Merge tag 'block-5.11-2021-01-10' of git://git.kernel.dk/linux-block
[linux/fpc-iii.git] / block / blk-mq.c
blobf285a9123a8b081deeae72282306948aeec928b4
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Block multiqueue core code
5 * Copyright (C) 2013-2014 Jens Axboe
6 * Copyright (C) 2013-2014 Christoph Hellwig
7 */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/kmemleak.h>
14 #include <linux/mm.h>
15 #include <linux/init.h>
16 #include <linux/slab.h>
17 #include <linux/workqueue.h>
18 #include <linux/smp.h>
19 #include <linux/llist.h>
20 #include <linux/list_sort.h>
21 #include <linux/cpu.h>
22 #include <linux/cache.h>
23 #include <linux/sched/sysctl.h>
24 #include <linux/sched/topology.h>
25 #include <linux/sched/signal.h>
26 #include <linux/delay.h>
27 #include <linux/crash_dump.h>
28 #include <linux/prefetch.h>
29 #include <linux/blk-crypto.h>
31 #include <trace/events/block.h>
33 #include <linux/blk-mq.h>
34 #include <linux/t10-pi.h>
35 #include "blk.h"
36 #include "blk-mq.h"
37 #include "blk-mq-debugfs.h"
38 #include "blk-mq-tag.h"
39 #include "blk-pm.h"
40 #include "blk-stat.h"
41 #include "blk-mq-sched.h"
42 #include "blk-rq-qos.h"
44 static DEFINE_PER_CPU(struct list_head, blk_cpu_done);
46 static void blk_mq_poll_stats_start(struct request_queue *q);
47 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
49 static int blk_mq_poll_stats_bkt(const struct request *rq)
51 int ddir, sectors, bucket;
53 ddir = rq_data_dir(rq);
54 sectors = blk_rq_stats_sectors(rq);
56 bucket = ddir + 2 * ilog2(sectors);
58 if (bucket < 0)
59 return -1;
60 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
61 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
63 return bucket;
67 * Check if any of the ctx, dispatch list or elevator
68 * have pending work in this hardware queue.
70 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
72 return !list_empty_careful(&hctx->dispatch) ||
73 sbitmap_any_bit_set(&hctx->ctx_map) ||
74 blk_mq_sched_has_work(hctx);
78 * Mark this ctx as having pending work in this hardware queue
80 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
81 struct blk_mq_ctx *ctx)
83 const int bit = ctx->index_hw[hctx->type];
85 if (!sbitmap_test_bit(&hctx->ctx_map, bit))
86 sbitmap_set_bit(&hctx->ctx_map, bit);
89 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
90 struct blk_mq_ctx *ctx)
92 const int bit = ctx->index_hw[hctx->type];
94 sbitmap_clear_bit(&hctx->ctx_map, bit);
97 struct mq_inflight {
98 struct block_device *part;
99 unsigned int inflight[2];
102 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
103 struct request *rq, void *priv,
104 bool reserved)
106 struct mq_inflight *mi = priv;
108 if ((!mi->part->bd_partno || rq->part == mi->part) &&
109 blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
110 mi->inflight[rq_data_dir(rq)]++;
112 return true;
115 unsigned int blk_mq_in_flight(struct request_queue *q,
116 struct block_device *part)
118 struct mq_inflight mi = { .part = part };
120 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
122 return mi.inflight[0] + mi.inflight[1];
125 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
126 unsigned int inflight[2])
128 struct mq_inflight mi = { .part = part };
130 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
131 inflight[0] = mi.inflight[0];
132 inflight[1] = mi.inflight[1];
135 void blk_freeze_queue_start(struct request_queue *q)
137 mutex_lock(&q->mq_freeze_lock);
138 if (++q->mq_freeze_depth == 1) {
139 percpu_ref_kill(&q->q_usage_counter);
140 mutex_unlock(&q->mq_freeze_lock);
141 if (queue_is_mq(q))
142 blk_mq_run_hw_queues(q, false);
143 } else {
144 mutex_unlock(&q->mq_freeze_lock);
147 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
149 void blk_mq_freeze_queue_wait(struct request_queue *q)
151 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
153 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
155 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
156 unsigned long timeout)
158 return wait_event_timeout(q->mq_freeze_wq,
159 percpu_ref_is_zero(&q->q_usage_counter),
160 timeout);
162 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
165 * Guarantee no request is in use, so we can change any data structure of
166 * the queue afterward.
168 void blk_freeze_queue(struct request_queue *q)
171 * In the !blk_mq case we are only calling this to kill the
172 * q_usage_counter, otherwise this increases the freeze depth
173 * and waits for it to return to zero. For this reason there is
174 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
175 * exported to drivers as the only user for unfreeze is blk_mq.
177 blk_freeze_queue_start(q);
178 blk_mq_freeze_queue_wait(q);
181 void blk_mq_freeze_queue(struct request_queue *q)
184 * ...just an alias to keep freeze and unfreeze actions balanced
185 * in the blk_mq_* namespace
187 blk_freeze_queue(q);
189 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
191 void blk_mq_unfreeze_queue(struct request_queue *q)
193 mutex_lock(&q->mq_freeze_lock);
194 q->mq_freeze_depth--;
195 WARN_ON_ONCE(q->mq_freeze_depth < 0);
196 if (!q->mq_freeze_depth) {
197 percpu_ref_resurrect(&q->q_usage_counter);
198 wake_up_all(&q->mq_freeze_wq);
200 mutex_unlock(&q->mq_freeze_lock);
202 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
205 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
206 * mpt3sas driver such that this function can be removed.
208 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
210 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
212 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
215 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
216 * @q: request queue.
218 * Note: this function does not prevent that the struct request end_io()
219 * callback function is invoked. Once this function is returned, we make
220 * sure no dispatch can happen until the queue is unquiesced via
221 * blk_mq_unquiesce_queue().
223 void blk_mq_quiesce_queue(struct request_queue *q)
225 struct blk_mq_hw_ctx *hctx;
226 unsigned int i;
227 bool rcu = false;
229 blk_mq_quiesce_queue_nowait(q);
231 queue_for_each_hw_ctx(q, hctx, i) {
232 if (hctx->flags & BLK_MQ_F_BLOCKING)
233 synchronize_srcu(hctx->srcu);
234 else
235 rcu = true;
237 if (rcu)
238 synchronize_rcu();
240 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
243 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
244 * @q: request queue.
246 * This function recovers queue into the state before quiescing
247 * which is done by blk_mq_quiesce_queue.
249 void blk_mq_unquiesce_queue(struct request_queue *q)
251 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
253 /* dispatch requests which are inserted during quiescing */
254 blk_mq_run_hw_queues(q, true);
256 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
258 void blk_mq_wake_waiters(struct request_queue *q)
260 struct blk_mq_hw_ctx *hctx;
261 unsigned int i;
263 queue_for_each_hw_ctx(q, hctx, i)
264 if (blk_mq_hw_queue_mapped(hctx))
265 blk_mq_tag_wakeup_all(hctx->tags, true);
269 * Only need start/end time stamping if we have iostat or
270 * blk stats enabled, or using an IO scheduler.
272 static inline bool blk_mq_need_time_stamp(struct request *rq)
274 return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS)) || rq->q->elevator;
277 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
278 unsigned int tag, u64 alloc_time_ns)
280 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
281 struct request *rq = tags->static_rqs[tag];
283 if (data->q->elevator) {
284 rq->tag = BLK_MQ_NO_TAG;
285 rq->internal_tag = tag;
286 } else {
287 rq->tag = tag;
288 rq->internal_tag = BLK_MQ_NO_TAG;
291 /* csd/requeue_work/fifo_time is initialized before use */
292 rq->q = data->q;
293 rq->mq_ctx = data->ctx;
294 rq->mq_hctx = data->hctx;
295 rq->rq_flags = 0;
296 rq->cmd_flags = data->cmd_flags;
297 if (data->flags & BLK_MQ_REQ_PM)
298 rq->rq_flags |= RQF_PM;
299 if (blk_queue_io_stat(data->q))
300 rq->rq_flags |= RQF_IO_STAT;
301 INIT_LIST_HEAD(&rq->queuelist);
302 INIT_HLIST_NODE(&rq->hash);
303 RB_CLEAR_NODE(&rq->rb_node);
304 rq->rq_disk = NULL;
305 rq->part = NULL;
306 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
307 rq->alloc_time_ns = alloc_time_ns;
308 #endif
309 if (blk_mq_need_time_stamp(rq))
310 rq->start_time_ns = ktime_get_ns();
311 else
312 rq->start_time_ns = 0;
313 rq->io_start_time_ns = 0;
314 rq->stats_sectors = 0;
315 rq->nr_phys_segments = 0;
316 #if defined(CONFIG_BLK_DEV_INTEGRITY)
317 rq->nr_integrity_segments = 0;
318 #endif
319 blk_crypto_rq_set_defaults(rq);
320 /* tag was already set */
321 WRITE_ONCE(rq->deadline, 0);
323 rq->timeout = 0;
325 rq->end_io = NULL;
326 rq->end_io_data = NULL;
328 data->ctx->rq_dispatched[op_is_sync(data->cmd_flags)]++;
329 refcount_set(&rq->ref, 1);
331 if (!op_is_flush(data->cmd_flags)) {
332 struct elevator_queue *e = data->q->elevator;
334 rq->elv.icq = NULL;
335 if (e && e->type->ops.prepare_request) {
336 if (e->type->icq_cache)
337 blk_mq_sched_assign_ioc(rq);
339 e->type->ops.prepare_request(rq);
340 rq->rq_flags |= RQF_ELVPRIV;
344 data->hctx->queued++;
345 return rq;
348 static struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data)
350 struct request_queue *q = data->q;
351 struct elevator_queue *e = q->elevator;
352 u64 alloc_time_ns = 0;
353 unsigned int tag;
355 /* alloc_time includes depth and tag waits */
356 if (blk_queue_rq_alloc_time(q))
357 alloc_time_ns = ktime_get_ns();
359 if (data->cmd_flags & REQ_NOWAIT)
360 data->flags |= BLK_MQ_REQ_NOWAIT;
362 if (e) {
364 * Flush requests are special and go directly to the
365 * dispatch list. Don't include reserved tags in the
366 * limiting, as it isn't useful.
368 if (!op_is_flush(data->cmd_flags) &&
369 e->type->ops.limit_depth &&
370 !(data->flags & BLK_MQ_REQ_RESERVED))
371 e->type->ops.limit_depth(data->cmd_flags, data);
374 retry:
375 data->ctx = blk_mq_get_ctx(q);
376 data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
377 if (!e)
378 blk_mq_tag_busy(data->hctx);
381 * Waiting allocations only fail because of an inactive hctx. In that
382 * case just retry the hctx assignment and tag allocation as CPU hotplug
383 * should have migrated us to an online CPU by now.
385 tag = blk_mq_get_tag(data);
386 if (tag == BLK_MQ_NO_TAG) {
387 if (data->flags & BLK_MQ_REQ_NOWAIT)
388 return NULL;
391 * Give up the CPU and sleep for a random short time to ensure
392 * that thread using a realtime scheduling class are migrated
393 * off the CPU, and thus off the hctx that is going away.
