->attr
.sample_regs_intr
;
5866 perf_output_sample_regs(handle
,
5867 data
->regs_intr
.regs
,
5872 if (!event
->attr
.watermark
) {
5873 int wakeup_events
= event
->attr
.wakeup_events
;
5875 if (wakeup_events
) {
5876 struct ring_buffer
*rb
= handle
->rb
;
5877 int events
= local_inc_return(&rb
->events
);
5879 if (events
>= wakeup_events
) {
5880 local_sub(wakeup_events
, &rb
->events
);
5881 local_inc(&rb
->wakeup
);
5887 void perf_prepare_sample(struct perf_event_header
*header
,
5888 struct perf_sample_data
*data
,
5889 struct perf_event
*event
,
5890 struct pt_regs
*regs
)
5892 u64 sample_type
= event
->attr
.sample_type
;
5894 header
->type
= PERF_RECORD_SAMPLE
;
5895 header
->size
= sizeof(*header
) + event
->header_size
;
5898 header
->misc
|= perf_misc_flags(regs
);
5900 __perf_event_header__init_id(header
, data
, event
);
5902 if (sample_type
& PERF_SAMPLE_IP
)
5903 data
->ip
= perf_instruction_pointer(regs
);
5905 if (sample_type
& PERF_SAMPLE_CALLCHAIN
) {
5908 data
->callchain
= perf_callchain(event
, regs
);
5910 if (data
->callchain
)
5911 size
+= data
->callchain
->nr
;
5913 header
->size
+= size
* sizeof(u64
);
5916 if (sample_type
& PERF_SAMPLE_RAW
) {
5917 struct perf_raw_record
*raw
= data
->raw
;
5921 struct perf_raw_frag
*frag
= &raw
->frag
;
5926 if (perf_raw_frag_last(frag
))
5931 size
= round_up(sum
+ sizeof(u32
), sizeof(u64
));
5932 raw
->size
= size
- sizeof(u32
);
5933 frag
->pad
= raw
->size
- sum
;
5938 header
->size
+= size
;
5941 if (sample_type
& PERF_SAMPLE_BRANCH_STACK
) {
5942 int size
= sizeof(u64
); /* nr */
5943 if (data
->br_stack
) {
5944 size
+= data
->br_stack
->nr
5945 * sizeof(struct perf_branch_entry
);
5947 header
->size
+= size
;
5950 if (sample_type
& (PERF_SAMPLE_REGS_USER
| PERF_SAMPLE_STACK_USER
))
5951 perf_sample_regs_user(&data
->regs_user
, regs
,
5952 &data
->regs_user_copy
);
5954 if (sample_type
& PERF_SAMPLE_REGS_USER
) {
5955 /* regs dump ABI info */
5956 int size
= sizeof(u64
);
5958 if (data
->regs_user
.regs
) {
5959 u64 mask
= event
->attr
.sample_regs_user
;
5960 size
+= hweight64(mask
) * sizeof(u64
);
5963 header
->size
+= size
;
5966 if (sample_type
& PERF_SAMPLE_STACK_USER
) {
5968 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5969 * processed as the last one or have additional check added
5970 * in case new sample type is added, because we could eat
5971 * up the rest of the sample size.
5973 u16 stack_size
= event
->attr
.sample_stack_user
;
5974 u16 size
= sizeof(u64
);
5976 stack_size
= perf_sample_ustack_size(stack_size
, header
->size
,
5977 data
->regs_user
.regs
);
5980 * If there is something to dump, add space for the dump
5981 * itself and for the field that tells the dynamic size,
5982 * which is how many have been actually dumped.
5985 size
+= sizeof(u64
) + stack_size
;
5987 data
->stack_user_size
= stack_size
;
5988 header
->size
+= size
;
5991 if (sample_type
& PERF_SAMPLE_REGS_INTR
) {
5992 /* regs dump ABI info */
5993 int size
= sizeof(u64
);
5995 perf_sample_regs_intr(&data
->regs_intr
, regs
);
5997 if (data
->regs_intr
.regs
) {
5998 u64 mask
= event
->attr
.sample_regs_intr
;
6000 size
+= hweight64(mask
) * sizeof(u64
);
6003 header
->size
+= size
;
6007 static void __always_inline
6008 __perf_event_output(struct perf_event
*event
,
6009 struct perf_sample_data
*data
,
6010 struct pt_regs
*regs
,
6011 int (*output_begin
)(struct perf_output_handle
*,
6012 struct perf_event
*,
6015 struct perf_output_handle handle
;
6016 struct perf_event_header header
;
6018 /* protect the callchain buffers */
6021 perf_prepare_sample(&header
, data
, event
, regs
);
6023 if (output_begin(&handle
, event
, header
.size
))
6026 perf_output_sample(&handle
, &header
, data
, event
);
6028 perf_output_end(&handle
);
6035 perf_event_output_forward(struct perf_event
*event
,
6036 struct perf_sample_data
*data
,
6037 struct pt_regs
*regs
)
6039 __perf_event_output(event
, data
, regs
, perf_output_begin_forward
);
6043 perf_event_output_backward(struct perf_event
*event
,
6044 struct perf_sample_data
*data
,
6045 struct pt_regs
*regs
)
6047 __perf_event_output(event
, data
, regs
, perf_output_begin_backward
);
6051 perf_event_output(struct perf_event
*event
,
6052 struct perf_sample_data
*data
,
6053 struct pt_regs
*regs
)
6055 __perf_event_output(event
, data
, regs
, perf_output_begin
);
6062 struct perf_read_event
{
6063 struct perf_event_header header
;
6070 perf_event_read_event(struct perf_event
*event
,
6071 struct task_struct
*task
)
6073 struct perf_output_handle handle
;
6074 struct perf_sample_data sample
;
6075 struct perf_read_event read_event
= {
6077 .type
= PERF_RECORD_READ
,
6079 .size
= sizeof(read_event
) + event
->read_size
,
6081 .pid
= perf_event_pid(event
, task
),
6082 .tid
= perf_event_tid(event
, task
),
6086 perf_event_header__init_id(&read_event
.header
, &sample
, event
);
6087 ret
= perf_output_begin(&handle
, event
, read_event
.header
.size
);
6091 perf_output_put(&handle
, read_event
);
6092 perf_output_read(&handle
, event
);
6093 perf_event__output_id_sample(event
, &handle
, &sample
);
6095 perf_output_end(&handle
);
6098 typedef void (perf_iterate_f
)(struct perf_event
*event
, void *data
);
6101 perf_iterate_ctx(struct perf_event_context
*ctx
,
6102 perf_iterate_f output
,
6103 void *data
, bool all
)
6105 struct perf_event
*event
;
6107 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
6109 if (event
->state
< PERF_EVENT_STATE_INACTIVE
)
6111 if (!event_filter_match(event
))
6115 output(event
, data
);
6119 static void perf_iterate_sb_cpu(perf_iterate_f output
, void *data
)
6121 struct pmu_event_list
*pel
= this_cpu_ptr(&pmu_sb_events
);
6122 struct perf_event
*event
;
6124 list_for_each_entry_rcu(event
, &pel
->list
, sb_list
) {
6126 * Skip events that are not fully formed yet; ensure that
6127 * if we observe event->ctx, both event and ctx will be
6128 * complete enough. See perf_install_in_context().
6130 if (!smp_load_acquire(&event
->ctx
))
6133 if (event
->state
< PERF_EVENT_STATE_INACTIVE
)
6135 if (!event_filter_match(event
))
6137 output(event
, data
);
6142 * Iterate all events that need to receive side-band events.
6144 * For new callers; ensure that account_pmu_sb_event() includes
6145 * your event, otherwise it might not get delivered.
6148 perf_iterate_sb(perf_iterate_f output
, void *data
,
6149 struct perf_event_context
*task_ctx
)
6151 struct perf_event_context
*ctx
;
6158 * If we have task_ctx != NULL we only notify the task context itself.
6159 * The task_ctx is set only for EXIT events before releasing task
6163 perf_iterate_ctx(task_ctx
, output
, data
, false);
6167 perf_iterate_sb_cpu(output
, data
);
6169 for_each_task_context_nr(ctxn
) {
6170 ctx
= rcu_dereference(current
->perf_event_ctxp
[ctxn
]);
6172 perf_iterate_ctx(ctx
, output
, data
, false);
6180 * Clear all file-based filters at exec, they'll have to be
6181 * re-instated when/if these objects are mmapped again.
6183 static void perf_event_addr_filters_exec(struct perf_event
*event
, void *data
)
6185 struct perf_addr_filters_head
*ifh
= perf_event_addr_filters(event
);
6186 struct perf_addr_filter
*filter
;
6187 unsigned int restart
= 0, count
= 0;
6188 unsigned long flags
;
6190 if (!has_addr_filter(event
))
6193 raw_spin_lock_irqsave(&ifh
->lock
, flags
);
6194 list_for_each_entry(filter
, &ifh
->list
, entry
) {
6195 if (filter
->inode
) {
6196 event
->addr_filters_offs
[count
] = 0;
6204 event
->addr_filters_gen
++;
6205 raw_spin_unlock_irqrestore(&ifh
->lock
, flags
);
6208 perf_event_stop(event
, 1);
6211 void perf_event_exec(void)
6213 struct perf_event_context
*ctx
;
6217 for_each_task_context_nr(ctxn
) {
6218 ctx
= current
->perf_event_ctxp
[ctxn
];
6222 perf_event_enable_on_exec(ctxn
);
6224 perf_iterate_ctx(ctx
, perf_event_addr_filters_exec
, NULL
,
6230 struct remote_output
{
6231 struct ring_buffer
*rb
;
6235 static void __perf_event_output_stop(struct perf_event
*event
, void *data
)
6237 struct perf_event
*parent
= event
->parent
;
6238 struct remote_output
*ro
= data
;
6239 struct ring_buffer
*rb
= ro
->rb
;
6240 struct stop_event_data sd
= {
6244 if (!has_aux(event
))
6251 * In case of inheritance, it will be the parent that links to the
6252 * ring-buffer, but it will be the child that's actually using it.
6254 * We are using event::rb to determine if the event should be stopped,
6255 * however this may race with ring_buffer_attach() (through set_output),
6256 * which will make us skip the event that actually needs to be stopped.
6257 * So ring_buffer_attach() has to stop an aux event before re-assigning
6260 if (rcu_dereference(parent
->rb
) == rb
)
6261 ro
->err
= __perf_event_stop(&sd
);
6264 static int __perf_pmu_output_stop(void *info
)
6266 struct perf_event
*event
= info
;
6267 struct pmu
*pmu
= event
->pmu
;
6268 struct perf_cpu_context
*cpuctx
= this_cpu_ptr(pmu
->pmu_cpu_context
);
6269 struct remote_output ro
= {
6274 perf_iterate_ctx(&cpuctx
->ctx
, __perf_event_output_stop
, &ro
, false);
6275 if (cpuctx
->task_ctx
)
6276 perf_iterate_ctx(cpuctx
->task_ctx
, __perf_event_output_stop
,
6283 static void perf_pmu_output_stop(struct perf_event
*event
)
6285 struct perf_event
*iter
;
6290 list_for_each_entry_rcu(iter
, &event
->rb
->event_list
, rb_entry
) {
6292 * For per-CPU events, we need to make sure that neither they
6293 * nor their children are running; for cpu==-1 events it's
6294 * sufficient to stop the event itself if it's active, since
6295 * it can't have children.
6299 cpu
= READ_ONCE(iter
->oncpu
);
6304 err
= cpu_function_call(cpu
, __perf_pmu_output_stop
, event
);
6305 if (err
== -EAGAIN
) {
6314 * task tracking -- fork/exit
6316 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6319 struct perf_task_event
{
6320 struct task_struct
*task
;
6321 struct perf_event_context
*task_ctx
;
6324 struct perf_event_header header
;
6334 static int perf_event_task_match(struct perf_event
*event
)
6336 return event
->attr
.comm
|| event
->attr
.mmap
||
6337 event
->attr
.mmap2
|| event
->attr
.mmap_data
||
6341 static void perf_event_task_output(struct perf_event
*event
,
6344 struct perf_task_event
*task_event
= data
;
6345 struct perf_output_handle handle
;
6346 struct perf_sample_data sample
;
6347 struct task_struct
*task
= task_event
->task
;
6348 int ret
, size
= task_event
->event_id
.header
.size
;
6350 if (!perf_event_task_match(event
))
6353 perf_event_header__init_id(&task_event
->event_id
.header
, &sample
, event
);
6355 ret
= perf_output_begin(&handle
, event
,
6356 task_event
->event_id
.header
.size
);
6360 task_event
->event_id
.pid
= perf_event_pid(event
, task
);
6361 task_event
->event_id
.ppid
= perf_event_pid(event
, current
);
6363 task_event
->event_id
.tid
= perf_event_tid(event
, task
);
6364 task_event
->event_id
.ptid
= perf_event_tid(event
, current
);
6366 task_event
->event_id
.time
= perf_event_clock(event
);
6368 perf_output_put(&handle
, task_event
->event_id
);
6370 perf_event__output_id_sample(event
, &handle
, &sample
);
6372 perf_output_end(&handle
);
6374 task_event
->event_id
.header
.size
= size
;
6377 static void perf_event_task(struct task_struct
*task
,
6378 struct perf_event_context
*task_ctx
,
6381 struct perf_task_event task_event
;
6383 if (!atomic_read(&nr_comm_events
) &&
6384 !atomic_read(&nr_mmap_events
) &&
6385 !atomic_read(&nr_task_events
))
6388 task_event
= (struct perf_task_event
){
6390 .task_ctx
= task_ctx
,
6393 .type
= new ? PERF_RECORD_FORK
: PERF_RECORD_EXIT
,
6395 .size
= sizeof(task_event
.event_id
),
6405 perf_iterate_sb(perf_event_task_output
,
6410 void perf_event_fork(struct task_struct
*task
)
6412 perf_event_task(task
, NULL
, 1);
6419 struct perf_comm_event
{
6420 struct task_struct
*task
;
6425 struct perf_event_header header
;
6432 static int perf_event_comm_match(struct perf_event
*event
)
6434 return event
->attr
.comm
;
6437 static void perf_event_comm_output(struct perf_event
*event
,
6440 struct perf_comm_event
*comm_event
= data
;
6441 struct perf_output_handle handle
;
6442 struct perf_sample_data sample
;
6443 int size
= comm_event
->event_id
.header
.size
;
6446 if (!perf_event_comm_match(event
))
6449 perf_event_header__init_id(&comm_event
->event_id
.header
, &sample
, event
);
6450 ret
= perf_output_begin(&handle
, event
,
6451 comm_event
->event_id
.header
.size
);
6456 comm_event
->event_id
.pid
= perf_event_pid(event
, comm_event
->task
);
6457 comm_event
->event_id
.tid
= perf_event_tid(event
, comm_event
->task
);
6459 perf_output_put(&handle
, comm_event
->event_id
);
6460 __output_copy(&handle
, comm_event
->comm
,
6461 comm_event
->comm_size
);
6463 perf_event__output_id_sample(event
, &handle
, &sample
);
6465 perf_output_end(&handle
);
6467 comm_event
->event_id
.header
.size
= size
;
6470 static void perf_event_comm_event(struct perf_comm_event
*comm_event
)
6472 char comm
[TASK_COMM_LEN
];
6475 memset(comm
, 0, sizeof(comm
));
6476 strlcpy(comm
, comm_event
->task
->comm
, sizeof(comm
));
6477 size
= ALIGN(strlen(comm
)+1, sizeof(u64
));
6479 comm_event
->comm
= comm
;
6480 comm_event
->comm_size
= size
;
6482 comm_event
->event_id
.header
.size
= sizeof(comm_event
->event_id
) + size
;
6484 perf_iterate_sb(perf_event_comm_output
,
6489 void perf_event_comm(struct task_struct
*task
, bool exec
)
6491 struct perf_comm_event comm_event
;
6493 if (!atomic_read(&nr_comm_events
))
6496 comm_event
= (struct perf_comm_event
){
6502 .type
= PERF_RECORD_COMM
,
6503 .misc
= exec
? PERF_RECORD_MISC_COMM_EXEC
: 0,
6511 perf_event_comm_event(&comm_event
);
6518 struct perf_mmap_event
{
6519 struct vm_area_struct
*vma
;
6521 const char *file_name
;
6529 struct perf_event_header header
;
6539 static int perf_event_mmap_match(struct perf_event
*event
,
6542 struct perf_mmap_event
*mmap_event
= data
;
6543 struct vm_area_struct
*vma
= mmap_event
->vma
;
6544 int executable
= vma
->vm_flags
& VM_EXEC
;
6546 return (!executable
&& event
->attr
.mmap_data
) ||
6547 (executable
&& (event
->attr
.mmap
|| event
->attr
.mmap2
));
6550 static void perf_event_mmap_output(struct perf_event
*event
,
6553 struct perf_mmap_event
*mmap_event
= data
;
6554 struct perf_output_handle handle
;
6555 struct perf_sample_data sample
;
6556 int size
= mmap_event
->event_id
.header
.size
;
6559 if (!perf_event_mmap_match(event
, data
))
6562 if (event
->attr
.mmap2
) {
6563 mmap_event
->event_id
.header
.type
= PERF_RECORD_MMAP2
;
6564 mmap_event
->event_id
.header
.size
+= sizeof(mmap_event
->maj
);
6565 mmap_event
->event_id
.header
.size
+= sizeof(mmap_event
->min
);
6566 mmap_event
->event_id
.header
.size
+= sizeof(mmap_event
->ino
);
6567 mmap_event
->event_id
.header
.size
+= sizeof(mmap_event
->ino_generation
);
6568 mmap_event
->event_id
.header
.size
+= sizeof(mmap_event
->prot
);
6569 mmap_event
->event_id
.header
.size
+= sizeof(mmap_event
->flags
);
6572 perf_event_header__init_id(&mmap_event
->event_id
.header
, &sample
, event
);
6573 ret
= perf_output_begin(&handle
, event
,
6574 mmap_event
->event_id
.header
.size
);
6578 mmap_event
->event_id
.pid
= perf_event_pid(event
, current
);
6579 mmap_event
->event_id
.tid
= perf_event_tid(event
, current
);
6581 perf_output_put(&handle
, mmap_event
->event_id
);
6583 if (event
->attr
.mmap2
) {
6584 perf_output_put(&handle
, mmap_event
->maj
);
6585 perf_output_put(&handle
, mmap_event
->min
);
6586 perf_output_put(&handle
, mmap_event
->ino
);
6587 perf_output_put(&handle
, mmap_event
->ino_generation
);
6588 perf_output_put(&handle
, mmap_event
->prot
);
6589 perf_output_put(&handle
, mmap_event
->flags
);
6592 __output_copy(&handle
, mmap_event
->file_name
,
6593 mmap_event
->file_size
);
6595 perf_event__output_id_sample(event
, &handle
, &sample
);
6597 perf_output_end(&handle
);
6599 mmap_event
->event_id
.header
.size
= size
;
6602 static void perf_event_mmap_event(struct perf_mmap_event
*mmap_event
)
6604 struct vm_area_struct
*vma
= mmap_event
->vma
;
6605 struct file
*file
= vma
->vm_file
;
6606 int maj
= 0, min
= 0;
6607 u64 ino
= 0, gen
= 0;
6608 u32 prot
= 0, flags
= 0;
6614 if (vma
->vm_flags
& VM_READ
)
6616 if (vma
->vm_flags
& VM_WRITE
)
6618 if (vma
->vm_flags
& VM_EXEC
)
6621 if (vma
->vm_flags
& VM_MAYSHARE
)
6624 flags
= MAP_PRIVATE
;
6626 if (vma
->vm_flags
& VM_DENYWRITE
)
6627 flags
|= MAP_DENYWRITE
;
6628 if (vma
->vm_flags
& VM_MAYEXEC
)
6629 flags
|= MAP_EXECUTABLE
;
6630 if (vma
->vm_flags
& VM_LOCKED
)
6631 flags
|= MAP_LOCKED
;
6632 if (vma
->vm_flags
& VM_HUGETLB
)
6633 flags
|= MAP_HUGETLB
;
6636 struct inode
*inode
;
6639 buf
= kmalloc(PATH_MAX
, GFP_KERNEL
);
6645 * d_path() works from the end of the rb backwards, so we
6646 * need to add enough zero bytes after the string to handle
6647 * the 64bit alignment we do later.
