1 // SPDX-License-Identifier: GPL-2.0
3 * Block multiqueue core code
5 * Copyright (C) 2013-2014 Jens Axboe
6 * Copyright (C) 2013-2014 Christoph Hellwig
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/kmemleak.h>
15 #include <linux/init.h>
16 #include <linux/slab.h>
17 #include <linux/workqueue.h>
18 #include <linux/smp.h>
19 #include <linux/llist.h>
20 #include <linux/list_sort.h>
21 #include <linux/cpu.h>
22 #include <linux/cache.h>
23 #include <linux/sched/sysctl.h>
24 #include <linux/sched/topology.h>
25 #include <linux/sched/signal.h>
26 #include <linux/delay.h>
27 #include <linux/crash_dump.h>
28 #include <linux/prefetch.h>
29 #include <linux/blk-crypto.h>
31 #include <trace/events/block.h>
33 #include <linux/blk-mq.h>
34 #include <linux/t10-pi.h>
37 #include "blk-mq-debugfs.h"
38 #include "blk-mq-tag.h"
41 #include "blk-mq-sched.h"
42 #include "blk-rq-qos.h"
44 static DEFINE_PER_CPU(struct list_head
, blk_cpu_done
);
46 static void blk_mq_poll_stats_start(struct request_queue
*q
);
47 static void blk_mq_poll_stats_fn(struct blk_stat_callback
*cb
);
49 static int blk_mq_poll_stats_bkt(const struct request
*rq
)
51 int ddir
, sectors
, bucket
;
53 ddir
= rq_data_dir(rq
);
54 sectors
= blk_rq_stats_sectors(rq
);
56 bucket
= ddir
+ 2 * ilog2(sectors
);
60 else if (bucket
>= BLK_MQ_POLL_STATS_BKTS
)
61 return ddir
+ BLK_MQ_POLL_STATS_BKTS
- 2;
67 * Check if any of the ctx, dispatch list or elevator
68 * have pending work in this hardware queue.
70 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx
*hctx
)
72 return !list_empty_careful(&hctx
->dispatch
) ||
73 sbitmap_any_bit_set(&hctx
->ctx_map
) ||
74 blk_mq_sched_has_work(hctx
);
78 * Mark this ctx as having pending work in this hardware queue
80 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx
*hctx
,
81 struct blk_mq_ctx
*ctx
)
83 const int bit
= ctx
->index_hw
[hctx
->type
];
85 if (!sbitmap_test_bit(&hctx
->ctx_map
, bit
))
86 sbitmap_set_bit(&hctx
->ctx_map
, bit
);
89 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx
*hctx
,
90 struct blk_mq_ctx
*ctx
)
92 const int bit
= ctx
->index_hw
[hctx
->type
];
94 sbitmap_clear_bit(&hctx
->ctx_map
, bit
);
98 struct block_device
*part
;
99 unsigned int inflight
[2];
102 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx
*hctx
,
103 struct request
*rq
, void *priv
,
106 struct mq_inflight
*mi
= priv
;
108 if ((!mi
->part
->bd_partno
|| rq
->part
== mi
->part
) &&
109 blk_mq_rq_state(rq
) == MQ_RQ_IN_FLIGHT
)
110 mi
->inflight
[rq_data_dir(rq
)]++;
115 unsigned int blk_mq_in_flight(struct request_queue
*q
,
116 struct block_device
*part
)
118 struct mq_inflight mi
= { .part
= part
};
120 blk_mq_queue_tag_busy_iter(q
, blk_mq_check_inflight
, &mi
);
122 return mi
.inflight
[0] + mi
.inflight
[1];
125 void blk_mq_in_flight_rw(struct request_queue
*q
, struct block_device
*part
,
126 unsigned int inflight
[2])
128 struct mq_inflight mi
= { .part
= part
};
130 blk_mq_queue_tag_busy_iter(q
, blk_mq_check_inflight
, &mi
);
131 inflight
[0] = mi
.inflight
[0];
132 inflight
[1] = mi
.inflight
[1];
135 void blk_freeze_queue_start(struct request_queue
*q
)
137 mutex_lock(&q
->mq_freeze_lock
);
138 if (++q
->mq_freeze_depth
== 1) {
139 percpu_ref_kill(&q
->q_usage_counter
);
140 mutex_unlock(&q
->mq_freeze_lock
);
142 blk_mq_run_hw_queues(q
, false);
144 mutex_unlock(&q
->mq_freeze_lock
);
147 EXPORT_SYMBOL_GPL(blk_freeze_queue_start
);
149 void blk_mq_freeze_queue_wait(struct request_queue
*q
)
151 wait_event(q
->mq_freeze_wq
, percpu_ref_is_zero(&q
->q_usage_counter
));
153 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait
);
155 int blk_mq_freeze_queue_wait_timeout(struct request_queue
*q
,
156 unsigned long timeout
)
158 return wait_event_timeout(q
->mq_freeze_wq
,
159 percpu_ref_is_zero(&q
->q_usage_counter
),
162 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout
);
165 * Guarantee no request is in use, so we can change any data structure of
166 * the queue afterward.
168 void blk_freeze_queue(struct request_queue
*q
)
171 * In the !blk_mq case we are only calling this to kill the
172 * q_usage_counter, otherwise this increases the freeze depth
173 * and waits for it to return to zero. For this reason there is
174 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
175 * exported to drivers as the only user for unfreeze is blk_mq.
177 blk_freeze_queue_start(q
);
178 blk_mq_freeze_queue_wait(q
);
181 void blk_mq_freeze_queue(struct request_queue
*q
)
184 * ...just an alias to keep freeze and unfreeze actions balanced
185 * in the blk_mq_* namespace
189 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue
);
191 void blk_mq_unfreeze_queue(struct request_queue
*q
)
193 mutex_lock(&q
->mq_freeze_lock
);
194 q
->mq_freeze_depth
--;
195 WARN_ON_ONCE(q
->mq_freeze_depth
< 0);
196 if (!q
->mq_freeze_depth
) {
197 percpu_ref_resurrect(&q
->q_usage_counter
);
198 wake_up_all(&q
->mq_freeze_wq
);
200 mutex_unlock(&q
->mq_freeze_lock
);
202 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue
);
205 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
206 * mpt3sas driver such that this function can be removed.
208 void blk_mq_quiesce_queue_nowait(struct request_queue
*q
)
210 blk_queue_flag_set(QUEUE_FLAG_QUIESCED
, q
);
212 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait
);
215 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
218 * Note: this function does not prevent that the struct request end_io()
219 * callback function is invoked. Once this function is returned, we make
220 * sure no dispatch can happen until the queue is unquiesced via
221 * blk_mq_unquiesce_queue().
223 void blk_mq_quiesce_queue(struct request_queue
*q
)
225 struct blk_mq_hw_ctx
*hctx
;
229 blk_mq_quiesce_queue_nowait(q
);
231 queue_for_each_hw_ctx(q
, hctx
, i
) {
232 if (hctx
->flags
& BLK_MQ_F_BLOCKING
)
233 synchronize_srcu(hctx
->srcu
);
240 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue
);
243 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
246 * This function recovers queue into the state before quiescing
247 * which is done by blk_mq_quiesce_queue.
249 void blk_mq_unquiesce_queue(struct request_queue
*q
)
251 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED
, q
);
253 /* dispatch requests which are inserted during quiescing */
254 blk_mq_run_hw_queues(q
, true);
256 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue
);
258 void blk_mq_wake_waiters(struct request_queue
*q
)
260 struct blk_mq_hw_ctx
*hctx
;
263 queue_for_each_hw_ctx(q
, hctx
, i
)
264 if (blk_mq_hw_queue_mapped(hctx
))
265 blk_mq_tag_wakeup_all(hctx
->tags
, true);
269 * Only need start/end time stamping if we have iostat or
270 * blk stats enabled, or using an IO scheduler.
272 static inline bool blk_mq_need_time_stamp(struct request
*rq
)
274 return (rq
->rq_flags
& (RQF_IO_STAT
| RQF_STATS
)) || rq
->q
->elevator
;
277 static struct request
*blk_mq_rq_ctx_init(struct blk_mq_alloc_data
*data
,
278 unsigned int tag
, u64 alloc_time_ns
)
280 struct blk_mq_tags
*tags
= blk_mq_tags_from_data(data
);
281 struct request
*rq
= tags
->static_rqs
[tag
];
283 if (data
->q
->elevator
) {
284 rq
->tag
= BLK_MQ_NO_TAG
;
285 rq
->internal_tag
= tag
;
288 rq
->internal_tag
= BLK_MQ_NO_TAG
;
291 /* csd/requeue_work/fifo_time is initialized before use */
293 rq
->mq_ctx
= data
->ctx
;
294 rq
->mq_hctx
= data
->hctx
;
296 rq
->cmd_flags
= data
->cmd_flags
;
297 if (data
->flags
& BLK_MQ_REQ_PM
)
298 rq
->rq_flags
|= RQF_PM
;
299 if (blk_queue_io_stat(data
->q
))
300 rq
->rq_flags
|= RQF_IO_STAT
;
301 INIT_LIST_HEAD(&rq
->queuelist
);
302 INIT_HLIST_NODE(&rq
->hash
);
303 RB_CLEAR_NODE(&rq
->rb_node
);
306 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
307 rq
->alloc_time_ns
= alloc_time_ns
;
309 if (blk_mq_need_time_stamp(rq
))
310 rq
->start_time_ns
= ktime_get_ns();
312 rq
->start_time_ns
= 0;
313 rq
->io_start_time_ns
= 0;
314 rq
->stats_sectors
= 0;
315 rq
->nr_phys_segments
= 0;
316 #if defined(CONFIG_BLK_DEV_INTEGRITY)
317 rq
->nr_integrity_segments
= 0;
319 blk_crypto_rq_set_defaults(rq
);
320 /* tag was already set */
321 WRITE_ONCE(rq
->deadline
, 0);
326 rq
->end_io_data
= NULL
;
328 data
->ctx
->rq_dispatched
[op_is_sync(data
->cmd_flags
)]++;
329 refcount_set(&rq
->ref
, 1);
331 if (!op_is_flush(data
->cmd_flags
)) {
332 struct elevator_queue
*e
= data
->q
->elevator
;
335 if (e
&& e
->type
->ops
.prepare_request
) {
336 if (e
->type
->icq_cache
)
337 blk_mq_sched_assign_ioc(rq
);
339 e
->type
->ops
.prepare_request(rq
);
340 rq
->rq_flags
|= RQF_ELVPRIV
;
344 data
->hctx
->queued
++;
348 static struct request
*__blk_mq_alloc_request(struct blk_mq_alloc_data
*data
)
350 struct request_queue
*q
= data
->q
;
351 struct elevator_queue
*e
= q
->elevator
;
352 u64 alloc_time_ns
= 0;
355 /* alloc_time includes depth and tag waits */
356 if (blk_queue_rq_alloc_time(q
))
357 alloc_time_ns
= ktime_get_ns();
359 if (data
->cmd_flags
& REQ_NOWAIT
)
360 data
->flags
|= BLK_MQ_REQ_NOWAIT
;
364 * Flush requests are special and go directly to the
365 * dispatch list. Don't include reserved tags in the
366 * limiting, as it isn't useful.
368 if (!op_is_flush(data
->cmd_flags
) &&
369 e
->type
->ops
.limit_depth
&&
370 !(data
->flags
& BLK_MQ_REQ_RESERVED
))
371 e
->type
->ops
.limit_depth(data
->cmd_flags
, data
);
375 data
->ctx
= blk_mq_get_ctx(q
);
376 data
->hctx
= blk_mq_map_queue(q
, data
->cmd_flags
, data
->ctx
);
378 blk_mq_tag_busy(data
->hctx
);
381 * Waiting allocations only fail because of an inactive hctx. In that
382 * case just retry the hctx assignment and tag allocation as CPU hotplug
383 * should have migrated us to an online CPU by now.
385 tag
= blk_mq_get_tag(data
);
386 if (tag
== BLK_MQ_NO_TAG
) {
387 if (data
->flags
& BLK_MQ_REQ_NOWAIT
)
391 * Give up the CPU and sleep for a random short time to ensure
392 * that thread using a realtime scheduling class are migrated
393 * off the CPU, and thus off the hctx that is going away.
398 return blk_mq_rq_ctx_init(data
, tag
, alloc_time_ns
);
401 struct request
*blk_mq_alloc_request(struct request_queue
*q
, unsigned int op
,
402 blk_mq_req_flags_t flags
)
404 struct blk_mq_alloc_data data
= {
412 ret
= blk_queue_enter(q
, flags
);
416 rq
= __blk_mq_alloc_request(&data
);
420 rq
->__sector
= (sector_t
) -1;
421 rq
->bio
= rq
->biotail
= NULL
;
425 return ERR_PTR(-EWOULDBLOCK
);
427 EXPORT_SYMBOL(blk_mq_alloc_request
);
429 struct request
*blk_mq_alloc_request_hctx(struct request_queue
*q
,
430 unsigned int op
, blk_mq_req_flags_t flags
, unsigned int hctx_idx
)
432 struct blk_mq_alloc_data data
= {
437 u64 alloc_time_ns
= 0;
442 /* alloc_time includes depth and tag waits */
443 if (blk_queue_rq_alloc_time(q
))
444 alloc_time_ns
= ktime_get_ns();
447 * If the tag allocator sleeps we could get an allocation for a
448 * different hardware context. No need to complicate the low level
449 * allocator for this for the rare use case of a command tied to
452 if (WARN_ON_ONCE(!(flags
& (BLK_MQ_REQ_NOWAIT
| BLK_MQ_REQ_RESERVED
))))
453 return ERR_PTR(-EINVAL
);
455 if (hctx_idx
>= q
->nr_hw_queues
)
456 return ERR_PTR(-EIO
);
458 ret
= blk_queue_enter(q
, flags
);
463 * Check if the hardware context is actually mapped to anything.
464 * If not tell the caller that it should skip this queue.