395 msleep(3);
396 goto retry;
398 return blk_mq_rq_ctx_init(data, tag, alloc_time_ns);
401 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
402 blk_mq_req_flags_t flags)
404 struct blk_mq_alloc_data data = {
405 .q = q,
406 .flags = flags,
407 .cmd_flags = op,
409 struct request *rq;
410 int ret;
412 ret = blk_queue_enter(q, flags);
413 if (ret)
414 return ERR_PTR(ret);
416 rq = __blk_mq_alloc_request(&data);
417 if (!rq)
418 goto out_queue_exit;
419 rq->__data_len = 0;
420 rq->__sector = (sector_t) -1;
421 rq->bio = rq->biotail = NULL;
422 return rq;
423 out_queue_exit:
424 blk_queue_exit(q);
425 return ERR_PTR(-EWOULDBLOCK);
427 EXPORT_SYMBOL(blk_mq_alloc_request);
429 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
430 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
432 struct blk_mq_alloc_data data = {
433 .q = q,
434 .flags = flags,
435 .cmd_flags = op,
437 u64 alloc_time_ns = 0;
438 unsigned int cpu;
439 unsigned int tag;
440 int ret;
442 /* alloc_time includes depth and tag waits */
443 if (blk_queue_rq_alloc_time(q))
444 alloc_time_ns = ktime_get_ns();
447 * If the tag allocator sleeps we could get an allocation for a
448 * different hardware context. No need to complicate the low level
449 * allocator for this for the rare use case of a command tied to
450 * a specific queue.
452 if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED))))
453 return ERR_PTR(-EINVAL);
455 if (hctx_idx >= q->nr_hw_queues)
456 return ERR_PTR(-EIO);
458 ret = blk_queue_enter(q, flags);
459 if (ret)
460 return ERR_PTR(ret);
463 * Check if the hardware context is actually mapped to anything.
464 * If not tell the caller that it should skip this queue.
466 ret = -EXDEV;
467 data.hctx = q->queue_hw_ctx[hctx_idx];
468 if (!blk_mq_hw_queue_mapped(data.hctx))
469 goto out_queue_exit;
470 cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
471 data.ctx = __blk_mq_get_ctx(q, cpu);
473 if (!q->elevator)
474 blk_mq_tag_busy(data.hctx);
476 ret = -EWOULDBLOCK;
477 tag = blk_mq_get_tag(&data);
478 if (tag == BLK_MQ_NO_TAG)
479 goto out_queue_exit;
480 return blk_mq_rq_ctx_init(&data, tag, alloc_time_ns);
482 out_queue_exit:
483 blk_queue_exit(q);
484 return ERR_PTR(ret);
486 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
488 static void __blk_mq_free_request(struct request *rq)
490 struct request_queue *q = rq->q;
491 struct blk_mq_ctx *ctx = rq->mq_ctx;
492 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
493 const int sched_tag = rq->internal_tag;
495 blk_crypto_free_request(rq);
496 blk_pm_mark_last_busy(rq);
497 rq->mq_hctx = NULL;
498 if (rq->tag != BLK_MQ_NO_TAG)
499 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
500 if (sched_tag != BLK_MQ_NO_TAG)
501 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
502 blk_mq_sched_restart(hctx);
503 blk_queue_exit(q);
506 void blk_mq_free_request(struct request *rq)
508 struct request_queue *q = rq->q;
509 struct elevator_queue *e = q->elevator;
510 struct blk_mq_ctx *ctx = rq->mq_ctx;
511 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
513 if (rq->rq_flags & RQF_ELVPRIV) {
514 if (e && e->type->ops.finish_request)
515 e->type->ops.finish_request(rq);
516 if (rq->elv.icq) {
517 put_io_context(rq->elv.icq->ioc);
518 rq->elv.icq = NULL;
522 ctx->rq_completed[rq_is_sync(rq)]++;
523 if (rq->rq_flags & RQF_MQ_INFLIGHT)
524 __blk_mq_dec_active_requests(hctx);
526 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
527 laptop_io_completion(q->backing_dev_info);
529 rq_qos_done(q, rq);
531 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
532 if (refcount_dec_and_test(&rq->ref))
533 __blk_mq_free_request(rq);
535 EXPORT_SYMBOL_GPL(blk_mq_free_request);
537 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
539 u64 now = 0;
541 if (blk_mq_need_time_stamp(rq))
542 now = ktime_get_ns();
544 if (rq->rq_flags & RQF_STATS) {
545 blk_mq_poll_stats_start(rq->q);
546 blk_stat_add(rq, now);
549 blk_mq_sched_completed_request(rq, now);
551 blk_account_io_done(rq, now);
553 if (rq->end_io) {
554 rq_qos_done(rq->q, rq);
555 rq->end_io(rq, error);
556 } else {
557 blk_mq_free_request(rq);
560 EXPORT_SYMBOL(__blk_mq_end_request);
562 void blk_mq_end_request(struct request *rq, blk_status_t error)
564 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
565 BUG();
566 __blk_mq_end_request(rq, error);
568 EXPORT_SYMBOL(blk_mq_end_request);
571 * Softirq action handler - move entries to local list and loop over them
572 * while passing them to the queue registered handler.
574 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
576 struct list_head *cpu_list, local_list;
578 local_irq_disable();
579 cpu_list = this_cpu_ptr(&blk_cpu_done);
580 list_replace_init(cpu_list, &local_list);
581 local_irq_enable();
583 while (!list_empty(&local_list)) {
584 struct request *rq;
586 rq = list_entry(local_list.next, struct request, ipi_list);
587 list_del_init(&rq->ipi_list);
588 rq->q->mq_ops->complete(rq);
592 static void blk_mq_trigger_softirq(struct request *rq)
594 struct list_head *list;
595 unsigned long flags;
597 local_irq_save(flags);
598 list = this_cpu_ptr(&blk_cpu_done);
599 list_add_tail(&rq->ipi_list, list);
602 * If the list only contains our just added request, signal a raise of
603 * the softirq. If there are already entries there, someone already
604 * raised the irq but it hasn't run yet.
606 if (list->next == &rq->ipi_list)
607 raise_softirq_irqoff(BLOCK_SOFTIRQ);
608 local_irq_restore(flags);
611 static int blk_softirq_cpu_dead(unsigned int cpu)
614 * If a CPU goes away, splice its entries to the current CPU
615 * and trigger a run of the softirq
617 local_irq_disable();
618 list_splice_init(&per_cpu(blk_cpu_done, cpu),
619 this_cpu_ptr(&blk_cpu_done));
620 raise_softirq_irqoff(BLOCK_SOFTIRQ);
621 local_irq_enable();
623 return 0;
627 static void __blk_mq_complete_request_remote(void *data)
629 struct request *rq = data;
632 * For most of single queue controllers, there is only one irq vector
633 * for handling I/O completion, and the only irq's affinity is set
634 * to all possible CPUs. On most of ARCHs, this affinity means the irq
635 * is handled on one specific CPU.
637 * So complete I/O requests in softirq context in case of single queue
638 * devices to avoid degrading I/O performance due to irqsoff latency.
640 if (rq->q->nr_hw_queues == 1)
641 blk_mq_trigger_softirq(rq);
642 else
643 rq->q->mq_ops->complete(rq);
646 static inline bool blk_mq_complete_need_ipi(struct request *rq)
648 int cpu = raw_smp_processor_id();
650 if (!IS_ENABLED(CONFIG_SMP) ||
651 !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
652 return false;
654 * With force threaded interrupts enabled, raising softirq from an SMP
655 * function call will always result in waking the ksoftirqd thread.
656 * This is probably worse than completing the request on a different
657 * cache domain.
659 if (force_irqthreads)
660 return false;
662 /* same CPU or cache domain? Complete locally */
663 if (cpu == rq->mq_ctx->cpu ||
664 (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
665 cpus_share_cache(cpu, rq->mq_ctx->cpu)))
666 return false;
668 /* don't try to IPI to an offline CPU */
669 return cpu_online(rq->mq_ctx->cpu);
672 bool blk_mq_complete_request_remote(struct request *rq)
674 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
677 * For a polled request, always complete locallly, it's pointless
678 * to redirect the completion.
680 if (rq->cmd_flags & REQ_HIPRI)
681 return false;
683 if (blk_mq_complete_need_ipi(rq)) {
684 INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
685 smp_call_function_single_async(rq->mq_ctx->cpu, &rq->csd);
686 } else {
687 if (rq->q->nr_hw_queues > 1)
688 return false;
689 blk_mq_trigger_softirq(rq);
692 return true;
694 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
697 * blk_mq_complete_request - end I/O on a request
698 * @rq: the request being processed
700 * Description:
701 * Complete a request by scheduling the ->complete_rq operation.
703 void blk_mq_complete_request(struct request *rq)
705 if (!blk_mq_complete_request_remote(rq))
706 rq->q->mq_ops->complete(rq);
708 EXPORT_SYMBOL(blk_mq_complete_request);
710 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
711 __releases(hctx->srcu)
713 if (!(hctx->flags & BLK_MQ_F_BLOCKING))
714 rcu_read_unlock();
715 else
716 srcu_read_unlock(hctx->srcu, srcu_idx);
719 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
720 __acquires(hctx->srcu)
722 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
723 /* shut up gcc false positive */
724 *srcu_idx = 0;
725 rcu_read_lock();
726 } else
727 *srcu_idx = srcu_read_lock(hctx->srcu);
731 * blk_mq_start_request - Start processing a request
732 * @rq: Pointer to request to be started
734 * Function used by device drivers to notify the block layer that a request
735 * is going to be processed now, so blk layer can do proper initializations
736 * such as starting the timeout timer.
738 void blk_mq_start_request(struct request *rq)
740 struct request_queue *q = rq->q;
742 trace_block_rq_issue(rq);
744 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
745 rq->io_start_time_ns = ktime_get_ns();
746 rq->stats_sectors = blk_rq_sectors(rq);
747 rq->rq_flags |= RQF_STATS;
748 rq_qos_issue(q, rq);
751 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
753 blk_add_timer(rq);
754 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
756 #ifdef CONFIG_BLK_DEV_INTEGRITY
757 if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
758 q->integrity.profile->prepare_fn(rq);
759 #endif
761 EXPORT_SYMBOL(blk_mq_start_request);
763 static void __blk_mq_requeue_request(struct request *rq)
765 struct request_queue *q = rq->q;
767 blk_mq_put_driver_tag(rq);
769 trace_block_rq_requeue(rq);
770 rq_qos_requeue(q, rq);
772 if (blk_mq_request_started(rq)) {
773 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
774 rq->rq_flags &= ~RQF_TIMED_OUT;
778 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
780 __blk_mq_requeue_request(rq);
782 /* this request will be re-inserted to io scheduler queue */
783 blk_mq_sched_requeue_request(rq);
785 BUG_ON(!list_empty(&rq->queuelist));
786 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
788 EXPORT_SYMBOL(blk_mq_requeue_request);
790 static void blk_mq_requeue_work(struct work_struct *work)
792 struct request_queue *q =
793 container_of(work, struct request_queue, requeue_work.work);
794 LIST_HEAD(rq_list);
795 struct request *rq, *next;
797 spin_lock_irq(&q->requeue_lock);
798 list_splice_init(&q->requeue_list, &rq_list);
799 spin_unlock_irq(&q->requeue_lock);
801 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
802 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
803 continue;
805 rq->rq_flags &= ~RQF_SOFTBARRIER;
806 list_del_init(&rq->queuelist);
808 * If RQF_DONTPREP, rq has contained some driver specific
809 * data, so insert it to hctx dispatch list to avoid any
810 * merge.