6649 name
= file_path(file
, buf
, PATH_MAX
- sizeof(u64
));
6654 inode
= file_inode(vma
->vm_file
);
6655 dev
= inode
->i_sb
->s_dev
;
6657 gen
= inode
->i_generation
;
6663 if (vma
->vm_ops
&& vma
->vm_ops
->name
) {
6664 name
= (char *) vma
->vm_ops
->name(vma
);
6669 name
= (char *)arch_vma_name(vma
);
6673 if (vma
->vm_start
<= vma
->vm_mm
->start_brk
&&
6674 vma
->vm_end
>= vma
->vm_mm
->brk
) {
6678 if (vma
->vm_start
<= vma
->vm_mm
->start_stack
&&
6679 vma
->vm_end
>= vma
->vm_mm
->start_stack
) {
6689 strlcpy(tmp
, name
, sizeof(tmp
));
6693 * Since our buffer works in 8 byte units we need to align our string
6694 * size to a multiple of 8. However, we must guarantee the tail end is
6695 * zero'd out to avoid leaking random bits to userspace.
6697 size
= strlen(name
)+1;
6698 while (!IS_ALIGNED(size
, sizeof(u64
)))
6699 name
[size
++] = '\0';
6701 mmap_event
->file_name
= name
;
6702 mmap_event
->file_size
= size
;
6703 mmap_event
->maj
= maj
;
6704 mmap_event
->min
= min
;
6705 mmap_event
->ino
= ino
;
6706 mmap_event
->ino_generation
= gen
;
6707 mmap_event
->prot
= prot
;
6708 mmap_event
->flags
= flags
;
6710 if (!(vma
->vm_flags
& VM_EXEC
))
6711 mmap_event
->event_id
.header
.misc
|= PERF_RECORD_MISC_MMAP_DATA
;
6713 mmap_event
->event_id
.header
.size
= sizeof(mmap_event
->event_id
) + size
;
6715 perf_iterate_sb(perf_event_mmap_output
,
6723 * Check whether inode and address range match filter criteria.
6725 static bool perf_addr_filter_match(struct perf_addr_filter
*filter
,
6726 struct file
*file
, unsigned long offset
,
6729 if (filter
->inode
!= file
->f_inode
)
6732 if (filter
->offset
> offset
+ size
)
6735 if (filter
->offset
+ filter
->size
< offset
)
6741 static void __perf_addr_filters_adjust(struct perf_event
*event
, void *data
)
6743 struct perf_addr_filters_head
*ifh
= perf_event_addr_filters(event
);
6744 struct vm_area_struct
*vma
= data
;
6745 unsigned long off
= vma
->vm_pgoff
<< PAGE_SHIFT
, flags
;
6746 struct file
*file
= vma
->vm_file
;
6747 struct perf_addr_filter
*filter
;
6748 unsigned int restart
= 0, count
= 0;
6750 if (!has_addr_filter(event
))
6756 raw_spin_lock_irqsave(&ifh
->lock
, flags
);
6757 list_for_each_entry(filter
, &ifh
->list
, entry
) {
6758 if (perf_addr_filter_match(filter
, file
, off
,
6759 vma
->vm_end
- vma
->vm_start
)) {
6760 event
->addr_filters_offs
[count
] = vma
->vm_start
;
6768 event
->addr_filters_gen
++;
6769 raw_spin_unlock_irqrestore(&ifh
->lock
, flags
);
6772 perf_event_stop(event
, 1);
6776 * Adjust all task's events' filters to the new vma
6778 static void perf_addr_filters_adjust(struct vm_area_struct
*vma
)
6780 struct perf_event_context
*ctx
;
6784 * Data tracing isn't supported yet and as such there is no need
6785 * to keep track of anything that isn't related to executable code:
6787 if (!(vma
->vm_flags
& VM_EXEC
))
6791 for_each_task_context_nr(ctxn
) {
6792 ctx
= rcu_dereference(current
->perf_event_ctxp
[ctxn
]);
6796 perf_iterate_ctx(ctx
, __perf_addr_filters_adjust
, vma
, true);
6801 void perf_event_mmap(struct vm_area_struct
*vma
)
6803 struct perf_mmap_event mmap_event
;
6805 if (!atomic_read(&nr_mmap_events
))
6808 mmap_event
= (struct perf_mmap_event
){
6814 .type
= PERF_RECORD_MMAP
,
6815 .misc
= PERF_RECORD_MISC_USER
,
6820 .start
= vma
->vm_start
,
6821 .len
= vma
->vm_end
- vma
->vm_start
,
6822 .pgoff
= (u64
)vma
->vm_pgoff
<< PAGE_SHIFT
,
6824 /* .maj (attr_mmap2 only) */
6825 /* .min (attr_mmap2 only) */
6826 /* .ino (attr_mmap2 only) */
6827 /* .ino_generation (attr_mmap2 only) */
6828 /* .prot (attr_mmap2 only) */
6829 /* .flags (attr_mmap2 only) */
6832 perf_addr_filters_adjust(vma
);
6833 perf_event_mmap_event(&mmap_event
);
6836 void perf_event_aux_event(struct perf_event
*event
, unsigned long head
,
6837 unsigned long size
, u64 flags
)
6839 struct perf_output_handle handle
;
6840 struct perf_sample_data sample
;
6841 struct perf_aux_event
{
6842 struct perf_event_header header
;
6848 .type
= PERF_RECORD_AUX
,
6850 .size
= sizeof(rec
),
6858 perf_event_header__init_id(&rec
.header
, &sample
, event
);
6859 ret
= perf_output_begin(&handle
, event
, rec
.header
.size
);
6864 perf_output_put(&handle
, rec
);
6865 perf_event__output_id_sample(event
, &handle
, &sample
);
6867 perf_output_end(&handle
);
6871 * Lost/dropped samples logging
6873 void perf_log_lost_samples(struct perf_event
*event
, u64 lost
)
6875 struct perf_output_handle handle
;
6876 struct perf_sample_data sample
;
6880 struct perf_event_header header
;
6882 } lost_samples_event
= {
6884 .type
= PERF_RECORD_LOST_SAMPLES
,
6886 .size
= sizeof(lost_samples_event
),
6891 perf_event_header__init_id(&lost_samples_event
.header
, &sample
, event
);
6893 ret
= perf_output_begin(&handle
, event
,
6894 lost_samples_event
.header
.size
);
6898 perf_output_put(&handle
, lost_samples_event
);
6899 perf_event__output_id_sample(event
, &handle
, &sample
);
6900 perf_output_end(&handle
);
6904 * context_switch tracking
6907 struct perf_switch_event
{
6908 struct task_struct
*task
;
6909 struct task_struct
*next_prev
;
6912 struct perf_event_header header
;
6918 static int perf_event_switch_match(struct perf_event
*event
)
6920 return event
->attr
.context_switch
;
6923 static void perf_event_switch_output(struct perf_event
*event
, void *data
)
6925 struct perf_switch_event
*se
= data
;
6926 struct perf_output_handle handle
;
6927 struct perf_sample_data sample
;
6930 if (!perf_event_switch_match(event
))
6933 /* Only CPU-wide events are allowed to see next/prev pid/tid */
6934 if (event
->ctx
->task
) {
6935 se
->event_id
.header
.type
= PERF_RECORD_SWITCH
;
6936 se
->event_id
.header
.size
= sizeof(se
->event_id
.header
);
6938 se
->event_id
.header
.type
= PERF_RECORD_SWITCH_CPU_WIDE
;
6939 se
->event_id
.header
.size
= sizeof(se
->event_id
);
6940 se
->event_id
.next_prev_pid
=
6941 perf_event_pid(event
, se
->next_prev
);
6942 se
->event_id
.next_prev_tid
=
6943 perf_event_tid(event
, se
->next_prev
);
6946 perf_event_header__init_id(&se
->event_id
.header
, &sample
, event
);
6948 ret
= perf_output_begin(&handle
, event
, se
->event_id
.header
.size
);
6952 if (event
->ctx
->task
)
6953 perf_output_put(&handle
, se
->event_id
.header
);
6955 perf_output_put(&handle
, se
->event_id
);
6957 perf_event__output_id_sample(event
, &handle
, &sample
);
6959 perf_output_end(&handle
);
6962 static void perf_event_switch(struct task_struct
*task
,
6963 struct task_struct
*next_prev
, bool sched_in
)
6965 struct perf_switch_event switch_event
;
6967 /* N.B. caller checks nr_switch_events != 0 */
6969 switch_event
= (struct perf_switch_event
){
6971 .next_prev
= next_prev
,
6975 .misc
= sched_in
? 0 : PERF_RECORD_MISC_SWITCH_OUT
,
6978 /* .next_prev_pid */
6979 /* .next_prev_tid */
6983 perf_iterate_sb(perf_event_switch_output
,
6989 * IRQ throttle logging
6992 static void perf_log_throttle(struct perf_event
*event
, int enable
)
6994 struct perf_output_handle handle
;
6995 struct perf_sample_data sample
;
6999 struct perf_event_header header
;
7003 } throttle_event
= {
7005 .type
= PERF_RECORD_THROTTLE
,
7007 .size
= sizeof(throttle_event
),
7009 .time
= perf_event_clock(event
),
7010 .id
= primary_event_id(event
),
7011 .stream_id
= event
->id
,
7015 throttle_event
.header
.type
= PERF_RECORD_UNTHROTTLE
;
7017 perf_event_header__init_id(&throttle_event
.header
, &sample
, event
);
7019 ret
= perf_output_begin(&handle
, event
,
7020 throttle_event
.header
.size
);
7024 perf_output_put(&handle
, throttle_event
);
7025 perf_event__output_id_sample(event
, &handle
, &sample
);
7026 perf_output_end(&handle
);
7029 static void perf_log_itrace_start(struct perf_event
*event
)
7031 struct perf_output_handle handle
;
7032 struct perf_sample_data sample
;
7033 struct perf_aux_event
{
7034 struct perf_event_header header
;
7041 event
= event
->parent
;
7043 if (!(event
->pmu
->capabilities
& PERF_PMU_CAP_ITRACE
) ||
7044 event
->hw
.itrace_started
)
7047 rec
.header
.type
= PERF_RECORD_ITRACE_START
;
7048 rec
.header
.misc
= 0;
7049 rec
.header
.size
= sizeof(rec
);
7050 rec
.pid
= perf_event_pid(event
, current
);
7051 rec
.tid
= perf_event_tid(event
, current
);
7053 perf_event_header__init_id(&rec
.header
, &sample
, event
);
7054 ret
= perf_output_begin(&handle
, event
, rec
.header
.size
);
7059 perf_output_put(&handle
, rec
);
7060 perf_event__output_id_sample(event
, &handle
, &sample
);
7062 perf_output_end(&handle
);
7066 * Generic event overflow handling, sampling.
7069 static int __perf_event_overflow(struct perf_event
*event
,
7070 int throttle
, struct perf_sample_data
*data
,
7071 struct pt_regs
*regs
)
7073 int events
= atomic_read(&event
->event_limit
);
7074 struct hw_perf_event
*hwc
= &event
->hw
;
7079 * Non-sampling counters might still use the PMI to fold short
7080 * hardware counters, ignore those.
7082 if (unlikely(!is_sampling_event(event
)))
7085 seq
= __this_cpu_read(perf_throttled_seq
);
7086 if (seq
!= hwc
->interrupts_seq
) {
7087 hwc
->interrupts_seq
= seq
;
7088 hwc
->interrupts
= 1;
7091 if (unlikely(throttle
7092 && hwc
->interrupts
>= max_samples_per_tick
)) {
7093 __this_cpu_inc(perf_throttled_count
);
7094 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS
);
7095 hwc
->interrupts
= MAX_INTERRUPTS
;
7096 perf_log_throttle(event
, 0);
7101 if (event
->attr
.freq
) {
7102 u64 now
= perf_clock();
7103 s64 delta
= now
- hwc
->freq_time_stamp
;
7105 hwc
->freq_time_stamp
= now
;
7107 if (delta
> 0 && delta
< 2*TICK_NSEC
)
7108 perf_adjust_period(event
, delta
, hwc
->last_period
, true);
7112 * XXX event_limit might not quite work as expected on inherited
7116 event
->pending_kill
= POLL_IN
;
7117 if (events
&& atomic_dec_and_test(&event
->event_limit
)) {
7119 event
->pending_kill
= POLL_HUP
;
7121 perf_event_disable_inatomic(event
);
7124 READ_ONCE(event
->overflow_handler
)(event
, data
, regs
);
7126 if (*perf_event_fasync(event
) && event
->pending_kill
) {
7127 event
->pending_wakeup
= 1;
7128 irq_work_queue(&event
->pending
);
7134 int perf_event_overflow(struct perf_event
*event
,
7135 struct perf_sample_data
*data
,
7136 struct pt_regs
*regs
)
7138 return __perf_event_overflow(event
, 1, data
, regs
);
7142 * Generic software event infrastructure
7145 struct swevent_htable
{
7146 struct swevent_hlist
*swevent_hlist
;
7147 struct mutex hlist_mutex
;
7150 /* Recursion avoidance in each contexts */
7151 int recursion
[PERF_NR_CONTEXTS
];
7154 static DEFINE_PER_CPU(struct swevent_htable
, swevent_htable
);
7157 * We directly increment event->count and keep a second value in
7158 * event->hw.period_left to count intervals. This period event
7159 * is kept in the range [-sample_period, 0] so that we can use the
7163 u64
perf_swevent_set_period(struct perf_event
*event
)
7165 struct hw_perf_event
*hwc
= &event
->hw
;
7166 u64 period
= hwc
->last_period
;
7170 hwc
->last_period
= hwc
->sample_period
;
7173 old
= val
= local64_read(&hwc
->period_left
);
7177 nr
= div64_u64(period
+ val
, period
);
7178 offset
= nr
* period
;
7180 if (local64_cmpxchg(&hwc
->period_left
, old
, val
) != old
)
7186 static void perf_swevent_overflow(struct perf_event
*event
, u64 overflow
,
7187 struct perf_sample_data
*data
,
7188 struct pt_regs
*regs
)
7190 struct hw_perf_event
*hwc
= &event
->hw
;
7194 overflow
= perf_swevent_set_period(event
);
7196 if (hwc
->interrupts
== MAX_INTERRUPTS
)
7199 for (; overflow
; overflow
--) {
7200 if (__perf_event_overflow(event
, throttle
,
7203 * We inhibit the overflow from happening when
7204 * hwc->interrupts == MAX_INTERRUPTS.
