1 /* SPDX-License-Identifier: GPL-2.0
3 * IO cost model based controller.
5 * Copyright (C) 2019 Tejun Heo <tj@kernel.org>
6 * Copyright (C) 2019 Andy Newell <newella@fb.com>
7 * Copyright (C) 2019 Facebook
9 * One challenge of controlling IO resources is the lack of trivially
10 * observable cost metric. This is distinguished from CPU and memory where
11 * wallclock time and the number of bytes can serve as accurate enough
14 * Bandwidth and iops are the most commonly used metrics for IO devices but
15 * depending on the type and specifics of the device, different IO patterns
16 * easily lead to multiple orders of magnitude variations rendering them
17 * useless for the purpose of IO capacity distribution. While on-device
18 * time, with a lot of clutches, could serve as a useful approximation for
19 * non-queued rotational devices, this is no longer viable with modern
20 * devices, even the rotational ones.
22 * While there is no cost metric we can trivially observe, it isn't a
23 * complete mystery. For example, on a rotational device, seek cost
24 * dominates while a contiguous transfer contributes a smaller amount
25 * proportional to the size. If we can characterize at least the relative
26 * costs of these different types of IOs, it should be possible to
27 * implement a reasonable work-conserving proportional IO resource
32 * IO cost model estimates the cost of an IO given its basic parameters and
33 * history (e.g. the end sector of the last IO). The cost is measured in
34 * device time. If a given IO is estimated to cost 10ms, the device should
35 * be able to process ~100 of those IOs in a second.
37 * Currently, there's only one builtin cost model - linear. Each IO is
38 * classified as sequential or random and given a base cost accordingly.
39 * On top of that, a size cost proportional to the length of the IO is
40 * added. While simple, this model captures the operational
41 * characteristics of a wide varienty of devices well enough. Default
42 * parameters for several different classes of devices are provided and the
43 * parameters can be configured from userspace via
44 * /sys/fs/cgroup/io.cost.model.
46 * If needed, tools/cgroup/iocost_coef_gen.py can be used to generate
47 * device-specific coefficients.
51 * The device virtual time (vtime) is used as the primary control metric.
52 * The control strategy is composed of the following three parts.
54 * 2-1. Vtime Distribution
56 * When a cgroup becomes active in terms of IOs, its hierarchical share is
57 * calculated. Please consider the following hierarchy where the numbers
58 * inside parentheses denote the configured weights.
64 * A0 (w:100) A1 (w:100)
66 * If B is idle and only A0 and A1 are actively issuing IOs, as the two are
67 * of equal weight, each gets 50% share. If then B starts issuing IOs, B
68 * gets 300/(100+300) or 75% share, and A0 and A1 equally splits the rest,
69 * 12.5% each. The distribution mechanism only cares about these flattened
70 * shares. They're called hweights (hierarchical weights) and always add
71 * upto 1 (WEIGHT_ONE).
73 * A given cgroup's vtime runs slower in inverse proportion to its hweight.
74 * For example, with 12.5% weight, A0's time runs 8 times slower (100/12.5)
75 * against the device vtime - an IO which takes 10ms on the underlying
76 * device is considered to take 80ms on A0.
78 * This constitutes the basis of IO capacity distribution. Each cgroup's
79 * vtime is running at a rate determined by its hweight. A cgroup tracks
80 * the vtime consumed by past IOs and can issue a new IO if doing so
81 * wouldn't outrun the current device vtime. Otherwise, the IO is
82 * suspended until the vtime has progressed enough to cover it.
84 * 2-2. Vrate Adjustment
86 * It's unrealistic to expect the cost model to be perfect. There are too
87 * many devices and even on the same device the overall performance
88 * fluctuates depending on numerous factors such as IO mixture and device
89 * internal garbage collection. The controller needs to adapt dynamically.
91 * This is achieved by adjusting the overall IO rate according to how busy
92 * the device is. If the device becomes overloaded, we're sending down too
93 * many IOs and should generally slow down. If there are waiting issuers
94 * but the device isn't saturated, we're issuing too few and should
97 * To slow down, we lower the vrate - the rate at which the device vtime
98 * passes compared to the wall clock. For example, if the vtime is running
99 * at the vrate of 75%, all cgroups added up would only be able to issue
100 * 750ms worth of IOs per second, and vice-versa for speeding up.
102 * Device business is determined using two criteria - rq wait and
103 * completion latencies.
105 * When a device gets saturated, the on-device and then the request queues
106 * fill up and a bio which is ready to be issued has to wait for a request
107 * to become available. When this delay becomes noticeable, it's a clear
108 * indication that the device is saturated and we lower the vrate. This
109 * saturation signal is fairly conservative as it only triggers when both
110 * hardware and software queues are filled up, and is used as the default
113 * As devices can have deep queues and be unfair in how the queued commands
114 * are executed, soley depending on rq wait may not result in satisfactory
115 * control quality. For a better control quality, completion latency QoS
116 * parameters can be configured so that the device is considered saturated
117 * if N'th percentile completion latency rises above the set point.
119 * The completion latency requirements are a function of both the
120 * underlying device characteristics and the desired IO latency quality of
121 * service. There is an inherent trade-off - the tighter the latency QoS,
122 * the higher the bandwidth lossage. Latency QoS is disabled by default
123 * and can be set through /sys/fs/cgroup/io.cost.qos.
125 * 2-3. Work Conservation
127 * Imagine two cgroups A and B with equal weights. A is issuing a small IO
128 * periodically while B is sending out enough parallel IOs to saturate the
129 * device on its own. Let's say A's usage amounts to 100ms worth of IO
130 * cost per second, i.e., 10% of the device capacity. The naive
131 * distribution of half and half would lead to 60% utilization of the
132 * device, a significant reduction in the total amount of work done
133 * compared to free-for-all competition. This is too high a cost to pay
136 * To conserve the total amount of work done, we keep track of how much
137 * each active cgroup is actually using and yield part of its weight if
138 * there are other cgroups which can make use of it. In the above case,
139 * A's weight will be lowered so that it hovers above the actual usage and
140 * B would be able to use the rest.
142 * As we don't want to penalize a cgroup for donating its weight, the
143 * surplus weight adjustment factors in a margin and has an immediate
144 * snapback mechanism in case the cgroup needs more IO vtime for itself.
146 * Note that adjusting down surplus weights has the same effects as
147 * accelerating vtime for other cgroups and work conservation can also be
148 * implemented by adjusting vrate dynamically. However, squaring who can
149 * donate and should take back how much requires hweight propagations
150 * anyway making it easier to implement and understand as a separate
155 * Instead of debugfs or other clumsy monitoring mechanisms, this
156 * controller uses a drgn based monitoring script -
157 * tools/cgroup/iocost_monitor.py. For details on drgn, please see
158 * https://github.com/osandov/drgn. The output looks like the following.
160 * sdb RUN per=300ms cur_per=234.218:v203.695 busy= +1 vrate= 62.12%
161 * active weight hweight% inflt% dbt delay usages%
162 * test/a * 50/ 50 33.33/ 33.33 27.65 2 0*041 033:033:033
163 * test/b * 100/ 100 66.67/ 66.67 17.56 0 0*000 066:079:077
165 * - per : Timer period
166 * - cur_per : Internal wall and device vtime clock
167 * - vrate : Device virtual time rate against wall clock
168 * - weight : Surplus-adjusted and configured weights
169 * - hweight : Surplus-adjusted and configured hierarchical weights
170 * - inflt : The percentage of in-flight IO cost at the end of last period
171 * - del_ms : Deferred issuer delay induction level and duration
172 * - usages : Usage history
175 #include <linux/kernel.h>
176 #include <linux/module.h>
177 #include <linux/timer.h>
178 #include <linux/time64.h>
179 #include <linux/parser.h>
180 #include <linux/sched/signal.h>
181 #include <linux/blk-cgroup.h>
182 #include <asm/local.h>
183 #include <asm/local64.h>
184 #include "blk-rq-qos.h"
185 #include "blk-stat.h"
188 #ifdef CONFIG_TRACEPOINTS
190 /* copied from TRACE_CGROUP_PATH, see cgroup-internal.h */
191 #define TRACE_IOCG_PATH_LEN 1024
192 static DEFINE_SPINLOCK(trace_iocg_path_lock
);
193 static char trace_iocg_path
[TRACE_IOCG_PATH_LEN
];
195 #define TRACE_IOCG_PATH(type, iocg, ...) \
197 unsigned long flags; \
198 if (trace_iocost_##type##_enabled()) { \
199 spin_lock_irqsave(&trace_iocg_path_lock, flags); \
200 cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup, \
201 trace_iocg_path, TRACE_IOCG_PATH_LEN); \
202 trace_iocost_##type(iocg, trace_iocg_path, \
204 spin_unlock_irqrestore(&trace_iocg_path_lock, flags); \
208 #else /* CONFIG_TRACE_POINTS */
209 #define TRACE_IOCG_PATH(type, iocg, ...) do { } while (0)
210 #endif /* CONFIG_TRACE_POINTS */
215 /* timer period is calculated from latency requirements, bound it */
216 MIN_PERIOD
= USEC_PER_MSEC
,
217 MAX_PERIOD
= USEC_PER_SEC
,
220 * iocg->vtime is targeted at 50% behind the device vtime, which
221 * serves as its IO credit buffer. Surplus weight adjustment is
222 * immediately canceled if the vtime margin runs below 10%.
226 MARGIN_TARGET_PCT
= 50,
228 INUSE_ADJ_STEP_PCT
= 25,
230 /* Have some play in timer operations */
233 /* 1/64k is granular enough and can easily be handled w/ u32 */
234 WEIGHT_ONE
= 1 << 16,
237 * As vtime is used to calculate the cost of each IO, it needs to
238 * be fairly high precision. For example, it should be able to
239 * represent the cost of a single page worth of discard with
240 * suffificient accuracy. At the same time, it should be able to
241 * represent reasonably long enough durations to be useful and
242 * convenient during operation.
244 * 1s worth of vtime is 2^37. This gives us both sub-nanosecond
245 * granularity and days of wrap-around time even at extreme vrates.
247 VTIME_PER_SEC_SHIFT
= 37,
248 VTIME_PER_SEC
= 1LLU << VTIME_PER_SEC_SHIFT
,
249 VTIME_PER_USEC
= VTIME_PER_SEC
/ USEC_PER_SEC
,
250 VTIME_PER_NSEC
= VTIME_PER_SEC
/ NSEC_PER_SEC
,
252 /* bound vrate adjustments within two orders of magnitude */
253 VRATE_MIN_PPM
= 10000, /* 1% */
254 VRATE_MAX_PPM
= 100000000, /* 10000% */
256 VRATE_MIN
= VTIME_PER_USEC
* VRATE_MIN_PPM
/ MILLION
,
257 VRATE_CLAMP_ADJ_PCT
= 4,
259 /* if IOs end up waiting for requests, issue less */
260 RQ_WAIT_BUSY_PCT
= 5,
262 /* unbusy hysterisis */
266 * The effect of delay is indirect and non-linear and a huge amount of
267 * future debt can accumulate abruptly while unthrottled. Linearly scale
268 * up delay as debt is going up and then let it decay exponentially.
269 * This gives us quick ramp ups while delay is accumulating and long
270 * tails which can help reducing the frequency of debt explosions on
271 * unthrottle. The parameters are experimentally determined.
273 * The delay mechanism provides adequate protection and behavior in many
274 * cases. However, this is far from ideal and falls shorts on both
275 * fronts. The debtors are often throttled too harshly costing a
276 * significant level of fairness and possibly total work while the
277 * protection against their impacts on the system can be choppy and
280 * The shortcoming primarily stems from the fact that, unlike for page
281 * cache, the kernel doesn't have well-defined back-pressure propagation
282 * mechanism and policies for anonymous memory. Fully addressing this
283 * issue will likely require substantial improvements in the area.
285 MIN_DELAY_THR_PCT
= 500,
286 MAX_DELAY_THR_PCT
= 25000,
288 MAX_DELAY
= 250 * USEC_PER_MSEC
,
290 /* halve debts if avg usage over 100ms is under 50% */
292 DFGV_PERIOD
= 100 * USEC_PER_MSEC
,
294 /* don't let cmds which take a very long time pin lagging for too long */
295 MAX_LAGGING_PERIODS
= 10,
297 /* switch iff the conditions are met for longer than this */
298 AUTOP_CYCLE_NSEC
= 10LLU * NSEC_PER_SEC
,
301 * Count IO size in 4k pages. The 12bit shift helps keeping
302 * size-proportional components of cost calculation in closer
303 * numbers of digits to per-IO cost components.
306 IOC_PAGE_SIZE
= 1 << IOC_PAGE_SHIFT
,
307 IOC_SECT_TO_PAGE_SHIFT
= IOC_PAGE_SHIFT
- SECTOR_SHIFT
,
309 /* if apart further than 16M, consider randio for linear model */
310 LCOEF_RANDIO_PAGES
= 4096,
319 /* io.cost.qos controls including per-dev enable of the whole controller */
326 /* io.cost.qos params */
337 /* io.cost.model controls */
344 /* builtin linear cost model coefficients */
374 u32 qos
[NR_QOS_PARAMS
];
375 u64 i_lcoefs
[NR_I_LCOEFS
];
376 u64 lcoefs
[NR_LCOEFS
];
377 u32 too_fast_vrate_pct
;
378 u32 too_slow_vrate_pct
;
394 struct ioc_pcpu_stat
{
395 struct ioc_missed missed
[2];
397 local64_t rq_wait_ns
;
407 struct ioc_params params
;
408 struct ioc_margins margins
;
415 struct timer_list timer
;
416 struct list_head active_iocgs
; /* active cgroups */
417 struct ioc_pcpu_stat __percpu
*pcpu_stat
;
419 enum ioc_running running
;
420 atomic64_t vtime_rate
;
424 seqcount_spinlock_t period_seqcount
;
425 u64 period_at
; /* wallclock starttime */
426 u64 period_at_vtime
; /* vtime starttime */
428 atomic64_t cur_period
; /* inc'd each period */
429 int busy_level
; /* saturation history */
431 bool weights_updated
;
432 atomic_t hweight_gen
; /* for lazy hweights */
434 /* debt forgivness */
437 u64 dfgv_usage_us_sum
;
439 u64 autop_too_fast_at
;
440 u64 autop_too_slow_at
;
442 bool user_qos_params
:1;
443 bool user_cost_model
:1;
446 struct iocg_pcpu_stat
{
447 local64_t abs_vusage
;
457 /* per device-cgroup pair */
459 struct blkg_policy_data pd
;
463 * A iocg can get its weight from two sources - an explicit
464 * per-device-cgroup configuration or the default weight of the
465 * cgroup. `cfg_weight` is the explicit per-device-cgroup
466 * configuration. `weight` is the effective considering both
469 * When an idle cgroup becomes active its `active` goes from 0 to
470 * `weight`. `inuse` is the surplus adjusted active weight.
471 * `active` and `inuse` are used to calculate `hweight_active` and
474 * `last_inuse` remembers `inuse` while an iocg is idle to persist
475 * surplus adjustments.
477 * `inuse` may be adjusted dynamically during period. `saved_*` are used
478 * to determine and track adjustments.
488 sector_t cursor
; /* to detect randio */
491 * `vtime` is this iocg's vtime cursor which progresses as IOs are
492 * issued. If lagging behind device vtime, the delta represents
493 * the currently available IO budget. If running ahead, the
496 * `vtime_done` is the same but progressed on completion rather
497 * than issue. The delta behind `vtime` represents the cost of
498 * currently in-flight IOs.
501 atomic64_t done_vtime
;
504 /* current delay in effect and when it started */
509 * The period this iocg was last active in. Used for deactivation
510 * and invalidating `vtime`.
