Linux 4.9.29
[linux/fpc-iii.git] / kernel / events / core.c
blob07c0dc806dfceaa469a8ad955818284dba6b423c
1 /*
2 * Performance events core code:
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 * For licensing details see kernel-base/COPYING
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
50 #include "internal.h"
52 #include <asm/irq_regs.h>
54 typedef int (*remote_function_f)(void *);
56 struct remote_function_call {
57 struct task_struct *p;
58 remote_function_f func;
59 void *info;
60 int ret;
63 static void remote_function(void *data)
65 struct remote_function_call *tfc = data;
66 struct task_struct *p = tfc->p;
68 if (p) {
69 /* -EAGAIN */
70 if (task_cpu(p) != smp_processor_id())
71 return;
74 * Now that we're on right CPU with IRQs disabled, we can test
75 * if we hit the right task without races.
78 tfc->ret = -ESRCH; /* No such (running) process */
79 if (p != current)
80 return;
83 tfc->ret = tfc->func(tfc->info);
86 /**
87 * task_function_call - call a function on the cpu on which a task runs
88 * @p: the task to evaluate
89 * @func: the function to be called
90 * @info: the function call argument
92 * Calls the function @func when the task is currently running. This might
93 * be on the current CPU, which just calls the function directly
95 * returns: @func return value, or
96 * -ESRCH - when the process isn't running
97 * -EAGAIN - when the process moved away
99 static int
100 task_function_call(struct task_struct *p, remote_function_f func, void *info)
102 struct remote_function_call data = {
103 .p = p,
104 .func = func,
105 .info = info,
106 .ret = -EAGAIN,
108 int ret;
110 do {
111 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
112 if (!ret)
113 ret = data.ret;
114 } while (ret == -EAGAIN);
116 return ret;
120 * cpu_function_call - call a function on the cpu
121 * @func: the function to be called
122 * @info: the function call argument
124 * Calls the function @func on the remote cpu.
126 * returns: @func return value or -ENXIO when the cpu is offline
128 static int cpu_function_call(int cpu, remote_function_f func, void *info)
130 struct remote_function_call data = {
131 .p = NULL,
132 .func = func,
133 .info = info,
134 .ret = -ENXIO, /* No such CPU */
137 smp_call_function_single(cpu, remote_function, &data, 1);
139 return data.ret;
142 static inline struct perf_cpu_context *
143 __get_cpu_context(struct perf_event_context *ctx)
145 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
148 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
149 struct perf_event_context *ctx)
151 raw_spin_lock(&cpuctx->ctx.lock);
152 if (ctx)
153 raw_spin_lock(&ctx->lock);
156 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
157 struct perf_event_context *ctx)
159 if (ctx)
160 raw_spin_unlock(&ctx->lock);
161 raw_spin_unlock(&cpuctx->ctx.lock);
164 #define TASK_TOMBSTONE ((void *)-1L)
166 static bool is_kernel_event(struct perf_event *event)
168 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
172 * On task ctx scheduling...
174 * When !ctx->nr_events a task context will not be scheduled. This means
175 * we can disable the scheduler hooks (for performance) without leaving
176 * pending task ctx state.
178 * This however results in two special cases:
180 * - removing the last event from a task ctx; this is relatively straight
181 * forward and is done in __perf_remove_from_context.
183 * - adding the first event to a task ctx; this is tricky because we cannot
184 * rely on ctx->is_active and therefore cannot use event_function_call().
185 * See perf_install_in_context().
187 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
190 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
191 struct perf_event_context *, void *);
193 struct event_function_struct {
194 struct perf_event *event;
195 event_f func;
196 void *data;
199 static int event_function(void *info)
201 struct event_function_struct *efs = info;
202 struct perf_event *event = efs->event;
203 struct perf_event_context *ctx = event->ctx;
204 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
205 struct perf_event_context *task_ctx = cpuctx->task_ctx;
206 int ret = 0;
208 WARN_ON_ONCE(!irqs_disabled());
210 perf_ctx_lock(cpuctx, task_ctx);
212 * Since we do the IPI call without holding ctx->lock things can have
213 * changed, double check we hit the task we set out to hit.
215 if (ctx->task) {
216 if (ctx->task != current) {
217 ret = -ESRCH;
218 goto unlock;
222 * We only use event_function_call() on established contexts,
223 * and event_function() is only ever called when active (or
224 * rather, we'll have bailed in task_function_call() or the
225 * above ctx->task != current test), therefore we must have
226 * ctx->is_active here.
228 WARN_ON_ONCE(!ctx->is_active);
230 * And since we have ctx->is_active, cpuctx->task_ctx must
231 * match.
233 WARN_ON_ONCE(task_ctx != ctx);
234 } else {
235 WARN_ON_ONCE(&cpuctx->ctx != ctx);
238 efs->func(event, cpuctx, ctx, efs->data);
239 unlock:
240 perf_ctx_unlock(cpuctx, task_ctx);
242 return ret;
245 static void event_function_call(struct perf_event *event, event_f func, void *data)
247 struct perf_event_context *ctx = event->ctx;
248 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
249 struct event_function_struct efs = {
250 .event = event,
251 .func = func,
252 .data = data,
255 if (!event->parent) {
257 * If this is a !child event, we must hold ctx::mutex to
258 * stabilize the the event->ctx relation. See
259 * perf_event_ctx_lock().
261 lockdep_assert_held(&ctx->mutex);
264 if (!task) {
265 cpu_function_call(event->cpu, event_function, &efs);
266 return;
269 if (task == TASK_TOMBSTONE)
270 return;
272 again:
273 if (!task_function_call(task, event_function, &efs))
274 return;
276 raw_spin_lock_irq(&ctx->lock);
278 * Reload the task pointer, it might have been changed by
279 * a concurrent perf_event_context_sched_out().
281 task = ctx->task;
282 if (task == TASK_TOMBSTONE) {
283 raw_spin_unlock_irq(&ctx->lock);
284 return;
286 if (ctx->is_active) {
287 raw_spin_unlock_irq(&ctx->lock);
288 goto again;
290 func(event, NULL, ctx, data);
291 raw_spin_unlock_irq(&ctx->lock);
295 * Similar to event_function_call() + event_function(), but hard assumes IRQs
296 * are already disabled and we're on the right CPU.
298 static void event_function_local(struct perf_event *event, event_f func, void *data)
300 struct perf_event_context *ctx = event->ctx;
301 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
302 struct task_struct *task = READ_ONCE(ctx->task);
303 struct perf_event_context *task_ctx = NULL;
305 WARN_ON_ONCE(!irqs_disabled());
307 if (task) {
308 if (task == TASK_TOMBSTONE)
309 return;
311 task_ctx = ctx;
314 perf_ctx_lock(cpuctx, task_ctx);
316 task = ctx->task;
317 if (task == TASK_TOMBSTONE)
318 goto unlock;
320 if (task) {
322 * We must be either inactive or active and the right task,
323 * otherwise we're screwed, since we cannot IPI to somewhere
324 * else.
326 if (ctx->is_active) {
327 if (WARN_ON_ONCE(task != current))
328 goto unlock;
330 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
331 goto unlock;
333 } else {
334 WARN_ON_ONCE(&cpuctx->ctx != ctx);
337 func(event, cpuctx, ctx, data);
338 unlock:
339 perf_ctx_unlock(cpuctx, task_ctx);
342 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
343 PERF_FLAG_FD_OUTPUT |\
344 PERF_FLAG_PID_CGROUP |\
345 PERF_FLAG_FD_CLOEXEC)
348 * branch priv levels that need permission checks
350 #define PERF_SAMPLE_BRANCH_PERM_PLM \
351 (PERF_SAMPLE_BRANCH_KERNEL |\
352 PERF_SAMPLE_BRANCH_HV)
354 enum event_type_t {
355 EVENT_FLEXIBLE = 0x1,
356 EVENT_PINNED = 0x2,
357 EVENT_TIME = 0x4,
358 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
362 * perf_sched_events : >0 events exist
363 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
366 static void perf_sched_delayed(struct work_struct *work);
367 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
368 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
369 static DEFINE_MUTEX(perf_sched_mutex);
370 static atomic_t perf_sched_count;
372 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
373 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
374 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
376 static atomic_t nr_mmap_events __read_mostly;
377 static atomic_t nr_comm_events __read_mostly;
378 static atomic_t nr_task_events __read_mostly;
379 static atomic_t nr_freq_events __read_mostly;
380 static atomic_t nr_switch_events __read_mostly;
382 static LIST_HEAD(pmus);
383 static DEFINE_MUTEX(pmus_lock);
384 static struct srcu_struct pmus_srcu;
387 * perf event paranoia level:
388 * -1 - not paranoid at all
389 * 0 - disallow raw tracepoint access for unpriv
390 * 1 - disallow cpu events for unpriv
391 * 2 - disallow kernel profiling for unpriv
393 int sysctl_perf_event_paranoid __read_mostly = 2;
395 /* Minimum for 512 kiB + 1 user control page */
396 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
399 * max perf event sample rate
401 #define DEFAULT_MAX_SAMPLE_RATE 100000
402 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
403 #define DEFAULT_CPU_TIME_MAX_PERCENT 25
405 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
407 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
408 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
410 static int perf_sample_allowed_ns __read_mostly =
411 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
413 static void update_perf_cpu_limits(void)
415 u64 tmp = perf_sample_period_ns;
417 tmp *= sysctl_perf_cpu_time_max_percent;
418 tmp = div_u64(tmp, 100);
419 if (!tmp)
420 tmp = 1;
422 WRITE_ONCE(perf_sample_allowed_ns, tmp);
425 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
427 int perf_proc_update_handler(struct ctl_table *table, int write,
428 void __user *buffer, size_t *lenp,
429 loff_t *ppos)
431 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
433 if (ret || !write)
434 return ret;
437 * If throttling is disabled don't allow the write:
439 if (sysctl_perf_cpu_time_max_percent == 100 ||
440 sysctl_perf_cpu_time_max_percent == 0)
441 return -EINVAL;
443 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
444 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
445 update_perf_cpu_limits();
447 return 0;
450 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
452 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
453 void __user *buffer, size_t *lenp,
454 loff_t *ppos)
456 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
458 if (ret || !write)
459 return ret;
461 if (sysctl_perf_cpu_time_max_percent == 100 ||
462 sysctl_perf_cpu_time_max_percent == 0) {
463 printk(KERN_WARNING
464 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
465 WRITE_ONCE(perf_sample_allowed_ns, 0);
466 } else {
467 update_perf_cpu_limits();
470 return 0;
474 * perf samples are done in some very critical code paths (NMIs).
475 * If they take too much CPU time, the system can lock up and not
476 * get any real work done. This will drop the sample rate when
477 * we detect that events are taking too long.
479 #define NR_ACCUMULATED_SAMPLES 128
480 static DEFINE_PER_CPU(u64, running_sample_length);
482 static u64 __report_avg;
483 static u64 __report_allowed;
485 static void perf_duration_warn(struct irq_work *w)
487 printk_ratelimited(KERN_INFO
488 "perf: interrupt took too long (%lld > %lld), lowering "
489 "kernel.perf_event_max_sample_rate to %d\n",
490 __report_avg, __report_allowed,
491 sysctl_perf_event_sample_rate);
494 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
496 void perf_sample_event_took(u64 sample_len_ns)
498 u64 max_len = READ_ONCE(perf_sample_allowed_ns);
499 u64 running_len;
500 u64 avg_len;
501 u32 max;
503 if (max_len == 0)
504 return;
506 /* Decay the counter by 1 average sample. */
507 running_len = __this_cpu_read(running_sample_length);
508 running_len -= running_len/NR_ACCUMULATED_SAMPLES;
509 running_len += sample_len_ns;
510 __this_cpu_write(running_sample_length, running_len);
513 * Note: this will be biased artifically low until we have
514 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
515 * from having to maintain a count.
517 avg_len = running_len/NR_ACCUMULATED_SAMPLES;
518 if (avg_len <= max_len)
519 return;
521 __report_avg = avg_len;
522 __report_allowed = max_len;
525 * Compute a throttle threshold 25% below the current duration.
527 avg_len += avg_len / 4;
528 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
529 if (avg_len < max)
530 max /= (u32)avg_len;
531 else
532 max = 1;
534 WRITE_ONCE(perf_sample_allowed_ns, avg_len);
535 WRITE_ONCE(max_samples_per_tick, max);
537 sysctl_perf_event_sample_rate = max * HZ;
538 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
540 if (!irq_work_queue(&perf_duration_work)) {
541 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
542 "kernel.perf_event_max_sample_rate to %d\n",
543 __report_avg, __report_allowed,
544 sysctl_perf_event_sample_rate);
548 static atomic64_t perf_event_id;
550 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
551 enum event_type_t event_type);
553 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
554 enum event_type_t event_type,
555 struct task_struct *task);
557 static void update_context_time(struct perf_event_context *ctx);
558 static u64 perf_event_time(struct perf_event *event);
560 void __weak perf_event_print_debug(void) { }
562 extern __weak const char *perf_pmu_name(void)
564 return "pmu";
567 static inline u64 perf_clock(void)
569 return local_clock();
572 static inline u64 perf_event_clock(struct perf_event *event)
574 return event->clock();
577 #ifdef CONFIG_CGROUP_PERF
579 static inline bool
580 perf_cgroup_match(struct perf_event *event)
582 struct perf_event_context *ctx = event->ctx;
583 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
585 /* @event doesn't care about cgroup */
586 if (!event->cgrp)
587 return true;
589 /* wants specific cgroup scope but @cpuctx isn't associated with any */
590 if (!cpuctx->cgrp)
591 return false;
594 * Cgroup scoping is recursive. An event enabled for a cgroup is
595 * also enabled for all its descendant cgroups. If @cpuctx's
596 * cgroup is a descendant of @event's (the test covers identity
597 * case), it's a match.
599 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
600 event->cgrp->css.cgroup);
603 static inline void perf_detach_cgroup(struct perf_event *event)
605 css_put(&event->cgrp->css);
606 event->cgrp = NULL;
609 static inline int is_cgroup_event(struct perf_event *event)
611 return event->cgrp != NULL;
614 static inline u64 perf_cgroup_event_time(struct perf_event *event)
616 struct perf_cgroup_info *t;
618 t = per_cpu_ptr(event->cgrp->info, event->cpu);
619 return t->time;
622 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
624 struct perf_cgroup_info *info;
625 u64 now;
627 now = perf_clock();
629 info = this_cpu_ptr(cgrp->info);
631 info->time += now - info->timestamp;
632 info->timestamp = now;
635 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
637 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
638 if (cgrp_out)
639 __update_cgrp_time(cgrp_out);
642 static inline void update_cgrp_time_from_event(struct perf_event *event)
644 struct perf_cgroup *cgrp;
647 * ensure we access cgroup data only when needed and
648 * when we know the cgroup is pinned (css_get)
650 if (!is_cgroup_event(event))
651 return;
653 cgrp = perf_cgroup_from_task(current, event->ctx);
655 * Do not update time when cgroup is not active
657 if (cgrp == event->cgrp)
658 __update_cgrp_time(event->cgrp);
661 static inline void
662 perf_cgroup_set_timestamp(struct task_struct *task,
663 struct perf_event_context *ctx)
665 struct perf_cgroup *cgrp;
666 struct perf_cgroup_info *info;
669 * ctx->lock held by caller
670 * ensure we do not access cgroup data
671 * unless we have the cgroup pinned (css_get)
673 if (!task || !ctx->nr_cgroups)
674 return;
676 cgrp = perf_cgroup_from_task(task, ctx);
677 info = this_cpu_ptr(cgrp->info);
678 info->timestamp = ctx->timestamp;
681 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
682 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
685 * reschedule events based on the cgroup constraint of task.
687 * mode SWOUT : schedule out everything
688 * mode SWIN : schedule in based on cgroup for next
690 static void perf_cgroup_switch(struct task_struct *task, int mode)
692 struct perf_cpu_context *cpuctx;
693 struct pmu *pmu;
694 unsigned long flags;
697 * disable interrupts to avoid geting nr_cgroup
698 * changes via __perf_event_disable(). Also
699 * avoids preemption.
701 local_irq_save(flags);
704 * we reschedule only in the presence of cgroup
705 * constrained events.
708 list_for_each_entry_rcu(pmu, &pmus, entry) {
709 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
710 if (cpuctx->unique_pmu != pmu)
711 continue; /* ensure we process each cpuctx once */
714 * perf_cgroup_events says at least one
715 * context on this CPU has cgroup events.
717 * ctx->nr_cgroups reports the number of cgroup
718 * events for a context.
720 if (cpuctx->ctx.nr_cgroups > 0) {
721 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
722 perf_pmu_disable(cpuctx->ctx.pmu);
724 if (mode & PERF_CGROUP_SWOUT) {
725 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
727 * must not be done before ctxswout due
728 * to event_filter_match() in event_sched_out()
730 cpuctx->cgrp = NULL;
733 if (mode & PERF_CGROUP_SWIN) {
734 WARN_ON_ONCE(cpuctx->cgrp);
736 * set cgrp before ctxsw in to allow
737 * event_filter_match() to not have to pass
738 * task around
739 * we pass the cpuctx->ctx to perf_cgroup_from_task()
740 * because cgorup events are only per-cpu
742 cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
743 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
745 perf_pmu_enable(cpuctx->ctx.pmu);
746 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
750 local_irq_restore(flags);
753 static inline void perf_cgroup_sched_out(struct task_struct *task,
754 struct task_struct *next)
756 struct perf_cgroup *cgrp1;
757 struct perf_cgroup *cgrp2 = NULL;
759 rcu_read_lock();
761 * we come here when we know perf_cgroup_events > 0
762 * we do not need to pass the ctx here because we know
763 * we are holding the rcu lock
765 cgrp1 = perf_cgroup_from_task(task, NULL);
766 cgrp2 = perf_cgroup_from_task(next, NULL);
769 * only schedule out current cgroup events if we know
770 * that we are switching to a different cgroup. Otherwise,
771 * do no touch the cgroup events.
773 if (cgrp1 != cgrp2)
774 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
776 rcu_read_unlock();
779 static inline void perf_cgroup_sched_in(struct task_struct *prev,
780 struct task_struct *task)
782 struct perf_cgroup *cgrp1;
783 struct perf_cgroup *cgrp2 = NULL;
785 rcu_read_lock();
787 * we come here when we know perf_cgroup_events > 0
788 * we do not need to pass the ctx here because we know
789 * we are holding the rcu lock
791 cgrp1 = perf_cgroup_from_task(task, NULL);
792 cgrp2 = perf_cgroup_from_task(prev, NULL);
795 * only need to schedule in cgroup events if we are changing
796 * cgroup during ctxsw. Cgroup events were not scheduled
797 * out of ctxsw out if that was not the case.
799 if (cgrp1 != cgrp2)
800 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
802 rcu_read_unlock();
805 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
806 struct perf_event_attr *attr,
807 struct perf_event *group_leader)
809 struct perf_cgroup *cgrp;
810 struct cgroup_subsys_state *css;
811 struct fd f = fdget(fd);
812 int ret = 0;
814 if (!f.file)
815 return -EBADF;
817 css = css_tryget_online_from_dir(f.file->f_path.dentry,
818 &perf_event_cgrp_subsys);
819 if (IS_ERR(css)) {
820 ret = PTR_ERR(css);
821 goto out;
824 cgrp = container_of(css, struct perf_cgroup, css);
825 event->cgrp = cgrp;
828 * all events in a group must monitor
829 * the same cgroup because a task belongs
830 * to only one perf cgroup at a time
832 if (group_leader && group_leader->cgrp != cgrp) {
833 perf_detach_cgroup(event);
834 ret = -EINVAL;
836 out:
837 fdput(f);
838 return ret;
841 static inline void
842 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
844 struct perf_cgroup_info *t;
845 t = per_cpu_ptr(event->cgrp->info, event->cpu);
846 event->shadow_ctx_time = now - t->timestamp;
849 static inline void
850 perf_cgroup_defer_enabled(struct perf_event *event)
853 * when the current task's perf cgroup does not match
854 * the event's, we need to remember to call the
855 * perf_mark_enable() function the first time a task with
856 * a matching perf cgroup is scheduled in.
858 if (is_cgroup_event(event) && !perf_cgroup_match(event))
859 event->cgrp_defer_enabled = 1;
862 static inline void
863 perf_cgroup_mark_enabled(struct perf_event *event,
864 struct perf_event_context *ctx)
866 struct perf_event *sub;
867 u64 tstamp = perf_event_time(event);
869 if (!event->cgrp_defer_enabled)
870 return;
872 event->cgrp_defer_enabled = 0;
874 event->tstamp_enabled = tstamp - event->total_time_enabled;
875 list_for_each_entry(sub, &event->sibling_list, group_entry) {
876 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
877 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
878 sub->cgrp_defer_enabled = 0;
884 * Update cpuctx->cgrp so that it is set when first cgroup event is added and
885 * cleared when last cgroup event is removed.
887 static inline void
888 list_update_cgroup_event(struct perf_event *event,
889 struct perf_event_context *ctx, bool add)
891 struct perf_cpu_context *cpuctx;
893 if (!is_cgroup_event(event))
894 return;
896 if (add && ctx->nr_cgroups++)
897 return;
898 else if (!add && --ctx->nr_cgroups)
899 return;
901 * Because cgroup events are always per-cpu events,
902 * this will always be called from the right CPU.
904 cpuctx = __get_cpu_context(ctx);
907 * cpuctx->cgrp is NULL until a cgroup event is sched in or
908 * ctx->nr_cgroup == 0 .
910 if (add && perf_cgroup_from_task(current, ctx) == event->cgrp)
911 cpuctx->cgrp = event->cgrp;
912 else if (!add)
913 cpuctx->cgrp = NULL;
916 #else /* !CONFIG_CGROUP_PERF */
918 static inline bool
919 perf_cgroup_match(struct perf_event *event)
921 return true;
924 static inline void perf_detach_cgroup(struct perf_event *event)
927 static inline int is_cgroup_event(struct perf_event *event)
929 return 0;
932 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
934 return 0;
937 static inline void update_cgrp_time_from_event(struct perf_event *event)
941 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
945 static inline void perf_cgroup_sched_out(struct task_struct *task,
946 struct task_struct *next)
950 static inline void perf_cgroup_sched_in(struct task_struct *prev,
951 struct task_struct *task)
955 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
956 struct perf_event_attr *attr,
957 struct perf_event *group_leader)
959 return -EINVAL;
962 static inline void
963 perf_cgroup_set_timestamp(struct task_struct *task,
964 struct perf_event_context *ctx)
968 void
969 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
973 static inline void
974 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
978 static inline u64 perf_cgroup_event_time(struct perf_event *event)
980 return 0;
983 static inline void
984 perf_cgroup_defer_enabled(struct perf_event *event)
988 static inline void
989 perf_cgroup_mark_enabled(struct perf_event *event,
990 struct perf_event_context *ctx)
994 static inline void
995 list_update_cgroup_event(struct perf_event *event,
996 struct perf_event_context *ctx, bool add)
1000 #endif
1003 * set default to be dependent on timer tick just
1004 * like original code
1006 #define PERF_CPU_HRTIMER (1000 / HZ)
1008 * function must be called with interrupts disbled
1010 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1012 struct perf_cpu_context *cpuctx;
1013 int rotations = 0;
1015 WARN_ON(!irqs_disabled());
1017 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1018 rotations = perf_rotate_context(cpuctx);
1020 raw_spin_lock(&cpuctx->hrtimer_lock);
1021 if (rotations)
1022 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1023 else
1024 cpuctx->hrtimer_active = 0;
1025 raw_spin_unlock(&cpuctx->hrtimer_lock);
1027 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1030 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1032 struct hrtimer *timer = &cpuctx->hrtimer;
1033 struct pmu *pmu = cpuctx->ctx.pmu;
1034 u64 interval;
1036 /* no multiplexing needed for SW PMU */
1037 if (pmu->task_ctx_nr == perf_sw_context)
1038 return;
1041 * check default is sane, if not set then force to
1042 * default interval (1/tick)
1044 interval = pmu->hrtimer_interval_ms;
1045 if (interval < 1)
1046 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1048 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1050 raw_spin_lock_init(&cpuctx->hrtimer_lock);
1051 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1052 timer->function = perf_mux_hrtimer_handler;
1055 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1057 struct hrtimer *timer = &cpuctx->hrtimer;
1058 struct pmu *pmu = cpuctx->ctx.pmu;
1059 unsigned long flags;
1061 /* not for SW PMU */
1062 if (pmu->task_ctx_nr == perf_sw_context)
1063 return 0;
1065 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1066 if (!cpuctx->hrtimer_active) {
1067 cpuctx->hrtimer_active = 1;
1068 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1069 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1071 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1073 return 0;
1076 void perf_pmu_disable(struct pmu *pmu)
1078 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1079 if (!(*count)++)
1080 pmu->pmu_disable(pmu);
1083 void perf_pmu_enable(struct pmu *pmu)
1085 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1086 if (!--(*count))
1087 pmu->pmu_enable(pmu);
1090 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1093 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1094 * perf_event_task_tick() are fully serialized because they're strictly cpu
1095 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1096 * disabled, while perf_event_task_tick is called from IRQ context.
1098 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1100 struct list_head *head = this_cpu_ptr(&active_ctx_list);
1102 WARN_ON(!irqs_disabled());
1104 WARN_ON(!list_empty(&ctx->active_ctx_list));
1106 list_add(&ctx->active_ctx_list, head);
1109 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1111 WARN_ON(!irqs_disabled());
1113 WARN_ON(list_empty(&ctx->active_ctx_list));
1115 list_del_init(&ctx->active_ctx_list);
1118 static void get_ctx(struct perf_event_context *ctx)
1120 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1123 static void free_ctx(struct rcu_head *head)
1125 struct perf_event_context *ctx;
1127 ctx = container_of(head, struct perf_event_context, rcu_head);
1128 kfree(ctx->task_ctx_data);
1129 kfree(ctx);
1132 static void put_ctx(struct perf_event_context *ctx)
1134 if (atomic_dec_and_test(&ctx->refcount)) {
1135 if (ctx->parent_ctx)
1136 put_ctx(ctx->parent_ctx);
1137 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1138 put_task_struct(ctx->task);
1139 call_rcu(&ctx->rcu_head, free_ctx);
1144 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1145 * perf_pmu_migrate_context() we need some magic.
1147 * Those places that change perf_event::ctx will hold both
1148 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1150 * Lock ordering is by mutex address. There are two other sites where
1151 * perf_event_context::mutex nests and those are:
1153 * - perf_event_exit_task_context() [ child , 0 ]
1154 * perf_event_exit_event()
1155 * put_event() [ parent, 1 ]
1157 * - perf_event_init_context() [ parent, 0 ]
1158 * inherit_task_group()
1159 * inherit_group()
1160 * inherit_event()
1161 * perf_event_alloc()
1162 * perf_init_event()
1163 * perf_try_init_event() [ child , 1 ]
1165 * While it appears there is an obvious deadlock here -- the parent and child
1166 * nesting levels are inverted between the two. This is in fact safe because
1167 * life-time rules separate them. That is an exiting task cannot fork, and a
1168 * spawning task cannot (yet) exit.
1170 * But remember that that these are parent<->child context relations, and
1171 * migration does not affect children, therefore these two orderings should not
1172 * interact.
1174 * The change in perf_event::ctx does not affect children (as claimed above)
1175 * because the sys_perf_event_open() case will install a new event and break
1176 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1177 * concerned with cpuctx and that doesn't have children.
1179 * The places that change perf_event::ctx will issue:
1181 * perf_remove_from_context();
1182 * synchronize_rcu();
1183 * perf_install_in_context();
1185 * to affect the change. The remove_from_context() + synchronize_rcu() should
1186 * quiesce the event, after which we can install it in the new location. This
1187 * means that only external vectors (perf_fops, prctl) can perturb the event
1188 * while in transit. Therefore all such accessors should also acquire
1189 * perf_event_context::mutex to serialize against this.
1191 * However; because event->ctx can change while we're waiting to acquire
1192 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1193 * function.
1195 * Lock order:
1196 * cred_guard_mutex
1197 * task_struct::perf_event_mutex
1198 * perf_event_context::mutex
1199 * perf_event::child_mutex;
1200 * perf_event_context::lock
1201 * perf_event::mmap_mutex
1202 * mmap_sem
1204 static struct perf_event_context *
1205 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1207 struct perf_event_context *ctx;
1209 again:
1210 rcu_read_lock();
1211 ctx = ACCESS_ONCE(event->ctx);
1212 if (!atomic_inc_not_zero(&ctx->refcount)) {
1213 rcu_read_unlock();
1214 goto again;
1216 rcu_read_unlock();
1218 mutex_lock_nested(&ctx->mutex, nesting);
1219 if (event->ctx != ctx) {
1220 mutex_unlock(&ctx->mutex);
1221 put_ctx(ctx);
1222 goto again;
1225 return ctx;
1228 static inline struct perf_event_context *
1229 perf_event_ctx_lock(struct perf_event *event)
1231 return perf_event_ctx_lock_nested(event, 0);
1234 static void perf_event_ctx_unlock(struct perf_event *event,
1235 struct perf_event_context *ctx)
1237 mutex_unlock(&ctx->mutex);
1238 put_ctx(ctx);
1242 * This must be done under the ctx->lock, such as to serialize against
1243 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1244 * calling scheduler related locks and ctx->lock nests inside those.
1246 static __must_check struct perf_event_context *
1247 unclone_ctx(struct perf_event_context *ctx)
1249 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1251 lockdep_assert_held(&ctx->lock);
1253 if (parent_ctx)
1254 ctx->parent_ctx = NULL;
1255 ctx->generation++;
1257 return parent_ctx;
1260 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1263 * only top level events have the pid namespace they were created in
1265 if (event->parent)
1266 event = event->parent;
1268 return task_tgid_nr_ns(p, event->ns);
1271 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1274 * only top level events have the pid namespace they were created in
1276 if (event->parent)
1277 event = event->parent;
1279 return task_pid_nr_ns(p, event->ns);
1283 * If we inherit events we want to return the parent event id
1284 * to userspace.
1286 static u64 primary_event_id(struct perf_event *event)
1288 u64 id = event->id;
1290 if (event->parent)
1291 id = event->parent->id;
1293 return id;
1297 * Get the perf_event_context for a task and lock it.
1299 * This has to cope with with the fact that until it is locked,
1300 * the context could get moved to another task.
1302 static struct perf_event_context *
1303 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1305 struct perf_event_context *ctx;
1307 retry:
1309 * One of the few rules of preemptible RCU is that one cannot do
1310 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1311 * part of the read side critical section was irqs-enabled -- see
1312 * rcu_read_unlock_special().
1314 * Since ctx->lock nests under rq->lock we must ensure the entire read
1315 * side critical section has interrupts disabled.
1317 local_irq_save(*flags);
1318 rcu_read_lock();
1319 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1320 if (ctx) {
1322 * If this context is a clone of another, it might
1323 * get swapped for another underneath us by
1324 * perf_event_task_sched_out, though the
1325 * rcu_read_lock() protects us from any context
1326 * getting freed. Lock the context and check if it
1327 * got swapped before we could get the lock, and retry
1328 * if so. If we locked the right context, then it
1329 * can't get swapped on us any more.
1331 raw_spin_lock(&ctx->lock);
1332 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1333 raw_spin_unlock(&ctx->lock);
1334 rcu_read_unlock();
1335 local_irq_restore(*flags);
1336 goto retry;
1339 if (ctx->task == TASK_TOMBSTONE ||
1340 !atomic_inc_not_zero(&ctx->refcount)) {
1341 raw_spin_unlock(&ctx->lock);
1342 ctx = NULL;
1343 } else {
1344 WARN_ON_ONCE(ctx->task != task);
1347 rcu_read_unlock();
1348 if (!ctx)
1349 local_irq_restore(*flags);
1350 return ctx;
1354 * Get the context for a task and increment its pin_count so it
1355 * can't get swapped to another task. This also increments its
1356 * reference count so that the context can't get freed.
1358 static struct perf_event_context *
1359 perf_pin_task_context(struct task_struct *task, int ctxn)
1361 struct perf_event_context *ctx;
1362 unsigned long flags;
1364 ctx = perf_lock_task_context(task, ctxn, &flags);
1365 if (ctx) {
1366 ++ctx->pin_count;
1367 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1369 return ctx;
1372 static void perf_unpin_context(struct perf_event_context *ctx)
1374 unsigned long flags;
1376 raw_spin_lock_irqsave(&ctx->lock, flags);
1377 --ctx->pin_count;
1378 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1382 * Update the record of the current time in a context.
1384 static void update_context_time(struct perf_event_context *ctx)
1386 u64 now = perf_clock();
1388 ctx->time += now - ctx->timestamp;
1389 ctx->timestamp = now;
1392 static u64 perf_event_time(struct perf_event *event)
1394 struct perf_event_context *ctx = event->ctx;
1396 if (is_cgroup_event(event))
1397 return perf_cgroup_event_time(event);
1399 return ctx ? ctx->time : 0;
1403 * Update the total_time_enabled and total_time_running fields for a event.
1405 static void update_event_times(struct perf_event *event)
1407 struct perf_event_context *ctx = event->ctx;
1408 u64 run_end;
1410 lockdep_assert_held(&ctx->lock);
1412 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1413 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1414 return;
1417 * in cgroup mode, time_enabled represents
1418 * the time the event was enabled AND active
1419 * tasks were in the monitored cgroup. This is
1420 * independent of the activity of the context as
1421 * there may be a mix of cgroup and non-cgroup events.
1423 * That is why we treat cgroup events differently
1424 * here.
1426 if (is_cgroup_event(event))
1427 run_end = perf_cgroup_event_time(event);
1428 else if (ctx->is_active)
1429 run_end = ctx->time;
1430 else
1431 run_end = event->tstamp_stopped;
1433 event->total_time_enabled = run_end - event->tstamp_enabled;
1435 if (event->state == PERF_EVENT_STATE_INACTIVE)
1436 run_end = event->tstamp_stopped;
1437 else
1438 run_end = perf_event_time(event);
1440 event->total_time_running = run_end - event->tstamp_running;
1445 * Update total_time_enabled and total_time_running for all events in a group.
1447 static void update_group_times(struct perf_event *leader)
1449 struct perf_event *event;
1451 update_event_times(leader);
1452 list_for_each_entry(event, &leader->sibling_list, group_entry)
1453 update_event_times(event);
1456 static struct list_head *
1457 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1459 if (event->attr.pinned)
1460 return &ctx->pinned_groups;
1461 else
1462 return &ctx->flexible_groups;
1466 * Add a event from the lists for its context.
1467 * Must be called with ctx->mutex and ctx->lock held.
1469 static void
1470 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1472 lockdep_assert_held(&ctx->lock);
1474 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1475 event->attach_state |= PERF_ATTACH_CONTEXT;
1478 * If we're a stand alone event or group leader, we go to the context
1479 * list, group events are kept attached to the group so that
1480 * perf_group_detach can, at all times, locate all siblings.