7212 static void perf_swevent_event(struct perf_event
*event
, u64 nr
,
7213 struct perf_sample_data
*data
,
7214 struct pt_regs
*regs
)
7216 struct hw_perf_event
*hwc
= &event
->hw
;
7218 local64_add(nr
, &event
->count
);
7223 if (!is_sampling_event(event
))
7226 if ((event
->attr
.sample_type
& PERF_SAMPLE_PERIOD
) && !event
->attr
.freq
) {
7228 return perf_swevent_overflow(event
, 1, data
, regs
);
7230 data
->period
= event
->hw
.last_period
;
7232 if (nr
== 1 && hwc
->sample_period
== 1 && !event
->attr
.freq
)
7233 return perf_swevent_overflow(event
, 1, data
, regs
);
7235 if (local64_add_negative(nr
, &hwc
->period_left
))
7238 perf_swevent_overflow(event
, 0, data
, regs
);
7241 static int perf_exclude_event(struct perf_event
*event
,
7242 struct pt_regs
*regs
)
7244 if (event
->hw
.state
& PERF_HES_STOPPED
)
7248 if (event
->attr
.exclude_user
&& user_mode(regs
))
7251 if (event
->attr
.exclude_kernel
&& !user_mode(regs
))
7258 static int perf_swevent_match(struct perf_event
*event
,
7259 enum perf_type_id type
,
7261 struct perf_sample_data
*data
,
7262 struct pt_regs
*regs
)
7264 if (event
->attr
.type
!= type
)
7267 if (event
->attr
.config
!= event_id
)
7270 if (perf_exclude_event(event
, regs
))
7276 static inline u64
swevent_hash(u64 type
, u32 event_id
)
7278 u64 val
= event_id
| (type
<< 32);
7280 return hash_64(val
, SWEVENT_HLIST_BITS
);
7283 static inline struct hlist_head
*
7284 __find_swevent_head(struct swevent_hlist
*hlist
, u64 type
, u32 event_id
)
7286 u64 hash
= swevent_hash(type
, event_id
);
7288 return &hlist
->heads
[hash
];
7291 /* For the read side: events when they trigger */
7292 static inline struct hlist_head
*
7293 find_swevent_head_rcu(struct swevent_htable
*swhash
, u64 type
, u32 event_id
)
7295 struct swevent_hlist
*hlist
;
7297 hlist
= rcu_dereference(swhash
->swevent_hlist
);
7301 return __find_swevent_head(hlist
, type
, event_id
);
7304 /* For the event head insertion and removal in the hlist */
7305 static inline struct hlist_head
*
7306 find_swevent_head(struct swevent_htable
*swhash
, struct perf_event
*event
)
7308 struct swevent_hlist
*hlist
;
7309 u32 event_id
= event
->attr
.config
;
7310 u64 type
= event
->attr
.type
;
7313 * Event scheduling is always serialized against hlist allocation
7314 * and release. Which makes the protected version suitable here.
7315 * The context lock guarantees that.
7317 hlist
= rcu_dereference_protected(swhash
->swevent_hlist
,
7318 lockdep_is_held(&event
->ctx
->lock
));
7322 return __find_swevent_head(hlist
, type
, event_id
);
7325 static void do_perf_sw_event(enum perf_type_id type
, u32 event_id
,
7327 struct perf_sample_data
*data
,
7328 struct pt_regs
*regs
)
7330 struct swevent_htable
*swhash
= this_cpu_ptr(&swevent_htable
);
7331 struct perf_event
*event
;
7332 struct hlist_head
*head
;
7335 head
= find_swevent_head_rcu(swhash
, type
, event_id
);
7339 hlist_for_each_entry_rcu(event
, head
, hlist_entry
) {
7340 if (perf_swevent_match(event
, type
, event_id
, data
, regs
))
7341 perf_swevent_event(event
, nr
, data
, regs
);
7347 DEFINE_PER_CPU(struct pt_regs
, __perf_regs
[4]);
7349 int perf_swevent_get_recursion_context(void)
7351 struct swevent_htable
*swhash
= this_cpu_ptr(&swevent_htable
);
7353 return get_recursion_context(swhash
->recursion
);
7355 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context
);
7357 void perf_swevent_put_recursion_context(int rctx
)
7359 struct swevent_htable
*swhash
= this_cpu_ptr(&swevent_htable
);
7361 put_recursion_context(swhash
->recursion
, rctx
);
7364 void ___perf_sw_event(u32 event_id
, u64 nr
, struct pt_regs
*regs
, u64 addr
)
7366 struct perf_sample_data data
;
7368 if (WARN_ON_ONCE(!regs
))
7371 perf_sample_data_init(&data
, addr
, 0);
7372 do_perf_sw_event(PERF_TYPE_SOFTWARE
, event_id
, nr
, &data
, regs
);
7375 void __perf_sw_event(u32 event_id
, u64 nr
, struct pt_regs
*regs
, u64 addr
)
7379 preempt_disable_notrace();
7380 rctx
= perf_swevent_get_recursion_context();
7381 if (unlikely(rctx
< 0))
7384 ___perf_sw_event(event_id
, nr
, regs
, addr
);
7386 perf_swevent_put_recursion_context(rctx
);
7388 preempt_enable_notrace();
7391 static void perf_swevent_read(struct perf_event
*event
)
7395 static int perf_swevent_add(struct perf_event
*event
, int flags
)
7397 struct swevent_htable
*swhash
= this_cpu_ptr(&swevent_htable
);
7398 struct hw_perf_event
*hwc
= &event
->hw
;
7399 struct hlist_head
*head
;
7401 if (is_sampling_event(event
)) {
7402 hwc
->last_period
= hwc
->sample_period
;
7403 perf_swevent_set_period(event
);
7406 hwc
->state
= !(flags
& PERF_EF_START
);
7408 head
= find_swevent_head(swhash
, event
);
7409 if (WARN_ON_ONCE(!head
))
7412 hlist_add_head_rcu(&event
->hlist_entry
, head
);
7413 perf_event_update_userpage(event
);
7418 static void perf_swevent_del(struct perf_event
*event
, int flags
)
7420 hlist_del_rcu(&event
->hlist_entry
);
7423 static void perf_swevent_start(struct perf_event
*event
, int flags
)
7425 event
->hw
.state
= 0;
7428 static void perf_swevent_stop(struct perf_event
*event
, int flags
)
7430 event
->hw
.state
= PERF_HES_STOPPED
;
7433 /* Deref the hlist from the update side */
7434 static inline struct swevent_hlist
*
7435 swevent_hlist_deref(struct swevent_htable
*swhash
)
7437 return rcu_dereference_protected(swhash
->swevent_hlist
,
7438 lockdep_is_held(&swhash
->hlist_mutex
));
7441 static void swevent_hlist_release(struct swevent_htable
*swhash
)
7443 struct swevent_hlist
*hlist
= swevent_hlist_deref(swhash
);
7448 RCU_INIT_POINTER(swhash
->swevent_hlist
, NULL
);
7449 kfree_rcu(hlist
, rcu_head
);
7452 static void swevent_hlist_put_cpu(int cpu
)
7454 struct swevent_htable
*swhash
= &per_cpu(swevent_htable
, cpu
);
7456 mutex_lock(&swhash
->hlist_mutex
);
7458 if (!--swhash
->hlist_refcount
)
7459 swevent_hlist_release(swhash
);
7461 mutex_unlock(&swhash
->hlist_mutex
);
7464 static void swevent_hlist_put(void)
7468 for_each_possible_cpu(cpu
)
7469 swevent_hlist_put_cpu(cpu
);
7472 static int swevent_hlist_get_cpu(int cpu
)
7474 struct swevent_htable
*swhash
= &per_cpu(swevent_htable
, cpu
);
7477 mutex_lock(&swhash
->hlist_mutex
);
7478 if (!swevent_hlist_deref(swhash
) && cpu_online(cpu
)) {
7479 struct swevent_hlist
*hlist
;
7481 hlist
= kzalloc(sizeof(*hlist
), GFP_KERNEL
);
7486 rcu_assign_pointer(swhash
->swevent_hlist
, hlist
);
7488 swhash
->hlist_refcount
++;
7490 mutex_unlock(&swhash
->hlist_mutex
);
7495 static int swevent_hlist_get(void)
7497 int err
, cpu
, failed_cpu
;
7500 for_each_possible_cpu(cpu
) {
7501 err
= swevent_hlist_get_cpu(cpu
);
7511 for_each_possible_cpu(cpu
) {
7512 if (cpu
== failed_cpu
)
7514 swevent_hlist_put_cpu(cpu
);
7521 struct static_key perf_swevent_enabled
[PERF_COUNT_SW_MAX
];
7523 static void sw_perf_event_destroy(struct perf_event
*event
)
7525 u64 event_id
= event
->attr
.config
;
7527 WARN_ON(event
->parent
);
7529 static_key_slow_dec(&perf_swevent_enabled
[event_id
]);
7530 swevent_hlist_put();
7533 static int perf_swevent_init(struct perf_event
*event
)
7535 u64 event_id
= event
->attr
.config
;
7537 if (event
->attr
.type
!= PERF_TYPE_SOFTWARE
)
7541 * no branch sampling for software events
7543 if (has_branch_stack(event
))
7547 case PERF_COUNT_SW_CPU_CLOCK
:
7548 case PERF_COUNT_SW_TASK_CLOCK
:
7555 if (event_id
>= PERF_COUNT_SW_MAX
)
7558 if (!event
->parent
) {
7561 err
= swevent_hlist_get();
7565 static_key_slow_inc(&perf_swevent_enabled
[event_id
]);
7566 event
->destroy
= sw_perf_event_destroy
;
7572 static struct pmu perf_swevent
= {
7573 .task_ctx_nr
= perf_sw_context
,
7575 .capabilities
= PERF_PMU_CAP_NO_NMI
,
7577 .event_init
= perf_swevent_init
,
7578 .add
= perf_swevent_add
,
7579 .del
= perf_swevent_del
,
7580 .start
= perf_swevent_start
,
7581 .stop
= perf_swevent_stop
,
7582 .read
= perf_swevent_read
,
7585 #ifdef CONFIG_EVENT_TRACING
7587 static int perf_tp_filter_match(struct perf_event
*event
,
7588 struct perf_sample_data
*data
)
7590 void *record
= data
->raw
->frag
.data
;
7592 /* only top level events have filters set */
7594 event
= event
->parent
;
7596 if (likely(!event
->filter
) || filter_match_preds(event
->filter
, record
))
7601 static int perf_tp_event_match(struct perf_event
*event
,
7602 struct perf_sample_data
*data
,
7603 struct pt_regs
*regs
)
7605 if (event
->hw
.state
& PERF_HES_STOPPED
)
7608 * All tracepoints are from kernel-space.
7610 if (event
->attr
.exclude_kernel
)
7613 if (!perf_tp_filter_match(event
, data
))
7619 void perf_trace_run_bpf_submit(void *raw_data
, int size
, int rctx
,
7620 struct trace_event_call
*call
, u64 count
,
7621 struct pt_regs
*regs
, struct hlist_head
*head
,
7622 struct task_struct
*task
)
7624 struct bpf_prog
*prog
= call
->prog
;
7627 *(struct pt_regs
**)raw_data
= regs
;
7628 if (!trace_call_bpf(prog
, raw_data
) || hlist_empty(head
)) {
7629 perf_swevent_put_recursion_context(rctx
);
7633 perf_tp_event(call
->event
.type
, count
, raw_data
, size
, regs
, head
,
7636 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit
);
7638 void perf_tp_event(u16 event_type
, u64 count
, void *record
, int entry_size
,
7639 struct pt_regs
*regs
, struct hlist_head
*head
, int rctx
,
7640 struct task_struct
*task
)
7642 struct perf_sample_data data
;
7643 struct perf_event
*event
;
7645 struct perf_raw_record raw
= {
7652 perf_sample_data_init(&data
, 0, 0);
7655 perf_trace_buf_update(record
, event_type
);
7657 hlist_for_each_entry_rcu(event
, head
, hlist_entry
) {
7658 if (perf_tp_event_match(event
, &data
, regs
))
7659 perf_swevent_event(event
, count
, &data
, regs
);
7663 * If we got specified a target task, also iterate its context and
7664 * deliver this event there too.