512 atomic64_t active_period
;
513 struct list_head active_list
;
515 /* see __propagate_weights() and current_hweight() for details */
516 u64 child_active_sum
;
518 u64 child_adjusted_sum
;
522 u32 hweight_donating
;
523 u32 hweight_after_donation
;
525 struct list_head walk_list
;
526 struct list_head surplus_list
;
528 struct wait_queue_head waitq
;
529 struct hrtimer waitq_timer
;
531 /* timestamp at the latest activation */
535 struct iocg_pcpu_stat __percpu
*pcpu_stat
;
536 struct iocg_stat local_stat
;
537 struct iocg_stat desc_stat
;
538 struct iocg_stat last_stat
;
539 u64 last_stat_abs_vusage
;
545 /* this iocg's depth in the hierarchy and ancestors including self */
547 struct ioc_gq
*ancestors
[];
552 struct blkcg_policy_data cpd
;
553 unsigned int dfl_weight
;
564 struct wait_queue_entry wait
;
570 struct iocg_wake_ctx
{
576 static const struct ioc_params autop
[] = {
579 [QOS_RLAT
] = 250000, /* 250ms */
581 [QOS_MIN
] = VRATE_MIN_PPM
,
582 [QOS_MAX
] = VRATE_MAX_PPM
,
585 [I_LCOEF_RBPS
] = 174019176,
586 [I_LCOEF_RSEQIOPS
] = 41708,
587 [I_LCOEF_RRANDIOPS
] = 370,
588 [I_LCOEF_WBPS
] = 178075866,
589 [I_LCOEF_WSEQIOPS
] = 42705,
590 [I_LCOEF_WRANDIOPS
] = 378,
595 [QOS_RLAT
] = 25000, /* 25ms */
597 [QOS_MIN
] = VRATE_MIN_PPM
,
598 [QOS_MAX
] = VRATE_MAX_PPM
,
601 [I_LCOEF_RBPS
] = 245855193,
602 [I_LCOEF_RSEQIOPS
] = 61575,
603 [I_LCOEF_RRANDIOPS
] = 6946,
604 [I_LCOEF_WBPS
] = 141365009,
605 [I_LCOEF_WSEQIOPS
] = 33716,
606 [I_LCOEF_WRANDIOPS
] = 26796,
611 [QOS_RLAT
] = 25000, /* 25ms */
613 [QOS_MIN
] = VRATE_MIN_PPM
,
614 [QOS_MAX
] = VRATE_MAX_PPM
,
617 [I_LCOEF_RBPS
] = 488636629,
618 [I_LCOEF_RSEQIOPS
] = 8932,
619 [I_LCOEF_RRANDIOPS
] = 8518,
620 [I_LCOEF_WBPS
] = 427891549,
621 [I_LCOEF_WSEQIOPS
] = 28755,
622 [I_LCOEF_WRANDIOPS
] = 21940,
624 .too_fast_vrate_pct
= 500,
628 [QOS_RLAT
] = 5000, /* 5ms */
630 [QOS_MIN
] = VRATE_MIN_PPM
,
631 [QOS_MAX
] = VRATE_MAX_PPM
,
634 [I_LCOEF_RBPS
] = 3102524156LLU,
635 [I_LCOEF_RSEQIOPS
] = 724816,
636 [I_LCOEF_RRANDIOPS
] = 778122,
637 [I_LCOEF_WBPS
] = 1742780862LLU,
638 [I_LCOEF_WSEQIOPS
] = 425702,
639 [I_LCOEF_WRANDIOPS
] = 443193,
641 .too_slow_vrate_pct
= 10,
646 * vrate adjust percentages indexed by ioc->busy_level. We adjust up on
647 * vtime credit shortage and down on device saturation.
649 static u32 vrate_adj_pct
[] =
651 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
652 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
653 4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 16 };
655 static struct blkcg_policy blkcg_policy_iocost
;
657 /* accessors and helpers */
658 static struct ioc
*rqos_to_ioc(struct rq_qos
*rqos
)
660 return container_of(rqos
, struct ioc
, rqos
);
663 static struct ioc
*q_to_ioc(struct request_queue
*q
)
665 return rqos_to_ioc(rq_qos_id(q
, RQ_QOS_COST
));
668 static const char *q_name(struct request_queue
*q
)
670 if (blk_queue_registered(q
))
671 return kobject_name(q
->kobj
.parent
);
676 static const char __maybe_unused
*ioc_name(struct ioc
*ioc
)
678 return q_name(ioc
->rqos
.q
);
681 static struct ioc_gq
*pd_to_iocg(struct blkg_policy_data
*pd
)
683 return pd
? container_of(pd
, struct ioc_gq
, pd
) : NULL
;
686 static struct ioc_gq
*blkg_to_iocg(struct blkcg_gq
*blkg
)
688 return pd_to_iocg(blkg_to_pd(blkg
, &blkcg_policy_iocost
));
691 static struct blkcg_gq
*iocg_to_blkg(struct ioc_gq
*iocg
)
693 return pd_to_blkg(&iocg
->pd
);
696 static struct ioc_cgrp
*blkcg_to_iocc(struct blkcg
*blkcg
)
698 return container_of(blkcg_to_cpd(blkcg
, &blkcg_policy_iocost
),
699 struct ioc_cgrp
, cpd
);
703 * Scale @abs_cost to the inverse of @hw_inuse. The lower the hierarchical
704 * weight, the more expensive each IO. Must round up.
706 static u64
abs_cost_to_cost(u64 abs_cost
, u32 hw_inuse
)
708 return DIV64_U64_ROUND_UP(abs_cost
* WEIGHT_ONE
, hw_inuse
);
712 * The inverse of abs_cost_to_cost(). Must round up.
714 static u64
cost_to_abs_cost(u64 cost
, u32 hw_inuse
)
716 return DIV64_U64_ROUND_UP(cost
* hw_inuse
, WEIGHT_ONE
);
719 static void iocg_commit_bio(struct ioc_gq
*iocg
, struct bio
*bio
,
720 u64 abs_cost
, u64 cost
)
722 struct iocg_pcpu_stat
*gcs
;
724 bio
->bi_iocost_cost
= cost
;
725 atomic64_add(cost
, &iocg
->vtime
);
727 gcs
= get_cpu_ptr(iocg
->pcpu_stat
);
728 local64_add(abs_cost
, &gcs
->abs_vusage
);
732 static void iocg_lock(struct ioc_gq
*iocg
, bool lock_ioc
, unsigned long *flags
)
735 spin_lock_irqsave(&iocg
->ioc
->lock
, *flags
);
736 spin_lock(&iocg
->waitq
.lock
);
738 spin_lock_irqsave(&iocg
->waitq
.lock
, *flags
);
742 static void iocg_unlock(struct ioc_gq
*iocg
, bool unlock_ioc
, unsigned long *flags
)
745 spin_unlock(&iocg
->waitq
.lock
);
746 spin_unlock_irqrestore(&iocg
->ioc
->lock
, *flags
);
748 spin_unlock_irqrestore(&iocg
->waitq
.lock
, *flags
);
752 #define CREATE_TRACE_POINTS
753 #include <trace/events/iocost.h>
755 static void ioc_refresh_margins(struct ioc
*ioc
)
757 struct ioc_margins
*margins
= &ioc
->margins
;
758 u32 period_us
= ioc
->period_us
;
759 u64 vrate
= ioc
->vtime_base_rate
;
761 margins
->min
= (period_us
* MARGIN_MIN_PCT
/ 100) * vrate
;
762 margins
->low
= (period_us
* MARGIN_LOW_PCT
/ 100) * vrate
;
763 margins
->target
= (period_us
* MARGIN_TARGET_PCT
/ 100) * vrate
;
766 /* latency Qos params changed, update period_us and all the dependent params */
767 static void ioc_refresh_period_us(struct ioc
*ioc
)
769 u32 ppm
, lat
, multi
, period_us
;
771 lockdep_assert_held(&ioc
->lock
);
773 /* pick the higher latency target */
774 if (ioc
->params
.qos
[QOS_RLAT
] >= ioc
->params
.qos
[QOS_WLAT
]) {
775 ppm
= ioc
->params
.qos
[QOS_RPPM
];
776 lat
= ioc
->params
.qos
[QOS_RLAT
];
778 ppm
= ioc
->params
.qos
[QOS_WPPM
];
779 lat
= ioc
->params
.qos
[QOS_WLAT
];
783 * We want the period to be long enough to contain a healthy number
784 * of IOs while short enough for granular control. Define it as a
785 * multiple of the latency target. Ideally, the multiplier should
786 * be scaled according to the percentile so that it would nominally
787 * contain a certain number of requests. Let's be simpler and
788 * scale it linearly so that it's 2x >= pct(90) and 10x at pct(50).
791 multi
= max_t(u32
, (MILLION
- ppm
) / 50000, 2);
794 period_us
= multi
* lat
;
795 period_us
= clamp_t(u32
, period_us
, MIN_PERIOD
, MAX_PERIOD
);
797 /* calculate dependent params */
798 ioc
->period_us
= period_us
;
799 ioc
->timer_slack_ns
= div64_u64(
800 (u64
)period_us
* NSEC_PER_USEC
* TIMER_SLACK_PCT
,
802 ioc_refresh_margins(ioc
);
805 static int ioc_autop_idx(struct ioc
*ioc
)
807 int idx
= ioc
->autop_idx
;
808 const struct ioc_params
*p
= &autop
[idx
];
813 if (!blk_queue_nonrot(ioc
->rqos
.q
))
816 /* handle SATA SSDs w/ broken NCQ */
817 if (blk_queue_depth(ioc
->rqos
.q
) == 1)
818 return AUTOP_SSD_QD1
;
820 /* use one of the normal ssd sets */
821 if (idx
< AUTOP_SSD_DFL
)
822 return AUTOP_SSD_DFL
;
824 /* if user is overriding anything, maintain what was there */
825 if (ioc
->user_qos_params
|| ioc
->user_cost_model
)
828 /* step up/down based on the vrate */
829 vrate_pct
= div64_u64(ioc
->vtime_base_rate
* 100, VTIME_PER_USEC
);
830 now_ns
= ktime_get_ns();
832 if (p
->too_fast_vrate_pct
&& p
->too_fast_vrate_pct
<= vrate_pct
) {
833 if (!ioc
->autop_too_fast_at
)
834 ioc
->autop_too_fast_at
= now_ns
;
835 if (now_ns
- ioc
->autop_too_fast_at
>= AUTOP_CYCLE_NSEC
)
838 ioc
->autop_too_fast_at
= 0;
841 if (p
->too_slow_vrate_pct
&& p
->too_slow_vrate_pct
>= vrate_pct
) {
842 if (!ioc
->autop_too_slow_at
)
843 ioc
->autop_too_slow_at
= now_ns
;
844 if (now_ns
- ioc
->autop_too_slow_at
>= AUTOP_CYCLE_NSEC
)
847 ioc
->autop_too_slow_at
= 0;
854 * Take the followings as input
856 * @bps maximum sequential throughput
857 * @seqiops maximum sequential 4k iops
858 * @randiops maximum random 4k iops
860 * and calculate the linear model cost coefficients.
862 * *@page per-page cost 1s / (@bps / 4096)
863 * *@seqio base cost of a seq IO max((1s / @seqiops) - *@page, 0)
864 * @randiops base cost of a rand IO max((1s / @randiops) - *@page, 0)
866 static void calc_lcoefs(u64 bps
, u64 seqiops
, u64 randiops
,
867 u64
*page
, u64
*seqio
, u64
*randio
)
871 *page
= *seqio
= *randio
= 0;
874 *page
= DIV64_U64_ROUND_UP(VTIME_PER_SEC
,
875 DIV_ROUND_UP_ULL(bps
, IOC_PAGE_SIZE
));
878 v
= DIV64_U64_ROUND_UP(VTIME_PER_SEC
, seqiops
);
884 v
= DIV64_U64_ROUND_UP(VTIME_PER_SEC
, randiops
);
890 static void ioc_refresh_lcoefs(struct ioc
*ioc
)
892 u64
*u
= ioc
->params
.i_lcoefs
;
893 u64
*c
= ioc
->params
.lcoefs
;
895 calc_lcoefs(u
[I_LCOEF_RBPS
], u
[I_LCOEF_RSEQIOPS
], u
[I_LCOEF_RRANDIOPS
],
896 &c
[LCOEF_RPAGE
], &c
[LCOEF_RSEQIO
], &c
[LCOEF_RRANDIO
]);
897 calc_lcoefs(u
[I_LCOEF_WBPS
], u
[I_LCOEF_WSEQIOPS
], u
[I_LCOEF_WRANDIOPS
],
898 &c
[LCOEF_WPAGE
], &c
[LCOEF_WSEQIO
], &c
[LCOEF_WRANDIO
]);
901 static bool ioc_refresh_params(struct ioc
*ioc
, bool force
)
903 const struct ioc_params
*p
;
906 lockdep_assert_held(&ioc
->lock
);
908 idx
= ioc_autop_idx(ioc
);
911 if (idx
== ioc
->autop_idx
&& !force
)
914 if (idx
!= ioc
->autop_idx
)
915 atomic64_set(&ioc
->vtime_rate
, VTIME_PER_USEC
);
917 ioc
->autop_idx
= idx
;
918 ioc
->autop_too_fast_at
= 0;
919 ioc
->autop_too_slow_at
= 0;
921 if (!ioc
->user_qos_params
)
922 memcpy(ioc
->params
.qos
, p
->qos
, sizeof(p
->qos
));
923 if (!ioc
->user_cost_model
)
924 memcpy(ioc
->params
.i_lcoefs
, p
->i_lcoefs
, sizeof(p
->i_lcoefs
));
926 ioc_refresh_period_us(ioc
);
927 ioc_refresh_lcoefs(ioc
);
929 ioc
->vrate_min
= DIV64_U64_ROUND_UP((u64
)ioc
->params
.qos
[QOS_MIN
] *
930 VTIME_PER_USEC
, MILLION
);
931 ioc
->vrate_max
= div64_u64((u64
)ioc
->params
.qos
[QOS_MAX
] *
932 VTIME_PER_USEC
, MILLION
);
938 * When an iocg accumulates too much vtime or gets deactivated, we throw away
939 * some vtime, which lowers the overall device utilization. As the exact amount
940 * which is being thrown away is known, we can compensate by accelerating the
941 * vrate accordingly so that the extra vtime generated in the current period
942 * matches what got lost.
944 static void ioc_refresh_vrate(struct ioc
*ioc
, struct ioc_now
*now
)
946 s64 pleft
= ioc
->period_at
+ ioc
->period_us
- now
->now
;
947 s64 vperiod
= ioc
->period_us
* ioc
->vtime_base_rate
;
948 s64 vcomp
, vcomp_min
, vcomp_max
;
950 lockdep_assert_held(&ioc
->lock
);
952 /* we need some time left in this period */
957 * Calculate how much vrate should be adjusted to offset the error.