1482 if (event->group_leader == event) {
1483 struct list_head *list;
1485 event->group_caps = event->event_caps;
1487 list = ctx_group_list(event, ctx);
1488 list_add_tail(&event->group_entry, list);
1491 list_update_cgroup_event(event, ctx, true);
1493 list_add_rcu(&event->event_entry, &ctx->event_list);
1494 ctx->nr_events++;
1495 if (event->attr.inherit_stat)
1496 ctx->nr_stat++;
1498 ctx->generation++;
1502 * Initialize event state based on the perf_event_attr::disabled.
1504 static inline void perf_event__state_init(struct perf_event *event)
1506 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1507 PERF_EVENT_STATE_INACTIVE;
1510 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1512 int entry = sizeof(u64); /* value */
1513 int size = 0;
1514 int nr = 1;
1516 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1517 size += sizeof(u64);
1519 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1520 size += sizeof(u64);
1522 if (event->attr.read_format & PERF_FORMAT_ID)
1523 entry += sizeof(u64);
1525 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1526 nr += nr_siblings;
1527 size += sizeof(u64);
1530 size += entry * nr;
1531 event->read_size = size;
1534 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1536 struct perf_sample_data *data;
1537 u16 size = 0;
1539 if (sample_type & PERF_SAMPLE_IP)
1540 size += sizeof(data->ip);
1542 if (sample_type & PERF_SAMPLE_ADDR)
1543 size += sizeof(data->addr);
1545 if (sample_type & PERF_SAMPLE_PERIOD)
1546 size += sizeof(data->period);
1548 if (sample_type & PERF_SAMPLE_WEIGHT)
1549 size += sizeof(data->weight);
1551 if (sample_type & PERF_SAMPLE_READ)
1552 size += event->read_size;
1554 if (sample_type & PERF_SAMPLE_DATA_SRC)
1555 size += sizeof(data->data_src.val);
1557 if (sample_type & PERF_SAMPLE_TRANSACTION)
1558 size += sizeof(data->txn);
1560 event->header_size = size;
1564 * Called at perf_event creation and when events are attached/detached from a
1565 * group.
1567 static void perf_event__header_size(struct perf_event *event)
1569 __perf_event_read_size(event,
1570 event->group_leader->nr_siblings);
1571 __perf_event_header_size(event, event->attr.sample_type);
1574 static void perf_event__id_header_size(struct perf_event *event)
1576 struct perf_sample_data *data;
1577 u64 sample_type = event->attr.sample_type;
1578 u16 size = 0;
1580 if (sample_type & PERF_SAMPLE_TID)
1581 size += sizeof(data->tid_entry);
1583 if (sample_type & PERF_SAMPLE_TIME)
1584 size += sizeof(data->time);
1586 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1587 size += sizeof(data->id);
1589 if (sample_type & PERF_SAMPLE_ID)
1590 size += sizeof(data->id);
1592 if (sample_type & PERF_SAMPLE_STREAM_ID)
1593 size += sizeof(data->stream_id);
1595 if (sample_type & PERF_SAMPLE_CPU)
1596 size += sizeof(data->cpu_entry);
1598 event->id_header_size = size;
1601 static bool perf_event_validate_size(struct perf_event *event)
1604 * The values computed here will be over-written when we actually
1605 * attach the event.
1607 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1608 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1609 perf_event__id_header_size(event);
1612 * Sum the lot; should not exceed the 64k limit we have on records.
1613 * Conservative limit to allow for callchains and other variable fields.
1615 if (event->read_size + event->header_size +
1616 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1617 return false;
1619 return true;
1622 static void perf_group_attach(struct perf_event *event)
1624 struct perf_event *group_leader = event->group_leader, *pos;
1626 lockdep_assert_held(&event->ctx->lock);
1629 * We can have double attach due to group movement in perf_event_open.
1631 if (event->attach_state & PERF_ATTACH_GROUP)
1632 return;
1634 event->attach_state |= PERF_ATTACH_GROUP;
1636 if (group_leader == event)
1637 return;
1639 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1641 group_leader->group_caps &= event->event_caps;
1643 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1644 group_leader->nr_siblings++;
1646 perf_event__header_size(group_leader);
1648 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1649 perf_event__header_size(pos);
1653 * Remove a event from the lists for its context.
1654 * Must be called with ctx->mutex and ctx->lock held.
1656 static void
1657 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1659 WARN_ON_ONCE(event->ctx != ctx);
1660 lockdep_assert_held(&ctx->lock);
1663 * We can have double detach due to exit/hot-unplug + close.
1665 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1666 return;
1668 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1670 list_update_cgroup_event(event, ctx, false);
1672 ctx->nr_events--;
1673 if (event->attr.inherit_stat)
1674 ctx->nr_stat--;
1676 list_del_rcu(&event->event_entry);
1678 if (event->group_leader == event)
1679 list_del_init(&event->group_entry);
1681 update_group_times(event);
1684 * If event was in error state, then keep it
1685 * that way, otherwise bogus counts will be
1686 * returned on read(). The only way to get out
1687 * of error state is by explicit re-enabling
1688 * of the event
1690 if (event->state > PERF_EVENT_STATE_OFF)
1691 event->state = PERF_EVENT_STATE_OFF;
1693 ctx->generation++;
1696 static void perf_group_detach(struct perf_event *event)
1698 struct perf_event *sibling, *tmp;
1699 struct list_head *list = NULL;
1701 lockdep_assert_held(&event->ctx->lock);
1704 * We can have double detach due to exit/hot-unplug + close.
1706 if (!(event->attach_state & PERF_ATTACH_GROUP))
1707 return;
1709 event->attach_state &= ~PERF_ATTACH_GROUP;
1712 * If this is a sibling, remove it from its group.
1714 if (event->group_leader != event) {
1715 list_del_init(&event->group_entry);
1716 event->group_leader->nr_siblings--;
1717 goto out;
1720 if (!list_empty(&event->group_entry))
1721 list = &event->group_entry;
1724 * If this was a group event with sibling events then
1725 * upgrade the siblings to singleton events by adding them
1726 * to whatever list we are on.
1728 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1729 if (list)
1730 list_move_tail(&sibling->group_entry, list);
1731 sibling->group_leader = sibling;
1733 /* Inherit group flags from the previous leader */
1734 sibling->group_caps = event->group_caps;
1736 WARN_ON_ONCE(sibling->ctx != event->ctx);
1739 out:
1740 perf_event__header_size(event->group_leader);
1742 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1743 perf_event__header_size(tmp);
1746 static bool is_orphaned_event(struct perf_event *event)
1748 return event->state == PERF_EVENT_STATE_DEAD;
1751 static inline int __pmu_filter_match(struct perf_event *event)
1753 struct pmu *pmu = event->pmu;
1754 return pmu->filter_match ? pmu->filter_match(event) : 1;
1758 * Check whether we should attempt to schedule an event group based on
1759 * PMU-specific filtering. An event group can consist of HW and SW events,
1760 * potentially with a SW leader, so we must check all the filters, to
1761 * determine whether a group is schedulable:
1763 static inline int pmu_filter_match(struct perf_event *event)
1765 struct perf_event *child;
1767 if (!__pmu_filter_match(event))
1768 return 0;
1770 list_for_each_entry(child, &event->sibling_list, group_entry) {
1771 if (!__pmu_filter_match(child))
1772 return 0;
1775 return 1;
1778 static inline int
1779 event_filter_match(struct perf_event *event)
1781 return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1782 perf_cgroup_match(event) && pmu_filter_match(event);
1785 static void
1786 event_sched_out(struct perf_event *event,
1787 struct perf_cpu_context *cpuctx,
1788 struct perf_event_context *ctx)
1790 u64 tstamp = perf_event_time(event);
1791 u64 delta;
1793 WARN_ON_ONCE(event->ctx != ctx);
1794 lockdep_assert_held(&ctx->lock);
1797 * An event which could not be activated because of
1798 * filter mismatch still needs to have its timings
1799 * maintained, otherwise bogus information is return
1800 * via read() for time_enabled, time_running:
1802 if (event->state == PERF_EVENT_STATE_INACTIVE &&
1803 !event_filter_match(event)) {
1804 delta = tstamp - event->tstamp_stopped;
1805 event->tstamp_running += delta;
1806 event->tstamp_stopped = tstamp;
1809 if (event->state != PERF_EVENT_STATE_ACTIVE)
1810 return;
1812 perf_pmu_disable(event->pmu);
1814 event->tstamp_stopped = tstamp;
1815 event->pmu->del(event, 0);
1816 event->oncpu = -1;
1817 event->state = PERF_EVENT_STATE_INACTIVE;
1818 if (event->pending_disable) {
1819 event->pending_disable = 0;
1820 event->state = PERF_EVENT_STATE_OFF;
1823 if (!is_software_event(event))
1824 cpuctx->active_oncpu--;
1825 if (!--ctx->nr_active)
1826 perf_event_ctx_deactivate(ctx);
1827 if (event->attr.freq && event->attr.sample_freq)
1828 ctx->nr_freq--;
1829 if (event->attr.exclusive || !cpuctx->active_oncpu)
1830 cpuctx->exclusive = 0;
1832 perf_pmu_enable(event->pmu);
1835 static void
1836 group_sched_out(struct perf_event *group_event,
1837 struct perf_cpu_context *cpuctx,
1838 struct perf_event_context *ctx)
1840 struct perf_event *event;
1841 int state = group_event->state;
1843 perf_pmu_disable(ctx->pmu);
1845 event_sched_out(group_event, cpuctx, ctx);
1848 * Schedule out siblings (if any):
1850 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1851 event_sched_out(event, cpuctx, ctx);
1853 perf_pmu_enable(ctx->pmu);
1855 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1856 cpuctx->exclusive = 0;
1859 #define DETACH_GROUP 0x01UL
1862 * Cross CPU call to remove a performance event
1864 * We disable the event on the hardware level first. After that we
1865 * remove it from the context list.
1867 static void
1868 __perf_remove_from_context(struct perf_event *event,
1869 struct perf_cpu_context *cpuctx,
1870 struct perf_event_context *ctx,
1871 void *info)
1873 unsigned long flags = (unsigned long)info;
1875 event_sched_out(event, cpuctx, ctx);
1876 if (flags & DETACH_GROUP)
1877 perf_group_detach(event);
1878 list_del_event(event, ctx);
1880 if (!ctx->nr_events && ctx->is_active) {
1881 ctx->is_active = 0;
1882 if (ctx->task) {
1883 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1884 cpuctx->task_ctx = NULL;
1890 * Remove the event from a task's (or a CPU's) list of events.
1892 * If event->ctx is a cloned context, callers must make sure that
1893 * every task struct that event->ctx->task could possibly point to
1894 * remains valid. This is OK when called from perf_release since
1895 * that only calls us on the top-level context, which can't be a clone.
1896 * When called from perf_event_exit_task, it's OK because the
1897 * context has been detached from its task.
1899 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
1901 struct perf_event_context *ctx = event->ctx;
1903 lockdep_assert_held(&ctx->mutex);
1905 event_function_call(event, __perf_remove_from_context, (void *)flags);
1908 * The above event_function_call() can NO-OP when it hits
1909 * TASK_TOMBSTONE. In that case we must already have been detached
1910 * from the context (by perf_event_exit_event()) but the grouping
1911 * might still be in-tact.
1913 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1914 if ((flags & DETACH_GROUP) &&
1915 (event->attach_state & PERF_ATTACH_GROUP)) {
1917 * Since in that case we cannot possibly be scheduled, simply
1918 * detach now.
1920 raw_spin_lock_irq(&ctx->lock);
1921 perf_group_detach(event);
1922 raw_spin_unlock_irq(&ctx->lock);
1927 * Cross CPU call to disable a performance event
1929 static void __perf_event_disable(struct perf_event *event,
1930 struct perf_cpu_context *cpuctx,
1931 struct perf_event_context *ctx,
1932 void *info)
1934 if (event->state < PERF_EVENT_STATE_INACTIVE)
1935 return;
1937 update_context_time(ctx);
1938 update_cgrp_time_from_event(event);
1939 update_group_times(event);
1940 if (event == event->group_leader)
1941 group_sched_out(event, cpuctx, ctx);
1942 else
1943 event_sched_out(event, cpuctx, ctx);
1944 event->state = PERF_EVENT_STATE_OFF;
1948 * Disable a event.
1950 * If event->ctx is a cloned context, callers must make sure that
1951 * every task struct that event->ctx->task could possibly point to
1952 * remains valid. This condition is satisifed when called through
1953 * perf_event_for_each_child or perf_event_for_each because they
1954 * hold the top-level event's child_mutex, so any descendant that
1955 * goes to exit will block in perf_event_exit_event().
1957 * When called from perf_pending_event it's OK because event->ctx
1958 * is the current context on this CPU and preemption is disabled,
1959 * hence we can't get into perf_event_task_sched_out for this context.
1961 static void _perf_event_disable(struct perf_event *event)
1963 struct perf_event_context *ctx = event->ctx;
1965 raw_spin_lock_irq(&ctx->lock);
1966 if (event->state <= PERF_EVENT_STATE_OFF) {
1967 raw_spin_unlock_irq(&ctx->lock);
1968 return;
1970 raw_spin_unlock_irq(&ctx->lock);
1972 event_function_call(event, __perf_event_disable, NULL);
1975 void perf_event_disable_local(struct perf_event *event)
1977 event_function_local(event, __perf_event_disable, NULL);
1981 * Strictly speaking kernel users cannot create groups and therefore this
1982 * interface does not need the perf_event_ctx_lock() magic.
1984 void perf_event_disable(struct perf_event *event)
1986 struct perf_event_context *ctx;
1988 ctx = perf_event_ctx_lock(event);
1989 _perf_event_disable(event);
1990 perf_event_ctx_unlock(event, ctx);
1992 EXPORT_SYMBOL_GPL(perf_event_disable);
1994 void perf_event_disable_inatomic(struct perf_event *event)
1996 event->pending_disable = 1;
1997 irq_work_queue(&event->pending);
2000 static void perf_set_shadow_time(struct perf_event *event,
2001 struct perf_event_context *ctx,
2002 u64 tstamp)
2005 * use the correct time source for the time snapshot
2007 * We could get by without this by leveraging the
2008 * fact that to get to this function, the caller
2009 * has most likely already called update_context_time()
2010 * and update_cgrp_time_xx() and thus both timestamp
2011 * are identical (or very close). Given that tstamp is,
2012 * already adjusted for cgroup, we could say that:
2013 * tstamp - ctx->timestamp
2014 * is equivalent to
2015 * tstamp - cgrp->timestamp.
2017 * Then, in perf_output_read(), the calculation would
2018 * work with no changes because:
2019 * - event is guaranteed scheduled in
2020 * - no scheduled out in between
2021 * - thus the timestamp would be the same
2023 * But this is a bit hairy.
2025 * So instead, we have an explicit cgroup call to remain
2026 * within the time time source all along. We believe it
2027 * is cleaner and simpler to understand.
2029 if (is_cgroup_event(event))
2030 perf_cgroup_set_shadow_time(event, tstamp);
2031 else
2032 event->shadow_ctx_time = tstamp - ctx->timestamp;
2035 #define MAX_INTERRUPTS (~0ULL)
2037 static void perf_log_throttle(struct perf_event *event, int enable);
2038 static void perf_log_itrace_start(struct perf_event *event);
2040 static int
2041 event_sched_in(struct perf_event *event,
2042 struct perf_cpu_context *cpuctx,
2043 struct perf_event_context *ctx)
2045 u64 tstamp = perf_event_time(event);
2046 int ret = 0;
2048 lockdep_assert_held(&ctx->lock);
2050 if (event->state <= PERF_EVENT_STATE_OFF)
2051 return 0;
2053 WRITE_ONCE(event->oncpu, smp_processor_id());
2055 * Order event::oncpu write to happen before the ACTIVE state
2056 * is visible.
2058 smp_wmb();
2059 WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
2062 * Unthrottle events, since we scheduled we might have missed several
2063 * ticks already, also for a heavily scheduling task there is little
2064 * guarantee it'll get a tick in a timely manner.
2066 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2067 perf_log_throttle(event, 1);
2068 event->hw.interrupts = 0;
2072 * The new state must be visible before we turn it on in the hardware:
2074 smp_wmb();
2076 perf_pmu_disable(event->pmu);
2078 perf_set_shadow_time(event, ctx, tstamp);
2080 perf_log_itrace_start(event);
2082 if (event->pmu->add(event, PERF_EF_START)) {
2083 event->state = PERF_EVENT_STATE_INACTIVE;
2084 event->oncpu = -1;
2085 ret = -EAGAIN;
2086 goto out;
2089 event->tstamp_running += tstamp - event->tstamp_stopped;
2091 if (!is_software_event(event))
2092 cpuctx->active_oncpu++;
2093 if (!ctx->nr_active++)
2094 perf_event_ctx_activate(ctx);
2095 if (event->attr.freq && event->attr.sample_freq)
2096 ctx->nr_freq++;
2098 if (event->attr.exclusive)
2099 cpuctx->exclusive = 1;
2101 out:
2102 perf_pmu_enable(event->pmu);
2104 return ret;
2107 static int
2108 group_sched_in(struct perf_event *group_event,
2109 struct perf_cpu_context *cpuctx,
2110 struct perf_event_context *ctx)
2112 struct perf_event *event, *partial_group = NULL;
2113 struct pmu *pmu = ctx->pmu;
2114 u64 now = ctx->time;
2115 bool simulate = false;
2117 if (group_event->state == PERF_EVENT_STATE_OFF)
2118 return 0;
2120 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2122 if (event_sched_in(group_event, cpuctx, ctx)) {
2123 pmu->cancel_txn(pmu);
2124 perf_mux_hrtimer_restart(cpuctx);
2125 return -EAGAIN;
2129 * Schedule in siblings as one group (if any):
2131 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2132 if (event_sched_in(event, cpuctx, ctx)) {
2133 partial_group = event;
2134 goto group_error;
2138 if (!pmu->commit_txn(pmu))
2139 return 0;
2141 group_error:
2143 * Groups can be scheduled in as one unit only, so undo any
2144 * partial group before returning:
2145 * The events up to the failed event are scheduled out normally,
2146 * tstamp_stopped will be updated.
2148 * The failed events and the remaining siblings need to have
2149 * their timings updated as if they had gone thru event_sched_in()
2150 * and event_sched_out(). This is required to get consistent timings
2151 * across the group. This also takes care of the case where the group
2152 * could never be scheduled by ensuring tstamp_stopped is set to mark
2153 * the time the event was actually stopped, such that time delta
2154 * calculation in update_event_times() is correct.
2156 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2157 if (event == partial_group)
2158 simulate = true;
2160 if (simulate) {
2161 event->tstamp_running += now - event->tstamp_stopped;
2162 event->tstamp_stopped = now;
2163 } else {
2164 event_sched_out(event, cpuctx, ctx);
2167 event_sched_out(group_event, cpuctx, ctx);
2169 pmu->cancel_txn(pmu);
2171 perf_mux_hrtimer_restart(cpuctx);
2173 return -EAGAIN;
2177 * Work out whether we can put this event group on the CPU now.
2179 static int group_can_go_on(struct perf_event *event,
2180 struct perf_cpu_context *cpuctx,
2181 int can_add_hw)
2184 * Groups consisting entirely of software events can always go on.
2186 if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2187 return 1;
2189 * If an exclusive group is already on, no other hardware
2190 * events can go on.
2192 if (cpuctx->exclusive)
2193 return 0;
2195 * If this group is exclusive and there are already
2196 * events on the CPU, it can't go on.
2198 if (event->attr.exclusive && cpuctx->active_oncpu)
2199 return 0;
2201 * Otherwise, try to add it if all previous groups were able
2202 * to go on.
2204 return can_add_hw;
2207 static void add_event_to_ctx(struct perf_event *event,
2208 struct perf_event_context *ctx)
2210 u64 tstamp = perf_event_time(event);
2212 list_add_event(event, ctx);
2213 perf_group_attach(event);
2214 event->tstamp_enabled = tstamp;
2215 event->tstamp_running = tstamp;
2216 event->tstamp_stopped = tstamp;
2219 static void ctx_sched_out(struct perf_event_context *ctx,
2220 struct perf_cpu_context *cpuctx,
2221 enum event_type_t event_type);
2222 static void
2223 ctx_sched_in(struct perf_event_context *ctx,
2224 struct perf_cpu_context *cpuctx,
2225 enum event_type_t event_type,
2226 struct task_struct *task);
2228 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2229 struct perf_event_context *ctx)
2231 if (!cpuctx->task_ctx)
2232 return;
2234 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2235 return;
2237 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2240 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2241 struct perf_event_context *ctx,
2242 struct task_struct *task)
2244 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2245 if (ctx)
2246 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2247 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2248 if (ctx)
2249 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2252 static void ctx_resched(struct perf_cpu_context *cpuctx,
2253 struct perf_event_context *task_ctx)
2255 perf_pmu_disable(cpuctx->ctx.pmu);
2256 if (task_ctx)
2257 task_ctx_sched_out(cpuctx, task_ctx);
2258 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
2259 perf_event_sched_in(cpuctx, task_ctx, current);
2260 perf_pmu_enable(cpuctx->ctx.pmu);
2264 * Cross CPU call to install and enable a performance event
2266 * Very similar to remote_function() + event_function() but cannot assume that
2267 * things like ctx->is_active and cpuctx->task_ctx are set.
2269 static int __perf_install_in_context(void *info)
2271 struct perf_event *event = info;
2272 struct perf_event_context *ctx = event->ctx;
2273 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2274 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2275 bool activate = true;
2276 int ret = 0;
2278 raw_spin_lock(&cpuctx->ctx.lock);
2279 if (ctx->task) {
2280 raw_spin_lock(&ctx->lock);
2281 task_ctx = ctx;
2283 /* If we're on the wrong CPU, try again */
2284 if (task_cpu(ctx->task) != smp_processor_id()) {
2285 ret = -ESRCH;
2286 goto unlock;
2290 * If we're on the right CPU, see if the task we target is
2291 * current, if not we don't have to activate the ctx, a future
2292 * context switch will do that for us.
2294 if (ctx->task != current)
2295 activate = false;
2296 else
2297 WARN_ON_ONCE(cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2299 } else if (task_ctx) {
2300 raw_spin_lock(&task_ctx->lock);
2303 if (activate) {
2304 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2305 add_event_to_ctx(event, ctx);
2306 ctx_resched(cpuctx, task_ctx);
2307 } else {
2308 add_event_to_ctx(event, ctx);
2311 unlock:
2312 perf_ctx_unlock(cpuctx, task_ctx);
2314 return ret;
2318 * Attach a performance event to a context.
2320 * Very similar to event_function_call, see comment there.
2322 static void
2323 perf_install_in_context(struct perf_event_context *ctx,
2324 struct perf_event *event,
2325 int cpu)
2327 struct task_struct *task = READ_ONCE(ctx->task);
2329 lockdep_assert_held(&ctx->mutex);
2331 if (event->cpu != -1)
2332 event->cpu = cpu;
2335 * Ensures that if we can observe event->ctx, both the event and ctx
2336 * will be 'complete'. See perf_iterate_sb_cpu().
2338 smp_store_release(&event->ctx, ctx);
2340 if (!task) {
2341 cpu_function_call(cpu, __perf_install_in_context, event);
2342 return;
2346 * Should not happen, we validate the ctx is still alive before calling.
2348 if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2349 return;
2352 * Installing events is tricky because we cannot rely on ctx->is_active
2353 * to be set in case this is the nr_events 0 -> 1 transition.
2355 again:
2357 * Cannot use task_function_call() because we need to run on the task's
2358 * CPU regardless of whether its current or not.
2360 if (!cpu_function_call(task_cpu(task), __perf_install_in_context, event))
2361 return;
2363 raw_spin_lock_irq(&ctx->lock);
2364 task = ctx->task;
2365 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2367 * Cannot happen because we already checked above (which also
2368 * cannot happen), and we hold ctx->mutex, which serializes us
2369 * against perf_event_exit_task_context().
2371 raw_spin_unlock_irq(&ctx->lock);
2372 return;
2374 raw_spin_unlock_irq(&ctx->lock);
2376 * Since !ctx->is_active doesn't mean anything, we must IPI
2377 * unconditionally.
2379 goto again;
2383 * Put a event into inactive state and update time fields.
2384 * Enabling the leader of a group effectively enables all
2385 * the group members that aren't explicitly disabled, so we
2386 * have to update their ->tstamp_enabled also.
2387 * Note: this works for group members as well as group leaders
2388 * since the non-leader members' sibling_lists will be empty.
2390 static void __perf_event_mark_enabled(struct perf_event *event)
2392 struct perf_event *sub;
2393 u64 tstamp = perf_event_time(event);
2395 event->state = PERF_EVENT_STATE_INACTIVE;
2396 event->tstamp_enabled = tstamp - event->total_time_enabled;
2397 list_for_each_entry(sub, &event->sibling_list, group_entry) {
2398 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2399 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
2404 * Cross CPU call to enable a performance event
2406 static void __perf_event_enable(struct perf_event *event,
2407 struct perf_cpu_context *cpuctx,
2408 struct perf_event_context *ctx,
2409 void *info)
2411 struct perf_event *leader = event->group_leader;
2412 struct perf_event_context *task_ctx;
2414 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2415 event->state <= PERF_EVENT_STATE_ERROR)
2416 return;
2418 if (ctx->is_active)
2419 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2421 __perf_event_mark_enabled(event);
2423 if (!ctx->is_active)
2424 return;
2426 if (!event_filter_match(event)) {
2427 if (is_cgroup_event(event))
2428 perf_cgroup_defer_enabled(event);
2429 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2430 return;
2434 * If the event is in a group and isn't the group leader,
2435 * then don't put it on unless the group is on.
2437 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2438 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2439 return;
2442 task_ctx = cpuctx->task_ctx;
2443 if (ctx->task)
2444 WARN_ON_ONCE(task_ctx != ctx);
2446 ctx_resched(cpuctx, task_ctx);
2450 * Enable a event.
2452 * If event->ctx is a cloned context, callers must make sure that
2453 * every task struct that event->ctx->task could possibly point to
2454 * remains valid. This condition is satisfied when called through
2455 * perf_event_for_each_child or perf_event_for_each as described
2456 * for perf_event_disable.
2458 static void _perf_event_enable(struct perf_event *event)
2460 struct perf_event_context *ctx = event->ctx;
2462 raw_spin_lock_irq(&ctx->lock);
2463 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2464 event->state < PERF_EVENT_STATE_ERROR) {
2465 raw_spin_unlock_irq(&ctx->lock);
2466 return;
2470 * If the event is in error state, clear that first.
2472 * That way, if we see the event in error state below, we know that it
2473 * has gone back into error state, as distinct from the task having
2474 * been scheduled away before the cross-call arrived.
2476 if (event->state == PERF_EVENT_STATE_ERROR)
2477 event->state = PERF_EVENT_STATE_OFF;
2478 raw_spin_unlock_irq(&ctx->lock);
2480 event_function_call(event, __perf_event_enable, NULL);
2484 * See perf_event_disable();
2486 void perf_event_enable(struct perf_event *event)
2488 struct perf_event_context *ctx;
2490 ctx = perf_event_ctx_lock(event);
2491 _perf_event_enable(event);
2492 perf_event_ctx_unlock(event, ctx);
2494 EXPORT_SYMBOL_GPL(perf_event_enable);
2496 struct stop_event_data {
2497 struct perf_event *event;
2498 unsigned int restart;
2501 static int __perf_event_stop(void *info)
2503 struct stop_event_data *sd = info;
2504 struct perf_event *event = sd->event;
2506 /* if it's already INACTIVE, do nothing */
2507 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2508 return 0;
2510 /* matches smp_wmb() in event_sched_in() */
2511 smp_rmb();
2514 * There is a window with interrupts enabled before we get here,
2515 * so we need to check again lest we try to stop another CPU's event.
2517 if (READ_ONCE(event->oncpu) != smp_processor_id())
2518 return -EAGAIN;
2520 event->pmu->stop(event, PERF_EF_UPDATE);
2523 * May race with the actual stop (through perf_pmu_output_stop()),
2524 * but it is only used for events with AUX ring buffer, and such
2525 * events will refuse to restart because of rb::aux_mmap_count==0,
2526 * see comments in perf_aux_output_begin().
2528 * Since this is happening on a event-local CPU, no trace is lost
2529 * while restarting.
2531 if (sd->restart)
2532 event->pmu->start(event, 0);
2534 return 0;
2537 static int perf_event_stop(struct perf_event *event, int restart)
2539 struct stop_event_data sd = {
2540 .event = event,
2541 .restart = restart,
2543 int ret = 0;
2545 do {
2546 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2547 return 0;
2549 /* matches smp_wmb() in event_sched_in() */
2550 smp_rmb();
2553 * We only want to restart ACTIVE events, so if the event goes
2554 * inactive here (event->oncpu==-1), there's nothing more to do;
2555 * fall through with ret==-ENXIO.
2557 ret = cpu_function_call(READ_ONCE(event->oncpu),
2558 __perf_event_stop, &sd);
2559 } while (ret == -EAGAIN);
2561 return ret;
2565 * In order to contain the amount of racy and tricky in the address filter
2566 * configuration management, it is a two part process:
2568 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2569 * we update the addresses of corresponding vmas in
2570 * event::addr_filters_offs array and bump the event::addr_filters_gen;
2571 * (p2) when an event is scheduled in (pmu::add), it calls
2572 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2573 * if the generation has changed since the previous call.
2575 * If (p1) happens while the event is active, we restart it to force (p2).
2577 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2578 * pre-existing mappings, called once when new filters arrive via SET_FILTER
2579 * ioctl;
2580 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2581 * registered mapping, called for every new mmap(), with mm::mmap_sem down
2582 * for reading;
2583 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2584 * of exec.
2586 void perf_event_addr_filters_sync(struct perf_event *event)
2588 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2590 if (!has_addr_filter(event))
2591 return;
2593 raw_spin_lock(&ifh->lock);
2594 if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2595 event->pmu->addr_filters_sync(event);
2596 event->hw.addr_filters_gen = event->addr_filters_gen;
2598 raw_spin_unlock(&ifh->lock);
2600 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2602 static int _perf_event_refresh(struct perf_event *event, int refresh)
2605 * not supported on inherited events
2607 if (event->attr.inherit || !is_sampling_event(event))
2608 return -EINVAL;
2610 atomic_add(refresh, &event->event_limit);
2611 _perf_event_enable(event);
2613 return 0;
2617 * See perf_event_disable()
2619 int perf_event_refresh(struct perf_event *event, int refresh)
2621 struct perf_event_context *ctx;
2622 int ret;
2624 ctx = perf_event_ctx_lock(event);
2625 ret = _perf_event_refresh(event, refresh);
2626 perf_event_ctx_unlock(event, ctx);
2628 return ret;
2630 EXPORT_SYMBOL_GPL(perf_event_refresh);
2632 static void ctx_sched_out(struct perf_event_context *ctx,
2633 struct perf_cpu_context *cpuctx,
2634 enum event_type_t event_type)
2636 int is_active = ctx->is_active;
2637 struct perf_event *event;
2639 lockdep_assert_held(&ctx->lock);
2641 if (likely(!ctx->nr_events)) {
2643 * See __perf_remove_from_context().
2645 WARN_ON_ONCE(ctx->is_active);
2646 if (ctx->task)
2647 WARN_ON_ONCE(cpuctx->task_ctx);
2648 return;
2651 ctx->is_active &= ~event_type;
2652 if (!(ctx->is_active & EVENT_ALL))
2653 ctx->is_active = 0;
2655 if (ctx->task) {
2656 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2657 if (!ctx->is_active)
2658 cpuctx->task_ctx = NULL;
2662 * Always update time if it was set; not only when it changes.
2663 * Otherwise we can 'forget' to update time for any but the last
2664 * context we sched out. For example:
2666 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2667 * ctx_sched_out(.event_type = EVENT_PINNED)
2669 * would only update time for the pinned events.
2671 if (is_active & EVENT_TIME) {
2672 /* update (and stop) ctx time */
2673 update_context_time(ctx);
2674 update_cgrp_time_from_cpuctx(cpuctx);
2677 is_active ^= ctx->is_active; /* changed bits */
2679 if (!ctx->nr_active || !(is_active & EVENT_ALL))
2680 return;
2682 perf_pmu_disable(ctx->pmu);
2683 if (is_active & EVENT_PINNED) {
2684 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2685 group_sched_out(event, cpuctx, ctx);
2688 if (is_active & EVENT_FLEXIBLE) {
2689 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2690 group_sched_out(event, cpuctx, ctx);
2692 perf_pmu_enable(ctx->pmu);
2696 * Test whether two contexts are equivalent, i.e. whether they have both been
2697 * cloned from the same version of the same context.
2699 * Equivalence is measured using a generation number in the context that is
2700 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2701 * and list_del_event().
2703 static int context_equiv(struct perf_event_context *ctx1,
2704 struct perf_event_context *ctx2)
2706 lockdep_assert_held(&ctx1->lock);
2707 lockdep_assert_held(&ctx2->lock);
2709 /* Pinning disables the swap optimization */
2710 if (ctx1->pin_count || ctx2->pin_count)
2711 return 0;
2713 /* If ctx1 is the parent of ctx2 */
2714 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2715 return 1;
2717 /* If ctx2 is the parent of ctx1 */
2718 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2719 return 1;
2722 * If ctx1 and ctx2 have the same parent; we flatten the parent
2723 * hierarchy, see perf_event_init_context().
2725 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2726 ctx1->parent_gen == ctx2->parent_gen)
2727 return 1;
2729 /* Unmatched */
2730 return 0;
2733 static void __perf_event_sync_stat(struct perf_event *event,
2734 struct perf_event *next_event)
2736 u64 value;
2738 if (!event->attr.inherit_stat)
2739 return;
2742 * Update the event value, we cannot use perf_event_read()
2743 * because we're in the middle of a context switch and have IRQs
2744 * disabled, which upsets smp_call_function_single(), however
2745 * we know the event must be on the current CPU, therefore we
2746 * don't need to use it.
2748 switch (event->state) {
2749 case PERF_EVENT_STATE_ACTIVE:
2750 event->pmu->read(event);
2751 /* fall-through */
2753 case PERF_EVENT_STATE_INACTIVE:
2754 update_event_times(event);
2755 break;
2757 default:
2758 break;
2762 * In order to keep per-task stats reliable we need to flip the event
2763 * values when we flip the contexts.
2765 value = local64_read(&next_event->count);
2766 value = local64_xchg(&event->count, value);
2767 local64_set(&next_event->count, value);
2769 swap(event->total_time_enabled, next_event->total_time_enabled);
2770 swap(event->total_time_running, next_event->total_time_running);
2773 * Since we swizzled the values, update the user visible data too.