467 data
.hctx
= q
->queue_hw_ctx
[hctx_idx
];
468 if (!blk_mq_hw_queue_mapped(data
.hctx
))
470 cpu
= cpumask_first_and(data
.hctx
->cpumask
, cpu_online_mask
);
471 data
.ctx
= __blk_mq_get_ctx(q
, cpu
);
474 blk_mq_tag_busy(data
.hctx
);
477 tag
= blk_mq_get_tag(&data
);
478 if (tag
== BLK_MQ_NO_TAG
)
480 return blk_mq_rq_ctx_init(&data
, tag
, alloc_time_ns
);
486 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx
);
488 static void __blk_mq_free_request(struct request
*rq
)
490 struct request_queue
*q
= rq
->q
;
491 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
492 struct blk_mq_hw_ctx
*hctx
= rq
->mq_hctx
;
493 const int sched_tag
= rq
->internal_tag
;
495 blk_crypto_free_request(rq
);
496 blk_pm_mark_last_busy(rq
);
498 if (rq
->tag
!= BLK_MQ_NO_TAG
)
499 blk_mq_put_tag(hctx
->tags
, ctx
, rq
->tag
);
500 if (sched_tag
!= BLK_MQ_NO_TAG
)
501 blk_mq_put_tag(hctx
->sched_tags
, ctx
, sched_tag
);
502 blk_mq_sched_restart(hctx
);
506 void blk_mq_free_request(struct request
*rq
)
508 struct request_queue
*q
= rq
->q
;
509 struct elevator_queue
*e
= q
->elevator
;
510 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
511 struct blk_mq_hw_ctx
*hctx
= rq
->mq_hctx
;
513 if (rq
->rq_flags
& RQF_ELVPRIV
) {
514 if (e
&& e
->type
->ops
.finish_request
)
515 e
->type
->ops
.finish_request(rq
);
517 put_io_context(rq
->elv
.icq
->ioc
);
522 ctx
->rq_completed
[rq_is_sync(rq
)]++;
523 if (rq
->rq_flags
& RQF_MQ_INFLIGHT
)
524 __blk_mq_dec_active_requests(hctx
);
526 if (unlikely(laptop_mode
&& !blk_rq_is_passthrough(rq
)))
527 laptop_io_completion(q
->backing_dev_info
);
531 WRITE_ONCE(rq
->state
, MQ_RQ_IDLE
);
532 if (refcount_dec_and_test(&rq
->ref
))
533 __blk_mq_free_request(rq
);
535 EXPORT_SYMBOL_GPL(blk_mq_free_request
);
537 inline void __blk_mq_end_request(struct request
*rq
, blk_status_t error
)
541 if (blk_mq_need_time_stamp(rq
))
542 now
= ktime_get_ns();
544 if (rq
->rq_flags
& RQF_STATS
) {
545 blk_mq_poll_stats_start(rq
->q
);
546 blk_stat_add(rq
, now
);
549 blk_mq_sched_completed_request(rq
, now
);
551 blk_account_io_done(rq
, now
);
554 rq_qos_done(rq
->q
, rq
);
555 rq
->end_io(rq
, error
);
557 blk_mq_free_request(rq
);
560 EXPORT_SYMBOL(__blk_mq_end_request
);
562 void blk_mq_end_request(struct request
*rq
, blk_status_t error
)
564 if (blk_update_request(rq
, error
, blk_rq_bytes(rq
)))
566 __blk_mq_end_request(rq
, error
);
568 EXPORT_SYMBOL(blk_mq_end_request
);
571 * Softirq action handler - move entries to local list and loop over them
572 * while passing them to the queue registered handler.
574 static __latent_entropy
void blk_done_softirq(struct softirq_action
*h
)
576 struct list_head
*cpu_list
, local_list
;
579 cpu_list
= this_cpu_ptr(&blk_cpu_done
);
580 list_replace_init(cpu_list
, &local_list
);
583 while (!list_empty(&local_list
)) {
586 rq
= list_entry(local_list
.next
, struct request
, ipi_list
);
587 list_del_init(&rq
->ipi_list
);
588 rq
->q
->mq_ops
->complete(rq
);
592 static void blk_mq_trigger_softirq(struct request
*rq
)
594 struct list_head
*list
;
597 local_irq_save(flags
);
598 list
= this_cpu_ptr(&blk_cpu_done
);
599 list_add_tail(&rq
->ipi_list
, list
);
602 * If the list only contains our just added request, signal a raise of
603 * the softirq. If there are already entries there, someone already
604 * raised the irq but it hasn't run yet.
606 if (list
->next
== &rq
->ipi_list
)
607 raise_softirq_irqoff(BLOCK_SOFTIRQ
);
608 local_irq_restore(flags
);
611 static int blk_softirq_cpu_dead(unsigned int cpu
)
614 * If a CPU goes away, splice its entries to the current CPU
615 * and trigger a run of the softirq
618 list_splice_init(&per_cpu(blk_cpu_done
, cpu
),
619 this_cpu_ptr(&blk_cpu_done
));
620 raise_softirq_irqoff(BLOCK_SOFTIRQ
);
627 static void __blk_mq_complete_request_remote(void *data
)
629 struct request
*rq
= data
;
632 * For most of single queue controllers, there is only one irq vector
633 * for handling I/O completion, and the only irq's affinity is set
634 * to all possible CPUs. On most of ARCHs, this affinity means the irq
635 * is handled on one specific CPU.
637 * So complete I/O requests in softirq context in case of single queue
638 * devices to avoid degrading I/O performance due to irqsoff latency.
640 if (rq
->q
->nr_hw_queues
== 1)
641 blk_mq_trigger_softirq(rq
);
643 rq
->q
->mq_ops
->complete(rq
);
646 static inline bool blk_mq_complete_need_ipi(struct request
*rq
)
648 int cpu
= raw_smp_processor_id();
650 if (!IS_ENABLED(CONFIG_SMP
) ||
651 !test_bit(QUEUE_FLAG_SAME_COMP
, &rq
->q
->queue_flags
))
654 * With force threaded interrupts enabled, raising softirq from an SMP
655 * function call will always result in waking the ksoftirqd thread.
656 * This is probably worse than completing the request on a different
659 if (force_irqthreads
)
662 /* same CPU or cache domain? Complete locally */
663 if (cpu
== rq
->mq_ctx
->cpu
||
664 (!test_bit(QUEUE_FLAG_SAME_FORCE
, &rq
->q
->queue_flags
) &&
665 cpus_share_cache(cpu
, rq
->mq_ctx
->cpu
)))
668 /* don't try to IPI to an offline CPU */
669 return cpu_online(rq
->mq_ctx
->cpu
);
672 bool blk_mq_complete_request_remote(struct request
*rq
)
674 WRITE_ONCE(rq
->state
, MQ_RQ_COMPLETE
);
677 * For a polled request, always complete locallly, it's pointless
678 * to redirect the completion.
680 if (rq
->cmd_flags
& REQ_HIPRI
)
683 if (blk_mq_complete_need_ipi(rq
)) {
684 INIT_CSD(&rq
->csd
, __blk_mq_complete_request_remote
, rq
);
685 smp_call_function_single_async(rq
->mq_ctx
->cpu
, &rq
->csd
);
687 if (rq
->q
->nr_hw_queues
> 1)
689 blk_mq_trigger_softirq(rq
);
694 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote
);
697 * blk_mq_complete_request - end I/O on a request
698 * @rq: the request being processed
701 * Complete a request by scheduling the ->complete_rq operation.
703 void blk_mq_complete_request(struct request
*rq
)
705 if (!blk_mq_complete_request_remote(rq
))
706 rq
->q
->mq_ops
->complete(rq
);
708 EXPORT_SYMBOL(blk_mq_complete_request
);
710 static void hctx_unlock(struct blk_mq_hw_ctx
*hctx
, int srcu_idx
)
711 __releases(hctx
->srcu
)
713 if (!(hctx
->flags
& BLK_MQ_F_BLOCKING
))
716 srcu_read_unlock(hctx
->srcu
, srcu_idx
);
719 static void hctx_lock(struct blk_mq_hw_ctx
*hctx
, int *srcu_idx
)
720 __acquires(hctx
->srcu
)
722 if (!(hctx
->flags
& BLK_MQ_F_BLOCKING
)) {
723 /* shut up gcc false positive */
727 *srcu_idx
= srcu_read_lock(hctx
->srcu
);
731 * blk_mq_start_request - Start processing a request
732 * @rq: Pointer to request to be started
734 * Function used by device drivers to notify the block layer that a request
735 * is going to be processed now, so blk layer can do proper initializations
736 * such as starting the timeout timer.
738 void blk_mq_start_request(struct request
*rq
)
740 struct request_queue
*q
= rq
->q
;
742 trace_block_rq_issue(rq
);
744 if (test_bit(QUEUE_FLAG_STATS
, &q
->queue_flags
)) {
745 rq
->io_start_time_ns
= ktime_get_ns();
746 rq
->stats_sectors
= blk_rq_sectors(rq
);
747 rq
->rq_flags
|= RQF_STATS
;
751 WARN_ON_ONCE(blk_mq_rq_state(rq
) != MQ_RQ_IDLE
);
754 WRITE_ONCE(rq
->state
, MQ_RQ_IN_FLIGHT
);
756 #ifdef CONFIG_BLK_DEV_INTEGRITY
757 if (blk_integrity_rq(rq
) && req_op(rq
) == REQ_OP_WRITE
)
758 q
->integrity
.profile
->prepare_fn(rq
);
761 EXPORT_SYMBOL(blk_mq_start_request
);
763 static void __blk_mq_requeue_request(struct request
*rq
)
765 struct request_queue
*q
= rq
->q
;
767 blk_mq_put_driver_tag(rq
);
769 trace_block_rq_requeue(rq
);
770 rq_qos_requeue(q
, rq
);
772 if (blk_mq_request_started(rq
)) {
773 WRITE_ONCE(rq
->state
, MQ_RQ_IDLE
);
774 rq
->rq_flags
&= ~RQF_TIMED_OUT
;
778 void blk_mq_requeue_request(struct request
*rq
, bool kick_requeue_list
)
780 __blk_mq_requeue_request(rq
);
782 /* this request will be re-inserted to io scheduler queue */
783 blk_mq_sched_requeue_request(rq
);
785 BUG_ON(!list_empty(&rq
->queuelist
));
786 blk_mq_add_to_requeue_list(rq
, true, kick_requeue_list
);
788 EXPORT_SYMBOL(blk_mq_requeue_request
);
790 static void blk_mq_requeue_work(struct work_struct
*work
)
792 struct request_queue
*q
=
793 container_of(work
, struct request_queue
, requeue_work
.work
);
795 struct request
*rq
, *next
;
797 spin_lock_irq(&q
->requeue_lock
);
798 list_splice_init(&q
->requeue_list
, &rq_list
);
799 spin_unlock_irq(&q
->requeue_lock
);
801 list_for_each_entry_safe(rq
, next
, &rq_list
, queuelist
) {
802 if (!(rq
->rq_flags
& (RQF_SOFTBARRIER
| RQF_DONTPREP
)))
805 rq
->rq_flags
&= ~RQF_SOFTBARRIER
;
806 list_del_init(&rq
->queuelist
);
808 * If RQF_DONTPREP, rq has contained some driver specific
809 * data, so insert it to hctx dispatch list to avoid any
812 if (rq
->rq_flags
& RQF_DONTPREP
)
813 blk_mq_request_bypass_insert(rq
, false, false);
815 blk_mq_sched_insert_request(rq
, true, false, false);
818 while (!list_empty(&rq_list
)) {
819 rq
= list_entry(rq_list
.next
, struct request
, queuelist
);
820 list_del_init(&rq
->queuelist
);
821 blk_mq_sched_insert_request(rq
, false, false, false);
824 blk_mq_run_hw_queues(q
, false);
827 void blk_mq_add_to_requeue_list(struct request
*rq
, bool at_head
,
828 bool kick_requeue_list
)
830 struct request_queue
*q
= rq
->q
;
834 * We abuse this flag that is otherwise used by the I/O scheduler to
835 * request head insertion from the workqueue.
837 BUG_ON(rq
->rq_flags
& RQF_SOFTBARRIER
);
839 spin_lock_irqsave(&q
->requeue_lock
, flags
);
841 rq
->rq_flags
|= RQF_SOFTBARRIER
;
842 list_add(&rq
->queuelist
, &q
->requeue_list
);
844 list_add_tail(&rq
->queuelist
, &q
->requeue_list
);
846 spin_unlock_irqrestore(&q
->requeue_lock
, flags
);
848 if (kick_requeue_list
)
849 blk_mq_kick_requeue_list(q
);
852 void blk_mq_kick_requeue_list(struct request_queue
*q
)
854 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND
, &q
->requeue_work
, 0);
856 EXPORT_SYMBOL(blk_mq_kick_requeue_list
);
858 void blk_mq_delay_kick_requeue_list(struct request_queue
*q
,
861 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND
, &q
->requeue_work
,
862 msecs_to_jiffies(msecs
));
864 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list
);
866 struct request
*blk_mq_tag_to_rq(struct blk_mq_tags
*tags
, unsigned int tag
)
868 if (tag
< tags
->nr_tags
) {
869 prefetch(tags
->rqs
[tag
]);
870 return tags
->rqs
[tag
];
875 EXPORT_SYMBOL(blk_mq_tag_to_rq
);
877 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx
*hctx
, struct request
*rq
,
878 void *priv
, bool reserved
)
881 * If we find a request that isn't idle and the queue matches,
882 * we know the queue is busy. Return false to stop the iteration.
884 if (blk_mq_request_started(rq
) && rq
->q
== hctx
->queue
) {
894 bool blk_mq_queue_inflight(struct request_queue
*q
)
898 blk_mq_queue_tag_busy_iter(q
, blk_mq_rq_inflight
, &busy
);
901 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight
);
903 static void blk_mq_rq_timed_out(struct request
*req
, bool reserved
)
905 req
->rq_flags
|= RQF_TIMED_OUT
;
906 if (req
->q
->mq_ops
->timeout
) {
907 enum blk_eh_timer_return ret
;
909 ret
= req
->q
->mq_ops
->timeout(req
, reserved
);
910 if (ret
== BLK_EH_DONE
)
912 WARN_ON_ONCE(ret
!= BLK_EH_RESET_TIMER
);
918 static bool blk_mq_req_expired(struct request
*rq
, unsigned long *next
)
920 unsigned long deadline
;
922 if (blk_mq_rq_state(rq
) != MQ_RQ_IN_FLIGHT
)
924 if (rq
->rq_flags
& RQF_TIMED_OUT
)
927 deadline
= READ_ONCE(rq
->deadline
);
928 if (time_after_eq(jiffies
, deadline
))
933 else if (time_after(*next
, deadline
))
938 static bool blk_mq_check_expired(struct blk_mq_hw_ctx
*hctx
,
939 struct request
*rq
, void *priv
, bool reserved
)
941 unsigned long *next
= priv
;
944 * Just do a quick check if it is expired before locking the request in
945 * so we're not unnecessarilly synchronizing across CPUs.
947 if (!blk_mq_req_expired(rq
, next
))
951 * We have reason to believe the request may be expired. Take a
952 * reference on the request to lock this request lifetime into its
953 * currently allocated context to prevent it from being reallocated in
954 * the event the completion by-passes this timeout handler.
956 * If the reference was already released, then the driver beat the
957 * timeout handler to posting a natural completion.
959 if (!refcount_inc_not_zero(&rq
->ref
))
963 * The request is now locked and cannot be reallocated underneath the
964 * timeout handler's processing. Re-verify this exact request is truly
965 * expired; if it is not expired, then the request was completed and
966 * reallocated as a new request.
968 if (blk_mq_req_expired(rq
, next
))
969 blk_mq_rq_timed_out(rq
, reserved
);
971 if (is_flush_rq(rq
, hctx
))
973 else if (refcount_dec_and_test(&rq
->ref
))
974 __blk_mq_free_request(rq
);
979 static void blk_mq_timeout_work(struct work_struct
*work
)
981 struct request_queue
*q
=
982 container_of(work
, struct request_queue
, timeout_work
);
983 unsigned long next
= 0;
984 struct blk_mq_hw_ctx
*hctx
;
987 /* A deadlock might occur if a request is stuck requiring a
988 * timeout at the same time a queue freeze is waiting
989 * completion, since the timeout code would not be able to
990 * acquire the queue reference here.