7666 if (task
&& task
!= current
) {
7667 struct perf_event_context
*ctx
;
7668 struct trace_entry
*entry
= record
;
7671 ctx
= rcu_dereference(task
->perf_event_ctxp
[perf_sw_context
]);
7675 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
7676 if (event
->attr
.type
!= PERF_TYPE_TRACEPOINT
)
7678 if (event
->attr
.config
!= entry
->type
)
7680 if (perf_tp_event_match(event
, &data
, regs
))
7681 perf_swevent_event(event
, count
, &data
, regs
);
7687 perf_swevent_put_recursion_context(rctx
);
7689 EXPORT_SYMBOL_GPL(perf_tp_event
);
7691 static void tp_perf_event_destroy(struct perf_event
*event
)
7693 perf_trace_destroy(event
);
7696 static int perf_tp_event_init(struct perf_event
*event
)
7700 if (event
->attr
.type
!= PERF_TYPE_TRACEPOINT
)
7704 * no branch sampling for tracepoint events
7706 if (has_branch_stack(event
))
7709 err
= perf_trace_init(event
);
7713 event
->destroy
= tp_perf_event_destroy
;
7718 static struct pmu perf_tracepoint
= {
7719 .task_ctx_nr
= perf_sw_context
,
7721 .event_init
= perf_tp_event_init
,
7722 .add
= perf_trace_add
,
7723 .del
= perf_trace_del
,
7724 .start
= perf_swevent_start
,
7725 .stop
= perf_swevent_stop
,
7726 .read
= perf_swevent_read
,
7729 static inline void perf_tp_register(void)
7731 perf_pmu_register(&perf_tracepoint
, "tracepoint", PERF_TYPE_TRACEPOINT
);
7734 static void perf_event_free_filter(struct perf_event
*event
)
7736 ftrace_profile_free_filter(event
);
7739 #ifdef CONFIG_BPF_SYSCALL
7740 static void bpf_overflow_handler(struct perf_event
*event
,
7741 struct perf_sample_data
*data
,
7742 struct pt_regs
*regs
)
7744 struct bpf_perf_event_data_kern ctx
= {
7751 if (unlikely(__this_cpu_inc_return(bpf_prog_active
) != 1))
7754 ret
= BPF_PROG_RUN(event
->prog
, (void *)&ctx
);
7757 __this_cpu_dec(bpf_prog_active
);
7762 event
->orig_overflow_handler(event
, data
, regs
);
7765 static int perf_event_set_bpf_handler(struct perf_event
*event
, u32 prog_fd
)
7767 struct bpf_prog
*prog
;
7769 if (event
->overflow_handler_context
)
7770 /* hw breakpoint or kernel counter */
7776 prog
= bpf_prog_get_type(prog_fd
, BPF_PROG_TYPE_PERF_EVENT
);
7778 return PTR_ERR(prog
);
7781 event
->orig_overflow_handler
= READ_ONCE(event
->overflow_handler
);
7782 WRITE_ONCE(event
->overflow_handler
, bpf_overflow_handler
);
7786 static void perf_event_free_bpf_handler(struct perf_event
*event
)
7788 struct bpf_prog
*prog
= event
->prog
;
7793 WRITE_ONCE(event
->overflow_handler
, event
->orig_overflow_handler
);
7798 static int perf_event_set_bpf_handler(struct perf_event
*event
, u32 prog_fd
)
7802 static void perf_event_free_bpf_handler(struct perf_event
*event
)
7807 static int perf_event_set_bpf_prog(struct perf_event
*event
, u32 prog_fd
)
7809 bool is_kprobe
, is_tracepoint
;
7810 struct bpf_prog
*prog
;
7812 if (event
->attr
.type
== PERF_TYPE_HARDWARE
||
7813 event
->attr
.type
== PERF_TYPE_SOFTWARE
)
7814 return perf_event_set_bpf_handler(event
, prog_fd
);
7816 if (event
->attr
.type
!= PERF_TYPE_TRACEPOINT
)
7819 if (event
->tp_event
->prog
)
7822 is_kprobe
= event
->tp_event
->flags
& TRACE_EVENT_FL_UKPROBE
;
7823 is_tracepoint
= event
->tp_event
->flags
& TRACE_EVENT_FL_TRACEPOINT
;
7824 if (!is_kprobe
&& !is_tracepoint
)
7825 /* bpf programs can only be attached to u/kprobe or tracepoint */
7828 prog
= bpf_prog_get(prog_fd
);
7830 return PTR_ERR(prog
);
7832 if ((is_kprobe
&& prog
->type
!= BPF_PROG_TYPE_KPROBE
) ||
7833 (is_tracepoint
&& prog
->type
!= BPF_PROG_TYPE_TRACEPOINT
)) {
7834 /* valid fd, but invalid bpf program type */
7839 if (is_tracepoint
) {
7840 int off
= trace_event_get_offsets(event
->tp_event
);
7842 if (prog
->aux
->max_ctx_offset
> off
) {
7847 event
->tp_event
->prog
= prog
;
7852 static void perf_event_free_bpf_prog(struct perf_event
*event
)
7854 struct bpf_prog
*prog
;
7856 perf_event_free_bpf_handler(event
);
7858 if (!event
->tp_event
)
7861 prog
= event
->tp_event
->prog
;
7863 event
->tp_event
->prog
= NULL
;
7870 static inline void perf_tp_register(void)
7874 static void perf_event_free_filter(struct perf_event
*event
)
7878 static int perf_event_set_bpf_prog(struct perf_event
*event
, u32 prog_fd
)
7883 static void perf_event_free_bpf_prog(struct perf_event
*event
)
7886 #endif /* CONFIG_EVENT_TRACING */
7888 #ifdef CONFIG_HAVE_HW_BREAKPOINT
7889 void perf_bp_event(struct perf_event
*bp
, void *data
)
7891 struct perf_sample_data sample
;
7892 struct pt_regs
*regs
= data
;
7894 perf_sample_data_init(&sample
, bp
->attr
.bp_addr
, 0);
7896 if (!bp
->hw
.state
&& !perf_exclude_event(bp
, regs
))
7897 perf_swevent_event(bp
, 1, &sample
, regs
);
7902 * Allocate a new address filter
7904 static struct perf_addr_filter
*
7905 perf_addr_filter_new(struct perf_event
*event
, struct list_head
*filters
)
7907 int node
= cpu_to_node(event
->cpu
== -1 ? 0 : event
->cpu
);
7908 struct perf_addr_filter
*filter
;
7910 filter
= kzalloc_node(sizeof(*filter
), GFP_KERNEL
, node
);
7914 INIT_LIST_HEAD(&filter
->entry
);
7915 list_add_tail(&filter
->entry
, filters
);
7920 static void free_filters_list(struct list_head
*filters
)
7922 struct perf_addr_filter
*filter
, *iter
;
7924 list_for_each_entry_safe(filter
, iter
, filters
, entry
) {
7926 iput(filter
->inode
);
7927 list_del(&filter
->entry
);
7933 * Free existing address filters and optionally install new ones
7935 static void perf_addr_filters_splice(struct perf_event
*event
,
7936 struct list_head
*head
)
7938 unsigned long flags
;
7941 if (!has_addr_filter(event
))
7944 /* don't bother with children, they don't have their own filters */
7948 raw_spin_lock_irqsave(&event
->addr_filters
.lock
, flags
);
7950 list_splice_init(&event
->addr_filters
.list
, &list
);
7952 list_splice(head
, &event
->addr_filters
.list
);
7954 raw_spin_unlock_irqrestore(&event
->addr_filters
.lock
, flags
);
7956 free_filters_list(&list
);
7960 * Scan through mm's vmas and see if one of them matches the
7961 * @filter; if so, adjust filter's address range.
7962 * Called with mm::mmap_sem down for reading.
7964 static unsigned long perf_addr_filter_apply(struct perf_addr_filter
*filter
,
7965 struct mm_struct
*mm
)
7967 struct vm_area_struct
*vma
;
7969 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
7970 struct file
*file
= vma
->vm_file
;
7971 unsigned long off
= vma
->vm_pgoff
<< PAGE_SHIFT
;
7972 unsigned long vma_size
= vma
->vm_end
- vma
->vm_start
;
7977 if (!perf_addr_filter_match(filter
, file
, off
, vma_size
))
7980 return vma
->vm_start
;
7987 * Update event's address range filters based on the
7988 * task's existing mappings, if any.
7990 static void perf_event_addr_filters_apply(struct perf_event
*event
)
7992 struct perf_addr_filters_head
*ifh
= perf_event_addr_filters(event
);
7993 struct task_struct
*task
= READ_ONCE(event
->ctx
->task
);
7994 struct perf_addr_filter
*filter
;
7995 struct mm_struct
*mm
= NULL
;
7996 unsigned int count
= 0;
7997 unsigned long flags
;
8000 * We may observe TASK_TOMBSTONE, which means that the event tear-down
8001 * will stop on the parent's child_mutex that our caller is also holding
8003 if (task
== TASK_TOMBSTONE
)
8006 mm
= get_task_mm(event
->ctx
->task
);
8010 down_read(&mm
->mmap_sem
);
8012 raw_spin_lock_irqsave(&ifh
->lock
, flags
);
8013 list_for_each_entry(filter
, &ifh
->list
, entry
) {
8014 event
->addr_filters_offs
[count
] = 0;
8017 * Adjust base offset if the filter is associated to a binary
8018 * that needs to be mapped:
8021 event
->addr_filters_offs
[count
] =
8022 perf_addr_filter_apply(filter
, mm
);
8027 event
->addr_filters_gen
++;
8028 raw_spin_unlock_irqrestore(&ifh
->lock
, flags
);
8030 up_read(&mm
->mmap_sem
);
8035 perf_event_stop(event
, 1);
8039 * Address range filtering: limiting the data to certain
8040 * instruction address ranges. Filters are ioctl()ed to us from
8041 * userspace as ascii strings.
8043 * Filter string format:
8046 * where ACTION is one of the
8047 * * "filter": limit the trace to this region
8048 * * "start": start tracing from this address
8049 * * "stop": stop tracing at this address/region;
8051 * * for kernel addresses: <start address>[/<size>]
8052 * * for object files: <start address>[/<size>]@</path/to/object/file>
8054 * if <size> is not specified, the range is treated as a single address.
8068 IF_STATE_ACTION
= 0,
8073 static const match_table_t if_tokens
= {
8074 { IF_ACT_FILTER
, "filter" },
8075 { IF_ACT_START
, "start" },
8076 { IF_ACT_STOP
, "stop" },
8077 { IF_SRC_FILE
, "%u/%u@%s" },
8078 { IF_SRC_KERNEL
, "%u/%u" },
8079 { IF_SRC_FILEADDR
, "%u@%s" },
8080 { IF_SRC_KERNELADDR
, "%u" },
8081 { IF_ACT_NONE
, NULL
},
8085 * Address filter string parser
8088 perf_event_parse_addr_filter(struct perf_event
*event
, char *fstr
,
8089 struct list_head
*filters
)
8091 struct perf_addr_filter
*filter
= NULL
;
8092 char *start
, *orig
, *filename
= NULL
;
8094 substring_t args
[MAX_OPT_ARGS
];
8095 int state
= IF_STATE_ACTION
, token
;
8096 unsigned int kernel
= 0;
8099 orig
= fstr
= kstrdup(fstr
, GFP_KERNEL
);
8103 while ((start
= strsep(&fstr
, " ,\n")) != NULL
) {
8109 /* filter definition begins */
8110 if (state
== IF_STATE_ACTION
) {
8111 filter
= perf_addr_filter_new(event
, filters
);
8116 token
= match_token(start
, if_tokens
, args
);
8123 if (state
!= IF_STATE_ACTION
)
8126 state
= IF_STATE_SOURCE
;
8129 case IF_SRC_KERNELADDR
:
8133 case IF_SRC_FILEADDR
:
8135 if (state
!= IF_STATE_SOURCE
)
8138 if (token
== IF_SRC_FILE
|| token
== IF_SRC_KERNEL
)
8142 ret
= kstrtoul(args
[0].from
, 0, &filter
->offset
);
8146 if (filter
->range
) {
8148 ret
= kstrtoul(args
[1].from
, 0, &filter
->size
);
8153 if (token
== IF_SRC_FILE
|| token
== IF_SRC_FILEADDR
) {
8154 int fpos
= filter
->range
? 2 : 1;
8156 filename
= match_strdup(&args
[fpos
]);
8163 state
= IF_STATE_END
;
8171 * Filter definition is fully parsed, validate and install it.
8172 * Make sure that it doesn't contradict itself or the event's
8175 if (state
== IF_STATE_END
) {
8176 if (kernel
&& event
->attr
.exclude_kernel
)
8183 /* look up the path and grab its inode */
8184 ret
= kern_path(filename
, LOOKUP_FOLLOW
, &path
);
8186 goto fail_free_name
;
8188 filter
->inode
= igrab(d_inode(path
.dentry
));
8194 if (!filter
->inode
||
8195 !S_ISREG(filter
->inode
->i_mode
))
8196 /* free_filters_list() will iput() */
8200 /* ready to consume more filters */
8201 state
= IF_STATE_ACTION
;
8206 if (state
!= IF_STATE_ACTION
)
8216 free_filters_list(filters
);
8223 perf_event_set_addr_filter(struct perf_event
*event
, char *filter_str
)
8229 * Since this is called in perf_ioctl() path, we're already holding
8232 lockdep_assert_held(&event
->ctx
->mutex
);
8234 if (WARN_ON_ONCE(event
->parent
))
8238 * For now, we only support filtering in per-task events; doing so
8239 * for CPU-wide events requires additional context switching trickery,
8240 * since same object code will be mapped at different virtual
8241 * addresses in different processes.
8243 if (!event
->ctx
->task
)
8246 ret
= perf_event_parse_addr_filter(event
, filter_str
, &filters
);
8250 ret
= event
->pmu
->addr_filters_validate(&filters
);
8252 free_filters_list(&filters
);
8256 /* remove existing filters, if any */
8257 perf_addr_filters_splice(event
, &filters
);
8259 /* install new filters */
8260 perf_event_for_each_child(event
, perf_event_addr_filters_apply
);
8265 static int perf_event_set_filter(struct perf_event
*event
, void __user
*arg
)
8270 if ((event
->attr
.type
!= PERF_TYPE_TRACEPOINT
||
8271 !IS_ENABLED(CONFIG_EVENT_TRACING
)) &&
8272 !has_addr_filter(event
))
8275 filter_str
= strndup_user(arg
, PAGE_SIZE
);
8276 if (IS_ERR(filter_str
))
8277 return PTR_ERR(filter_str
);
8279 if (IS_ENABLED(CONFIG_EVENT_TRACING
) &&
8280 event
->attr
.type
== PERF_TYPE_TRACEPOINT
)
8281 ret
= ftrace_profile_set_filter(event
, event
->attr
.config
,
8283 else if (has_addr_filter(event
))
8284 ret
= perf_event_set_addr_filter(event
, filter_str
);
8291 * hrtimer based swevent callback
8294 static enum hrtimer_restart
perf_swevent_hrtimer(struct hrtimer
*hrtimer
)
8296 enum hrtimer_restart ret
= HRTIMER_RESTART
;
8297 struct perf_sample_data data
;
8298 struct pt_regs
*regs
;
8299 struct perf_event
*event
;
8302 event
= container_of(hrtimer
, struct perf_event
, hw
.hrtimer
);
8304 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
8305 return HRTIMER_NORESTART
;
8307 event
->pmu
->read(event
);
8309 perf_sample_data_init(&data
, 0, event
->hw
.last_period
);
8310 regs
= get_irq_regs();
8312 if (regs
&& !perf_exclude_event(event
, regs
)) {
8313 if (!(event
->attr
.exclude_idle
&& is_idle_task(current
)))
8314 if (__perf_event_overflow(event
, 1, &data
, regs
))
8315 ret
= HRTIMER_NORESTART
;
8318 period
= max_t(u64
, 10000, event
->hw
.sample_period
);
8319 hrtimer_forward_now(hrtimer
, ns_to_ktime(period
));
8324 static void perf_swevent_start_hrtimer(struct perf_event
*event
)
8326 struct hw_perf_event
*hwc
= &event
->hw
;
8329 if (!is_sampling_event(event
))
8332 period
= local64_read(&hwc
->period_left
);
8337 local64_set(&hwc
->period_left
, 0);
8339 period
= max_t(u64
, 10000, hwc
->sample_period
);
8341 hrtimer_start(&hwc
->hrtimer
, ns_to_ktime(period
),
8342 HRTIMER_MODE_REL_PINNED
);
8345 static void perf_swevent_cancel_hrtimer(struct perf_event
*event
)
8347 struct hw_perf_event
*hwc
= &event
->hw
;
8349 if (is_sampling_event(event
)) {
8350 ktime_t remaining
= hrtimer_get_remaining(&hwc
->hrtimer
);
8351 local64_set(&hwc
->period_left
, ktime_to_ns(remaining
));
8353 hrtimer_cancel(&hwc
->hrtimer
);
8357 static void perf_swevent_init_hrtimer(struct perf_event
*event
)
8359 struct hw_perf_event
*hwc
= &event
->hw
;
8361 if (!is_sampling_event(event
))
8364 hrtimer_init(&hwc
->hrtimer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
8365 hwc
->hrtimer
.function
= perf_swevent_hrtimer
;
8368 * Since hrtimers have a fixed rate, we can do a static freq->period
8369 * mapping and avoid the whole period adjust feedback stuff.