812 if (rq->rq_flags & RQF_DONTPREP)
813 blk_mq_request_bypass_insert(rq, false, false);
814 else
815 blk_mq_sched_insert_request(rq, true, false, false);
818 while (!list_empty(&rq_list)) {
819 rq = list_entry(rq_list.next, struct request, queuelist);
820 list_del_init(&rq->queuelist);
821 blk_mq_sched_insert_request(rq, false, false, false);
824 blk_mq_run_hw_queues(q, false);
827 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
828 bool kick_requeue_list)
830 struct request_queue *q = rq->q;
831 unsigned long flags;
834 * We abuse this flag that is otherwise used by the I/O scheduler to
835 * request head insertion from the workqueue.
837 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
839 spin_lock_irqsave(&q->requeue_lock, flags);
840 if (at_head) {
841 rq->rq_flags |= RQF_SOFTBARRIER;
842 list_add(&rq->queuelist, &q->requeue_list);
843 } else {
844 list_add_tail(&rq->queuelist, &q->requeue_list);
846 spin_unlock_irqrestore(&q->requeue_lock, flags);
848 if (kick_requeue_list)
849 blk_mq_kick_requeue_list(q);
852 void blk_mq_kick_requeue_list(struct request_queue *q)
854 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
856 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
858 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
859 unsigned long msecs)
861 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
862 msecs_to_jiffies(msecs));
864 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
866 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
868 if (tag < tags->nr_tags) {
869 prefetch(tags->rqs[tag]);
870 return tags->rqs[tag];
873 return NULL;
875 EXPORT_SYMBOL(blk_mq_tag_to_rq);
877 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
878 void *priv, bool reserved)
881 * If we find a request that isn't idle and the queue matches,
882 * we know the queue is busy. Return false to stop the iteration.
884 if (blk_mq_request_started(rq) && rq->q == hctx->queue) {
885 bool *busy = priv;
887 *busy = true;
888 return false;
891 return true;
894 bool blk_mq_queue_inflight(struct request_queue *q)
896 bool busy = false;
898 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
899 return busy;
901 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
903 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
905 req->rq_flags |= RQF_TIMED_OUT;
906 if (req->q->mq_ops->timeout) {
907 enum blk_eh_timer_return ret;
909 ret = req->q->mq_ops->timeout(req, reserved);
910 if (ret == BLK_EH_DONE)
911 return;
912 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
915 blk_add_timer(req);
918 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
920 unsigned long deadline;
922 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
923 return false;
924 if (rq->rq_flags & RQF_TIMED_OUT)
925 return false;
927 deadline = READ_ONCE(rq->deadline);
928 if (time_after_eq(jiffies, deadline))
929 return true;
931 if (*next == 0)
932 *next = deadline;
933 else if (time_after(*next, deadline))
934 *next = deadline;
935 return false;
938 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
939 struct request *rq, void *priv, bool reserved)
941 unsigned long *next = priv;
944 * Just do a quick check if it is expired before locking the request in
945 * so we're not unnecessarilly synchronizing across CPUs.
947 if (!blk_mq_req_expired(rq, next))
948 return true;
951 * We have reason to believe the request may be expired. Take a
952 * reference on the request to lock this request lifetime into its
953 * currently allocated context to prevent it from being reallocated in
954 * the event the completion by-passes this timeout handler.
956 * If the reference was already released, then the driver beat the
957 * timeout handler to posting a natural completion.
959 if (!refcount_inc_not_zero(&rq->ref))
960 return true;
963 * The request is now locked and cannot be reallocated underneath the
964 * timeout handler's processing. Re-verify this exact request is truly
965 * expired; if it is not expired, then the request was completed and
966 * reallocated as a new request.
968 if (blk_mq_req_expired(rq, next))
969 blk_mq_rq_timed_out(rq, reserved);
971 if (is_flush_rq(rq, hctx))
972 rq->end_io(rq, 0);
973 else if (refcount_dec_and_test(&rq->ref))
974 __blk_mq_free_request(rq);
976 return true;
979 static void blk_mq_timeout_work(struct work_struct *work)
981 struct request_queue *q =
982 container_of(work, struct request_queue, timeout_work);
983 unsigned long next = 0;
984 struct blk_mq_hw_ctx *hctx;
985 int i;
987 /* A deadlock might occur if a request is stuck requiring a
988 * timeout at the same time a queue freeze is waiting
989 * completion, since the timeout code would not be able to
990 * acquire the queue reference here.
992 * That's why we don't use blk_queue_enter here; instead, we use
993 * percpu_ref_tryget directly, because we need to be able to
994 * obtain a reference even in the short window between the queue
995 * starting to freeze, by dropping the first reference in
996 * blk_freeze_queue_start, and the moment the last request is
997 * consumed, marked by the instant q_usage_counter reaches
998 * zero.
1000 if (!percpu_ref_tryget(&q->q_usage_counter))
1001 return;
1003 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
1005 if (next != 0) {
1006 mod_timer(&q->timeout, next);
1007 } else {
1009 * Request timeouts are handled as a forward rolling timer. If
1010 * we end up here it means that no requests are pending and
1011 * also that no request has been pending for a while. Mark
1012 * each hctx as idle.
1014 queue_for_each_hw_ctx(q, hctx, i) {
1015 /* the hctx may be unmapped, so check it here */
1016 if (blk_mq_hw_queue_mapped(hctx))
1017 blk_mq_tag_idle(hctx);
1020 blk_queue_exit(q);
1023 struct flush_busy_ctx_data {
1024 struct blk_mq_hw_ctx *hctx;
1025 struct list_head *list;
1028 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1030 struct flush_busy_ctx_data *flush_data = data;
1031 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1032 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1033 enum hctx_type type = hctx->type;
1035 spin_lock(&ctx->lock);
1036 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1037 sbitmap_clear_bit(sb, bitnr);
1038 spin_unlock(&ctx->lock);
1039 return true;
1043 * Process software queues that have been marked busy, splicing them
1044 * to the for-dispatch
1046 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1048 struct flush_busy_ctx_data data = {
1049 .hctx = hctx,
1050 .list = list,
1053 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1055 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1057 struct dispatch_rq_data {
1058 struct blk_mq_hw_ctx *hctx;
1059 struct request *rq;
1062 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1063 void *data)
1065 struct dispatch_rq_data *dispatch_data = data;
1066 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1067 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1068 enum hctx_type type = hctx->type;
1070 spin_lock(&ctx->lock);
1071 if (!list_empty(&ctx->rq_lists[type])) {
1072 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1073 list_del_init(&dispatch_data->rq->queuelist);
1074 if (list_empty(&ctx->rq_lists[type]))
1075 sbitmap_clear_bit(sb, bitnr);
1077 spin_unlock(&ctx->lock);
1079 return !dispatch_data->rq;
1082 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1083 struct blk_mq_ctx *start)
1085 unsigned off = start ? start->index_hw[hctx->type] : 0;
1086 struct dispatch_rq_data data = {
1087 .hctx = hctx,
1088 .rq = NULL,
1091 __sbitmap_for_each_set(&hctx->ctx_map, off,
1092 dispatch_rq_from_ctx, &data);
1094 return data.rq;
1097 static inline unsigned int queued_to_index(unsigned int queued)
1099 if (!queued)
1100 return 0;
1102 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1105 static bool __blk_mq_get_driver_tag(struct request *rq)
1107 struct sbitmap_queue *bt = rq->mq_hctx->tags->bitmap_tags;
1108 unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1109 int tag;
1111 blk_mq_tag_busy(rq->mq_hctx);
1113 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1114 bt = rq->mq_hctx->tags->breserved_tags;
1115 tag_offset = 0;
1116 } else {
1117 if (!hctx_may_queue(rq->mq_hctx, bt))
1118 return false;
1121 tag = __sbitmap_queue_get(bt);
1122 if (tag == BLK_MQ_NO_TAG)
1123 return false;
1125 rq->tag = tag + tag_offset;
1126 return true;
1129 static bool blk_mq_get_driver_tag(struct request *rq)
1131 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1133 if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_get_driver_tag(rq))
1134 return false;
1136 if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1137 !(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1138 rq->rq_flags |= RQF_MQ_INFLIGHT;
1139 __blk_mq_inc_active_requests(hctx);
1141 hctx->tags->rqs[rq->tag] = rq;
1142 return true;
1145 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1146 int flags, void *key)
1148 struct blk_mq_hw_ctx *hctx;
1150 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1152 spin_lock(&hctx->dispatch_wait_lock);
1153 if (!list_empty(&wait->entry)) {
1154 struct sbitmap_queue *sbq;
1156 list_del_init(&wait->entry);
1157 sbq = hctx->tags->bitmap_tags;
1158 atomic_dec(&sbq->ws_active);
1160 spin_unlock(&hctx->dispatch_wait_lock);
1162 blk_mq_run_hw_queue(hctx, true);
1163 return 1;
1167 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1168 * the tag wakeups. For non-shared tags, we can simply mark us needing a
1169 * restart. For both cases, take care to check the condition again after
1170 * marking us as waiting.
1172 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1173 struct request *rq)
1175 struct sbitmap_queue *sbq = hctx->tags->bitmap_tags;
1176 struct wait_queue_head *wq;
1177 wait_queue_entry_t *wait;
1178 bool ret;
1180 if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
1181 blk_mq_sched_mark_restart_hctx(hctx);
1184 * It's possible that a tag was freed in the window between the
1185 * allocation failure and adding the hardware queue to the wait
1186 * queue.
1188 * Don't clear RESTART here, someone else could have set it.
1189 * At most this will cost an extra queue run.
1191 return blk_mq_get_driver_tag(rq);
1194 wait = &hctx->dispatch_wait;
1195 if (!list_empty_careful(&wait->entry))
1196 return false;
1198 wq = &bt_wait_ptr(sbq, hctx)->wait;
1200 spin_lock_irq(&wq->lock);
1201 spin_lock(&hctx->dispatch_wait_lock);
1202 if (!list_empty(&wait->entry)) {
1203 spin_unlock(&hctx->dispatch_wait_lock);
1204 spin_unlock_irq(&wq->lock);
1205 return false;
1208 atomic_inc(&sbq->ws_active);
1209 wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1210 __add_wait_queue(wq, wait);
1213 * It's possible that a tag was freed in the window between the
1214 * allocation failure and adding the hardware queue to the wait
1215 * queue.