2775 perf_event_update_userpage(event);
2776 perf_event_update_userpage(next_event);
2779 static void perf_event_sync_stat(struct perf_event_context *ctx,
2780 struct perf_event_context *next_ctx)
2782 struct perf_event *event, *next_event;
2784 if (!ctx->nr_stat)
2785 return;
2787 update_context_time(ctx);
2789 event = list_first_entry(&ctx->event_list,
2790 struct perf_event, event_entry);
2792 next_event = list_first_entry(&next_ctx->event_list,
2793 struct perf_event, event_entry);
2795 while (&event->event_entry != &ctx->event_list &&
2796 &next_event->event_entry != &next_ctx->event_list) {
2798 __perf_event_sync_stat(event, next_event);
2800 event = list_next_entry(event, event_entry);
2801 next_event = list_next_entry(next_event, event_entry);
2805 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2806 struct task_struct *next)
2808 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2809 struct perf_event_context *next_ctx;
2810 struct perf_event_context *parent, *next_parent;
2811 struct perf_cpu_context *cpuctx;
2812 int do_switch = 1;
2814 if (likely(!ctx))
2815 return;
2817 cpuctx = __get_cpu_context(ctx);
2818 if (!cpuctx->task_ctx)
2819 return;
2821 rcu_read_lock();
2822 next_ctx = next->perf_event_ctxp[ctxn];
2823 if (!next_ctx)
2824 goto unlock;
2826 parent = rcu_dereference(ctx->parent_ctx);
2827 next_parent = rcu_dereference(next_ctx->parent_ctx);
2829 /* If neither context have a parent context; they cannot be clones. */
2830 if (!parent && !next_parent)
2831 goto unlock;
2833 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2835 * Looks like the two contexts are clones, so we might be
2836 * able to optimize the context switch. We lock both
2837 * contexts and check that they are clones under the
2838 * lock (including re-checking that neither has been
2839 * uncloned in the meantime). It doesn't matter which
2840 * order we take the locks because no other cpu could
2841 * be trying to lock both of these tasks.
2843 raw_spin_lock(&ctx->lock);
2844 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2845 if (context_equiv(ctx, next_ctx)) {
2846 WRITE_ONCE(ctx->task, next);
2847 WRITE_ONCE(next_ctx->task, task);
2849 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2852 * RCU_INIT_POINTER here is safe because we've not
2853 * modified the ctx and the above modification of
2854 * ctx->task and ctx->task_ctx_data are immaterial
2855 * since those values are always verified under
2856 * ctx->lock which we're now holding.
2858 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2859 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2861 do_switch = 0;
2863 perf_event_sync_stat(ctx, next_ctx);
2865 raw_spin_unlock(&next_ctx->lock);
2866 raw_spin_unlock(&ctx->lock);
2868 unlock:
2869 rcu_read_unlock();
2871 if (do_switch) {
2872 raw_spin_lock(&ctx->lock);
2873 task_ctx_sched_out(cpuctx, ctx);
2874 raw_spin_unlock(&ctx->lock);
2878 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
2880 void perf_sched_cb_dec(struct pmu *pmu)
2882 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2884 this_cpu_dec(perf_sched_cb_usages);
2886 if (!--cpuctx->sched_cb_usage)
2887 list_del(&cpuctx->sched_cb_entry);
2891 void perf_sched_cb_inc(struct pmu *pmu)
2893 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2895 if (!cpuctx->sched_cb_usage++)
2896 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
2898 this_cpu_inc(perf_sched_cb_usages);
2902 * This function provides the context switch callback to the lower code
2903 * layer. It is invoked ONLY when the context switch callback is enabled.
2905 * This callback is relevant even to per-cpu events; for example multi event
2906 * PEBS requires this to provide PID/TID information. This requires we flush
2907 * all queued PEBS records before we context switch to a new task.
2909 static void perf_pmu_sched_task(struct task_struct *prev,
2910 struct task_struct *next,
2911 bool sched_in)
2913 struct perf_cpu_context *cpuctx;
2914 struct pmu *pmu;
2916 if (prev == next)
2917 return;
2919 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
2920 pmu = cpuctx->unique_pmu; /* software PMUs will not have sched_task */
2922 if (WARN_ON_ONCE(!pmu->sched_task))
2923 continue;
2925 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2926 perf_pmu_disable(pmu);
2928 pmu->sched_task(cpuctx->task_ctx, sched_in);
2930 perf_pmu_enable(pmu);
2931 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2935 static void perf_event_switch(struct task_struct *task,
2936 struct task_struct *next_prev, bool sched_in);
2938 #define for_each_task_context_nr(ctxn) \
2939 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2942 * Called from scheduler to remove the events of the current task,
2943 * with interrupts disabled.
2945 * We stop each event and update the event value in event->count.
2947 * This does not protect us against NMI, but disable()
2948 * sets the disabled bit in the control field of event _before_
2949 * accessing the event control register. If a NMI hits, then it will
2950 * not restart the event.
2952 void __perf_event_task_sched_out(struct task_struct *task,
2953 struct task_struct *next)
2955 int ctxn;
2957 if (__this_cpu_read(perf_sched_cb_usages))
2958 perf_pmu_sched_task(task, next, false);
2960 if (atomic_read(&nr_switch_events))
2961 perf_event_switch(task, next, false);
2963 for_each_task_context_nr(ctxn)
2964 perf_event_context_sched_out(task, ctxn, next);
2967 * if cgroup events exist on this CPU, then we need
2968 * to check if we have to switch out PMU state.
2969 * cgroup event are system-wide mode only
2971 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2972 perf_cgroup_sched_out(task, next);
2976 * Called with IRQs disabled
2978 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2979 enum event_type_t event_type)
2981 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2984 static void
2985 ctx_pinned_sched_in(struct perf_event_context *ctx,
2986 struct perf_cpu_context *cpuctx)
2988 struct perf_event *event;
2990 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2991 if (event->state <= PERF_EVENT_STATE_OFF)
2992 continue;
2993 if (!event_filter_match(event))
2994 continue;
2996 /* may need to reset tstamp_enabled */
2997 if (is_cgroup_event(event))
2998 perf_cgroup_mark_enabled(event, ctx);
3000 if (group_can_go_on(event, cpuctx, 1))
3001 group_sched_in(event, cpuctx, ctx);
3004 * If this pinned group hasn't been scheduled,
3005 * put it in error state.
3007 if (event->state == PERF_EVENT_STATE_INACTIVE) {
3008 update_group_times(event);
3009 event->state = PERF_EVENT_STATE_ERROR;
3014 static void
3015 ctx_flexible_sched_in(struct perf_event_context *ctx,
3016 struct perf_cpu_context *cpuctx)
3018 struct perf_event *event;
3019 int can_add_hw = 1;
3021 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
3022 /* Ignore events in OFF or ERROR state */
3023 if (event->state <= PERF_EVENT_STATE_OFF)
3024 continue;
3026 * Listen to the 'cpu' scheduling filter constraint
3027 * of events:
3029 if (!event_filter_match(event))
3030 continue;
3032 /* may need to reset tstamp_enabled */
3033 if (is_cgroup_event(event))
3034 perf_cgroup_mark_enabled(event, ctx);
3036 if (group_can_go_on(event, cpuctx, can_add_hw)) {
3037 if (group_sched_in(event, cpuctx, ctx))
3038 can_add_hw = 0;
3043 static void
3044 ctx_sched_in(struct perf_event_context *ctx,
3045 struct perf_cpu_context *cpuctx,
3046 enum event_type_t event_type,
3047 struct task_struct *task)
3049 int is_active = ctx->is_active;
3050 u64 now;
3052 lockdep_assert_held(&ctx->lock);
3054 if (likely(!ctx->nr_events))
3055 return;
3057 ctx->is_active |= (event_type | EVENT_TIME);
3058 if (ctx->task) {
3059 if (!is_active)
3060 cpuctx->task_ctx = ctx;
3061 else
3062 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3065 is_active ^= ctx->is_active; /* changed bits */
3067 if (is_active & EVENT_TIME) {
3068 /* start ctx time */
3069 now = perf_clock();
3070 ctx->timestamp = now;
3071 perf_cgroup_set_timestamp(task, ctx);
3075 * First go through the list and put on any pinned groups
3076 * in order to give them the best chance of going on.
3078 if (is_active & EVENT_PINNED)
3079 ctx_pinned_sched_in(ctx, cpuctx);
3081 /* Then walk through the lower prio flexible groups */
3082 if (is_active & EVENT_FLEXIBLE)
3083 ctx_flexible_sched_in(ctx, cpuctx);
3086 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3087 enum event_type_t event_type,
3088 struct task_struct *task)
3090 struct perf_event_context *ctx = &cpuctx->ctx;
3092 ctx_sched_in(ctx, cpuctx, event_type, task);
3095 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3096 struct task_struct *task)
3098 struct perf_cpu_context *cpuctx;
3100 cpuctx = __get_cpu_context(ctx);
3101 if (cpuctx->task_ctx == ctx)
3102 return;
3104 perf_ctx_lock(cpuctx, ctx);
3105 perf_pmu_disable(ctx->pmu);
3107 * We want to keep the following priority order:
3108 * cpu pinned (that don't need to move), task pinned,
3109 * cpu flexible, task flexible.
3111 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3112 perf_event_sched_in(cpuctx, ctx, task);
3113 perf_pmu_enable(ctx->pmu);
3114 perf_ctx_unlock(cpuctx, ctx);
3118 * Called from scheduler to add the events of the current task
3119 * with interrupts disabled.
3121 * We restore the event value and then enable it.
3123 * This does not protect us against NMI, but enable()
3124 * sets the enabled bit in the control field of event _before_
3125 * accessing the event control register. If a NMI hits, then it will
3126 * keep the event running.
3128 void __perf_event_task_sched_in(struct task_struct *prev,
3129 struct task_struct *task)
3131 struct perf_event_context *ctx;
3132 int ctxn;
3135 * If cgroup events exist on this CPU, then we need to check if we have
3136 * to switch in PMU state; cgroup event are system-wide mode only.
3138 * Since cgroup events are CPU events, we must schedule these in before
3139 * we schedule in the task events.
3141 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3142 perf_cgroup_sched_in(prev, task);
3144 for_each_task_context_nr(ctxn) {
3145 ctx = task->perf_event_ctxp[ctxn];
3146 if (likely(!ctx))
3147 continue;
3149 perf_event_context_sched_in(ctx, task);
3152 if (atomic_read(&nr_switch_events))
3153 perf_event_switch(task, prev, true);
3155 if (__this_cpu_read(perf_sched_cb_usages))
3156 perf_pmu_sched_task(prev, task, true);
3159 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3161 u64 frequency = event->attr.sample_freq;
3162 u64 sec = NSEC_PER_SEC;
3163 u64 divisor, dividend;
3165 int count_fls, nsec_fls, frequency_fls, sec_fls;
3167 count_fls = fls64(count);
3168 nsec_fls = fls64(nsec);
3169 frequency_fls = fls64(frequency);
3170 sec_fls = 30;
3173 * We got @count in @nsec, with a target of sample_freq HZ
3174 * the target period becomes:
3176 * @count * 10^9
3177 * period = -------------------
3178 * @nsec * sample_freq
3183 * Reduce accuracy by one bit such that @a and @b converge
3184 * to a similar magnitude.
3186 #define REDUCE_FLS(a, b) \
3187 do { \
3188 if (a##_fls > b##_fls) { \
3189 a >>= 1; \
3190 a##_fls--; \
3191 } else { \
3192 b >>= 1; \
3193 b##_fls--; \
3195 } while (0)
3198 * Reduce accuracy until either term fits in a u64, then proceed with
3199 * the other, so that finally we can do a u64/u64 division.
3201 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3202 REDUCE_FLS(nsec, frequency);
3203 REDUCE_FLS(sec, count);
3206 if (count_fls + sec_fls > 64) {
3207 divisor = nsec * frequency;
3209 while (count_fls + sec_fls > 64) {
3210 REDUCE_FLS(count, sec);
3211 divisor >>= 1;
3214 dividend = count * sec;
3215 } else {
3216 dividend = count * sec;
3218 while (nsec_fls + frequency_fls > 64) {
3219 REDUCE_FLS(nsec, frequency);
3220 dividend >>= 1;
3223 divisor = nsec * frequency;
3226 if (!divisor)
3227 return dividend;
3229 return div64_u64(dividend, divisor);
3232 static DEFINE_PER_CPU(int, perf_throttled_count);
3233 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3235 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3237 struct hw_perf_event *hwc = &event->hw;
3238 s64 period, sample_period;
3239 s64 delta;
3241 period = perf_calculate_period(event, nsec, count);
3243 delta = (s64)(period - hwc->sample_period);
3244 delta = (delta + 7) / 8; /* low pass filter */
3246 sample_period = hwc->sample_period + delta;
3248 if (!sample_period)
3249 sample_period = 1;
3251 hwc->sample_period = sample_period;
3253 if (local64_read(&hwc->period_left) > 8*sample_period) {
3254 if (disable)
3255 event->pmu->stop(event, PERF_EF_UPDATE);
3257 local64_set(&hwc->period_left, 0);
3259 if (disable)
3260 event->pmu->start(event, PERF_EF_RELOAD);
3265 * combine freq adjustment with unthrottling to avoid two passes over the
3266 * events. At the same time, make sure, having freq events does not change
3267 * the rate of unthrottling as that would introduce bias.
3269 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3270 int needs_unthr)
3272 struct perf_event *event;
3273 struct hw_perf_event *hwc;
3274 u64 now, period = TICK_NSEC;
3275 s64 delta;
3278 * only need to iterate over all events iff:
3279 * - context have events in frequency mode (needs freq adjust)
3280 * - there are events to unthrottle on this cpu
3282 if (!(ctx->nr_freq || needs_unthr))
3283 return;
3285 raw_spin_lock(&ctx->lock);
3286 perf_pmu_disable(ctx->pmu);
3288 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3289 if (event->state != PERF_EVENT_STATE_ACTIVE)
3290 continue;
3292 if (!event_filter_match(event))
3293 continue;
3295 perf_pmu_disable(event->pmu);
3297 hwc = &event->hw;
3299 if (hwc->interrupts == MAX_INTERRUPTS) {
3300 hwc->interrupts = 0;
3301 perf_log_throttle(event, 1);
3302 event->pmu->start(event, 0);
3305 if (!event->attr.freq || !event->attr.sample_freq)
3306 goto next;
3309 * stop the event and update event->count
3311 event->pmu->stop(event, PERF_EF_UPDATE);
3313 now = local64_read(&event->count);
3314 delta = now - hwc->freq_count_stamp;
3315 hwc->freq_count_stamp = now;
3318 * restart the event
3319 * reload only if value has changed
3320 * we have stopped the event so tell that
3321 * to perf_adjust_period() to avoid stopping it
3322 * twice.
3324 if (delta > 0)
3325 perf_adjust_period(event, period, delta, false);
3327 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3328 next:
3329 perf_pmu_enable(event->pmu);
3332 perf_pmu_enable(ctx->pmu);
3333 raw_spin_unlock(&ctx->lock);
3337 * Round-robin a context's events:
3339 static void rotate_ctx(struct perf_event_context *ctx)
3342 * Rotate the first entry last of non-pinned groups. Rotation might be
3343 * disabled by the inheritance code.
3345 if (!ctx->rotate_disable)
3346 list_rotate_left(&ctx->flexible_groups);
3349 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3351 struct perf_event_context *ctx = NULL;
3352 int rotate = 0;
3354 if (cpuctx->ctx.nr_events) {
3355 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3356 rotate = 1;
3359 ctx = cpuctx->task_ctx;
3360 if (ctx && ctx->nr_events) {
3361 if (ctx->nr_events != ctx->nr_active)
3362 rotate = 1;
3365 if (!rotate)
3366 goto done;
3368 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3369 perf_pmu_disable(cpuctx->ctx.pmu);
3371 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3372 if (ctx)
3373 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3375 rotate_ctx(&cpuctx->ctx);
3376 if (ctx)
3377 rotate_ctx(ctx);
3379 perf_event_sched_in(cpuctx, ctx, current);
3381 perf_pmu_enable(cpuctx->ctx.pmu);
3382 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3383 done:
3385 return rotate;
3388 void perf_event_task_tick(void)
3390 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3391 struct perf_event_context *ctx, *tmp;
3392 int throttled;
3394 WARN_ON(!irqs_disabled());
3396 __this_cpu_inc(perf_throttled_seq);
3397 throttled = __this_cpu_xchg(perf_throttled_count, 0);
3398 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3400 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3401 perf_adjust_freq_unthr_context(ctx, throttled);
3404 static int event_enable_on_exec(struct perf_event *event,
3405 struct perf_event_context *ctx)
3407 if (!event->attr.enable_on_exec)
3408 return 0;
3410 event->attr.enable_on_exec = 0;
3411 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3412 return 0;
3414 __perf_event_mark_enabled(event);
3416 return 1;
3420 * Enable all of a task's events that have been marked enable-on-exec.
3421 * This expects task == current.
3423 static void perf_event_enable_on_exec(int ctxn)
3425 struct perf_event_context *ctx, *clone_ctx = NULL;
3426 struct perf_cpu_context *cpuctx;
3427 struct perf_event *event;
3428 unsigned long flags;
3429 int enabled = 0;
3431 local_irq_save(flags);
3432 ctx = current->perf_event_ctxp[ctxn];
3433 if (!ctx || !ctx->nr_events)
3434 goto out;
3436 cpuctx = __get_cpu_context(ctx);
3437 perf_ctx_lock(cpuctx, ctx);
3438 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3439 list_for_each_entry(event, &ctx->event_list, event_entry)
3440 enabled |= event_enable_on_exec(event, ctx);
3443 * Unclone and reschedule this context if we enabled any event.
3445 if (enabled) {
3446 clone_ctx = unclone_ctx(ctx);
3447 ctx_resched(cpuctx, ctx);
3449 perf_ctx_unlock(cpuctx, ctx);
3451 out:
3452 local_irq_restore(flags);
3454 if (clone_ctx)
3455 put_ctx(clone_ctx);
3458 struct perf_read_data {
3459 struct perf_event *event;
3460 bool group;
3461 int ret;
3464 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3466 u16 local_pkg, event_pkg;
3468 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3469 int local_cpu = smp_processor_id();
3471 event_pkg = topology_physical_package_id(event_cpu);
3472 local_pkg = topology_physical_package_id(local_cpu);
3474 if (event_pkg == local_pkg)
3475 return local_cpu;
3478 return event_cpu;
3482 * Cross CPU call to read the hardware event
3484 static void __perf_event_read(void *info)
3486 struct perf_read_data *data = info;
3487 struct perf_event *sub, *event = data->event;
3488 struct perf_event_context *ctx = event->ctx;
3489 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3490 struct pmu *pmu = event->pmu;
3493 * If this is a task context, we need to check whether it is
3494 * the current task context of this cpu. If not it has been
3495 * scheduled out before the smp call arrived. In that case
3496 * event->count would have been updated to a recent sample
3497 * when the event was scheduled out.
3499 if (ctx->task && cpuctx->task_ctx != ctx)
3500 return;
3502 raw_spin_lock(&ctx->lock);
3503 if (ctx->is_active) {
3504 update_context_time(ctx);
3505 update_cgrp_time_from_event(event);
3508 update_event_times(event);
3509 if (event->state != PERF_EVENT_STATE_ACTIVE)
3510 goto unlock;
3512 if (!data->group) {
3513 pmu->read(event);
3514 data->ret = 0;
3515 goto unlock;
3518 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3520 pmu->read(event);
3522 list_for_each_entry(sub, &event->sibling_list, group_entry) {
3523 update_event_times(sub);
3524 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3526 * Use sibling's PMU rather than @event's since
3527 * sibling could be on different (eg: software) PMU.
3529 sub->pmu->read(sub);
3533 data->ret = pmu->commit_txn(pmu);
3535 unlock:
3536 raw_spin_unlock(&ctx->lock);
3539 static inline u64 perf_event_count(struct perf_event *event)
3541 if (event->pmu->count)
3542 return event->pmu->count(event);
3544 return __perf_event_count(event);
3548 * NMI-safe method to read a local event, that is an event that
3549 * is:
3550 * - either for the current task, or for this CPU
3551 * - does not have inherit set, for inherited task events
3552 * will not be local and we cannot read them atomically
3553 * - must not have a pmu::count method
3555 u64 perf_event_read_local(struct perf_event *event)
3557 unsigned long flags;
3558 u64 val;
3561 * Disabling interrupts avoids all counter scheduling (context
3562 * switches, timer based rotation and IPIs).
3564 local_irq_save(flags);
3566 /* If this is a per-task event, it must be for current */
3567 WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3568 event->hw.target != current);
3570 /* If this is a per-CPU event, it must be for this CPU */
3571 WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3572 event->cpu != smp_processor_id());
3575 * It must not be an event with inherit set, we cannot read
3576 * all child counters from atomic context.
3578 WARN_ON_ONCE(event->attr.inherit);
3581 * It must not have a pmu::count method, those are not
3582 * NMI safe.
3584 WARN_ON_ONCE(event->pmu->count);
3587 * If the event is currently on this CPU, its either a per-task event,
3588 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3589 * oncpu == -1).
3591 if (event->oncpu == smp_processor_id())
3592 event->pmu->read(event);
3594 val = local64_read(&event->count);
3595 local_irq_restore(flags);
3597 return val;
3600 static int perf_event_read(struct perf_event *event, bool group)
3602 int event_cpu, ret = 0;
3605 * If event is enabled and currently active on a CPU, update the
3606 * value in the event structure:
3608 if (event->state == PERF_EVENT_STATE_ACTIVE) {
3609 struct perf_read_data data = {
3610 .event = event,
3611 .group = group,
3612 .ret = 0,
3615 event_cpu = READ_ONCE(event->oncpu);
3616 if ((unsigned)event_cpu >= nr_cpu_ids)
3617 return 0;
3619 preempt_disable();
3620 event_cpu = __perf_event_read_cpu(event, event_cpu);
3623 * Purposely ignore the smp_call_function_single() return
3624 * value.
3626 * If event_cpu isn't a valid CPU it means the event got
3627 * scheduled out and that will have updated the event count.
3629 * Therefore, either way, we'll have an up-to-date event count
3630 * after this.
3632 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
3633 preempt_enable();
3634 ret = data.ret;
3635 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3636 struct perf_event_context *ctx = event->ctx;
3637 unsigned long flags;
3639 raw_spin_lock_irqsave(&ctx->lock, flags);
3641 * may read while context is not active
3642 * (e.g., thread is blocked), in that case
3643 * we cannot update context time
3645 if (ctx->is_active) {
3646 update_context_time(ctx);
3647 update_cgrp_time_from_event(event);
3649 if (group)
3650 update_group_times(event);
3651 else
3652 update_event_times(event);
3653 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3656 return ret;
3660 * Initialize the perf_event context in a task_struct:
3662 static void __perf_event_init_context(struct perf_event_context *ctx)
3664 raw_spin_lock_init(&ctx->lock);
3665 mutex_init(&ctx->mutex);
3666 INIT_LIST_HEAD(&ctx->active_ctx_list);
3667 INIT_LIST_HEAD(&ctx->pinned_groups);
3668 INIT_LIST_HEAD(&ctx->flexible_groups);
3669 INIT_LIST_HEAD(&ctx->event_list);
3670 atomic_set(&ctx->refcount, 1);
3673 static struct perf_event_context *
3674 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3676 struct perf_event_context *ctx;
3678 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3679 if (!ctx)
3680 return NULL;
3682 __perf_event_init_context(ctx);
3683 if (task) {
3684 ctx->task = task;
3685 get_task_struct(task);
3687 ctx->pmu = pmu;
3689 return ctx;
3692 static struct task_struct *
3693 find_lively_task_by_vpid(pid_t vpid)
3695 struct task_struct *task;
3697 rcu_read_lock();
3698 if (!vpid)
3699 task = current;
3700 else
3701 task = find_task_by_vpid(vpid);
3702 if (task)
3703 get_task_struct(task);
3704 rcu_read_unlock();
3706 if (!task)
3707 return ERR_PTR(-ESRCH);
3709 return task;
3713 * Returns a matching context with refcount and pincount.
3715 static struct perf_event_context *
3716 find_get_context(struct pmu *pmu, struct task_struct *task,
3717 struct perf_event *event)
3719 struct perf_event_context *ctx, *clone_ctx = NULL;
3720 struct perf_cpu_context *cpuctx;
3721 void *task_ctx_data = NULL;
3722 unsigned long flags;
3723 int ctxn, err;
3724 int cpu = event->cpu;
3726 if (!task) {
3727 /* Must be root to operate on a CPU event: */
3728 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3729 return ERR_PTR(-EACCES);
3732 * We could be clever and allow to attach a event to an
3733 * offline CPU and activate it when the CPU comes up, but
3734 * that's for later.
3736 if (!cpu_online(cpu))
3737 return ERR_PTR(-ENODEV);
3739 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3740 ctx = &cpuctx->ctx;
3741 get_ctx(ctx);
3742 ++ctx->pin_count;
3744 return ctx;
3747 err = -EINVAL;
3748 ctxn = pmu->task_ctx_nr;
3749 if (ctxn < 0)
3750 goto errout;
3752 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3753 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3754 if (!task_ctx_data) {
3755 err = -ENOMEM;
3756 goto errout;
3760 retry:
3761 ctx = perf_lock_task_context(task, ctxn, &flags);
3762 if (ctx) {
3763 clone_ctx = unclone_ctx(ctx);
3764 ++ctx->pin_count;
3766 if (task_ctx_data && !ctx->task_ctx_data) {
3767 ctx->task_ctx_data = task_ctx_data;
3768 task_ctx_data = NULL;
3770 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3772 if (clone_ctx)
3773 put_ctx(clone_ctx);
3774 } else {
3775 ctx = alloc_perf_context(pmu, task);
3776 err = -ENOMEM;
3777 if (!ctx)
3778 goto errout;
3780 if (task_ctx_data) {
3781 ctx->task_ctx_data = task_ctx_data;
3782 task_ctx_data = NULL;
3785 err = 0;
3786 mutex_lock(&task->perf_event_mutex);
3788 * If it has already passed perf_event_exit_task().
3789 * we must see PF_EXITING, it takes this mutex too.
3791 if (task->flags & PF_EXITING)
3792 err = -ESRCH;
3793 else if (task->perf_event_ctxp[ctxn])
3794 err = -EAGAIN;
3795 else {
3796 get_ctx(ctx);
3797 ++ctx->pin_count;
3798 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3800 mutex_unlock(&task->perf_event_mutex);
3802 if (unlikely(err)) {
3803 put_ctx(ctx);
3805 if (err == -EAGAIN)
3806 goto retry;
3807 goto errout;
3811 kfree(task_ctx_data);
3812 return ctx;
3814 errout:
3815 kfree(task_ctx_data);
3816 return ERR_PTR(err);
3819 static void perf_event_free_filter(struct perf_event *event);
3820 static void perf_event_free_bpf_prog(struct perf_event *event);
3822 static void free_event_rcu(struct rcu_head *head)
3824 struct perf_event *event;
3826 event = container_of(head, struct perf_event, rcu_head);
3827 if (event->ns)
3828 put_pid_ns(event->ns);
3829 perf_event_free_filter(event);
3830 kfree(event);
3833 static void ring_buffer_attach(struct perf_event *event,
3834 struct ring_buffer *rb);
3836 static void detach_sb_event(struct perf_event *event)
3838 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
3840 raw_spin_lock(&pel->lock);
3841 list_del_rcu(&event->sb_list);
3842 raw_spin_unlock(&pel->lock);
3845 static bool is_sb_event(struct perf_event *event)
3847 struct perf_event_attr *attr = &event->attr;
3849 if (event->parent)
3850 return false;
3852 if (event->attach_state & PERF_ATTACH_TASK)
3853 return false;
3855 if (attr->mmap || attr->mmap_data || attr->mmap2 ||
3856 attr->comm || attr->comm_exec ||
3857 attr->task ||
3858 attr->context_switch)
3859 return true;
3860 return false;
3863 static void unaccount_pmu_sb_event(struct perf_event *event)
3865 if (is_sb_event(event))
3866 detach_sb_event(event);
3869 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3871 if (event->parent)
3872 return;
3874 if (is_cgroup_event(event))
3875 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3878 #ifdef CONFIG_NO_HZ_FULL
3879 static DEFINE_SPINLOCK(nr_freq_lock);
3880 #endif
3882 static void unaccount_freq_event_nohz(void)
3884 #ifdef CONFIG_NO_HZ_FULL
3885 spin_lock(&nr_freq_lock);
3886 if (atomic_dec_and_test(&nr_freq_events))
3887 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
3888 spin_unlock(&nr_freq_lock);
3889 #endif
3892 static void unaccount_freq_event(void)
3894 if (tick_nohz_full_enabled())
3895 unaccount_freq_event_nohz();
3896 else
3897 atomic_dec(&nr_freq_events);
3900 static void unaccount_event(struct perf_event *event)
3902 bool dec = false;
3904 if (event->parent)
3905 return;
3907 if (event->attach_state & PERF_ATTACH_TASK)
3908 dec = true;
3909 if (event->attr.mmap || event->attr.mmap_data)
3910 atomic_dec(&nr_mmap_events);
3911 if (event->attr.comm)
3912 atomic_dec(&nr_comm_events);
3913 if (event->attr.task)
3914 atomic_dec(&nr_task_events);
3915 if (event->attr.freq)
3916 unaccount_freq_event();
3917 if (event->attr.context_switch) {
3918 dec = true;
3919 atomic_dec(&nr_switch_events);
3921 if (is_cgroup_event(event))
3922 dec = true;
3923 if (has_branch_stack(event))
3924 dec = true;
3926 if (dec) {
3927 if (!atomic_add_unless(&perf_sched_count, -1, 1))
3928 schedule_delayed_work(&perf_sched_work, HZ);
3931 unaccount_event_cpu(event, event->cpu);
3933 unaccount_pmu_sb_event(event);
3936 static void perf_sched_delayed(struct work_struct *work)
3938 mutex_lock(&perf_sched_mutex);
3939 if (atomic_dec_and_test(&perf_sched_count))
3940 static_branch_disable(&perf_sched_events);
3941 mutex_unlock(&perf_sched_mutex);
3945 * The following implement mutual exclusion of events on "exclusive" pmus
3946 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3947 * at a time, so we disallow creating events that might conflict, namely:
3949 * 1) cpu-wide events in the presence of per-task events,
3950 * 2) per-task events in the presence of cpu-wide events,
3951 * 3) two matching events on the same context.
3953 * The former two cases are handled in the allocation path (perf_event_alloc(),
3954 * _free_event()), the latter -- before the first perf_install_in_context().
3956 static int exclusive_event_init(struct perf_event *event)
3958 struct pmu *pmu = event->pmu;
3960 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3961 return 0;
3964 * Prevent co-existence of per-task and cpu-wide events on the
3965 * same exclusive pmu.
3967 * Negative pmu::exclusive_cnt means there are cpu-wide
3968 * events on this "exclusive" pmu, positive means there are
3969 * per-task events.
3971 * Since this is called in perf_event_alloc() path, event::ctx
3972 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3973 * to mean "per-task event", because unlike other attach states it
3974 * never gets cleared.
3976 if (event->attach_state & PERF_ATTACH_TASK) {
3977 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3978 return -EBUSY;
3979 } else {
3980 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3981 return -EBUSY;
3984 return 0;
3987 static void exclusive_event_destroy(struct perf_event *event)
3989 struct pmu *pmu = event->pmu;
3991 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3992 return;
3994 /* see comment in exclusive_event_init() */
3995 if (event->attach_state & PERF_ATTACH_TASK)
3996 atomic_dec(&pmu->exclusive_cnt);
3997 else
3998 atomic_inc(&pmu->exclusive_cnt);
4001 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4003 if ((e1->pmu == e2->pmu) &&
4004 (e1->cpu == e2->cpu ||
4005 e1->cpu == -1 ||
4006 e2->cpu == -1))
4007 return true;
4008 return false;
4011 /* Called under the same ctx::mutex as perf_install_in_context() */
4012 static bool exclusive_event_installable(struct perf_event *event,
4013 struct perf_event_context *ctx)
4015 struct perf_event *iter_event;
4016 struct pmu *pmu = event->pmu;
4018 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4019 return true;
4021 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4022 if (exclusive_event_match(iter_event, event))
4023 return false;
4026 return true;
4029 static void perf_addr_filters_splice(struct perf_event *event,
4030 struct list_head *head);
4032 static void _free_event(struct perf_event *event)
4034 irq_work_sync(&event->pending);
4036 unaccount_event(event);
4038 if (event->rb) {
4040 * Can happen when we close an event with re-directed output.
4042 * Since we have a 0 refcount, perf_mmap_close() will skip
4043 * over us; possibly making our ring_buffer_put() the last.
4045 mutex_lock(&event->mmap_mutex);
4046 ring_buffer_attach(event, NULL);
4047 mutex_unlock(&event->mmap_mutex);
4050 if (is_cgroup_event(event))
4051 perf_detach_cgroup(event);
4053 if (!event->parent) {
4054 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4055 put_callchain_buffers();
4058 perf_event_free_bpf_prog(event);
4059 perf_addr_filters_splice(event, NULL);
4060 kfree(event->addr_filters_offs);
4062 if (event->destroy)
4063 event->destroy(event);
4065 if (event->ctx)
4066 put_ctx(event->ctx);
4068 exclusive_event_destroy(event);
4069 module_put(event->pmu->module);
4071 call_rcu(&event->rcu_head, free_event_rcu);
4075 * Used to free events which have a known refcount of 1, such as in error paths
4076 * where the event isn't exposed yet and inherited events.
4078 static void free_event(struct perf_event *event)
4080 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4081 "unexpected event refcount: %ld; ptr=%p\n",
4082 atomic_long_read(&event->refcount), event)) {
4083 /* leak to avoid use-after-free */
4084 return;
4087 _free_event(event);
4091 * Remove user event from the owner task.
4093 static void perf_remove_from_owner(struct perf_event *event)
4095 struct task_struct *owner;
4097 rcu_read_lock();
4099 * Matches the smp_store_release() in perf_event_exit_task(). If we
4100 * observe !owner it means the list deletion is complete and we can
4101 * indeed free this event, otherwise we need to serialize on
4102 * owner->perf_event_mutex.
4104 owner = lockless_dereference(event->owner);
4105 if (owner) {
4107 * Since delayed_put_task_struct() also drops the last
4108 * task reference we can safely take a new reference
4109 * while holding the rcu_read_lock().
4111 get_task_struct(owner);
4113 rcu_read_unlock();
4115 if (owner) {
4117 * If we're here through perf_event_exit_task() we're already
4118 * holding ctx->mutex which would be an inversion wrt. the
4119 * normal lock order.