992 * That's why we don't use blk_queue_enter here; instead, we use
993 * percpu_ref_tryget directly, because we need to be able to
994 * obtain a reference even in the short window between the queue
995 * starting to freeze, by dropping the first reference in
996 * blk_freeze_queue_start, and the moment the last request is
997 * consumed, marked by the instant q_usage_counter reaches
1000 if (!percpu_ref_tryget(&q
->q_usage_counter
))
1003 blk_mq_queue_tag_busy_iter(q
, blk_mq_check_expired
, &next
);
1006 mod_timer(&q
->timeout
, next
);
1009 * Request timeouts are handled as a forward rolling timer. If
1010 * we end up here it means that no requests are pending and
1011 * also that no request has been pending for a while. Mark
1012 * each hctx as idle.
1014 queue_for_each_hw_ctx(q
, hctx
, i
) {
1015 /* the hctx may be unmapped, so check it here */
1016 if (blk_mq_hw_queue_mapped(hctx
))
1017 blk_mq_tag_idle(hctx
);
1023 struct flush_busy_ctx_data
{
1024 struct blk_mq_hw_ctx
*hctx
;
1025 struct list_head
*list
;
1028 static bool flush_busy_ctx(struct sbitmap
*sb
, unsigned int bitnr
, void *data
)
1030 struct flush_busy_ctx_data
*flush_data
= data
;
1031 struct blk_mq_hw_ctx
*hctx
= flush_data
->hctx
;
1032 struct blk_mq_ctx
*ctx
= hctx
->ctxs
[bitnr
];
1033 enum hctx_type type
= hctx
->type
;
1035 spin_lock(&ctx
->lock
);
1036 list_splice_tail_init(&ctx
->rq_lists
[type
], flush_data
->list
);
1037 sbitmap_clear_bit(sb
, bitnr
);
1038 spin_unlock(&ctx
->lock
);
1043 * Process software queues that have been marked busy, splicing them
1044 * to the for-dispatch
1046 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx
*hctx
, struct list_head
*list
)
1048 struct flush_busy_ctx_data data
= {
1053 sbitmap_for_each_set(&hctx
->ctx_map
, flush_busy_ctx
, &data
);
1055 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs
);
1057 struct dispatch_rq_data
{
1058 struct blk_mq_hw_ctx
*hctx
;
1062 static bool dispatch_rq_from_ctx(struct sbitmap
*sb
, unsigned int bitnr
,
1065 struct dispatch_rq_data
*dispatch_data
= data
;
1066 struct blk_mq_hw_ctx
*hctx
= dispatch_data
->hctx
;
1067 struct blk_mq_ctx
*ctx
= hctx
->ctxs
[bitnr
];
1068 enum hctx_type type
= hctx
->type
;
1070 spin_lock(&ctx
->lock
);
1071 if (!list_empty(&ctx
->rq_lists
[type
])) {
1072 dispatch_data
->rq
= list_entry_rq(ctx
->rq_lists
[type
].next
);
1073 list_del_init(&dispatch_data
->rq
->queuelist
);
1074 if (list_empty(&ctx
->rq_lists
[type
]))
1075 sbitmap_clear_bit(sb
, bitnr
);
1077 spin_unlock(&ctx
->lock
);
1079 return !dispatch_data
->rq
;
1082 struct request
*blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx
*hctx
,
1083 struct blk_mq_ctx
*start
)
1085 unsigned off
= start
? start
->index_hw
[hctx
->type
] : 0;
1086 struct dispatch_rq_data data
= {
1091 __sbitmap_for_each_set(&hctx
->ctx_map
, off
,
1092 dispatch_rq_from_ctx
, &data
);
1097 static inline unsigned int queued_to_index(unsigned int queued
)
1102 return min(BLK_MQ_MAX_DISPATCH_ORDER
- 1, ilog2(queued
) + 1);
1105 static bool __blk_mq_get_driver_tag(struct request
*rq
)
1107 struct sbitmap_queue
*bt
= rq
->mq_hctx
->tags
->bitmap_tags
;
1108 unsigned int tag_offset
= rq
->mq_hctx
->tags
->nr_reserved_tags
;
1111 blk_mq_tag_busy(rq
->mq_hctx
);
1113 if (blk_mq_tag_is_reserved(rq
->mq_hctx
->sched_tags
, rq
->internal_tag
)) {
1114 bt
= rq
->mq_hctx
->tags
->breserved_tags
;
1117 if (!hctx_may_queue(rq
->mq_hctx
, bt
))
1121 tag
= __sbitmap_queue_get(bt
);
1122 if (tag
== BLK_MQ_NO_TAG
)
1125 rq
->tag
= tag
+ tag_offset
;
1129 static bool blk_mq_get_driver_tag(struct request
*rq
)
1131 struct blk_mq_hw_ctx
*hctx
= rq
->mq_hctx
;
1133 if (rq
->tag
== BLK_MQ_NO_TAG
&& !__blk_mq_get_driver_tag(rq
))
1136 if ((hctx
->flags
& BLK_MQ_F_TAG_QUEUE_SHARED
) &&
1137 !(rq
->rq_flags
& RQF_MQ_INFLIGHT
)) {
1138 rq
->rq_flags
|= RQF_MQ_INFLIGHT
;
1139 __blk_mq_inc_active_requests(hctx
);
1141 hctx
->tags
->rqs
[rq
->tag
] = rq
;
1145 static int blk_mq_dispatch_wake(wait_queue_entry_t
*wait
, unsigned mode
,
1146 int flags
, void *key
)
1148 struct blk_mq_hw_ctx
*hctx
;
1150 hctx
= container_of(wait
, struct blk_mq_hw_ctx
, dispatch_wait
);
1152 spin_lock(&hctx
->dispatch_wait_lock
);
1153 if (!list_empty(&wait
->entry
)) {
1154 struct sbitmap_queue
*sbq
;
1156 list_del_init(&wait
->entry
);
1157 sbq
= hctx
->tags
->bitmap_tags
;
1158 atomic_dec(&sbq
->ws_active
);
1160 spin_unlock(&hctx
->dispatch_wait_lock
);
1162 blk_mq_run_hw_queue(hctx
, true);
1167 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1168 * the tag wakeups. For non-shared tags, we can simply mark us needing a
1169 * restart. For both cases, take care to check the condition again after
1170 * marking us as waiting.
1172 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx
*hctx
,
1175 struct sbitmap_queue
*sbq
= hctx
->tags
->bitmap_tags
;
1176 struct wait_queue_head
*wq
;
1177 wait_queue_entry_t
*wait
;
1180 if (!(hctx
->flags
& BLK_MQ_F_TAG_QUEUE_SHARED
)) {
1181 blk_mq_sched_mark_restart_hctx(hctx
);
1184 * It's possible that a tag was freed in the window between the
1185 * allocation failure and adding the hardware queue to the wait
1188 * Don't clear RESTART here, someone else could have set it.
1189 * At most this will cost an extra queue run.
1191 return blk_mq_get_driver_tag(rq
);
1194 wait
= &hctx
->dispatch_wait
;
1195 if (!list_empty_careful(&wait
->entry
))
1198 wq
= &bt_wait_ptr(sbq
, hctx
)->wait
;
1200 spin_lock_irq(&wq
->lock
);
1201 spin_lock(&hctx
->dispatch_wait_lock
);
1202 if (!list_empty(&wait
->entry
)) {
1203 spin_unlock(&hctx
->dispatch_wait_lock
);
1204 spin_unlock_irq(&wq
->lock
);
1208 atomic_inc(&sbq
->ws_active
);
1209 wait
->flags
&= ~WQ_FLAG_EXCLUSIVE
;
1210 __add_wait_queue(wq
, wait
);
1213 * It's possible that a tag was freed in the window between the
1214 * allocation failure and adding the hardware queue to the wait
1217 ret
= blk_mq_get_driver_tag(rq
);
1219 spin_unlock(&hctx
->dispatch_wait_lock
);
1220 spin_unlock_irq(&wq
->lock
);
1225 * We got a tag, remove ourselves from the wait queue to ensure
1226 * someone else gets the wakeup.
1228 list_del_init(&wait
->entry
);
1229 atomic_dec(&sbq
->ws_active
);
1230 spin_unlock(&hctx
->dispatch_wait_lock
);
1231 spin_unlock_irq(&wq
->lock
);
1236 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8
1237 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4
1239 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1240 * - EWMA is one simple way to compute running average value
1241 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1242 * - take 4 as factor for avoiding to get too small(0) result, and this
1243 * factor doesn't matter because EWMA decreases exponentially
1245 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx
*hctx
, bool busy
)
1249 if (hctx
->queue
->elevator
)
1252 ewma
= hctx
->dispatch_busy
;
1257 ewma
*= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT
- 1;
1259 ewma
+= 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR
;
1260 ewma
/= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT
;
1262 hctx
->dispatch_busy
= ewma
;
1265 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */
1267 static void blk_mq_handle_dev_resource(struct request
*rq
,
1268 struct list_head
*list
)
1270 struct request
*next
=
1271 list_first_entry_or_null(list
, struct request
, queuelist
);
1274 * If an I/O scheduler has been configured and we got a driver tag for
1275 * the next request already, free it.
1278 blk_mq_put_driver_tag(next
);
1280 list_add(&rq
->queuelist
, list
);
1281 __blk_mq_requeue_request(rq
);
1284 static void blk_mq_handle_zone_resource(struct request
*rq
,
1285 struct list_head
*zone_list
)
1288 * If we end up here it is because we cannot dispatch a request to a
1289 * specific zone due to LLD level zone-write locking or other zone
1290 * related resource not being available. In this case, set the request
1291 * aside in zone_list for retrying it later.
1293 list_add(&rq
->queuelist
, zone_list
);
1294 __blk_mq_requeue_request(rq
);
1297 enum prep_dispatch
{
1299 PREP_DISPATCH_NO_TAG
,
1300 PREP_DISPATCH_NO_BUDGET
,
1303 static enum prep_dispatch
blk_mq_prep_dispatch_rq(struct request
*rq
,
1306 struct blk_mq_hw_ctx
*hctx
= rq
->mq_hctx
;
1308 if (need_budget
&& !blk_mq_get_dispatch_budget(rq
->q
)) {
1309 blk_mq_put_driver_tag(rq
);
1310 return PREP_DISPATCH_NO_BUDGET
;
1313 if (!blk_mq_get_driver_tag(rq
)) {
1315 * The initial allocation attempt failed, so we need to
1316 * rerun the hardware queue when a tag is freed. The
1317 * waitqueue takes care of that. If the queue is run
1318 * before we add this entry back on the dispatch list,
1319 * we'll re-run it below.
1321 if (!blk_mq_mark_tag_wait(hctx
, rq
)) {
1323 * All budgets not got from this function will be put
1324 * together during handling partial dispatch
1327 blk_mq_put_dispatch_budget(rq
->q
);
1328 return PREP_DISPATCH_NO_TAG
;
1332 return PREP_DISPATCH_OK
;
1335 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1336 static void blk_mq_release_budgets(struct request_queue
*q
,
1337 unsigned int nr_budgets
)
1341 for (i
= 0; i
< nr_budgets
; i
++)
1342 blk_mq_put_dispatch_budget(q
);
1346 * Returns true if we did some work AND can potentially do more.
1348 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx
*hctx
, struct list_head
*list
,
1349 unsigned int nr_budgets
)
1351 enum prep_dispatch prep
;
1352 struct request_queue
*q
= hctx
->queue
;
1353 struct request
*rq
, *nxt
;
1355 blk_status_t ret
= BLK_STS_OK
;
1356 LIST_HEAD(zone_list
);
1358 if (list_empty(list
))
1362 * Now process all the entries, sending them to the driver.
1364 errors
= queued
= 0;
1366 struct blk_mq_queue_data bd
;
1368 rq
= list_first_entry(list
, struct request
, queuelist
);
1370 WARN_ON_ONCE(hctx
!= rq
->mq_hctx
);
1371 prep
= blk_mq_prep_dispatch_rq(rq
, !nr_budgets
);
1372 if (prep
!= PREP_DISPATCH_OK
)
1375 list_del_init(&rq
->queuelist
);
1380 * Flag last if we have no more requests, or if we have more
1381 * but can't assign a driver tag to it.
1383 if (list_empty(list
))
1386 nxt
= list_first_entry(list
, struct request
, queuelist
);
1387 bd
.last
= !blk_mq_get_driver_tag(nxt
);
1391 * once the request is queued to lld, no need to cover the
1396 ret
= q
->mq_ops
->queue_rq(hctx
, &bd
);
1401 case BLK_STS_RESOURCE
:
1402 case BLK_STS_DEV_RESOURCE
:
1403 blk_mq_handle_dev_resource(rq
, list
);
1405 case BLK_STS_ZONE_RESOURCE
:
1407 * Move the request to zone_list and keep going through
1408 * the dispatch list to find more requests the drive can
1411 blk_mq_handle_zone_resource(rq
, &zone_list
);
1415 blk_mq_end_request(rq
, ret
);
1417 } while (!list_empty(list
));
1419 if (!list_empty(&zone_list
))
1420 list_splice_tail_init(&zone_list
, list
);
1422 hctx
->dispatched
[queued_to_index(queued
)]++;
1424 /* If we didn't flush the entire list, we could have told the driver
1425 * there was more coming, but that turned out to be a lie.
1427 if ((!list_empty(list
) || errors
) && q
->mq_ops
->commit_rqs
&& queued
)
1428 q
->mq_ops
->commit_rqs(hctx
);
1430 * Any items that need requeuing? Stuff them into hctx->dispatch,
1431 * that is where we will continue on next queue run.
1433 if (!list_empty(list
)) {
1435 /* For non-shared tags, the RESTART check will suffice */
1436 bool no_tag
= prep
== PREP_DISPATCH_NO_TAG
&&
1437 (hctx
->flags
& BLK_MQ_F_TAG_QUEUE_SHARED
);
1438 bool no_budget_avail
= prep
== PREP_DISPATCH_NO_BUDGET
;
1440 blk_mq_release_budgets(q
, nr_budgets
);
1442 spin_lock(&hctx
->lock
);
1443 list_splice_tail_init(list
, &hctx
->dispatch
);
1444 spin_unlock(&hctx
->lock
);
1447 * Order adding requests to hctx->dispatch and checking
1448 * SCHED_RESTART flag. The pair of this smp_mb() is the one
1449 * in blk_mq_sched_restart(). Avoid restart code path to
1450 * miss the new added requests to hctx->dispatch, meantime
1451 * SCHED_RESTART is observed here.
1456 * If SCHED_RESTART was set by the caller of this function and
1457 * it is no longer set that means that it was cleared by another
1458 * thread and hence that a queue rerun is needed.
1460 * If 'no_tag' is set, that means that we failed getting
1461 * a driver tag with an I/O scheduler attached. If our dispatch
1462 * waitqueue is no longer active, ensure that we run the queue
1463 * AFTER adding our entries back to the list.
1465 * If no I/O scheduler has been configured it is possible that
1466 * the hardware queue got stopped and restarted before requests
1467 * were pushed back onto the dispatch list. Rerun the queue to
1468 * avoid starvation. Notes:
1469 * - blk_mq_run_hw_queue() checks whether or not a queue has
1470 * been stopped before rerunning a queue.