958 * Limit the amount of adjustment and deduct the adjusted amount from
961 vcomp
= -div64_s64(ioc
->vtime_err
, pleft
);
962 vcomp_min
= -(ioc
->vtime_base_rate
>> 1);
963 vcomp_max
= ioc
->vtime_base_rate
;
964 vcomp
= clamp(vcomp
, vcomp_min
, vcomp_max
);
966 ioc
->vtime_err
+= vcomp
* pleft
;
968 atomic64_set(&ioc
->vtime_rate
, ioc
->vtime_base_rate
+ vcomp
);
970 /* bound how much error can accumulate */
971 ioc
->vtime_err
= clamp(ioc
->vtime_err
, -vperiod
, vperiod
);
974 static void ioc_adjust_base_vrate(struct ioc
*ioc
, u32 rq_wait_pct
,
975 int nr_lagging
, int nr_shortages
,
976 int prev_busy_level
, u32
*missed_ppm
)
978 u64 vrate
= ioc
->vtime_base_rate
;
979 u64 vrate_min
= ioc
->vrate_min
, vrate_max
= ioc
->vrate_max
;
981 if (!ioc
->busy_level
|| (ioc
->busy_level
< 0 && nr_lagging
)) {
982 if (ioc
->busy_level
!= prev_busy_level
|| nr_lagging
)
983 trace_iocost_ioc_vrate_adj(ioc
, atomic64_read(&ioc
->vtime_rate
),
984 missed_ppm
, rq_wait_pct
,
985 nr_lagging
, nr_shortages
);
990 /* rq_wait signal is always reliable, ignore user vrate_min */
991 if (rq_wait_pct
> RQ_WAIT_BUSY_PCT
)
992 vrate_min
= VRATE_MIN
;
995 * If vrate is out of bounds, apply clamp gradually as the
996 * bounds can change abruptly. Otherwise, apply busy_level
999 if (vrate
< vrate_min
) {
1000 vrate
= div64_u64(vrate
* (100 + VRATE_CLAMP_ADJ_PCT
), 100);
1001 vrate
= min(vrate
, vrate_min
);
1002 } else if (vrate
> vrate_max
) {
1003 vrate
= div64_u64(vrate
* (100 - VRATE_CLAMP_ADJ_PCT
), 100);
1004 vrate
= max(vrate
, vrate_max
);
1006 int idx
= min_t(int, abs(ioc
->busy_level
),
1007 ARRAY_SIZE(vrate_adj_pct
) - 1);
1008 u32 adj_pct
= vrate_adj_pct
[idx
];
1010 if (ioc
->busy_level
> 0)
1011 adj_pct
= 100 - adj_pct
;
1013 adj_pct
= 100 + adj_pct
;
1015 vrate
= clamp(DIV64_U64_ROUND_UP(vrate
* adj_pct
, 100),
1016 vrate_min
, vrate_max
);
1019 trace_iocost_ioc_vrate_adj(ioc
, vrate
, missed_ppm
, rq_wait_pct
,
1020 nr_lagging
, nr_shortages
);
1022 ioc
->vtime_base_rate
= vrate
;
1023 ioc_refresh_margins(ioc
);
1026 /* take a snapshot of the current [v]time and vrate */
1027 static void ioc_now(struct ioc
*ioc
, struct ioc_now
*now
)
1031 now
->now_ns
= ktime_get();
1032 now
->now
= ktime_to_us(now
->now_ns
);
1033 now
->vrate
= atomic64_read(&ioc
->vtime_rate
);
1036 * The current vtime is
1038 * vtime at period start + (wallclock time since the start) * vrate
1040 * As a consistent snapshot of `period_at_vtime` and `period_at` is
1041 * needed, they're seqcount protected.
1044 seq
= read_seqcount_begin(&ioc
->period_seqcount
);
1045 now
->vnow
= ioc
->period_at_vtime
+
1046 (now
->now
- ioc
->period_at
) * now
->vrate
;
1047 } while (read_seqcount_retry(&ioc
->period_seqcount
, seq
));
1050 static void ioc_start_period(struct ioc
*ioc
, struct ioc_now
*now
)
1052 WARN_ON_ONCE(ioc
->running
!= IOC_RUNNING
);
1054 write_seqcount_begin(&ioc
->period_seqcount
);
1055 ioc
->period_at
= now
->now
;
1056 ioc
->period_at_vtime
= now
->vnow
;
1057 write_seqcount_end(&ioc
->period_seqcount
);
1059 ioc
->timer
.expires
= jiffies
+ usecs_to_jiffies(ioc
->period_us
);
1060 add_timer(&ioc
->timer
);
1064 * Update @iocg's `active` and `inuse` to @active and @inuse, update level
1065 * weight sums and propagate upwards accordingly. If @save, the current margin
1066 * is saved to be used as reference for later inuse in-period adjustments.
1068 static void __propagate_weights(struct ioc_gq
*iocg
, u32 active
, u32 inuse
,
1069 bool save
, struct ioc_now
*now
)
1071 struct ioc
*ioc
= iocg
->ioc
;
1074 lockdep_assert_held(&ioc
->lock
);
1076 inuse
= clamp_t(u32
, inuse
, 1, active
);
1078 iocg
->last_inuse
= iocg
->inuse
;
1080 iocg
->saved_margin
= now
->vnow
- atomic64_read(&iocg
->vtime
);
1082 if (active
== iocg
->active
&& inuse
== iocg
->inuse
)
1085 for (lvl
= iocg
->level
- 1; lvl
>= 0; lvl
--) {
1086 struct ioc_gq
*parent
= iocg
->ancestors
[lvl
];
1087 struct ioc_gq
*child
= iocg
->ancestors
[lvl
+ 1];
1088 u32 parent_active
= 0, parent_inuse
= 0;
1090 /* update the level sums */
1091 parent
->child_active_sum
+= (s32
)(active
- child
->active
);
1092 parent
->child_inuse_sum
+= (s32
)(inuse
- child
->inuse
);
1093 /* apply the udpates */
1094 child
->active
= active
;
1095 child
->inuse
= inuse
;
1098 * The delta between inuse and active sums indicates that
1099 * much of weight is being given away. Parent's inuse
1100 * and active should reflect the ratio.
1102 if (parent
->child_active_sum
) {
1103 parent_active
= parent
->weight
;
1104 parent_inuse
= DIV64_U64_ROUND_UP(
1105 parent_active
* parent
->child_inuse_sum
,
1106 parent
->child_active_sum
);
1109 /* do we need to keep walking up? */
1110 if (parent_active
== parent
->active
&&
1111 parent_inuse
== parent
->inuse
)
1114 active
= parent_active
;
1115 inuse
= parent_inuse
;
1118 ioc
->weights_updated
= true;
1121 static void commit_weights(struct ioc
*ioc
)
1123 lockdep_assert_held(&ioc
->lock
);
1125 if (ioc
->weights_updated
) {
1126 /* paired with rmb in current_hweight(), see there */
1128 atomic_inc(&ioc
->hweight_gen
);
1129 ioc
->weights_updated
= false;
1133 static void propagate_weights(struct ioc_gq
*iocg
, u32 active
, u32 inuse
,
1134 bool save
, struct ioc_now
*now
)
1136 __propagate_weights(iocg
, active
, inuse
, save
, now
);
1137 commit_weights(iocg
->ioc
);
1140 static void current_hweight(struct ioc_gq
*iocg
, u32
*hw_activep
, u32
*hw_inusep
)
1142 struct ioc
*ioc
= iocg
->ioc
;
1147 /* hot path - if uptodate, use cached */
1148 ioc_gen
= atomic_read(&ioc
->hweight_gen
);
1149 if (ioc_gen
== iocg
->hweight_gen
)
1153 * Paired with wmb in commit_weights(). If we saw the updated
1154 * hweight_gen, all the weight updates from __propagate_weights() are
1157 * We can race with weight updates during calculation and get it
1158 * wrong. However, hweight_gen would have changed and a future
1159 * reader will recalculate and we're guaranteed to discard the
1160 * wrong result soon.
1164 hwa
= hwi
= WEIGHT_ONE
;
1165 for (lvl
= 0; lvl
<= iocg
->level
- 1; lvl
++) {
1166 struct ioc_gq
*parent
= iocg
->ancestors
[lvl
];
1167 struct ioc_gq
*child
= iocg
->ancestors
[lvl
+ 1];
1168 u64 active_sum
= READ_ONCE(parent
->child_active_sum
);
1169 u64 inuse_sum
= READ_ONCE(parent
->child_inuse_sum
);
1170 u32 active
= READ_ONCE(child
->active
);
1171 u32 inuse
= READ_ONCE(child
->inuse
);
1173 /* we can race with deactivations and either may read as zero */
1174 if (!active_sum
|| !inuse_sum
)
1177 active_sum
= max_t(u64
, active
, active_sum
);
1178 hwa
= div64_u64((u64
)hwa
* active
, active_sum
);
1180 inuse_sum
= max_t(u64
, inuse
, inuse_sum
);
1181 hwi
= div64_u64((u64
)hwi
* inuse
, inuse_sum
);
1184 iocg
->hweight_active
= max_t(u32
, hwa
, 1);
1185 iocg
->hweight_inuse
= max_t(u32
, hwi
, 1);
1186 iocg
->hweight_gen
= ioc_gen
;
1189 *hw_activep
= iocg
->hweight_active
;
1191 *hw_inusep
= iocg
->hweight_inuse
;
1195 * Calculate the hweight_inuse @iocg would get with max @inuse assuming all the
1196 * other weights stay unchanged.
1198 static u32
current_hweight_max(struct ioc_gq
*iocg
)
1200 u32 hwm
= WEIGHT_ONE
;
1201 u32 inuse
= iocg
->active
;
1202 u64 child_inuse_sum
;
1205 lockdep_assert_held(&iocg
->ioc
->lock
);
1207 for (lvl
= iocg
->level
- 1; lvl
>= 0; lvl
--) {
1208 struct ioc_gq
*parent
= iocg
->ancestors
[lvl
];
1209 struct ioc_gq
*child
= iocg
->ancestors
[lvl
+ 1];
1211 child_inuse_sum
= parent
->child_inuse_sum
+ inuse
- child
->inuse
;
1212 hwm
= div64_u64((u64
)hwm
* inuse
, child_inuse_sum
);
1213 inuse
= DIV64_U64_ROUND_UP(parent
->active
* child_inuse_sum
,
1214 parent
->child_active_sum
);
1217 return max_t(u32
, hwm
, 1);
1220 static void weight_updated(struct ioc_gq
*iocg
, struct ioc_now
*now
)
1222 struct ioc
*ioc
= iocg
->ioc
;
1223 struct blkcg_gq
*blkg
= iocg_to_blkg(iocg
);
1224 struct ioc_cgrp
*iocc
= blkcg_to_iocc(blkg
->blkcg
);
1227 lockdep_assert_held(&ioc
->lock
);
1229 weight
= iocg
->cfg_weight
?: iocc
->dfl_weight
;
1230 if (weight
!= iocg
->weight
&& iocg
->active
)
1231 propagate_weights(iocg
, weight
, iocg
->inuse
, true, now
);
1232 iocg
->weight
= weight
;
1235 static bool iocg_activate(struct ioc_gq
*iocg
, struct ioc_now
*now
)
1237 struct ioc
*ioc
= iocg
->ioc
;
1238 u64 last_period
, cur_period
;
1243 * If seem to be already active, just update the stamp to tell the
1244 * timer that we're still active. We don't mind occassional races.
1246 if (!list_empty(&iocg
->active_list
)) {
1248 cur_period
= atomic64_read(&ioc
->cur_period
);
1249 if (atomic64_read(&iocg
->active_period
) != cur_period
)
1250 atomic64_set(&iocg
->active_period
, cur_period
);
1254 /* racy check on internal node IOs, treat as root level IOs */
1255 if (iocg
->child_active_sum
)
1258 spin_lock_irq(&ioc
->lock
);
1263 cur_period
= atomic64_read(&ioc
->cur_period
);
1264 last_period
= atomic64_read(&iocg
->active_period
);
1265 atomic64_set(&iocg
->active_period
, cur_period
);
1267 /* already activated or breaking leaf-only constraint? */
1268 if (!list_empty(&iocg
->active_list
))
1269 goto succeed_unlock
;
1270 for (i
= iocg
->level
- 1; i
> 0; i
--)
1271 if (!list_empty(&iocg
->ancestors
[i
]->active_list
))
1274 if (iocg
->child_active_sum
)
1278 * Always start with the target budget. On deactivation, we throw away
1279 * anything above it.
1281 vtarget
= now
->vnow
- ioc
->margins
.target
;
1282 vtime
= atomic64_read(&iocg
->vtime
);
1284 atomic64_add(vtarget
- vtime
, &iocg
->vtime
);
1285 atomic64_add(vtarget
- vtime
, &iocg
->done_vtime
);
1289 * Activate, propagate weight and start period timer if not
1290 * running. Reset hweight_gen to avoid accidental match from
1293 iocg
->hweight_gen
= atomic_read(&ioc
->hweight_gen
) - 1;
1294 list_add(&iocg
->active_list
, &ioc
->active_iocgs
);
1296 propagate_weights(iocg
, iocg
->weight
,
1297 iocg
->last_inuse
?: iocg
->weight
, true, now
);
1299 TRACE_IOCG_PATH(iocg_activate
, iocg
, now
,
1300 last_period
, cur_period
, vtime
);
1302 iocg
->activated_at
= now
->now
;
1304 if (ioc
->running
== IOC_IDLE
) {
1305 ioc
->running
= IOC_RUNNING
;
1306 ioc
->dfgv_period_at
= now
->now
;
1307 ioc
->dfgv_period_rem
= 0;
1308 ioc_start_period(ioc
, now
);
1312 spin_unlock_irq(&ioc
->lock
);
1316 spin_unlock_irq(&ioc
->lock
);
1320 static bool iocg_kick_delay(struct ioc_gq
*iocg
, struct ioc_now
*now
)
1322 struct ioc
*ioc
= iocg
->ioc
;
1323 struct blkcg_gq
*blkg
= iocg_to_blkg(iocg
);
1324 u64 tdelta
, delay
, new_delay
;
1325 s64 vover
, vover_pct
;
1328 lockdep_assert_held(&iocg
->waitq
.lock
);
1330 /* calculate the current delay in effect - 1/2 every second */
1331 tdelta
= now
->now
- iocg
->delay_at
;
1333 delay
= iocg
->delay
>> div64_u64(tdelta
, USEC_PER_SEC
);
1337 /* calculate the new delay from the debt amount */
1338 current_hweight(iocg
, &hwa
, NULL
);
1339 vover
= atomic64_read(&iocg
->vtime
) +
1340 abs_cost_to_cost(iocg
->abs_vdebt
, hwa
) - now
->vnow
;
1341 vover_pct
= div64_s64(100 * vover
,
1342 ioc
->period_us
* ioc
->vtime_base_rate
);
1344 if (vover_pct
<= MIN_DELAY_THR_PCT
)
1346 else if (vover_pct
>= MAX_DELAY_THR_PCT
)
1347 new_delay
= MAX_DELAY
;
1349 new_delay
= MIN_DELAY
+
1350 div_u64((MAX_DELAY
- MIN_DELAY
) *
1351 (vover_pct
- MIN_DELAY_THR_PCT
),
1352 MAX_DELAY_THR_PCT
- MIN_DELAY_THR_PCT
);
1354 /* pick the higher one and apply */
1355 if (new_delay
> delay
) {
1356 iocg
->delay
= new_delay
;
1357 iocg
->delay_at
= now
->now
;
1361 if (delay
>= MIN_DELAY
) {
1362 if (!iocg
->indelay_since
)
1363 iocg
->indelay_since
= now
->now
;
1364 blkcg_set_delay(blkg
, delay
* NSEC_PER_USEC
);
1367 if (iocg
->indelay_since
) {
1368 iocg
->local_stat
.indelay_us
+= now
->now
- iocg
->indelay_since
;
1369 iocg
->indelay_since
= 0;
1372 blkcg_clear_delay(blkg
);
1377 static void iocg_incur_debt(struct ioc_gq
*iocg
, u64 abs_cost
,
1378 struct ioc_now
*now
)
1380 struct iocg_pcpu_stat
*gcs
;
1382 lockdep_assert_held(&iocg
->ioc
->lock
);
1383 lockdep_assert_held(&iocg
->waitq
.lock
);
1384 WARN_ON_ONCE(list_empty(&iocg
->active_list
));
1387 * Once in debt, debt handling owns inuse. @iocg stays at the minimum
1388 * inuse donating all of it share to others until its debt is paid off.