4121 * However we can safely take this lock because its the child
4122 * ctx->mutex.
4124 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4127 * We have to re-check the event->owner field, if it is cleared
4128 * we raced with perf_event_exit_task(), acquiring the mutex
4129 * ensured they're done, and we can proceed with freeing the
4130 * event.
4132 if (event->owner) {
4133 list_del_init(&event->owner_entry);
4134 smp_store_release(&event->owner, NULL);
4136 mutex_unlock(&owner->perf_event_mutex);
4137 put_task_struct(owner);
4141 static void put_event(struct perf_event *event)
4143 if (!atomic_long_dec_and_test(&event->refcount))
4144 return;
4146 _free_event(event);
4150 * Kill an event dead; while event:refcount will preserve the event
4151 * object, it will not preserve its functionality. Once the last 'user'
4152 * gives up the object, we'll destroy the thing.
4154 int perf_event_release_kernel(struct perf_event *event)
4156 struct perf_event_context *ctx = event->ctx;
4157 struct perf_event *child, *tmp;
4160 * If we got here through err_file: fput(event_file); we will not have
4161 * attached to a context yet.
4163 if (!ctx) {
4164 WARN_ON_ONCE(event->attach_state &
4165 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4166 goto no_ctx;
4169 if (!is_kernel_event(event))
4170 perf_remove_from_owner(event);
4172 ctx = perf_event_ctx_lock(event);
4173 WARN_ON_ONCE(ctx->parent_ctx);
4174 perf_remove_from_context(event, DETACH_GROUP);
4176 raw_spin_lock_irq(&ctx->lock);
4178 * Mark this even as STATE_DEAD, there is no external reference to it
4179 * anymore.
4181 * Anybody acquiring event->child_mutex after the below loop _must_
4182 * also see this, most importantly inherit_event() which will avoid
4183 * placing more children on the list.
4185 * Thus this guarantees that we will in fact observe and kill _ALL_
4186 * child events.
4188 event->state = PERF_EVENT_STATE_DEAD;
4189 raw_spin_unlock_irq(&ctx->lock);
4191 perf_event_ctx_unlock(event, ctx);
4193 again:
4194 mutex_lock(&event->child_mutex);
4195 list_for_each_entry(child, &event->child_list, child_list) {
4198 * Cannot change, child events are not migrated, see the
4199 * comment with perf_event_ctx_lock_nested().
4201 ctx = lockless_dereference(child->ctx);
4203 * Since child_mutex nests inside ctx::mutex, we must jump
4204 * through hoops. We start by grabbing a reference on the ctx.
4206 * Since the event cannot get freed while we hold the
4207 * child_mutex, the context must also exist and have a !0
4208 * reference count.
4210 get_ctx(ctx);
4213 * Now that we have a ctx ref, we can drop child_mutex, and
4214 * acquire ctx::mutex without fear of it going away. Then we
4215 * can re-acquire child_mutex.
4217 mutex_unlock(&event->child_mutex);
4218 mutex_lock(&ctx->mutex);
4219 mutex_lock(&event->child_mutex);
4222 * Now that we hold ctx::mutex and child_mutex, revalidate our
4223 * state, if child is still the first entry, it didn't get freed
4224 * and we can continue doing so.
4226 tmp = list_first_entry_or_null(&event->child_list,
4227 struct perf_event, child_list);
4228 if (tmp == child) {
4229 perf_remove_from_context(child, DETACH_GROUP);
4230 list_del(&child->child_list);
4231 free_event(child);
4233 * This matches the refcount bump in inherit_event();
4234 * this can't be the last reference.
4236 put_event(event);
4239 mutex_unlock(&event->child_mutex);
4240 mutex_unlock(&ctx->mutex);
4241 put_ctx(ctx);
4242 goto again;
4244 mutex_unlock(&event->child_mutex);
4246 no_ctx:
4247 put_event(event); /* Must be the 'last' reference */
4248 return 0;
4250 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4253 * Called when the last reference to the file is gone.
4255 static int perf_release(struct inode *inode, struct file *file)
4257 perf_event_release_kernel(file->private_data);
4258 return 0;
4261 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4263 struct perf_event *child;
4264 u64 total = 0;
4266 *enabled = 0;
4267 *running = 0;
4269 mutex_lock(&event->child_mutex);
4271 (void)perf_event_read(event, false);
4272 total += perf_event_count(event);
4274 *enabled += event->total_time_enabled +
4275 atomic64_read(&event->child_total_time_enabled);
4276 *running += event->total_time_running +
4277 atomic64_read(&event->child_total_time_running);
4279 list_for_each_entry(child, &event->child_list, child_list) {
4280 (void)perf_event_read(child, false);
4281 total += perf_event_count(child);
4282 *enabled += child->total_time_enabled;
4283 *running += child->total_time_running;
4285 mutex_unlock(&event->child_mutex);
4287 return total;
4289 EXPORT_SYMBOL_GPL(perf_event_read_value);
4291 static int __perf_read_group_add(struct perf_event *leader,
4292 u64 read_format, u64 *values)
4294 struct perf_event *sub;
4295 int n = 1; /* skip @nr */
4296 int ret;
4298 ret = perf_event_read(leader, true);
4299 if (ret)
4300 return ret;
4303 * Since we co-schedule groups, {enabled,running} times of siblings
4304 * will be identical to those of the leader, so we only publish one
4305 * set.
4307 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4308 values[n++] += leader->total_time_enabled +
4309 atomic64_read(&leader->child_total_time_enabled);
4312 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4313 values[n++] += leader->total_time_running +
4314 atomic64_read(&leader->child_total_time_running);
4318 * Write {count,id} tuples for every sibling.
4320 values[n++] += perf_event_count(leader);
4321 if (read_format & PERF_FORMAT_ID)
4322 values[n++] = primary_event_id(leader);
4324 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4325 values[n++] += perf_event_count(sub);
4326 if (read_format & PERF_FORMAT_ID)
4327 values[n++] = primary_event_id(sub);
4330 return 0;
4333 static int perf_read_group(struct perf_event *event,
4334 u64 read_format, char __user *buf)
4336 struct perf_event *leader = event->group_leader, *child;
4337 struct perf_event_context *ctx = leader->ctx;
4338 int ret;
4339 u64 *values;
4341 lockdep_assert_held(&ctx->mutex);
4343 values = kzalloc(event->read_size, GFP_KERNEL);
4344 if (!values)
4345 return -ENOMEM;
4347 values[0] = 1 + leader->nr_siblings;
4350 * By locking the child_mutex of the leader we effectively
4351 * lock the child list of all siblings.. XXX explain how.
4353 mutex_lock(&leader->child_mutex);
4355 ret = __perf_read_group_add(leader, read_format, values);
4356 if (ret)
4357 goto unlock;
4359 list_for_each_entry(child, &leader->child_list, child_list) {
4360 ret = __perf_read_group_add(child, read_format, values);
4361 if (ret)
4362 goto unlock;
4365 mutex_unlock(&leader->child_mutex);
4367 ret = event->read_size;
4368 if (copy_to_user(buf, values, event->read_size))
4369 ret = -EFAULT;
4370 goto out;
4372 unlock:
4373 mutex_unlock(&leader->child_mutex);
4374 out:
4375 kfree(values);
4376 return ret;
4379 static int perf_read_one(struct perf_event *event,
4380 u64 read_format, char __user *buf)
4382 u64 enabled, running;
4383 u64 values[4];
4384 int n = 0;
4386 values[n++] = perf_event_read_value(event, &enabled, &running);
4387 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4388 values[n++] = enabled;
4389 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4390 values[n++] = running;
4391 if (read_format & PERF_FORMAT_ID)
4392 values[n++] = primary_event_id(event);
4394 if (copy_to_user(buf, values, n * sizeof(u64)))
4395 return -EFAULT;
4397 return n * sizeof(u64);
4400 static bool is_event_hup(struct perf_event *event)
4402 bool no_children;
4404 if (event->state > PERF_EVENT_STATE_EXIT)
4405 return false;
4407 mutex_lock(&event->child_mutex);
4408 no_children = list_empty(&event->child_list);
4409 mutex_unlock(&event->child_mutex);
4410 return no_children;
4414 * Read the performance event - simple non blocking version for now
4416 static ssize_t
4417 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4419 u64 read_format = event->attr.read_format;
4420 int ret;
4423 * Return end-of-file for a read on a event that is in
4424 * error state (i.e. because it was pinned but it couldn't be
4425 * scheduled on to the CPU at some point).
4427 if (event->state == PERF_EVENT_STATE_ERROR)
4428 return 0;
4430 if (count < event->read_size)
4431 return -ENOSPC;
4433 WARN_ON_ONCE(event->ctx->parent_ctx);
4434 if (read_format & PERF_FORMAT_GROUP)
4435 ret = perf_read_group(event, read_format, buf);
4436 else
4437 ret = perf_read_one(event, read_format, buf);
4439 return ret;
4442 static ssize_t
4443 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4445 struct perf_event *event = file->private_data;
4446 struct perf_event_context *ctx;
4447 int ret;
4449 ctx = perf_event_ctx_lock(event);
4450 ret = __perf_read(event, buf, count);
4451 perf_event_ctx_unlock(event, ctx);
4453 return ret;
4456 static unsigned int perf_poll(struct file *file, poll_table *wait)
4458 struct perf_event *event = file->private_data;
4459 struct ring_buffer *rb;
4460 unsigned int events = POLLHUP;
4462 poll_wait(file, &event->waitq, wait);
4464 if (is_event_hup(event))
4465 return events;
4468 * Pin the event->rb by taking event->mmap_mutex; otherwise
4469 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4471 mutex_lock(&event->mmap_mutex);
4472 rb = event->rb;
4473 if (rb)
4474 events = atomic_xchg(&rb->poll, 0);
4475 mutex_unlock(&event->mmap_mutex);
4476 return events;
4479 static void _perf_event_reset(struct perf_event *event)
4481 (void)perf_event_read(event, false);
4482 local64_set(&event->count, 0);
4483 perf_event_update_userpage(event);
4487 * Holding the top-level event's child_mutex means that any
4488 * descendant process that has inherited this event will block
4489 * in perf_event_exit_event() if it goes to exit, thus satisfying the
4490 * task existence requirements of perf_event_enable/disable.
4492 static void perf_event_for_each_child(struct perf_event *event,
4493 void (*func)(struct perf_event *))
4495 struct perf_event *child;
4497 WARN_ON_ONCE(event->ctx->parent_ctx);
4499 mutex_lock(&event->child_mutex);
4500 func(event);
4501 list_for_each_entry(child, &event->child_list, child_list)
4502 func(child);
4503 mutex_unlock(&event->child_mutex);
4506 static void perf_event_for_each(struct perf_event *event,
4507 void (*func)(struct perf_event *))
4509 struct perf_event_context *ctx = event->ctx;
4510 struct perf_event *sibling;
4512 lockdep_assert_held(&ctx->mutex);
4514 event = event->group_leader;
4516 perf_event_for_each_child(event, func);
4517 list_for_each_entry(sibling, &event->sibling_list, group_entry)
4518 perf_event_for_each_child(sibling, func);
4521 static void __perf_event_period(struct perf_event *event,
4522 struct perf_cpu_context *cpuctx,
4523 struct perf_event_context *ctx,
4524 void *info)
4526 u64 value = *((u64 *)info);
4527 bool active;
4529 if (event->attr.freq) {
4530 event->attr.sample_freq = value;
4531 } else {
4532 event->attr.sample_period = value;
4533 event->hw.sample_period = value;
4536 active = (event->state == PERF_EVENT_STATE_ACTIVE);
4537 if (active) {
4538 perf_pmu_disable(ctx->pmu);
4540 * We could be throttled; unthrottle now to avoid the tick
4541 * trying to unthrottle while we already re-started the event.
4543 if (event->hw.interrupts == MAX_INTERRUPTS) {
4544 event->hw.interrupts = 0;
4545 perf_log_throttle(event, 1);
4547 event->pmu->stop(event, PERF_EF_UPDATE);
4550 local64_set(&event->hw.period_left, 0);
4552 if (active) {
4553 event->pmu->start(event, PERF_EF_RELOAD);
4554 perf_pmu_enable(ctx->pmu);
4558 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4560 u64 value;
4562 if (!is_sampling_event(event))
4563 return -EINVAL;
4565 if (copy_from_user(&value, arg, sizeof(value)))
4566 return -EFAULT;
4568 if (!value)
4569 return -EINVAL;
4571 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4572 return -EINVAL;
4574 event_function_call(event, __perf_event_period, &value);
4576 return 0;
4579 static const struct file_operations perf_fops;
4581 static inline int perf_fget_light(int fd, struct fd *p)
4583 struct fd f = fdget(fd);
4584 if (!f.file)
4585 return -EBADF;
4587 if (f.file->f_op != &perf_fops) {
4588 fdput(f);
4589 return -EBADF;
4591 *p = f;
4592 return 0;
4595 static int perf_event_set_output(struct perf_event *event,
4596 struct perf_event *output_event);
4597 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4598 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4600 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4602 void (*func)(struct perf_event *);
4603 u32 flags = arg;
4605 switch (cmd) {
4606 case PERF_EVENT_IOC_ENABLE:
4607 func = _perf_event_enable;
4608 break;
4609 case PERF_EVENT_IOC_DISABLE:
4610 func = _perf_event_disable;
4611 break;
4612 case PERF_EVENT_IOC_RESET:
4613 func = _perf_event_reset;
4614 break;
4616 case PERF_EVENT_IOC_REFRESH:
4617 return _perf_event_refresh(event, arg);
4619 case PERF_EVENT_IOC_PERIOD:
4620 return perf_event_period(event, (u64 __user *)arg);
4622 case PERF_EVENT_IOC_ID:
4624 u64 id = primary_event_id(event);
4626 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4627 return -EFAULT;
4628 return 0;
4631 case PERF_EVENT_IOC_SET_OUTPUT:
4633 int ret;
4634 if (arg != -1) {
4635 struct perf_event *output_event;
4636 struct fd output;
4637 ret = perf_fget_light(arg, &output);
4638 if (ret)
4639 return ret;
4640 output_event = output.file->private_data;
4641 ret = perf_event_set_output(event, output_event);
4642 fdput(output);
4643 } else {
4644 ret = perf_event_set_output(event, NULL);
4646 return ret;
4649 case PERF_EVENT_IOC_SET_FILTER:
4650 return perf_event_set_filter(event, (void __user *)arg);
4652 case PERF_EVENT_IOC_SET_BPF:
4653 return perf_event_set_bpf_prog(event, arg);
4655 case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4656 struct ring_buffer *rb;
4658 rcu_read_lock();
4659 rb = rcu_dereference(event->rb);
4660 if (!rb || !rb->nr_pages) {
4661 rcu_read_unlock();
4662 return -EINVAL;
4664 rb_toggle_paused(rb, !!arg);
4665 rcu_read_unlock();
4666 return 0;
4668 default:
4669 return -ENOTTY;
4672 if (flags & PERF_IOC_FLAG_GROUP)
4673 perf_event_for_each(event, func);
4674 else
4675 perf_event_for_each_child(event, func);
4677 return 0;
4680 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4682 struct perf_event *event = file->private_data;
4683 struct perf_event_context *ctx;
4684 long ret;
4686 ctx = perf_event_ctx_lock(event);
4687 ret = _perf_ioctl(event, cmd, arg);
4688 perf_event_ctx_unlock(event, ctx);
4690 return ret;
4693 #ifdef CONFIG_COMPAT
4694 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4695 unsigned long arg)
4697 switch (_IOC_NR(cmd)) {
4698 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4699 case _IOC_NR(PERF_EVENT_IOC_ID):
4700 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4701 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4702 cmd &= ~IOCSIZE_MASK;
4703 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4705 break;
4707 return perf_ioctl(file, cmd, arg);
4709 #else
4710 # define perf_compat_ioctl NULL
4711 #endif
4713 int perf_event_task_enable(void)
4715 struct perf_event_context *ctx;
4716 struct perf_event *event;
4718 mutex_lock(&current->perf_event_mutex);
4719 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4720 ctx = perf_event_ctx_lock(event);
4721 perf_event_for_each_child(event, _perf_event_enable);
4722 perf_event_ctx_unlock(event, ctx);
4724 mutex_unlock(&current->perf_event_mutex);
4726 return 0;
4729 int perf_event_task_disable(void)
4731 struct perf_event_context *ctx;
4732 struct perf_event *event;
4734 mutex_lock(&current->perf_event_mutex);
4735 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4736 ctx = perf_event_ctx_lock(event);
4737 perf_event_for_each_child(event, _perf_event_disable);
4738 perf_event_ctx_unlock(event, ctx);
4740 mutex_unlock(&current->perf_event_mutex);
4742 return 0;
4745 static int perf_event_index(struct perf_event *event)
4747 if (event->hw.state & PERF_HES_STOPPED)
4748 return 0;
4750 if (event->state != PERF_EVENT_STATE_ACTIVE)
4751 return 0;
4753 return event->pmu->event_idx(event);
4756 static void calc_timer_values(struct perf_event *event,
4757 u64 *now,
4758 u64 *enabled,
4759 u64 *running)
4761 u64 ctx_time;
4763 *now = perf_clock();
4764 ctx_time = event->shadow_ctx_time + *now;
4765 *enabled = ctx_time - event->tstamp_enabled;
4766 *running = ctx_time - event->tstamp_running;
4769 static void perf_event_init_userpage(struct perf_event *event)
4771 struct perf_event_mmap_page *userpg;
4772 struct ring_buffer *rb;
4774 rcu_read_lock();
4775 rb = rcu_dereference(event->rb);
4776 if (!rb)
4777 goto unlock;
4779 userpg = rb->user_page;
4781 /* Allow new userspace to detect that bit 0 is deprecated */
4782 userpg->cap_bit0_is_deprecated = 1;
4783 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4784 userpg->data_offset = PAGE_SIZE;
4785 userpg->data_size = perf_data_size(rb);
4787 unlock:
4788 rcu_read_unlock();
4791 void __weak arch_perf_update_userpage(
4792 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4797 * Callers need to ensure there can be no nesting of this function, otherwise
4798 * the seqlock logic goes bad. We can not serialize this because the arch
4799 * code calls this from NMI context.
4801 void perf_event_update_userpage(struct perf_event *event)
4803 struct perf_event_mmap_page *userpg;
4804 struct ring_buffer *rb;
4805 u64 enabled, running, now;
4807 rcu_read_lock();
4808 rb = rcu_dereference(event->rb);
4809 if (!rb)
4810 goto unlock;
4813 * compute total_time_enabled, total_time_running
4814 * based on snapshot values taken when the event
4815 * was last scheduled in.
4817 * we cannot simply called update_context_time()
4818 * because of locking issue as we can be called in
4819 * NMI context
4821 calc_timer_values(event, &now, &enabled, &running);
4823 userpg = rb->user_page;
4825 * Disable preemption so as to not let the corresponding user-space
4826 * spin too long if we get preempted.
4828 preempt_disable();
4829 ++userpg->lock;
4830 barrier();
4831 userpg->index = perf_event_index(event);
4832 userpg->offset = perf_event_count(event);
4833 if (userpg->index)
4834 userpg->offset -= local64_read(&event->hw.prev_count);
4836 userpg->time_enabled = enabled +
4837 atomic64_read(&event->child_total_time_enabled);
4839 userpg->time_running = running +
4840 atomic64_read(&event->child_total_time_running);
4842 arch_perf_update_userpage(event, userpg, now);
4844 barrier();
4845 ++userpg->lock;
4846 preempt_enable();
4847 unlock:
4848 rcu_read_unlock();
4851 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4853 struct perf_event *event = vma->vm_file->private_data;
4854 struct ring_buffer *rb;
4855 int ret = VM_FAULT_SIGBUS;
4857 if (vmf->flags & FAULT_FLAG_MKWRITE) {
4858 if (vmf->pgoff == 0)
4859 ret = 0;
4860 return ret;
4863 rcu_read_lock();
4864 rb = rcu_dereference(event->rb);
4865 if (!rb)
4866 goto unlock;
4868 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4869 goto unlock;
4871 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4872 if (!vmf->page)
4873 goto unlock;
4875 get_page(vmf->page);
4876 vmf->page->mapping = vma->vm_file->f_mapping;
4877 vmf->page->index = vmf->pgoff;
4879 ret = 0;
4880 unlock:
4881 rcu_read_unlock();
4883 return ret;
4886 static void ring_buffer_attach(struct perf_event *event,
4887 struct ring_buffer *rb)
4889 struct ring_buffer *old_rb = NULL;
4890 unsigned long flags;
4892 if (event->rb) {
4894 * Should be impossible, we set this when removing
4895 * event->rb_entry and wait/clear when adding event->rb_entry.
4897 WARN_ON_ONCE(event->rcu_pending);
4899 old_rb = event->rb;
4900 spin_lock_irqsave(&old_rb->event_lock, flags);
4901 list_del_rcu(&event->rb_entry);
4902 spin_unlock_irqrestore(&old_rb->event_lock, flags);
4904 event->rcu_batches = get_state_synchronize_rcu();
4905 event->rcu_pending = 1;
4908 if (rb) {
4909 if (event->rcu_pending) {
4910 cond_synchronize_rcu(event->rcu_batches);
4911 event->rcu_pending = 0;
4914 spin_lock_irqsave(&rb->event_lock, flags);
4915 list_add_rcu(&event->rb_entry, &rb->event_list);
4916 spin_unlock_irqrestore(&rb->event_lock, flags);
4920 * Avoid racing with perf_mmap_close(AUX): stop the event
4921 * before swizzling the event::rb pointer; if it's getting
4922 * unmapped, its aux_mmap_count will be 0 and it won't
4923 * restart. See the comment in __perf_pmu_output_stop().
4925 * Data will inevitably be lost when set_output is done in
4926 * mid-air, but then again, whoever does it like this is
4927 * not in for the data anyway.
4929 if (has_aux(event))
4930 perf_event_stop(event, 0);
4932 rcu_assign_pointer(event->rb, rb);
4934 if (old_rb) {
4935 ring_buffer_put(old_rb);
4937 * Since we detached before setting the new rb, so that we
4938 * could attach the new rb, we could have missed a wakeup.
4939 * Provide it now.
4941 wake_up_all(&event->waitq);
4945 static void ring_buffer_wakeup(struct perf_event *event)
4947 struct ring_buffer *rb;
4949 rcu_read_lock();
4950 rb = rcu_dereference(event->rb);
4951 if (rb) {
4952 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4953 wake_up_all(&event->waitq);
4955 rcu_read_unlock();
4958 struct ring_buffer *ring_buffer_get(struct perf_event *event)
4960 struct ring_buffer *rb;
4962 rcu_read_lock();
4963 rb = rcu_dereference(event->rb);
4964 if (rb) {
4965 if (!atomic_inc_not_zero(&rb->refcount))
4966 rb = NULL;
4968 rcu_read_unlock();
4970 return rb;
4973 void ring_buffer_put(struct ring_buffer *rb)
4975 if (!atomic_dec_and_test(&rb->refcount))
4976 return;
4978 WARN_ON_ONCE(!list_empty(&rb->event_list));
4980 call_rcu(&rb->rcu_head, rb_free_rcu);
4983 static void perf_mmap_open(struct vm_area_struct *vma)
4985 struct perf_event *event = vma->vm_file->private_data;
4987 atomic_inc(&event->mmap_count);
4988 atomic_inc(&event->rb->mmap_count);
4990 if (vma->vm_pgoff)
4991 atomic_inc(&event->rb->aux_mmap_count);
4993 if (event->pmu->event_mapped)
4994 event->pmu->event_mapped(event);
4997 static void perf_pmu_output_stop(struct perf_event *event);
5000 * A buffer can be mmap()ed multiple times; either directly through the same
5001 * event, or through other events by use of perf_event_set_output().
5003 * In order to undo the VM accounting done by perf_mmap() we need to destroy
5004 * the buffer here, where we still have a VM context. This means we need
5005 * to detach all events redirecting to us.
5007 static void perf_mmap_close(struct vm_area_struct *vma)
5009 struct perf_event *event = vma->vm_file->private_data;
5011 struct ring_buffer *rb = ring_buffer_get(event);
5012 struct user_struct *mmap_user = rb->mmap_user;
5013 int mmap_locked = rb->mmap_locked;
5014 unsigned long size = perf_data_size(rb);
5016 if (event->pmu->event_unmapped)
5017 event->pmu->event_unmapped(event);
5020 * rb->aux_mmap_count will always drop before rb->mmap_count and
5021 * event->mmap_count, so it is ok to use event->mmap_mutex to
5022 * serialize with perf_mmap here.
5024 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5025 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5027 * Stop all AUX events that are writing to this buffer,
5028 * so that we can free its AUX pages and corresponding PMU
5029 * data. Note that after rb::aux_mmap_count dropped to zero,
5030 * they won't start any more (see perf_aux_output_begin()).
5032 perf_pmu_output_stop(event);
5034 /* now it's safe to free the pages */
5035 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5036 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5038 /* this has to be the last one */
5039 rb_free_aux(rb);
5040 WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5042 mutex_unlock(&event->mmap_mutex);
5045 atomic_dec(&rb->mmap_count);
5047 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5048 goto out_put;
5050 ring_buffer_attach(event, NULL);
5051 mutex_unlock(&event->mmap_mutex);
5053 /* If there's still other mmap()s of this buffer, we're done. */
5054 if (atomic_read(&rb->mmap_count))
5055 goto out_put;
5058 * No other mmap()s, detach from all other events that might redirect
5059 * into the now unreachable buffer. Somewhat complicated by the
5060 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5062 again:
5063 rcu_read_lock();
5064 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5065 if (!atomic_long_inc_not_zero(&event->refcount)) {
5067 * This event is en-route to free_event() which will
5068 * detach it and remove it from the list.
5070 continue;
5072 rcu_read_unlock();
5074 mutex_lock(&event->mmap_mutex);
5076 * Check we didn't race with perf_event_set_output() which can
5077 * swizzle the rb from under us while we were waiting to
5078 * acquire mmap_mutex.
5080 * If we find a different rb; ignore this event, a next
5081 * iteration will no longer find it on the list. We have to
5082 * still restart the iteration to make sure we're not now
5083 * iterating the wrong list.
5085 if (event->rb == rb)
5086 ring_buffer_attach(event, NULL);
5088 mutex_unlock(&event->mmap_mutex);
5089 put_event(event);
5092 * Restart the iteration; either we're on the wrong list or
5093 * destroyed its integrity by doing a deletion.
5095 goto again;
5097 rcu_read_unlock();
5100 * It could be there's still a few 0-ref events on the list; they'll
5101 * get cleaned up by free_event() -- they'll also still have their
5102 * ref on the rb and will free it whenever they are done with it.
5104 * Aside from that, this buffer is 'fully' detached and unmapped,
5105 * undo the VM accounting.
5108 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5109 vma->vm_mm->pinned_vm -= mmap_locked;
5110 free_uid(mmap_user);
5112 out_put:
5113 ring_buffer_put(rb); /* could be last */
5116 static const struct vm_operations_struct perf_mmap_vmops = {
5117 .open = perf_mmap_open,
5118 .close = perf_mmap_close, /* non mergable */
5119 .fault = perf_mmap_fault,
5120 .page_mkwrite = perf_mmap_fault,
5123 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5125 struct perf_event *event = file->private_data;
5126 unsigned long user_locked, user_lock_limit;
5127 struct user_struct *user = current_user();
5128 unsigned long locked, lock_limit;
5129 struct ring_buffer *rb = NULL;
5130 unsigned long vma_size;
5131 unsigned long nr_pages;
5132 long user_extra = 0, extra = 0;
5133 int ret = 0, flags = 0;
5136 * Don't allow mmap() of inherited per-task counters. This would
5137 * create a performance issue due to all children writing to the
5138 * same rb.
5140 if (event->cpu == -1 && event->attr.inherit)
5141 return -EINVAL;
5143 if (!(vma->vm_flags & VM_SHARED))
5144 return -EINVAL;
5146 vma_size = vma->vm_end - vma->vm_start;
5148 if (vma->vm_pgoff == 0) {
5149 nr_pages = (vma_size / PAGE_SIZE) - 1;
5150 } else {
5152 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5153 * mapped, all subsequent mappings should have the same size
5154 * and offset. Must be above the normal perf buffer.
5156 u64 aux_offset, aux_size;
5158 if (!event->rb)
5159 return -EINVAL;
5161 nr_pages = vma_size / PAGE_SIZE;
5163 mutex_lock(&event->mmap_mutex);
5164 ret = -EINVAL;
5166 rb = event->rb;
5167 if (!rb)
5168 goto aux_unlock;
5170 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
5171 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
5173 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5174 goto aux_unlock;
5176 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5177 goto aux_unlock;
5179 /* already mapped with a different offset */
5180 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5181 goto aux_unlock;
5183 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5184 goto aux_unlock;
5186 /* already mapped with a different size */
5187 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5188 goto aux_unlock;
5190 if (!is_power_of_2(nr_pages))
5191 goto aux_unlock;
5193 if (!atomic_inc_not_zero(&rb->mmap_count))
5194 goto aux_unlock;
5196 if (rb_has_aux(rb)) {
5197 atomic_inc(&rb->aux_mmap_count);
5198 ret = 0;
5199 goto unlock;
5202 atomic_set(&rb->aux_mmap_count, 1);
5203 user_extra = nr_pages;
5205 goto accounting;
5209 * If we have rb pages ensure they're a power-of-two number, so we
5210 * can do bitmasks instead of modulo.
5212 if (nr_pages != 0 && !is_power_of_2(nr_pages))
5213 return -EINVAL;
5215 if (vma_size != PAGE_SIZE * (1 + nr_pages))
5216 return -EINVAL;
5218 WARN_ON_ONCE(event->ctx->parent_ctx);
5219 again:
5220 mutex_lock(&event->mmap_mutex);
5221 if (event->rb) {
5222 if (event->rb->nr_pages != nr_pages) {
5223 ret = -EINVAL;
5224 goto unlock;
5227 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5229 * Raced against perf_mmap_close() through
5230 * perf_event_set_output(). Try again, hope for better
5231 * luck.
5233 mutex_unlock(&event->mmap_mutex);
5234 goto again;
5237 goto unlock;
5240 user_extra = nr_pages + 1;
5242 accounting:
5243 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5246 * Increase the limit linearly with more CPUs:
5248 user_lock_limit *= num_online_cpus();
5250 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5252 if (user_locked > user_lock_limit)
5253 extra = user_locked - user_lock_limit;
5255 lock_limit = rlimit(RLIMIT_MEMLOCK);
5256 lock_limit >>= PAGE_SHIFT;
5257 locked = vma->vm_mm->pinned_vm + extra;
5259 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5260 !capable(CAP_IPC_LOCK)) {
5261 ret = -EPERM;
5262 goto unlock;
5265 WARN_ON(!rb && event->rb);
5267 if (vma->vm_flags & VM_WRITE)
5268 flags |= RING_BUFFER_WRITABLE;
5270 if (!rb) {
5271 rb = rb_alloc(nr_pages,
5272 event->attr.watermark ? event->attr.wakeup_watermark : 0,
5273 event->cpu, flags);
5275 if (!rb) {
5276 ret = -ENOMEM;
5277 goto unlock;
5280 atomic_set(&rb->mmap_count, 1);
5281 rb->mmap_user = get_current_user();
5282 rb->mmap_locked = extra;
5284 ring_buffer_attach(event, rb);
5286 perf_event_init_userpage(event);
5287 perf_event_update_userpage(event);
5288 } else {
5289 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5290 event->attr.aux_watermark, flags);
5291 if (!ret)
5292 rb->aux_mmap_locked = extra;
5295 unlock:
5296 if (!ret) {
5297 atomic_long_add(user_extra, &user->locked_vm);
5298 vma->vm_mm->pinned_vm += extra;
5300 atomic_inc(&event->mmap_count);
5301 } else if (rb) {
5302 atomic_dec(&rb->mmap_count);
5304 aux_unlock:
5305 mutex_unlock(&event->mmap_mutex);
5308 * Since pinned accounting is per vm we cannot allow fork() to copy our
5309 * vma.
5311 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5312 vma->vm_ops = &perf_mmap_vmops;
5314 if (event->pmu->event_mapped)
5315 event->pmu->event_mapped(event);
5317 return ret;
5320 static int perf_fasync(int fd, struct file *filp, int on)
5322 struct inode *inode = file_inode(filp);
5323 struct perf_event *event = filp->private_data;
5324 int retval;
5326 inode_lock(inode);
5327 retval = fasync_helper(fd, filp, on, &event->fasync);
5328 inode_unlock(inode);
5330 if (retval < 0)
5331 return retval;
5333 return 0;
5336 static const struct file_operations perf_fops = {
5337 .llseek = no_llseek,
5338 .release = perf_release,
5339 .read = perf_read,
5340 .poll = perf_poll,
5341 .unlocked_ioctl = perf_ioctl,
5342 .compat_ioctl = perf_compat_ioctl,
5343 .mmap = perf_mmap,
5344 .fasync = perf_fasync,
5348 * Perf event wakeup
5350 * If there's data, ensure we set the poll() state and publish everything
5351 * to user-space before waking everybody up.
5354 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5356 /* only the parent has fasync state */
5357 if (event->parent)
5358 event = event->parent;
5359 return &event->fasync;
5362 void perf_event_wakeup(struct perf_event *event)
5364 ring_buffer_wakeup(event);
5366 if (event->pending_kill) {
5367 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5368 event->pending_kill = 0;
5372 static void perf_pending_event(struct irq_work *entry)
5374 struct perf_event *event = container_of(entry,
5375 struct perf_event, pending);
5376 int rctx;
5378 rctx = perf_swevent_get_recursion_context();
5380 * If we 'fail' here, that's OK, it means recursion is already disabled
5381 * and we won't recurse 'further'.
5384 if (event->pending_disable) {
5385 event->pending_disable = 0;
5386 perf_event_disable_local(event);
5389 if (event->pending_wakeup) {
5390 event->pending_wakeup = 0;
5391 perf_event_wakeup(event);
5394 if (rctx >= 0)
5395 perf_swevent_put_recursion_context(rctx);
5399 * We assume there is only KVM supporting the callbacks.
5400 * Later on, we might change it to a list if there is
5401 * another virtualization implementation supporting the callbacks.