1471 * - Some but not all block drivers stop a queue before
1472 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1475 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1476 * bit is set, run queue after a delay to avoid IO stalls
1477 * that could otherwise occur if the queue is idle. We'll do
1478 * similar if we couldn't get budget and SCHED_RESTART is set.
1480 needs_restart
= blk_mq_sched_needs_restart(hctx
);
1481 if (!needs_restart
||
1482 (no_tag
&& list_empty_careful(&hctx
->dispatch_wait
.entry
)))
1483 blk_mq_run_hw_queue(hctx
, true);
1484 else if (needs_restart
&& (ret
== BLK_STS_RESOURCE
||
1486 blk_mq_delay_run_hw_queue(hctx
, BLK_MQ_RESOURCE_DELAY
);
1488 blk_mq_update_dispatch_busy(hctx
, true);
1491 blk_mq_update_dispatch_busy(hctx
, false);
1493 return (queued
+ errors
) != 0;
1497 * __blk_mq_run_hw_queue - Run a hardware queue.
1498 * @hctx: Pointer to the hardware queue to run.
1500 * Send pending requests to the hardware.
1502 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx
*hctx
)
1507 * We can't run the queue inline with ints disabled. Ensure that
1508 * we catch bad users of this early.
1510 WARN_ON_ONCE(in_interrupt());
1512 might_sleep_if(hctx
->flags
& BLK_MQ_F_BLOCKING
);
1514 hctx_lock(hctx
, &srcu_idx
);
1515 blk_mq_sched_dispatch_requests(hctx
);
1516 hctx_unlock(hctx
, srcu_idx
);
1519 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx
*hctx
)
1521 int cpu
= cpumask_first_and(hctx
->cpumask
, cpu_online_mask
);
1523 if (cpu
>= nr_cpu_ids
)
1524 cpu
= cpumask_first(hctx
->cpumask
);
1529 * It'd be great if the workqueue API had a way to pass
1530 * in a mask and had some smarts for more clever placement.
1531 * For now we just round-robin here, switching for every
1532 * BLK_MQ_CPU_WORK_BATCH queued items.
1534 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx
*hctx
)
1537 int next_cpu
= hctx
->next_cpu
;
1539 if (hctx
->queue
->nr_hw_queues
== 1)
1540 return WORK_CPU_UNBOUND
;
1542 if (--hctx
->next_cpu_batch
<= 0) {
1544 next_cpu
= cpumask_next_and(next_cpu
, hctx
->cpumask
,
1546 if (next_cpu
>= nr_cpu_ids
)
1547 next_cpu
= blk_mq_first_mapped_cpu(hctx
);
1548 hctx
->next_cpu_batch
= BLK_MQ_CPU_WORK_BATCH
;
1552 * Do unbound schedule if we can't find a online CPU for this hctx,
1553 * and it should only happen in the path of handling CPU DEAD.
1555 if (!cpu_online(next_cpu
)) {
1562 * Make sure to re-select CPU next time once after CPUs
1563 * in hctx->cpumask become online again.
1565 hctx
->next_cpu
= next_cpu
;
1566 hctx
->next_cpu_batch
= 1;
1567 return WORK_CPU_UNBOUND
;
1570 hctx
->next_cpu
= next_cpu
;
1575 * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
1576 * @hctx: Pointer to the hardware queue to run.
1577 * @async: If we want to run the queue asynchronously.
1578 * @msecs: Milliseconds of delay to wait before running the queue.
1580 * If !@async, try to run the queue now. Else, run the queue asynchronously and
1581 * with a delay of @msecs.
1583 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx
*hctx
, bool async
,
1584 unsigned long msecs
)
1586 if (unlikely(blk_mq_hctx_stopped(hctx
)))
1589 if (!async
&& !(hctx
->flags
& BLK_MQ_F_BLOCKING
)) {
1590 int cpu
= get_cpu();
1591 if (cpumask_test_cpu(cpu
, hctx
->cpumask
)) {
1592 __blk_mq_run_hw_queue(hctx
);
1600 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx
), &hctx
->run_work
,
1601 msecs_to_jiffies(msecs
));
1605 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
1606 * @hctx: Pointer to the hardware queue to run.
1607 * @msecs: Milliseconds of delay to wait before running the queue.
1609 * Run a hardware queue asynchronously with a delay of @msecs.
1611 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx
*hctx
, unsigned long msecs
)
1613 __blk_mq_delay_run_hw_queue(hctx
, true, msecs
);
1615 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue
);
1618 * blk_mq_run_hw_queue - Start to run a hardware queue.
1619 * @hctx: Pointer to the hardware queue to run.
1620 * @async: If we want to run the queue asynchronously.
1622 * Check if the request queue is not in a quiesced state and if there are
1623 * pending requests to be sent. If this is true, run the queue to send requests
1626 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx
*hctx
, bool async
)
1632 * When queue is quiesced, we may be switching io scheduler, or
1633 * updating nr_hw_queues, or other things, and we can't run queue
1634 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1636 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1639 hctx_lock(hctx
, &srcu_idx
);
1640 need_run
= !blk_queue_quiesced(hctx
->queue
) &&
1641 blk_mq_hctx_has_pending(hctx
);
1642 hctx_unlock(hctx
, srcu_idx
);
1645 __blk_mq_delay_run_hw_queue(hctx
, async
, 0);
1647 EXPORT_SYMBOL(blk_mq_run_hw_queue
);
1650 * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
1651 * @q: Pointer to the request queue to run.
1652 * @async: If we want to run the queue asynchronously.
1654 void blk_mq_run_hw_queues(struct request_queue
*q
, bool async
)
1656 struct blk_mq_hw_ctx
*hctx
;
1659 queue_for_each_hw_ctx(q
, hctx
, i
) {
1660 if (blk_mq_hctx_stopped(hctx
))
1663 blk_mq_run_hw_queue(hctx
, async
);
1666 EXPORT_SYMBOL(blk_mq_run_hw_queues
);
1669 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
1670 * @q: Pointer to the request queue to run.
1671 * @msecs: Milliseconds of delay to wait before running the queues.
1673 void blk_mq_delay_run_hw_queues(struct request_queue
*q
, unsigned long msecs
)
1675 struct blk_mq_hw_ctx
*hctx
;
1678 queue_for_each_hw_ctx(q
, hctx
, i
) {
1679 if (blk_mq_hctx_stopped(hctx
))
1682 blk_mq_delay_run_hw_queue(hctx
, msecs
);
1685 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues
);
1688 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1689 * @q: request queue.
1691 * The caller is responsible for serializing this function against
1692 * blk_mq_{start,stop}_hw_queue().
1694 bool blk_mq_queue_stopped(struct request_queue
*q
)
1696 struct blk_mq_hw_ctx
*hctx
;
1699 queue_for_each_hw_ctx(q
, hctx
, i
)
1700 if (blk_mq_hctx_stopped(hctx
))
1705 EXPORT_SYMBOL(blk_mq_queue_stopped
);
1708 * This function is often used for pausing .queue_rq() by driver when
1709 * there isn't enough resource or some conditions aren't satisfied, and
1710 * BLK_STS_RESOURCE is usually returned.
1712 * We do not guarantee that dispatch can be drained or blocked
1713 * after blk_mq_stop_hw_queue() returns. Please use
1714 * blk_mq_quiesce_queue() for that requirement.
1716 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx
*hctx
)
1718 cancel_delayed_work(&hctx
->run_work
);
1720 set_bit(BLK_MQ_S_STOPPED
, &hctx
->state
);
1722 EXPORT_SYMBOL(blk_mq_stop_hw_queue
);
1725 * This function is often used for pausing .queue_rq() by driver when
1726 * there isn't enough resource or some conditions aren't satisfied, and
1727 * BLK_STS_RESOURCE is usually returned.
1729 * We do not guarantee that dispatch can be drained or blocked
1730 * after blk_mq_stop_hw_queues() returns. Please use
1731 * blk_mq_quiesce_queue() for that requirement.
1733 void blk_mq_stop_hw_queues(struct request_queue
*q
)
1735 struct blk_mq_hw_ctx
*hctx
;
1738 queue_for_each_hw_ctx(q
, hctx
, i
)
1739 blk_mq_stop_hw_queue(hctx
);
1741 EXPORT_SYMBOL(blk_mq_stop_hw_queues
);
1743 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx
*hctx
)
1745 clear_bit(BLK_MQ_S_STOPPED
, &hctx
->state
);
1747 blk_mq_run_hw_queue(hctx
, false);
1749 EXPORT_SYMBOL(blk_mq_start_hw_queue
);
1751 void blk_mq_start_hw_queues(struct request_queue
*q
)
1753 struct blk_mq_hw_ctx
*hctx
;
1756 queue_for_each_hw_ctx(q
, hctx
, i
)
1757 blk_mq_start_hw_queue(hctx
);
1759 EXPORT_SYMBOL(blk_mq_start_hw_queues
);
1761 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx
*hctx
, bool async
)
1763 if (!blk_mq_hctx_stopped(hctx
))
1766 clear_bit(BLK_MQ_S_STOPPED
, &hctx
->state
);
1767 blk_mq_run_hw_queue(hctx
, async
);
1769 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue
);
1771 void blk_mq_start_stopped_hw_queues(struct request_queue
*q
, bool async
)
1773 struct blk_mq_hw_ctx
*hctx
;
1776 queue_for_each_hw_ctx(q
, hctx
, i
)
1777 blk_mq_start_stopped_hw_queue(hctx
, async
);
1779 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues
);
1781 static void blk_mq_run_work_fn(struct work_struct
*work
)
1783 struct blk_mq_hw_ctx
*hctx
;
1785 hctx
= container_of(work
, struct blk_mq_hw_ctx
, run_work
.work
);
1788 * If we are stopped, don't run the queue.
1790 if (blk_mq_hctx_stopped(hctx
))
1793 __blk_mq_run_hw_queue(hctx
);
1796 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx
*hctx
,
1800 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
1801 enum hctx_type type
= hctx
->type
;
1803 lockdep_assert_held(&ctx
->lock
);
1805 trace_block_rq_insert(rq
);
1808 list_add(&rq
->queuelist
, &ctx
->rq_lists
[type
]);
1810 list_add_tail(&rq
->queuelist
, &ctx
->rq_lists
[type
]);
1813 void __blk_mq_insert_request(struct blk_mq_hw_ctx
*hctx
, struct request
*rq
,
1816 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
1818 lockdep_assert_held(&ctx
->lock
);
1820 __blk_mq_insert_req_list(hctx
, rq
, at_head
);
1821 blk_mq_hctx_mark_pending(hctx
, ctx
);
1825 * blk_mq_request_bypass_insert - Insert a request at dispatch list.
1826 * @rq: Pointer to request to be inserted.
1827 * @at_head: true if the request should be inserted at the head of the list.
1828 * @run_queue: If we should run the hardware queue after inserting the request.
1830 * Should only be used carefully, when the caller knows we want to
1831 * bypass a potential IO scheduler on the target device.
1833 void blk_mq_request_bypass_insert(struct request
*rq
, bool at_head
,
1836 struct blk_mq_hw_ctx
*hctx
= rq
->mq_hctx
;
1838 spin_lock(&hctx
->lock
);
1840 list_add(&rq
->queuelist
, &hctx
->dispatch
);
1842 list_add_tail(&rq
->queuelist
, &hctx
->dispatch
);
1843 spin_unlock(&hctx
->lock
);
1846 blk_mq_run_hw_queue(hctx
, false);
1849 void blk_mq_insert_requests(struct blk_mq_hw_ctx
*hctx
, struct blk_mq_ctx
*ctx
,
1850 struct list_head
*list
)
1854 enum hctx_type type
= hctx
->type
;
1857 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1860 list_for_each_entry(rq
, list
, queuelist
) {
1861 BUG_ON(rq
->mq_ctx
!= ctx
);
1862 trace_block_rq_insert(rq
);
1865 spin_lock(&ctx
->lock
);
1866 list_splice_tail_init(list
, &ctx
->rq_lists
[type
]);
1867 blk_mq_hctx_mark_pending(hctx
, ctx
);
1868 spin_unlock(&ctx
->lock
);
1871 static int plug_rq_cmp(void *priv
, struct list_head
*a
, struct list_head
*b
)
1873 struct request
*rqa
= container_of(a
, struct request
, queuelist
);
1874 struct request
*rqb
= container_of(b
, struct request
, queuelist
);
1876 if (rqa
->mq_ctx
!= rqb
->mq_ctx
)
1877 return rqa
->mq_ctx
> rqb
->mq_ctx
;
1878 if (rqa
->mq_hctx
!= rqb
->mq_hctx
)
1879 return rqa
->mq_hctx
> rqb
->mq_hctx
;
1881 return blk_rq_pos(rqa
) > blk_rq_pos(rqb
);
1884 void blk_mq_flush_plug_list(struct blk_plug
*plug
, bool from_schedule
)
1888 if (list_empty(&plug
->mq_list
))
1890 list_splice_init(&plug
->mq_list
, &list
);
1892 if (plug
->rq_count
> 2 && plug
->multiple_queues
)
1893 list_sort(NULL
, &list
, plug_rq_cmp
);
1898 struct list_head rq_list
;
1899 struct request
*rq
, *head_rq
= list_entry_rq(list
.next
);
1900 struct list_head
*pos
= &head_rq
->queuelist
; /* skip first */
1901 struct blk_mq_hw_ctx
*this_hctx
= head_rq
->mq_hctx
;
1902 struct blk_mq_ctx
*this_ctx
= head_rq
->mq_ctx
;
1903 unsigned int depth
= 1;
1905 list_for_each_continue(pos
, &list
) {
1906 rq
= list_entry_rq(pos
);
1908 if (rq
->mq_hctx
!= this_hctx
|| rq
->mq_ctx
!= this_ctx
)
1913 list_cut_before(&rq_list
, &list
, pos
);
1914 trace_block_unplug(head_rq
->q
, depth
, !from_schedule
);
1915 blk_mq_sched_insert_requests(this_hctx
, this_ctx
, &rq_list
,
1917 } while(!list_empty(&list
));
1920 static void blk_mq_bio_to_request(struct request
*rq
, struct bio
*bio
,
1921 unsigned int nr_segs
)
1925 if (bio
->bi_opf
& REQ_RAHEAD
)
1926 rq
->cmd_flags
|= REQ_FAILFAST_MASK
;
1928 rq
->__sector
= bio
->bi_iter
.bi_sector
;
1929 rq
->write_hint
= bio
->bi_write_hint
;
1930 blk_rq_bio_prep(rq
, bio
, nr_segs
);
1932 /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
1933 err
= blk_crypto_rq_bio_prep(rq
, bio
, GFP_NOIO
);
1936 blk_account_io_start(rq
);
1939 static blk_status_t
__blk_mq_issue_directly(struct blk_mq_hw_ctx
*hctx
,
1941 blk_qc_t
*cookie
, bool last
)
1943 struct request_queue
*q
= rq
->q
;
1944 struct blk_mq_queue_data bd
= {
1948 blk_qc_t new_cookie
;
1951 new_cookie
= request_to_qc_t(hctx
, rq
);
1954 * For OK queue, we are done. For error, caller may kill it.
1955 * Any other error (busy), just add it to our list as we
1956 * previously would have done.