8371 if (event
->attr
.freq
) {
8372 long freq
= event
->attr
.sample_freq
;
8374 event
->attr
.sample_period
= NSEC_PER_SEC
/ freq
;
8375 hwc
->sample_period
= event
->attr
.sample_period
;
8376 local64_set(&hwc
->period_left
, hwc
->sample_period
);
8377 hwc
->last_period
= hwc
->sample_period
;
8378 event
->attr
.freq
= 0;
8383 * Software event: cpu wall time clock
8386 static void cpu_clock_event_update(struct perf_event
*event
)
8391 now
= local_clock();
8392 prev
= local64_xchg(&event
->hw
.prev_count
, now
);
8393 local64_add(now
- prev
, &event
->count
);
8396 static void cpu_clock_event_start(struct perf_event
*event
, int flags
)
8398 local64_set(&event
->hw
.prev_count
, local_clock());
8399 perf_swevent_start_hrtimer(event
);
8402 static void cpu_clock_event_stop(struct perf_event
*event
, int flags
)
8404 perf_swevent_cancel_hrtimer(event
);
8405 cpu_clock_event_update(event
);
8408 static int cpu_clock_event_add(struct perf_event
*event
, int flags
)
8410 if (flags
& PERF_EF_START
)
8411 cpu_clock_event_start(event
, flags
);
8412 perf_event_update_userpage(event
);
8417 static void cpu_clock_event_del(struct perf_event
*event
, int flags
)
8419 cpu_clock_event_stop(event
, flags
);
8422 static void cpu_clock_event_read(struct perf_event
*event
)
8424 cpu_clock_event_update(event
);
8427 static int cpu_clock_event_init(struct perf_event
*event
)
8429 if (event
->attr
.type
!= PERF_TYPE_SOFTWARE
)
8432 if (event
->attr
.config
!= PERF_COUNT_SW_CPU_CLOCK
)
8436 * no branch sampling for software events
8438 if (has_branch_stack(event
))
8441 perf_swevent_init_hrtimer(event
);
8446 static struct pmu perf_cpu_clock
= {
8447 .task_ctx_nr
= perf_sw_context
,
8449 .capabilities
= PERF_PMU_CAP_NO_NMI
,
8451 .event_init
= cpu_clock_event_init
,
8452 .add
= cpu_clock_event_add
,
8453 .del
= cpu_clock_event_del
,
8454 .start
= cpu_clock_event_start
,
8455 .stop
= cpu_clock_event_stop
,
8456 .read
= cpu_clock_event_read
,
8460 * Software event: task time clock
8463 static void task_clock_event_update(struct perf_event
*event
, u64 now
)
8468 prev
= local64_xchg(&event
->hw
.prev_count
, now
);
8470 local64_add(delta
, &event
->count
);
8473 static void task_clock_event_start(struct perf_event
*event
, int flags
)
8475 local64_set(&event
->hw
.prev_count
, event
->ctx
->time
);
8476 perf_swevent_start_hrtimer(event
);
8479 static void task_clock_event_stop(struct perf_event
*event
, int flags
)
8481 perf_swevent_cancel_hrtimer(event
);
8482 task_clock_event_update(event
, event
->ctx
->time
);
8485 static int task_clock_event_add(struct perf_event
*event
, int flags
)
8487 if (flags
& PERF_EF_START
)
8488 task_clock_event_start(event
, flags
);
8489 perf_event_update_userpage(event
);
8494 static void task_clock_event_del(struct perf_event
*event
, int flags
)
8496 task_clock_event_stop(event
, PERF_EF_UPDATE
);
8499 static void task_clock_event_read(struct perf_event
*event
)
8501 u64 now
= perf_clock();
8502 u64 delta
= now
- event
->ctx
->timestamp
;
8503 u64 time
= event
->ctx
->time
+ delta
;
8505 task_clock_event_update(event
, time
);
8508 static int task_clock_event_init(struct perf_event
*event
)
8510 if (event
->attr
.type
!= PERF_TYPE_SOFTWARE
)
8513 if (event
->attr
.config
!= PERF_COUNT_SW_TASK_CLOCK
)
8517 * no branch sampling for software events
8519 if (has_branch_stack(event
))
8522 perf_swevent_init_hrtimer(event
);
8527 static struct pmu perf_task_clock
= {
8528 .task_ctx_nr
= perf_sw_context
,
8530 .capabilities
= PERF_PMU_CAP_NO_NMI
,
8532 .event_init
= task_clock_event_init
,
8533 .add
= task_clock_event_add
,
8534 .del
= task_clock_event_del
,
8535 .start
= task_clock_event_start
,
8536 .stop
= task_clock_event_stop
,
8537 .read
= task_clock_event_read
,
8540 static void perf_pmu_nop_void(struct pmu
*pmu
)
8544 static void perf_pmu_nop_txn(struct pmu
*pmu
, unsigned int flags
)
8548 static int perf_pmu_nop_int(struct pmu
*pmu
)
8553 static DEFINE_PER_CPU(unsigned int, nop_txn_flags
);
8555 static void perf_pmu_start_txn(struct pmu
*pmu
, unsigned int flags
)
8557 __this_cpu_write(nop_txn_flags
, flags
);
8559 if (flags
& ~PERF_PMU_TXN_ADD
)
8562 perf_pmu_disable(pmu
);
8565 static int perf_pmu_commit_txn(struct pmu
*pmu
)
8567 unsigned int flags
= __this_cpu_read(nop_txn_flags
);
8569 __this_cpu_write(nop_txn_flags
, 0);
8571 if (flags
& ~PERF_PMU_TXN_ADD
)
8574 perf_pmu_enable(pmu
);
8578 static void perf_pmu_cancel_txn(struct pmu
*pmu
)
8580 unsigned int flags
= __this_cpu_read(nop_txn_flags
);
8582 __this_cpu_write(nop_txn_flags
, 0);
8584 if (flags
& ~PERF_PMU_TXN_ADD
)
8587 perf_pmu_enable(pmu
);
8590 static int perf_event_idx_default(struct perf_event
*event
)
8596 * Ensures all contexts with the same task_ctx_nr have the same
8597 * pmu_cpu_context too.
8599 static struct perf_cpu_context __percpu
*find_pmu_context(int ctxn
)
8606 list_for_each_entry(pmu
, &pmus
, entry
) {
8607 if (pmu
->task_ctx_nr
== ctxn
)
8608 return pmu
->pmu_cpu_context
;
8614 static void update_pmu_context(struct pmu
*pmu
, struct pmu
*old_pmu
)
8618 for_each_possible_cpu(cpu
) {
8619 struct perf_cpu_context
*cpuctx
;
8621 cpuctx
= per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
);
8623 if (cpuctx
->unique_pmu
== old_pmu
)
8624 cpuctx
->unique_pmu
= pmu
;
8628 static void free_pmu_context(struct pmu
*pmu
)
8632 mutex_lock(&pmus_lock
);
8634 * Like a real lame refcount.
8636 list_for_each_entry(i
, &pmus
, entry
) {
8637 if (i
->pmu_cpu_context
== pmu
->pmu_cpu_context
) {
8638 update_pmu_context(i
, pmu
);
8643 free_percpu(pmu
->pmu_cpu_context
);
8645 mutex_unlock(&pmus_lock
);
8649 * Let userspace know that this PMU supports address range filtering:
8651 static ssize_t
nr_addr_filters_show(struct device
*dev
,
8652 struct device_attribute
*attr
,
8655 struct pmu
*pmu
= dev_get_drvdata(dev
);
8657 return snprintf(page
, PAGE_SIZE
- 1, "%d\n", pmu
->nr_addr_filters
);
8659 DEVICE_ATTR_RO(nr_addr_filters
);
8661 static struct idr pmu_idr
;
8664 type_show(struct device
*dev
, struct device_attribute
*attr
, char *page
)
8666 struct pmu
*pmu
= dev_get_drvdata(dev
);
8668 return snprintf(page
, PAGE_SIZE
-1, "%d\n", pmu
->type
);
8670 static DEVICE_ATTR_RO(type
);
8673 perf_event_mux_interval_ms_show(struct device
*dev
,
8674 struct device_attribute
*attr
,
8677 struct pmu
*pmu
= dev_get_drvdata(dev
);
8679 return snprintf(page
, PAGE_SIZE
-1, "%d\n", pmu
->hrtimer_interval_ms
);
8682 static DEFINE_MUTEX(mux_interval_mutex
);
8685 perf_event_mux_interval_ms_store(struct device
*dev
,
8686 struct device_attribute
*attr
,
8687 const char *buf
, size_t count
)
8689 struct pmu
*pmu
= dev_get_drvdata(dev
);
8690 int timer
, cpu
, ret
;
8692 ret
= kstrtoint(buf
, 0, &timer
);
8699 /* same value, noting to do */
8700 if (timer
== pmu
->hrtimer_interval_ms
)
8703 mutex_lock(&mux_interval_mutex
);
8704 pmu
->hrtimer_interval_ms
= timer
;
8706 /* update all cpuctx for this PMU */
8708 for_each_online_cpu(cpu
) {
8709 struct perf_cpu_context
*cpuctx
;
8710 cpuctx
= per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
);
8711 cpuctx
->hrtimer_interval
= ns_to_ktime(NSEC_PER_MSEC
* timer
);
8713 cpu_function_call(cpu
,
8714 (remote_function_f
)perf_mux_hrtimer_restart
, cpuctx
);
8717 mutex_unlock(&mux_interval_mutex
);
8721 static DEVICE_ATTR_RW(perf_event_mux_interval_ms
);
8723 static struct attribute
*pmu_dev_attrs
[] = {
8724 &dev_attr_type
.attr
,
8725 &dev_attr_perf_event_mux_interval_ms
.attr
,
8728 ATTRIBUTE_GROUPS(pmu_dev
);
8730 static int pmu_bus_running
;
8731 static struct bus_type pmu_bus
= {
8732 .name
= "event_source",
8733 .dev_groups
= pmu_dev_groups
,
8736 static void pmu_dev_release(struct device
*dev
)
8741 static int pmu_dev_alloc(struct pmu
*pmu
)
8745 pmu
->dev
= kzalloc(sizeof(struct device
), GFP_KERNEL
);
8749 pmu
->dev
->groups
= pmu
->attr_groups
;
8750 device_initialize(pmu
->dev
);
8751 ret
= dev_set_name(pmu
->dev
, "%s", pmu
->name
);
8755 dev_set_drvdata(pmu
->dev
, pmu
);
8756 pmu
->dev
->bus
= &pmu_bus
;
8757 pmu
->dev
->release
= pmu_dev_release
;
8758 ret
= device_add(pmu
->dev
);
8762 /* For PMUs with address filters, throw in an extra attribute: */
8763 if (pmu
->nr_addr_filters
)
8764 ret
= device_create_file(pmu
->dev
, &dev_attr_nr_addr_filters
);
8773 device_del(pmu
->dev
);
8776 put_device(pmu
->dev
);
8780 static struct lock_class_key cpuctx_mutex
;
8781 static struct lock_class_key cpuctx_lock
;
8783 int perf_pmu_register(struct pmu
*pmu
, const char *name
, int type
)
8787 mutex_lock(&pmus_lock
);
8789 pmu
->pmu_disable_count
= alloc_percpu(int);
8790 if (!pmu
->pmu_disable_count
)
8799 type
= idr_alloc(&pmu_idr
, pmu
, PERF_TYPE_MAX
, 0, GFP_KERNEL
);
8807 if (pmu_bus_running
) {
8808 ret
= pmu_dev_alloc(pmu
);
8814 if (pmu
->task_ctx_nr
== perf_hw_context
) {
8815 static int hw_context_taken
= 0;
8818 * Other than systems with heterogeneous CPUs, it never makes
8819 * sense for two PMUs to share perf_hw_context. PMUs which are
8820 * uncore must use perf_invalid_context.
8822 if (WARN_ON_ONCE(hw_context_taken
&&
8823 !(pmu
->capabilities
& PERF_PMU_CAP_HETEROGENEOUS_CPUS
)))
8824 pmu
->task_ctx_nr
= perf_invalid_context
;
8826 hw_context_taken
= 1;
8829 pmu
->pmu_cpu_context
= find_pmu_context(pmu
->task_ctx_nr
);
8830 if (pmu
->pmu_cpu_context
)
8831 goto got_cpu_context
;
8834 pmu
->pmu_cpu_context
= alloc_percpu(struct perf_cpu_context
);
8835 if (!pmu
->pmu_cpu_context
)
8838 for_each_possible_cpu(cpu
) {
8839 struct perf_cpu_context
*cpuctx
;
8841 cpuctx
= per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
);
8842 __perf_event_init_context(&cpuctx
->ctx
);
8843 lockdep_set_class(&cpuctx
->ctx
.mutex
, &cpuctx_mutex
);
8844 lockdep_set_class(&cpuctx
->ctx
.lock
, &cpuctx_lock
);
8845 cpuctx
->ctx
.pmu
= pmu
;
8847 __perf_mux_hrtimer_init(cpuctx
, cpu
);
8849 cpuctx
->unique_pmu
= pmu
;
8853 if (!pmu
->start_txn
) {
8854 if (pmu
->pmu_enable
) {
8856 * If we have pmu_enable/pmu_disable calls, install
8857 * transaction stubs that use that to try and batch
8858 * hardware accesses.
8860 pmu
->start_txn
= perf_pmu_start_txn
;
8861 pmu
->commit_txn
= perf_pmu_commit_txn
;
8862 pmu
->cancel_txn
= perf_pmu_cancel_txn
;
8864 pmu
->start_txn
= perf_pmu_nop_txn
;
8865 pmu
->commit_txn
= perf_pmu_nop_int
;
8866 pmu
->cancel_txn
= perf_pmu_nop_void
;
8870 if (!pmu
->pmu_enable
) {
8871 pmu
->pmu_enable
= perf_pmu_nop_void
;
8872 pmu
->pmu_disable
= perf_pmu_nop_void
;
8875 if (!pmu
->event_idx
)
8876 pmu
->event_idx
= perf_event_idx_default
;
8878 list_add_rcu(&pmu
->entry
, &pmus
);
8879 atomic_set(&pmu
->exclusive_cnt
, 0);
8882 mutex_unlock(&pmus_lock
);
8887 device_del(pmu
->dev
);
8888 put_device(pmu
->dev
);
8891 if (pmu
->type
>= PERF_TYPE_MAX
)
8892 idr_remove(&pmu_idr
, pmu
->type
);
8895 free_percpu(pmu
->pmu_disable_count
);
8898 EXPORT_SYMBOL_GPL(perf_pmu_register
);
8900 void perf_pmu_unregister(struct pmu
*pmu
)
8904 mutex_lock(&pmus_lock
);
8905 remove_device
= pmu_bus_running
;
8906 list_del_rcu(&pmu
->entry
);
8907 mutex_unlock(&pmus_lock
);
8910 * We dereference the pmu list under both SRCU and regular RCU, so
8911 * synchronize against both of those.
8913 synchronize_srcu(&pmus_srcu
);
8916 free_percpu(pmu
->pmu_disable_count
);
8917 if (pmu
->type
>= PERF_TYPE_MAX
)
8918 idr_remove(&pmu_idr
, pmu
->type
);
8919 if (remove_device
) {
8920 if (pmu
->nr_addr_filters
)
8921 device_remove_file(pmu
->dev
, &dev_attr_nr_addr_filters
);
8922 device_del(pmu
->dev
);
8923 put_device(pmu
->dev
);
8925 free_pmu_context(pmu
);
8927 EXPORT_SYMBOL_GPL(perf_pmu_unregister
);
8929 static int perf_try_init_event(struct pmu
*pmu
, struct perf_event
*event
)
8931 struct perf_event_context
*ctx
= NULL
;
8934 if (!try_module_get(pmu
->module
))
8937 if (event
->group_leader
!= event
) {
8939 * This ctx->mutex can nest when we're called through
8940 * inheritance. See the perf_event_ctx_lock_nested() comment.
8942 ctx
= perf_event_ctx_lock_nested(event
->group_leader
,
8943 SINGLE_DEPTH_NESTING
);
8948 ret
= pmu
->event_init(event
);
8951 perf_event_ctx_unlock(event
->group_leader
, ctx
);
8954 module_put(pmu
->module
);
8959 static struct pmu
*perf_init_event(struct perf_event
*event
)
8961 struct pmu
*pmu
= NULL
;
8965 idx
= srcu_read_lock(&pmus_srcu
);
8968 pmu
= idr_find(&pmu_idr
, event
->attr
.type
);
8971 ret
= perf_try_init_event(pmu
, event
);
8977 list_for_each_entry_rcu(pmu
, &pmus
, entry
) {
8978 ret
= perf_try_init_event(pmu
, event
);
8982 if (ret
!= -ENOENT
) {
8987 pmu
= ERR_PTR(-ENOENT
);
8989 srcu_read_unlock(&pmus_srcu
, idx
);
8994 static void attach_sb_event(struct perf_event
*event
)
8996 struct pmu_event_list
*pel
= per_cpu_ptr(&pmu_sb_events
, event
->cpu
);
8998 raw_spin_lock(&pel
->lock
);
8999 list_add_rcu(&event
->sb_list
, &pel
->list
);
9000 raw_spin_unlock(&pel
->lock
);
9004 * We keep a list of all !task (and therefore per-cpu) events
9005 * that need to receive side-band records.
9007 * This avoids having to scan all the various PMU per-cpu contexts
9010 static void account_pmu_sb_event(struct perf_event
*event
)
9012 if (is_sb_event(event
))
9013 attach_sb_event(event
);
9016 static void account_event_cpu(struct perf_event
*event
, int cpu
)
9021 if (is_cgroup_event(event
))
9022 atomic_inc(&per_cpu(perf_cgroup_events
, cpu
));
9025 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
9026 static void account_freq_event_nohz(void)
9028 #ifdef CONFIG_NO_HZ_FULL
9029 /* Lock so we don't race with concurrent unaccount */
9030 spin_lock(&nr_freq_lock
);
9031 if (atomic_inc_return(&nr_freq_events
) == 1)
9032 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS
);
9033 spin_unlock(&nr_freq_lock
);
9037 static void account_freq_event(void)
9039 if (tick_nohz_full_enabled())
9040 account_freq_event_nohz();
9042 atomic_inc(&nr_freq_events
);
9046 static void account_event(struct perf_event
*event
)
9053 if (event
->attach_state
& PERF_ATTACH_TASK
)
9055 if (event
->attr
.mmap
|| event
->attr
.mmap_data
)
9056 atomic_inc(&nr_mmap_events
);
9057 if (event
->attr
.comm
)
9058 atomic_inc(&nr_comm_events
);
9059 if (event
->attr
.task
)
9060 atomic_inc(&nr_task_events
);
9061 if (event
->attr
.freq
)
9062 account_freq_event();
9063 if (event
->attr
.context_switch
) {
9064 atomic_inc(&nr_switch_events
);
9067 if (has_branch_stack(event
))
9069 if (is_cgroup_event(event
))
9073 if (atomic_inc_not_zero(&perf_sched_count
))
9076 mutex_lock(&perf_sched_mutex
);
9077 if (!atomic_read(&perf_sched_count
)) {
9078 static_branch_enable(&perf_sched_events
);
9080 * Guarantee that all CPUs observe they key change and
9081 * call the perf scheduling hooks before proceeding to
9082 * install events that need them.