5403 struct perf_guest_info_callbacks *perf_guest_cbs;
5405 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5407 perf_guest_cbs = cbs;
5408 return 0;
5410 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5412 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5414 perf_guest_cbs = NULL;
5415 return 0;
5417 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5419 static void
5420 perf_output_sample_regs(struct perf_output_handle *handle,
5421 struct pt_regs *regs, u64 mask)
5423 int bit;
5424 DECLARE_BITMAP(_mask, 64);
5426 bitmap_from_u64(_mask, mask);
5427 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5428 u64 val;
5430 val = perf_reg_value(regs, bit);
5431 perf_output_put(handle, val);
5435 static void perf_sample_regs_user(struct perf_regs *regs_user,
5436 struct pt_regs *regs,
5437 struct pt_regs *regs_user_copy)
5439 if (user_mode(regs)) {
5440 regs_user->abi = perf_reg_abi(current);
5441 regs_user->regs = regs;
5442 } else if (current->mm) {
5443 perf_get_regs_user(regs_user, regs, regs_user_copy);
5444 } else {
5445 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5446 regs_user->regs = NULL;
5450 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5451 struct pt_regs *regs)
5453 regs_intr->regs = regs;
5454 regs_intr->abi = perf_reg_abi(current);
5459 * Get remaining task size from user stack pointer.
5461 * It'd be better to take stack vma map and limit this more
5462 * precisly, but there's no way to get it safely under interrupt,
5463 * so using TASK_SIZE as limit.
5465 static u64 perf_ustack_task_size(struct pt_regs *regs)
5467 unsigned long addr = perf_user_stack_pointer(regs);
5469 if (!addr || addr >= TASK_SIZE)
5470 return 0;
5472 return TASK_SIZE - addr;
5475 static u16
5476 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5477 struct pt_regs *regs)
5479 u64 task_size;
5481 /* No regs, no stack pointer, no dump. */
5482 if (!regs)
5483 return 0;
5486 * Check if we fit in with the requested stack size into the:
5487 * - TASK_SIZE
5488 * If we don't, we limit the size to the TASK_SIZE.
5490 * - remaining sample size
5491 * If we don't, we customize the stack size to
5492 * fit in to the remaining sample size.
5495 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5496 stack_size = min(stack_size, (u16) task_size);
5498 /* Current header size plus static size and dynamic size. */
5499 header_size += 2 * sizeof(u64);
5501 /* Do we fit in with the current stack dump size? */
5502 if ((u16) (header_size + stack_size) < header_size) {
5504 * If we overflow the maximum size for the sample,
5505 * we customize the stack dump size to fit in.
5507 stack_size = USHRT_MAX - header_size - sizeof(u64);
5508 stack_size = round_up(stack_size, sizeof(u64));
5511 return stack_size;
5514 static void
5515 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5516 struct pt_regs *regs)
5518 /* Case of a kernel thread, nothing to dump */
5519 if (!regs) {
5520 u64 size = 0;
5521 perf_output_put(handle, size);
5522 } else {
5523 unsigned long sp;
5524 unsigned int rem;
5525 u64 dyn_size;
5528 * We dump:
5529 * static size
5530 * - the size requested by user or the best one we can fit
5531 * in to the sample max size
5532 * data
5533 * - user stack dump data
5534 * dynamic size
5535 * - the actual dumped size
5538 /* Static size. */
5539 perf_output_put(handle, dump_size);
5541 /* Data. */
5542 sp = perf_user_stack_pointer(regs);
5543 rem = __output_copy_user(handle, (void *) sp, dump_size);
5544 dyn_size = dump_size - rem;
5546 perf_output_skip(handle, rem);
5548 /* Dynamic size. */
5549 perf_output_put(handle, dyn_size);
5553 static void __perf_event_header__init_id(struct perf_event_header *header,
5554 struct perf_sample_data *data,
5555 struct perf_event *event)
5557 u64 sample_type = event->attr.sample_type;
5559 data->type = sample_type;
5560 header->size += event->id_header_size;
5562 if (sample_type & PERF_SAMPLE_TID) {
5563 /* namespace issues */
5564 data->tid_entry.pid = perf_event_pid(event, current);
5565 data->tid_entry.tid = perf_event_tid(event, current);
5568 if (sample_type & PERF_SAMPLE_TIME)
5569 data->time = perf_event_clock(event);
5571 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5572 data->id = primary_event_id(event);
5574 if (sample_type & PERF_SAMPLE_STREAM_ID)
5575 data->stream_id = event->id;
5577 if (sample_type & PERF_SAMPLE_CPU) {
5578 data->cpu_entry.cpu = raw_smp_processor_id();
5579 data->cpu_entry.reserved = 0;
5583 void perf_event_header__init_id(struct perf_event_header *header,
5584 struct perf_sample_data *data,
5585 struct perf_event *event)
5587 if (event->attr.sample_id_all)
5588 __perf_event_header__init_id(header, data, event);
5591 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5592 struct perf_sample_data *data)
5594 u64 sample_type = data->type;
5596 if (sample_type & PERF_SAMPLE_TID)
5597 perf_output_put(handle, data->tid_entry);
5599 if (sample_type & PERF_SAMPLE_TIME)
5600 perf_output_put(handle, data->time);
5602 if (sample_type & PERF_SAMPLE_ID)
5603 perf_output_put(handle, data->id);
5605 if (sample_type & PERF_SAMPLE_STREAM_ID)
5606 perf_output_put(handle, data->stream_id);
5608 if (sample_type & PERF_SAMPLE_CPU)
5609 perf_output_put(handle, data->cpu_entry);
5611 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5612 perf_output_put(handle, data->id);
5615 void perf_event__output_id_sample(struct perf_event *event,
5616 struct perf_output_handle *handle,
5617 struct perf_sample_data *sample)
5619 if (event->attr.sample_id_all)
5620 __perf_event__output_id_sample(handle, sample);
5623 static void perf_output_read_one(struct perf_output_handle *handle,
5624 struct perf_event *event,
5625 u64 enabled, u64 running)
5627 u64 read_format = event->attr.read_format;
5628 u64 values[4];
5629 int n = 0;
5631 values[n++] = perf_event_count(event);
5632 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5633 values[n++] = enabled +
5634 atomic64_read(&event->child_total_time_enabled);
5636 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5637 values[n++] = running +
5638 atomic64_read(&event->child_total_time_running);
5640 if (read_format & PERF_FORMAT_ID)
5641 values[n++] = primary_event_id(event);
5643 __output_copy(handle, values, n * sizeof(u64));
5647 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5649 static void perf_output_read_group(struct perf_output_handle *handle,
5650 struct perf_event *event,
5651 u64 enabled, u64 running)
5653 struct perf_event *leader = event->group_leader, *sub;
5654 u64 read_format = event->attr.read_format;
5655 u64 values[5];
5656 int n = 0;
5658 values[n++] = 1 + leader->nr_siblings;
5660 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5661 values[n++] = enabled;
5663 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5664 values[n++] = running;
5666 if (leader != event)
5667 leader->pmu->read(leader);
5669 values[n++] = perf_event_count(leader);
5670 if (read_format & PERF_FORMAT_ID)
5671 values[n++] = primary_event_id(leader);
5673 __output_copy(handle, values, n * sizeof(u64));
5675 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5676 n = 0;
5678 if ((sub != event) &&
5679 (sub->state == PERF_EVENT_STATE_ACTIVE))
5680 sub->pmu->read(sub);
5682 values[n++] = perf_event_count(sub);
5683 if (read_format & PERF_FORMAT_ID)
5684 values[n++] = primary_event_id(sub);
5686 __output_copy(handle, values, n * sizeof(u64));
5690 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5691 PERF_FORMAT_TOTAL_TIME_RUNNING)
5693 static void perf_output_read(struct perf_output_handle *handle,
5694 struct perf_event *event)
5696 u64 enabled = 0, running = 0, now;
5697 u64 read_format = event->attr.read_format;
5700 * compute total_time_enabled, total_time_running
5701 * based on snapshot values taken when the event
5702 * was last scheduled in.
5704 * we cannot simply called update_context_time()
5705 * because of locking issue as we are called in
5706 * NMI context
5708 if (read_format & PERF_FORMAT_TOTAL_TIMES)
5709 calc_timer_values(event, &now, &enabled, &running);
5711 if (event->attr.read_format & PERF_FORMAT_GROUP)
5712 perf_output_read_group(handle, event, enabled, running);
5713 else
5714 perf_output_read_one(handle, event, enabled, running);
5717 void perf_output_sample(struct perf_output_handle *handle,
5718 struct perf_event_header *header,
5719 struct perf_sample_data *data,
5720 struct perf_event *event)
5722 u64 sample_type = data->type;
5724 perf_output_put(handle, *header);
5726 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5727 perf_output_put(handle, data->id);
5729 if (sample_type & PERF_SAMPLE_IP)
5730 perf_output_put(handle, data->ip);
5732 if (sample_type & PERF_SAMPLE_TID)
5733 perf_output_put(handle, data->tid_entry);
5735 if (sample_type & PERF_SAMPLE_TIME)
5736 perf_output_put(handle, data->time);
5738 if (sample_type & PERF_SAMPLE_ADDR)
5739 perf_output_put(handle, data->addr);
5741 if (sample_type & PERF_SAMPLE_ID)
5742 perf_output_put(handle, data->id);
5744 if (sample_type & PERF_SAMPLE_STREAM_ID)
5745 perf_output_put(handle, data->stream_id);
5747 if (sample_type & PERF_SAMPLE_CPU)
5748 perf_output_put(handle, data->cpu_entry);
5750 if (sample_type & PERF_SAMPLE_PERIOD)
5751 perf_output_put(handle, data->period);
5753 if (sample_type & PERF_SAMPLE_READ)
5754 perf_output_read(handle, event);
5756 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5757 if (data->callchain) {
5758 int size = 1;
5760 if (data->callchain)
5761 size += data->callchain->nr;
5763 size *= sizeof(u64);
5765 __output_copy(handle, data->callchain, size);
5766 } else {
5767 u64 nr = 0;
5768 perf_output_put(handle, nr);
5772 if (sample_type & PERF_SAMPLE_RAW) {
5773 struct perf_raw_record *raw = data->raw;
5775 if (raw) {
5776 struct perf_raw_frag *frag = &raw->frag;
5778 perf_output_put(handle, raw->size);
5779 do {
5780 if (frag->copy) {
5781 __output_custom(handle, frag->copy,
5782 frag->data, frag->size);
5783 } else {
5784 __output_copy(handle, frag->data,
5785 frag->size);
5787 if (perf_raw_frag_last(frag))
5788 break;
5789 frag = frag->next;
5790 } while (1);
5791 if (frag->pad)
5792 __output_skip(handle, NULL, frag->pad);
5793 } else {
5794 struct {
5795 u32 size;
5796 u32 data;
5797 } raw = {
5798 .size = sizeof(u32),
5799 .data = 0,
5801 perf_output_put(handle, raw);
5805 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5806 if (data->br_stack) {
5807 size_t size;
5809 size = data->br_stack->nr
5810 * sizeof(struct perf_branch_entry);
5812 perf_output_put(handle, data->br_stack->nr);
5813 perf_output_copy(handle, data->br_stack->entries, size);
5814 } else {
5816 * we always store at least the value of nr
5818 u64 nr = 0;
5819 perf_output_put(handle, nr);
5823 if (sample_type & PERF_SAMPLE_REGS_USER) {
5824 u64 abi = data->regs_user.abi;
5827 * If there are no regs to dump, notice it through
5828 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5830 perf_output_put(handle, abi);
5832 if (abi) {
5833 u64 mask = event->attr.sample_regs_user;
5834 perf_output_sample_regs(handle,
5835 data->regs_user.regs,
5836 mask);
5840 if (sample_type & PERF_SAMPLE_STACK_USER) {
5841 perf_output_sample_ustack(handle,
5842 data->stack_user_size,
5843 data->regs_user.regs);
5846 if (sample_type & PERF_SAMPLE_WEIGHT)
5847 perf_output_put(handle, data->weight);
5849 if (sample_type & PERF_SAMPLE_DATA_SRC)
5850 perf_output_put(handle, data->data_src.val);
5852 if (sample_type & PERF_SAMPLE_TRANSACTION)
5853 perf_output_put(handle, data->txn);
5855 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5856 u64 abi = data->regs_intr.abi;
5858 * If there are no regs to dump, notice it through
5859 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5861 perf_output_put(handle, abi);
5863 if (abi) {
5864 u64 mask = event->attr.sample_regs_intr;
5866 perf_output_sample_regs(handle,
5867 data->regs_intr.regs,
5868 mask);
5872 if (!event->attr.watermark) {
5873 int wakeup_events = event->attr.wakeup_events;
5875 if (wakeup_events) {
5876 struct ring_buffer *rb = handle->rb;
5877 int events = local_inc_return(&rb->events);
5879 if (events >= wakeup_events) {
5880 local_sub(wakeup_events, &rb->events);
5881 local_inc(&rb->wakeup);
5887 void perf_prepare_sample(struct perf_event_header *header,
5888 struct perf_sample_data *data,
5889 struct perf_event *event,
5890 struct pt_regs *regs)
5892 u64 sample_type = event->attr.sample_type;
5894 header->type = PERF_RECORD_SAMPLE;
5895 header->size = sizeof(*header) + event->header_size;
5897 header->misc = 0;
5898 header->misc |= perf_misc_flags(regs);
5900 __perf_event_header__init_id(header, data, event);
5902 if (sample_type & PERF_SAMPLE_IP)
5903 data->ip = perf_instruction_pointer(regs);
5905 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5906 int size = 1;
5908 data->callchain = perf_callchain(event, regs);
5910 if (data->callchain)
5911 size += data->callchain->nr;
5913 header->size += size * sizeof(u64);
5916 if (sample_type & PERF_SAMPLE_RAW) {
5917 struct perf_raw_record *raw = data->raw;
5918 int size;
5920 if (raw) {
5921 struct perf_raw_frag *frag = &raw->frag;
5922 u32 sum = 0;
5924 do {
5925 sum += frag->size;
5926 if (perf_raw_frag_last(frag))
5927 break;
5928 frag = frag->next;
5929 } while (1);
5931 size = round_up(sum + sizeof(u32), sizeof(u64));
5932 raw->size = size - sizeof(u32);
5933 frag->pad = raw->size - sum;
5934 } else {
5935 size = sizeof(u64);
5938 header->size += size;
5941 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5942 int size = sizeof(u64); /* nr */
5943 if (data->br_stack) {
5944 size += data->br_stack->nr
5945 * sizeof(struct perf_branch_entry);
5947 header->size += size;
5950 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5951 perf_sample_regs_user(&data->regs_user, regs,
5952 &data->regs_user_copy);
5954 if (sample_type & PERF_SAMPLE_REGS_USER) {
5955 /* regs dump ABI info */
5956 int size = sizeof(u64);
5958 if (data->regs_user.regs) {
5959 u64 mask = event->attr.sample_regs_user;
5960 size += hweight64(mask) * sizeof(u64);
5963 header->size += size;
5966 if (sample_type & PERF_SAMPLE_STACK_USER) {
5968 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5969 * processed as the last one or have additional check added
5970 * in case new sample type is added, because we could eat
5971 * up the rest of the sample size.
5973 u16 stack_size = event->attr.sample_stack_user;
5974 u16 size = sizeof(u64);
5976 stack_size = perf_sample_ustack_size(stack_size, header->size,
5977 data->regs_user.regs);
5980 * If there is something to dump, add space for the dump
5981 * itself and for the field that tells the dynamic size,
5982 * which is how many have been actually dumped.
5984 if (stack_size)
5985 size += sizeof(u64) + stack_size;
5987 data->stack_user_size = stack_size;
5988 header->size += size;
5991 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5992 /* regs dump ABI info */
5993 int size = sizeof(u64);
5995 perf_sample_regs_intr(&data->regs_intr, regs);
5997 if (data->regs_intr.regs) {
5998 u64 mask = event->attr.sample_regs_intr;
6000 size += hweight64(mask) * sizeof(u64);
6003 header->size += size;
6007 static void __always_inline
6008 __perf_event_output(struct perf_event *event,
6009 struct perf_sample_data *data,
6010 struct pt_regs *regs,
6011 int (*output_begin)(struct perf_output_handle *,
6012 struct perf_event *,
6013 unsigned int))
6015 struct perf_output_handle handle;
6016 struct perf_event_header header;
6018 /* protect the callchain buffers */
6019 rcu_read_lock();
6021 perf_prepare_sample(&header, data, event, regs);
6023 if (output_begin(&handle, event, header.size))
6024 goto exit;
6026 perf_output_sample(&handle, &header, data, event);
6028 perf_output_end(&handle);
6030 exit:
6031 rcu_read_unlock();
6034 void
6035 perf_event_output_forward(struct perf_event *event,
6036 struct perf_sample_data *data,
6037 struct pt_regs *regs)
6039 __perf_event_output(event, data, regs, perf_output_begin_forward);
6042 void
6043 perf_event_output_backward(struct perf_event *event,
6044 struct perf_sample_data *data,
6045 struct pt_regs *regs)
6047 __perf_event_output(event, data, regs, perf_output_begin_backward);
6050 void
6051 perf_event_output(struct perf_event *event,
6052 struct perf_sample_data *data,
6053 struct pt_regs *regs)
6055 __perf_event_output(event, data, regs, perf_output_begin);
6059 * read event_id
6062 struct perf_read_event {
6063 struct perf_event_header header;
6065 u32 pid;
6066 u32 tid;
6069 static void
6070 perf_event_read_event(struct perf_event *event,
6071 struct task_struct *task)
6073 struct perf_output_handle handle;
6074 struct perf_sample_data sample;
6075 struct perf_read_event read_event = {
6076 .header = {
6077 .type = PERF_RECORD_READ,
6078 .misc = 0,
6079 .size = sizeof(read_event) + event->read_size,
6081 .pid = perf_event_pid(event, task),
6082 .tid = perf_event_tid(event, task),
6084 int ret;
6086 perf_event_header__init_id(&read_event.header, &sample, event);
6087 ret = perf_output_begin(&handle, event, read_event.header.size);
6088 if (ret)
6089 return;
6091 perf_output_put(&handle, read_event);
6092 perf_output_read(&handle, event);
6093 perf_event__output_id_sample(event, &handle, &sample);
6095 perf_output_end(&handle);
6098 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6100 static void
6101 perf_iterate_ctx(struct perf_event_context *ctx,
6102 perf_iterate_f output,
6103 void *data, bool all)
6105 struct perf_event *event;
6107 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6108 if (!all) {
6109 if (event->state < PERF_EVENT_STATE_INACTIVE)
6110 continue;
6111 if (!event_filter_match(event))
6112 continue;
6115 output(event, data);
6119 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6121 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6122 struct perf_event *event;
6124 list_for_each_entry_rcu(event, &pel->list, sb_list) {
6126 * Skip events that are not fully formed yet; ensure that
6127 * if we observe event->ctx, both event and ctx will be
6128 * complete enough. See perf_install_in_context().
6130 if (!smp_load_acquire(&event->ctx))
6131 continue;
6133 if (event->state < PERF_EVENT_STATE_INACTIVE)
6134 continue;
6135 if (!event_filter_match(event))
6136 continue;
6137 output(event, data);
6142 * Iterate all events that need to receive side-band events.
6144 * For new callers; ensure that account_pmu_sb_event() includes
6145 * your event, otherwise it might not get delivered.
6147 static void
6148 perf_iterate_sb(perf_iterate_f output, void *data,
6149 struct perf_event_context *task_ctx)
6151 struct perf_event_context *ctx;
6152 int ctxn;
6154 rcu_read_lock();
6155 preempt_disable();
6158 * If we have task_ctx != NULL we only notify the task context itself.
6159 * The task_ctx is set only for EXIT events before releasing task
6160 * context.
6162 if (task_ctx) {
6163 perf_iterate_ctx(task_ctx, output, data, false);
6164 goto done;
6167 perf_iterate_sb_cpu(output, data);
6169 for_each_task_context_nr(ctxn) {
6170 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6171 if (ctx)
6172 perf_iterate_ctx(ctx, output, data, false);
6174 done:
6175 preempt_enable();
6176 rcu_read_unlock();
6180 * Clear all file-based filters at exec, they'll have to be
6181 * re-instated when/if these objects are mmapped again.
6183 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6185 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6186 struct perf_addr_filter *filter;
6187 unsigned int restart = 0, count = 0;
6188 unsigned long flags;
6190 if (!has_addr_filter(event))
6191 return;
6193 raw_spin_lock_irqsave(&ifh->lock, flags);
6194 list_for_each_entry(filter, &ifh->list, entry) {
6195 if (filter->inode) {
6196 event->addr_filters_offs[count] = 0;
6197 restart++;
6200 count++;
6203 if (restart)
6204 event->addr_filters_gen++;
6205 raw_spin_unlock_irqrestore(&ifh->lock, flags);
6207 if (restart)
6208 perf_event_stop(event, 1);
6211 void perf_event_exec(void)
6213 struct perf_event_context *ctx;
6214 int ctxn;
6216 rcu_read_lock();
6217 for_each_task_context_nr(ctxn) {
6218 ctx = current->perf_event_ctxp[ctxn];
6219 if (!ctx)
6220 continue;
6222 perf_event_enable_on_exec(ctxn);
6224 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6225 true);
6227 rcu_read_unlock();
6230 struct remote_output {
6231 struct ring_buffer *rb;
6232 int err;
6235 static void __perf_event_output_stop(struct perf_event *event, void *data)
6237 struct perf_event *parent = event->parent;
6238 struct remote_output *ro = data;
6239 struct ring_buffer *rb = ro->rb;
6240 struct stop_event_data sd = {
6241 .event = event,
6244 if (!has_aux(event))
6245 return;
6247 if (!parent)
6248 parent = event;
6251 * In case of inheritance, it will be the parent that links to the
6252 * ring-buffer, but it will be the child that's actually using it.
6254 * We are using event::rb to determine if the event should be stopped,
6255 * however this may race with ring_buffer_attach() (through set_output),
6256 * which will make us skip the event that actually needs to be stopped.
6257 * So ring_buffer_attach() has to stop an aux event before re-assigning
6258 * its rb pointer.
6260 if (rcu_dereference(parent->rb) == rb)
6261 ro->err = __perf_event_stop(&sd);
6264 static int __perf_pmu_output_stop(void *info)
6266 struct perf_event *event = info;
6267 struct pmu *pmu = event->pmu;
6268 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6269 struct remote_output ro = {
6270 .rb = event->rb,
6273 rcu_read_lock();
6274 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6275 if (cpuctx->task_ctx)
6276 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6277 &ro, false);
6278 rcu_read_unlock();
6280 return ro.err;
6283 static void perf_pmu_output_stop(struct perf_event *event)
6285 struct perf_event *iter;
6286 int err, cpu;
6288 restart:
6289 rcu_read_lock();
6290 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6292 * For per-CPU events, we need to make sure that neither they
6293 * nor their children are running; for cpu==-1 events it's
6294 * sufficient to stop the event itself if it's active, since
6295 * it can't have children.
6297 cpu = iter->cpu;
6298 if (cpu == -1)
6299 cpu = READ_ONCE(iter->oncpu);
6301 if (cpu == -1)
6302 continue;
6304 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6305 if (err == -EAGAIN) {
6306 rcu_read_unlock();
6307 goto restart;
6310 rcu_read_unlock();
6314 * task tracking -- fork/exit
6316 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6319 struct perf_task_event {
6320 struct task_struct *task;
6321 struct perf_event_context *task_ctx;
6323 struct {
6324 struct perf_event_header header;
6326 u32 pid;
6327 u32 ppid;
6328 u32 tid;
6329 u32 ptid;
6330 u64 time;
6331 } event_id;
6334 static int perf_event_task_match(struct perf_event *event)
6336 return event->attr.comm || event->attr.mmap ||
6337 event->attr.mmap2 || event->attr.mmap_data ||
6338 event->attr.task;
6341 static void perf_event_task_output(struct perf_event *event,
6342 void *data)
6344 struct perf_task_event *task_event = data;
6345 struct perf_output_handle handle;
6346 struct perf_sample_data sample;
6347 struct task_struct *task = task_event->task;
6348 int ret, size = task_event->event_id.header.size;
6350 if (!perf_event_task_match(event))
6351 return;
6353 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6355 ret = perf_output_begin(&handle, event,
6356 task_event->event_id.header.size);
6357 if (ret)
6358 goto out;
6360 task_event->event_id.pid = perf_event_pid(event, task);
6361 task_event->event_id.ppid = perf_event_pid(event, current);
6363 task_event->event_id.tid = perf_event_tid(event, task);
6364 task_event->event_id.ptid = perf_event_tid(event, current);
6366 task_event->event_id.time = perf_event_clock(event);
6368 perf_output_put(&handle, task_event->event_id);
6370 perf_event__output_id_sample(event, &handle, &sample);
6372 perf_output_end(&handle);
6373 out:
6374 task_event->event_id.header.size = size;
6377 static void perf_event_task(struct task_struct *task,
6378 struct perf_event_context *task_ctx,
6379 int new)
6381 struct perf_task_event task_event;
6383 if (!atomic_read(&nr_comm_events) &&
6384 !atomic_read(&nr_mmap_events) &&
6385 !atomic_read(&nr_task_events))
6386 return;
6388 task_event = (struct perf_task_event){
6389 .task = task,
6390 .task_ctx = task_ctx,
6391 .event_id = {
6392 .header = {
6393 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6394 .misc = 0,
6395 .size = sizeof(task_event.event_id),
6397 /* .pid */
6398 /* .ppid */
6399 /* .tid */
6400 /* .ptid */
6401 /* .time */
6405 perf_iterate_sb(perf_event_task_output,
6406 &task_event,
6407 task_ctx);
6410 void perf_event_fork(struct task_struct *task)
6412 perf_event_task(task, NULL, 1);
6416 * comm tracking
6419 struct perf_comm_event {
6420 struct task_struct *task;
6421 char *comm;
6422 int comm_size;
6424 struct {
6425 struct perf_event_header header;
6427 u32 pid;
6428 u32 tid;
6429 } event_id;
6432 static int perf_event_comm_match(struct perf_event *event)
6434 return event->attr.comm;
6437 static void perf_event_comm_output(struct perf_event *event,
6438 void *data)
6440 struct perf_comm_event *comm_event = data;
6441 struct perf_output_handle handle;
6442 struct perf_sample_data sample;
6443 int size = comm_event->event_id.header.size;
6444 int ret;
6446 if (!perf_event_comm_match(event))
6447 return;
6449 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6450 ret = perf_output_begin(&handle, event,
6451 comm_event->event_id.header.size);
6453 if (ret)
6454 goto out;
6456 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6457 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6459 perf_output_put(&handle, comm_event->event_id);
6460 __output_copy(&handle, comm_event->comm,
6461 comm_event->comm_size);
6463 perf_event__output_id_sample(event, &handle, &sample);
6465 perf_output_end(&handle);
6466 out:
6467 comm_event->event_id.header.size = size;
6470 static void perf_event_comm_event(struct perf_comm_event *comm_event)
6472 char comm[TASK_COMM_LEN];
6473 unsigned int size;
6475 memset(comm, 0, sizeof(comm));
6476 strlcpy(comm, comm_event->task->comm, sizeof(comm));
6477 size = ALIGN(strlen(comm)+1, sizeof(u64));
6479 comm_event->comm = comm;
6480 comm_event->comm_size = size;
6482 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
6484 perf_iterate_sb(perf_event_comm_output,
6485 comm_event,
6486 NULL);
6489 void perf_event_comm(struct task_struct *task, bool exec)
6491 struct perf_comm_event comm_event;
6493 if (!atomic_read(&nr_comm_events))
6494 return;
6496 comm_event = (struct perf_comm_event){
6497 .task = task,
6498 /* .comm */
6499 /* .comm_size */
6500 .event_id = {
6501 .header = {
6502 .type = PERF_RECORD_COMM,
6503 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6504 /* .size */
6506 /* .pid */
6507 /* .tid */
6511 perf_event_comm_event(&comm_event);
6515 * mmap tracking
6518 struct perf_mmap_event {
6519 struct vm_area_struct *vma;
6521 const char *file_name;
6522 int file_size;
6523 int maj, min;
6524 u64 ino;
6525 u64 ino_generation;
6526 u32 prot, flags;
6528 struct {
6529 struct perf_event_header header;
6531 u32 pid;
6532 u32 tid;
6533 u64 start;
6534 u64 len;
6535 u64 pgoff;
6536 } event_id;
6539 static int perf_event_mmap_match(struct perf_event *event,
6540 void *data)
6542 struct perf_mmap_event *mmap_event = data;
6543 struct vm_area_struct *vma = mmap_event->vma;
6544 int executable = vma->vm_flags & VM_EXEC;
6546 return (!executable && event->attr.mmap_data) ||
6547 (executable && (event->attr.mmap || event->attr.mmap2));
6550 static void perf_event_mmap_output(struct perf_event *event,
6551 void *data)
6553 struct perf_mmap_event *mmap_event = data;
6554 struct perf_output_handle handle;
6555 struct perf_sample_data sample;
6556 int size = mmap_event->event_id.header.size;
6557 int ret;
6559 if (!perf_event_mmap_match(event, data))
6560 return;
6562 if (event->attr.mmap2) {
6563 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6564 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6565 mmap_event->event_id.header.size += sizeof(mmap_event->min);
6566 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6567 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6568 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6569 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6572 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6573 ret = perf_output_begin(&handle, event,
6574 mmap_event->event_id.header.size);
6575 if (ret)
6576 goto out;
6578 mmap_event->event_id.pid = perf_event_pid(event, current);
6579 mmap_event->event_id.tid = perf_event_tid(event, current);
6581 perf_output_put(&handle, mmap_event->event_id);
6583 if (event->attr.mmap2) {
6584 perf_output_put(&handle, mmap_event->maj);
6585 perf_output_put(&handle, mmap_event->min);
6586 perf_output_put(&handle, mmap_event->ino);
6587 perf_output_put(&handle, mmap_event->ino_generation);
6588 perf_output_put(&handle, mmap_event->prot);
6589 perf_output_put(&handle, mmap_event->flags);
6592 __output_copy(&handle, mmap_event->file_name,
6593 mmap_event->file_size);
6595 perf_event__output_id_sample(event, &handle, &sample);
6597 perf_output_end(&handle);
6598 out:
6599 mmap_event->event_id.header.size = size;
6602 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6604 struct vm_area_struct *vma = mmap_event->vma;
6605 struct file *file = vma->vm_file;
6606 int maj = 0, min = 0;
6607 u64 ino = 0, gen = 0;
6608 u32 prot = 0, flags = 0;
6609 unsigned int size;
6610 char tmp[16];
6611 char *buf = NULL;
6612 char *name;
6614 if (vma->vm_flags & VM_READ)
6615 prot |= PROT_READ;
6616 if (vma->vm_flags & VM_WRITE)
6617 prot |= PROT_WRITE;
6618 if (vma->vm_flags & VM_EXEC)
6619 prot |= PROT_EXEC;
6621 if (vma->vm_flags & VM_MAYSHARE)
6622 flags = MAP_SHARED;
6623 else
6624 flags = MAP_PRIVATE;
6626 if (vma->vm_flags & VM_DENYWRITE)
6627 flags |= MAP_DENYWRITE;
6628 if (vma->vm_flags & VM_MAYEXEC)
6629 flags |= MAP_EXECUTABLE;
6630 if (vma->vm_flags & VM_LOCKED)
6631 flags |= MAP_LOCKED;
6632 if (vma->vm_flags & VM_HUGETLB)
6633 flags |= MAP_HUGETLB;
6635 if (file) {
6636 struct inode *inode;
6637 dev_t dev;
6639 buf = kmalloc(PATH_MAX, GFP_KERNEL);
6640 if (!buf) {
6641 name = "//enomem";
6642 goto cpy_name;
6645 * d_path() works from the end of the rb backwards, so we
6646 * need to add enough zero bytes after the string to handle
6647 * the 64bit alignment we do later.
6649 name = file_path(file, buf, PATH_MAX - sizeof(u64));
6650 if (IS_ERR(name)) {
6651 name = "//toolong";
6652 goto cpy_name;
6654 inode = file_inode(vma->vm_file);
6655 dev = inode->i_sb->s_dev;
6656 ino = inode->i_ino;
6657 gen = inode->i_generation;
6658 maj = MAJOR(dev);
6659 min = MINOR(dev);
6661 goto got_name;
6662 } else {
6663 if (vma->vm_ops && vma->vm_ops->name) {
6664 name = (char *) vma->vm_ops->name(vma);
6665 if (name)
6666 goto cpy_name;
6669 name = (char *)arch_vma_name(vma);
6670 if (name)
6671 goto cpy_name;
6673 if (vma->vm_start <= vma->vm_mm->start_brk &&
6674 vma->vm_end >= vma->vm_mm->brk) {
6675 name = "[heap]";
6676 goto cpy_name;
6678 if (vma->vm_start <= vma->vm_mm->start_stack &&
6679 vma->vm_end >= vma->vm_mm->start_stack) {
6680 name = "[stack]";
6681 goto cpy_name;
6684 name = "//anon";
6685 goto cpy_name;
6688 cpy_name:
6689 strlcpy(tmp, name, sizeof(tmp));
6690 name = tmp;
6691 got_name:
6693 * Since our buffer works in 8 byte units we need to align our string
6694 * size to a multiple of 8. However, we must guarantee the tail end is
6695 * zero'd out to avoid leaking random bits to userspace.
6697 size = strlen(name)+1;
6698 while (!IS_ALIGNED(size, sizeof(u64)))
6699 name[size++] = '\0';
6701 mmap_event->file_name = name;
6702 mmap_event->file_size = size;
6703 mmap_event->maj = maj;
6704 mmap_event->min = min;
6705 mmap_event->ino = ino;
6706 mmap_event->ino_generation = gen;
6707 mmap_event->prot = prot;
6708 mmap_event->flags = flags;
6710 if (!(vma->vm_flags & VM_EXEC))
6711 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6713 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6715 perf_iterate_sb(perf_event_mmap_output,
6716 mmap_event,
6717 NULL);
6719 kfree(buf);
6723 * Check whether inode and address range match filter criteria.