1958 ret
= q
->mq_ops
->queue_rq(hctx
, &bd
);
1961 blk_mq_update_dispatch_busy(hctx
, false);
1962 *cookie
= new_cookie
;
1964 case BLK_STS_RESOURCE
:
1965 case BLK_STS_DEV_RESOURCE
:
1966 blk_mq_update_dispatch_busy(hctx
, true);
1967 __blk_mq_requeue_request(rq
);
1970 blk_mq_update_dispatch_busy(hctx
, false);
1971 *cookie
= BLK_QC_T_NONE
;
1978 static blk_status_t
__blk_mq_try_issue_directly(struct blk_mq_hw_ctx
*hctx
,
1981 bool bypass_insert
, bool last
)
1983 struct request_queue
*q
= rq
->q
;
1984 bool run_queue
= true;
1987 * RCU or SRCU read lock is needed before checking quiesced flag.
1989 * When queue is stopped or quiesced, ignore 'bypass_insert' from
1990 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1991 * and avoid driver to try to dispatch again.
1993 if (blk_mq_hctx_stopped(hctx
) || blk_queue_quiesced(q
)) {
1995 bypass_insert
= false;
1999 if (q
->elevator
&& !bypass_insert
)
2002 if (!blk_mq_get_dispatch_budget(q
))
2005 if (!blk_mq_get_driver_tag(rq
)) {
2006 blk_mq_put_dispatch_budget(q
);
2010 return __blk_mq_issue_directly(hctx
, rq
, cookie
, last
);
2013 return BLK_STS_RESOURCE
;
2015 blk_mq_sched_insert_request(rq
, false, run_queue
, false);
2021 * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2022 * @hctx: Pointer of the associated hardware queue.
2023 * @rq: Pointer to request to be sent.
2024 * @cookie: Request queue cookie.
2026 * If the device has enough resources to accept a new request now, send the
2027 * request directly to device driver. Else, insert at hctx->dispatch queue, so
2028 * we can try send it another time in the future. Requests inserted at this
2029 * queue have higher priority.
2031 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx
*hctx
,
2032 struct request
*rq
, blk_qc_t
*cookie
)
2037 might_sleep_if(hctx
->flags
& BLK_MQ_F_BLOCKING
);
2039 hctx_lock(hctx
, &srcu_idx
);
2041 ret
= __blk_mq_try_issue_directly(hctx
, rq
, cookie
, false, true);
2042 if (ret
== BLK_STS_RESOURCE
|| ret
== BLK_STS_DEV_RESOURCE
)
2043 blk_mq_request_bypass_insert(rq
, false, true);
2044 else if (ret
!= BLK_STS_OK
)
2045 blk_mq_end_request(rq
, ret
);
2047 hctx_unlock(hctx
, srcu_idx
);
2050 blk_status_t
blk_mq_request_issue_directly(struct request
*rq
, bool last
)
2054 blk_qc_t unused_cookie
;
2055 struct blk_mq_hw_ctx
*hctx
= rq
->mq_hctx
;
2057 hctx_lock(hctx
, &srcu_idx
);
2058 ret
= __blk_mq_try_issue_directly(hctx
, rq
, &unused_cookie
, true, last
);
2059 hctx_unlock(hctx
, srcu_idx
);
2064 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx
*hctx
,
2065 struct list_head
*list
)
2070 while (!list_empty(list
)) {
2072 struct request
*rq
= list_first_entry(list
, struct request
,
2075 list_del_init(&rq
->queuelist
);
2076 ret
= blk_mq_request_issue_directly(rq
, list_empty(list
));
2077 if (ret
!= BLK_STS_OK
) {
2078 if (ret
== BLK_STS_RESOURCE
||
2079 ret
== BLK_STS_DEV_RESOURCE
) {
2080 blk_mq_request_bypass_insert(rq
, false,
2084 blk_mq_end_request(rq
, ret
);
2091 * If we didn't flush the entire list, we could have told
2092 * the driver there was more coming, but that turned out to
2095 if ((!list_empty(list
) || errors
) &&
2096 hctx
->queue
->mq_ops
->commit_rqs
&& queued
)
2097 hctx
->queue
->mq_ops
->commit_rqs(hctx
);
2100 static void blk_add_rq_to_plug(struct blk_plug
*plug
, struct request
*rq
)
2102 list_add_tail(&rq
->queuelist
, &plug
->mq_list
);
2104 if (!plug
->multiple_queues
&& !list_is_singular(&plug
->mq_list
)) {
2105 struct request
*tmp
;
2107 tmp
= list_first_entry(&plug
->mq_list
, struct request
,
2109 if (tmp
->q
!= rq
->q
)
2110 plug
->multiple_queues
= true;
2115 * blk_mq_submit_bio - Create and send a request to block device.
2116 * @bio: Bio pointer.
2118 * Builds up a request structure from @q and @bio and send to the device. The
2119 * request may not be queued directly to hardware if:
2120 * * This request can be merged with another one
2121 * * We want to place request at plug queue for possible future merging
2122 * * There is an IO scheduler active at this queue
2124 * It will not queue the request if there is an error with the bio, or at the
2127 * Returns: Request queue cookie.
2129 blk_qc_t
blk_mq_submit_bio(struct bio
*bio
)
2131 struct request_queue
*q
= bio
->bi_disk
->queue
;
2132 const int is_sync
= op_is_sync(bio
->bi_opf
);
2133 const int is_flush_fua
= op_is_flush(bio
->bi_opf
);
2134 struct blk_mq_alloc_data data
= {
2138 struct blk_plug
*plug
;
2139 struct request
*same_queue_rq
= NULL
;
2140 unsigned int nr_segs
;
2145 blk_queue_bounce(q
, &bio
);
2146 __blk_queue_split(&bio
, &nr_segs
);
2148 if (!bio_integrity_prep(bio
))
2151 if (!is_flush_fua
&& !blk_queue_nomerges(q
) &&
2152 blk_attempt_plug_merge(q
, bio
, nr_segs
, &same_queue_rq
))
2155 if (blk_mq_sched_bio_merge(q
, bio
, nr_segs
))
2158 rq_qos_throttle(q
, bio
);
2160 hipri
= bio
->bi_opf
& REQ_HIPRI
;
2162 data
.cmd_flags
= bio
->bi_opf
;
2163 rq
= __blk_mq_alloc_request(&data
);
2164 if (unlikely(!rq
)) {
2165 rq_qos_cleanup(q
, bio
);
2166 if (bio
->bi_opf
& REQ_NOWAIT
)
2167 bio_wouldblock_error(bio
);
2171 trace_block_getrq(bio
);
2173 rq_qos_track(q
, rq
, bio
);
2175 cookie
= request_to_qc_t(data
.hctx
, rq
);
2177 blk_mq_bio_to_request(rq
, bio
, nr_segs
);
2179 ret
= blk_crypto_init_request(rq
);
2180 if (ret
!= BLK_STS_OK
) {
2181 bio
->bi_status
= ret
;
2183 blk_mq_free_request(rq
);
2184 return BLK_QC_T_NONE
;
2187 plug
= blk_mq_plug(q
, bio
);
2188 if (unlikely(is_flush_fua
)) {
2189 /* Bypass scheduler for flush requests */
2190 blk_insert_flush(rq
);
2191 blk_mq_run_hw_queue(data
.hctx
, true);
2192 } else if (plug
&& (q
->nr_hw_queues
== 1 || q
->mq_ops
->commit_rqs
||
2193 !blk_queue_nonrot(q
))) {
2195 * Use plugging if we have a ->commit_rqs() hook as well, as
2196 * we know the driver uses bd->last in a smart fashion.
2198 * Use normal plugging if this disk is slow HDD, as sequential
2199 * IO may benefit a lot from plug merging.
2201 unsigned int request_count
= plug
->rq_count
;
2202 struct request
*last
= NULL
;
2205 trace_block_plug(q
);
2207 last
= list_entry_rq(plug
->mq_list
.prev
);
2209 if (request_count
>= BLK_MAX_REQUEST_COUNT
|| (last
&&
2210 blk_rq_bytes(last
) >= BLK_PLUG_FLUSH_SIZE
)) {
2211 blk_flush_plug_list(plug
, false);
2212 trace_block_plug(q
);
2215 blk_add_rq_to_plug(plug
, rq
);
2216 } else if (q
->elevator
) {
2217 /* Insert the request at the IO scheduler queue */
2218 blk_mq_sched_insert_request(rq
, false, true, true);
2219 } else if (plug
&& !blk_queue_nomerges(q
)) {
2221 * We do limited plugging. If the bio can be merged, do that.
2222 * Otherwise the existing request in the plug list will be
2223 * issued. So the plug list will have one request at most
2224 * The plug list might get flushed before this. If that happens,
2225 * the plug list is empty, and same_queue_rq is invalid.
2227 if (list_empty(&plug
->mq_list
))
2228 same_queue_rq
= NULL
;
2229 if (same_queue_rq
) {
2230 list_del_init(&same_queue_rq
->queuelist
);
2233 blk_add_rq_to_plug(plug
, rq
);
2234 trace_block_plug(q
);
2236 if (same_queue_rq
) {
2237 data
.hctx
= same_queue_rq
->mq_hctx
;
2238 trace_block_unplug(q
, 1, true);
2239 blk_mq_try_issue_directly(data
.hctx
, same_queue_rq
,
2242 } else if ((q
->nr_hw_queues
> 1 && is_sync
) ||
2243 !data
.hctx
->dispatch_busy
) {
2245 * There is no scheduler and we can try to send directly
2248 blk_mq_try_issue_directly(data
.hctx
, rq
, &cookie
);
2251 blk_mq_sched_insert_request(rq
, false, true, true);
2255 return BLK_QC_T_NONE
;
2259 return BLK_QC_T_NONE
;
2262 void blk_mq_free_rqs(struct blk_mq_tag_set
*set
, struct blk_mq_tags
*tags
,
2263 unsigned int hctx_idx
)
2267 if (tags
->rqs
&& set
->ops
->exit_request
) {
2270 for (i
= 0; i
< tags
->nr_tags
; i
++) {
2271 struct request
*rq
= tags
->static_rqs
[i
];
2275 set
->ops
->exit_request(set
, rq
, hctx_idx
);
2276 tags
->static_rqs
[i
] = NULL
;
2280 while (!list_empty(&tags
->page_list
)) {
2281 page
= list_first_entry(&tags
->page_list
, struct page
, lru
);
2282 list_del_init(&page
->lru
);
2284 * Remove kmemleak object previously allocated in
2285 * blk_mq_alloc_rqs().
2287 kmemleak_free(page_address(page
));
2288 __free_pages(page
, page
->private);
2292 void blk_mq_free_rq_map(struct blk_mq_tags
*tags
, unsigned int flags
)
2296 kfree(tags
->static_rqs
);
2297 tags
->static_rqs
= NULL
;
2299 blk_mq_free_tags(tags
, flags
);
2302 struct blk_mq_tags
*blk_mq_alloc_rq_map(struct blk_mq_tag_set
*set
,
2303 unsigned int hctx_idx
,
2304 unsigned int nr_tags
,
2305 unsigned int reserved_tags
,
2308 struct blk_mq_tags
*tags
;
2311 node
= blk_mq_hw_queue_to_node(&set
->map
[HCTX_TYPE_DEFAULT
], hctx_idx
);
2312 if (node
== NUMA_NO_NODE
)
2313 node
= set
->numa_node
;
2315 tags
= blk_mq_init_tags(nr_tags
, reserved_tags
, node
, flags
);
2319 tags
->rqs
= kcalloc_node(nr_tags
, sizeof(struct request
*),
2320 GFP_NOIO
| __GFP_NOWARN
| __GFP_NORETRY
,
2323 blk_mq_free_tags(tags
, flags
);
2327 tags
->static_rqs
= kcalloc_node(nr_tags
, sizeof(struct request
*),
2328 GFP_NOIO
| __GFP_NOWARN
| __GFP_NORETRY
,
2330 if (!tags
->static_rqs
) {
2332 blk_mq_free_tags(tags
, flags
);
2339 static size_t order_to_size(unsigned int order
)
2341 return (size_t)PAGE_SIZE
<< order
;
2344 static int blk_mq_init_request(struct blk_mq_tag_set
*set
, struct request
*rq
,
2345 unsigned int hctx_idx
, int node
)
2349 if (set
->ops
->init_request
) {
2350 ret
= set
->ops
->init_request(set
, rq
, hctx_idx
, node
);
2355 WRITE_ONCE(rq
->state
, MQ_RQ_IDLE
);
2359 int blk_mq_alloc_rqs(struct blk_mq_tag_set
*set
, struct blk_mq_tags
*tags
,
2360 unsigned int hctx_idx
, unsigned int depth
)
2362 unsigned int i
, j
, entries_per_page
, max_order
= 4;
2363 size_t rq_size
, left
;
2366 node
= blk_mq_hw_queue_to_node(&set
->map
[HCTX_TYPE_DEFAULT
], hctx_idx
);
2367 if (node
== NUMA_NO_NODE
)
2368 node
= set
->numa_node
;
2370 INIT_LIST_HEAD(&tags
->page_list
);
2373 * rq_size is the size of the request plus driver payload, rounded
2374 * to the cacheline size
2376 rq_size
= round_up(sizeof(struct request
) + set
->cmd_size
,
2378 left
= rq_size
* depth
;
2380 for (i
= 0; i
< depth
; ) {
2381 int this_order
= max_order
;
2386 while (this_order
&& left
< order_to_size(this_order
- 1))
2390 page
= alloc_pages_node(node
,
2391 GFP_NOIO
| __GFP_NOWARN
| __GFP_NORETRY
| __GFP_ZERO
,
2397 if (order_to_size(this_order
) < rq_size
)
2404 page
->private = this_order
;
2405 list_add_tail(&page
->lru
, &tags
->page_list
);
2407 p
= page_address(page
);
2409 * Allow kmemleak to scan these pages as they contain pointers
2410 * to additional allocations like via ops->init_request().
2412 kmemleak_alloc(p
, order_to_size(this_order
), 1, GFP_NOIO
);
2413 entries_per_page
= order_to_size(this_order
) / rq_size
;
2414 to_do
= min(entries_per_page
, depth
- i
);
2415 left
-= to_do
* rq_size
;
2416 for (j
= 0; j
< to_do
; j
++) {
2417 struct request
*rq
= p
;
2419 tags
->static_rqs
[i
] = rq
;
2420 if (blk_mq_init_request(set
, rq
, hctx_idx
, node
)) {
2421 tags
->static_rqs
[i
] = NULL
;
2432 blk_mq_free_rqs(set
, tags
, hctx_idx
);
2436 struct rq_iter_data
{
2437 struct blk_mq_hw_ctx
*hctx
;
2441 static bool blk_mq_has_request(struct request
*rq
, void *data
, bool reserved
)
2443 struct rq_iter_data
*iter_data
= data
;
2445 if (rq
->mq_hctx
!= iter_data
->hctx
)
2447 iter_data
->has_rq
= true;
2451 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx
*hctx
)
2453 struct blk_mq_tags
*tags
= hctx
->sched_tags
?