1390 if (!iocg
->abs_vdebt
&& abs_cost
) {
1391 iocg
->indebt_since
= now
->now
;
1392 propagate_weights(iocg
, iocg
->active
, 0, false, now
);
1395 iocg
->abs_vdebt
+= abs_cost
;
1397 gcs
= get_cpu_ptr(iocg
->pcpu_stat
);
1398 local64_add(abs_cost
, &gcs
->abs_vusage
);
1402 static void iocg_pay_debt(struct ioc_gq
*iocg
, u64 abs_vpay
,
1403 struct ioc_now
*now
)
1405 lockdep_assert_held(&iocg
->ioc
->lock
);
1406 lockdep_assert_held(&iocg
->waitq
.lock
);
1408 /* make sure that nobody messed with @iocg */
1409 WARN_ON_ONCE(list_empty(&iocg
->active_list
));
1410 WARN_ON_ONCE(iocg
->inuse
> 1);
1412 iocg
->abs_vdebt
-= min(abs_vpay
, iocg
->abs_vdebt
);
1414 /* if debt is paid in full, restore inuse */
1415 if (!iocg
->abs_vdebt
) {
1416 iocg
->local_stat
.indebt_us
+= now
->now
- iocg
->indebt_since
;
1417 iocg
->indebt_since
= 0;
1419 propagate_weights(iocg
, iocg
->active
, iocg
->last_inuse
,
1424 static int iocg_wake_fn(struct wait_queue_entry
*wq_entry
, unsigned mode
,
1425 int flags
, void *key
)
1427 struct iocg_wait
*wait
= container_of(wq_entry
, struct iocg_wait
, wait
);
1428 struct iocg_wake_ctx
*ctx
= (struct iocg_wake_ctx
*)key
;
1429 u64 cost
= abs_cost_to_cost(wait
->abs_cost
, ctx
->hw_inuse
);
1431 ctx
->vbudget
-= cost
;
1433 if (ctx
->vbudget
< 0)
1436 iocg_commit_bio(ctx
->iocg
, wait
->bio
, wait
->abs_cost
, cost
);
1439 * autoremove_wake_function() removes the wait entry only when it
1440 * actually changed the task state. We want the wait always
1441 * removed. Remove explicitly and use default_wake_function().
1443 list_del_init(&wq_entry
->entry
);
1444 wait
->committed
= true;
1446 default_wake_function(wq_entry
, mode
, flags
, key
);
1451 * Calculate the accumulated budget, pay debt if @pay_debt and wake up waiters
1452 * accordingly. When @pay_debt is %true, the caller must be holding ioc->lock in
1453 * addition to iocg->waitq.lock.
1455 static void iocg_kick_waitq(struct ioc_gq
*iocg
, bool pay_debt
,
1456 struct ioc_now
*now
)
1458 struct ioc
*ioc
= iocg
->ioc
;
1459 struct iocg_wake_ctx ctx
= { .iocg
= iocg
};
1460 u64 vshortage
, expires
, oexpires
;
1464 lockdep_assert_held(&iocg
->waitq
.lock
);
1466 current_hweight(iocg
, &hwa
, NULL
);
1467 vbudget
= now
->vnow
- atomic64_read(&iocg
->vtime
);
1470 if (pay_debt
&& iocg
->abs_vdebt
&& vbudget
> 0) {
1471 u64 abs_vbudget
= cost_to_abs_cost(vbudget
, hwa
);
1472 u64 abs_vpay
= min_t(u64
, abs_vbudget
, iocg
->abs_vdebt
);
1473 u64 vpay
= abs_cost_to_cost(abs_vpay
, hwa
);
1475 lockdep_assert_held(&ioc
->lock
);
1477 atomic64_add(vpay
, &iocg
->vtime
);
1478 atomic64_add(vpay
, &iocg
->done_vtime
);
1479 iocg_pay_debt(iocg
, abs_vpay
, now
);
1483 if (iocg
->abs_vdebt
|| iocg
->delay
)
1484 iocg_kick_delay(iocg
, now
);
1487 * Debt can still be outstanding if we haven't paid all yet or the
1488 * caller raced and called without @pay_debt. Shouldn't wake up waiters
1489 * under debt. Make sure @vbudget reflects the outstanding amount and is
1492 if (iocg
->abs_vdebt
) {
1493 s64 vdebt
= abs_cost_to_cost(iocg
->abs_vdebt
, hwa
);
1494 vbudget
= min_t(s64
, 0, vbudget
- vdebt
);
1498 * Wake up the ones which are due and see how much vtime we'll need for
1499 * the next one. As paying off debt restores hw_inuse, it must be read
1500 * after the above debt payment.
1502 ctx
.vbudget
= vbudget
;
1503 current_hweight(iocg
, NULL
, &ctx
.hw_inuse
);
1505 __wake_up_locked_key(&iocg
->waitq
, TASK_NORMAL
, &ctx
);
1507 if (!waitqueue_active(&iocg
->waitq
)) {
1508 if (iocg
->wait_since
) {
1509 iocg
->local_stat
.wait_us
+= now
->now
- iocg
->wait_since
;
1510 iocg
->wait_since
= 0;
1515 if (!iocg
->wait_since
)
1516 iocg
->wait_since
= now
->now
;
1518 if (WARN_ON_ONCE(ctx
.vbudget
>= 0))
1521 /* determine next wakeup, add a timer margin to guarantee chunking */
1522 vshortage
= -ctx
.vbudget
;
1523 expires
= now
->now_ns
+
1524 DIV64_U64_ROUND_UP(vshortage
, ioc
->vtime_base_rate
) *
1526 expires
+= ioc
->timer_slack_ns
;
1528 /* if already active and close enough, don't bother */
1529 oexpires
= ktime_to_ns(hrtimer_get_softexpires(&iocg
->waitq_timer
));
1530 if (hrtimer_is_queued(&iocg
->waitq_timer
) &&
1531 abs(oexpires
- expires
) <= ioc
->timer_slack_ns
)
1534 hrtimer_start_range_ns(&iocg
->waitq_timer
, ns_to_ktime(expires
),
1535 ioc
->timer_slack_ns
, HRTIMER_MODE_ABS
);
1538 static enum hrtimer_restart
iocg_waitq_timer_fn(struct hrtimer
*timer
)
1540 struct ioc_gq
*iocg
= container_of(timer
, struct ioc_gq
, waitq_timer
);
1541 bool pay_debt
= READ_ONCE(iocg
->abs_vdebt
);
1543 unsigned long flags
;
1545 ioc_now(iocg
->ioc
, &now
);
1547 iocg_lock(iocg
, pay_debt
, &flags
);
1548 iocg_kick_waitq(iocg
, pay_debt
, &now
);
1549 iocg_unlock(iocg
, pay_debt
, &flags
);
1551 return HRTIMER_NORESTART
;
1554 static void ioc_lat_stat(struct ioc
*ioc
, u32
*missed_ppm_ar
, u32
*rq_wait_pct_p
)
1556 u32 nr_met
[2] = { };
1557 u32 nr_missed
[2] = { };
1561 for_each_online_cpu(cpu
) {
1562 struct ioc_pcpu_stat
*stat
= per_cpu_ptr(ioc
->pcpu_stat
, cpu
);
1563 u64 this_rq_wait_ns
;
1565 for (rw
= READ
; rw
<= WRITE
; rw
++) {
1566 u32 this_met
= local_read(&stat
->missed
[rw
].nr_met
);
1567 u32 this_missed
= local_read(&stat
->missed
[rw
].nr_missed
);
1569 nr_met
[rw
] += this_met
- stat
->missed
[rw
].last_met
;
1570 nr_missed
[rw
] += this_missed
- stat
->missed
[rw
].last_missed
;
1571 stat
->missed
[rw
].last_met
= this_met
;
1572 stat
->missed
[rw
].last_missed
= this_missed
;
1575 this_rq_wait_ns
= local64_read(&stat
->rq_wait_ns
);
1576 rq_wait_ns
+= this_rq_wait_ns
- stat
->last_rq_wait_ns
;
1577 stat
->last_rq_wait_ns
= this_rq_wait_ns
;
1580 for (rw
= READ
; rw
<= WRITE
; rw
++) {
1581 if (nr_met
[rw
] + nr_missed
[rw
])
1583 DIV64_U64_ROUND_UP((u64
)nr_missed
[rw
] * MILLION
,
1584 nr_met
[rw
] + nr_missed
[rw
]);
1586 missed_ppm_ar
[rw
] = 0;
1589 *rq_wait_pct_p
= div64_u64(rq_wait_ns
* 100,
1590 ioc
->period_us
* NSEC_PER_USEC
);
1593 /* was iocg idle this period? */
1594 static bool iocg_is_idle(struct ioc_gq
*iocg
)
1596 struct ioc
*ioc
= iocg
->ioc
;
1598 /* did something get issued this period? */
1599 if (atomic64_read(&iocg
->active_period
) ==
1600 atomic64_read(&ioc
->cur_period
))
1603 /* is something in flight? */
1604 if (atomic64_read(&iocg
->done_vtime
) != atomic64_read(&iocg
->vtime
))
1611 * Call this function on the target leaf @iocg's to build pre-order traversal
1612 * list of all the ancestors in @inner_walk. The inner nodes are linked through
1613 * ->walk_list and the caller is responsible for dissolving the list after use.
1615 static void iocg_build_inner_walk(struct ioc_gq
*iocg
,
1616 struct list_head
*inner_walk
)
1620 WARN_ON_ONCE(!list_empty(&iocg
->walk_list
));
1622 /* find the first ancestor which hasn't been visited yet */
1623 for (lvl
= iocg
->level
- 1; lvl
>= 0; lvl
--) {
1624 if (!list_empty(&iocg
->ancestors
[lvl
]->walk_list
))
1628 /* walk down and visit the inner nodes to get pre-order traversal */
1629 while (++lvl
<= iocg
->level
- 1) {
1630 struct ioc_gq
*inner
= iocg
->ancestors
[lvl
];
1632 /* record traversal order */
1633 list_add_tail(&inner
->walk_list
, inner_walk
);
1637 /* collect per-cpu counters and propagate the deltas to the parent */
1638 static void iocg_flush_stat_one(struct ioc_gq
*iocg
, struct ioc_now
*now
)
1640 struct ioc
*ioc
= iocg
->ioc
;
1641 struct iocg_stat new_stat
;
1646 lockdep_assert_held(&iocg
->ioc
->lock
);
1648 /* collect per-cpu counters */
1649 for_each_possible_cpu(cpu
) {
1650 abs_vusage
+= local64_read(
1651 per_cpu_ptr(&iocg
->pcpu_stat
->abs_vusage
, cpu
));
1653 vusage_delta
= abs_vusage
- iocg
->last_stat_abs_vusage
;
1654 iocg
->last_stat_abs_vusage
= abs_vusage
;
1656 iocg
->usage_delta_us
= div64_u64(vusage_delta
, ioc
->vtime_base_rate
);
1657 iocg
->local_stat
.usage_us
+= iocg
->usage_delta_us
;
1659 /* propagate upwards */
1661 iocg
->local_stat
.usage_us
+ iocg
->desc_stat
.usage_us
;
1663 iocg
->local_stat
.wait_us
+ iocg
->desc_stat
.wait_us
;
1664 new_stat
.indebt_us
=
1665 iocg
->local_stat
.indebt_us
+ iocg
->desc_stat
.indebt_us
;
1666 new_stat
.indelay_us
=
1667 iocg
->local_stat
.indelay_us
+ iocg
->desc_stat
.indelay_us
;
1669 /* propagate the deltas to the parent */
1670 if (iocg
->level
> 0) {
1671 struct iocg_stat
*parent_stat
=
1672 &iocg
->ancestors
[iocg
->level
- 1]->desc_stat
;
1674 parent_stat
->usage_us
+=
1675 new_stat
.usage_us
- iocg
->last_stat
.usage_us
;
1676 parent_stat
->wait_us
+=
1677 new_stat
.wait_us
- iocg
->last_stat
.wait_us
;
1678 parent_stat
->indebt_us
+=
1679 new_stat
.indebt_us
- iocg
->last_stat
.indebt_us
;
1680 parent_stat
->indelay_us
+=
1681 new_stat
.indelay_us
- iocg
->last_stat
.indelay_us
;
1684 iocg
->last_stat
= new_stat
;
1687 /* get stat counters ready for reading on all active iocgs */
1688 static void iocg_flush_stat(struct list_head
*target_iocgs
, struct ioc_now
*now
)
1690 LIST_HEAD(inner_walk
);
1691 struct ioc_gq
*iocg
, *tiocg
;
1693 /* flush leaves and build inner node walk list */
1694 list_for_each_entry(iocg
, target_iocgs
, active_list
) {
1695 iocg_flush_stat_one(iocg
, now
);
1696 iocg_build_inner_walk(iocg
, &inner_walk
);
1699 /* keep flushing upwards by walking the inner list backwards */
1700 list_for_each_entry_safe_reverse(iocg
, tiocg
, &inner_walk
, walk_list
) {
1701 iocg_flush_stat_one(iocg
, now
);
1702 list_del_init(&iocg
->walk_list
);
1707 * Determine what @iocg's hweight_inuse should be after donating unused
1708 * capacity. @hwm is the upper bound and used to signal no donation. This
1709 * function also throws away @iocg's excess budget.
1711 static u32
hweight_after_donation(struct ioc_gq
*iocg
, u32 old_hwi
, u32 hwm
,
1712 u32 usage
, struct ioc_now
*now
)
1714 struct ioc
*ioc
= iocg
->ioc
;
1715 u64 vtime
= atomic64_read(&iocg
->vtime
);
1716 s64 excess
, delta
, target
, new_hwi
;
1718 /* debt handling owns inuse for debtors */
1719 if (iocg
->abs_vdebt
)
1722 /* see whether minimum margin requirement is met */
1723 if (waitqueue_active(&iocg
->waitq
) ||
1724 time_after64(vtime
, now
->vnow
- ioc
->margins
.min
))
1727 /* throw away excess above target */
1728 excess
= now
->vnow
- vtime
- ioc
->margins
.target
;
1730 atomic64_add(excess
, &iocg
->vtime
);
1731 atomic64_add(excess
, &iocg
->done_vtime
);
1733 ioc
->vtime_err
-= div64_u64(excess
* old_hwi
, WEIGHT_ONE
);
1737 * Let's say the distance between iocg's and device's vtimes as a
1738 * fraction of period duration is delta. Assuming that the iocg will
1739 * consume the usage determined above, we want to determine new_hwi so
1740 * that delta equals MARGIN_TARGET at the end of the next period.
1742 * We need to execute usage worth of IOs while spending the sum of the
1743 * new budget (1 - MARGIN_TARGET) and the leftover from the last period
1746 * usage = (1 - MARGIN_TARGET + delta) * new_hwi
1748 * Therefore, the new_hwi is:
1750 * new_hwi = usage / (1 - MARGIN_TARGET + delta)
1752 delta
= div64_s64(WEIGHT_ONE
* (now
->vnow
- vtime
),
1753 now
->vnow
- ioc
->period_at_vtime
);
1754 target
= WEIGHT_ONE
* MARGIN_TARGET_PCT
/ 100;
1755 new_hwi
= div64_s64(WEIGHT_ONE
* usage
, WEIGHT_ONE
- target
+ delta
);
1757 return clamp_t(s64
, new_hwi
, 1, hwm
);
1761 * For work-conservation, an iocg which isn't using all of its share should
1762 * donate the leftover to other iocgs. There are two ways to achieve this - 1.