6725 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
6726 struct file *file, unsigned long offset,
6727 unsigned long size)
6729 if (filter->inode != file->f_inode)
6730 return false;
6732 if (filter->offset > offset + size)
6733 return false;
6735 if (filter->offset + filter->size < offset)
6736 return false;
6738 return true;
6741 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
6743 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6744 struct vm_area_struct *vma = data;
6745 unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
6746 struct file *file = vma->vm_file;
6747 struct perf_addr_filter *filter;
6748 unsigned int restart = 0, count = 0;
6750 if (!has_addr_filter(event))
6751 return;
6753 if (!file)
6754 return;
6756 raw_spin_lock_irqsave(&ifh->lock, flags);
6757 list_for_each_entry(filter, &ifh->list, entry) {
6758 if (perf_addr_filter_match(filter, file, off,
6759 vma->vm_end - vma->vm_start)) {
6760 event->addr_filters_offs[count] = vma->vm_start;
6761 restart++;
6764 count++;
6767 if (restart)
6768 event->addr_filters_gen++;
6769 raw_spin_unlock_irqrestore(&ifh->lock, flags);
6771 if (restart)
6772 perf_event_stop(event, 1);
6776 * Adjust all task's events' filters to the new vma
6778 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
6780 struct perf_event_context *ctx;
6781 int ctxn;
6784 * Data tracing isn't supported yet and as such there is no need
6785 * to keep track of anything that isn't related to executable code:
6787 if (!(vma->vm_flags & VM_EXEC))
6788 return;
6790 rcu_read_lock();
6791 for_each_task_context_nr(ctxn) {
6792 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6793 if (!ctx)
6794 continue;
6796 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
6798 rcu_read_unlock();
6801 void perf_event_mmap(struct vm_area_struct *vma)
6803 struct perf_mmap_event mmap_event;
6805 if (!atomic_read(&nr_mmap_events))
6806 return;
6808 mmap_event = (struct perf_mmap_event){
6809 .vma = vma,
6810 /* .file_name */
6811 /* .file_size */
6812 .event_id = {
6813 .header = {
6814 .type = PERF_RECORD_MMAP,
6815 .misc = PERF_RECORD_MISC_USER,
6816 /* .size */
6818 /* .pid */
6819 /* .tid */
6820 .start = vma->vm_start,
6821 .len = vma->vm_end - vma->vm_start,
6822 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
6824 /* .maj (attr_mmap2 only) */
6825 /* .min (attr_mmap2 only) */
6826 /* .ino (attr_mmap2 only) */
6827 /* .ino_generation (attr_mmap2 only) */
6828 /* .prot (attr_mmap2 only) */
6829 /* .flags (attr_mmap2 only) */
6832 perf_addr_filters_adjust(vma);
6833 perf_event_mmap_event(&mmap_event);
6836 void perf_event_aux_event(struct perf_event *event, unsigned long head,
6837 unsigned long size, u64 flags)
6839 struct perf_output_handle handle;
6840 struct perf_sample_data sample;
6841 struct perf_aux_event {
6842 struct perf_event_header header;
6843 u64 offset;
6844 u64 size;
6845 u64 flags;
6846 } rec = {
6847 .header = {
6848 .type = PERF_RECORD_AUX,
6849 .misc = 0,
6850 .size = sizeof(rec),
6852 .offset = head,
6853 .size = size,
6854 .flags = flags,
6856 int ret;
6858 perf_event_header__init_id(&rec.header, &sample, event);
6859 ret = perf_output_begin(&handle, event, rec.header.size);
6861 if (ret)
6862 return;
6864 perf_output_put(&handle, rec);
6865 perf_event__output_id_sample(event, &handle, &sample);
6867 perf_output_end(&handle);
6871 * Lost/dropped samples logging
6873 void perf_log_lost_samples(struct perf_event *event, u64 lost)
6875 struct perf_output_handle handle;
6876 struct perf_sample_data sample;
6877 int ret;
6879 struct {
6880 struct perf_event_header header;
6881 u64 lost;
6882 } lost_samples_event = {
6883 .header = {
6884 .type = PERF_RECORD_LOST_SAMPLES,
6885 .misc = 0,
6886 .size = sizeof(lost_samples_event),
6888 .lost = lost,
6891 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6893 ret = perf_output_begin(&handle, event,
6894 lost_samples_event.header.size);
6895 if (ret)
6896 return;
6898 perf_output_put(&handle, lost_samples_event);
6899 perf_event__output_id_sample(event, &handle, &sample);
6900 perf_output_end(&handle);
6904 * context_switch tracking
6907 struct perf_switch_event {
6908 struct task_struct *task;
6909 struct task_struct *next_prev;
6911 struct {
6912 struct perf_event_header header;
6913 u32 next_prev_pid;
6914 u32 next_prev_tid;
6915 } event_id;
6918 static int perf_event_switch_match(struct perf_event *event)
6920 return event->attr.context_switch;
6923 static void perf_event_switch_output(struct perf_event *event, void *data)
6925 struct perf_switch_event *se = data;
6926 struct perf_output_handle handle;
6927 struct perf_sample_data sample;
6928 int ret;
6930 if (!perf_event_switch_match(event))
6931 return;
6933 /* Only CPU-wide events are allowed to see next/prev pid/tid */
6934 if (event->ctx->task) {
6935 se->event_id.header.type = PERF_RECORD_SWITCH;
6936 se->event_id.header.size = sizeof(se->event_id.header);
6937 } else {
6938 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
6939 se->event_id.header.size = sizeof(se->event_id);
6940 se->event_id.next_prev_pid =
6941 perf_event_pid(event, se->next_prev);
6942 se->event_id.next_prev_tid =
6943 perf_event_tid(event, se->next_prev);
6946 perf_event_header__init_id(&se->event_id.header, &sample, event);
6948 ret = perf_output_begin(&handle, event, se->event_id.header.size);
6949 if (ret)
6950 return;
6952 if (event->ctx->task)
6953 perf_output_put(&handle, se->event_id.header);
6954 else
6955 perf_output_put(&handle, se->event_id);
6957 perf_event__output_id_sample(event, &handle, &sample);
6959 perf_output_end(&handle);
6962 static void perf_event_switch(struct task_struct *task,
6963 struct task_struct *next_prev, bool sched_in)
6965 struct perf_switch_event switch_event;
6967 /* N.B. caller checks nr_switch_events != 0 */
6969 switch_event = (struct perf_switch_event){
6970 .task = task,
6971 .next_prev = next_prev,
6972 .event_id = {
6973 .header = {
6974 /* .type */
6975 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
6976 /* .size */
6978 /* .next_prev_pid */
6979 /* .next_prev_tid */
6983 perf_iterate_sb(perf_event_switch_output,
6984 &switch_event,
6985 NULL);
6989 * IRQ throttle logging
6992 static void perf_log_throttle(struct perf_event *event, int enable)
6994 struct perf_output_handle handle;
6995 struct perf_sample_data sample;
6996 int ret;
6998 struct {
6999 struct perf_event_header header;
7000 u64 time;
7001 u64 id;
7002 u64 stream_id;
7003 } throttle_event = {
7004 .header = {
7005 .type = PERF_RECORD_THROTTLE,
7006 .misc = 0,
7007 .size = sizeof(throttle_event),
7009 .time = perf_event_clock(event),
7010 .id = primary_event_id(event),
7011 .stream_id = event->id,
7014 if (enable)
7015 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7017 perf_event_header__init_id(&throttle_event.header, &sample, event);
7019 ret = perf_output_begin(&handle, event,
7020 throttle_event.header.size);
7021 if (ret)
7022 return;
7024 perf_output_put(&handle, throttle_event);
7025 perf_event__output_id_sample(event, &handle, &sample);
7026 perf_output_end(&handle);
7029 static void perf_log_itrace_start(struct perf_event *event)
7031 struct perf_output_handle handle;
7032 struct perf_sample_data sample;
7033 struct perf_aux_event {
7034 struct perf_event_header header;
7035 u32 pid;
7036 u32 tid;
7037 } rec;
7038 int ret;
7040 if (event->parent)
7041 event = event->parent;
7043 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7044 event->hw.itrace_started)
7045 return;
7047 rec.header.type = PERF_RECORD_ITRACE_START;
7048 rec.header.misc = 0;
7049 rec.header.size = sizeof(rec);
7050 rec.pid = perf_event_pid(event, current);
7051 rec.tid = perf_event_tid(event, current);
7053 perf_event_header__init_id(&rec.header, &sample, event);
7054 ret = perf_output_begin(&handle, event, rec.header.size);
7056 if (ret)
7057 return;
7059 perf_output_put(&handle, rec);
7060 perf_event__output_id_sample(event, &handle, &sample);
7062 perf_output_end(&handle);
7066 * Generic event overflow handling, sampling.
7069 static int __perf_event_overflow(struct perf_event *event,
7070 int throttle, struct perf_sample_data *data,
7071 struct pt_regs *regs)
7073 int events = atomic_read(&event->event_limit);
7074 struct hw_perf_event *hwc = &event->hw;
7075 u64 seq;
7076 int ret = 0;
7079 * Non-sampling counters might still use the PMI to fold short
7080 * hardware counters, ignore those.
7082 if (unlikely(!is_sampling_event(event)))
7083 return 0;
7085 seq = __this_cpu_read(perf_throttled_seq);
7086 if (seq != hwc->interrupts_seq) {
7087 hwc->interrupts_seq = seq;
7088 hwc->interrupts = 1;
7089 } else {
7090 hwc->interrupts++;
7091 if (unlikely(throttle
7092 && hwc->interrupts >= max_samples_per_tick)) {
7093 __this_cpu_inc(perf_throttled_count);
7094 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
7095 hwc->interrupts = MAX_INTERRUPTS;
7096 perf_log_throttle(event, 0);
7097 ret = 1;
7101 if (event->attr.freq) {
7102 u64 now = perf_clock();
7103 s64 delta = now - hwc->freq_time_stamp;
7105 hwc->freq_time_stamp = now;
7107 if (delta > 0 && delta < 2*TICK_NSEC)
7108 perf_adjust_period(event, delta, hwc->last_period, true);
7112 * XXX event_limit might not quite work as expected on inherited
7113 * events
7116 event->pending_kill = POLL_IN;
7117 if (events && atomic_dec_and_test(&event->event_limit)) {
7118 ret = 1;
7119 event->pending_kill = POLL_HUP;
7121 perf_event_disable_inatomic(event);
7124 READ_ONCE(event->overflow_handler)(event, data, regs);
7126 if (*perf_event_fasync(event) && event->pending_kill) {
7127 event->pending_wakeup = 1;
7128 irq_work_queue(&event->pending);
7131 return ret;
7134 int perf_event_overflow(struct perf_event *event,
7135 struct perf_sample_data *data,
7136 struct pt_regs *regs)
7138 return __perf_event_overflow(event, 1, data, regs);
7142 * Generic software event infrastructure
7145 struct swevent_htable {
7146 struct swevent_hlist *swevent_hlist;
7147 struct mutex hlist_mutex;
7148 int hlist_refcount;
7150 /* Recursion avoidance in each contexts */
7151 int recursion[PERF_NR_CONTEXTS];
7154 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7157 * We directly increment event->count and keep a second value in
7158 * event->hw.period_left to count intervals. This period event
7159 * is kept in the range [-sample_period, 0] so that we can use the
7160 * sign as trigger.
7163 u64 perf_swevent_set_period(struct perf_event *event)
7165 struct hw_perf_event *hwc = &event->hw;
7166 u64 period = hwc->last_period;
7167 u64 nr, offset;
7168 s64 old, val;
7170 hwc->last_period = hwc->sample_period;
7172 again:
7173 old = val = local64_read(&hwc->period_left);
7174 if (val < 0)
7175 return 0;
7177 nr = div64_u64(period + val, period);
7178 offset = nr * period;
7179 val -= offset;
7180 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7181 goto again;
7183 return nr;
7186 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7187 struct perf_sample_data *data,
7188 struct pt_regs *regs)
7190 struct hw_perf_event *hwc = &event->hw;
7191 int throttle = 0;
7193 if (!overflow)
7194 overflow = perf_swevent_set_period(event);
7196 if (hwc->interrupts == MAX_INTERRUPTS)
7197 return;
7199 for (; overflow; overflow--) {
7200 if (__perf_event_overflow(event, throttle,
7201 data, regs)) {
7203 * We inhibit the overflow from happening when
7204 * hwc->interrupts == MAX_INTERRUPTS.
7206 break;
7208 throttle = 1;
7212 static void perf_swevent_event(struct perf_event *event, u64 nr,
7213 struct perf_sample_data *data,
7214 struct pt_regs *regs)
7216 struct hw_perf_event *hwc = &event->hw;
7218 local64_add(nr, &event->count);
7220 if (!regs)
7221 return;
7223 if (!is_sampling_event(event))
7224 return;
7226 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7227 data->period = nr;
7228 return perf_swevent_overflow(event, 1, data, regs);
7229 } else
7230 data->period = event->hw.last_period;
7232 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7233 return perf_swevent_overflow(event, 1, data, regs);
7235 if (local64_add_negative(nr, &hwc->period_left))
7236 return;
7238 perf_swevent_overflow(event, 0, data, regs);
7241 static int perf_exclude_event(struct perf_event *event,
7242 struct pt_regs *regs)
7244 if (event->hw.state & PERF_HES_STOPPED)
7245 return 1;
7247 if (regs) {
7248 if (event->attr.exclude_user && user_mode(regs))
7249 return 1;
7251 if (event->attr.exclude_kernel && !user_mode(regs))
7252 return 1;
7255 return 0;
7258 static int perf_swevent_match(struct perf_event *event,
7259 enum perf_type_id type,
7260 u32 event_id,
7261 struct perf_sample_data *data,
7262 struct pt_regs *regs)
7264 if (event->attr.type != type)
7265 return 0;
7267 if (event->attr.config != event_id)
7268 return 0;
7270 if (perf_exclude_event(event, regs))
7271 return 0;
7273 return 1;
7276 static inline u64 swevent_hash(u64 type, u32 event_id)
7278 u64 val = event_id | (type << 32);
7280 return hash_64(val, SWEVENT_HLIST_BITS);
7283 static inline struct hlist_head *
7284 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7286 u64 hash = swevent_hash(type, event_id);
7288 return &hlist->heads[hash];
7291 /* For the read side: events when they trigger */
7292 static inline struct hlist_head *
7293 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7295 struct swevent_hlist *hlist;
7297 hlist = rcu_dereference(swhash->swevent_hlist);
7298 if (!hlist)
7299 return NULL;
7301 return __find_swevent_head(hlist, type, event_id);
7304 /* For the event head insertion and removal in the hlist */
7305 static inline struct hlist_head *
7306 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7308 struct swevent_hlist *hlist;
7309 u32 event_id = event->attr.config;
7310 u64 type = event->attr.type;
7313 * Event scheduling is always serialized against hlist allocation
7314 * and release. Which makes the protected version suitable here.
7315 * The context lock guarantees that.
7317 hlist = rcu_dereference_protected(swhash->swevent_hlist,
7318 lockdep_is_held(&event->ctx->lock));
7319 if (!hlist)
7320 return NULL;
7322 return __find_swevent_head(hlist, type, event_id);
7325 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7326 u64 nr,
7327 struct perf_sample_data *data,
7328 struct pt_regs *regs)
7330 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7331 struct perf_event *event;
7332 struct hlist_head *head;
7334 rcu_read_lock();
7335 head = find_swevent_head_rcu(swhash, type, event_id);
7336 if (!head)
7337 goto end;
7339 hlist_for_each_entry_rcu(event, head, hlist_entry) {
7340 if (perf_swevent_match(event, type, event_id, data, regs))
7341 perf_swevent_event(event, nr, data, regs);
7343 end:
7344 rcu_read_unlock();
7347 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7349 int perf_swevent_get_recursion_context(void)
7351 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7353 return get_recursion_context(swhash->recursion);
7355 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
7357 void perf_swevent_put_recursion_context(int rctx)
7359 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7361 put_recursion_context(swhash->recursion, rctx);
7364 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7366 struct perf_sample_data data;
7368 if (WARN_ON_ONCE(!regs))
7369 return;
7371 perf_sample_data_init(&data, addr, 0);
7372 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
7375 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7377 int rctx;
7379 preempt_disable_notrace();
7380 rctx = perf_swevent_get_recursion_context();
7381 if (unlikely(rctx < 0))
7382 goto fail;
7384 ___perf_sw_event(event_id, nr, regs, addr);
7386 perf_swevent_put_recursion_context(rctx);
7387 fail:
7388 preempt_enable_notrace();
7391 static void perf_swevent_read(struct perf_event *event)
7395 static int perf_swevent_add(struct perf_event *event, int flags)
7397 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7398 struct hw_perf_event *hwc = &event->hw;
7399 struct hlist_head *head;
7401 if (is_sampling_event(event)) {
7402 hwc->last_period = hwc->sample_period;
7403 perf_swevent_set_period(event);
7406 hwc->state = !(flags & PERF_EF_START);
7408 head = find_swevent_head(swhash, event);
7409 if (WARN_ON_ONCE(!head))
7410 return -EINVAL;
7412 hlist_add_head_rcu(&event->hlist_entry, head);
7413 perf_event_update_userpage(event);
7415 return 0;
7418 static void perf_swevent_del(struct perf_event *event, int flags)
7420 hlist_del_rcu(&event->hlist_entry);
7423 static void perf_swevent_start(struct perf_event *event, int flags)
7425 event->hw.state = 0;
7428 static void perf_swevent_stop(struct perf_event *event, int flags)
7430 event->hw.state = PERF_HES_STOPPED;
7433 /* Deref the hlist from the update side */
7434 static inline struct swevent_hlist *
7435 swevent_hlist_deref(struct swevent_htable *swhash)
7437 return rcu_dereference_protected(swhash->swevent_hlist,
7438 lockdep_is_held(&swhash->hlist_mutex));
7441 static void swevent_hlist_release(struct swevent_htable *swhash)
7443 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
7445 if (!hlist)
7446 return;
7448 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
7449 kfree_rcu(hlist, rcu_head);
7452 static void swevent_hlist_put_cpu(int cpu)
7454 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7456 mutex_lock(&swhash->hlist_mutex);
7458 if (!--swhash->hlist_refcount)
7459 swevent_hlist_release(swhash);
7461 mutex_unlock(&swhash->hlist_mutex);
7464 static void swevent_hlist_put(void)
7466 int cpu;
7468 for_each_possible_cpu(cpu)
7469 swevent_hlist_put_cpu(cpu);
7472 static int swevent_hlist_get_cpu(int cpu)
7474 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7475 int err = 0;
7477 mutex_lock(&swhash->hlist_mutex);
7478 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
7479 struct swevent_hlist *hlist;
7481 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7482 if (!hlist) {
7483 err = -ENOMEM;
7484 goto exit;
7486 rcu_assign_pointer(swhash->swevent_hlist, hlist);
7488 swhash->hlist_refcount++;
7489 exit:
7490 mutex_unlock(&swhash->hlist_mutex);
7492 return err;
7495 static int swevent_hlist_get(void)
7497 int err, cpu, failed_cpu;
7499 get_online_cpus();
7500 for_each_possible_cpu(cpu) {
7501 err = swevent_hlist_get_cpu(cpu);
7502 if (err) {
7503 failed_cpu = cpu;
7504 goto fail;
7507 put_online_cpus();
7509 return 0;
7510 fail:
7511 for_each_possible_cpu(cpu) {
7512 if (cpu == failed_cpu)
7513 break;
7514 swevent_hlist_put_cpu(cpu);
7517 put_online_cpus();
7518 return err;
7521 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
7523 static void sw_perf_event_destroy(struct perf_event *event)
7525 u64 event_id = event->attr.config;
7527 WARN_ON(event->parent);
7529 static_key_slow_dec(&perf_swevent_enabled[event_id]);
7530 swevent_hlist_put();
7533 static int perf_swevent_init(struct perf_event *event)
7535 u64 event_id = event->attr.config;
7537 if (event->attr.type != PERF_TYPE_SOFTWARE)
7538 return -ENOENT;
7541 * no branch sampling for software events
7543 if (has_branch_stack(event))
7544 return -EOPNOTSUPP;
7546 switch (event_id) {
7547 case PERF_COUNT_SW_CPU_CLOCK:
7548 case PERF_COUNT_SW_TASK_CLOCK:
7549 return -ENOENT;
7551 default:
7552 break;
7555 if (event_id >= PERF_COUNT_SW_MAX)
7556 return -ENOENT;
7558 if (!event->parent) {
7559 int err;
7561 err = swevent_hlist_get();
7562 if (err)
7563 return err;
7565 static_key_slow_inc(&perf_swevent_enabled[event_id]);
7566 event->destroy = sw_perf_event_destroy;
7569 return 0;
7572 static struct pmu perf_swevent = {
7573 .task_ctx_nr = perf_sw_context,
7575 .capabilities = PERF_PMU_CAP_NO_NMI,
7577 .event_init = perf_swevent_init,
7578 .add = perf_swevent_add,
7579 .del = perf_swevent_del,
7580 .start = perf_swevent_start,
7581 .stop = perf_swevent_stop,
7582 .read = perf_swevent_read,
7585 #ifdef CONFIG_EVENT_TRACING
7587 static int perf_tp_filter_match(struct perf_event *event,
7588 struct perf_sample_data *data)
7590 void *record = data->raw->frag.data;
7592 /* only top level events have filters set */
7593 if (event->parent)
7594 event = event->parent;
7596 if (likely(!event->filter) || filter_match_preds(event->filter, record))
7597 return 1;
7598 return 0;
7601 static int perf_tp_event_match(struct perf_event *event,
7602 struct perf_sample_data *data,
7603 struct pt_regs *regs)
7605 if (event->hw.state & PERF_HES_STOPPED)
7606 return 0;
7608 * All tracepoints are from kernel-space.
7610 if (event->attr.exclude_kernel)
7611 return 0;
7613 if (!perf_tp_filter_match(event, data))
7614 return 0;
7616 return 1;
7619 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
7620 struct trace_event_call *call, u64 count,
7621 struct pt_regs *regs, struct hlist_head *head,
7622 struct task_struct *task)
7624 struct bpf_prog *prog = call->prog;
7626 if (prog) {
7627 *(struct pt_regs **)raw_data = regs;
7628 if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) {
7629 perf_swevent_put_recursion_context(rctx);
7630 return;
7633 perf_tp_event(call->event.type, count, raw_data, size, regs, head,
7634 rctx, task);
7636 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
7638 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
7639 struct pt_regs *regs, struct hlist_head *head, int rctx,
7640 struct task_struct *task)
7642 struct perf_sample_data data;
7643 struct perf_event *event;
7645 struct perf_raw_record raw = {
7646 .frag = {
7647 .size = entry_size,
7648 .data = record,
7652 perf_sample_data_init(&data, 0, 0);
7653 data.raw = &raw;
7655 perf_trace_buf_update(record, event_type);
7657 hlist_for_each_entry_rcu(event, head, hlist_entry) {
7658 if (perf_tp_event_match(event, &data, regs))
7659 perf_swevent_event(event, count, &data, regs);
7663 * If we got specified a target task, also iterate its context and
7664 * deliver this event there too.
7666 if (task && task != current) {
7667 struct perf_event_context *ctx;
7668 struct trace_entry *entry = record;
7670 rcu_read_lock();
7671 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
7672 if (!ctx)
7673 goto unlock;
7675 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7676 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7677 continue;
7678 if (event->attr.config != entry->type)
7679 continue;
7680 if (perf_tp_event_match(event, &data, regs))
7681 perf_swevent_event(event, count, &data, regs);
7683 unlock:
7684 rcu_read_unlock();
7687 perf_swevent_put_recursion_context(rctx);
7689 EXPORT_SYMBOL_GPL(perf_tp_event);
7691 static void tp_perf_event_destroy(struct perf_event *event)
7693 perf_trace_destroy(event);
7696 static int perf_tp_event_init(struct perf_event *event)
7698 int err;
7700 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7701 return -ENOENT;
7704 * no branch sampling for tracepoint events
7706 if (has_branch_stack(event))
7707 return -EOPNOTSUPP;
7709 err = perf_trace_init(event);
7710 if (err)
7711 return err;
7713 event->destroy = tp_perf_event_destroy;
7715 return 0;
7718 static struct pmu perf_tracepoint = {
7719 .task_ctx_nr = perf_sw_context,
7721 .event_init = perf_tp_event_init,
7722 .add = perf_trace_add,
7723 .del = perf_trace_del,
7724 .start = perf_swevent_start,
7725 .stop = perf_swevent_stop,
7726 .read = perf_swevent_read,
7729 static inline void perf_tp_register(void)
7731 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
7734 static void perf_event_free_filter(struct perf_event *event)
7736 ftrace_profile_free_filter(event);
7739 #ifdef CONFIG_BPF_SYSCALL
7740 static void bpf_overflow_handler(struct perf_event *event,
7741 struct perf_sample_data *data,
7742 struct pt_regs *regs)
7744 struct bpf_perf_event_data_kern ctx = {
7745 .data = data,
7746 .regs = regs,
7748 int ret = 0;
7750 preempt_disable();
7751 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
7752 goto out;
7753 rcu_read_lock();
7754 ret = BPF_PROG_RUN(event->prog, (void *)&ctx);
7755 rcu_read_unlock();
7756 out:
7757 __this_cpu_dec(bpf_prog_active);
7758 preempt_enable();
7759 if (!ret)
7760 return;
7762 event->orig_overflow_handler(event, data, regs);
7765 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
7767 struct bpf_prog *prog;
7769 if (event->overflow_handler_context)
7770 /* hw breakpoint or kernel counter */
7771 return -EINVAL;
7773 if (event->prog)
7774 return -EEXIST;
7776 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
7777 if (IS_ERR(prog))
7778 return PTR_ERR(prog);
7780 event->prog = prog;
7781 event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
7782 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
7783 return 0;
7786 static void perf_event_free_bpf_handler(struct perf_event *event)
7788 struct bpf_prog *prog = event->prog;
7790 if (!prog)
7791 return;
7793 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
7794 event->prog = NULL;
7795 bpf_prog_put(prog);
7797 #else
7798 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
7800 return -EOPNOTSUPP;
7802 static void perf_event_free_bpf_handler(struct perf_event *event)
7805 #endif
7807 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7809 bool is_kprobe, is_tracepoint;
7810 struct bpf_prog *prog;
7812 if (event->attr.type == PERF_TYPE_HARDWARE ||
7813 event->attr.type == PERF_TYPE_SOFTWARE)
7814 return perf_event_set_bpf_handler(event, prog_fd);
7816 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7817 return -EINVAL;
7819 if (event->tp_event->prog)
7820 return -EEXIST;
7822 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
7823 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
7824 if (!is_kprobe && !is_tracepoint)
7825 /* bpf programs can only be attached to u/kprobe or tracepoint */
7826 return -EINVAL;
7828 prog = bpf_prog_get(prog_fd);
7829 if (IS_ERR(prog))
7830 return PTR_ERR(prog);
7832 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
7833 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
7834 /* valid fd, but invalid bpf program type */
7835 bpf_prog_put(prog);
7836 return -EINVAL;
7839 if (is_tracepoint) {
7840 int off = trace_event_get_offsets(event->tp_event);
7842 if (prog->aux->max_ctx_offset > off) {
7843 bpf_prog_put(prog);
7844 return -EACCES;
7847 event->tp_event->prog = prog;
7849 return 0;
7852 static void perf_event_free_bpf_prog(struct perf_event *event)
7854 struct bpf_prog *prog;
7856 perf_event_free_bpf_handler(event);
7858 if (!event->tp_event)
7859 return;
7861 prog = event->tp_event->prog;
7862 if (prog) {
7863 event->tp_event->prog = NULL;
7864 bpf_prog_put(prog);
7868 #else
7870 static inline void perf_tp_register(void)
7874 static void perf_event_free_filter(struct perf_event *event)
7878 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7880 return -ENOENT;
7883 static void perf_event_free_bpf_prog(struct perf_event *event)
7886 #endif /* CONFIG_EVENT_TRACING */
7888 #ifdef CONFIG_HAVE_HW_BREAKPOINT
7889 void perf_bp_event(struct perf_event *bp, void *data)
7891 struct perf_sample_data sample;
7892 struct pt_regs *regs = data;
7894 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7896 if (!bp->hw.state && !perf_exclude_event(bp, regs))
7897 perf_swevent_event(bp, 1, &sample, regs);
7899 #endif
7902 * Allocate a new address filter
7904 static struct perf_addr_filter *
7905 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
7907 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
7908 struct perf_addr_filter *filter;
7910 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
7911 if (!filter)
7912 return NULL;
7914 INIT_LIST_HEAD(&filter->entry);
7915 list_add_tail(&filter->entry, filters);
7917 return filter;
7920 static void free_filters_list(struct list_head *filters)
7922 struct perf_addr_filter *filter, *iter;
7924 list_for_each_entry_safe(filter, iter, filters, entry) {
7925 if (filter->inode)
7926 iput(filter->inode);
7927 list_del(&filter->entry);
7928 kfree(filter);
7933 * Free existing address filters and optionally install new ones
7935 static void perf_addr_filters_splice(struct perf_event *event,
7936 struct list_head *head)
7938 unsigned long flags;
7939 LIST_HEAD(list);
7941 if (!has_addr_filter(event))
7942 return;
7944 /* don't bother with children, they don't have their own filters */
7945 if (event->parent)
7946 return;
7948 raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
7950 list_splice_init(&event->addr_filters.list, &list);
7951 if (head)
7952 list_splice(head, &event->addr_filters.list);
7954 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
7956 free_filters_list(&list);
7960 * Scan through mm's vmas and see if one of them matches the
7961 * @filter; if so, adjust filter's address range.
7962 * Called with mm::mmap_sem down for reading.
7964 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
7965 struct mm_struct *mm)
7967 struct vm_area_struct *vma;
7969 for (vma = mm->mmap; vma; vma = vma->vm_next) {
7970 struct file *file = vma->vm_file;
7971 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
7972 unsigned long vma_size = vma->vm_end - vma->vm_start;
7974 if (!file)
7975 continue;
7977 if (!perf_addr_filter_match(filter, file, off, vma_size))
7978 continue;
7980 return vma->vm_start;
7983 return 0;
7987 * Update event's address range filters based on the
7988 * task's existing mappings, if any.
7990 static void perf_event_addr_filters_apply(struct perf_event *event)
7992 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7993 struct task_struct *task = READ_ONCE(event->ctx->task);
7994 struct perf_addr_filter *filter;
7995 struct mm_struct *mm = NULL;
7996 unsigned int count = 0;
7997 unsigned long flags;
8000 * We may observe TASK_TOMBSTONE, which means that the event tear-down
8001 * will stop on the parent's child_mutex that our caller is also holding
8003 if (task == TASK_TOMBSTONE)
8004 return;
8006 mm = get_task_mm(event->ctx->task);
8007 if (!mm)
8008 goto restart;
8010 down_read(&mm->mmap_sem);
8012 raw_spin_lock_irqsave(&ifh->lock, flags);
8013 list_for_each_entry(filter, &ifh->list, entry) {
8014 event->addr_filters_offs[count] = 0;
8017 * Adjust base offset if the filter is associated to a binary
8018 * that needs to be mapped:
8020 if (filter->inode)
8021 event->addr_filters_offs[count] =
8022 perf_addr_filter_apply(filter, mm);
8024 count++;
8027 event->addr_filters_gen++;
8028 raw_spin_unlock_irqrestore(&ifh->lock, flags);
8030 up_read(&mm->mmap_sem);
8032 mmput(mm);
8034 restart:
8035 perf_event_stop(event, 1);
8039 * Address range filtering: limiting the data to certain
8040 * instruction address ranges. Filters are ioctl()ed to us from
8041 * userspace as ascii strings.
8043 * Filter string format:
8045 * ACTION RANGE_SPEC
8046 * where ACTION is one of the
8047 * * "filter": limit the trace to this region
8048 * * "start": start tracing from this address
8049 * * "stop": stop tracing at this address/region;
8050 * RANGE_SPEC is
8051 * * for kernel addresses: <start address>[/<size>]
8052 * * for object files: <start address>[/<size>]@</path/to/object/file>
8054 * if <size> is not specified, the range is treated as a single address.
8056 enum {
8057 IF_ACT_NONE = -1,
8058 IF_ACT_FILTER,
8059 IF_ACT_START,
8060 IF_ACT_STOP,
8061 IF_SRC_FILE,
8062 IF_SRC_KERNEL,
8063 IF_SRC_FILEADDR,
8064 IF_SRC_KERNELADDR,
8067 enum {
8068 IF_STATE_ACTION = 0,
8069 IF_STATE_SOURCE,
8070 IF_STATE_END,
8073 static const match_table_t if_tokens = {
8074 { IF_ACT_FILTER, "filter" },
8075 { IF_ACT_START, "start" },
8076 { IF_ACT_STOP, "stop" },
8077 { IF_SRC_FILE, "%u/%u@%s" },
8078 { IF_SRC_KERNEL, "%u/%u" },
8079 { IF_SRC_FILEADDR, "%u@%s" },
8080 { IF_SRC_KERNELADDR, "%u" },
8081 { IF_ACT_NONE, NULL },
8085 * Address filter string parser
8087 static int
8088 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
8089 struct list_head *filters)
8091 struct perf_addr_filter *filter = NULL;
8092 char *start, *orig, *filename = NULL;
8093 struct path path;
8094 substring_t args[MAX_OPT_ARGS];
8095 int state = IF_STATE_ACTION, token;
8096 unsigned int kernel = 0;
8097 int ret = -EINVAL;
8099 orig = fstr = kstrdup(fstr, GFP_KERNEL);
8100 if (!fstr)
8101 return -ENOMEM;
8103 while ((start = strsep(&fstr, " ,\n")) != NULL) {
8104 ret = -EINVAL;
8106 if (!*start)
8107 continue;
8109 /* filter definition begins */
8110 if (state == IF_STATE_ACTION) {
8111 filter = perf_addr_filter_new(event, filters);
8112 if (!filter)
8113 goto fail;
8116 token = match_token(start, if_tokens, args);
8117 switch (token) {
8118 case IF_ACT_FILTER:
8119 case IF_ACT_START:
8120 filter->filter = 1;
8122 case IF_ACT_STOP:
8123 if (state != IF_STATE_ACTION)
8124 goto fail;
8126 state = IF_STATE_SOURCE;
8127 break;
8129 case IF_SRC_KERNELADDR:
8130 case IF_SRC_KERNEL:
8131 kernel = 1;
8133 case IF_SRC_FILEADDR:
8134 case IF_SRC_FILE:
8135 if (state != IF_STATE_SOURCE)
8136 goto fail;
8138 if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
8139 filter->range = 1;
8141 *args[0].to = 0;
8142 ret = kstrtoul(args[0].from, 0, &filter->offset);
8143 if (ret)
8144 goto fail;
8146 if (filter->range) {
8147 *args[1].to = 0;
8148 ret = kstrtoul(args[1].from, 0, &filter->size);
8149 if (ret)
8150 goto fail;
8153 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8154 int fpos = filter->range ? 2 : 1;
8156 filename = match_strdup(&args[fpos]);
8157 if (!filename) {
8158 ret = -ENOMEM;
8159 goto fail;
8163 state = IF_STATE_END;
8164 break;
8166 default:
8167 goto fail;
8171 * Filter definition is fully parsed, validate and install it.
8172 * Make sure that it doesn't contradict itself or the event's
8173 * attribute.