2454 hctx
->sched_tags
: hctx
->tags
;
2455 struct rq_iter_data data
= {
2459 blk_mq_all_tag_iter(tags
, blk_mq_has_request
, &data
);
2463 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu
,
2464 struct blk_mq_hw_ctx
*hctx
)
2466 if (cpumask_next_and(-1, hctx
->cpumask
, cpu_online_mask
) != cpu
)
2468 if (cpumask_next_and(cpu
, hctx
->cpumask
, cpu_online_mask
) < nr_cpu_ids
)
2473 static int blk_mq_hctx_notify_offline(unsigned int cpu
, struct hlist_node
*node
)
2475 struct blk_mq_hw_ctx
*hctx
= hlist_entry_safe(node
,
2476 struct blk_mq_hw_ctx
, cpuhp_online
);
2478 if (!cpumask_test_cpu(cpu
, hctx
->cpumask
) ||
2479 !blk_mq_last_cpu_in_hctx(cpu
, hctx
))
2483 * Prevent new request from being allocated on the current hctx.
2485 * The smp_mb__after_atomic() Pairs with the implied barrier in
2486 * test_and_set_bit_lock in sbitmap_get(). Ensures the inactive flag is
2487 * seen once we return from the tag allocator.
2489 set_bit(BLK_MQ_S_INACTIVE
, &hctx
->state
);
2490 smp_mb__after_atomic();
2493 * Try to grab a reference to the queue and wait for any outstanding
2494 * requests. If we could not grab a reference the queue has been
2495 * frozen and there are no requests.
2497 if (percpu_ref_tryget(&hctx
->queue
->q_usage_counter
)) {
2498 while (blk_mq_hctx_has_requests(hctx
))
2500 percpu_ref_put(&hctx
->queue
->q_usage_counter
);
2506 static int blk_mq_hctx_notify_online(unsigned int cpu
, struct hlist_node
*node
)
2508 struct blk_mq_hw_ctx
*hctx
= hlist_entry_safe(node
,
2509 struct blk_mq_hw_ctx
, cpuhp_online
);
2511 if (cpumask_test_cpu(cpu
, hctx
->cpumask
))
2512 clear_bit(BLK_MQ_S_INACTIVE
, &hctx
->state
);
2517 * 'cpu' is going away. splice any existing rq_list entries from this
2518 * software queue to the hw queue dispatch list, and ensure that it
2521 static int blk_mq_hctx_notify_dead(unsigned int cpu
, struct hlist_node
*node
)
2523 struct blk_mq_hw_ctx
*hctx
;
2524 struct blk_mq_ctx
*ctx
;
2526 enum hctx_type type
;
2528 hctx
= hlist_entry_safe(node
, struct blk_mq_hw_ctx
, cpuhp_dead
);
2529 if (!cpumask_test_cpu(cpu
, hctx
->cpumask
))
2532 ctx
= __blk_mq_get_ctx(hctx
->queue
, cpu
);
2535 spin_lock(&ctx
->lock
);
2536 if (!list_empty(&ctx
->rq_lists
[type
])) {
2537 list_splice_init(&ctx
->rq_lists
[type
], &tmp
);
2538 blk_mq_hctx_clear_pending(hctx
, ctx
);
2540 spin_unlock(&ctx
->lock
);
2542 if (list_empty(&tmp
))
2545 spin_lock(&hctx
->lock
);
2546 list_splice_tail_init(&tmp
, &hctx
->dispatch
);
2547 spin_unlock(&hctx
->lock
);
2549 blk_mq_run_hw_queue(hctx
, true);
2553 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx
*hctx
)
2555 if (!(hctx
->flags
& BLK_MQ_F_STACKING
))
2556 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE
,
2557 &hctx
->cpuhp_online
);
2558 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD
,
2562 /* hctx->ctxs will be freed in queue's release handler */
2563 static void blk_mq_exit_hctx(struct request_queue
*q
,
2564 struct blk_mq_tag_set
*set
,
2565 struct blk_mq_hw_ctx
*hctx
, unsigned int hctx_idx
)
2567 if (blk_mq_hw_queue_mapped(hctx
))
2568 blk_mq_tag_idle(hctx
);
2570 if (set
->ops
->exit_request
)
2571 set
->ops
->exit_request(set
, hctx
->fq
->flush_rq
, hctx_idx
);
2573 if (set
->ops
->exit_hctx
)
2574 set
->ops
->exit_hctx(hctx
, hctx_idx
);
2576 blk_mq_remove_cpuhp(hctx
);
2578 spin_lock(&q
->unused_hctx_lock
);
2579 list_add(&hctx
->hctx_list
, &q
->unused_hctx_list
);
2580 spin_unlock(&q
->unused_hctx_lock
);
2583 static void blk_mq_exit_hw_queues(struct request_queue
*q
,
2584 struct blk_mq_tag_set
*set
, int nr_queue
)
2586 struct blk_mq_hw_ctx
*hctx
;
2589 queue_for_each_hw_ctx(q
, hctx
, i
) {
2592 blk_mq_debugfs_unregister_hctx(hctx
);
2593 blk_mq_exit_hctx(q
, set
, hctx
, i
);
2597 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set
*tag_set
)
2599 int hw_ctx_size
= sizeof(struct blk_mq_hw_ctx
);
2601 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx
, srcu
),
2602 __alignof__(struct blk_mq_hw_ctx
)) !=
2603 sizeof(struct blk_mq_hw_ctx
));
2605 if (tag_set
->flags
& BLK_MQ_F_BLOCKING
)
2606 hw_ctx_size
+= sizeof(struct srcu_struct
);
2611 static int blk_mq_init_hctx(struct request_queue
*q
,
2612 struct blk_mq_tag_set
*set
,
2613 struct blk_mq_hw_ctx
*hctx
, unsigned hctx_idx
)
2615 hctx
->queue_num
= hctx_idx
;
2617 if (!(hctx
->flags
& BLK_MQ_F_STACKING
))
2618 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE
,
2619 &hctx
->cpuhp_online
);
2620 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD
, &hctx
->cpuhp_dead
);
2622 hctx
->tags
= set
->tags
[hctx_idx
];
2624 if (set
->ops
->init_hctx
&&
2625 set
->ops
->init_hctx(hctx
, set
->driver_data
, hctx_idx
))
2626 goto unregister_cpu_notifier
;
2628 if (blk_mq_init_request(set
, hctx
->fq
->flush_rq
, hctx_idx
,
2634 if (set
->ops
->exit_hctx
)
2635 set
->ops
->exit_hctx(hctx
, hctx_idx
);
2636 unregister_cpu_notifier
:
2637 blk_mq_remove_cpuhp(hctx
);
2641 static struct blk_mq_hw_ctx
*
2642 blk_mq_alloc_hctx(struct request_queue
*q
, struct blk_mq_tag_set
*set
,
2645 struct blk_mq_hw_ctx
*hctx
;
2646 gfp_t gfp
= GFP_NOIO
| __GFP_NOWARN
| __GFP_NORETRY
;
2648 hctx
= kzalloc_node(blk_mq_hw_ctx_size(set
), gfp
, node
);
2650 goto fail_alloc_hctx
;
2652 if (!zalloc_cpumask_var_node(&hctx
->cpumask
, gfp
, node
))
2655 atomic_set(&hctx
->nr_active
, 0);
2656 atomic_set(&hctx
->elevator_queued
, 0);
2657 if (node
== NUMA_NO_NODE
)
2658 node
= set
->numa_node
;
2659 hctx
->numa_node
= node
;
2661 INIT_DELAYED_WORK(&hctx
->run_work
, blk_mq_run_work_fn
);
2662 spin_lock_init(&hctx
->lock
);
2663 INIT_LIST_HEAD(&hctx
->dispatch
);
2665 hctx
->flags
= set
->flags
& ~BLK_MQ_F_TAG_QUEUE_SHARED
;
2667 INIT_LIST_HEAD(&hctx
->hctx_list
);
2670 * Allocate space for all possible cpus to avoid allocation at
2673 hctx
->ctxs
= kmalloc_array_node(nr_cpu_ids
, sizeof(void *),
2678 if (sbitmap_init_node(&hctx
->ctx_map
, nr_cpu_ids
, ilog2(8),
2683 spin_lock_init(&hctx
->dispatch_wait_lock
);
2684 init_waitqueue_func_entry(&hctx
->dispatch_wait
, blk_mq_dispatch_wake
);
2685 INIT_LIST_HEAD(&hctx
->dispatch_wait
.entry
);
2687 hctx
->fq
= blk_alloc_flush_queue(hctx
->numa_node
, set
->cmd_size
, gfp
);
2691 if (hctx
->flags
& BLK_MQ_F_BLOCKING
)
2692 init_srcu_struct(hctx
->srcu
);
2693 blk_mq_hctx_kobj_init(hctx
);
2698 sbitmap_free(&hctx
->ctx_map
);
2702 free_cpumask_var(hctx
->cpumask
);
2709 static void blk_mq_init_cpu_queues(struct request_queue
*q
,
2710 unsigned int nr_hw_queues
)
2712 struct blk_mq_tag_set
*set
= q
->tag_set
;
2715 for_each_possible_cpu(i
) {
2716 struct blk_mq_ctx
*__ctx
= per_cpu_ptr(q
->queue_ctx
, i
);
2717 struct blk_mq_hw_ctx
*hctx
;
2721 spin_lock_init(&__ctx
->lock
);
2722 for (k
= HCTX_TYPE_DEFAULT
; k
< HCTX_MAX_TYPES
; k
++)
2723 INIT_LIST_HEAD(&__ctx
->rq_lists
[k
]);
2728 * Set local node, IFF we have more than one hw queue. If
2729 * not, we remain on the home node of the device
2731 for (j
= 0; j
< set
->nr_maps
; j
++) {
2732 hctx
= blk_mq_map_queue_type(q
, j
, i
);
2733 if (nr_hw_queues
> 1 && hctx
->numa_node
== NUMA_NO_NODE
)
2734 hctx
->numa_node
= cpu_to_node(i
);
2739 static bool __blk_mq_alloc_map_and_request(struct blk_mq_tag_set
*set
,
2742 unsigned int flags
= set
->flags
;
2745 set
->tags
[hctx_idx
] = blk_mq_alloc_rq_map(set
, hctx_idx
,
2746 set
->queue_depth
, set
->reserved_tags
, flags
);
2747 if (!set
->tags
[hctx_idx
])
2750 ret
= blk_mq_alloc_rqs(set
, set
->tags
[hctx_idx
], hctx_idx
,
2755 blk_mq_free_rq_map(set
->tags
[hctx_idx
], flags
);
2756 set
->tags
[hctx_idx
] = NULL
;
2760 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set
*set
,
2761 unsigned int hctx_idx
)
2763 unsigned int flags
= set
->flags
;
2765 if (set
->tags
&& set
->tags
[hctx_idx
]) {
2766 blk_mq_free_rqs(set
, set
->tags
[hctx_idx
], hctx_idx
);
2767 blk_mq_free_rq_map(set
->tags
[hctx_idx
], flags
);
2768 set
->tags
[hctx_idx
] = NULL
;
2772 static void blk_mq_map_swqueue(struct request_queue
*q
)
2774 unsigned int i
, j
, hctx_idx
;
2775 struct blk_mq_hw_ctx
*hctx
;
2776 struct blk_mq_ctx
*ctx
;
2777 struct blk_mq_tag_set
*set
= q
->tag_set
;
2779 queue_for_each_hw_ctx(q
, hctx
, i
) {
2780 cpumask_clear(hctx
->cpumask
);
2782 hctx
->dispatch_from
= NULL
;
2786 * Map software to hardware queues.
2788 * If the cpu isn't present, the cpu is mapped to first hctx.
2790 for_each_possible_cpu(i
) {
2792 ctx
= per_cpu_ptr(q
->queue_ctx
, i
);
2793 for (j
= 0; j
< set
->nr_maps
; j
++) {
2794 if (!set
->map
[j
].nr_queues
) {
2795 ctx
->hctxs
[j
] = blk_mq_map_queue_type(q
,
2796 HCTX_TYPE_DEFAULT
, i
);
2799 hctx_idx
= set
->map
[j
].mq_map
[i
];
2800 /* unmapped hw queue can be remapped after CPU topo changed */
2801 if (!set
->tags
[hctx_idx
] &&
2802 !__blk_mq_alloc_map_and_request(set
, hctx_idx
)) {
2804 * If tags initialization fail for some hctx,
2805 * that hctx won't be brought online. In this
2806 * case, remap the current ctx to hctx[0] which
2807 * is guaranteed to always have tags allocated
2809 set
->map
[j
].mq_map
[i
] = 0;
2812 hctx
= blk_mq_map_queue_type(q
, j
, i
);
2813 ctx
->hctxs
[j
] = hctx
;
2815 * If the CPU is already set in the mask, then we've
2816 * mapped this one already. This can happen if
2817 * devices share queues across queue maps.
2819 if (cpumask_test_cpu(i
, hctx
->cpumask
))
2822 cpumask_set_cpu(i
, hctx
->cpumask
);
2824 ctx
->index_hw
[hctx
->type
] = hctx
->nr_ctx
;
2825 hctx
->ctxs
[hctx
->nr_ctx
++] = ctx
;
2828 * If the nr_ctx type overflows, we have exceeded the
2829 * amount of sw queues we can support.
2831 BUG_ON(!hctx
->nr_ctx
);
2834 for (; j
< HCTX_MAX_TYPES
; j
++)
2835 ctx
->hctxs
[j
] = blk_mq_map_queue_type(q
,
2836 HCTX_TYPE_DEFAULT
, i
);
2839 queue_for_each_hw_ctx(q
, hctx
, i
) {
2841 * If no software queues are mapped to this hardware queue,
2842 * disable it and free the request entries.
2844 if (!hctx
->nr_ctx
) {
2845 /* Never unmap queue 0. We need it as a
2846 * fallback in case of a new remap fails
2849 if (i
&& set
->tags
[i
])
2850 blk_mq_free_map_and_requests(set
, i
);
2856 hctx
->tags
= set
->tags
[i
];
2857 WARN_ON(!hctx
->tags
);
2860 * Set the map size to the number of mapped software queues.
2861 * This is more accurate and more efficient than looping
2862 * over all possibly mapped software queues.
2864 sbitmap_resize(&hctx
->ctx_map
, hctx
->nr_ctx
);
2867 * Initialize batch roundrobin counts
2869 hctx
->next_cpu
= blk_mq_first_mapped_cpu(hctx
);
2870 hctx
->next_cpu_batch
= BLK_MQ_CPU_WORK_BATCH
;
2875 * Caller needs to ensure that we're either frozen/quiesced, or that
2876 * the queue isn't live yet.