1217 ret = blk_mq_get_driver_tag(rq);
1218 if (!ret) {
1219 spin_unlock(&hctx->dispatch_wait_lock);
1220 spin_unlock_irq(&wq->lock);
1221 return false;
1225 * We got a tag, remove ourselves from the wait queue to ensure
1226 * someone else gets the wakeup.
1228 list_del_init(&wait->entry);
1229 atomic_dec(&sbq->ws_active);
1230 spin_unlock(&hctx->dispatch_wait_lock);
1231 spin_unlock_irq(&wq->lock);
1233 return true;
1236 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8
1237 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4
1239 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1240 * - EWMA is one simple way to compute running average value
1241 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1242 * - take 4 as factor for avoiding to get too small(0) result, and this
1243 * factor doesn't matter because EWMA decreases exponentially
1245 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1247 unsigned int ewma;
1249 if (hctx->queue->elevator)
1250 return;
1252 ewma = hctx->dispatch_busy;
1254 if (!ewma && !busy)
1255 return;
1257 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1258 if (busy)
1259 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1260 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1262 hctx->dispatch_busy = ewma;
1265 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */
1267 static void blk_mq_handle_dev_resource(struct request *rq,
1268 struct list_head *list)
1270 struct request *next =
1271 list_first_entry_or_null(list, struct request, queuelist);
1274 * If an I/O scheduler has been configured and we got a driver tag for
1275 * the next request already, free it.
1277 if (next)
1278 blk_mq_put_driver_tag(next);
1280 list_add(&rq->queuelist, list);
1281 __blk_mq_requeue_request(rq);
1284 static void blk_mq_handle_zone_resource(struct request *rq,
1285 struct list_head *zone_list)
1288 * If we end up here it is because we cannot dispatch a request to a
1289 * specific zone due to LLD level zone-write locking or other zone
1290 * related resource not being available. In this case, set the request
1291 * aside in zone_list for retrying it later.
1293 list_add(&rq->queuelist, zone_list);
1294 __blk_mq_requeue_request(rq);
1297 enum prep_dispatch {
1298 PREP_DISPATCH_OK,
1299 PREP_DISPATCH_NO_TAG,
1300 PREP_DISPATCH_NO_BUDGET,
1303 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1304 bool need_budget)
1306 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1308 if (need_budget && !blk_mq_get_dispatch_budget(rq->q)) {
1309 blk_mq_put_driver_tag(rq);
1310 return PREP_DISPATCH_NO_BUDGET;
1313 if (!blk_mq_get_driver_tag(rq)) {
1315 * The initial allocation attempt failed, so we need to
1316 * rerun the hardware queue when a tag is freed. The
1317 * waitqueue takes care of that. If the queue is run
1318 * before we add this entry back on the dispatch list,
1319 * we'll re-run it below.
1321 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1323 * All budgets not got from this function will be put
1324 * together during handling partial dispatch
1326 if (need_budget)
1327 blk_mq_put_dispatch_budget(rq->q);
1328 return PREP_DISPATCH_NO_TAG;
1332 return PREP_DISPATCH_OK;
1335 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1336 static void blk_mq_release_budgets(struct request_queue *q,
1337 unsigned int nr_budgets)
1339 int i;
1341 for (i = 0; i < nr_budgets; i++)
1342 blk_mq_put_dispatch_budget(q);
1346 * Returns true if we did some work AND can potentially do more.
1348 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1349 unsigned int nr_budgets)
1351 enum prep_dispatch prep;
1352 struct request_queue *q = hctx->queue;
1353 struct request *rq, *nxt;
1354 int errors, queued;
1355 blk_status_t ret = BLK_STS_OK;
1356 LIST_HEAD(zone_list);
1358 if (list_empty(list))
1359 return false;
1362 * Now process all the entries, sending them to the driver.
1364 errors = queued = 0;
1365 do {
1366 struct blk_mq_queue_data bd;
1368 rq = list_first_entry(list, struct request, queuelist);
1370 WARN_ON_ONCE(hctx != rq->mq_hctx);
1371 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
1372 if (prep != PREP_DISPATCH_OK)
1373 break;
1375 list_del_init(&rq->queuelist);
1377 bd.rq = rq;
1380 * Flag last if we have no more requests, or if we have more
1381 * but can't assign a driver tag to it.
1383 if (list_empty(list))
1384 bd.last = true;
1385 else {
1386 nxt = list_first_entry(list, struct request, queuelist);
1387 bd.last = !blk_mq_get_driver_tag(nxt);
1391 * once the request is queued to lld, no need to cover the
1392 * budget any more
1394 if (nr_budgets)
1395 nr_budgets--;
1396 ret = q->mq_ops->queue_rq(hctx, &bd);
1397 switch (ret) {
1398 case BLK_STS_OK:
1399 queued++;
1400 break;
1401 case BLK_STS_RESOURCE:
1402 case BLK_STS_DEV_RESOURCE:
1403 blk_mq_handle_dev_resource(rq, list);
1404 goto out;
1405 case BLK_STS_ZONE_RESOURCE:
1407 * Move the request to zone_list and keep going through
1408 * the dispatch list to find more requests the drive can
1409 * accept.
1411 blk_mq_handle_zone_resource(rq, &zone_list);
1412 break;
1413 default:
1414 errors++;
1415 blk_mq_end_request(rq, ret);
1417 } while (!list_empty(list));
1418 out:
1419 if (!list_empty(&zone_list))
1420 list_splice_tail_init(&zone_list, list);
1422 hctx->dispatched[queued_to_index(queued)]++;
1424 /* If we didn't flush the entire list, we could have told the driver
1425 * there was more coming, but that turned out to be a lie.
1427 if ((!list_empty(list) || errors) && q->mq_ops->commit_rqs && queued)
1428 q->mq_ops->commit_rqs(hctx);
1430 * Any items that need requeuing? Stuff them into hctx->dispatch,
1431 * that is where we will continue on next queue run.
1433 if (!list_empty(list)) {
1434 bool needs_restart;
1435 /* For non-shared tags, the RESTART check will suffice */
1436 bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
1437 (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED);
1438 bool no_budget_avail = prep == PREP_DISPATCH_NO_BUDGET;
1440 blk_mq_release_budgets(q, nr_budgets);
1442 spin_lock(&hctx->lock);
1443 list_splice_tail_init(list, &hctx->dispatch);
1444 spin_unlock(&hctx->lock);
1447 * Order adding requests to hctx->dispatch and checking
1448 * SCHED_RESTART flag. The pair of this smp_mb() is the one
1449 * in blk_mq_sched_restart(). Avoid restart code path to
1450 * miss the new added requests to hctx->dispatch, meantime
1451 * SCHED_RESTART is observed here.
1453 smp_mb();
1456 * If SCHED_RESTART was set by the caller of this function and
1457 * it is no longer set that means that it was cleared by another
1458 * thread and hence that a queue rerun is needed.
1460 * If 'no_tag' is set, that means that we failed getting
1461 * a driver tag with an I/O scheduler attached. If our dispatch
1462 * waitqueue is no longer active, ensure that we run the queue
1463 * AFTER adding our entries back to the list.
1465 * If no I/O scheduler has been configured it is possible that
1466 * the hardware queue got stopped and restarted before requests
1467 * were pushed back onto the dispatch list. Rerun the queue to
1468 * avoid starvation. Notes:
1469 * - blk_mq_run_hw_queue() checks whether or not a queue has
1470 * been stopped before rerunning a queue.
1471 * - Some but not all block drivers stop a queue before
1472 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1473 * and dm-rq.
1475 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1476 * bit is set, run queue after a delay to avoid IO stalls
1477 * that could otherwise occur if the queue is idle. We'll do
1478 * similar if we couldn't get budget and SCHED_RESTART is set.
1480 needs_restart = blk_mq_sched_needs_restart(hctx);
1481 if (!needs_restart ||
1482 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1483 blk_mq_run_hw_queue(hctx, true);
1484 else if (needs_restart && (ret == BLK_STS_RESOURCE ||
1485 no_budget_avail))
1486 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1488 blk_mq_update_dispatch_busy(hctx, true);
1489 return false;
1490 } else
1491 blk_mq_update_dispatch_busy(hctx, false);
1493 return (queued + errors) != 0;
1497 * __blk_mq_run_hw_queue - Run a hardware queue.
1498 * @hctx: Pointer to the hardware queue to run.
1500 * Send pending requests to the hardware.
1502 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1504 int srcu_idx;
1507 * We can't run the queue inline with ints disabled. Ensure that
1508 * we catch bad users of this early.
1510 WARN_ON_ONCE(in_interrupt());
1512 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1514 hctx_lock(hctx, &srcu_idx);
1515 blk_mq_sched_dispatch_requests(hctx);
1516 hctx_unlock(hctx, srcu_idx);
1519 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1521 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1523 if (cpu >= nr_cpu_ids)
1524 cpu = cpumask_first(hctx->cpumask);
1525 return cpu;
1529 * It'd be great if the workqueue API had a way to pass
1530 * in a mask and had some smarts for more clever placement.
1531 * For now we just round-robin here, switching for every
1532 * BLK_MQ_CPU_WORK_BATCH queued items.
1534 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1536 bool tried = false;
1537 int next_cpu = hctx->next_cpu;
1539 if (hctx->queue->nr_hw_queues == 1)
1540 return WORK_CPU_UNBOUND;
1542 if (--hctx->next_cpu_batch <= 0) {
1543 select_cpu:
1544 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1545 cpu_online_mask);
1546 if (next_cpu >= nr_cpu_ids)
1547 next_cpu = blk_mq_first_mapped_cpu(hctx);
1548 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1552 * Do unbound schedule if we can't find a online CPU for this hctx,
1553 * and it should only happen in the path of handling CPU DEAD.
1555 if (!cpu_online(next_cpu)) {
1556 if (!tried) {
1557 tried = true;
1558 goto select_cpu;
1562 * Make sure to re-select CPU next time once after CPUs
1563 * in hctx->cpumask become online again.
1565 hctx->next_cpu = next_cpu;
1566 hctx->next_cpu_batch = 1;
1567 return WORK_CPU_UNBOUND;
1570 hctx->next_cpu = next_cpu;
1571 return next_cpu;
1575 * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
1576 * @hctx: Pointer to the hardware queue to run.
1577 * @async: If we want to run the queue asynchronously.
1578 * @msecs: Milliseconds of delay to wait before running the queue.
1580 * If !@async, try to run the queue now. Else, run the queue asynchronously and
1581 * with a delay of @msecs.
1583 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1584 unsigned long msecs)
1586 if (unlikely(blk_mq_hctx_stopped(hctx)))
1587 return;
1589 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1590 int cpu = get_cpu();
1591 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1592 __blk_mq_run_hw_queue(hctx);
1593 put_cpu();
1594 return;
1597 put_cpu();
1600 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1601 msecs_to_jiffies(msecs));
1605 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
1606 * @hctx: Pointer to the hardware queue to run.
1607 * @msecs: Milliseconds of delay to wait before running the queue.