1763 * bumping up vrate accordingly 2. lowering the donating iocg's inuse weight.
1765 * #1 is mathematically simpler but has the drawback of requiring synchronous
1766 * global hweight_inuse updates when idle iocg's get activated or inuse weights
1767 * change due to donation snapbacks as it has the possibility of grossly
1768 * overshooting what's allowed by the model and vrate.
1770 * #2 is inherently safe with local operations. The donating iocg can easily
1771 * snap back to higher weights when needed without worrying about impacts on
1772 * other nodes as the impacts will be inherently correct. This also makes idle
1773 * iocg activations safe. The only effect activations have is decreasing
1774 * hweight_inuse of others, the right solution to which is for those iocgs to
1775 * snap back to higher weights.
1777 * So, we go with #2. The challenge is calculating how each donating iocg's
1778 * inuse should be adjusted to achieve the target donation amounts. This is done
1779 * using Andy's method described in the following pdf.
1781 * https://drive.google.com/file/d/1PsJwxPFtjUnwOY1QJ5AeICCcsL7BM3bo
1783 * Given the weights and target after-donation hweight_inuse values, Andy's
1784 * method determines how the proportional distribution should look like at each
1785 * sibling level to maintain the relative relationship between all non-donating
1786 * pairs. To roughly summarize, it divides the tree into donating and
1787 * non-donating parts, calculates global donation rate which is used to
1788 * determine the target hweight_inuse for each node, and then derives per-level
1791 * The following pdf shows that global distribution calculated this way can be
1792 * achieved by scaling inuse weights of donating leaves and propagating the
1793 * adjustments upwards proportionally.
1795 * https://drive.google.com/file/d/1vONz1-fzVO7oY5DXXsLjSxEtYYQbOvsE
1797 * Combining the above two, we can determine how each leaf iocg's inuse should
1798 * be adjusted to achieve the target donation.
1800 * https://drive.google.com/file/d/1WcrltBOSPN0qXVdBgnKm4mdp9FhuEFQN
1802 * The inline comments use symbols from the last pdf.
1804 * b is the sum of the absolute budgets in the subtree. 1 for the root node.
1805 * f is the sum of the absolute budgets of non-donating nodes in the subtree.
1806 * t is the sum of the absolute budgets of donating nodes in the subtree.
1807 * w is the weight of the node. w = w_f + w_t
1808 * w_f is the non-donating portion of w. w_f = w * f / b
1809 * w_b is the donating portion of w. w_t = w * t / b
1810 * s is the sum of all sibling weights. s = Sum(w) for siblings
1811 * s_f and s_t are the non-donating and donating portions of s.
1813 * Subscript p denotes the parent's counterpart and ' the adjusted value - e.g.
1814 * w_pt is the donating portion of the parent's weight and w'_pt the same value
1815 * after adjustments. Subscript r denotes the root node's values.
1817 static void transfer_surpluses(struct list_head
*surpluses
, struct ioc_now
*now
)
1819 LIST_HEAD(over_hwa
);
1820 LIST_HEAD(inner_walk
);
1821 struct ioc_gq
*iocg
, *tiocg
, *root_iocg
;
1822 u32 after_sum
, over_sum
, over_target
, gamma
;
1825 * It's pretty unlikely but possible for the total sum of
1826 * hweight_after_donation's to be higher than WEIGHT_ONE, which will
1827 * confuse the following calculations. If such condition is detected,
1828 * scale down everyone over its full share equally to keep the sum below
1833 list_for_each_entry(iocg
, surpluses
, surplus_list
) {
1836 current_hweight(iocg
, &hwa
, NULL
);
1837 after_sum
+= iocg
->hweight_after_donation
;
1839 if (iocg
->hweight_after_donation
> hwa
) {
1840 over_sum
+= iocg
->hweight_after_donation
;
1841 list_add(&iocg
->walk_list
, &over_hwa
);
1845 if (after_sum
>= WEIGHT_ONE
) {
1847 * The delta should be deducted from the over_sum, calculate
1848 * target over_sum value.
1850 u32 over_delta
= after_sum
- (WEIGHT_ONE
- 1);
1851 WARN_ON_ONCE(over_sum
<= over_delta
);
1852 over_target
= over_sum
- over_delta
;
1857 list_for_each_entry_safe(iocg
, tiocg
, &over_hwa
, walk_list
) {
1859 iocg
->hweight_after_donation
=
1860 div_u64((u64
)iocg
->hweight_after_donation
*
1861 over_target
, over_sum
);
1862 list_del_init(&iocg
->walk_list
);
1866 * Build pre-order inner node walk list and prepare for donation
1867 * adjustment calculations.
1869 list_for_each_entry(iocg
, surpluses
, surplus_list
) {
1870 iocg_build_inner_walk(iocg
, &inner_walk
);
1873 root_iocg
= list_first_entry(&inner_walk
, struct ioc_gq
, walk_list
);
1874 WARN_ON_ONCE(root_iocg
->level
> 0);
1876 list_for_each_entry(iocg
, &inner_walk
, walk_list
) {
1877 iocg
->child_adjusted_sum
= 0;
1878 iocg
->hweight_donating
= 0;
1879 iocg
->hweight_after_donation
= 0;
1883 * Propagate the donating budget (b_t) and after donation budget (b'_t)
1886 list_for_each_entry(iocg
, surpluses
, surplus_list
) {
1887 struct ioc_gq
*parent
= iocg
->ancestors
[iocg
->level
- 1];
1889 parent
->hweight_donating
+= iocg
->hweight_donating
;
1890 parent
->hweight_after_donation
+= iocg
->hweight_after_donation
;
1893 list_for_each_entry_reverse(iocg
, &inner_walk
, walk_list
) {
1894 if (iocg
->level
> 0) {
1895 struct ioc_gq
*parent
= iocg
->ancestors
[iocg
->level
- 1];
1897 parent
->hweight_donating
+= iocg
->hweight_donating
;
1898 parent
->hweight_after_donation
+= iocg
->hweight_after_donation
;
1903 * Calculate inner hwa's (b) and make sure the donation values are
1904 * within the accepted ranges as we're doing low res calculations with
1907 list_for_each_entry(iocg
, &inner_walk
, walk_list
) {
1909 struct ioc_gq
*parent
= iocg
->ancestors
[iocg
->level
- 1];
1911 iocg
->hweight_active
= DIV64_U64_ROUND_UP(
1912 (u64
)parent
->hweight_active
* iocg
->active
,
1913 parent
->child_active_sum
);
1917 iocg
->hweight_donating
= min(iocg
->hweight_donating
,
1918 iocg
->hweight_active
);
1919 iocg
->hweight_after_donation
= min(iocg
->hweight_after_donation
,
1920 iocg
->hweight_donating
- 1);
1921 if (WARN_ON_ONCE(iocg
->hweight_active
<= 1 ||
1922 iocg
->hweight_donating
<= 1 ||
1923 iocg
->hweight_after_donation
== 0)) {
1924 pr_warn("iocg: invalid donation weights in ");
1925 pr_cont_cgroup_path(iocg_to_blkg(iocg
)->blkcg
->css
.cgroup
);
1926 pr_cont(": active=%u donating=%u after=%u\n",
1927 iocg
->hweight_active
, iocg
->hweight_donating
,
1928 iocg
->hweight_after_donation
);
1933 * Calculate the global donation rate (gamma) - the rate to adjust
1934 * non-donating budgets by.
1936 * No need to use 64bit multiplication here as the first operand is
1937 * guaranteed to be smaller than WEIGHT_ONE (1<<16).
1939 * We know that there are beneficiary nodes and the sum of the donating
1940 * hweights can't be whole; however, due to the round-ups during hweight
1941 * calculations, root_iocg->hweight_donating might still end up equal to
1942 * or greater than whole. Limit the range when calculating the divider.
1944 * gamma = (1 - t_r') / (1 - t_r)
1946 gamma
= DIV_ROUND_UP(
1947 (WEIGHT_ONE
- root_iocg
->hweight_after_donation
) * WEIGHT_ONE
,
1948 WEIGHT_ONE
- min_t(u32
, root_iocg
->hweight_donating
, WEIGHT_ONE
- 1));
1951 * Calculate adjusted hwi, child_adjusted_sum and inuse for the inner
1954 list_for_each_entry(iocg
, &inner_walk
, walk_list
) {
1955 struct ioc_gq
*parent
;
1956 u32 inuse
, wpt
, wptp
;
1959 if (iocg
->level
== 0) {
1960 /* adjusted weight sum for 1st level: s' = s * b_pf / b'_pf */
1961 iocg
->child_adjusted_sum
= DIV64_U64_ROUND_UP(
1962 iocg
->child_active_sum
* (WEIGHT_ONE
- iocg
->hweight_donating
),
1963 WEIGHT_ONE
- iocg
->hweight_after_donation
);
1967 parent
= iocg
->ancestors
[iocg
->level
- 1];
1969 /* b' = gamma * b_f + b_t' */
1970 iocg
->hweight_inuse
= DIV64_U64_ROUND_UP(
1971 (u64
)gamma
* (iocg
->hweight_active
- iocg
->hweight_donating
),
1972 WEIGHT_ONE
) + iocg
->hweight_after_donation
;
1974 /* w' = s' * b' / b'_p */
1975 inuse
= DIV64_U64_ROUND_UP(
1976 (u64
)parent
->child_adjusted_sum
* iocg
->hweight_inuse
,
1977 parent
->hweight_inuse
);
1979 /* adjusted weight sum for children: s' = s_f + s_t * w'_pt / w_pt */
1980 st
= DIV64_U64_ROUND_UP(
1981 iocg
->child_active_sum
* iocg
->hweight_donating
,
1982 iocg
->hweight_active
);
1983 sf
= iocg
->child_active_sum
- st
;
1984 wpt
= DIV64_U64_ROUND_UP(
1985 (u64
)iocg
->active
* iocg
->hweight_donating
,
1986 iocg
->hweight_active
);
1987 wptp
= DIV64_U64_ROUND_UP(
1988 (u64
)inuse
* iocg
->hweight_after_donation
,
1989 iocg
->hweight_inuse
);
1991 iocg
->child_adjusted_sum
= sf
+ DIV64_U64_ROUND_UP(st
* wptp
, wpt
);
1995 * All inner nodes now have ->hweight_inuse and ->child_adjusted_sum and
1996 * we can finally determine leaf adjustments.
1998 list_for_each_entry(iocg
, surpluses
, surplus_list
) {
1999 struct ioc_gq
*parent
= iocg
->ancestors
[iocg
->level
- 1];
2003 * In-debt iocgs participated in the donation calculation with
2004 * the minimum target hweight_inuse. Configuring inuse
2005 * accordingly would work fine but debt handling expects
2006 * @iocg->inuse stay at the minimum and we don't wanna
2009 if (iocg
->abs_vdebt
) {
2010 WARN_ON_ONCE(iocg
->inuse
> 1);
2014 /* w' = s' * b' / b'_p, note that b' == b'_t for donating leaves */
2015 inuse
= DIV64_U64_ROUND_UP(
2016 parent
->child_adjusted_sum
* iocg
->hweight_after_donation
,
2017 parent
->hweight_inuse
);
2019 TRACE_IOCG_PATH(inuse_transfer
, iocg
, now
,
2021 iocg
->hweight_inuse
,
2022 iocg
->hweight_after_donation
);
2024 __propagate_weights(iocg
, iocg
->active
, inuse
, true, now
);
2027 /* walk list should be dissolved after use */
2028 list_for_each_entry_safe(iocg
, tiocg
, &inner_walk
, walk_list
)
2029 list_del_init(&iocg
->walk_list
);
2033 * A low weight iocg can amass a large amount of debt, for example, when
2034 * anonymous memory gets reclaimed aggressively. If the system has a lot of
2035 * memory paired with a slow IO device, the debt can span multiple seconds or
2036 * more. If there are no other subsequent IO issuers, the in-debt iocg may end
2037 * up blocked paying its debt while the IO device is idle.
2039 * The following protects against such cases. If the device has been
2040 * sufficiently idle for a while, the debts are halved and delays are
2043 static void ioc_forgive_debts(struct ioc
*ioc
, u64 usage_us_sum
, int nr_debtors
,
2044 struct ioc_now
*now
)
2046 struct ioc_gq
*iocg
;
2047 u64 dur
, usage_pct
, nr_cycles
;
2049 /* if no debtor, reset the cycle */
2051 ioc
->dfgv_period_at
= now
->now
;
2052 ioc
->dfgv_period_rem
= 0;
2053 ioc
->dfgv_usage_us_sum
= 0;
2058 * Debtors can pass through a lot of writes choking the device and we
2059 * don't want to be forgiving debts while the device is struggling from
2060 * write bursts. If we're missing latency targets, consider the device
2063 if (ioc
->busy_level
> 0)
2064 usage_us_sum
= max_t(u64
, usage_us_sum
, ioc
->period_us
);
2066 ioc
->dfgv_usage_us_sum
+= usage_us_sum
;
2067 if (time_before64(now
->now
, ioc
->dfgv_period_at
+ DFGV_PERIOD
))
2071 * At least DFGV_PERIOD has passed since the last period. Calculate the
2072 * average usage and reset the period counters.
2074 dur
= now
->now
- ioc
->dfgv_period_at
;
2075 usage_pct
= div64_u64(100 * ioc
->dfgv_usage_us_sum
, dur
);
2077 ioc
->dfgv_period_at
= now
->now
;
2078 ioc
->dfgv_usage_us_sum
= 0;
2080 /* if was too busy, reset everything */
2081 if (usage_pct
> DFGV_USAGE_PCT
) {
2082 ioc
->dfgv_period_rem
= 0;
2087 * Usage is lower than threshold. Let's forgive some debts. Debt
2088 * forgiveness runs off of the usual ioc timer but its period usually
2089 * doesn't match ioc's. Compensate the difference by performing the
2090 * reduction as many times as would fit in the duration since the last
2091 * run and carrying over the left-over duration in @ioc->dfgv_period_rem
2092 * - if ioc period is 75% of DFGV_PERIOD, one out of three consecutive
2093 * reductions is doubled.