2878 static void queue_set_hctx_shared(struct request_queue
*q
, bool shared
)
2880 struct blk_mq_hw_ctx
*hctx
;
2883 queue_for_each_hw_ctx(q
, hctx
, i
) {
2885 hctx
->flags
|= BLK_MQ_F_TAG_QUEUE_SHARED
;
2887 hctx
->flags
&= ~BLK_MQ_F_TAG_QUEUE_SHARED
;
2891 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set
*set
,
2894 struct request_queue
*q
;
2896 lockdep_assert_held(&set
->tag_list_lock
);
2898 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
) {
2899 blk_mq_freeze_queue(q
);
2900 queue_set_hctx_shared(q
, shared
);
2901 blk_mq_unfreeze_queue(q
);
2905 static void blk_mq_del_queue_tag_set(struct request_queue
*q
)
2907 struct blk_mq_tag_set
*set
= q
->tag_set
;
2909 mutex_lock(&set
->tag_list_lock
);
2910 list_del(&q
->tag_set_list
);
2911 if (list_is_singular(&set
->tag_list
)) {
2912 /* just transitioned to unshared */
2913 set
->flags
&= ~BLK_MQ_F_TAG_QUEUE_SHARED
;
2914 /* update existing queue */
2915 blk_mq_update_tag_set_shared(set
, false);
2917 mutex_unlock(&set
->tag_list_lock
);
2918 INIT_LIST_HEAD(&q
->tag_set_list
);
2921 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set
*set
,
2922 struct request_queue
*q
)
2924 mutex_lock(&set
->tag_list_lock
);
2927 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2929 if (!list_empty(&set
->tag_list
) &&
2930 !(set
->flags
& BLK_MQ_F_TAG_QUEUE_SHARED
)) {
2931 set
->flags
|= BLK_MQ_F_TAG_QUEUE_SHARED
;
2932 /* update existing queue */
2933 blk_mq_update_tag_set_shared(set
, true);
2935 if (set
->flags
& BLK_MQ_F_TAG_QUEUE_SHARED
)
2936 queue_set_hctx_shared(q
, true);
2937 list_add_tail(&q
->tag_set_list
, &set
->tag_list
);
2939 mutex_unlock(&set
->tag_list_lock
);
2942 /* All allocations will be freed in release handler of q->mq_kobj */
2943 static int blk_mq_alloc_ctxs(struct request_queue
*q
)
2945 struct blk_mq_ctxs
*ctxs
;
2948 ctxs
= kzalloc(sizeof(*ctxs
), GFP_KERNEL
);
2952 ctxs
->queue_ctx
= alloc_percpu(struct blk_mq_ctx
);
2953 if (!ctxs
->queue_ctx
)
2956 for_each_possible_cpu(cpu
) {
2957 struct blk_mq_ctx
*ctx
= per_cpu_ptr(ctxs
->queue_ctx
, cpu
);
2961 q
->mq_kobj
= &ctxs
->kobj
;
2962 q
->queue_ctx
= ctxs
->queue_ctx
;
2971 * It is the actual release handler for mq, but we do it from
2972 * request queue's release handler for avoiding use-after-free
2973 * and headache because q->mq_kobj shouldn't have been introduced,
2974 * but we can't group ctx/kctx kobj without it.
2976 void blk_mq_release(struct request_queue
*q
)
2978 struct blk_mq_hw_ctx
*hctx
, *next
;
2981 queue_for_each_hw_ctx(q
, hctx
, i
)
2982 WARN_ON_ONCE(hctx
&& list_empty(&hctx
->hctx_list
));
2984 /* all hctx are in .unused_hctx_list now */
2985 list_for_each_entry_safe(hctx
, next
, &q
->unused_hctx_list
, hctx_list
) {
2986 list_del_init(&hctx
->hctx_list
);
2987 kobject_put(&hctx
->kobj
);
2990 kfree(q
->queue_hw_ctx
);
2993 * release .mq_kobj and sw queue's kobject now because
2994 * both share lifetime with request queue.
2996 blk_mq_sysfs_deinit(q
);
2999 struct request_queue
*blk_mq_init_queue_data(struct blk_mq_tag_set
*set
,
3002 struct request_queue
*uninit_q
, *q
;
3004 uninit_q
= blk_alloc_queue(set
->numa_node
);
3006 return ERR_PTR(-ENOMEM
);
3007 uninit_q
->queuedata
= queuedata
;
3010 * Initialize the queue without an elevator. device_add_disk() will do
3011 * the initialization.
3013 q
= blk_mq_init_allocated_queue(set
, uninit_q
, false);
3015 blk_cleanup_queue(uninit_q
);
3019 EXPORT_SYMBOL_GPL(blk_mq_init_queue_data
);
3021 struct request_queue
*blk_mq_init_queue(struct blk_mq_tag_set
*set
)
3023 return blk_mq_init_queue_data(set
, NULL
);
3025 EXPORT_SYMBOL(blk_mq_init_queue
);
3028 * Helper for setting up a queue with mq ops, given queue depth, and
3029 * the passed in mq ops flags.
3031 struct request_queue
*blk_mq_init_sq_queue(struct blk_mq_tag_set
*set
,
3032 const struct blk_mq_ops
*ops
,
3033 unsigned int queue_depth
,
3034 unsigned int set_flags
)
3036 struct request_queue
*q
;
3039 memset(set
, 0, sizeof(*set
));
3041 set
->nr_hw_queues
= 1;
3043 set
->queue_depth
= queue_depth
;
3044 set
->numa_node
= NUMA_NO_NODE
;
3045 set
->flags
= set_flags
;
3047 ret
= blk_mq_alloc_tag_set(set
);
3049 return ERR_PTR(ret
);
3051 q
= blk_mq_init_queue(set
);
3053 blk_mq_free_tag_set(set
);
3059 EXPORT_SYMBOL(blk_mq_init_sq_queue
);
3061 static struct blk_mq_hw_ctx
*blk_mq_alloc_and_init_hctx(
3062 struct blk_mq_tag_set
*set
, struct request_queue
*q
,
3063 int hctx_idx
, int node
)
3065 struct blk_mq_hw_ctx
*hctx
= NULL
, *tmp
;
3067 /* reuse dead hctx first */
3068 spin_lock(&q
->unused_hctx_lock
);
3069 list_for_each_entry(tmp
, &q
->unused_hctx_list
, hctx_list
) {
3070 if (tmp
->numa_node
== node
) {
3076 list_del_init(&hctx
->hctx_list
);
3077 spin_unlock(&q
->unused_hctx_lock
);
3080 hctx
= blk_mq_alloc_hctx(q
, set
, node
);
3084 if (blk_mq_init_hctx(q
, set
, hctx
, hctx_idx
))
3090 kobject_put(&hctx
->kobj
);
3095 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set
*set
,
3096 struct request_queue
*q
)
3099 struct blk_mq_hw_ctx
**hctxs
= q
->queue_hw_ctx
;
3101 if (q
->nr_hw_queues
< set
->nr_hw_queues
) {
3102 struct blk_mq_hw_ctx
**new_hctxs
;
3104 new_hctxs
= kcalloc_node(set
->nr_hw_queues
,
3105 sizeof(*new_hctxs
), GFP_KERNEL
,
3110 memcpy(new_hctxs
, hctxs
, q
->nr_hw_queues
*
3112 q
->queue_hw_ctx
= new_hctxs
;
3117 /* protect against switching io scheduler */
3118 mutex_lock(&q
->sysfs_lock
);
3119 for (i
= 0; i
< set
->nr_hw_queues
; i
++) {
3121 struct blk_mq_hw_ctx
*hctx
;
3123 node
= blk_mq_hw_queue_to_node(&set
->map
[HCTX_TYPE_DEFAULT
], i
);
3125 * If the hw queue has been mapped to another numa node,
3126 * we need to realloc the hctx. If allocation fails, fallback
3127 * to use the previous one.
3129 if (hctxs
[i
] && (hctxs
[i
]->numa_node
== node
))
3132 hctx
= blk_mq_alloc_and_init_hctx(set
, q
, i
, node
);
3135 blk_mq_exit_hctx(q
, set
, hctxs
[i
], i
);
3139 pr_warn("Allocate new hctx on node %d fails,\
3140 fallback to previous one on node %d\n",
3141 node
, hctxs
[i
]->numa_node
);
3147 * Increasing nr_hw_queues fails. Free the newly allocated
3148 * hctxs and keep the previous q->nr_hw_queues.
3150 if (i
!= set
->nr_hw_queues
) {
3151 j
= q
->nr_hw_queues
;
3155 end
= q
->nr_hw_queues
;
3156 q
->nr_hw_queues
= set
->nr_hw_queues
;
3159 for (; j
< end
; j
++) {
3160 struct blk_mq_hw_ctx
*hctx
= hctxs
[j
];
3164 blk_mq_free_map_and_requests(set
, j
);
3165 blk_mq_exit_hctx(q
, set
, hctx
, j
);
3169 mutex_unlock(&q
->sysfs_lock
);
3172 struct request_queue
*blk_mq_init_allocated_queue(struct blk_mq_tag_set
*set
,
3173 struct request_queue
*q
,
3176 /* mark the queue as mq asap */
3177 q
->mq_ops
= set
->ops
;
3179 q
->poll_cb
= blk_stat_alloc_callback(blk_mq_poll_stats_fn
,
3180 blk_mq_poll_stats_bkt
,
3181 BLK_MQ_POLL_STATS_BKTS
, q
);
3185 if (blk_mq_alloc_ctxs(q
))
3188 /* init q->mq_kobj and sw queues' kobjects */
3189 blk_mq_sysfs_init(q
);
3191 INIT_LIST_HEAD(&q
->unused_hctx_list
);
3192 spin_lock_init(&q
->unused_hctx_lock
);
3194 blk_mq_realloc_hw_ctxs(set
, q
);
3195 if (!q
->nr_hw_queues
)
3198 INIT_WORK(&q
->timeout_work
, blk_mq_timeout_work
);
3199 blk_queue_rq_timeout(q
, set
->timeout
? set
->timeout
: 30 * HZ
);
3203 q
->queue_flags
|= QUEUE_FLAG_MQ_DEFAULT
;
3204 if (set
->nr_maps
> HCTX_TYPE_POLL
&&
3205 set
->map
[HCTX_TYPE_POLL
].nr_queues
)
3206 blk_queue_flag_set(QUEUE_FLAG_POLL
, q
);
3208 q
->sg_reserved_size
= INT_MAX
;
3210 INIT_DELAYED_WORK(&q
->requeue_work
, blk_mq_requeue_work
);
3211 INIT_LIST_HEAD(&q
->requeue_list
);
3212 spin_lock_init(&q
->requeue_lock
);
3214 q
->nr_requests
= set
->queue_depth
;
3217 * Default to classic polling
3219 q
->poll_nsec
= BLK_MQ_POLL_CLASSIC
;
3221 blk_mq_init_cpu_queues(q
, set
->nr_hw_queues
);
3222 blk_mq_add_queue_tag_set(set
, q
);
3223 blk_mq_map_swqueue(q
);
3226 elevator_init_mq(q
);
3231 kfree(q
->queue_hw_ctx
);
3232 q
->nr_hw_queues
= 0;
3233 blk_mq_sysfs_deinit(q
);
3235 blk_stat_free_callback(q
->poll_cb
);
3239 return ERR_PTR(-ENOMEM
);
3241 EXPORT_SYMBOL(blk_mq_init_allocated_queue
);
3243 /* tags can _not_ be used after returning from blk_mq_exit_queue */
3244 void blk_mq_exit_queue(struct request_queue
*q
)
3246 struct blk_mq_tag_set
*set
= q
->tag_set
;
3248 blk_mq_del_queue_tag_set(q
);
3249 blk_mq_exit_hw_queues(q
, set
, set
->nr_hw_queues
);
3252 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set
*set
)
3256 for (i
= 0; i
< set
->nr_hw_queues
; i
++) {
3257 if (!__blk_mq_alloc_map_and_request(set
, i
))
3266 blk_mq_free_map_and_requests(set
, i
);
3272 * Allocate the request maps associated with this tag_set. Note that this
3273 * may reduce the depth asked for, if memory is tight. set->queue_depth
3274 * will be updated to reflect the allocated depth.
3276 static int blk_mq_alloc_map_and_requests(struct blk_mq_tag_set
*set
)
3281 depth
= set
->queue_depth
;
3283 err
= __blk_mq_alloc_rq_maps(set
);
3287 set
->queue_depth
>>= 1;
3288 if (set
->queue_depth
< set
->reserved_tags
+ BLK_MQ_TAG_MIN
) {
3292 } while (set
->queue_depth
);
3294 if (!set
->queue_depth
|| err
) {
3295 pr_err("blk-mq: failed to allocate request map\n");
3299 if (depth
!= set
->queue_depth
)
3300 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
3301 depth
, set
->queue_depth
);
3306 static int blk_mq_update_queue_map(struct blk_mq_tag_set
*set
)
3309 * blk_mq_map_queues() and multiple .map_queues() implementations
3310 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
3311 * number of hardware queues.
3313 if (set
->nr_maps
== 1)
3314 set
->map
[HCTX_TYPE_DEFAULT
].nr_queues
= set
->nr_hw_queues
;
3316 if (set
->ops
->map_queues
&& !is_kdump_kernel()) {
3320 * transport .map_queues is usually done in the following
3323 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
3324 * mask = get_cpu_mask(queue)
3325 * for_each_cpu(cpu, mask)
3326 * set->map[x].mq_map[cpu] = queue;
3329 * When we need to remap, the table has to be cleared for
3330 * killing stale mapping since one CPU may not be mapped
3333 for (i
= 0; i
< set
->nr_maps
; i
++)
3334 blk_mq_clear_mq_map(&set
->map
[i
]);
3336 return set
->ops
->map_queues(set
);
3338 BUG_ON(set
->nr_maps
> 1);
3339 return blk_mq_map_queues(&set
->map
[HCTX_TYPE_DEFAULT
]);
3343 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set
*set
,
3344 int cur_nr_hw_queues
, int new_nr_hw_queues
)
3346 struct blk_mq_tags
**new_tags
;
3348 if (cur_nr_hw_queues
>= new_nr_hw_queues
)
3351 new_tags
= kcalloc_node(new_nr_hw_queues
, sizeof(struct blk_mq_tags
*),
3352 GFP_KERNEL
, set
->numa_node
);
3357 memcpy(new_tags
, set
->tags
, cur_nr_hw_queues
*
3358 sizeof(*set
->tags
));
3360 set
->tags
= new_tags
;
3361 set
->nr_hw_queues
= new_nr_hw_queues
;
3366 static int blk_mq_alloc_tag_set_tags(struct blk_mq_tag_set
*set
,
3367 int new_nr_hw_queues
)
3369 return blk_mq_realloc_tag_set_tags(set
, 0, new_nr_hw_queues
);
3373 * Alloc a tag set to be associated with one or more request queues.
3374 * May fail with EINVAL for various error conditions. May adjust the
3375 * requested depth down, if it's too large. In that case, the set
3376 * value will be stored in set->queue_depth.
3378 int blk_mq_alloc_tag_set(struct blk_mq_tag_set
*set
)
3382 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH
> 1 << BLK_MQ_UNIQUE_TAG_BITS
);
3384 if (!set
->nr_hw_queues
)
3386 if (!set
->queue_depth
)
3388 if (set
->queue_depth
< set
->reserved_tags
+ BLK_MQ_TAG_MIN
)
3391 if (!set
->ops
->queue_rq
)
3394 if (!set
->ops
->get_budget
^ !set
->ops
->put_budget
)
3397 if (set
->queue_depth
> BLK_MQ_MAX_DEPTH
) {
3398 pr_info("blk-mq: reduced tag depth to %u\n",
3400 set
->queue_depth
= BLK_MQ_MAX_DEPTH
;
3405 else if (set
->nr_maps
> HCTX_MAX_TYPES
)
3409 * If a crashdump is active, then we are potentially in a very
3410 * memory constrained environment. Limit us to 1 queue and
3411 * 64 tags to prevent using too much memory.