1609 * Run a hardware queue asynchronously with a delay of @msecs.
1611 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1613 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1615 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1618 * blk_mq_run_hw_queue - Start to run a hardware queue.
1619 * @hctx: Pointer to the hardware queue to run.
1620 * @async: If we want to run the queue asynchronously.
1622 * Check if the request queue is not in a quiesced state and if there are
1623 * pending requests to be sent. If this is true, run the queue to send requests
1624 * to hardware.
1626 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1628 int srcu_idx;
1629 bool need_run;
1632 * When queue is quiesced, we may be switching io scheduler, or
1633 * updating nr_hw_queues, or other things, and we can't run queue
1634 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1636 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1637 * quiesced.
1639 hctx_lock(hctx, &srcu_idx);
1640 need_run = !blk_queue_quiesced(hctx->queue) &&
1641 blk_mq_hctx_has_pending(hctx);
1642 hctx_unlock(hctx, srcu_idx);
1644 if (need_run)
1645 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1647 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1650 * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
1651 * @q: Pointer to the request queue to run.
1652 * @async: If we want to run the queue asynchronously.
1654 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1656 struct blk_mq_hw_ctx *hctx;
1657 int i;
1659 queue_for_each_hw_ctx(q, hctx, i) {
1660 if (blk_mq_hctx_stopped(hctx))
1661 continue;
1663 blk_mq_run_hw_queue(hctx, async);
1666 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1669 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
1670 * @q: Pointer to the request queue to run.
1671 * @msecs: Milliseconds of delay to wait before running the queues.
1673 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
1675 struct blk_mq_hw_ctx *hctx;
1676 int i;
1678 queue_for_each_hw_ctx(q, hctx, i) {
1679 if (blk_mq_hctx_stopped(hctx))
1680 continue;
1682 blk_mq_delay_run_hw_queue(hctx, msecs);
1685 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
1688 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1689 * @q: request queue.
1691 * The caller is responsible for serializing this function against
1692 * blk_mq_{start,stop}_hw_queue().
1694 bool blk_mq_queue_stopped(struct request_queue *q)
1696 struct blk_mq_hw_ctx *hctx;
1697 int i;
1699 queue_for_each_hw_ctx(q, hctx, i)
1700 if (blk_mq_hctx_stopped(hctx))
1701 return true;
1703 return false;
1705 EXPORT_SYMBOL(blk_mq_queue_stopped);
1708 * This function is often used for pausing .queue_rq() by driver when
1709 * there isn't enough resource or some conditions aren't satisfied, and
1710 * BLK_STS_RESOURCE is usually returned.
1712 * We do not guarantee that dispatch can be drained or blocked
1713 * after blk_mq_stop_hw_queue() returns. Please use
1714 * blk_mq_quiesce_queue() for that requirement.
1716 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1718 cancel_delayed_work(&hctx->run_work);
1720 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1722 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1725 * This function is often used for pausing .queue_rq() by driver when
1726 * there isn't enough resource or some conditions aren't satisfied, and
1727 * BLK_STS_RESOURCE is usually returned.
1729 * We do not guarantee that dispatch can be drained or blocked
1730 * after blk_mq_stop_hw_queues() returns. Please use
1731 * blk_mq_quiesce_queue() for that requirement.
1733 void blk_mq_stop_hw_queues(struct request_queue *q)
1735 struct blk_mq_hw_ctx *hctx;
1736 int i;
1738 queue_for_each_hw_ctx(q, hctx, i)
1739 blk_mq_stop_hw_queue(hctx);
1741 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1743 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1745 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1747 blk_mq_run_hw_queue(hctx, false);
1749 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1751 void blk_mq_start_hw_queues(struct request_queue *q)
1753 struct blk_mq_hw_ctx *hctx;
1754 int i;
1756 queue_for_each_hw_ctx(q, hctx, i)
1757 blk_mq_start_hw_queue(hctx);
1759 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1761 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1763 if (!blk_mq_hctx_stopped(hctx))
1764 return;
1766 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1767 blk_mq_run_hw_queue(hctx, async);
1769 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1771 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1773 struct blk_mq_hw_ctx *hctx;
1774 int i;
1776 queue_for_each_hw_ctx(q, hctx, i)
1777 blk_mq_start_stopped_hw_queue(hctx, async);
1779 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1781 static void blk_mq_run_work_fn(struct work_struct *work)
1783 struct blk_mq_hw_ctx *hctx;
1785 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1788 * If we are stopped, don't run the queue.
1790 if (blk_mq_hctx_stopped(hctx))
1791 return;
1793 __blk_mq_run_hw_queue(hctx);
1796 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1797 struct request *rq,
1798 bool at_head)
1800 struct blk_mq_ctx *ctx = rq->mq_ctx;
1801 enum hctx_type type = hctx->type;
1803 lockdep_assert_held(&ctx->lock);
1805 trace_block_rq_insert(rq);
1807 if (at_head)
1808 list_add(&rq->queuelist, &ctx->rq_lists[type]);
1809 else
1810 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
1813 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1814 bool at_head)
1816 struct blk_mq_ctx *ctx = rq->mq_ctx;
1818 lockdep_assert_held(&ctx->lock);
1820 __blk_mq_insert_req_list(hctx, rq, at_head);
1821 blk_mq_hctx_mark_pending(hctx, ctx);
1825 * blk_mq_request_bypass_insert - Insert a request at dispatch list.
1826 * @rq: Pointer to request to be inserted.
1827 * @at_head: true if the request should be inserted at the head of the list.
1828 * @run_queue: If we should run the hardware queue after inserting the request.
1830 * Should only be used carefully, when the caller knows we want to
1831 * bypass a potential IO scheduler on the target device.
1833 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
1834 bool run_queue)
1836 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1838 spin_lock(&hctx->lock);
1839 if (at_head)
1840 list_add(&rq->queuelist, &hctx->dispatch);
1841 else
1842 list_add_tail(&rq->queuelist, &hctx->dispatch);
1843 spin_unlock(&hctx->lock);
1845 if (run_queue)
1846 blk_mq_run_hw_queue(hctx, false);
1849 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1850 struct list_head *list)
1853 struct request *rq;
1854 enum hctx_type type = hctx->type;
1857 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1858 * offline now
1860 list_for_each_entry(rq, list, queuelist) {
1861 BUG_ON(rq->mq_ctx != ctx);
1862 trace_block_rq_insert(rq);
1865 spin_lock(&ctx->lock);
1866 list_splice_tail_init(list, &ctx->rq_lists[type]);
1867 blk_mq_hctx_mark_pending(hctx, ctx);
1868 spin_unlock(&ctx->lock);
1871 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
1873 struct request *rqa = container_of(a, struct request, queuelist);
1874 struct request *rqb = container_of(b, struct request, queuelist);
1876 if (rqa->mq_ctx != rqb->mq_ctx)
1877 return rqa->mq_ctx > rqb->mq_ctx;
1878 if (rqa->mq_hctx != rqb->mq_hctx)
1879 return rqa->mq_hctx > rqb->mq_hctx;
1881 return blk_rq_pos(rqa) > blk_rq_pos(rqb);
1884 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1886 LIST_HEAD(list);
1888 if (list_empty(&plug->mq_list))
1889 return;
1890 list_splice_init(&plug->mq_list, &list);
1892 if (plug->rq_count > 2 && plug->multiple_queues)
1893 list_sort(NULL, &list, plug_rq_cmp);
1895 plug->rq_count = 0;
1897 do {
1898 struct list_head rq_list;
1899 struct request *rq, *head_rq = list_entry_rq(list.next);
1900 struct list_head *pos = &head_rq->queuelist; /* skip first */
1901 struct blk_mq_hw_ctx *this_hctx = head_rq->mq_hctx;
1902 struct blk_mq_ctx *this_ctx = head_rq->mq_ctx;
1903 unsigned int depth = 1;
1905 list_for_each_continue(pos, &list) {
1906 rq = list_entry_rq(pos);
1907 BUG_ON(!rq->q);
1908 if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx)
1909 break;
1910 depth++;
1913 list_cut_before(&rq_list, &list, pos);
1914 trace_block_unplug(head_rq->q, depth, !from_schedule);
1915 blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
1916 from_schedule);
1917 } while(!list_empty(&list));
1920 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
1921 unsigned int nr_segs)
1923 int err;
1925 if (bio->bi_opf & REQ_RAHEAD)
1926 rq->cmd_flags |= REQ_FAILFAST_MASK;
1928 rq->__sector = bio->bi_iter.bi_sector;
1929 rq->write_hint = bio->bi_write_hint;
1930 blk_rq_bio_prep(rq, bio, nr_segs);
1932 /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
1933 err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
1934 WARN_ON_ONCE(err);
1936 blk_account_io_start(rq);
1939 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1940 struct request *rq,
1941 blk_qc_t *cookie, bool last)
1943 struct request_queue *q = rq->q;
1944 struct blk_mq_queue_data bd = {
1945 .rq = rq,
1946 .last = last,
1948 blk_qc_t new_cookie;
1949 blk_status_t ret;
1951 new_cookie = request_to_qc_t(hctx, rq);
1954 * For OK queue, we are done. For error, caller may kill it.
1955 * Any other error (busy), just add it to our list as we
1956 * previously would have done.
1958 ret = q->mq_ops->queue_rq(hctx, &bd);
1959 switch (ret) {
1960 case BLK_STS_OK:
1961 blk_mq_update_dispatch_busy(hctx, false);
1962 *cookie = new_cookie;
1963 break;
1964 case BLK_STS_RESOURCE:
1965 case BLK_STS_DEV_RESOURCE:
1966 blk_mq_update_dispatch_busy(hctx, true);
1967 __blk_mq_requeue_request(rq);
1968 break;
1969 default:
1970 blk_mq_update_dispatch_busy(hctx, false);
1971 *cookie = BLK_QC_T_NONE;
1972 break;
1975 return ret;
1978 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1979 struct request *rq,
1980 blk_qc_t *cookie,
1981 bool bypass_insert, bool last)
1983 struct request_queue *q = rq->q;
1984 bool run_queue = true;
1987 * RCU or SRCU read lock is needed before checking quiesced flag.
1989 * When queue is stopped or quiesced, ignore 'bypass_insert' from
1990 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1991 * and avoid driver to try to dispatch again.
1993 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1994 run_queue = false;
1995 bypass_insert = false;
1996 goto insert;
1999 if (q->elevator && !bypass_insert)
2000 goto insert;
2002 if (!blk_mq_get_dispatch_budget(q))
2003 goto insert;
2005 if (!blk_mq_get_driver_tag(rq)) {
2006 blk_mq_put_dispatch_budget(q);
2007 goto insert;
2010 return __blk_mq_issue_directly(hctx, rq, cookie, last);
2011 insert:
2012 if (bypass_insert)
2013 return BLK_STS_RESOURCE;
2015 blk_mq_sched_insert_request(rq, false, run_queue, false);
2017 return BLK_STS_OK;
2021 * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2022 * @hctx: Pointer of the associated hardware queue.
2023 * @rq: Pointer to request to be sent.