2095 nr_cycles
= dur
+ ioc
->dfgv_period_rem
;
2096 ioc
->dfgv_period_rem
= do_div(nr_cycles
, DFGV_PERIOD
);
2098 list_for_each_entry(iocg
, &ioc
->active_iocgs
, active_list
) {
2099 u64 __maybe_unused old_debt
, __maybe_unused old_delay
;
2101 if (!iocg
->abs_vdebt
&& !iocg
->delay
)
2104 spin_lock(&iocg
->waitq
.lock
);
2106 old_debt
= iocg
->abs_vdebt
;
2107 old_delay
= iocg
->delay
;
2109 if (iocg
->abs_vdebt
)
2110 iocg
->abs_vdebt
= iocg
->abs_vdebt
>> nr_cycles
?: 1;
2112 iocg
->delay
= iocg
->delay
>> nr_cycles
?: 1;
2114 iocg_kick_waitq(iocg
, true, now
);
2116 TRACE_IOCG_PATH(iocg_forgive_debt
, iocg
, now
, usage_pct
,
2117 old_debt
, iocg
->abs_vdebt
,
2118 old_delay
, iocg
->delay
);
2120 spin_unlock(&iocg
->waitq
.lock
);
2125 * Check the active iocgs' state to avoid oversleeping and deactive
2128 * Since waiters determine the sleep durations based on the vrate
2129 * they saw at the time of sleep, if vrate has increased, some
2130 * waiters could be sleeping for too long. Wake up tardy waiters
2131 * which should have woken up in the last period and expire idle
2134 static int ioc_check_iocgs(struct ioc
*ioc
, struct ioc_now
*now
)
2137 struct ioc_gq
*iocg
, *tiocg
;
2139 list_for_each_entry_safe(iocg
, tiocg
, &ioc
->active_iocgs
, active_list
) {
2140 if (!waitqueue_active(&iocg
->waitq
) && !iocg
->abs_vdebt
&&
2141 !iocg
->delay
&& !iocg_is_idle(iocg
))
2144 spin_lock(&iocg
->waitq
.lock
);
2146 /* flush wait and indebt stat deltas */
2147 if (iocg
->wait_since
) {
2148 iocg
->local_stat
.wait_us
+= now
->now
- iocg
->wait_since
;
2149 iocg
->wait_since
= now
->now
;
2151 if (iocg
->indebt_since
) {
2152 iocg
->local_stat
.indebt_us
+=
2153 now
->now
- iocg
->indebt_since
;
2154 iocg
->indebt_since
= now
->now
;
2156 if (iocg
->indelay_since
) {
2157 iocg
->local_stat
.indelay_us
+=
2158 now
->now
- iocg
->indelay_since
;
2159 iocg
->indelay_since
= now
->now
;
2162 if (waitqueue_active(&iocg
->waitq
) || iocg
->abs_vdebt
||
2164 /* might be oversleeping vtime / hweight changes, kick */
2165 iocg_kick_waitq(iocg
, true, now
);
2166 if (iocg
->abs_vdebt
|| iocg
->delay
)
2168 } else if (iocg_is_idle(iocg
)) {
2169 /* no waiter and idle, deactivate */
2170 u64 vtime
= atomic64_read(&iocg
->vtime
);
2174 * @iocg has been inactive for a full duration and will
2175 * have a high budget. Account anything above target as
2176 * error and throw away. On reactivation, it'll start
2177 * with the target budget.
2179 excess
= now
->vnow
- vtime
- ioc
->margins
.target
;
2183 current_hweight(iocg
, NULL
, &old_hwi
);
2184 ioc
->vtime_err
-= div64_u64(excess
* old_hwi
,
2188 TRACE_IOCG_PATH(iocg_idle
, iocg
, now
,
2189 atomic64_read(&iocg
->active_period
),
2190 atomic64_read(&ioc
->cur_period
), vtime
);
2191 __propagate_weights(iocg
, 0, 0, false, now
);
2192 list_del_init(&iocg
->active_list
);
2195 spin_unlock(&iocg
->waitq
.lock
);
2198 commit_weights(ioc
);
2202 static void ioc_timer_fn(struct timer_list
*timer
)
2204 struct ioc
*ioc
= container_of(timer
, struct ioc
, timer
);
2205 struct ioc_gq
*iocg
, *tiocg
;
2207 LIST_HEAD(surpluses
);
2208 int nr_debtors
, nr_shortages
= 0, nr_lagging
= 0;
2209 u64 usage_us_sum
= 0;
2210 u32 ppm_rthr
= MILLION
- ioc
->params
.qos
[QOS_RPPM
];
2211 u32 ppm_wthr
= MILLION
- ioc
->params
.qos
[QOS_WPPM
];
2212 u32 missed_ppm
[2], rq_wait_pct
;
2214 int prev_busy_level
;
2216 /* how were the latencies during the period? */
2217 ioc_lat_stat(ioc
, missed_ppm
, &rq_wait_pct
);
2219 /* take care of active iocgs */
2220 spin_lock_irq(&ioc
->lock
);
2224 period_vtime
= now
.vnow
- ioc
->period_at_vtime
;
2225 if (WARN_ON_ONCE(!period_vtime
)) {
2226 spin_unlock_irq(&ioc
->lock
);
2230 nr_debtors
= ioc_check_iocgs(ioc
, &now
);
2233 * Wait and indebt stat are flushed above and the donation calculation
2234 * below needs updated usage stat. Let's bring stat up-to-date.
2236 iocg_flush_stat(&ioc
->active_iocgs
, &now
);
2238 /* calc usage and see whether some weights need to be moved around */
2239 list_for_each_entry(iocg
, &ioc
->active_iocgs
, active_list
) {
2240 u64 vdone
, vtime
, usage_us
;
2241 u32 hw_active
, hw_inuse
;
2244 * Collect unused and wind vtime closer to vnow to prevent
2245 * iocgs from accumulating a large amount of budget.
2247 vdone
= atomic64_read(&iocg
->done_vtime
);
2248 vtime
= atomic64_read(&iocg
->vtime
);
2249 current_hweight(iocg
, &hw_active
, &hw_inuse
);
2252 * Latency QoS detection doesn't account for IOs which are
2253 * in-flight for longer than a period. Detect them by
2254 * comparing vdone against period start. If lagging behind
2255 * IOs from past periods, don't increase vrate.
2257 if ((ppm_rthr
!= MILLION
|| ppm_wthr
!= MILLION
) &&
2258 !atomic_read(&iocg_to_blkg(iocg
)->use_delay
) &&
2259 time_after64(vtime
, vdone
) &&
2260 time_after64(vtime
, now
.vnow
-
2261 MAX_LAGGING_PERIODS
* period_vtime
) &&
2262 time_before64(vdone
, now
.vnow
- period_vtime
))
2266 * Determine absolute usage factoring in in-flight IOs to avoid
2267 * high-latency completions appearing as idle.
2269 usage_us
= iocg
->usage_delta_us
;
2270 usage_us_sum
+= usage_us
;
2272 /* see whether there's surplus vtime */
2273 WARN_ON_ONCE(!list_empty(&iocg
->surplus_list
));
2274 if (hw_inuse
< hw_active
||
2275 (!waitqueue_active(&iocg
->waitq
) &&
2276 time_before64(vtime
, now
.vnow
- ioc
->margins
.low
))) {
2277 u32 hwa
, old_hwi
, hwm
, new_hwi
, usage
;
2280 if (vdone
!= vtime
) {
2281 u64 inflight_us
= DIV64_U64_ROUND_UP(
2282 cost_to_abs_cost(vtime
- vdone
, hw_inuse
),
2283 ioc
->vtime_base_rate
);
2285 usage_us
= max(usage_us
, inflight_us
);
2288 /* convert to hweight based usage ratio */
2289 if (time_after64(iocg
->activated_at
, ioc
->period_at
))
2290 usage_dur
= max_t(u64
, now
.now
- iocg
->activated_at
, 1);
2292 usage_dur
= max_t(u64
, now
.now
- ioc
->period_at
, 1);
2294 usage
= clamp_t(u32
,
2295 DIV64_U64_ROUND_UP(usage_us
* WEIGHT_ONE
,
2300 * Already donating or accumulated enough to start.
2301 * Determine the donation amount.
2303 current_hweight(iocg
, &hwa
, &old_hwi
);
2304 hwm
= current_hweight_max(iocg
);
2305 new_hwi
= hweight_after_donation(iocg
, old_hwi
, hwm
,
2307 if (new_hwi
< hwm
) {
2308 iocg
->hweight_donating
= hwa
;
2309 iocg
->hweight_after_donation
= new_hwi
;
2310 list_add(&iocg
->surplus_list
, &surpluses
);
2312 TRACE_IOCG_PATH(inuse_shortage
, iocg
, &now
,
2313 iocg
->inuse
, iocg
->active
,
2314 iocg
->hweight_inuse
, new_hwi
);
2316 __propagate_weights(iocg
, iocg
->active
,
2317 iocg
->active
, true, &now
);
2321 /* genuinely short on vtime */
2326 if (!list_empty(&surpluses
) && nr_shortages
)
2327 transfer_surpluses(&surpluses
, &now
);
2329 commit_weights(ioc
);
2331 /* surplus list should be dissolved after use */
2332 list_for_each_entry_safe(iocg
, tiocg
, &surpluses
, surplus_list
)
2333 list_del_init(&iocg
->surplus_list
);
2336 * If q is getting clogged or we're missing too much, we're issuing
2337 * too much IO and should lower vtime rate. If we're not missing
2338 * and experiencing shortages but not surpluses, we're too stingy
2339 * and should increase vtime rate.
2341 prev_busy_level
= ioc
->busy_level
;
2342 if (rq_wait_pct
> RQ_WAIT_BUSY_PCT
||
2343 missed_ppm
[READ
] > ppm_rthr
||
2344 missed_ppm
[WRITE
] > ppm_wthr
) {
2345 /* clearly missing QoS targets, slow down vrate */
2346 ioc
->busy_level
= max(ioc
->busy_level
, 0);
2348 } else if (rq_wait_pct
<= RQ_WAIT_BUSY_PCT
* UNBUSY_THR_PCT
/ 100 &&
2349 missed_ppm
[READ
] <= ppm_rthr
* UNBUSY_THR_PCT
/ 100 &&
2350 missed_ppm
[WRITE
] <= ppm_wthr
* UNBUSY_THR_PCT
/ 100) {
2351 /* QoS targets are being met with >25% margin */
2354 * We're throttling while the device has spare
2355 * capacity. If vrate was being slowed down, stop.
2357 ioc
->busy_level
= min(ioc
->busy_level
, 0);
2360 * If there are IOs spanning multiple periods, wait
2361 * them out before pushing the device harder.
2367 * Nobody is being throttled and the users aren't
2368 * issuing enough IOs to saturate the device. We
2369 * simply don't know how close the device is to
2370 * saturation. Coast.
2372 ioc
->busy_level
= 0;
2375 /* inside the hysterisis margin, we're good */
2376 ioc
->busy_level
= 0;
2379 ioc
->busy_level
= clamp(ioc
->busy_level
, -1000, 1000);
2381 ioc_adjust_base_vrate(ioc
, rq_wait_pct
, nr_lagging
, nr_shortages
,
2382 prev_busy_level
, missed_ppm
);
2384 ioc_refresh_params(ioc
, false);
2386 ioc_forgive_debts(ioc
, usage_us_sum
, nr_debtors
, &now
);
2389 * This period is done. Move onto the next one. If nothing's
2390 * going on with the device, stop the timer.
2392 atomic64_inc(&ioc
->cur_period
);
2394 if (ioc
->running
!= IOC_STOP
) {
2395 if (!list_empty(&ioc
->active_iocgs
)) {
2396 ioc_start_period(ioc
, &now
);
2398 ioc
->busy_level
= 0;
2400 ioc
->running
= IOC_IDLE
;
2403 ioc_refresh_vrate(ioc
, &now
);
2406 spin_unlock_irq(&ioc
->lock
);
2409 static u64
adjust_inuse_and_calc_cost(struct ioc_gq
*iocg
, u64 vtime
,
2410 u64 abs_cost
, struct ioc_now
*now
)
2412 struct ioc
*ioc
= iocg
->ioc
;
2413 struct ioc_margins
*margins
= &ioc
->margins
;
2414 u32 __maybe_unused old_inuse
= iocg
->inuse
, __maybe_unused old_hwi
;
2417 u64 cost
, new_inuse
;
2419 current_hweight(iocg
, NULL
, &hwi
);
2421 cost
= abs_cost_to_cost(abs_cost
, hwi
);
2422 margin
= now
->vnow
- vtime
- cost
;
2424 /* debt handling owns inuse for debtors */
2425 if (iocg
->abs_vdebt
)
2429 * We only increase inuse during period and do so if the margin has
2430 * deteriorated since the previous adjustment.
2432 if (margin
>= iocg
->saved_margin
|| margin
>= margins
->low
||
2433 iocg
->inuse
== iocg
->active
)
2436 spin_lock_irq(&ioc
->lock
);
2438 /* we own inuse only when @iocg is in the normal active state */
2439 if (iocg
->abs_vdebt
|| list_empty(&iocg
->active_list
)) {
2440 spin_unlock_irq(&ioc
->lock
);
2445 * Bump up inuse till @abs_cost fits in the existing budget.
2446 * adj_step must be determined after acquiring ioc->lock - we might
2447 * have raced and lost to another thread for activation and could
2448 * be reading 0 iocg->active before ioc->lock which will lead to
2451 new_inuse
= iocg
->inuse
;
2452 adj_step
= DIV_ROUND_UP(iocg
->active
* INUSE_ADJ_STEP_PCT
, 100);
2454 new_inuse
= new_inuse
+ adj_step
;
2455 propagate_weights(iocg
, iocg
->active
, new_inuse
, true, now
);
2456 current_hweight(iocg
, NULL
, &hwi
);
2457 cost
= abs_cost_to_cost(abs_cost
, hwi
);
2458 } while (time_after64(vtime
+ cost
, now
->vnow
) &&
2459 iocg
->inuse
!= iocg
->active
);
2461 spin_unlock_irq(&ioc
->lock
);
2463 TRACE_IOCG_PATH(inuse_adjust
, iocg
, now
,
2464 old_inuse
, iocg
->inuse
, old_hwi
, hwi
);
2469 static void calc_vtime_cost_builtin(struct bio
*bio
, struct ioc_gq
*iocg
,
2470 bool is_merge
, u64
*costp
)
2472 struct ioc
*ioc
= iocg
->ioc
;
2473 u64 coef_seqio
, coef_randio
, coef_page
;
2474 u64 pages
= max_t(u64
, bio_sectors(bio
) >> IOC_SECT_TO_PAGE_SHIFT
, 1);
2478 switch (bio_op(bio
)) {
2480 coef_seqio
= ioc
->params
.lcoefs
[LCOEF_RSEQIO
];
2481 coef_randio
= ioc
->params
.lcoefs
[LCOEF_RRANDIO
];
2482 coef_page
= ioc
->params
.lcoefs
[LCOEF_RPAGE
];
2485 coef_seqio
= ioc
->params
.lcoefs
[LCOEF_WSEQIO
];
2486 coef_randio
= ioc
->params
.lcoefs
[LCOEF_WRANDIO
];
2487 coef_page
= ioc
->params
.lcoefs
[LCOEF_WPAGE
];
2494 seek_pages
= abs(bio
->bi_iter
.bi_sector
- iocg
->cursor
);
2495 seek_pages
>>= IOC_SECT_TO_PAGE_SHIFT
;
2499 if (seek_pages
> LCOEF_RANDIO_PAGES
) {
2500 cost
+= coef_randio
;
2505 cost
+= pages
* coef_page
;
2510 static u64
calc_vtime_cost(struct bio
*bio
, struct ioc_gq
*iocg
, bool is_merge
)
2514 calc_vtime_cost_builtin(bio
, iocg
, is_merge
, &cost
);
2518 static void calc_size_vtime_cost_builtin(struct request
*rq
, struct ioc
*ioc
,
2521 unsigned int pages
= blk_rq_stats_sectors(rq
) >> IOC_SECT_TO_PAGE_SHIFT
;
2523 switch (req_op(rq
)) {
2525 *costp
= pages
* ioc
->params
.lcoefs
[LCOEF_RPAGE
];
2528 *costp
= pages
* ioc
->params
.lcoefs
[LCOEF_WPAGE
];
2535 static u64
calc_size_vtime_cost(struct request
*rq
, struct ioc
*ioc
)
2539 calc_size_vtime_cost_builtin(rq
, ioc
, &cost
);
2543 static void ioc_rqos_throttle(struct rq_qos
*rqos
, struct bio
*bio
)
2545 struct blkcg_gq
*blkg
= bio
->bi_blkg
;
2546 struct ioc
*ioc
= rqos_to_ioc(rqos
);
2547 struct ioc_gq
*iocg
= blkg_to_iocg(blkg
);
2549 struct iocg_wait wait
;
2550 u64 abs_cost
, cost
, vtime
;
2551 bool use_debt
, ioc_locked
;
2552 unsigned long flags
;
2554 /* bypass IOs if disabled, still initializing, or for root cgroup */
2555 if (!ioc
->enabled
|| !iocg
|| !iocg
->level
)
2558 /* calculate the absolute vtime cost */
2559 abs_cost
= calc_vtime_cost(bio
, iocg
, false);
2563 if (!iocg_activate(iocg
, &now
))
2566 iocg
->cursor
= bio_end_sector(bio
);
2567 vtime
= atomic64_read(&iocg
->vtime
);
2568 cost
= adjust_inuse_and_calc_cost(iocg
, vtime
, abs_cost
, &now
);
2571 * If no one's waiting and within budget, issue right away. The
2572 * tests are racy but the races aren't systemic - we only miss once
2573 * in a while which is fine.