9084 synchronize_sched();
9087 * Now that we have waited for the sync_sched(), allow further
9088 * increments to by-pass the mutex.
9090 atomic_inc(&perf_sched_count
);
9091 mutex_unlock(&perf_sched_mutex
);
9095 account_event_cpu(event
, event
->cpu
);
9097 account_pmu_sb_event(event
);
9101 * Allocate and initialize a event structure
9103 static struct perf_event
*
9104 perf_event_alloc(struct perf_event_attr
*attr
, int cpu
,
9105 struct task_struct
*task
,
9106 struct perf_event
*group_leader
,
9107 struct perf_event
*parent_event
,
9108 perf_overflow_handler_t overflow_handler
,
9109 void *context
, int cgroup_fd
)
9112 struct perf_event
*event
;
9113 struct hw_perf_event
*hwc
;
9116 if ((unsigned)cpu
>= nr_cpu_ids
) {
9117 if (!task
|| cpu
!= -1)
9118 return ERR_PTR(-EINVAL
);
9121 event
= kzalloc(sizeof(*event
), GFP_KERNEL
);
9123 return ERR_PTR(-ENOMEM
);
9126 * Single events are their own group leaders, with an
9127 * empty sibling list:
9130 group_leader
= event
;
9132 mutex_init(&event
->child_mutex
);
9133 INIT_LIST_HEAD(&event
->child_list
);
9135 INIT_LIST_HEAD(&event
->group_entry
);
9136 INIT_LIST_HEAD(&event
->event_entry
);
9137 INIT_LIST_HEAD(&event
->sibling_list
);
9138 INIT_LIST_HEAD(&event
->rb_entry
);
9139 INIT_LIST_HEAD(&event
->active_entry
);
9140 INIT_LIST_HEAD(&event
->addr_filters
.list
);
9141 INIT_HLIST_NODE(&event
->hlist_entry
);
9144 init_waitqueue_head(&event
->waitq
);
9145 init_irq_work(&event
->pending
, perf_pending_event
);
9147 mutex_init(&event
->mmap_mutex
);
9148 raw_spin_lock_init(&event
->addr_filters
.lock
);
9150 atomic_long_set(&event
->refcount
, 1);
9152 event
->attr
= *attr
;
9153 event
->group_leader
= group_leader
;
9157 event
->parent
= parent_event
;
9159 event
->ns
= get_pid_ns(task_active_pid_ns(current
));
9160 event
->id
= atomic64_inc_return(&perf_event_id
);
9162 event
->state
= PERF_EVENT_STATE_INACTIVE
;
9165 event
->attach_state
= PERF_ATTACH_TASK
;
9167 * XXX pmu::event_init needs to know what task to account to
9168 * and we cannot use the ctx information because we need the
9169 * pmu before we get a ctx.
9171 event
->hw
.target
= task
;
9174 event
->clock
= &local_clock
;
9176 event
->clock
= parent_event
->clock
;
9178 if (!overflow_handler
&& parent_event
) {
9179 overflow_handler
= parent_event
->overflow_handler
;
9180 context
= parent_event
->overflow_handler_context
;
9181 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
9182 if (overflow_handler
== bpf_overflow_handler
) {
9183 struct bpf_prog
*prog
= bpf_prog_inc(parent_event
->prog
);
9186 err
= PTR_ERR(prog
);
9190 event
->orig_overflow_handler
=
9191 parent_event
->orig_overflow_handler
;
9196 if (overflow_handler
) {
9197 event
->overflow_handler
= overflow_handler
;
9198 event
->overflow_handler_context
= context
;
9199 } else if (is_write_backward(event
)){
9200 event
->overflow_handler
= perf_event_output_backward
;
9201 event
->overflow_handler_context
= NULL
;
9203 event
->overflow_handler
= perf_event_output_forward
;
9204 event
->overflow_handler_context
= NULL
;
9207 perf_event__state_init(event
);
9212 hwc
->sample_period
= attr
->sample_period
;
9213 if (attr
->freq
&& attr
->sample_freq
)
9214 hwc
->sample_period
= 1;
9215 hwc
->last_period
= hwc
->sample_period
;
9217 local64_set(&hwc
->period_left
, hwc
->sample_period
);
9220 * we currently do not support PERF_FORMAT_GROUP on inherited events
9222 if (attr
->inherit
&& (attr
->read_format
& PERF_FORMAT_GROUP
))
9225 if (!has_branch_stack(event
))
9226 event
->attr
.branch_sample_type
= 0;
9228 if (cgroup_fd
!= -1) {
9229 err
= perf_cgroup_connect(cgroup_fd
, event
, attr
, group_leader
);
9234 pmu
= perf_init_event(event
);
9237 else if (IS_ERR(pmu
)) {
9242 err
= exclusive_event_init(event
);
9246 if (has_addr_filter(event
)) {
9247 event
->addr_filters_offs
= kcalloc(pmu
->nr_addr_filters
,
9248 sizeof(unsigned long),
9250 if (!event
->addr_filters_offs
)
9253 /* force hw sync on the address filters */
9254 event
->addr_filters_gen
= 1;
9257 if (!event
->parent
) {
9258 if (event
->attr
.sample_type
& PERF_SAMPLE_CALLCHAIN
) {
9259 err
= get_callchain_buffers(attr
->sample_max_stack
);
9261 goto err_addr_filters
;
9265 /* symmetric to unaccount_event() in _free_event() */
9266 account_event(event
);
9271 kfree(event
->addr_filters_offs
);
9274 exclusive_event_destroy(event
);
9278 event
->destroy(event
);
9279 module_put(pmu
->module
);
9281 if (is_cgroup_event(event
))
9282 perf_detach_cgroup(event
);
9284 put_pid_ns(event
->ns
);
9287 return ERR_PTR(err
);
9290 static int perf_copy_attr(struct perf_event_attr __user
*uattr
,
9291 struct perf_event_attr
*attr
)
9296 if (!access_ok(VERIFY_WRITE
, uattr
, PERF_ATTR_SIZE_VER0
))
9300 * zero the full structure, so that a short copy will be nice.
9302 memset(attr
, 0, sizeof(*attr
));
9304 ret
= get_user(size
, &uattr
->size
);
9308 if (size
> PAGE_SIZE
) /* silly large */
9311 if (!size
) /* abi compat */
9312 size
= PERF_ATTR_SIZE_VER0
;
9314 if (size
< PERF_ATTR_SIZE_VER0
)
9318 * If we're handed a bigger struct than we know of,
9319 * ensure all the unknown bits are 0 - i.e. new
9320 * user-space does not rely on any kernel feature
9321 * extensions we dont know about yet.
9323 if (size
> sizeof(*attr
)) {
9324 unsigned char __user
*addr
;
9325 unsigned char __user
*end
;
9328 addr
= (void __user
*)uattr
+ sizeof(*attr
);
9329 end
= (void __user
*)uattr
+ size
;
9331 for (; addr
< end
; addr
++) {
9332 ret
= get_user(val
, addr
);
9338 size
= sizeof(*attr
);
9341 ret
= copy_from_user(attr
, uattr
, size
);
9345 if (attr
->__reserved_1
)
9348 if (attr
->sample_type
& ~(PERF_SAMPLE_MAX
-1))
9351 if (attr
->read_format
& ~(PERF_FORMAT_MAX
-1))
9354 if (attr
->sample_type
& PERF_SAMPLE_BRANCH_STACK
) {
9355 u64 mask
= attr
->branch_sample_type
;
9357 /* only using defined bits */
9358 if (mask
& ~(PERF_SAMPLE_BRANCH_MAX
-1))
9361 /* at least one branch bit must be set */
9362 if (!(mask
& ~PERF_SAMPLE_BRANCH_PLM_ALL
))
9365 /* propagate priv level, when not set for branch */
9366 if (!(mask
& PERF_SAMPLE_BRANCH_PLM_ALL
)) {
9368 /* exclude_kernel checked on syscall entry */
9369 if (!attr
->exclude_kernel
)
9370 mask
|= PERF_SAMPLE_BRANCH_KERNEL
;
9372 if (!attr
->exclude_user
)
9373 mask
|= PERF_SAMPLE_BRANCH_USER
;
9375 if (!attr
->exclude_hv
)
9376 mask
|= PERF_SAMPLE_BRANCH_HV
;
9378 * adjust user setting (for HW filter setup)
9380 attr
->branch_sample_type
= mask
;
9382 /* privileged levels capture (kernel, hv): check permissions */
9383 if ((mask
& PERF_SAMPLE_BRANCH_PERM_PLM
)
9384 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN
))
9388 if (attr
->sample_type
& PERF_SAMPLE_REGS_USER
) {
9389 ret
= perf_reg_validate(attr
->sample_regs_user
);
9394 if (attr
->sample_type
& PERF_SAMPLE_STACK_USER
) {
9395 if (!arch_perf_have_user_stack_dump())
9399 * We have __u32 type for the size, but so far
9400 * we can only use __u16 as maximum due to the
9401 * __u16 sample size limit.
9403 if (attr
->sample_stack_user
>= USHRT_MAX
)
9405 else if (!IS_ALIGNED(attr
->sample_stack_user
, sizeof(u64
)))
9409 if (attr
->sample_type
& PERF_SAMPLE_REGS_INTR
)
9410 ret
= perf_reg_validate(attr
->sample_regs_intr
);
9415 put_user(sizeof(*attr
), &uattr
->size
);
9421 perf_event_set_output(struct perf_event
*event
, struct perf_event
*output_event
)
9423 struct ring_buffer
*rb
= NULL
;
9429 /* don't allow circular references */
9430 if (event
== output_event
)
9434 * Don't allow cross-cpu buffers
9436 if (output_event
->cpu
!= event
->cpu
)
9440 * If its not a per-cpu rb, it must be the same task.
9442 if (output_event
->cpu
== -1 && output_event
->ctx
!= event
->ctx
)
9446 * Mixing clocks in the same buffer is trouble you don't need.
9448 if (output_event
->clock
!= event
->clock
)
9452 * Either writing ring buffer from beginning or from end.
9453 * Mixing is not allowed.
9455 if (is_write_backward(output_event
) != is_write_backward(event
))
9459 * If both events generate aux data, they must be on the same PMU
9461 if (has_aux(event
) && has_aux(output_event
) &&
9462 event
->pmu
!= output_event
->pmu
)
9466 mutex_lock(&event
->mmap_mutex
);
9467 /* Can't redirect output if we've got an active mmap() */
9468 if (atomic_read(&event
->mmap_count
))
9472 /* get the rb we want to redirect to */
9473 rb
= ring_buffer_get(output_event
);
9478 ring_buffer_attach(event
, rb
);
9482 mutex_unlock(&event
->mmap_mutex
);
9488 static void mutex_lock_double(struct mutex
*a
, struct mutex
*b
)
9494 mutex_lock_nested(b
, SINGLE_DEPTH_NESTING
);
9497 static int perf_event_set_clock(struct perf_event
*event
, clockid_t clk_id
)
9499 bool nmi_safe
= false;
9502 case CLOCK_MONOTONIC
:
9503 event
->clock
= &ktime_get_mono_fast_ns
;
9507 case CLOCK_MONOTONIC_RAW
:
9508 event
->clock
= &ktime_get_raw_fast_ns
;
9512 case CLOCK_REALTIME
:
9513 event
->clock
= &ktime_get_real_ns
;
9516 case CLOCK_BOOTTIME
:
9517 event
->clock
= &ktime_get_boot_ns
;
9521 event
->clock
= &ktime_get_tai_ns
;
9528 if (!nmi_safe
&& !(event
->pmu
->capabilities
& PERF_PMU_CAP_NO_NMI
))
9535 * Variation on perf_event_ctx_lock_nested(), except we take two context
9538 static struct perf_event_context
*
9539 __perf_event_ctx_lock_double(struct perf_event
*group_leader
,
9540 struct perf_event_context
*ctx
)
9542 struct perf_event_context
*gctx
;
9546 gctx
= READ_ONCE(group_leader
->ctx
);
9547 if (!atomic_inc_not_zero(&gctx
->refcount
)) {
9553 mutex_lock_double(&gctx
->mutex
, &ctx
->mutex
);
9555 if (group_leader
->ctx
!= gctx
) {
9556 mutex_unlock(&ctx
->mutex
);
9557 mutex_unlock(&gctx
->mutex
);
9566 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9568 * @attr_uptr: event_id type attributes for monitoring/sampling
9571 * @group_fd: group leader event fd
9573 SYSCALL_DEFINE5(perf_event_open
,
9574 struct perf_event_attr __user
*, attr_uptr
,
9575 pid_t
, pid
, int, cpu
, int, group_fd
, unsigned long, flags
)
9577 struct perf_event
*group_leader
= NULL
, *output_event
= NULL
;
9578 struct perf_event
*event
, *sibling
;
9579 struct perf_event_attr attr
;
9580 struct perf_event_context
*ctx
, *uninitialized_var(gctx
);
9581 struct file
*event_file
= NULL
;
9582 struct fd group
= {NULL
, 0};
9583 struct task_struct
*task
= NULL
;
9588 int f_flags
= O_RDWR
;
9591 /* for future expandability... */
9592 if (flags
& ~PERF_FLAG_ALL
)
9595 err
= perf_copy_attr(attr_uptr
, &attr
);
9599 if (!attr
.exclude_kernel
) {
9600 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN
))
9605 if (attr
.sample_freq
> sysctl_perf_event_sample_rate
)
9608 if (attr
.sample_period
& (1ULL << 63))
9612 if (!attr
.sample_max_stack
)
9613 attr
.sample_max_stack
= sysctl_perf_event_max_stack
;
9616 * In cgroup mode, the pid argument is used to pass the fd
9617 * opened to the cgroup directory in cgroupfs. The cpu argument
9618 * designates the cpu on which to monitor threads from that
9621 if ((flags
& PERF_FLAG_PID_CGROUP
) && (pid
== -1 || cpu
== -1))
9624 if (flags
& PERF_FLAG_FD_CLOEXEC
)
9625 f_flags
|= O_CLOEXEC
;
9627 event_fd
= get_unused_fd_flags(f_flags
);
9631 if (group_fd
!= -1) {
9632 err
= perf_fget_light(group_fd
, &group
);
9635 group_leader
= group
.file
->private_data
;
9636 if (flags
& PERF_FLAG_FD_OUTPUT
)
9637 output_event
= group_leader
;
9638 if (flags
& PERF_FLAG_FD_NO_GROUP
)
9639 group_leader
= NULL
;
9642 if (pid
!= -1 && !(flags
& PERF_FLAG_PID_CGROUP
)) {
9643 task
= find_lively_task_by_vpid(pid
);
9645 err
= PTR_ERR(task
);
9650 if (task
&& group_leader
&&
9651 group_leader
->attr
.inherit
!= attr
.inherit
) {
9659 err
= mutex_lock_interruptible(&task
->signal
->cred_guard_mutex
);
9664 * Reuse ptrace permission checks for now.
9666 * We must hold cred_guard_mutex across this and any potential
9667 * perf_install_in_context() call for this new event to
9668 * serialize against exec() altering our credentials (and the
9669 * perf_event_exit_task() that could imply).
9672 if (!ptrace_may_access(task
, PTRACE_MODE_READ_REALCREDS
))
9676 if (flags
& PERF_FLAG_PID_CGROUP
)
9679 event
= perf_event_alloc(&attr
, cpu
, task
, group_leader
, NULL
,
9680 NULL
, NULL
, cgroup_fd
);
9681 if (IS_ERR(event
)) {
9682 err
= PTR_ERR(event
);
9686 if (is_sampling_event(event
)) {
9687 if (event
->pmu
->capabilities
& PERF_PMU_CAP_NO_INTERRUPT
) {
9694 * Special case software events and allow them to be part of
9695 * any hardware group.
9699 if (attr
.use_clockid
) {
9700 err
= perf_event_set_clock(event
, attr
.clockid
);
9705 if (pmu
->task_ctx_nr
== perf_sw_context
)
9706 event
->event_caps
|= PERF_EV_CAP_SOFTWARE
;
9709 (is_software_event(event
) != is_software_event(group_leader
))) {
9710 if (is_software_event(event
)) {
9712 * If event and group_leader are not both a software
9713 * event, and event is, then group leader is not.