2024 * @cookie: Request queue cookie.
2026 * If the device has enough resources to accept a new request now, send the
2027 * request directly to device driver. Else, insert at hctx->dispatch queue, so
2028 * we can try send it another time in the future. Requests inserted at this
2029 * queue have higher priority.
2031 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2032 struct request *rq, blk_qc_t *cookie)
2034 blk_status_t ret;
2035 int srcu_idx;
2037 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
2039 hctx_lock(hctx, &srcu_idx);
2041 ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true);
2042 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2043 blk_mq_request_bypass_insert(rq, false, true);
2044 else if (ret != BLK_STS_OK)
2045 blk_mq_end_request(rq, ret);
2047 hctx_unlock(hctx, srcu_idx);
2050 blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2052 blk_status_t ret;
2053 int srcu_idx;
2054 blk_qc_t unused_cookie;
2055 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2057 hctx_lock(hctx, &srcu_idx);
2058 ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last);
2059 hctx_unlock(hctx, srcu_idx);
2061 return ret;
2064 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2065 struct list_head *list)
2067 int queued = 0;
2068 int errors = 0;
2070 while (!list_empty(list)) {
2071 blk_status_t ret;
2072 struct request *rq = list_first_entry(list, struct request,
2073 queuelist);
2075 list_del_init(&rq->queuelist);
2076 ret = blk_mq_request_issue_directly(rq, list_empty(list));
2077 if (ret != BLK_STS_OK) {
2078 if (ret == BLK_STS_RESOURCE ||
2079 ret == BLK_STS_DEV_RESOURCE) {
2080 blk_mq_request_bypass_insert(rq, false,
2081 list_empty(list));
2082 break;
2084 blk_mq_end_request(rq, ret);
2085 errors++;
2086 } else
2087 queued++;
2091 * If we didn't flush the entire list, we could have told
2092 * the driver there was more coming, but that turned out to
2093 * be a lie.
2095 if ((!list_empty(list) || errors) &&
2096 hctx->queue->mq_ops->commit_rqs && queued)
2097 hctx->queue->mq_ops->commit_rqs(hctx);
2100 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
2102 list_add_tail(&rq->queuelist, &plug->mq_list);
2103 plug->rq_count++;
2104 if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
2105 struct request *tmp;
2107 tmp = list_first_entry(&plug->mq_list, struct request,
2108 queuelist);
2109 if (tmp->q != rq->q)
2110 plug->multiple_queues = true;
2115 * blk_mq_submit_bio - Create and send a request to block device.
2116 * @bio: Bio pointer.
2118 * Builds up a request structure from @q and @bio and send to the device. The
2119 * request may not be queued directly to hardware if:
2120 * * This request can be merged with another one
2121 * * We want to place request at plug queue for possible future merging
2122 * * There is an IO scheduler active at this queue
2124 * It will not queue the request if there is an error with the bio, or at the
2125 * request creation.
2127 * Returns: Request queue cookie.
2129 blk_qc_t blk_mq_submit_bio(struct bio *bio)
2131 struct request_queue *q = bio->bi_disk->queue;
2132 const int is_sync = op_is_sync(bio->bi_opf);
2133 const int is_flush_fua = op_is_flush(bio->bi_opf);
2134 struct blk_mq_alloc_data data = {
2135 .q = q,
2137 struct request *rq;
2138 struct blk_plug *plug;
2139 struct request *same_queue_rq = NULL;
2140 unsigned int nr_segs;
2141 blk_qc_t cookie;
2142 blk_status_t ret;
2143 bool hipri;
2145 blk_queue_bounce(q, &bio);
2146 __blk_queue_split(&bio, &nr_segs);
2148 if (!bio_integrity_prep(bio))
2149 goto queue_exit;
2151 if (!is_flush_fua && !blk_queue_nomerges(q) &&
2152 blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq))
2153 goto queue_exit;
2155 if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2156 goto queue_exit;
2158 rq_qos_throttle(q, bio);
2160 hipri = bio->bi_opf & REQ_HIPRI;
2162 data.cmd_flags = bio->bi_opf;
2163 rq = __blk_mq_alloc_request(&data);
2164 if (unlikely(!rq)) {
2165 rq_qos_cleanup(q, bio);
2166 if (bio->bi_opf & REQ_NOWAIT)
2167 bio_wouldblock_error(bio);
2168 goto queue_exit;
2171 trace_block_getrq(bio);
2173 rq_qos_track(q, rq, bio);
2175 cookie = request_to_qc_t(data.hctx, rq);
2177 blk_mq_bio_to_request(rq, bio, nr_segs);
2179 ret = blk_crypto_init_request(rq);
2180 if (ret != BLK_STS_OK) {
2181 bio->bi_status = ret;
2182 bio_endio(bio);
2183 blk_mq_free_request(rq);
2184 return BLK_QC_T_NONE;
2187 plug = blk_mq_plug(q, bio);
2188 if (unlikely(is_flush_fua)) {
2189 /* Bypass scheduler for flush requests */
2190 blk_insert_flush(rq);
2191 blk_mq_run_hw_queue(data.hctx, true);
2192 } else if (plug && (q->nr_hw_queues == 1 || q->mq_ops->commit_rqs ||
2193 !blk_queue_nonrot(q))) {
2195 * Use plugging if we have a ->commit_rqs() hook as well, as
2196 * we know the driver uses bd->last in a smart fashion.
2198 * Use normal plugging if this disk is slow HDD, as sequential
2199 * IO may benefit a lot from plug merging.
2201 unsigned int request_count = plug->rq_count;
2202 struct request *last = NULL;
2204 if (!request_count)
2205 trace_block_plug(q);
2206 else
2207 last = list_entry_rq(plug->mq_list.prev);
2209 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
2210 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
2211 blk_flush_plug_list(plug, false);
2212 trace_block_plug(q);
2215 blk_add_rq_to_plug(plug, rq);
2216 } else if (q->elevator) {
2217 /* Insert the request at the IO scheduler queue */
2218 blk_mq_sched_insert_request(rq, false, true, true);
2219 } else if (plug && !blk_queue_nomerges(q)) {
2221 * We do limited plugging. If the bio can be merged, do that.
2222 * Otherwise the existing request in the plug list will be
2223 * issued. So the plug list will have one request at most
2224 * The plug list might get flushed before this. If that happens,
2225 * the plug list is empty, and same_queue_rq is invalid.
2227 if (list_empty(&plug->mq_list))
2228 same_queue_rq = NULL;
2229 if (same_queue_rq) {
2230 list_del_init(&same_queue_rq->queuelist);
2231 plug->rq_count--;
2233 blk_add_rq_to_plug(plug, rq);
2234 trace_block_plug(q);
2236 if (same_queue_rq) {
2237 data.hctx = same_queue_rq->mq_hctx;
2238 trace_block_unplug(q, 1, true);
2239 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
2240 &cookie);
2242 } else if ((q->nr_hw_queues > 1 && is_sync) ||
2243 !data.hctx->dispatch_busy) {
2245 * There is no scheduler and we can try to send directly
2246 * to the hardware.
2248 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
2249 } else {
2250 /* Default case. */
2251 blk_mq_sched_insert_request(rq, false, true, true);
2254 if (!hipri)
2255 return BLK_QC_T_NONE;
2256 return cookie;
2257 queue_exit:
2258 blk_queue_exit(q);
2259 return BLK_QC_T_NONE;
2262 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2263 unsigned int hctx_idx)
2265 struct page *page;
2267 if (tags->rqs && set->ops->exit_request) {
2268 int i;
2270 for (i = 0; i < tags->nr_tags; i++) {
2271 struct request *rq = tags->static_rqs[i];
2273 if (!rq)
2274 continue;
2275 set->ops->exit_request(set, rq, hctx_idx);
2276 tags->static_rqs[i] = NULL;
2280 while (!list_empty(&tags->page_list)) {
2281 page = list_first_entry(&tags->page_list, struct page, lru);
2282 list_del_init(&page->lru);
2284 * Remove kmemleak object previously allocated in
2285 * blk_mq_alloc_rqs().
2287 kmemleak_free(page_address(page));
2288 __free_pages(page, page->private);
2292 void blk_mq_free_rq_map(struct blk_mq_tags *tags, unsigned int flags)
2294 kfree(tags->rqs);
2295 tags->rqs = NULL;
2296 kfree(tags->static_rqs);
2297 tags->static_rqs = NULL;
2299 blk_mq_free_tags(tags, flags);
2302 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2303 unsigned int hctx_idx,
2304 unsigned int nr_tags,
2305 unsigned int reserved_tags,
2306 unsigned int flags)
2308 struct blk_mq_tags *tags;
2309 int node;
2311 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2312 if (node == NUMA_NO_NODE)
2313 node = set->numa_node;
2315 tags = blk_mq_init_tags(nr_tags, reserved_tags, node, flags);
2316 if (!tags)
2317 return NULL;
2319 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2320 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2321 node);
2322 if (!tags->rqs) {
2323 blk_mq_free_tags(tags, flags);
2324 return NULL;
2327 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2328 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2329 node);
2330 if (!tags->static_rqs) {
2331 kfree(tags->rqs);
2332 blk_mq_free_tags(tags, flags);
2333 return NULL;
2336 return tags;
2339 static size_t order_to_size(unsigned int order)
2341 return (size_t)PAGE_SIZE << order;
2344 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2345 unsigned int hctx_idx, int node)
2347 int ret;
2349 if (set->ops->init_request) {
2350 ret = set->ops->init_request(set, rq, hctx_idx, node);
2351 if (ret)
2352 return ret;
2355 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2356 return 0;
2359 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2360 unsigned int hctx_idx, unsigned int depth)
2362 unsigned int i, j, entries_per_page, max_order = 4;
2363 size_t rq_size, left;
2364 int node;
2366 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2367 if (node == NUMA_NO_NODE)
2368 node = set->numa_node;
2370 INIT_LIST_HEAD(&tags->page_list);
2373 * rq_size is the size of the request plus driver payload, rounded
2374 * to the cacheline size
2376 rq_size = round_up(sizeof(struct request) + set->cmd_size,
2377 cache_line_size());
2378 left = rq_size * depth;
2380 for (i = 0; i < depth; ) {
2381 int this_order = max_order;
2382 struct page *page;
2383 int to_do;
2384 void *p;
2386 while (this_order && left < order_to_size(this_order - 1))
2387 this_order--;
2389 do {
2390 page = alloc_pages_node(node,
2391 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2392 this_order);
2393 if (page)
2394 break;
2395 if (!this_order--)
2396 break;
2397 if (order_to_size(this_order) < rq_size)
2398 break;
2399 } while (1);
2401 if (!page)
2402 goto fail;
2404 page->private = this_order;
2405 list_add_tail(&page->lru, &tags->page_list);
2407 p = page_address(page);
2409 * Allow kmemleak to scan these pages as they contain pointers
2410 * to additional allocations like via ops->init_request().