3413 if (is_kdump_kernel()) {
3414 set
->nr_hw_queues
= 1;
3416 set
->queue_depth
= min(64U, set
->queue_depth
);
3419 * There is no use for more h/w queues than cpus if we just have
3422 if (set
->nr_maps
== 1 && set
->nr_hw_queues
> nr_cpu_ids
)
3423 set
->nr_hw_queues
= nr_cpu_ids
;
3425 if (blk_mq_alloc_tag_set_tags(set
, set
->nr_hw_queues
) < 0)
3429 for (i
= 0; i
< set
->nr_maps
; i
++) {
3430 set
->map
[i
].mq_map
= kcalloc_node(nr_cpu_ids
,
3431 sizeof(set
->map
[i
].mq_map
[0]),
3432 GFP_KERNEL
, set
->numa_node
);
3433 if (!set
->map
[i
].mq_map
)
3434 goto out_free_mq_map
;
3435 set
->map
[i
].nr_queues
= is_kdump_kernel() ? 1 : set
->nr_hw_queues
;
3438 ret
= blk_mq_update_queue_map(set
);
3440 goto out_free_mq_map
;
3442 ret
= blk_mq_alloc_map_and_requests(set
);
3444 goto out_free_mq_map
;
3446 if (blk_mq_is_sbitmap_shared(set
->flags
)) {
3447 atomic_set(&set
->active_queues_shared_sbitmap
, 0);
3449 if (blk_mq_init_shared_sbitmap(set
, set
->flags
)) {
3451 goto out_free_mq_rq_maps
;
3455 mutex_init(&set
->tag_list_lock
);
3456 INIT_LIST_HEAD(&set
->tag_list
);
3460 out_free_mq_rq_maps
:
3461 for (i
= 0; i
< set
->nr_hw_queues
; i
++)
3462 blk_mq_free_map_and_requests(set
, i
);
3464 for (i
= 0; i
< set
->nr_maps
; i
++) {
3465 kfree(set
->map
[i
].mq_map
);
3466 set
->map
[i
].mq_map
= NULL
;
3472 EXPORT_SYMBOL(blk_mq_alloc_tag_set
);
3474 void blk_mq_free_tag_set(struct blk_mq_tag_set
*set
)
3478 for (i
= 0; i
< set
->nr_hw_queues
; i
++)
3479 blk_mq_free_map_and_requests(set
, i
);
3481 if (blk_mq_is_sbitmap_shared(set
->flags
))
3482 blk_mq_exit_shared_sbitmap(set
);
3484 for (j
= 0; j
< set
->nr_maps
; j
++) {
3485 kfree(set
->map
[j
].mq_map
);
3486 set
->map
[j
].mq_map
= NULL
;
3492 EXPORT_SYMBOL(blk_mq_free_tag_set
);
3494 int blk_mq_update_nr_requests(struct request_queue
*q
, unsigned int nr
)
3496 struct blk_mq_tag_set
*set
= q
->tag_set
;
3497 struct blk_mq_hw_ctx
*hctx
;
3503 if (q
->nr_requests
== nr
)
3506 blk_mq_freeze_queue(q
);
3507 blk_mq_quiesce_queue(q
);
3510 queue_for_each_hw_ctx(q
, hctx
, i
) {
3514 * If we're using an MQ scheduler, just update the scheduler
3515 * queue depth. This is similar to what the old code would do.
3517 if (!hctx
->sched_tags
) {
3518 ret
= blk_mq_tag_update_depth(hctx
, &hctx
->tags
, nr
,
3520 if (!ret
&& blk_mq_is_sbitmap_shared(set
->flags
))
3521 blk_mq_tag_resize_shared_sbitmap(set
, nr
);
3523 ret
= blk_mq_tag_update_depth(hctx
, &hctx
->sched_tags
,
3528 if (q
->elevator
&& q
->elevator
->type
->ops
.depth_updated
)
3529 q
->elevator
->type
->ops
.depth_updated(hctx
);
3533 q
->nr_requests
= nr
;
3535 blk_mq_unquiesce_queue(q
);
3536 blk_mq_unfreeze_queue(q
);
3542 * request_queue and elevator_type pair.
3543 * It is just used by __blk_mq_update_nr_hw_queues to cache
3544 * the elevator_type associated with a request_queue.
3546 struct blk_mq_qe_pair
{
3547 struct list_head node
;
3548 struct request_queue
*q
;
3549 struct elevator_type
*type
;
3553 * Cache the elevator_type in qe pair list and switch the
3554 * io scheduler to 'none'
3556 static bool blk_mq_elv_switch_none(struct list_head
*head
,
3557 struct request_queue
*q
)
3559 struct blk_mq_qe_pair
*qe
;
3564 qe
= kmalloc(sizeof(*qe
), GFP_NOIO
| __GFP_NOWARN
| __GFP_NORETRY
);
3568 INIT_LIST_HEAD(&qe
->node
);
3570 qe
->type
= q
->elevator
->type
;
3571 list_add(&qe
->node
, head
);
3573 mutex_lock(&q
->sysfs_lock
);
3575 * After elevator_switch_mq, the previous elevator_queue will be
3576 * released by elevator_release. The reference of the io scheduler
3577 * module get by elevator_get will also be put. So we need to get
3578 * a reference of the io scheduler module here to prevent it to be
3581 __module_get(qe
->type
->elevator_owner
);
3582 elevator_switch_mq(q
, NULL
);
3583 mutex_unlock(&q
->sysfs_lock
);
3588 static void blk_mq_elv_switch_back(struct list_head
*head
,
3589 struct request_queue
*q
)
3591 struct blk_mq_qe_pair
*qe
;
3592 struct elevator_type
*t
= NULL
;
3594 list_for_each_entry(qe
, head
, node
)
3603 list_del(&qe
->node
);
3606 mutex_lock(&q
->sysfs_lock
);
3607 elevator_switch_mq(q
, t
);
3608 mutex_unlock(&q
->sysfs_lock
);
3611 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set
*set
,
3614 struct request_queue
*q
;
3616 int prev_nr_hw_queues
;
3618 lockdep_assert_held(&set
->tag_list_lock
);
3620 if (set
->nr_maps
== 1 && nr_hw_queues
> nr_cpu_ids
)
3621 nr_hw_queues
= nr_cpu_ids
;
3622 if (nr_hw_queues
< 1)
3624 if (set
->nr_maps
== 1 && nr_hw_queues
== set
->nr_hw_queues
)
3627 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
)
3628 blk_mq_freeze_queue(q
);
3630 * Switch IO scheduler to 'none', cleaning up the data associated
3631 * with the previous scheduler. We will switch back once we are done
3632 * updating the new sw to hw queue mappings.
3634 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
)
3635 if (!blk_mq_elv_switch_none(&head
, q
))
3638 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
) {
3639 blk_mq_debugfs_unregister_hctxs(q
);
3640 blk_mq_sysfs_unregister(q
);
3643 prev_nr_hw_queues
= set
->nr_hw_queues
;
3644 if (blk_mq_realloc_tag_set_tags(set
, set
->nr_hw_queues
, nr_hw_queues
) <
3648 set
->nr_hw_queues
= nr_hw_queues
;
3650 blk_mq_update_queue_map(set
);
3651 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
) {
3652 blk_mq_realloc_hw_ctxs(set
, q
);
3653 if (q
->nr_hw_queues
!= set
->nr_hw_queues
) {
3654 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3655 nr_hw_queues
, prev_nr_hw_queues
);
3656 set
->nr_hw_queues
= prev_nr_hw_queues
;
3657 blk_mq_map_queues(&set
->map
[HCTX_TYPE_DEFAULT
]);
3660 blk_mq_map_swqueue(q
);
3664 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
) {
3665 blk_mq_sysfs_register(q
);
3666 blk_mq_debugfs_register_hctxs(q
);
3670 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
)
3671 blk_mq_elv_switch_back(&head
, q
);
3673 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
)
3674 blk_mq_unfreeze_queue(q
);
3677 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set
*set
, int nr_hw_queues
)
3679 mutex_lock(&set
->tag_list_lock
);
3680 __blk_mq_update_nr_hw_queues(set
, nr_hw_queues
);
3681 mutex_unlock(&set
->tag_list_lock
);
3683 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues
);
3685 /* Enable polling stats and return whether they were already enabled. */
3686 static bool blk_poll_stats_enable(struct request_queue
*q
)
3688 if (test_bit(QUEUE_FLAG_POLL_STATS
, &q
->queue_flags
) ||
3689 blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS
, q
))
3691 blk_stat_add_callback(q
, q
->poll_cb
);
3695 static void blk_mq_poll_stats_start(struct request_queue
*q
)
3698 * We don't arm the callback if polling stats are not enabled or the
3699 * callback is already active.
3701 if (!test_bit(QUEUE_FLAG_POLL_STATS
, &q
->queue_flags
) ||
3702 blk_stat_is_active(q
->poll_cb
))
3705 blk_stat_activate_msecs(q
->poll_cb
, 100);
3708 static void blk_mq_poll_stats_fn(struct blk_stat_callback
*cb
)
3710 struct request_queue
*q
= cb
->data
;
3713 for (bucket
= 0; bucket
< BLK_MQ_POLL_STATS_BKTS
; bucket
++) {
3714 if (cb
->stat
[bucket
].nr_samples
)
3715 q
->poll_stat
[bucket
] = cb
->stat
[bucket
];
3719 static unsigned long blk_mq_poll_nsecs(struct request_queue
*q
,
3722 unsigned long ret
= 0;
3726 * If stats collection isn't on, don't sleep but turn it on for
3729 if (!blk_poll_stats_enable(q
))
3733 * As an optimistic guess, use half of the mean service time
3734 * for this type of request. We can (and should) make this smarter.
3735 * For instance, if the completion latencies are tight, we can
3736 * get closer than just half the mean. This is especially
3737 * important on devices where the completion latencies are longer
3738 * than ~10 usec. We do use the stats for the relevant IO size
3739 * if available which does lead to better estimates.
3741 bucket
= blk_mq_poll_stats_bkt(rq
);
3745 if (q
->poll_stat
[bucket
].nr_samples
)
3746 ret
= (q
->poll_stat
[bucket
].mean
+ 1) / 2;
3751 static bool blk_mq_poll_hybrid_sleep(struct request_queue
*q
,
3754 struct hrtimer_sleeper hs
;
3755 enum hrtimer_mode mode
;
3759 if (rq
->rq_flags
& RQF_MQ_POLL_SLEPT
)
3763 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
3765 * 0: use half of prev avg
3766 * >0: use this specific value
3768 if (q
->poll_nsec
> 0)
3769 nsecs
= q
->poll_nsec
;
3771 nsecs
= blk_mq_poll_nsecs(q
, rq
);
3776 rq
->rq_flags
|= RQF_MQ_POLL_SLEPT
;
3779 * This will be replaced with the stats tracking code, using
3780 * 'avg_completion_time / 2' as the pre-sleep target.
3784 mode
= HRTIMER_MODE_REL
;
3785 hrtimer_init_sleeper_on_stack(&hs
, CLOCK_MONOTONIC
, mode
);
3786 hrtimer_set_expires(&hs
.timer
, kt
);
3789 if (blk_mq_rq_state(rq
) == MQ_RQ_COMPLETE
)
3791 set_current_state(TASK_UNINTERRUPTIBLE
);
3792 hrtimer_sleeper_start_expires(&hs
, mode
);
3795 hrtimer_cancel(&hs
.timer
);
3796 mode
= HRTIMER_MODE_ABS
;
3797 } while (hs
.task
&& !signal_pending(current
));
3799 __set_current_state(TASK_RUNNING
);
3800 destroy_hrtimer_on_stack(&hs
.timer
);
3804 static bool blk_mq_poll_hybrid(struct request_queue
*q
,
3805 struct blk_mq_hw_ctx
*hctx
, blk_qc_t cookie
)
3809 if (q
->poll_nsec
== BLK_MQ_POLL_CLASSIC
)
3812 if (!blk_qc_t_is_internal(cookie
))
3813 rq
= blk_mq_tag_to_rq(hctx
->tags
, blk_qc_t_to_tag(cookie
));
3815 rq
= blk_mq_tag_to_rq(hctx
->sched_tags
, blk_qc_t_to_tag(cookie
));
3817 * With scheduling, if the request has completed, we'll
3818 * get a NULL return here, as we clear the sched tag when
3819 * that happens. The request still remains valid, like always,
3820 * so we should be safe with just the NULL check.
3826 return blk_mq_poll_hybrid_sleep(q
, rq
);
3830 * blk_poll - poll for IO completions
3832 * @cookie: cookie passed back at IO submission time
3833 * @spin: whether to spin for completions
3836 * Poll for completions on the passed in queue. Returns number of
3837 * completed entries found. If @spin is true, then blk_poll will continue
3838 * looping until at least one completion is found, unless the task is
3839 * otherwise marked running (or we need to reschedule).
3841 int blk_poll(struct request_queue
*q
, blk_qc_t cookie
, bool spin
)
3843 struct blk_mq_hw_ctx
*hctx
;
3846 if (!blk_qc_t_valid(cookie
) ||
3847 !test_bit(QUEUE_FLAG_POLL
, &q
->queue_flags
))
3851 blk_flush_plug_list(current
->plug
, false);
3853 hctx
= q
->queue_hw_ctx
[blk_qc_t_to_queue_num(cookie
)];
3856 * If we sleep, have the caller restart the poll loop to reset
3857 * the state. Like for the other success return cases, the
3858 * caller is responsible for checking if the IO completed. If
3859 * the IO isn't complete, we'll get called again and will go
3860 * straight to the busy poll loop. If specified not to spin,
3861 * we also should not sleep.
3863 if (spin
&& blk_mq_poll_hybrid(q
, hctx
, cookie
))
3866 hctx
->poll_considered
++;
3868 state
= current
->state
;
3872 hctx
->poll_invoked
++;
3874 ret
= q
->mq_ops
->poll(hctx
);
3876 hctx
->poll_success
++;
3877 __set_current_state(TASK_RUNNING
);
3881 if (signal_pending_state(state
, current
))
3882 __set_current_state(TASK_RUNNING
);
3884 if (current
->state
== TASK_RUNNING
)
3886 if (ret
< 0 || !spin
)
3889 } while (!need_resched());
3891 __set_current_state(TASK_RUNNING
);
3894 EXPORT_SYMBOL_GPL(blk_poll
);
3896 unsigned int blk_mq_rq_cpu(struct request
*rq
)
3898 return rq
->mq_ctx
->cpu
;
3900 EXPORT_SYMBOL(blk_mq_rq_cpu
);
3902 static int __init
blk_mq_init(void)
3906 for_each_possible_cpu(i
)
3907 INIT_LIST_HEAD(&per_cpu(blk_cpu_done
, i
));
3908 open_softirq(BLOCK_SOFTIRQ
, blk_done_softirq
);
3910 cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD
,
3911 "block/softirq:dead", NULL
,
3912 blk_softirq_cpu_dead
);
3913 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD
, "block/mq:dead", NULL
,
3914 blk_mq_hctx_notify_dead
);
3915 cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE
, "block/mq:online",
3916 blk_mq_hctx_notify_online
,
3917 blk_mq_hctx_notify_offline
);
3920 subsys_initcall(blk_mq_init
);