9715 * Allow the addition of software events to !software
9716 * groups, this is safe because software events never
9719 pmu
= group_leader
->pmu
;
9720 } else if (is_software_event(group_leader
) &&
9721 (group_leader
->group_caps
& PERF_EV_CAP_SOFTWARE
)) {
9723 * In case the group is a pure software group, and we
9724 * try to add a hardware event, move the whole group to
9725 * the hardware context.
9732 * Get the target context (task or percpu):
9734 ctx
= find_get_context(pmu
, task
, event
);
9740 if ((pmu
->capabilities
& PERF_PMU_CAP_EXCLUSIVE
) && group_leader
) {
9746 * Look up the group leader (we will attach this event to it):
9752 * Do not allow a recursive hierarchy (this new sibling
9753 * becoming part of another group-sibling):
9755 if (group_leader
->group_leader
!= group_leader
)
9758 /* All events in a group should have the same clock */
9759 if (group_leader
->clock
!= event
->clock
)
9763 * Do not allow to attach to a group in a different
9764 * task or CPU context:
9768 * Make sure we're both on the same task, or both
9771 if (group_leader
->ctx
->task
!= ctx
->task
)
9775 * Make sure we're both events for the same CPU;
9776 * grouping events for different CPUs is broken; since
9777 * you can never concurrently schedule them anyhow.
9779 if (group_leader
->cpu
!= event
->cpu
)
9782 if (group_leader
->ctx
!= ctx
)
9787 * Only a group leader can be exclusive or pinned
9789 if (attr
.exclusive
|| attr
.pinned
)
9794 err
= perf_event_set_output(event
, output_event
);
9799 event_file
= anon_inode_getfile("[perf_event]", &perf_fops
, event
,
9801 if (IS_ERR(event_file
)) {
9802 err
= PTR_ERR(event_file
);
9808 gctx
= __perf_event_ctx_lock_double(group_leader
, ctx
);
9810 if (gctx
->task
== TASK_TOMBSTONE
) {
9816 * Check if we raced against another sys_perf_event_open() call
9817 * moving the software group underneath us.
9819 if (!(group_leader
->group_caps
& PERF_EV_CAP_SOFTWARE
)) {
9821 * If someone moved the group out from under us, check
9822 * if this new event wound up on the same ctx, if so
9823 * its the regular !move_group case, otherwise fail.
9829 perf_event_ctx_unlock(group_leader
, gctx
);
9834 mutex_lock(&ctx
->mutex
);
9837 if (ctx
->task
== TASK_TOMBSTONE
) {
9842 if (!perf_event_validate_size(event
)) {
9848 * Must be under the same ctx::mutex as perf_install_in_context(),
9849 * because we need to serialize with concurrent event creation.
9851 if (!exclusive_event_installable(event
, ctx
)) {
9852 /* exclusive and group stuff are assumed mutually exclusive */
9853 WARN_ON_ONCE(move_group
);
9859 WARN_ON_ONCE(ctx
->parent_ctx
);
9862 * This is the point on no return; we cannot fail hereafter. This is
9863 * where we start modifying current state.
9868 * See perf_event_ctx_lock() for comments on the details
9869 * of swizzling perf_event::ctx.
9871 perf_remove_from_context(group_leader
, 0);
9873 list_for_each_entry(sibling
, &group_leader
->sibling_list
,
9875 perf_remove_from_context(sibling
, 0);
9880 * Wait for everybody to stop referencing the events through
9881 * the old lists, before installing it on new lists.
9886 * Install the group siblings before the group leader.
9888 * Because a group leader will try and install the entire group
9889 * (through the sibling list, which is still in-tact), we can
9890 * end up with siblings installed in the wrong context.
9892 * By installing siblings first we NO-OP because they're not
9893 * reachable through the group lists.
9895 list_for_each_entry(sibling
, &group_leader
->sibling_list
,
9897 perf_event__state_init(sibling
);
9898 perf_install_in_context(ctx
, sibling
, sibling
->cpu
);
9903 * Removing from the context ends up with disabled
9904 * event. What we want here is event in the initial
9905 * startup state, ready to be add into new context.
9907 perf_event__state_init(group_leader
);
9908 perf_install_in_context(ctx
, group_leader
, group_leader
->cpu
);
9912 * Now that all events are installed in @ctx, nothing
9913 * references @gctx anymore, so drop the last reference we have
9920 * Precalculate sample_data sizes; do while holding ctx::mutex such
9921 * that we're serialized against further additions and before
9922 * perf_install_in_context() which is the point the event is active and
9923 * can use these values.
9925 perf_event__header_size(event
);
9926 perf_event__id_header_size(event
);
9928 event
->owner
= current
;
9930 perf_install_in_context(ctx
, event
, event
->cpu
);
9931 perf_unpin_context(ctx
);
9934 perf_event_ctx_unlock(group_leader
, gctx
);
9935 mutex_unlock(&ctx
->mutex
);
9938 mutex_unlock(&task
->signal
->cred_guard_mutex
);
9939 put_task_struct(task
);
9944 mutex_lock(¤t
->perf_event_mutex
);
9945 list_add_tail(&event
->owner_entry
, ¤t
->perf_event_list
);
9946 mutex_unlock(¤t
->perf_event_mutex
);
9949 * Drop the reference on the group_event after placing the
9950 * new event on the sibling_list. This ensures destruction
9951 * of the group leader will find the pointer to itself in
9952 * perf_group_detach().
9955 fd_install(event_fd
, event_file
);
9960 perf_event_ctx_unlock(group_leader
, gctx
);
9961 mutex_unlock(&ctx
->mutex
);
9965 perf_unpin_context(ctx
);
9969 * If event_file is set, the fput() above will have called ->release()
9970 * and that will take care of freeing the event.
9976 mutex_unlock(&task
->signal
->cred_guard_mutex
);
9981 put_task_struct(task
);
9985 put_unused_fd(event_fd
);
9990 * perf_event_create_kernel_counter
9992 * @attr: attributes of the counter to create
9993 * @cpu: cpu in which the counter is bound
9994 * @task: task to profile (NULL for percpu)
9997 perf_event_create_kernel_counter(struct perf_event_attr
*attr
, int cpu
,
9998 struct task_struct
*task
,
9999 perf_overflow_handler_t overflow_handler
,
10002 struct perf_event_context
*ctx
;
10003 struct perf_event
*event
;
10007 * Get the target context (task or percpu):
10010 event
= perf_event_alloc(attr
, cpu
, task
, NULL
, NULL
,
10011 overflow_handler
, context
, -1);
10012 if (IS_ERR(event
)) {
10013 err
= PTR_ERR(event
);
10017 /* Mark owner so we could distinguish it from user events. */
10018 event
->owner
= TASK_TOMBSTONE
;
10020 ctx
= find_get_context(event
->pmu
, task
, event
);
10022 err
= PTR_ERR(ctx
);
10026 WARN_ON_ONCE(ctx
->parent_ctx
);
10027 mutex_lock(&ctx
->mutex
);
10028 if (ctx
->task
== TASK_TOMBSTONE
) {
10033 if (!exclusive_event_installable(event
, ctx
)) {
10038 perf_install_in_context(ctx
, event
, cpu
);
10039 perf_unpin_context(ctx
);
10040 mutex_unlock(&ctx
->mutex
);
10045 mutex_unlock(&ctx
->mutex
);
10046 perf_unpin_context(ctx
);
10051 return ERR_PTR(err
);
10053 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter
);
10055 void perf_pmu_migrate_context(struct pmu
*pmu
, int src_cpu
, int dst_cpu
)
10057 struct perf_event_context
*src_ctx
;
10058 struct perf_event_context
*dst_ctx
;
10059 struct perf_event
*event
, *tmp
;
10062 src_ctx
= &per_cpu_ptr(pmu
->pmu_cpu_context
, src_cpu
)->ctx
;
10063 dst_ctx
= &per_cpu_ptr(pmu
->pmu_cpu_context
, dst_cpu
)->ctx
;
10066 * See perf_event_ctx_lock() for comments on the details
10067 * of swizzling perf_event::ctx.
10069 mutex_lock_double(&src_ctx
->mutex
, &dst_ctx
->mutex
);
10070 list_for_each_entry_safe(event
, tmp
, &src_ctx
->event_list
,
10072 perf_remove_from_context(event
, 0);
10073 unaccount_event_cpu(event
, src_cpu
);
10075 list_add(&event
->migrate_entry
, &events
);
10079 * Wait for the events to quiesce before re-instating them.
10084 * Re-instate events in 2 passes.
10086 * Skip over group leaders and only install siblings on this first
10087 * pass, siblings will not get enabled without a leader, however a
10088 * leader will enable its siblings, even if those are still on the old
10091 list_for_each_entry_safe(event
, tmp
, &events
, migrate_entry
) {
10092 if (event
->group_leader
== event
)
10095 list_del(&event
->migrate_entry
);
10096 if (event
->state
>= PERF_EVENT_STATE_OFF
)
10097 event
->state
= PERF_EVENT_STATE_INACTIVE
;
10098 account_event_cpu(event
, dst_cpu
);
10099 perf_install_in_context(dst_ctx
, event
, dst_cpu
);
10104 * Once all the siblings are setup properly, install the group leaders
10107 list_for_each_entry_safe(event
, tmp
, &events
, migrate_entry
) {
10108 list_del(&event
->migrate_entry
);
10109 if (event
->state
>= PERF_EVENT_STATE_OFF
)
10110 event
->state
= PERF_EVENT_STATE_INACTIVE
;
10111 account_event_cpu(event
, dst_cpu
);
10112 perf_install_in_context(dst_ctx
, event
, dst_cpu
);
10115 mutex_unlock(&dst_ctx
->mutex
);
10116 mutex_unlock(&src_ctx
->mutex
);
10118 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context
);
10120 static void sync_child_event(struct perf_event
*child_event
,
10121 struct task_struct
*child
)
10123 struct perf_event
*parent_event
= child_event
->parent
;
10126 if (child_event
->attr
.inherit_stat
)
10127 perf_event_read_event(child_event
, child
);
10129 child_val
= perf_event_count(child_event
);
10132 * Add back the child's count to the parent's count:
10134 atomic64_add(child_val
, &parent_event
->child_count
);
10135 atomic64_add(child_event
->total_time_enabled
,
10136 &parent_event
->child_total_time_enabled
);
10137 atomic64_add(child_event
->total_time_running
,
10138 &parent_event
->child_total_time_running
);
10142 perf_event_exit_event(struct perf_event
*child_event
,
10143 struct perf_event_context
*child_ctx
,
10144 struct task_struct
*child
)
10146 struct perf_event
*parent_event
= child_event
->parent
;
10149 * Do not destroy the 'original' grouping; because of the context
10150 * switch optimization the original events could've ended up in a
10151 * random child task.
10153 * If we were to destroy the original group, all group related
10154 * operations would cease to function properly after this random
10157 * Do destroy all inherited groups, we don't care about those
10158 * and being thorough is better.
10160 raw_spin_lock_irq(&child_ctx
->lock
);
10161 WARN_ON_ONCE(child_ctx
->is_active
);
10164 perf_group_detach(child_event
);
10165 list_del_event(child_event
, child_ctx
);
10166 child_event
->state
= PERF_EVENT_STATE_EXIT
; /* is_event_hup() */
10167 raw_spin_unlock_irq(&child_ctx
->lock
);
10170 * Parent events are governed by their filedesc, retain them.
10172 if (!parent_event
) {
10173 perf_event_wakeup(child_event
);
10177 * Child events can be cleaned up.
10180 sync_child_event(child_event
, child
);
10183 * Remove this event from the parent's list
10185 WARN_ON_ONCE(parent_event
->ctx
->parent_ctx
);
10186 mutex_lock(&parent_event
->child_mutex
);
10187 list_del_init(&child_event
->child_list
);
10188 mutex_unlock(&parent_event
->child_mutex
);
10191 * Kick perf_poll() for is_event_hup().
10193 perf_event_wakeup(parent_event
);
10194 free_event(child_event
);
10195 put_event(parent_event
);
10198 static void perf_event_exit_task_context(struct task_struct
*child
, int ctxn
)
10200 struct perf_event_context
*child_ctx
, *clone_ctx
= NULL
;
10201 struct perf_event
*child_event
, *next
;
10203 WARN_ON_ONCE(child
!= current
);
10205 child_ctx
= perf_pin_task_context(child
, ctxn
);
10210 * In order to reduce the amount of tricky in ctx tear-down, we hold
10211 * ctx::mutex over the entire thing. This serializes against almost
10212 * everything that wants to access the ctx.
10214 * The exception is sys_perf_event_open() /
10215 * perf_event_create_kernel_count() which does find_get_context()
10216 * without ctx::mutex (it cannot because of the move_group double mutex
10217 * lock thing). See the comments in perf_install_in_context().
10219 mutex_lock(&child_ctx
->mutex
);
10222 * In a single ctx::lock section, de-schedule the events and detach the
10223 * context from the task such that we cannot ever get it scheduled back
10226 raw_spin_lock_irq(&child_ctx
->lock
);
10227 task_ctx_sched_out(__get_cpu_context(child_ctx
), child_ctx
);
10230 * Now that the context is inactive, destroy the task <-> ctx relation
10231 * and mark the context dead.
10233 RCU_INIT_POINTER(child
->perf_event_ctxp
[ctxn
], NULL
);
10234 put_ctx(child_ctx
); /* cannot be last */
10235 WRITE_ONCE(child_ctx
->task
, TASK_TOMBSTONE
);
10236 put_task_struct(current
); /* cannot be last */
10238 clone_ctx
= unclone_ctx(child_ctx
);
10239 raw_spin_unlock_irq(&child_ctx
->lock
);
10242 put_ctx(clone_ctx
);
10245 * Report the task dead after unscheduling the events so that we
10246 * won't get any samples after PERF_RECORD_EXIT. We can however still
10247 * get a few PERF_RECORD_READ events.
10249 perf_event_task(child
, child_ctx
, 0);
10251 list_for_each_entry_safe(child_event
, next
, &child_ctx
->event_list
, event_entry
)
10252 perf_event_exit_event(child_event
, child_ctx
, child
);
10254 mutex_unlock(&child_ctx
->mutex
);
10256 put_ctx(child_ctx
);
10260 * When a child task exits, feed back event values to parent events.
10262 * Can be called with cred_guard_mutex held when called from
10263 * install_exec_creds().
10265 void perf_event_exit_task(struct task_struct
*child
)
10267 struct perf_event
*event
, *tmp
;
10270 mutex_lock(&child
->perf_event_mutex
);
10271 list_for_each_entry_safe(event
, tmp
, &child
->perf_event_list
,
10273 list_del_init(&event
->owner_entry
);
10276 * Ensure the list deletion is visible before we clear
10277 * the owner, closes a race against perf_release() where
10278 * we need to serialize on the owner->perf_event_mutex.
10280 smp_store_release(&event
->owner
, NULL
);
10282 mutex_unlock(&child
->perf_event_mutex
);
10284 for_each_task_context_nr(ctxn
)
10285 perf_event_exit_task_context(child
, ctxn
);
10288 * The perf_event_exit_task_context calls perf_event_task
10289 * with child's task_ctx, which generates EXIT events for
10290 * child contexts and sets child->perf_event_ctxp[] to NULL.
10291 * At this point we need to send EXIT events to cpu contexts.
10293 perf_event_task(child
, NULL
, 0);
10296 static void perf_free_event(struct perf_event
*event
,
10297 struct perf_event_context
*ctx
)
10299 struct perf_event
*parent
= event
->parent
;
10301 if (WARN_ON_ONCE(!parent
))
10304 mutex_lock(&parent
->child_mutex
);
10305 list_del_init(&event
->child_list
);
10306 mutex_unlock(&parent
->child_mutex
);
10310 raw_spin_lock_irq(&ctx
->lock
);
10311 perf_group_detach(event
);
10312 list_del_event(event
, ctx
);
10313 raw_spin_unlock_irq(&ctx
->lock
);
10318 * Free an unexposed, unused context as created by inheritance by
10319 * perf_event_init_task below, used by fork() in case of fail.
10321 * Not all locks are strictly required, but take them anyway to be nice and
10322 * help out with the lockdep assertions.
10324 void perf_event_free_task(struct task_struct
*task
)
10326 struct perf_event_context
*ctx
;
10327 struct perf_event
*event
, *tmp
;
10330 for_each_task_context_nr(ctxn
) {
10331 ctx
= task
->perf_event_ctxp
[ctxn
];
10335 mutex_lock(&ctx
->mutex
);
10336 raw_spin_lock_irq(&ctx
->lock
);
10338 * Destroy the task <-> ctx relation and mark the context dead.