8175 if (state == IF_STATE_END) {
8176 if (kernel && event->attr.exclude_kernel)
8177 goto fail;
8179 if (!kernel) {
8180 if (!filename)
8181 goto fail;
8183 /* look up the path and grab its inode */
8184 ret = kern_path(filename, LOOKUP_FOLLOW, &path);
8185 if (ret)
8186 goto fail_free_name;
8188 filter->inode = igrab(d_inode(path.dentry));
8189 path_put(&path);
8190 kfree(filename);
8191 filename = NULL;
8193 ret = -EINVAL;
8194 if (!filter->inode ||
8195 !S_ISREG(filter->inode->i_mode))
8196 /* free_filters_list() will iput() */
8197 goto fail;
8200 /* ready to consume more filters */
8201 state = IF_STATE_ACTION;
8202 filter = NULL;
8206 if (state != IF_STATE_ACTION)
8207 goto fail;
8209 kfree(orig);
8211 return 0;
8213 fail_free_name:
8214 kfree(filename);
8215 fail:
8216 free_filters_list(filters);
8217 kfree(orig);
8219 return ret;
8222 static int
8223 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
8225 LIST_HEAD(filters);
8226 int ret;
8229 * Since this is called in perf_ioctl() path, we're already holding
8230 * ctx::mutex.
8232 lockdep_assert_held(&event->ctx->mutex);
8234 if (WARN_ON_ONCE(event->parent))
8235 return -EINVAL;
8238 * For now, we only support filtering in per-task events; doing so
8239 * for CPU-wide events requires additional context switching trickery,
8240 * since same object code will be mapped at different virtual
8241 * addresses in different processes.
8243 if (!event->ctx->task)
8244 return -EOPNOTSUPP;
8246 ret = perf_event_parse_addr_filter(event, filter_str, &filters);
8247 if (ret)
8248 return ret;
8250 ret = event->pmu->addr_filters_validate(&filters);
8251 if (ret) {
8252 free_filters_list(&filters);
8253 return ret;
8256 /* remove existing filters, if any */
8257 perf_addr_filters_splice(event, &filters);
8259 /* install new filters */
8260 perf_event_for_each_child(event, perf_event_addr_filters_apply);
8262 return ret;
8265 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
8267 char *filter_str;
8268 int ret = -EINVAL;
8270 if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
8271 !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
8272 !has_addr_filter(event))
8273 return -EINVAL;
8275 filter_str = strndup_user(arg, PAGE_SIZE);
8276 if (IS_ERR(filter_str))
8277 return PTR_ERR(filter_str);
8279 if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
8280 event->attr.type == PERF_TYPE_TRACEPOINT)
8281 ret = ftrace_profile_set_filter(event, event->attr.config,
8282 filter_str);
8283 else if (has_addr_filter(event))
8284 ret = perf_event_set_addr_filter(event, filter_str);
8286 kfree(filter_str);
8287 return ret;
8291 * hrtimer based swevent callback
8294 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
8296 enum hrtimer_restart ret = HRTIMER_RESTART;
8297 struct perf_sample_data data;
8298 struct pt_regs *regs;
8299 struct perf_event *event;
8300 u64 period;
8302 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
8304 if (event->state != PERF_EVENT_STATE_ACTIVE)
8305 return HRTIMER_NORESTART;
8307 event->pmu->read(event);
8309 perf_sample_data_init(&data, 0, event->hw.last_period);
8310 regs = get_irq_regs();
8312 if (regs && !perf_exclude_event(event, regs)) {
8313 if (!(event->attr.exclude_idle && is_idle_task(current)))
8314 if (__perf_event_overflow(event, 1, &data, regs))
8315 ret = HRTIMER_NORESTART;
8318 period = max_t(u64, 10000, event->hw.sample_period);
8319 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
8321 return ret;
8324 static void perf_swevent_start_hrtimer(struct perf_event *event)
8326 struct hw_perf_event *hwc = &event->hw;
8327 s64 period;
8329 if (!is_sampling_event(event))
8330 return;
8332 period = local64_read(&hwc->period_left);
8333 if (period) {
8334 if (period < 0)
8335 period = 10000;
8337 local64_set(&hwc->period_left, 0);
8338 } else {
8339 period = max_t(u64, 10000, hwc->sample_period);
8341 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8342 HRTIMER_MODE_REL_PINNED);
8345 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
8347 struct hw_perf_event *hwc = &event->hw;
8349 if (is_sampling_event(event)) {
8350 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
8351 local64_set(&hwc->period_left, ktime_to_ns(remaining));
8353 hrtimer_cancel(&hwc->hrtimer);
8357 static void perf_swevent_init_hrtimer(struct perf_event *event)
8359 struct hw_perf_event *hwc = &event->hw;
8361 if (!is_sampling_event(event))
8362 return;
8364 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8365 hwc->hrtimer.function = perf_swevent_hrtimer;
8368 * Since hrtimers have a fixed rate, we can do a static freq->period
8369 * mapping and avoid the whole period adjust feedback stuff.
8371 if (event->attr.freq) {
8372 long freq = event->attr.sample_freq;
8374 event->attr.sample_period = NSEC_PER_SEC / freq;
8375 hwc->sample_period = event->attr.sample_period;
8376 local64_set(&hwc->period_left, hwc->sample_period);
8377 hwc->last_period = hwc->sample_period;
8378 event->attr.freq = 0;
8383 * Software event: cpu wall time clock
8386 static void cpu_clock_event_update(struct perf_event *event)
8388 s64 prev;
8389 u64 now;
8391 now = local_clock();
8392 prev = local64_xchg(&event->hw.prev_count, now);
8393 local64_add(now - prev, &event->count);
8396 static void cpu_clock_event_start(struct perf_event *event, int flags)
8398 local64_set(&event->hw.prev_count, local_clock());
8399 perf_swevent_start_hrtimer(event);
8402 static void cpu_clock_event_stop(struct perf_event *event, int flags)
8404 perf_swevent_cancel_hrtimer(event);
8405 cpu_clock_event_update(event);
8408 static int cpu_clock_event_add(struct perf_event *event, int flags)
8410 if (flags & PERF_EF_START)
8411 cpu_clock_event_start(event, flags);
8412 perf_event_update_userpage(event);
8414 return 0;
8417 static void cpu_clock_event_del(struct perf_event *event, int flags)
8419 cpu_clock_event_stop(event, flags);
8422 static void cpu_clock_event_read(struct perf_event *event)
8424 cpu_clock_event_update(event);
8427 static int cpu_clock_event_init(struct perf_event *event)
8429 if (event->attr.type != PERF_TYPE_SOFTWARE)
8430 return -ENOENT;
8432 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8433 return -ENOENT;
8436 * no branch sampling for software events
8438 if (has_branch_stack(event))
8439 return -EOPNOTSUPP;
8441 perf_swevent_init_hrtimer(event);
8443 return 0;
8446 static struct pmu perf_cpu_clock = {
8447 .task_ctx_nr = perf_sw_context,
8449 .capabilities = PERF_PMU_CAP_NO_NMI,
8451 .event_init = cpu_clock_event_init,
8452 .add = cpu_clock_event_add,
8453 .del = cpu_clock_event_del,
8454 .start = cpu_clock_event_start,
8455 .stop = cpu_clock_event_stop,
8456 .read = cpu_clock_event_read,
8460 * Software event: task time clock
8463 static void task_clock_event_update(struct perf_event *event, u64 now)
8465 u64 prev;
8466 s64 delta;
8468 prev = local64_xchg(&event->hw.prev_count, now);
8469 delta = now - prev;
8470 local64_add(delta, &event->count);
8473 static void task_clock_event_start(struct perf_event *event, int flags)
8475 local64_set(&event->hw.prev_count, event->ctx->time);
8476 perf_swevent_start_hrtimer(event);
8479 static void task_clock_event_stop(struct perf_event *event, int flags)
8481 perf_swevent_cancel_hrtimer(event);
8482 task_clock_event_update(event, event->ctx->time);
8485 static int task_clock_event_add(struct perf_event *event, int flags)
8487 if (flags & PERF_EF_START)
8488 task_clock_event_start(event, flags);
8489 perf_event_update_userpage(event);
8491 return 0;
8494 static void task_clock_event_del(struct perf_event *event, int flags)
8496 task_clock_event_stop(event, PERF_EF_UPDATE);
8499 static void task_clock_event_read(struct perf_event *event)
8501 u64 now = perf_clock();
8502 u64 delta = now - event->ctx->timestamp;
8503 u64 time = event->ctx->time + delta;
8505 task_clock_event_update(event, time);
8508 static int task_clock_event_init(struct perf_event *event)
8510 if (event->attr.type != PERF_TYPE_SOFTWARE)
8511 return -ENOENT;
8513 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8514 return -ENOENT;
8517 * no branch sampling for software events
8519 if (has_branch_stack(event))
8520 return -EOPNOTSUPP;
8522 perf_swevent_init_hrtimer(event);
8524 return 0;
8527 static struct pmu perf_task_clock = {
8528 .task_ctx_nr = perf_sw_context,
8530 .capabilities = PERF_PMU_CAP_NO_NMI,
8532 .event_init = task_clock_event_init,
8533 .add = task_clock_event_add,
8534 .del = task_clock_event_del,
8535 .start = task_clock_event_start,
8536 .stop = task_clock_event_stop,
8537 .read = task_clock_event_read,
8540 static void perf_pmu_nop_void(struct pmu *pmu)
8544 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8548 static int perf_pmu_nop_int(struct pmu *pmu)
8550 return 0;
8553 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
8555 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
8557 __this_cpu_write(nop_txn_flags, flags);
8559 if (flags & ~PERF_PMU_TXN_ADD)
8560 return;
8562 perf_pmu_disable(pmu);
8565 static int perf_pmu_commit_txn(struct pmu *pmu)
8567 unsigned int flags = __this_cpu_read(nop_txn_flags);
8569 __this_cpu_write(nop_txn_flags, 0);
8571 if (flags & ~PERF_PMU_TXN_ADD)
8572 return 0;
8574 perf_pmu_enable(pmu);
8575 return 0;
8578 static void perf_pmu_cancel_txn(struct pmu *pmu)
8580 unsigned int flags = __this_cpu_read(nop_txn_flags);
8582 __this_cpu_write(nop_txn_flags, 0);
8584 if (flags & ~PERF_PMU_TXN_ADD)
8585 return;
8587 perf_pmu_enable(pmu);
8590 static int perf_event_idx_default(struct perf_event *event)
8592 return 0;
8596 * Ensures all contexts with the same task_ctx_nr have the same
8597 * pmu_cpu_context too.
8599 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
8601 struct pmu *pmu;
8603 if (ctxn < 0)
8604 return NULL;
8606 list_for_each_entry(pmu, &pmus, entry) {
8607 if (pmu->task_ctx_nr == ctxn)
8608 return pmu->pmu_cpu_context;
8611 return NULL;
8614 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
8616 int cpu;
8618 for_each_possible_cpu(cpu) {
8619 struct perf_cpu_context *cpuctx;
8621 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8623 if (cpuctx->unique_pmu == old_pmu)
8624 cpuctx->unique_pmu = pmu;
8628 static void free_pmu_context(struct pmu *pmu)
8630 struct pmu *i;
8632 mutex_lock(&pmus_lock);
8634 * Like a real lame refcount.
8636 list_for_each_entry(i, &pmus, entry) {
8637 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
8638 update_pmu_context(i, pmu);
8639 goto out;
8643 free_percpu(pmu->pmu_cpu_context);
8644 out:
8645 mutex_unlock(&pmus_lock);
8649 * Let userspace know that this PMU supports address range filtering:
8651 static ssize_t nr_addr_filters_show(struct device *dev,
8652 struct device_attribute *attr,
8653 char *page)
8655 struct pmu *pmu = dev_get_drvdata(dev);
8657 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
8659 DEVICE_ATTR_RO(nr_addr_filters);
8661 static struct idr pmu_idr;
8663 static ssize_t
8664 type_show(struct device *dev, struct device_attribute *attr, char *page)
8666 struct pmu *pmu = dev_get_drvdata(dev);
8668 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
8670 static DEVICE_ATTR_RO(type);
8672 static ssize_t
8673 perf_event_mux_interval_ms_show(struct device *dev,
8674 struct device_attribute *attr,
8675 char *page)
8677 struct pmu *pmu = dev_get_drvdata(dev);
8679 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
8682 static DEFINE_MUTEX(mux_interval_mutex);
8684 static ssize_t
8685 perf_event_mux_interval_ms_store(struct device *dev,
8686 struct device_attribute *attr,
8687 const char *buf, size_t count)
8689 struct pmu *pmu = dev_get_drvdata(dev);
8690 int timer, cpu, ret;
8692 ret = kstrtoint(buf, 0, &timer);
8693 if (ret)
8694 return ret;
8696 if (timer < 1)
8697 return -EINVAL;
8699 /* same value, noting to do */
8700 if (timer == pmu->hrtimer_interval_ms)
8701 return count;
8703 mutex_lock(&mux_interval_mutex);
8704 pmu->hrtimer_interval_ms = timer;
8706 /* update all cpuctx for this PMU */
8707 get_online_cpus();
8708 for_each_online_cpu(cpu) {
8709 struct perf_cpu_context *cpuctx;
8710 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8711 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
8713 cpu_function_call(cpu,
8714 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
8716 put_online_cpus();
8717 mutex_unlock(&mux_interval_mutex);
8719 return count;
8721 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
8723 static struct attribute *pmu_dev_attrs[] = {
8724 &dev_attr_type.attr,
8725 &dev_attr_perf_event_mux_interval_ms.attr,
8726 NULL,
8728 ATTRIBUTE_GROUPS(pmu_dev);
8730 static int pmu_bus_running;
8731 static struct bus_type pmu_bus = {
8732 .name = "event_source",
8733 .dev_groups = pmu_dev_groups,
8736 static void pmu_dev_release(struct device *dev)
8738 kfree(dev);
8741 static int pmu_dev_alloc(struct pmu *pmu)
8743 int ret = -ENOMEM;
8745 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
8746 if (!pmu->dev)
8747 goto out;
8749 pmu->dev->groups = pmu->attr_groups;
8750 device_initialize(pmu->dev);
8751 ret = dev_set_name(pmu->dev, "%s", pmu->name);
8752 if (ret)
8753 goto free_dev;
8755 dev_set_drvdata(pmu->dev, pmu);
8756 pmu->dev->bus = &pmu_bus;
8757 pmu->dev->release = pmu_dev_release;
8758 ret = device_add(pmu->dev);
8759 if (ret)
8760 goto free_dev;
8762 /* For PMUs with address filters, throw in an extra attribute: */
8763 if (pmu->nr_addr_filters)
8764 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
8766 if (ret)
8767 goto del_dev;
8769 out:
8770 return ret;
8772 del_dev:
8773 device_del(pmu->dev);
8775 free_dev:
8776 put_device(pmu->dev);
8777 goto out;
8780 static struct lock_class_key cpuctx_mutex;
8781 static struct lock_class_key cpuctx_lock;
8783 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
8785 int cpu, ret;
8787 mutex_lock(&pmus_lock);
8788 ret = -ENOMEM;
8789 pmu->pmu_disable_count = alloc_percpu(int);
8790 if (!pmu->pmu_disable_count)
8791 goto unlock;
8793 pmu->type = -1;
8794 if (!name)
8795 goto skip_type;
8796 pmu->name = name;
8798 if (type < 0) {
8799 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
8800 if (type < 0) {
8801 ret = type;
8802 goto free_pdc;
8805 pmu->type = type;
8807 if (pmu_bus_running) {
8808 ret = pmu_dev_alloc(pmu);
8809 if (ret)
8810 goto free_idr;
8813 skip_type:
8814 if (pmu->task_ctx_nr == perf_hw_context) {
8815 static int hw_context_taken = 0;
8818 * Other than systems with heterogeneous CPUs, it never makes
8819 * sense for two PMUs to share perf_hw_context. PMUs which are
8820 * uncore must use perf_invalid_context.
8822 if (WARN_ON_ONCE(hw_context_taken &&
8823 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
8824 pmu->task_ctx_nr = perf_invalid_context;
8826 hw_context_taken = 1;
8829 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
8830 if (pmu->pmu_cpu_context)
8831 goto got_cpu_context;
8833 ret = -ENOMEM;
8834 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
8835 if (!pmu->pmu_cpu_context)
8836 goto free_dev;
8838 for_each_possible_cpu(cpu) {
8839 struct perf_cpu_context *cpuctx;
8841 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8842 __perf_event_init_context(&cpuctx->ctx);
8843 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
8844 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
8845 cpuctx->ctx.pmu = pmu;
8847 __perf_mux_hrtimer_init(cpuctx, cpu);
8849 cpuctx->unique_pmu = pmu;
8852 got_cpu_context:
8853 if (!pmu->start_txn) {
8854 if (pmu->pmu_enable) {
8856 * If we have pmu_enable/pmu_disable calls, install
8857 * transaction stubs that use that to try and batch
8858 * hardware accesses.
8860 pmu->start_txn = perf_pmu_start_txn;
8861 pmu->commit_txn = perf_pmu_commit_txn;
8862 pmu->cancel_txn = perf_pmu_cancel_txn;
8863 } else {
8864 pmu->start_txn = perf_pmu_nop_txn;
8865 pmu->commit_txn = perf_pmu_nop_int;
8866 pmu->cancel_txn = perf_pmu_nop_void;
8870 if (!pmu->pmu_enable) {
8871 pmu->pmu_enable = perf_pmu_nop_void;
8872 pmu->pmu_disable = perf_pmu_nop_void;
8875 if (!pmu->event_idx)
8876 pmu->event_idx = perf_event_idx_default;
8878 list_add_rcu(&pmu->entry, &pmus);
8879 atomic_set(&pmu->exclusive_cnt, 0);
8880 ret = 0;
8881 unlock:
8882 mutex_unlock(&pmus_lock);
8884 return ret;
8886 free_dev:
8887 device_del(pmu->dev);
8888 put_device(pmu->dev);
8890 free_idr:
8891 if (pmu->type >= PERF_TYPE_MAX)
8892 idr_remove(&pmu_idr, pmu->type);
8894 free_pdc:
8895 free_percpu(pmu->pmu_disable_count);
8896 goto unlock;
8898 EXPORT_SYMBOL_GPL(perf_pmu_register);
8900 void perf_pmu_unregister(struct pmu *pmu)
8902 int remove_device;
8904 mutex_lock(&pmus_lock);
8905 remove_device = pmu_bus_running;
8906 list_del_rcu(&pmu->entry);
8907 mutex_unlock(&pmus_lock);
8910 * We dereference the pmu list under both SRCU and regular RCU, so
8911 * synchronize against both of those.
8913 synchronize_srcu(&pmus_srcu);
8914 synchronize_rcu();
8916 free_percpu(pmu->pmu_disable_count);
8917 if (pmu->type >= PERF_TYPE_MAX)
8918 idr_remove(&pmu_idr, pmu->type);
8919 if (remove_device) {
8920 if (pmu->nr_addr_filters)
8921 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
8922 device_del(pmu->dev);
8923 put_device(pmu->dev);
8925 free_pmu_context(pmu);
8927 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
8929 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
8931 struct perf_event_context *ctx = NULL;
8932 int ret;
8934 if (!try_module_get(pmu->module))
8935 return -ENODEV;
8937 if (event->group_leader != event) {
8939 * This ctx->mutex can nest when we're called through
8940 * inheritance. See the perf_event_ctx_lock_nested() comment.
8942 ctx = perf_event_ctx_lock_nested(event->group_leader,
8943 SINGLE_DEPTH_NESTING);
8944 BUG_ON(!ctx);
8947 event->pmu = pmu;
8948 ret = pmu->event_init(event);
8950 if (ctx)
8951 perf_event_ctx_unlock(event->group_leader, ctx);
8953 if (ret)
8954 module_put(pmu->module);
8956 return ret;
8959 static struct pmu *perf_init_event(struct perf_event *event)
8961 struct pmu *pmu = NULL;
8962 int idx;
8963 int ret;
8965 idx = srcu_read_lock(&pmus_srcu);
8967 rcu_read_lock();
8968 pmu = idr_find(&pmu_idr, event->attr.type);
8969 rcu_read_unlock();
8970 if (pmu) {
8971 ret = perf_try_init_event(pmu, event);
8972 if (ret)
8973 pmu = ERR_PTR(ret);
8974 goto unlock;
8977 list_for_each_entry_rcu(pmu, &pmus, entry) {
8978 ret = perf_try_init_event(pmu, event);
8979 if (!ret)
8980 goto unlock;
8982 if (ret != -ENOENT) {
8983 pmu = ERR_PTR(ret);
8984 goto unlock;
8987 pmu = ERR_PTR(-ENOENT);
8988 unlock:
8989 srcu_read_unlock(&pmus_srcu, idx);
8991 return pmu;
8994 static void attach_sb_event(struct perf_event *event)
8996 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
8998 raw_spin_lock(&pel->lock);
8999 list_add_rcu(&event->sb_list, &pel->list);
9000 raw_spin_unlock(&pel->lock);
9004 * We keep a list of all !task (and therefore per-cpu) events
9005 * that need to receive side-band records.
9007 * This avoids having to scan all the various PMU per-cpu contexts
9008 * looking for them.
9010 static void account_pmu_sb_event(struct perf_event *event)
9012 if (is_sb_event(event))
9013 attach_sb_event(event);
9016 static void account_event_cpu(struct perf_event *event, int cpu)
9018 if (event->parent)
9019 return;
9021 if (is_cgroup_event(event))
9022 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
9025 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
9026 static void account_freq_event_nohz(void)
9028 #ifdef CONFIG_NO_HZ_FULL
9029 /* Lock so we don't race with concurrent unaccount */
9030 spin_lock(&nr_freq_lock);
9031 if (atomic_inc_return(&nr_freq_events) == 1)
9032 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
9033 spin_unlock(&nr_freq_lock);
9034 #endif
9037 static void account_freq_event(void)
9039 if (tick_nohz_full_enabled())
9040 account_freq_event_nohz();
9041 else
9042 atomic_inc(&nr_freq_events);
9046 static void account_event(struct perf_event *event)
9048 bool inc = false;
9050 if (event->parent)
9051 return;
9053 if (event->attach_state & PERF_ATTACH_TASK)
9054 inc = true;
9055 if (event->attr.mmap || event->attr.mmap_data)
9056 atomic_inc(&nr_mmap_events);
9057 if (event->attr.comm)
9058 atomic_inc(&nr_comm_events);
9059 if (event->attr.task)
9060 atomic_inc(&nr_task_events);
9061 if (event->attr.freq)
9062 account_freq_event();
9063 if (event->attr.context_switch) {
9064 atomic_inc(&nr_switch_events);
9065 inc = true;
9067 if (has_branch_stack(event))
9068 inc = true;
9069 if (is_cgroup_event(event))
9070 inc = true;
9072 if (inc) {
9073 if (atomic_inc_not_zero(&perf_sched_count))
9074 goto enabled;
9076 mutex_lock(&perf_sched_mutex);
9077 if (!atomic_read(&perf_sched_count)) {
9078 static_branch_enable(&perf_sched_events);
9080 * Guarantee that all CPUs observe they key change and
9081 * call the perf scheduling hooks before proceeding to
9082 * install events that need them.
9084 synchronize_sched();
9087 * Now that we have waited for the sync_sched(), allow further
9088 * increments to by-pass the mutex.
9090 atomic_inc(&perf_sched_count);
9091 mutex_unlock(&perf_sched_mutex);
9093 enabled:
9095 account_event_cpu(event, event->cpu);
9097 account_pmu_sb_event(event);
9101 * Allocate and initialize a event structure
9103 static struct perf_event *
9104 perf_event_alloc(struct perf_event_attr *attr, int cpu,
9105 struct task_struct *task,
9106 struct perf_event *group_leader,
9107 struct perf_event *parent_event,
9108 perf_overflow_handler_t overflow_handler,
9109 void *context, int cgroup_fd)
9111 struct pmu *pmu;
9112 struct perf_event *event;
9113 struct hw_perf_event *hwc;
9114 long err = -EINVAL;
9116 if ((unsigned)cpu >= nr_cpu_ids) {
9117 if (!task || cpu != -1)
9118 return ERR_PTR(-EINVAL);
9121 event = kzalloc(sizeof(*event), GFP_KERNEL);
9122 if (!event)
9123 return ERR_PTR(-ENOMEM);
9126 * Single events are their own group leaders, with an
9127 * empty sibling list:
9129 if (!group_leader)
9130 group_leader = event;
9132 mutex_init(&event->child_mutex);
9133 INIT_LIST_HEAD(&event->child_list);
9135 INIT_LIST_HEAD(&event->group_entry);
9136 INIT_LIST_HEAD(&event->event_entry);
9137 INIT_LIST_HEAD(&event->sibling_list);
9138 INIT_LIST_HEAD(&event->rb_entry);
9139 INIT_LIST_HEAD(&event->active_entry);
9140 INIT_LIST_HEAD(&event->addr_filters.list);
9141 INIT_HLIST_NODE(&event->hlist_entry);
9144 init_waitqueue_head(&event->waitq);
9145 init_irq_work(&event->pending, perf_pending_event);
9147 mutex_init(&event->mmap_mutex);
9148 raw_spin_lock_init(&event->addr_filters.lock);
9150 atomic_long_set(&event->refcount, 1);
9151 event->cpu = cpu;
9152 event->attr = *attr;
9153 event->group_leader = group_leader;
9154 event->pmu = NULL;
9155 event->oncpu = -1;
9157 event->parent = parent_event;
9159 event->ns = get_pid_ns(task_active_pid_ns(current));
9160 event->id = atomic64_inc_return(&perf_event_id);
9162 event->state = PERF_EVENT_STATE_INACTIVE;
9164 if (task) {
9165 event->attach_state = PERF_ATTACH_TASK;
9167 * XXX pmu::event_init needs to know what task to account to
9168 * and we cannot use the ctx information because we need the
9169 * pmu before we get a ctx.
9171 event->hw.target = task;
9174 event->clock = &local_clock;
9175 if (parent_event)
9176 event->clock = parent_event->clock;
9178 if (!overflow_handler && parent_event) {
9179 overflow_handler = parent_event->overflow_handler;
9180 context = parent_event->overflow_handler_context;
9181 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
9182 if (overflow_handler == bpf_overflow_handler) {
9183 struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
9185 if (IS_ERR(prog)) {
9186 err = PTR_ERR(prog);
9187 goto err_ns;
9189 event->prog = prog;
9190 event->orig_overflow_handler =
9191 parent_event->orig_overflow_handler;
9193 #endif
9196 if (overflow_handler) {
9197 event->overflow_handler = overflow_handler;
9198 event->overflow_handler_context = context;
9199 } else if (is_write_backward(event)){
9200 event->overflow_handler = perf_event_output_backward;
9201 event->overflow_handler_context = NULL;
9202 } else {
9203 event->overflow_handler = perf_event_output_forward;
9204 event->overflow_handler_context = NULL;
9207 perf_event__state_init(event);
9209 pmu = NULL;
9211 hwc = &event->hw;
9212 hwc->sample_period = attr->sample_period;
9213 if (attr->freq && attr->sample_freq)
9214 hwc->sample_period = 1;
9215 hwc->last_period = hwc->sample_period;
9217 local64_set(&hwc->period_left, hwc->sample_period);
9220 * we currently do not support PERF_FORMAT_GROUP on inherited events
9222 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
9223 goto err_ns;
9225 if (!has_branch_stack(event))
9226 event->attr.branch_sample_type = 0;
9228 if (cgroup_fd != -1) {
9229 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
9230 if (err)
9231 goto err_ns;
9234 pmu = perf_init_event(event);
9235 if (!pmu)
9236 goto err_ns;
9237 else if (IS_ERR(pmu)) {
9238 err = PTR_ERR(pmu);
9239 goto err_ns;
9242 err = exclusive_event_init(event);
9243 if (err)
9244 goto err_pmu;
9246 if (has_addr_filter(event)) {
9247 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
9248 sizeof(unsigned long),
9249 GFP_KERNEL);
9250 if (!event->addr_filters_offs)
9251 goto err_per_task;
9253 /* force hw sync on the address filters */
9254 event->addr_filters_gen = 1;
9257 if (!event->parent) {
9258 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
9259 err = get_callchain_buffers(attr->sample_max_stack);
9260 if (err)
9261 goto err_addr_filters;
9265 /* symmetric to unaccount_event() in _free_event() */
9266 account_event(event);
9268 return event;
9270 err_addr_filters:
9271 kfree(event->addr_filters_offs);
9273 err_per_task:
9274 exclusive_event_destroy(event);
9276 err_pmu:
9277 if (event->destroy)
9278 event->destroy(event);
9279 module_put(pmu->module);
9280 err_ns:
9281 if (is_cgroup_event(event))
9282 perf_detach_cgroup(event);
9283 if (event->ns)
9284 put_pid_ns(event->ns);
9285 kfree(event);
9287 return ERR_PTR(err);
9290 static int perf_copy_attr(struct perf_event_attr __user *uattr,
9291 struct perf_event_attr *attr)
9293 u32 size;
9294 int ret;
9296 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
9297 return -EFAULT;
9300 * zero the full structure, so that a short copy will be nice.
9302 memset(attr, 0, sizeof(*attr));
9304 ret = get_user(size, &uattr->size);
9305 if (ret)
9306 return ret;
9308 if (size > PAGE_SIZE) /* silly large */
9309 goto err_size;
9311 if (!size) /* abi compat */
9312 size = PERF_ATTR_SIZE_VER0;
9314 if (size < PERF_ATTR_SIZE_VER0)
9315 goto err_size;
9318 * If we're handed a bigger struct than we know of,
9319 * ensure all the unknown bits are 0 - i.e. new
9320 * user-space does not rely on any kernel feature
9321 * extensions we dont know about yet.
9323 if (size > sizeof(*attr)) {
9324 unsigned char __user *addr;
9325 unsigned char __user *end;
9326 unsigned char val;
9328 addr = (void __user *)uattr + sizeof(*attr);
9329 end = (void __user *)uattr + size;
9331 for (; addr < end; addr++) {
9332 ret = get_user(val, addr);
9333 if (ret)
9334 return ret;
9335 if (val)
9336 goto err_size;
9338 size = sizeof(*attr);
9341 ret = copy_from_user(attr, uattr, size);
9342 if (ret)
9343 return -EFAULT;
9345 if (attr->__reserved_1)
9346 return -EINVAL;
9348 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
9349 return -EINVAL;
9351 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
9352 return -EINVAL;
9354 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
9355 u64 mask = attr->branch_sample_type;
9357 /* only using defined bits */
9358 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
9359 return -EINVAL;
9361 /* at least one branch bit must be set */
9362 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
9363 return -EINVAL;
9365 /* propagate priv level, when not set for branch */
9366 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
9368 /* exclude_kernel checked on syscall entry */
9369 if (!attr->exclude_kernel)
9370 mask |= PERF_SAMPLE_BRANCH_KERNEL;
9372 if (!attr->exclude_user)
9373 mask |= PERF_SAMPLE_BRANCH_USER;
9375 if (!attr->exclude_hv)
9376 mask |= PERF_SAMPLE_BRANCH_HV;
9378 * adjust user setting (for HW filter setup)
9380 attr->branch_sample_type = mask;
9382 /* privileged levels capture (kernel, hv): check permissions */
9383 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
9384 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9385 return -EACCES;
9388 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
9389 ret = perf_reg_validate(attr->sample_regs_user);
9390 if (ret)
9391 return ret;
9394 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9395 if (!arch_perf_have_user_stack_dump())
9396 return -ENOSYS;
9399 * We have __u32 type for the size, but so far
9400 * we can only use __u16 as maximum due to the
9401 * __u16 sample size limit.
9403 if (attr->sample_stack_user >= USHRT_MAX)
9404 ret = -EINVAL;
9405 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9406 ret = -EINVAL;
9409 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9410 ret = perf_reg_validate(attr->sample_regs_intr);
9411 out:
9412 return ret;
9414 err_size:
9415 put_user(sizeof(*attr), &uattr->size);
9416 ret = -E2BIG;
9417 goto out;
9420 static int
9421 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
9423 struct ring_buffer *rb = NULL;
9424 int ret = -EINVAL;
9426 if (!output_event)
9427 goto set;
9429 /* don't allow circular references */
9430 if (event == output_event)
9431 goto out;
9434 * Don't allow cross-cpu buffers
9436 if (output_event->cpu != event->cpu)
9437 goto out;
9440 * If its not a per-cpu rb, it must be the same task.
9442 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9443 goto out;
9446 * Mixing clocks in the same buffer is trouble you don't need.
9448 if (output_event->clock != event->clock)
9449 goto out;
9452 * Either writing ring buffer from beginning or from end.
9453 * Mixing is not allowed.
9455 if (is_write_backward(output_event) != is_write_backward(event))
9456 goto out;
9459 * If both events generate aux data, they must be on the same PMU
9461 if (has_aux(event) && has_aux(output_event) &&
9462 event->pmu != output_event->pmu)
9463 goto out;
9465 set:
9466 mutex_lock(&event->mmap_mutex);
9467 /* Can't redirect output if we've got an active mmap() */
9468 if (atomic_read(&event->mmap_count))
9469 goto unlock;
9471 if (output_event) {
9472 /* get the rb we want to redirect to */
9473 rb = ring_buffer_get(output_event);
9474 if (!rb)
9475 goto unlock;
9478 ring_buffer_attach(event, rb);
9480 ret = 0;
9481 unlock:
9482 mutex_unlock(&event->mmap_mutex);
9484 out:
9485 return ret;
9488 static void mutex_lock_double(struct mutex *a, struct mutex *b)
9490 if (b < a)
9491 swap(a, b);
9493 mutex_lock(a);
9494 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9497 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9499 bool nmi_safe = false;
9501 switch (clk_id) {
9502 case CLOCK_MONOTONIC:
9503 event->clock = &ktime_get_mono_fast_ns;
9504 nmi_safe = true;
9505 break;
9507 case CLOCK_MONOTONIC_RAW:
9508 event->clock = &ktime_get_raw_fast_ns;
9509 nmi_safe = true;
9510 break;
9512 case CLOCK_REALTIME:
9513 event->clock = &ktime_get_real_ns;
9514 break;
9516 case CLOCK_BOOTTIME:
9517 event->clock = &ktime_get_boot_ns;
9518 break;
9520 case CLOCK_TAI:
9521 event->clock = &ktime_get_tai_ns;
9522 break;
9524 default:
9525 return -EINVAL;
9528 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9529 return -EINVAL;
9531 return 0;
9535 * Variation on perf_event_ctx_lock_nested(), except we take two context
9536 * mutexes.