2575 if (!waitqueue_active(&iocg
->waitq
) && !iocg
->abs_vdebt
&&
2576 time_before_eq64(vtime
+ cost
, now
.vnow
)) {
2577 iocg_commit_bio(iocg
, bio
, abs_cost
, cost
);
2582 * We're over budget. This can be handled in two ways. IOs which may
2583 * cause priority inversions are punted to @ioc->aux_iocg and charged as
2584 * debt. Otherwise, the issuer is blocked on @iocg->waitq. Debt handling
2585 * requires @ioc->lock, waitq handling @iocg->waitq.lock. Determine
2586 * whether debt handling is needed and acquire locks accordingly.
2588 use_debt
= bio_issue_as_root_blkg(bio
) || fatal_signal_pending(current
);
2589 ioc_locked
= use_debt
|| READ_ONCE(iocg
->abs_vdebt
);
2591 iocg_lock(iocg
, ioc_locked
, &flags
);
2594 * @iocg must stay activated for debt and waitq handling. Deactivation
2595 * is synchronized against both ioc->lock and waitq.lock and we won't
2596 * get deactivated as long as we're waiting or has debt, so we're good
2597 * if we're activated here. In the unlikely cases that we aren't, just
2600 if (unlikely(list_empty(&iocg
->active_list
))) {
2601 iocg_unlock(iocg
, ioc_locked
, &flags
);
2602 iocg_commit_bio(iocg
, bio
, abs_cost
, cost
);
2607 * We're over budget. If @bio has to be issued regardless, remember
2608 * the abs_cost instead of advancing vtime. iocg_kick_waitq() will pay
2609 * off the debt before waking more IOs.
2611 * This way, the debt is continuously paid off each period with the
2612 * actual budget available to the cgroup. If we just wound vtime, we
2613 * would incorrectly use the current hw_inuse for the entire amount
2614 * which, for example, can lead to the cgroup staying blocked for a
2615 * long time even with substantially raised hw_inuse.
2617 * An iocg with vdebt should stay online so that the timer can keep
2618 * deducting its vdebt and [de]activate use_delay mechanism
2619 * accordingly. We don't want to race against the timer trying to
2620 * clear them and leave @iocg inactive w/ dangling use_delay heavily
2621 * penalizing the cgroup and its descendants.
2624 iocg_incur_debt(iocg
, abs_cost
, &now
);
2625 if (iocg_kick_delay(iocg
, &now
))
2626 blkcg_schedule_throttle(rqos
->q
,
2627 (bio
->bi_opf
& REQ_SWAP
) == REQ_SWAP
);
2628 iocg_unlock(iocg
, ioc_locked
, &flags
);
2632 /* guarantee that iocgs w/ waiters have maximum inuse */
2633 if (!iocg
->abs_vdebt
&& iocg
->inuse
!= iocg
->active
) {
2635 iocg_unlock(iocg
, false, &flags
);
2639 propagate_weights(iocg
, iocg
->active
, iocg
->active
, true,
2644 * Append self to the waitq and schedule the wakeup timer if we're
2645 * the first waiter. The timer duration is calculated based on the
2646 * current vrate. vtime and hweight changes can make it too short
2647 * or too long. Each wait entry records the absolute cost it's
2648 * waiting for to allow re-evaluation using a custom wait entry.
2650 * If too short, the timer simply reschedules itself. If too long,
2651 * the period timer will notice and trigger wakeups.
2653 * All waiters are on iocg->waitq and the wait states are
2654 * synchronized using waitq.lock.
2656 init_waitqueue_func_entry(&wait
.wait
, iocg_wake_fn
);
2657 wait
.wait
.private = current
;
2659 wait
.abs_cost
= abs_cost
;
2660 wait
.committed
= false; /* will be set true by waker */
2662 __add_wait_queue_entry_tail(&iocg
->waitq
, &wait
.wait
);
2663 iocg_kick_waitq(iocg
, ioc_locked
, &now
);
2665 iocg_unlock(iocg
, ioc_locked
, &flags
);
2668 set_current_state(TASK_UNINTERRUPTIBLE
);
2674 /* waker already committed us, proceed */
2675 finish_wait(&iocg
->waitq
, &wait
.wait
);
2678 static void ioc_rqos_merge(struct rq_qos
*rqos
, struct request
*rq
,
2681 struct ioc_gq
*iocg
= blkg_to_iocg(bio
->bi_blkg
);
2682 struct ioc
*ioc
= rqos_to_ioc(rqos
);
2683 sector_t bio_end
= bio_end_sector(bio
);
2685 u64 vtime
, abs_cost
, cost
;
2686 unsigned long flags
;
2688 /* bypass if disabled, still initializing, or for root cgroup */
2689 if (!ioc
->enabled
|| !iocg
|| !iocg
->level
)
2692 abs_cost
= calc_vtime_cost(bio
, iocg
, true);
2698 vtime
= atomic64_read(&iocg
->vtime
);
2699 cost
= adjust_inuse_and_calc_cost(iocg
, vtime
, abs_cost
, &now
);
2701 /* update cursor if backmerging into the request at the cursor */
2702 if (blk_rq_pos(rq
) < bio_end
&&
2703 blk_rq_pos(rq
) + blk_rq_sectors(rq
) == iocg
->cursor
)
2704 iocg
->cursor
= bio_end
;
2707 * Charge if there's enough vtime budget and the existing request has
2710 if (rq
->bio
&& rq
->bio
->bi_iocost_cost
&&
2711 time_before_eq64(atomic64_read(&iocg
->vtime
) + cost
, now
.vnow
)) {
2712 iocg_commit_bio(iocg
, bio
, abs_cost
, cost
);
2717 * Otherwise, account it as debt if @iocg is online, which it should
2718 * be for the vast majority of cases. See debt handling in
2719 * ioc_rqos_throttle() for details.
2721 spin_lock_irqsave(&ioc
->lock
, flags
);
2722 spin_lock(&iocg
->waitq
.lock
);
2724 if (likely(!list_empty(&iocg
->active_list
))) {
2725 iocg_incur_debt(iocg
, abs_cost
, &now
);
2726 if (iocg_kick_delay(iocg
, &now
))
2727 blkcg_schedule_throttle(rqos
->q
,
2728 (bio
->bi_opf
& REQ_SWAP
) == REQ_SWAP
);
2730 iocg_commit_bio(iocg
, bio
, abs_cost
, cost
);
2733 spin_unlock(&iocg
->waitq
.lock
);
2734 spin_unlock_irqrestore(&ioc
->lock
, flags
);
2737 static void ioc_rqos_done_bio(struct rq_qos
*rqos
, struct bio
*bio
)
2739 struct ioc_gq
*iocg
= blkg_to_iocg(bio
->bi_blkg
);
2741 if (iocg
&& bio
->bi_iocost_cost
)
2742 atomic64_add(bio
->bi_iocost_cost
, &iocg
->done_vtime
);
2745 static void ioc_rqos_done(struct rq_qos
*rqos
, struct request
*rq
)
2747 struct ioc
*ioc
= rqos_to_ioc(rqos
);
2748 struct ioc_pcpu_stat
*ccs
;
2749 u64 on_q_ns
, rq_wait_ns
, size_nsec
;
2752 if (!ioc
->enabled
|| !rq
->alloc_time_ns
|| !rq
->start_time_ns
)
2755 switch (req_op(rq
) & REQ_OP_MASK
) {
2768 on_q_ns
= ktime_get_ns() - rq
->alloc_time_ns
;
2769 rq_wait_ns
= rq
->start_time_ns
- rq
->alloc_time_ns
;
2770 size_nsec
= div64_u64(calc_size_vtime_cost(rq
, ioc
), VTIME_PER_NSEC
);
2772 ccs
= get_cpu_ptr(ioc
->pcpu_stat
);
2774 if (on_q_ns
<= size_nsec
||
2775 on_q_ns
- size_nsec
<= ioc
->params
.qos
[pidx
] * NSEC_PER_USEC
)
2776 local_inc(&ccs
->missed
[rw
].nr_met
);
2778 local_inc(&ccs
->missed
[rw
].nr_missed
);
2780 local64_add(rq_wait_ns
, &ccs
->rq_wait_ns
);
2785 static void ioc_rqos_queue_depth_changed(struct rq_qos
*rqos
)
2787 struct ioc
*ioc
= rqos_to_ioc(rqos
);
2789 spin_lock_irq(&ioc
->lock
);
2790 ioc_refresh_params(ioc
, false);
2791 spin_unlock_irq(&ioc
->lock
);
2794 static void ioc_rqos_exit(struct rq_qos
*rqos
)
2796 struct ioc
*ioc
= rqos_to_ioc(rqos
);
2798 blkcg_deactivate_policy(rqos
->q
, &blkcg_policy_iocost
);
2800 spin_lock_irq(&ioc
->lock
);
2801 ioc
->running
= IOC_STOP
;
2802 spin_unlock_irq(&ioc
->lock
);
2804 del_timer_sync(&ioc
->timer
);
2805 free_percpu(ioc
->pcpu_stat
);
2809 static struct rq_qos_ops ioc_rqos_ops
= {
2810 .throttle
= ioc_rqos_throttle
,
2811 .merge
= ioc_rqos_merge
,
2812 .done_bio
= ioc_rqos_done_bio
,
2813 .done
= ioc_rqos_done
,
2814 .queue_depth_changed
= ioc_rqos_queue_depth_changed
,
2815 .exit
= ioc_rqos_exit
,
2818 static int blk_iocost_init(struct request_queue
*q
)
2821 struct rq_qos
*rqos
;
2824 ioc
= kzalloc(sizeof(*ioc
), GFP_KERNEL
);
2828 ioc
->pcpu_stat
= alloc_percpu(struct ioc_pcpu_stat
);
2829 if (!ioc
->pcpu_stat
) {
2834 for_each_possible_cpu(cpu
) {
2835 struct ioc_pcpu_stat
*ccs
= per_cpu_ptr(ioc
->pcpu_stat
, cpu
);
2837 for (i
= 0; i
< ARRAY_SIZE(ccs
->missed
); i
++) {
2838 local_set(&ccs
->missed
[i
].nr_met
, 0);
2839 local_set(&ccs
->missed
[i
].nr_missed
, 0);
2841 local64_set(&ccs
->rq_wait_ns
, 0);
2845 rqos
->id
= RQ_QOS_COST
;
2846 rqos
->ops
= &ioc_rqos_ops
;
2849 spin_lock_init(&ioc
->lock
);
2850 timer_setup(&ioc
->timer
, ioc_timer_fn
, 0);
2851 INIT_LIST_HEAD(&ioc
->active_iocgs
);
2853 ioc
->running
= IOC_IDLE
;
2854 ioc
->vtime_base_rate
= VTIME_PER_USEC
;
2855 atomic64_set(&ioc
->vtime_rate
, VTIME_PER_USEC
);
2856 seqcount_spinlock_init(&ioc
->period_seqcount
, &ioc
->lock
);
2857 ioc
->period_at
= ktime_to_us(ktime_get());
2858 atomic64_set(&ioc
->cur_period
, 0);
2859 atomic_set(&ioc
->hweight_gen
, 0);
2861 spin_lock_irq(&ioc
->lock
);
2862 ioc
->autop_idx
= AUTOP_INVALID
;
2863 ioc_refresh_params(ioc
, true);
2864 spin_unlock_irq(&ioc
->lock
);
2867 * rqos must be added before activation to allow iocg_pd_init() to
2868 * lookup the ioc from q. This means that the rqos methods may get
2869 * called before policy activation completion, can't assume that the
2870 * target bio has an iocg associated and need to test for NULL iocg.