10340 * This is important because even though the task hasn't been
10341 * exposed yet the context has been (through child_list).
10343 RCU_INIT_POINTER(task
->perf_event_ctxp
[ctxn
], NULL
);
10344 WRITE_ONCE(ctx
->task
, TASK_TOMBSTONE
);
10345 put_task_struct(task
); /* cannot be last */
10346 raw_spin_unlock_irq(&ctx
->lock
);
10348 list_for_each_entry_safe(event
, tmp
, &ctx
->pinned_groups
,
10350 perf_free_event(event
, ctx
);
10352 list_for_each_entry_safe(event
, tmp
, &ctx
->flexible_groups
,
10354 perf_free_event(event
, ctx
);
10356 if (!list_empty(&ctx
->pinned_groups
) ||
10357 !list_empty(&ctx
->flexible_groups
))
10360 mutex_unlock(&ctx
->mutex
);
10366 void perf_event_delayed_put(struct task_struct
*task
)
10370 for_each_task_context_nr(ctxn
)
10371 WARN_ON_ONCE(task
->perf_event_ctxp
[ctxn
]);
10374 struct file
*perf_event_get(unsigned int fd
)
10378 file
= fget_raw(fd
);
10380 return ERR_PTR(-EBADF
);
10382 if (file
->f_op
!= &perf_fops
) {
10384 return ERR_PTR(-EBADF
);
10390 const struct perf_event_attr
*perf_event_attrs(struct perf_event
*event
)
10393 return ERR_PTR(-EINVAL
);
10395 return &event
->attr
;
10399 * inherit a event from parent task to child task:
10401 static struct perf_event
*
10402 inherit_event(struct perf_event
*parent_event
,
10403 struct task_struct
*parent
,
10404 struct perf_event_context
*parent_ctx
,
10405 struct task_struct
*child
,
10406 struct perf_event
*group_leader
,
10407 struct perf_event_context
*child_ctx
)
10409 enum perf_event_active_state parent_state
= parent_event
->state
;
10410 struct perf_event
*child_event
;
10411 unsigned long flags
;
10414 * Instead of creating recursive hierarchies of events,
10415 * we link inherited events back to the original parent,
10416 * which has a filp for sure, which we use as the reference
10419 if (parent_event
->parent
)
10420 parent_event
= parent_event
->parent
;
10422 child_event
= perf_event_alloc(&parent_event
->attr
,
10425 group_leader
, parent_event
,
10427 if (IS_ERR(child_event
))
10428 return child_event
;
10431 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10432 * must be under the same lock in order to serialize against
10433 * perf_event_release_kernel(), such that either we must observe
10434 * is_orphaned_event() or they will observe us on the child_list.
10436 mutex_lock(&parent_event
->child_mutex
);
10437 if (is_orphaned_event(parent_event
) ||
10438 !atomic_long_inc_not_zero(&parent_event
->refcount
)) {
10439 mutex_unlock(&parent_event
->child_mutex
);
10440 free_event(child_event
);
10444 get_ctx(child_ctx
);
10447 * Make the child state follow the state of the parent event,
10448 * not its attr.disabled bit. We hold the parent's mutex,
10449 * so we won't race with perf_event_{en, dis}able_family.
10451 if (parent_state
>= PERF_EVENT_STATE_INACTIVE
)
10452 child_event
->state
= PERF_EVENT_STATE_INACTIVE
;
10454 child_event
->state
= PERF_EVENT_STATE_OFF
;
10456 if (parent_event
->attr
.freq
) {
10457 u64 sample_period
= parent_event
->hw
.sample_period
;
10458 struct hw_perf_event
*hwc
= &child_event
->hw
;
10460 hwc
->sample_period
= sample_period
;
10461 hwc
->last_period
= sample_period
;
10463 local64_set(&hwc
->period_left
, sample_period
);
10466 child_event
->ctx
= child_ctx
;
10467 child_event
->overflow_handler
= parent_event
->overflow_handler
;
10468 child_event
->overflow_handler_context
10469 = parent_event
->overflow_handler_context
;
10472 * Precalculate sample_data sizes
10474 perf_event__header_size(child_event
);
10475 perf_event__id_header_size(child_event
);
10478 * Link it up in the child's context:
10480 raw_spin_lock_irqsave(&child_ctx
->lock
, flags
);
10481 add_event_to_ctx(child_event
, child_ctx
);
10482 raw_spin_unlock_irqrestore(&child_ctx
->lock
, flags
);
10485 * Link this into the parent event's child list
10487 list_add_tail(&child_event
->child_list
, &parent_event
->child_list
);
10488 mutex_unlock(&parent_event
->child_mutex
);
10490 return child_event
;
10493 static int inherit_group(struct perf_event
*parent_event
,
10494 struct task_struct
*parent
,
10495 struct perf_event_context
*parent_ctx
,
10496 struct task_struct
*child
,
10497 struct perf_event_context
*child_ctx
)
10499 struct perf_event
*leader
;
10500 struct perf_event
*sub
;
10501 struct perf_event
*child_ctr
;
10503 leader
= inherit_event(parent_event
, parent
, parent_ctx
,
10504 child
, NULL
, child_ctx
);
10505 if (IS_ERR(leader
))
10506 return PTR_ERR(leader
);
10507 list_for_each_entry(sub
, &parent_event
->sibling_list
, group_entry
) {
10508 child_ctr
= inherit_event(sub
, parent
, parent_ctx
,
10509 child
, leader
, child_ctx
);
10510 if (IS_ERR(child_ctr
))
10511 return PTR_ERR(child_ctr
);
10517 inherit_task_group(struct perf_event
*event
, struct task_struct
*parent
,
10518 struct perf_event_context
*parent_ctx
,
10519 struct task_struct
*child
, int ctxn
,
10520 int *inherited_all
)
10523 struct perf_event_context
*child_ctx
;
10525 if (!event
->attr
.inherit
) {
10526 *inherited_all
= 0;
10530 child_ctx
= child
->perf_event_ctxp
[ctxn
];
10533 * This is executed from the parent task context, so
10534 * inherit events that have been marked for cloning.
10535 * First allocate and initialize a context for the
10539 child_ctx
= alloc_perf_context(parent_ctx
->pmu
, child
);
10543 child
->perf_event_ctxp
[ctxn
] = child_ctx
;
10546 ret
= inherit_group(event
, parent
, parent_ctx
,
10550 *inherited_all
= 0;
10556 * Initialize the perf_event context in task_struct
10558 static int perf_event_init_context(struct task_struct
*child
, int ctxn
)
10560 struct perf_event_context
*child_ctx
, *parent_ctx
;
10561 struct perf_event_context
*cloned_ctx
;
10562 struct perf_event
*event
;
10563 struct task_struct
*parent
= current
;
10564 int inherited_all
= 1;
10565 unsigned long flags
;
10568 if (likely(!parent
->perf_event_ctxp
[ctxn
]))
10572 * If the parent's context is a clone, pin it so it won't get
10573 * swapped under us.
10575 parent_ctx
= perf_pin_task_context(parent
, ctxn
);
10580 * No need to check if parent_ctx != NULL here; since we saw
10581 * it non-NULL earlier, the only reason for it to become NULL
10582 * is if we exit, and since we're currently in the middle of
10583 * a fork we can't be exiting at the same time.
10587 * Lock the parent list. No need to lock the child - not PID
10588 * hashed yet and not running, so nobody can access it.
10590 mutex_lock(&parent_ctx
->mutex
);
10593 * We dont have to disable NMIs - we are only looking at
10594 * the list, not manipulating it:
10596 list_for_each_entry(event
, &parent_ctx
->pinned_groups
, group_entry
) {
10597 ret
= inherit_task_group(event
, parent
, parent_ctx
,
10598 child
, ctxn
, &inherited_all
);
10604 * We can't hold ctx->lock when iterating the ->flexible_group list due
10605 * to allocations, but we need to prevent rotation because
10606 * rotate_ctx() will change the list from interrupt context.
10608 raw_spin_lock_irqsave(&parent_ctx
->lock
, flags
);
10609 parent_ctx
->rotate_disable
= 1;
10610 raw_spin_unlock_irqrestore(&parent_ctx
->lock
, flags
);
10612 list_for_each_entry(event
, &parent_ctx
->flexible_groups
, group_entry
) {
10613 ret
= inherit_task_group(event
, parent
, parent_ctx
,
10614 child
, ctxn
, &inherited_all
);
10619 raw_spin_lock_irqsave(&parent_ctx
->lock
, flags
);
10620 parent_ctx
->rotate_disable
= 0;
10622 child_ctx
= child
->perf_event_ctxp
[ctxn
];
10624 if (child_ctx
&& inherited_all
) {
10626 * Mark the child context as a clone of the parent
10627 * context, or of whatever the parent is a clone of.
10629 * Note that if the parent is a clone, the holding of
10630 * parent_ctx->lock avoids it from being uncloned.
10632 cloned_ctx
= parent_ctx
->parent_ctx
;
10634 child_ctx
->parent_ctx
= cloned_ctx
;
10635 child_ctx
->parent_gen
= parent_ctx
->parent_gen
;
10637 child_ctx
->parent_ctx
= parent_ctx
;
10638 child_ctx
->parent_gen
= parent_ctx
->generation
;
10640 get_ctx(child_ctx
->parent_ctx
);
10643 raw_spin_unlock_irqrestore(&parent_ctx
->lock
, flags
);
10645 mutex_unlock(&parent_ctx
->mutex
);
10647 perf_unpin_context(parent_ctx
);
10648 put_ctx(parent_ctx
);
10654 * Initialize the perf_event context in task_struct
10656 int perf_event_init_task(struct task_struct
*child
)
10660 memset(child
->perf_event_ctxp
, 0, sizeof(child
->perf_event_ctxp
));
10661 mutex_init(&child
->perf_event_mutex
);
10662 INIT_LIST_HEAD(&child
->perf_event_list
);
10664 for_each_task_context_nr(ctxn
) {
10665 ret
= perf_event_init_context(child
, ctxn
);
10667 perf_event_free_task(child
);
10675 static void __init
perf_event_init_all_cpus(void)
10677 struct swevent_htable
*swhash
;
10680 for_each_possible_cpu(cpu
) {
10681 swhash
= &per_cpu(swevent_htable
, cpu
);
10682 mutex_init(&swhash
->hlist_mutex
);
10683 INIT_LIST_HEAD(&per_cpu(active_ctx_list
, cpu
));
10685 INIT_LIST_HEAD(&per_cpu(pmu_sb_events
.list
, cpu
));
10686 raw_spin_lock_init(&per_cpu(pmu_sb_events
.lock
, cpu
));
10688 INIT_LIST_HEAD(&per_cpu(sched_cb_list
, cpu
));
10692 int perf_event_init_cpu(unsigned int cpu
)
10694 struct swevent_htable
*swhash
= &per_cpu(swevent_htable
, cpu
);
10696 mutex_lock(&swhash
->hlist_mutex
);
10697 if (swhash
->hlist_refcount
> 0 && !swevent_hlist_deref(swhash
)) {
10698 struct swevent_hlist
*hlist
;
10700 hlist
= kzalloc_node(sizeof(*hlist
), GFP_KERNEL
, cpu_to_node(cpu
));
10702 rcu_assign_pointer(swhash
->swevent_hlist
, hlist
);
10704 mutex_unlock(&swhash
->hlist_mutex
);
10708 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
10709 static void __perf_event_exit_context(void *__info
)
10711 struct perf_event_context
*ctx
= __info
;
10712 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
10713 struct perf_event
*event
;
10715 raw_spin_lock(&ctx
->lock
);
10716 list_for_each_entry(event
, &ctx
->event_list
, event_entry
)
10717 __perf_remove_from_context(event
, cpuctx
, ctx
, (void *)DETACH_GROUP
);
10718 raw_spin_unlock(&ctx
->lock
);
10721 static void perf_event_exit_cpu_context(int cpu
)
10723 struct perf_event_context
*ctx
;
10727 idx
= srcu_read_lock(&pmus_srcu
);
10728 list_for_each_entry_rcu(pmu
, &pmus
, entry
) {
10729 ctx
= &per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
)->ctx
;
10731 mutex_lock(&ctx
->mutex
);
10732 smp_call_function_single(cpu
, __perf_event_exit_context
, ctx
, 1);
10733 mutex_unlock(&ctx
->mutex
);
10735 srcu_read_unlock(&pmus_srcu
, idx
);
10739 static void perf_event_exit_cpu_context(int cpu
) { }
10743 int perf_event_exit_cpu(unsigned int cpu
)
10745 perf_event_exit_cpu_context(cpu
);
10750 perf_reboot(struct notifier_block
*notifier
, unsigned long val
, void *v
)
10754 for_each_online_cpu(cpu
)
10755 perf_event_exit_cpu(cpu
);
10761 * Run the perf reboot notifier at the very last possible moment so that
10762 * the generic watchdog code runs as long as possible.
10764 static struct notifier_block perf_reboot_notifier
= {
10765 .notifier_call
= perf_reboot
,
10766 .priority
= INT_MIN
,
10769 void __init
perf_event_init(void)
10773 idr_init(&pmu_idr
);
10775 perf_event_init_all_cpus();
10776 init_srcu_struct(&pmus_srcu
);
10777 perf_pmu_register(&perf_swevent
, "software", PERF_TYPE_SOFTWARE
);
10778 perf_pmu_register(&perf_cpu_clock
, NULL
, -1);
10779 perf_pmu_register(&perf_task_clock
, NULL
, -1);
10780 perf_tp_register();
10781 perf_event_init_cpu(smp_processor_id());
10782 register_reboot_notifier(&perf_reboot_notifier
);
10784 ret
= init_hw_breakpoint();
10785 WARN(ret
, "hw_breakpoint initialization failed with: %d", ret
);
10788 * Build time assertion that we keep the data_head at the intended
10789 * location. IOW, validation we got the __reserved[] size right.
10791 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page
, data_head
))
10795 ssize_t
perf_event_sysfs_show(struct device
*dev
, struct device_attribute
*attr
,
10798 struct perf_pmu_events_attr
*pmu_attr
=
10799 container_of(attr
, struct perf_pmu_events_attr
, attr
);
10801 if (pmu_attr
->event_str
)
10802 return sprintf(page
, "%s\n", pmu_attr
->event_str
);
10806 EXPORT_SYMBOL_GPL(perf_event_sysfs_show
);
10808 static int __init
perf_event_sysfs_init(void)
10813 mutex_lock(&pmus_lock
);
10815 ret
= bus_register(&pmu_bus
);
10819 list_for_each_entry(pmu
, &pmus
, entry
) {
10820 if (!pmu
->name
|| pmu
->type
< 0)
10823 ret
= pmu_dev_alloc(pmu
);
10824 WARN(ret
, "Failed to register pmu: %s, reason %d\n", pmu
->name
, ret
);
10826 pmu_bus_running
= 1;
10830 mutex_unlock(&pmus_lock
);
10834 device_initcall(perf_event_sysfs_init
);
10836 #ifdef CONFIG_CGROUP_PERF
10837 static struct cgroup_subsys_state
*
10838 perf_cgroup_css_alloc(struct cgroup_subsys_state
*parent_css
)
10840 struct perf_cgroup
*jc
;
10842 jc
= kzalloc(sizeof(*jc
), GFP_KERNEL
);
10844 return ERR_PTR(-ENOMEM
);
10846 jc
->info
= alloc_percpu(struct perf_cgroup_info
);
10849 return ERR_PTR(-ENOMEM
);
10855 static void perf_cgroup_css_free(struct cgroup_subsys_state
*css
)
10857 struct perf_cgroup
*jc
= container_of(css
, struct perf_cgroup
, css
);
10859 free_percpu(jc
->info
);
10863 static int __perf_cgroup_move(void *info
)
10865 struct task_struct
*task
= info
;
10867 perf_cgroup_switch(task
, PERF_CGROUP_SWOUT
| PERF_CGROUP_SWIN
);
10872 static void perf_cgroup_attach(struct cgroup_taskset
*tset
)
10874 struct task_struct
*task
;
10875 struct cgroup_subsys_state
*css
;
10877 cgroup_taskset_for_each(task
, css
, tset
)
10878 task_function_call(task
, __perf_cgroup_move
, task
);
10881 struct cgroup_subsys perf_event_cgrp_subsys
= {
10882 .css_alloc
= perf_cgroup_css_alloc
,
10883 .css_free
= perf_cgroup_css_free
,
10884 .attach
= perf_cgroup_attach
,
10886 #endif /* CONFIG_CGROUP_PERF */