9538 static struct perf_event_context *
9539 __perf_event_ctx_lock_double(struct perf_event *group_leader,
9540 struct perf_event_context *ctx)
9542 struct perf_event_context *gctx;
9544 again:
9545 rcu_read_lock();
9546 gctx = READ_ONCE(group_leader->ctx);
9547 if (!atomic_inc_not_zero(&gctx->refcount)) {
9548 rcu_read_unlock();
9549 goto again;
9551 rcu_read_unlock();
9553 mutex_lock_double(&gctx->mutex, &ctx->mutex);
9555 if (group_leader->ctx != gctx) {
9556 mutex_unlock(&ctx->mutex);
9557 mutex_unlock(&gctx->mutex);
9558 put_ctx(gctx);
9559 goto again;
9562 return gctx;
9566 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9568 * @attr_uptr: event_id type attributes for monitoring/sampling
9569 * @pid: target pid
9570 * @cpu: target cpu
9571 * @group_fd: group leader event fd
9573 SYSCALL_DEFINE5(perf_event_open,
9574 struct perf_event_attr __user *, attr_uptr,
9575 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
9577 struct perf_event *group_leader = NULL, *output_event = NULL;
9578 struct perf_event *event, *sibling;
9579 struct perf_event_attr attr;
9580 struct perf_event_context *ctx, *uninitialized_var(gctx);
9581 struct file *event_file = NULL;
9582 struct fd group = {NULL, 0};
9583 struct task_struct *task = NULL;
9584 struct pmu *pmu;
9585 int event_fd;
9586 int move_group = 0;
9587 int err;
9588 int f_flags = O_RDWR;
9589 int cgroup_fd = -1;
9591 /* for future expandability... */
9592 if (flags & ~PERF_FLAG_ALL)
9593 return -EINVAL;
9595 err = perf_copy_attr(attr_uptr, &attr);
9596 if (err)
9597 return err;
9599 if (!attr.exclude_kernel) {
9600 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9601 return -EACCES;
9604 if (attr.freq) {
9605 if (attr.sample_freq > sysctl_perf_event_sample_rate)
9606 return -EINVAL;
9607 } else {
9608 if (attr.sample_period & (1ULL << 63))
9609 return -EINVAL;
9612 if (!attr.sample_max_stack)
9613 attr.sample_max_stack = sysctl_perf_event_max_stack;
9616 * In cgroup mode, the pid argument is used to pass the fd
9617 * opened to the cgroup directory in cgroupfs. The cpu argument
9618 * designates the cpu on which to monitor threads from that
9619 * cgroup.
9621 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
9622 return -EINVAL;
9624 if (flags & PERF_FLAG_FD_CLOEXEC)
9625 f_flags |= O_CLOEXEC;
9627 event_fd = get_unused_fd_flags(f_flags);
9628 if (event_fd < 0)
9629 return event_fd;
9631 if (group_fd != -1) {
9632 err = perf_fget_light(group_fd, &group);
9633 if (err)
9634 goto err_fd;
9635 group_leader = group.file->private_data;
9636 if (flags & PERF_FLAG_FD_OUTPUT)
9637 output_event = group_leader;
9638 if (flags & PERF_FLAG_FD_NO_GROUP)
9639 group_leader = NULL;
9642 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
9643 task = find_lively_task_by_vpid(pid);
9644 if (IS_ERR(task)) {
9645 err = PTR_ERR(task);
9646 goto err_group_fd;
9650 if (task && group_leader &&
9651 group_leader->attr.inherit != attr.inherit) {
9652 err = -EINVAL;
9653 goto err_task;
9656 get_online_cpus();
9658 if (task) {
9659 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
9660 if (err)
9661 goto err_cpus;
9664 * Reuse ptrace permission checks for now.
9666 * We must hold cred_guard_mutex across this and any potential
9667 * perf_install_in_context() call for this new event to
9668 * serialize against exec() altering our credentials (and the
9669 * perf_event_exit_task() that could imply).
9671 err = -EACCES;
9672 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
9673 goto err_cred;
9676 if (flags & PERF_FLAG_PID_CGROUP)
9677 cgroup_fd = pid;
9679 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
9680 NULL, NULL, cgroup_fd);
9681 if (IS_ERR(event)) {
9682 err = PTR_ERR(event);
9683 goto err_cred;
9686 if (is_sampling_event(event)) {
9687 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
9688 err = -EOPNOTSUPP;
9689 goto err_alloc;
9694 * Special case software events and allow them to be part of
9695 * any hardware group.
9697 pmu = event->pmu;
9699 if (attr.use_clockid) {
9700 err = perf_event_set_clock(event, attr.clockid);
9701 if (err)
9702 goto err_alloc;
9705 if (pmu->task_ctx_nr == perf_sw_context)
9706 event->event_caps |= PERF_EV_CAP_SOFTWARE;
9708 if (group_leader &&
9709 (is_software_event(event) != is_software_event(group_leader))) {
9710 if (is_software_event(event)) {
9712 * If event and group_leader are not both a software
9713 * event, and event is, then group leader is not.
9715 * Allow the addition of software events to !software
9716 * groups, this is safe because software events never
9717 * fail to schedule.
9719 pmu = group_leader->pmu;
9720 } else if (is_software_event(group_leader) &&
9721 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
9723 * In case the group is a pure software group, and we
9724 * try to add a hardware event, move the whole group to
9725 * the hardware context.
9727 move_group = 1;
9732 * Get the target context (task or percpu):
9734 ctx = find_get_context(pmu, task, event);
9735 if (IS_ERR(ctx)) {
9736 err = PTR_ERR(ctx);
9737 goto err_alloc;
9740 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
9741 err = -EBUSY;
9742 goto err_context;
9746 * Look up the group leader (we will attach this event to it):
9748 if (group_leader) {
9749 err = -EINVAL;
9752 * Do not allow a recursive hierarchy (this new sibling
9753 * becoming part of another group-sibling):
9755 if (group_leader->group_leader != group_leader)
9756 goto err_context;
9758 /* All events in a group should have the same clock */
9759 if (group_leader->clock != event->clock)
9760 goto err_context;
9763 * Do not allow to attach to a group in a different
9764 * task or CPU context:
9766 if (move_group) {
9768 * Make sure we're both on the same task, or both
9769 * per-cpu events.
9771 if (group_leader->ctx->task != ctx->task)
9772 goto err_context;
9775 * Make sure we're both events for the same CPU;
9776 * grouping events for different CPUs is broken; since
9777 * you can never concurrently schedule them anyhow.
9779 if (group_leader->cpu != event->cpu)
9780 goto err_context;
9781 } else {
9782 if (group_leader->ctx != ctx)
9783 goto err_context;
9787 * Only a group leader can be exclusive or pinned
9789 if (attr.exclusive || attr.pinned)
9790 goto err_context;
9793 if (output_event) {
9794 err = perf_event_set_output(event, output_event);
9795 if (err)
9796 goto err_context;
9799 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
9800 f_flags);
9801 if (IS_ERR(event_file)) {
9802 err = PTR_ERR(event_file);
9803 event_file = NULL;
9804 goto err_context;
9807 if (move_group) {
9808 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
9810 if (gctx->task == TASK_TOMBSTONE) {
9811 err = -ESRCH;
9812 goto err_locked;
9816 * Check if we raced against another sys_perf_event_open() call
9817 * moving the software group underneath us.
9819 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
9821 * If someone moved the group out from under us, check
9822 * if this new event wound up on the same ctx, if so
9823 * its the regular !move_group case, otherwise fail.
9825 if (gctx != ctx) {
9826 err = -EINVAL;
9827 goto err_locked;
9828 } else {
9829 perf_event_ctx_unlock(group_leader, gctx);
9830 move_group = 0;
9833 } else {
9834 mutex_lock(&ctx->mutex);
9837 if (ctx->task == TASK_TOMBSTONE) {
9838 err = -ESRCH;
9839 goto err_locked;
9842 if (!perf_event_validate_size(event)) {
9843 err = -E2BIG;
9844 goto err_locked;
9848 * Must be under the same ctx::mutex as perf_install_in_context(),
9849 * because we need to serialize with concurrent event creation.
9851 if (!exclusive_event_installable(event, ctx)) {
9852 /* exclusive and group stuff are assumed mutually exclusive */
9853 WARN_ON_ONCE(move_group);
9855 err = -EBUSY;
9856 goto err_locked;
9859 WARN_ON_ONCE(ctx->parent_ctx);
9862 * This is the point on no return; we cannot fail hereafter. This is
9863 * where we start modifying current state.
9866 if (move_group) {
9868 * See perf_event_ctx_lock() for comments on the details
9869 * of swizzling perf_event::ctx.
9871 perf_remove_from_context(group_leader, 0);
9873 list_for_each_entry(sibling, &group_leader->sibling_list,
9874 group_entry) {
9875 perf_remove_from_context(sibling, 0);
9876 put_ctx(gctx);
9880 * Wait for everybody to stop referencing the events through
9881 * the old lists, before installing it on new lists.
9883 synchronize_rcu();
9886 * Install the group siblings before the group leader.
9888 * Because a group leader will try and install the entire group
9889 * (through the sibling list, which is still in-tact), we can
9890 * end up with siblings installed in the wrong context.
9892 * By installing siblings first we NO-OP because they're not
9893 * reachable through the group lists.
9895 list_for_each_entry(sibling, &group_leader->sibling_list,
9896 group_entry) {
9897 perf_event__state_init(sibling);
9898 perf_install_in_context(ctx, sibling, sibling->cpu);
9899 get_ctx(ctx);
9903 * Removing from the context ends up with disabled
9904 * event. What we want here is event in the initial
9905 * startup state, ready to be add into new context.
9907 perf_event__state_init(group_leader);
9908 perf_install_in_context(ctx, group_leader, group_leader->cpu);
9909 get_ctx(ctx);
9912 * Now that all events are installed in @ctx, nothing
9913 * references @gctx anymore, so drop the last reference we have
9914 * on it.
9916 put_ctx(gctx);
9920 * Precalculate sample_data sizes; do while holding ctx::mutex such
9921 * that we're serialized against further additions and before
9922 * perf_install_in_context() which is the point the event is active and
9923 * can use these values.
9925 perf_event__header_size(event);
9926 perf_event__id_header_size(event);
9928 event->owner = current;
9930 perf_install_in_context(ctx, event, event->cpu);
9931 perf_unpin_context(ctx);
9933 if (move_group)
9934 perf_event_ctx_unlock(group_leader, gctx);
9935 mutex_unlock(&ctx->mutex);
9937 if (task) {
9938 mutex_unlock(&task->signal->cred_guard_mutex);
9939 put_task_struct(task);
9942 put_online_cpus();
9944 mutex_lock(&current->perf_event_mutex);
9945 list_add_tail(&event->owner_entry, &current->perf_event_list);
9946 mutex_unlock(&current->perf_event_mutex);
9949 * Drop the reference on the group_event after placing the
9950 * new event on the sibling_list. This ensures destruction
9951 * of the group leader will find the pointer to itself in
9952 * perf_group_detach().
9954 fdput(group);
9955 fd_install(event_fd, event_file);
9956 return event_fd;
9958 err_locked:
9959 if (move_group)
9960 perf_event_ctx_unlock(group_leader, gctx);
9961 mutex_unlock(&ctx->mutex);
9962 /* err_file: */
9963 fput(event_file);
9964 err_context:
9965 perf_unpin_context(ctx);
9966 put_ctx(ctx);
9967 err_alloc:
9969 * If event_file is set, the fput() above will have called ->release()
9970 * and that will take care of freeing the event.
9972 if (!event_file)
9973 free_event(event);
9974 err_cred:
9975 if (task)
9976 mutex_unlock(&task->signal->cred_guard_mutex);
9977 err_cpus:
9978 put_online_cpus();
9979 err_task:
9980 if (task)
9981 put_task_struct(task);
9982 err_group_fd:
9983 fdput(group);
9984 err_fd:
9985 put_unused_fd(event_fd);
9986 return err;
9990 * perf_event_create_kernel_counter
9992 * @attr: attributes of the counter to create
9993 * @cpu: cpu in which the counter is bound
9994 * @task: task to profile (NULL for percpu)
9996 struct perf_event *
9997 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
9998 struct task_struct *task,
9999 perf_overflow_handler_t overflow_handler,
10000 void *context)
10002 struct perf_event_context *ctx;
10003 struct perf_event *event;
10004 int err;
10007 * Get the target context (task or percpu):
10010 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
10011 overflow_handler, context, -1);
10012 if (IS_ERR(event)) {
10013 err = PTR_ERR(event);
10014 goto err;
10017 /* Mark owner so we could distinguish it from user events. */
10018 event->owner = TASK_TOMBSTONE;
10020 ctx = find_get_context(event->pmu, task, event);
10021 if (IS_ERR(ctx)) {
10022 err = PTR_ERR(ctx);
10023 goto err_free;
10026 WARN_ON_ONCE(ctx->parent_ctx);
10027 mutex_lock(&ctx->mutex);
10028 if (ctx->task == TASK_TOMBSTONE) {
10029 err = -ESRCH;
10030 goto err_unlock;
10033 if (!exclusive_event_installable(event, ctx)) {
10034 err = -EBUSY;
10035 goto err_unlock;
10038 perf_install_in_context(ctx, event, cpu);
10039 perf_unpin_context(ctx);
10040 mutex_unlock(&ctx->mutex);
10042 return event;
10044 err_unlock:
10045 mutex_unlock(&ctx->mutex);
10046 perf_unpin_context(ctx);
10047 put_ctx(ctx);
10048 err_free:
10049 free_event(event);
10050 err:
10051 return ERR_PTR(err);
10053 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
10055 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
10057 struct perf_event_context *src_ctx;
10058 struct perf_event_context *dst_ctx;
10059 struct perf_event *event, *tmp;
10060 LIST_HEAD(events);
10062 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
10063 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
10066 * See perf_event_ctx_lock() for comments on the details
10067 * of swizzling perf_event::ctx.
10069 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
10070 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
10071 event_entry) {
10072 perf_remove_from_context(event, 0);
10073 unaccount_event_cpu(event, src_cpu);
10074 put_ctx(src_ctx);
10075 list_add(&event->migrate_entry, &events);
10079 * Wait for the events to quiesce before re-instating them.
10081 synchronize_rcu();
10084 * Re-instate events in 2 passes.
10086 * Skip over group leaders and only install siblings on this first
10087 * pass, siblings will not get enabled without a leader, however a
10088 * leader will enable its siblings, even if those are still on the old
10089 * context.
10091 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10092 if (event->group_leader == event)
10093 continue;
10095 list_del(&event->migrate_entry);
10096 if (event->state >= PERF_EVENT_STATE_OFF)
10097 event->state = PERF_EVENT_STATE_INACTIVE;
10098 account_event_cpu(event, dst_cpu);
10099 perf_install_in_context(dst_ctx, event, dst_cpu);
10100 get_ctx(dst_ctx);
10104 * Once all the siblings are setup properly, install the group leaders
10105 * to make it go.
10107 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10108 list_del(&event->migrate_entry);
10109 if (event->state >= PERF_EVENT_STATE_OFF)
10110 event->state = PERF_EVENT_STATE_INACTIVE;
10111 account_event_cpu(event, dst_cpu);
10112 perf_install_in_context(dst_ctx, event, dst_cpu);
10113 get_ctx(dst_ctx);
10115 mutex_unlock(&dst_ctx->mutex);
10116 mutex_unlock(&src_ctx->mutex);
10118 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
10120 static void sync_child_event(struct perf_event *child_event,
10121 struct task_struct *child)
10123 struct perf_event *parent_event = child_event->parent;
10124 u64 child_val;
10126 if (child_event->attr.inherit_stat)
10127 perf_event_read_event(child_event, child);
10129 child_val = perf_event_count(child_event);
10132 * Add back the child's count to the parent's count:
10134 atomic64_add(child_val, &parent_event->child_count);
10135 atomic64_add(child_event->total_time_enabled,
10136 &parent_event->child_total_time_enabled);
10137 atomic64_add(child_event->total_time_running,
10138 &parent_event->child_total_time_running);
10141 static void
10142 perf_event_exit_event(struct perf_event *child_event,
10143 struct perf_event_context *child_ctx,
10144 struct task_struct *child)
10146 struct perf_event *parent_event = child_event->parent;
10149 * Do not destroy the 'original' grouping; because of the context
10150 * switch optimization the original events could've ended up in a
10151 * random child task.
10153 * If we were to destroy the original group, all group related
10154 * operations would cease to function properly after this random
10155 * child dies.
10157 * Do destroy all inherited groups, we don't care about those
10158 * and being thorough is better.
10160 raw_spin_lock_irq(&child_ctx->lock);
10161 WARN_ON_ONCE(child_ctx->is_active);
10163 if (parent_event)
10164 perf_group_detach(child_event);
10165 list_del_event(child_event, child_ctx);
10166 child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
10167 raw_spin_unlock_irq(&child_ctx->lock);
10170 * Parent events are governed by their filedesc, retain them.
10172 if (!parent_event) {
10173 perf_event_wakeup(child_event);
10174 return;
10177 * Child events can be cleaned up.
10180 sync_child_event(child_event, child);
10183 * Remove this event from the parent's list
10185 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
10186 mutex_lock(&parent_event->child_mutex);
10187 list_del_init(&child_event->child_list);
10188 mutex_unlock(&parent_event->child_mutex);
10191 * Kick perf_poll() for is_event_hup().
10193 perf_event_wakeup(parent_event);
10194 free_event(child_event);
10195 put_event(parent_event);
10198 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
10200 struct perf_event_context *child_ctx, *clone_ctx = NULL;
10201 struct perf_event *child_event, *next;
10203 WARN_ON_ONCE(child != current);
10205 child_ctx = perf_pin_task_context(child, ctxn);
10206 if (!child_ctx)
10207 return;
10210 * In order to reduce the amount of tricky in ctx tear-down, we hold
10211 * ctx::mutex over the entire thing. This serializes against almost
10212 * everything that wants to access the ctx.
10214 * The exception is sys_perf_event_open() /
10215 * perf_event_create_kernel_count() which does find_get_context()
10216 * without ctx::mutex (it cannot because of the move_group double mutex
10217 * lock thing). See the comments in perf_install_in_context().
10219 mutex_lock(&child_ctx->mutex);
10222 * In a single ctx::lock section, de-schedule the events and detach the
10223 * context from the task such that we cannot ever get it scheduled back
10224 * in.
10226 raw_spin_lock_irq(&child_ctx->lock);
10227 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx);
10230 * Now that the context is inactive, destroy the task <-> ctx relation
10231 * and mark the context dead.
10233 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
10234 put_ctx(child_ctx); /* cannot be last */
10235 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
10236 put_task_struct(current); /* cannot be last */
10238 clone_ctx = unclone_ctx(child_ctx);
10239 raw_spin_unlock_irq(&child_ctx->lock);
10241 if (clone_ctx)
10242 put_ctx(clone_ctx);
10245 * Report the task dead after unscheduling the events so that we
10246 * won't get any samples after PERF_RECORD_EXIT. We can however still
10247 * get a few PERF_RECORD_READ events.
10249 perf_event_task(child, child_ctx, 0);
10251 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
10252 perf_event_exit_event(child_event, child_ctx, child);
10254 mutex_unlock(&child_ctx->mutex);
10256 put_ctx(child_ctx);
10260 * When a child task exits, feed back event values to parent events.
10262 * Can be called with cred_guard_mutex held when called from
10263 * install_exec_creds().
10265 void perf_event_exit_task(struct task_struct *child)
10267 struct perf_event *event, *tmp;
10268 int ctxn;
10270 mutex_lock(&child->perf_event_mutex);
10271 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
10272 owner_entry) {
10273 list_del_init(&event->owner_entry);
10276 * Ensure the list deletion is visible before we clear
10277 * the owner, closes a race against perf_release() where
10278 * we need to serialize on the owner->perf_event_mutex.
10280 smp_store_release(&event->owner, NULL);
10282 mutex_unlock(&child->perf_event_mutex);
10284 for_each_task_context_nr(ctxn)
10285 perf_event_exit_task_context(child, ctxn);
10288 * The perf_event_exit_task_context calls perf_event_task
10289 * with child's task_ctx, which generates EXIT events for
10290 * child contexts and sets child->perf_event_ctxp[] to NULL.
10291 * At this point we need to send EXIT events to cpu contexts.
10293 perf_event_task(child, NULL, 0);
10296 static void perf_free_event(struct perf_event *event,
10297 struct perf_event_context *ctx)
10299 struct perf_event *parent = event->parent;
10301 if (WARN_ON_ONCE(!parent))
10302 return;
10304 mutex_lock(&parent->child_mutex);
10305 list_del_init(&event->child_list);
10306 mutex_unlock(&parent->child_mutex);
10308 put_event(parent);
10310 raw_spin_lock_irq(&ctx->lock);
10311 perf_group_detach(event);
10312 list_del_event(event, ctx);
10313 raw_spin_unlock_irq(&ctx->lock);
10314 free_event(event);
10318 * Free an unexposed, unused context as created by inheritance by
10319 * perf_event_init_task below, used by fork() in case of fail.
10321 * Not all locks are strictly required, but take them anyway to be nice and
10322 * help out with the lockdep assertions.
10324 void perf_event_free_task(struct task_struct *task)
10326 struct perf_event_context *ctx;
10327 struct perf_event *event, *tmp;
10328 int ctxn;
10330 for_each_task_context_nr(ctxn) {
10331 ctx = task->perf_event_ctxp[ctxn];
10332 if (!ctx)
10333 continue;
10335 mutex_lock(&ctx->mutex);
10336 raw_spin_lock_irq(&ctx->lock);
10338 * Destroy the task <-> ctx relation and mark the context dead.
10340 * This is important because even though the task hasn't been
10341 * exposed yet the context has been (through child_list).
10343 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
10344 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
10345 put_task_struct(task); /* cannot be last */
10346 raw_spin_unlock_irq(&ctx->lock);
10347 again:
10348 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
10349 group_entry)
10350 perf_free_event(event, ctx);
10352 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
10353 group_entry)
10354 perf_free_event(event, ctx);
10356 if (!list_empty(&ctx->pinned_groups) ||
10357 !list_empty(&ctx->flexible_groups))
10358 goto again;
10360 mutex_unlock(&ctx->mutex);
10362 put_ctx(ctx);
10366 void perf_event_delayed_put(struct task_struct *task)
10368 int ctxn;
10370 for_each_task_context_nr(ctxn)
10371 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
10374 struct file *perf_event_get(unsigned int fd)
10376 struct file *file;
10378 file = fget_raw(fd);
10379 if (!file)
10380 return ERR_PTR(-EBADF);
10382 if (file->f_op != &perf_fops) {
10383 fput(file);
10384 return ERR_PTR(-EBADF);
10387 return file;
10390 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
10392 if (!event)
10393 return ERR_PTR(-EINVAL);
10395 return &event->attr;
10399 * inherit a event from parent task to child task:
10401 static struct perf_event *
10402 inherit_event(struct perf_event *parent_event,
10403 struct task_struct *parent,
10404 struct perf_event_context *parent_ctx,
10405 struct task_struct *child,
10406 struct perf_event *group_leader,
10407 struct perf_event_context *child_ctx)
10409 enum perf_event_active_state parent_state = parent_event->state;
10410 struct perf_event *child_event;
10411 unsigned long flags;
10414 * Instead of creating recursive hierarchies of events,
10415 * we link inherited events back to the original parent,
10416 * which has a filp for sure, which we use as the reference
10417 * count:
10419 if (parent_event->parent)
10420 parent_event = parent_event->parent;
10422 child_event = perf_event_alloc(&parent_event->attr,
10423 parent_event->cpu,
10424 child,
10425 group_leader, parent_event,
10426 NULL, NULL, -1);
10427 if (IS_ERR(child_event))
10428 return child_event;
10431 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10432 * must be under the same lock in order to serialize against
10433 * perf_event_release_kernel(), such that either we must observe
10434 * is_orphaned_event() or they will observe us on the child_list.
10436 mutex_lock(&parent_event->child_mutex);
10437 if (is_orphaned_event(parent_event) ||
10438 !atomic_long_inc_not_zero(&parent_event->refcount)) {
10439 mutex_unlock(&parent_event->child_mutex);
10440 free_event(child_event);
10441 return NULL;
10444 get_ctx(child_ctx);
10447 * Make the child state follow the state of the parent event,
10448 * not its attr.disabled bit. We hold the parent's mutex,
10449 * so we won't race with perf_event_{en, dis}able_family.
10451 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
10452 child_event->state = PERF_EVENT_STATE_INACTIVE;
10453 else
10454 child_event->state = PERF_EVENT_STATE_OFF;
10456 if (parent_event->attr.freq) {
10457 u64 sample_period = parent_event->hw.sample_period;
10458 struct hw_perf_event *hwc = &child_event->hw;
10460 hwc->sample_period = sample_period;
10461 hwc->last_period = sample_period;
10463 local64_set(&hwc->period_left, sample_period);
10466 child_event->ctx = child_ctx;
10467 child_event->overflow_handler = parent_event->overflow_handler;
10468 child_event->overflow_handler_context
10469 = parent_event->overflow_handler_context;
10472 * Precalculate sample_data sizes
10474 perf_event__header_size(child_event);
10475 perf_event__id_header_size(child_event);
10478 * Link it up in the child's context:
10480 raw_spin_lock_irqsave(&child_ctx->lock, flags);
10481 add_event_to_ctx(child_event, child_ctx);
10482 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
10485 * Link this into the parent event's child list
10487 list_add_tail(&child_event->child_list, &parent_event->child_list);
10488 mutex_unlock(&parent_event->child_mutex);
10490 return child_event;
10493 static int inherit_group(struct perf_event *parent_event,
10494 struct task_struct *parent,
10495 struct perf_event_context *parent_ctx,
10496 struct task_struct *child,
10497 struct perf_event_context *child_ctx)
10499 struct perf_event *leader;
10500 struct perf_event *sub;
10501 struct perf_event *child_ctr;
10503 leader = inherit_event(parent_event, parent, parent_ctx,
10504 child, NULL, child_ctx);
10505 if (IS_ERR(leader))
10506 return PTR_ERR(leader);
10507 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10508 child_ctr = inherit_event(sub, parent, parent_ctx,
10509 child, leader, child_ctx);
10510 if (IS_ERR(child_ctr))
10511 return PTR_ERR(child_ctr);
10513 return 0;
10516 static int
10517 inherit_task_group(struct perf_event *event, struct task_struct *parent,
10518 struct perf_event_context *parent_ctx,
10519 struct task_struct *child, int ctxn,
10520 int *inherited_all)
10522 int ret;
10523 struct perf_event_context *child_ctx;
10525 if (!event->attr.inherit) {
10526 *inherited_all = 0;
10527 return 0;
10530 child_ctx = child->perf_event_ctxp[ctxn];
10531 if (!child_ctx) {
10533 * This is executed from the parent task context, so
10534 * inherit events that have been marked for cloning.
10535 * First allocate and initialize a context for the
10536 * child.
10539 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
10540 if (!child_ctx)
10541 return -ENOMEM;
10543 child->perf_event_ctxp[ctxn] = child_ctx;
10546 ret = inherit_group(event, parent, parent_ctx,
10547 child, child_ctx);
10549 if (ret)
10550 *inherited_all = 0;
10552 return ret;
10556 * Initialize the perf_event context in task_struct
10558 static int perf_event_init_context(struct task_struct *child, int ctxn)
10560 struct perf_event_context *child_ctx, *parent_ctx;
10561 struct perf_event_context *cloned_ctx;
10562 struct perf_event *event;
10563 struct task_struct *parent = current;
10564 int inherited_all = 1;
10565 unsigned long flags;
10566 int ret = 0;
10568 if (likely(!parent->perf_event_ctxp[ctxn]))
10569 return 0;
10572 * If the parent's context is a clone, pin it so it won't get
10573 * swapped under us.
10575 parent_ctx = perf_pin_task_context(parent, ctxn);
10576 if (!parent_ctx)
10577 return 0;
10580 * No need to check if parent_ctx != NULL here; since we saw
10581 * it non-NULL earlier, the only reason for it to become NULL
10582 * is if we exit, and since we're currently in the middle of
10583 * a fork we can't be exiting at the same time.
10587 * Lock the parent list. No need to lock the child - not PID
10588 * hashed yet and not running, so nobody can access it.
10590 mutex_lock(&parent_ctx->mutex);
10593 * We dont have to disable NMIs - we are only looking at
10594 * the list, not manipulating it:
10596 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
10597 ret = inherit_task_group(event, parent, parent_ctx,
10598 child, ctxn, &inherited_all);
10599 if (ret)
10600 goto out_unlock;
10604 * We can't hold ctx->lock when iterating the ->flexible_group list due
10605 * to allocations, but we need to prevent rotation because
10606 * rotate_ctx() will change the list from interrupt context.
10608 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10609 parent_ctx->rotate_disable = 1;
10610 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10612 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
10613 ret = inherit_task_group(event, parent, parent_ctx,
10614 child, ctxn, &inherited_all);
10615 if (ret)
10616 goto out_unlock;
10619 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10620 parent_ctx->rotate_disable = 0;
10622 child_ctx = child->perf_event_ctxp[ctxn];
10624 if (child_ctx && inherited_all) {
10626 * Mark the child context as a clone of the parent
10627 * context, or of whatever the parent is a clone of.
10629 * Note that if the parent is a clone, the holding of
10630 * parent_ctx->lock avoids it from being uncloned.
10632 cloned_ctx = parent_ctx->parent_ctx;
10633 if (cloned_ctx) {
10634 child_ctx->parent_ctx = cloned_ctx;
10635 child_ctx->parent_gen = parent_ctx->parent_gen;
10636 } else {
10637 child_ctx->parent_ctx = parent_ctx;
10638 child_ctx->parent_gen = parent_ctx->generation;
10640 get_ctx(child_ctx->parent_ctx);
10643 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10644 out_unlock:
10645 mutex_unlock(&parent_ctx->mutex);
10647 perf_unpin_context(parent_ctx);
10648 put_ctx(parent_ctx);
10650 return ret;
10654 * Initialize the perf_event context in task_struct
10656 int perf_event_init_task(struct task_struct *child)
10658 int ctxn, ret;
10660 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
10661 mutex_init(&child->perf_event_mutex);
10662 INIT_LIST_HEAD(&child->perf_event_list);
10664 for_each_task_context_nr(ctxn) {
10665 ret = perf_event_init_context(child, ctxn);
10666 if (ret) {
10667 perf_event_free_task(child);
10668 return ret;
10672 return 0;
10675 static void __init perf_event_init_all_cpus(void)
10677 struct swevent_htable *swhash;
10678 int cpu;
10680 for_each_possible_cpu(cpu) {
10681 swhash = &per_cpu(swevent_htable, cpu);
10682 mutex_init(&swhash->hlist_mutex);
10683 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
10685 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
10686 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
10688 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
10692 int perf_event_init_cpu(unsigned int cpu)
10694 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10696 mutex_lock(&swhash->hlist_mutex);
10697 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
10698 struct swevent_hlist *hlist;
10700 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
10701 WARN_ON(!hlist);
10702 rcu_assign_pointer(swhash->swevent_hlist, hlist);
10704 mutex_unlock(&swhash->hlist_mutex);
10705 return 0;
10708 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
10709 static void __perf_event_exit_context(void *__info)
10711 struct perf_event_context *ctx = __info;
10712 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
10713 struct perf_event *event;
10715 raw_spin_lock(&ctx->lock);
10716 list_for_each_entry(event, &ctx->event_list, event_entry)
10717 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
10718 raw_spin_unlock(&ctx->lock);
10721 static void perf_event_exit_cpu_context(int cpu)
10723 struct perf_event_context *ctx;
10724 struct pmu *pmu;
10725 int idx;
10727 idx = srcu_read_lock(&pmus_srcu);
10728 list_for_each_entry_rcu(pmu, &pmus, entry) {
10729 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
10731 mutex_lock(&ctx->mutex);
10732 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
10733 mutex_unlock(&ctx->mutex);
10735 srcu_read_unlock(&pmus_srcu, idx);
10737 #else
10739 static void perf_event_exit_cpu_context(int cpu) { }
10741 #endif
10743 int perf_event_exit_cpu(unsigned int cpu)
10745 perf_event_exit_cpu_context(cpu);
10746 return 0;
10749 static int
10750 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
10752 int cpu;
10754 for_each_online_cpu(cpu)
10755 perf_event_exit_cpu(cpu);
10757 return NOTIFY_OK;
10761 * Run the perf reboot notifier at the very last possible moment so that
10762 * the generic watchdog code runs as long as possible.
10764 static struct notifier_block perf_reboot_notifier = {
10765 .notifier_call = perf_reboot,
10766 .priority = INT_MIN,
10769 void __init perf_event_init(void)
10771 int ret;
10773 idr_init(&pmu_idr);
10775 perf_event_init_all_cpus();
10776 init_srcu_struct(&pmus_srcu);
10777 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
10778 perf_pmu_register(&perf_cpu_clock, NULL, -1);
10779 perf_pmu_register(&perf_task_clock, NULL, -1);
10780 perf_tp_register();
10781 perf_event_init_cpu(smp_processor_id());
10782 register_reboot_notifier(&perf_reboot_notifier);
10784 ret = init_hw_breakpoint();
10785 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
10788 * Build time assertion that we keep the data_head at the intended
10789 * location. IOW, validation we got the __reserved[] size right.
10791 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
10792 != 1024);
10795 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
10796 char *page)
10798 struct perf_pmu_events_attr *pmu_attr =
10799 container_of(attr, struct perf_pmu_events_attr, attr);
10801 if (pmu_attr->event_str)
10802 return sprintf(page, "%s\n", pmu_attr->event_str);
10804 return 0;
10806 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
10808 static int __init perf_event_sysfs_init(void)
10810 struct pmu *pmu;
10811 int ret;
10813 mutex_lock(&pmus_lock);
10815 ret = bus_register(&pmu_bus);
10816 if (ret)
10817 goto unlock;
10819 list_for_each_entry(pmu, &pmus, entry) {
10820 if (!pmu->name || pmu->type < 0)
10821 continue;
10823 ret = pmu_dev_alloc(pmu);
10824 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
10826 pmu_bus_running = 1;
10827 ret = 0;
10829 unlock:
10830 mutex_unlock(&pmus_lock);
10832 return ret;
10834 device_initcall(perf_event_sysfs_init);
10836 #ifdef CONFIG_CGROUP_PERF
10837 static struct cgroup_subsys_state *
10838 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
10840 struct perf_cgroup *jc;
10842 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
10843 if (!jc)
10844 return ERR_PTR(-ENOMEM);
10846 jc->info = alloc_percpu(struct perf_cgroup_info);
10847 if (!jc->info) {
10848 kfree(jc);
10849 return ERR_PTR(-ENOMEM);
10852 return &jc->css;
10855 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
10857 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
10859 free_percpu(jc->info);
10860 kfree(jc);
10863 static int __perf_cgroup_move(void *info)
10865 struct task_struct *task = info;
10866 rcu_read_lock();
10867 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
10868 rcu_read_unlock();
10869 return 0;
10872 static void perf_cgroup_attach(struct cgroup_taskset *tset)
10874 struct task_struct *task;
10875 struct cgroup_subsys_state *css;
10877 cgroup_taskset_for_each(task, css, tset)
10878 task_function_call(task, __perf_cgroup_move, task);
10881 struct cgroup_subsys perf_event_cgrp_subsys = {
10882 .css_alloc = perf_cgroup_css_alloc,
10883 .css_free = perf_cgroup_css_free,
10884 .attach = perf_cgroup_attach,
10886 #endif /* CONFIG_CGROUP_PERF */