2872 rq_qos_add(q
, rqos
);
2873 ret
= blkcg_activate_policy(q
, &blkcg_policy_iocost
);
2875 rq_qos_del(q
, rqos
);
2876 free_percpu(ioc
->pcpu_stat
);
2883 static struct blkcg_policy_data
*ioc_cpd_alloc(gfp_t gfp
)
2885 struct ioc_cgrp
*iocc
;
2887 iocc
= kzalloc(sizeof(struct ioc_cgrp
), gfp
);
2891 iocc
->dfl_weight
= CGROUP_WEIGHT_DFL
* WEIGHT_ONE
;
2895 static void ioc_cpd_free(struct blkcg_policy_data
*cpd
)
2897 kfree(container_of(cpd
, struct ioc_cgrp
, cpd
));
2900 static struct blkg_policy_data
*ioc_pd_alloc(gfp_t gfp
, struct request_queue
*q
,
2901 struct blkcg
*blkcg
)
2903 int levels
= blkcg
->css
.cgroup
->level
+ 1;
2904 struct ioc_gq
*iocg
;
2906 iocg
= kzalloc_node(struct_size(iocg
, ancestors
, levels
), gfp
, q
->node
);
2910 iocg
->pcpu_stat
= alloc_percpu_gfp(struct iocg_pcpu_stat
, gfp
);
2911 if (!iocg
->pcpu_stat
) {
2919 static void ioc_pd_init(struct blkg_policy_data
*pd
)
2921 struct ioc_gq
*iocg
= pd_to_iocg(pd
);
2922 struct blkcg_gq
*blkg
= pd_to_blkg(&iocg
->pd
);
2923 struct ioc
*ioc
= q_to_ioc(blkg
->q
);
2925 struct blkcg_gq
*tblkg
;
2926 unsigned long flags
;
2931 atomic64_set(&iocg
->vtime
, now
.vnow
);
2932 atomic64_set(&iocg
->done_vtime
, now
.vnow
);
2933 atomic64_set(&iocg
->active_period
, atomic64_read(&ioc
->cur_period
));
2934 INIT_LIST_HEAD(&iocg
->active_list
);
2935 INIT_LIST_HEAD(&iocg
->walk_list
);
2936 INIT_LIST_HEAD(&iocg
->surplus_list
);
2937 iocg
->hweight_active
= WEIGHT_ONE
;
2938 iocg
->hweight_inuse
= WEIGHT_ONE
;
2940 init_waitqueue_head(&iocg
->waitq
);
2941 hrtimer_init(&iocg
->waitq_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_ABS
);
2942 iocg
->waitq_timer
.function
= iocg_waitq_timer_fn
;
2944 iocg
->level
= blkg
->blkcg
->css
.cgroup
->level
;
2946 for (tblkg
= blkg
; tblkg
; tblkg
= tblkg
->parent
) {
2947 struct ioc_gq
*tiocg
= blkg_to_iocg(tblkg
);
2948 iocg
->ancestors
[tiocg
->level
] = tiocg
;
2951 spin_lock_irqsave(&ioc
->lock
, flags
);
2952 weight_updated(iocg
, &now
);
2953 spin_unlock_irqrestore(&ioc
->lock
, flags
);
2956 static void ioc_pd_free(struct blkg_policy_data
*pd
)
2958 struct ioc_gq
*iocg
= pd_to_iocg(pd
);
2959 struct ioc
*ioc
= iocg
->ioc
;
2960 unsigned long flags
;
2963 spin_lock_irqsave(&ioc
->lock
, flags
);
2965 if (!list_empty(&iocg
->active_list
)) {
2969 propagate_weights(iocg
, 0, 0, false, &now
);
2970 list_del_init(&iocg
->active_list
);
2973 WARN_ON_ONCE(!list_empty(&iocg
->walk_list
));
2974 WARN_ON_ONCE(!list_empty(&iocg
->surplus_list
));
2976 spin_unlock_irqrestore(&ioc
->lock
, flags
);
2978 hrtimer_cancel(&iocg
->waitq_timer
);
2980 free_percpu(iocg
->pcpu_stat
);
2984 static size_t ioc_pd_stat(struct blkg_policy_data
*pd
, char *buf
, size_t size
)
2986 struct ioc_gq
*iocg
= pd_to_iocg(pd
);
2987 struct ioc
*ioc
= iocg
->ioc
;
2993 if (iocg
->level
== 0) {
2994 unsigned vp10k
= DIV64_U64_ROUND_CLOSEST(
2995 ioc
->vtime_base_rate
* 10000,
2997 pos
+= scnprintf(buf
+ pos
, size
- pos
, " cost.vrate=%u.%02u",
2998 vp10k
/ 100, vp10k
% 100);
3001 pos
+= scnprintf(buf
+ pos
, size
- pos
, " cost.usage=%llu",
3002 iocg
->last_stat
.usage_us
);
3004 if (blkcg_debug_stats
)
3005 pos
+= scnprintf(buf
+ pos
, size
- pos
,
3006 " cost.wait=%llu cost.indebt=%llu cost.indelay=%llu",
3007 iocg
->last_stat
.wait_us
,
3008 iocg
->last_stat
.indebt_us
,
3009 iocg
->last_stat
.indelay_us
);
3014 static u64
ioc_weight_prfill(struct seq_file
*sf
, struct blkg_policy_data
*pd
,
3017 const char *dname
= blkg_dev_name(pd
->blkg
);
3018 struct ioc_gq
*iocg
= pd_to_iocg(pd
);
3020 if (dname
&& iocg
->cfg_weight
)
3021 seq_printf(sf
, "%s %u\n", dname
, iocg
->cfg_weight
/ WEIGHT_ONE
);
3026 static int ioc_weight_show(struct seq_file
*sf
, void *v
)
3028 struct blkcg
*blkcg
= css_to_blkcg(seq_css(sf
));
3029 struct ioc_cgrp
*iocc
= blkcg_to_iocc(blkcg
);
3031 seq_printf(sf
, "default %u\n", iocc
->dfl_weight
/ WEIGHT_ONE
);
3032 blkcg_print_blkgs(sf
, blkcg
, ioc_weight_prfill
,
3033 &blkcg_policy_iocost
, seq_cft(sf
)->private, false);
3037 static ssize_t
ioc_weight_write(struct kernfs_open_file
*of
, char *buf
,
3038 size_t nbytes
, loff_t off
)
3040 struct blkcg
*blkcg
= css_to_blkcg(of_css(of
));
3041 struct ioc_cgrp
*iocc
= blkcg_to_iocc(blkcg
);
3042 struct blkg_conf_ctx ctx
;
3044 struct ioc_gq
*iocg
;
3048 if (!strchr(buf
, ':')) {
3049 struct blkcg_gq
*blkg
;
3051 if (!sscanf(buf
, "default %u", &v
) && !sscanf(buf
, "%u", &v
))
3054 if (v
< CGROUP_WEIGHT_MIN
|| v
> CGROUP_WEIGHT_MAX
)
3057 spin_lock(&blkcg
->lock
);
3058 iocc
->dfl_weight
= v
* WEIGHT_ONE
;
3059 hlist_for_each_entry(blkg
, &blkcg
->blkg_list
, blkcg_node
) {
3060 struct ioc_gq
*iocg
= blkg_to_iocg(blkg
);
3063 spin_lock_irq(&iocg
->ioc
->lock
);
3064 ioc_now(iocg
->ioc
, &now
);
3065 weight_updated(iocg
, &now
);
3066 spin_unlock_irq(&iocg
->ioc
->lock
);
3069 spin_unlock(&blkcg
->lock
);
3074 ret
= blkg_conf_prep(blkcg
, &blkcg_policy_iocost
, buf
, &ctx
);
3078 iocg
= blkg_to_iocg(ctx
.blkg
);
3080 if (!strncmp(ctx
.body
, "default", 7)) {
3083 if (!sscanf(ctx
.body
, "%u", &v
))
3085 if (v
< CGROUP_WEIGHT_MIN
|| v
> CGROUP_WEIGHT_MAX
)
3089 spin_lock(&iocg
->ioc
->lock
);
3090 iocg
->cfg_weight
= v
* WEIGHT_ONE
;
3091 ioc_now(iocg
->ioc
, &now
);
3092 weight_updated(iocg
, &now
);
3093 spin_unlock(&iocg
->ioc
->lock
);
3095 blkg_conf_finish(&ctx
);
3099 blkg_conf_finish(&ctx
);
3103 static u64
ioc_qos_prfill(struct seq_file
*sf
, struct blkg_policy_data
*pd
,
3106 const char *dname
= blkg_dev_name(pd
->blkg
);
3107 struct ioc
*ioc
= pd_to_iocg(pd
)->ioc
;
3112 seq_printf(sf
, "%s enable=%d ctrl=%s rpct=%u.%02u rlat=%u wpct=%u.%02u wlat=%u min=%u.%02u max=%u.%02u\n",
3113 dname
, ioc
->enabled
, ioc
->user_qos_params
? "user" : "auto",
3114 ioc
->params
.qos
[QOS_RPPM
] / 10000,
3115 ioc
->params
.qos
[QOS_RPPM
] % 10000 / 100,
3116 ioc
->params
.qos
[QOS_RLAT
],
3117 ioc
->params
.qos
[QOS_WPPM
] / 10000,
3118 ioc
->params
.qos
[QOS_WPPM
] % 10000 / 100,
3119 ioc
->params
.qos
[QOS_WLAT
],
3120 ioc
->params
.qos
[QOS_MIN
] / 10000,
3121 ioc
->params
.qos
[QOS_MIN
] % 10000 / 100,
3122 ioc
->params
.qos
[QOS_MAX
] / 10000,
3123 ioc
->params
.qos
[QOS_MAX
] % 10000 / 100);
3127 static int ioc_qos_show(struct seq_file
*sf
, void *v
)
3129 struct blkcg
*blkcg
= css_to_blkcg(seq_css(sf
));
3131 blkcg_print_blkgs(sf
, blkcg
, ioc_qos_prfill
,
3132 &blkcg_policy_iocost
, seq_cft(sf
)->private, false);
3136 static const match_table_t qos_ctrl_tokens
= {
3137 { QOS_ENABLE
, "enable=%u" },
3138 { QOS_CTRL
, "ctrl=%s" },
3139 { NR_QOS_CTRL_PARAMS
, NULL
},
3142 static const match_table_t qos_tokens
= {
3143 { QOS_RPPM
, "rpct=%s" },
3144 { QOS_RLAT
, "rlat=%u" },
3145 { QOS_WPPM
, "wpct=%s" },
3146 { QOS_WLAT
, "wlat=%u" },
3147 { QOS_MIN
, "min=%s" },
3148 { QOS_MAX
, "max=%s" },
3149 { NR_QOS_PARAMS
, NULL
},
3152 static ssize_t
ioc_qos_write(struct kernfs_open_file
*of
, char *input
,
3153 size_t nbytes
, loff_t off
)
3155 struct block_device
*bdev
;
3157 u32 qos
[NR_QOS_PARAMS
];
3162 bdev
= blkcg_conf_open_bdev(&input
);
3164 return PTR_ERR(bdev
);
3166 ioc
= q_to_ioc(bdev
->bd_disk
->queue
);
3168 ret
= blk_iocost_init(bdev
->bd_disk
->queue
);
3171 ioc
= q_to_ioc(bdev
->bd_disk
->queue
);
3174 spin_lock_irq(&ioc
->lock
);
3175 memcpy(qos
, ioc
->params
.qos
, sizeof(qos
));
3176 enable
= ioc
->enabled
;
3177 user
= ioc
->user_qos_params
;
3178 spin_unlock_irq(&ioc
->lock
);
3180 while ((p
= strsep(&input
, " \t\n"))) {
3181 substring_t args
[MAX_OPT_ARGS
];
3189 switch (match_token(p
, qos_ctrl_tokens
, args
)) {
3191 match_u64(&args
[0], &v
);
3195 match_strlcpy(buf
, &args
[0], sizeof(buf
));
3196 if (!strcmp(buf
, "auto"))
3198 else if (!strcmp(buf
, "user"))
3205 tok
= match_token(p
, qos_tokens
, args
);
3209 if (match_strlcpy(buf
, &args
[0], sizeof(buf
)) >=
3212 if (cgroup_parse_float(buf
, 2, &v
))
3214 if (v
< 0 || v
> 10000)
3220 if (match_u64(&args
[0], &v
))
3226 if (match_strlcpy(buf
, &args
[0], sizeof(buf
)) >=
3229 if (cgroup_parse_float(buf
, 2, &v
))
3233 qos
[tok
] = clamp_t(s64
, v
* 100,
3234 VRATE_MIN_PPM
, VRATE_MAX_PPM
);
3242 if (qos
[QOS_MIN
] > qos
[QOS_MAX
])
3245 spin_lock_irq(&ioc
->lock
);
3248 blk_stat_enable_accounting(ioc
->rqos
.q
);
3249 blk_queue_flag_set(QUEUE_FLAG_RQ_ALLOC_TIME
, ioc
->rqos
.q
);
3250 ioc
->enabled
= true;
3252 blk_queue_flag_clear(QUEUE_FLAG_RQ_ALLOC_TIME
, ioc
->rqos
.q
);
3253 ioc
->enabled
= false;
3257 memcpy(ioc
->params
.qos
, qos
, sizeof(qos
));
3258 ioc
->user_qos_params
= true;
3260 ioc
->user_qos_params
= false;
3263 ioc_refresh_params(ioc
, true);
3264 spin_unlock_irq(&ioc
->lock
);
3266 blkdev_put_no_open(bdev
);
3271 blkdev_put_no_open(bdev
);
3275 static u64
ioc_cost_model_prfill(struct seq_file
*sf
,
3276 struct blkg_policy_data
*pd
, int off
)
3278 const char *dname
= blkg_dev_name(pd
->blkg
);
3279 struct ioc
*ioc
= pd_to_iocg(pd
)->ioc
;
3280 u64
*u
= ioc
->params
.i_lcoefs
;
3285 seq_printf(sf
, "%s ctrl=%s model=linear "
3286 "rbps=%llu rseqiops=%llu rrandiops=%llu "
3287 "wbps=%llu wseqiops=%llu wrandiops=%llu\n",
3288 dname
, ioc
->user_cost_model
? "user" : "auto",
3289 u
[I_LCOEF_RBPS
], u
[I_LCOEF_RSEQIOPS
], u
[I_LCOEF_RRANDIOPS
],
3290 u
[I_LCOEF_WBPS
], u
[I_LCOEF_WSEQIOPS
], u
[I_LCOEF_WRANDIOPS
]);
3294 static int ioc_cost_model_show(struct seq_file
*sf
, void *v
)
3296 struct blkcg
*blkcg
= css_to_blkcg(seq_css(sf
));
3298 blkcg_print_blkgs(sf
, blkcg
, ioc_cost_model_prfill
,
3299 &blkcg_policy_iocost
, seq_cft(sf
)->private, false);
3303 static const match_table_t cost_ctrl_tokens
= {
3304 { COST_CTRL
, "ctrl=%s" },
3305 { COST_MODEL
, "model=%s" },
3306 { NR_COST_CTRL_PARAMS
, NULL
},
3309 static const match_table_t i_lcoef_tokens
= {
3310 { I_LCOEF_RBPS
, "rbps=%u" },
3311 { I_LCOEF_RSEQIOPS
, "rseqiops=%u" },
3312 { I_LCOEF_RRANDIOPS
, "rrandiops=%u" },
3313 { I_LCOEF_WBPS
, "wbps=%u" },
3314 { I_LCOEF_WSEQIOPS
, "wseqiops=%u" },
3315 { I_LCOEF_WRANDIOPS
, "wrandiops=%u" },
3316 { NR_I_LCOEFS
, NULL
},
3319 static ssize_t
ioc_cost_model_write(struct kernfs_open_file
*of
, char *input
,
3320 size_t nbytes
, loff_t off
)
3322 struct block_device
*bdev
;
3329 bdev
= blkcg_conf_open_bdev(&input
);
3331 return PTR_ERR(bdev
);
3333 ioc
= q_to_ioc(bdev
->bd_disk
->queue
);
3335 ret
= blk_iocost_init(bdev
->bd_disk
->queue
);
3338 ioc
= q_to_ioc(bdev
->bd_disk
->queue
);
3341 spin_lock_irq(&ioc
->lock
);
3342 memcpy(u
, ioc
->params
.i_lcoefs
, sizeof(u
));
3343 user
= ioc
->user_cost_model
;
3344 spin_unlock_irq(&ioc
->lock
);
3346 while ((p
= strsep(&input
, " \t\n"))) {
3347 substring_t args
[MAX_OPT_ARGS
];
3355 switch (match_token(p
, cost_ctrl_tokens
, args
)) {
3357 match_strlcpy(buf
, &args
[0], sizeof(buf
));
3358 if (!strcmp(buf
, "auto"))
3360 else if (!strcmp(buf
, "user"))
3366 match_strlcpy(buf
, &args
[0], sizeof(buf
));
3367 if (strcmp(buf
, "linear"))
3372 tok
= match_token(p
, i_lcoef_tokens
, args
);
3373 if (tok
== NR_I_LCOEFS
)
3375 if (match_u64(&args
[0], &v
))
3381 spin_lock_irq(&ioc
->lock
);
3383 memcpy(ioc
->params
.i_lcoefs
, u
, sizeof(u
));
3384 ioc
->user_cost_model
= true;
3386 ioc
->user_cost_model
= false;
3388 ioc_refresh_params(ioc
, true);
3389 spin_unlock_irq(&ioc
->lock
);
3391 blkdev_put_no_open(bdev
);
3397 blkdev_put_no_open(bdev
);
3401 static struct cftype ioc_files
[] = {
3404 .flags
= CFTYPE_NOT_ON_ROOT
,
3405 .seq_show
= ioc_weight_show
,
3406 .write
= ioc_weight_write
,
3410 .flags
= CFTYPE_ONLY_ON_ROOT
,
3411 .seq_show
= ioc_qos_show
,
3412 .write
= ioc_qos_write
,
3415 .name
= "cost.model",
3416 .flags
= CFTYPE_ONLY_ON_ROOT
,
3417 .seq_show
= ioc_cost_model_show
,
3418 .write
= ioc_cost_model_write
,
3423 static struct blkcg_policy blkcg_policy_iocost
= {
3424 .dfl_cftypes
= ioc_files
,
3425 .cpd_alloc_fn
= ioc_cpd_alloc
,
3426 .cpd_free_fn
= ioc_cpd_free
,
3427 .pd_alloc_fn
= ioc_pd_alloc
,
3428 .pd_init_fn
= ioc_pd_init
,
3429 .pd_free_fn
= ioc_pd_free
,
3430 .pd_stat_fn
= ioc_pd_stat
,
3433 static int __init
ioc_init(void)
3435 return blkcg_policy_register(&blkcg_policy_iocost
);
3438 static void __exit
ioc_exit(void)
3440 blkcg_policy_unregister(&blkcg_policy_iocost
);
3443 module_init(ioc_init
);
3444 module_exit(ioc_exit
);