2412 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2413 entries_per_page = order_to_size(this_order) / rq_size;
2414 to_do = min(entries_per_page, depth - i);
2415 left -= to_do * rq_size;
2416 for (j = 0; j < to_do; j++) {
2417 struct request *rq = p;
2419 tags->static_rqs[i] = rq;
2420 if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2421 tags->static_rqs[i] = NULL;
2422 goto fail;
2425 p += rq_size;
2426 i++;
2429 return 0;
2431 fail:
2432 blk_mq_free_rqs(set, tags, hctx_idx);
2433 return -ENOMEM;
2436 struct rq_iter_data {
2437 struct blk_mq_hw_ctx *hctx;
2438 bool has_rq;
2441 static bool blk_mq_has_request(struct request *rq, void *data, bool reserved)
2443 struct rq_iter_data *iter_data = data;
2445 if (rq->mq_hctx != iter_data->hctx)
2446 return true;
2447 iter_data->has_rq = true;
2448 return false;
2451 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
2453 struct blk_mq_tags *tags = hctx->sched_tags ?
2454 hctx->sched_tags : hctx->tags;
2455 struct rq_iter_data data = {
2456 .hctx = hctx,
2459 blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
2460 return data.has_rq;
2463 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
2464 struct blk_mq_hw_ctx *hctx)
2466 if (cpumask_next_and(-1, hctx->cpumask, cpu_online_mask) != cpu)
2467 return false;
2468 if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
2469 return false;
2470 return true;
2473 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
2475 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2476 struct blk_mq_hw_ctx, cpuhp_online);
2478 if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
2479 !blk_mq_last_cpu_in_hctx(cpu, hctx))
2480 return 0;
2483 * Prevent new request from being allocated on the current hctx.
2485 * The smp_mb__after_atomic() Pairs with the implied barrier in
2486 * test_and_set_bit_lock in sbitmap_get(). Ensures the inactive flag is
2487 * seen once we return from the tag allocator.
2489 set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2490 smp_mb__after_atomic();
2493 * Try to grab a reference to the queue and wait for any outstanding
2494 * requests. If we could not grab a reference the queue has been
2495 * frozen and there are no requests.
2497 if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
2498 while (blk_mq_hctx_has_requests(hctx))
2499 msleep(5);
2500 percpu_ref_put(&hctx->queue->q_usage_counter);
2503 return 0;
2506 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
2508 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2509 struct blk_mq_hw_ctx, cpuhp_online);
2511 if (cpumask_test_cpu(cpu, hctx->cpumask))
2512 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2513 return 0;
2517 * 'cpu' is going away. splice any existing rq_list entries from this
2518 * software queue to the hw queue dispatch list, and ensure that it
2519 * gets run.
2521 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2523 struct blk_mq_hw_ctx *hctx;
2524 struct blk_mq_ctx *ctx;
2525 LIST_HEAD(tmp);
2526 enum hctx_type type;
2528 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2529 if (!cpumask_test_cpu(cpu, hctx->cpumask))
2530 return 0;
2532 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2533 type = hctx->type;
2535 spin_lock(&ctx->lock);
2536 if (!list_empty(&ctx->rq_lists[type])) {
2537 list_splice_init(&ctx->rq_lists[type], &tmp);
2538 blk_mq_hctx_clear_pending(hctx, ctx);
2540 spin_unlock(&ctx->lock);
2542 if (list_empty(&tmp))
2543 return 0;
2545 spin_lock(&hctx->lock);
2546 list_splice_tail_init(&tmp, &hctx->dispatch);
2547 spin_unlock(&hctx->lock);
2549 blk_mq_run_hw_queue(hctx, true);
2550 return 0;
2553 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2555 if (!(hctx->flags & BLK_MQ_F_STACKING))
2556 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2557 &hctx->cpuhp_online);
2558 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2559 &hctx->cpuhp_dead);
2562 /* hctx->ctxs will be freed in queue's release handler */
2563 static void blk_mq_exit_hctx(struct request_queue *q,
2564 struct blk_mq_tag_set *set,
2565 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2567 if (blk_mq_hw_queue_mapped(hctx))
2568 blk_mq_tag_idle(hctx);
2570 if (set->ops->exit_request)
2571 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2573 if (set->ops->exit_hctx)
2574 set->ops->exit_hctx(hctx, hctx_idx);
2576 blk_mq_remove_cpuhp(hctx);
2578 spin_lock(&q->unused_hctx_lock);
2579 list_add(&hctx->hctx_list, &q->unused_hctx_list);
2580 spin_unlock(&q->unused_hctx_lock);
2583 static void blk_mq_exit_hw_queues(struct request_queue *q,
2584 struct blk_mq_tag_set *set, int nr_queue)
2586 struct blk_mq_hw_ctx *hctx;
2587 unsigned int i;
2589 queue_for_each_hw_ctx(q, hctx, i) {
2590 if (i == nr_queue)
2591 break;
2592 blk_mq_debugfs_unregister_hctx(hctx);
2593 blk_mq_exit_hctx(q, set, hctx, i);
2597 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2599 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2601 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2602 __alignof__(struct blk_mq_hw_ctx)) !=
2603 sizeof(struct blk_mq_hw_ctx));
2605 if (tag_set->flags & BLK_MQ_F_BLOCKING)
2606 hw_ctx_size += sizeof(struct srcu_struct);
2608 return hw_ctx_size;
2611 static int blk_mq_init_hctx(struct request_queue *q,
2612 struct blk_mq_tag_set *set,
2613 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2615 hctx->queue_num = hctx_idx;
2617 if (!(hctx->flags & BLK_MQ_F_STACKING))
2618 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2619 &hctx->cpuhp_online);
2620 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2622 hctx->tags = set->tags[hctx_idx];
2624 if (set->ops->init_hctx &&
2625 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2626 goto unregister_cpu_notifier;
2628 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
2629 hctx->numa_node))
2630 goto exit_hctx;
2631 return 0;
2633 exit_hctx:
2634 if (set->ops->exit_hctx)
2635 set->ops->exit_hctx(hctx, hctx_idx);
2636 unregister_cpu_notifier:
2637 blk_mq_remove_cpuhp(hctx);
2638 return -1;
2641 static struct blk_mq_hw_ctx *
2642 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
2643 int node)
2645 struct blk_mq_hw_ctx *hctx;
2646 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
2648 hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node);
2649 if (!hctx)
2650 goto fail_alloc_hctx;
2652 if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
2653 goto free_hctx;
2655 atomic_set(&hctx->nr_active, 0);
2656 atomic_set(&hctx->elevator_queued, 0);
2657 if (node == NUMA_NO_NODE)
2658 node = set->numa_node;
2659 hctx->numa_node = node;
2661 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2662 spin_lock_init(&hctx->lock);
2663 INIT_LIST_HEAD(&hctx->dispatch);
2664 hctx->queue = q;
2665 hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
2667 INIT_LIST_HEAD(&hctx->hctx_list);
2670 * Allocate space for all possible cpus to avoid allocation at
2671 * runtime
2673 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2674 gfp, node);
2675 if (!hctx->ctxs)
2676 goto free_cpumask;
2678 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2679 gfp, node))
2680 goto free_ctxs;
2681 hctx->nr_ctx = 0;
2683 spin_lock_init(&hctx->dispatch_wait_lock);
2684 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2685 INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2687 hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
2688 if (!hctx->fq)
2689 goto free_bitmap;
2691 if (hctx->flags & BLK_MQ_F_BLOCKING)
2692 init_srcu_struct(hctx->srcu);
2693 blk_mq_hctx_kobj_init(hctx);
2695 return hctx;
2697 free_bitmap:
2698 sbitmap_free(&hctx->ctx_map);
2699 free_ctxs:
2700 kfree(hctx->ctxs);
2701 free_cpumask:
2702 free_cpumask_var(hctx->cpumask);
2703 free_hctx:
2704 kfree(hctx);
2705 fail_alloc_hctx:
2706 return NULL;
2709 static void blk_mq_init_cpu_queues(struct request_queue *q,
2710 unsigned int nr_hw_queues)
2712 struct blk_mq_tag_set *set = q->tag_set;
2713 unsigned int i, j;
2715 for_each_possible_cpu(i) {
2716 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2717 struct blk_mq_hw_ctx *hctx;
2718 int k;
2720 __ctx->cpu = i;
2721 spin_lock_init(&__ctx->lock);
2722 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
2723 INIT_LIST_HEAD(&__ctx->rq_lists[k]);
2725 __ctx->queue = q;
2728 * Set local node, IFF we have more than one hw queue. If
2729 * not, we remain on the home node of the device
2731 for (j = 0; j < set->nr_maps; j++) {
2732 hctx = blk_mq_map_queue_type(q, j, i);
2733 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2734 hctx->numa_node = cpu_to_node(i);
2739 static bool __blk_mq_alloc_map_and_request(struct blk_mq_tag_set *set,
2740 int hctx_idx)
2742 unsigned int flags = set->flags;
2743 int ret = 0;
2745 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2746 set->queue_depth, set->reserved_tags, flags);
2747 if (!set->tags[hctx_idx])
2748 return false;
2750 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2751 set->queue_depth);
2752 if (!ret)
2753 return true;
2755 blk_mq_free_rq_map(set->tags[hctx_idx], flags);
2756 set->tags[hctx_idx] = NULL;
2757 return false;
2760 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2761 unsigned int hctx_idx)
2763 unsigned int flags = set->flags;
2765 if (set->tags && set->tags[hctx_idx]) {
2766 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2767 blk_mq_free_rq_map(set->tags[hctx_idx], flags);
2768 set->tags[hctx_idx] = NULL;
2772 static void blk_mq_map_swqueue(struct request_queue *q)
2774 unsigned int i, j, hctx_idx;
2775 struct blk_mq_hw_ctx *hctx;
2776 struct blk_mq_ctx *ctx;
2777 struct blk_mq_tag_set *set = q->tag_set;
2779 queue_for_each_hw_ctx(q, hctx, i) {
2780 cpumask_clear(hctx->cpumask);
2781 hctx->nr_ctx = 0;
2782 hctx->dispatch_from = NULL;
2786 * Map software to hardware queues.
2788 * If the cpu isn't present, the cpu is mapped to first hctx.
2790 for_each_possible_cpu(i) {
2792 ctx = per_cpu_ptr(q->queue_ctx, i);
2793 for (j = 0; j < set->nr_maps; j++) {
2794 if (!set->map[j].nr_queues) {
2795 ctx->hctxs[j] = blk_mq_map_queue_type(q,
2796 HCTX_TYPE_DEFAULT, i);
2797 continue;
2799 hctx_idx = set->map[j].mq_map[i];
2800 /* unmapped hw queue can be remapped after CPU topo changed */
2801 if (!set->tags[hctx_idx] &&
2802 !__blk_mq_alloc_map_and_request(set, hctx_idx)) {
2804 * If tags initialization fail for some hctx,
2805 * that hctx won't be brought online. In this
2806 * case, remap the current ctx to hctx[0] which
2807 * is guaranteed to always have tags allocated
2809 set->map[j].mq_map[i] = 0;
2812 hctx = blk_mq_map_queue_type(q, j, i);
2813 ctx->hctxs[j] = hctx;
2815 * If the CPU is already set in the mask, then we've
2816 * mapped this one already. This can happen if
2817 * devices share queues across queue maps.
2819 if (cpumask_test_cpu(i, hctx->cpumask))
2820 continue;
2822 cpumask_set_cpu(i, hctx->cpumask);
2823 hctx->type = j;
2824 ctx->index_hw[hctx->type] = hctx->nr_ctx;
2825 hctx->ctxs[hctx->nr_ctx++] = ctx;
2828 * If the nr_ctx type overflows, we have exceeded the
2829 * amount of sw queues we can support.
2831 BUG_ON(!hctx->nr_ctx);
2834 for (; j < HCTX_MAX_TYPES; j++)
2835 ctx->hctxs[j] = blk_mq_map_queue_type(q,
2836 HCTX_TYPE_DEFAULT, i);
2839 queue_for_each_hw_ctx(q, hctx, i) {
2841 * If no software queues are mapped to this hardware queue,
2842 * disable it and free the request entries.
2844 if (!hctx->nr_ctx) {
2845 /* Never unmap queue 0. We need it as a
2846 * fallback in case of a new remap fails
2847 * allocation
2849 if (i && set->tags[i])
2850 blk_mq_free_map_and_requests(set, i);
2852 hctx->tags = NULL;
2853 continue;
2856 hctx->tags = set->tags[i];
2857 WARN_ON(!hctx->tags);
2860 * Set the map size to the number of mapped software queues.
2861 * This is more accurate and more efficient than looping
2862 * over all possibly mapped software queues.
2864 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2867 * Initialize batch roundrobin counts
2869 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2870 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2875 * Caller needs to ensure that we're either frozen/quiesced, or that
2876 * the queue isn't live yet.
2878 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2880 struct blk_mq_hw_ctx *hctx;
2881 int i;
2883 queue_for_each_hw_ctx(q, hctx, i) {
2884 if (shared)
2885 hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
2886 else
2887 hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
2891 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
2892 bool shared)
2894 struct request_queue *q;
2896 lockdep_assert_held(&set->tag_list_lock);
2898 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2899 blk_mq_freeze_queue(q);
2900 queue_set_hctx_shared(q, shared);
2901 blk_mq_unfreeze_queue(q);
2905 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2907 struct blk_mq_tag_set *set = q->tag_set;
2909 mutex_lock(&set->tag_list_lock);
2910 list_del(&q->tag_set_list);
2911 if (list_is_singular(&set->tag_list)) {
2912 /* just transitioned to unshared */
2913 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
2914 /* update existing queue */
2915 blk_mq_update_tag_set_shared(set, false);
2917 mutex_unlock(&set->tag_list_lock);
2918 INIT_LIST_HEAD(&q->tag_set_list);
2921 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2922 struct request_queue *q)
2924 mutex_lock(&set->tag_list_lock);
2927 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2929 if (!list_empty(&set->tag_list) &&
2930 !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
2931 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
2932 /* update existing queue */
2933 blk_mq_update_tag_set_shared(set, true);
2935 if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
2936 queue_set_hctx_shared(q, true);
2937 list_add_tail(&q->tag_set_list, &set->tag_list);
2939 mutex_unlock(&set->tag_list_lock);
2942 /* All allocations will be freed in release handler of q->mq_kobj */
2943 static int blk_mq_alloc_ctxs(struct request_queue *q)
2945 struct blk_mq_ctxs *ctxs;
2946 int cpu;
2948 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
2949 if (!ctxs)
2950 return -ENOMEM;
2952 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2953 if (!ctxs->queue_ctx)
2954 goto fail;
2956 for_each_possible_cpu(cpu) {
2957 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
2958 ctx->ctxs = ctxs;
2961 q->mq_kobj = &ctxs->kobj;
2962 q->queue_ctx = ctxs->queue_ctx;
2964 return 0;
2965 fail:
2966 kfree(ctxs);
2967 return -ENOMEM;
2971 * It is the actual release handler for mq, but we do it from
2972 * request queue's release handler for avoiding use-after-free
2973 * and headache because q->mq_kobj shouldn't have been introduced,
2974 * but we can't group ctx/kctx kobj without it.
2976 void blk_mq_release(struct request_queue *q)
2978 struct blk_mq_hw_ctx *hctx, *next;
2979 int i;
2981 queue_for_each_hw_ctx(q, hctx, i)
2982 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
2984 /* all hctx are in .unused_hctx_list now */
2985 list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
2986 list_del_init(&hctx->hctx_list);
2987 kobject_put(&hctx->kobj);
2990 kfree(q->queue_hw_ctx);
2993 * release .mq_kobj and sw queue's kobject now because
2994 * both share lifetime with request queue.
2996 blk_mq_sysfs_deinit(q);
2999 struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
3000 void *queuedata)
3002 struct request_queue *uninit_q, *q;
3004 uninit_q = blk_alloc_queue(set->numa_node);
3005 if (!uninit_q)
3006 return ERR_PTR(-ENOMEM);
3007 uninit_q->queuedata = queuedata;
3010 * Initialize the queue without an elevator. device_add_disk() will do
3011 * the initialization.
3013 q = blk_mq_init_allocated_queue(set, uninit_q, false);
3014 if (IS_ERR(q))
3015 blk_cleanup_queue(uninit_q);
3017 return q;
3019 EXPORT_SYMBOL_GPL(blk_mq_init_queue_data);
3021 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
3023 return blk_mq_init_queue_data(set, NULL);
3025 EXPORT_SYMBOL(blk_mq_init_queue);
3028 * Helper for setting up a queue with mq ops, given queue depth, and
3029 * the passed in mq ops flags.
3031 struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set,
3032 const struct blk_mq_ops *ops,
3033 unsigned int queue_depth,
3034 unsigned int set_flags)
3036 struct request_queue *q;
3037 int ret;
3039 memset(set, 0, sizeof(*set));
3040 set->ops = ops;
3041 set->nr_hw_queues = 1;
3042 set->nr_maps = 1;
3043 set->queue_depth = queue_depth;
3044 set->numa_node = NUMA_NO_NODE;
3045 set->flags = set_flags;
3047 ret = blk_mq_alloc_tag_set(set);
3048 if (ret)
3049 return ERR_PTR(ret);
3051 q = blk_mq_init_queue(set);
3052 if (IS_ERR(q)) {
3053 blk_mq_free_tag_set(set);
3054 return q;
3057 return q;
3059 EXPORT_SYMBOL(blk_mq_init_sq_queue);
3061 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
3062 struct blk_mq_tag_set *set, struct request_queue *q,
3063 int hctx_idx, int node)
3065 struct blk_mq_hw_ctx *hctx = NULL, *tmp;
3067 /* reuse dead hctx first */
3068 spin_lock(&q->unused_hctx_lock);
3069 list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
3070 if (tmp->numa_node == node) {
3071 hctx = tmp;
3072 break;
3075 if (hctx)
3076 list_del_init(&hctx->hctx_list);
3077 spin_unlock(&q->unused_hctx_lock);
3079 if (!hctx)
3080 hctx = blk_mq_alloc_hctx(q, set, node);
3081 if (!hctx)
3082 goto fail;
3084 if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
3085 goto free_hctx;
3087 return hctx;
3089 free_hctx:
3090 kobject_put(&hctx->kobj);
3091 fail:
3092 return NULL;
3095 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
3096 struct request_queue *q)
3098 int i, j, end;
3099 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
3101 if (q->nr_hw_queues < set->nr_hw_queues) {
3102 struct blk_mq_hw_ctx **new_hctxs;
3104 new_hctxs = kcalloc_node(set->nr_hw_queues,
3105 sizeof(*new_hctxs), GFP_KERNEL,
3106 set->numa_node);
3107 if (!new_hctxs)
3108 return;
3109 if (hctxs)
3110 memcpy(new_hctxs, hctxs, q->nr_hw_queues *
3111 sizeof(*hctxs));
3112 q->queue_hw_ctx = new_hctxs;
3113 kfree(hctxs);
3114 hctxs = new_hctxs;
3117 /* protect against switching io scheduler */
3118 mutex_lock(&q->sysfs_lock);
3119 for (i = 0; i < set->nr_hw_queues; i++) {
3120 int node;
3121 struct blk_mq_hw_ctx *hctx;
3123 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
3125 * If the hw queue has been mapped to another numa node,
3126 * we need to realloc the hctx. If allocation fails, fallback
3127 * to use the previous one.
3129 if (hctxs[i] && (hctxs[i]->numa_node == node))
3130 continue;
3132 hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
3133 if (hctx) {
3134 if (hctxs[i])
3135 blk_mq_exit_hctx(q, set, hctxs[i], i);
3136 hctxs[i] = hctx;
3137 } else {
3138 if (hctxs[i])
3139 pr_warn("Allocate new hctx on node %d fails,\
3140 fallback to previous one on node %d\n",
3141 node, hctxs[i]->numa_node);
3142 else
3143 break;
3147 * Increasing nr_hw_queues fails. Free the newly allocated
3148 * hctxs and keep the previous q->nr_hw_queues.
3150 if (i != set->nr_hw_queues) {
3151 j = q->nr_hw_queues;
3152 end = i;
3153 } else {
3154 j = i;
3155 end = q->nr_hw_queues;
3156 q->nr_hw_queues = set->nr_hw_queues;
3159 for (; j < end; j++) {
3160 struct blk_mq_hw_ctx *hctx = hctxs[j];
3162 if (hctx) {
3163 if (hctx->tags)
3164 blk_mq_free_map_and_requests(set, j);
3165 blk_mq_exit_hctx(q, set, hctx, j);
3166 hctxs[j] = NULL;
3169 mutex_unlock(&q->sysfs_lock);
3172 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
3173 struct request_queue *q,
3174 bool elevator_init)
3176 /* mark the queue as mq asap */
3177 q->mq_ops = set->ops;
3179 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
3180 blk_mq_poll_stats_bkt,
3181 BLK_MQ_POLL_STATS_BKTS, q);
3182 if (!q->poll_cb)
3183 goto err_exit;
3185 if (blk_mq_alloc_ctxs(q))
3186 goto err_poll;
3188 /* init q->mq_kobj and sw queues' kobjects */
3189 blk_mq_sysfs_init(q);
3191 INIT_LIST_HEAD(&q->unused_hctx_list);
3192 spin_lock_init(&q->unused_hctx_lock);
3194 blk_mq_realloc_hw_ctxs(set, q);
3195 if (!q->nr_hw_queues)
3196 goto err_hctxs;
3198 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
3199 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
3201 q->tag_set = set;
3203 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
3204 if (set->nr_maps > HCTX_TYPE_POLL &&
3205 set->map[HCTX_TYPE_POLL].nr_queues)
3206 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
3208 q->sg_reserved_size = INT_MAX;
3210 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
3211 INIT_LIST_HEAD(&q->requeue_list);
3212 spin_lock_init(&q->requeue_lock);
3214 q->nr_requests = set->queue_depth;
3217 * Default to classic polling
3219 q->poll_nsec = BLK_MQ_POLL_CLASSIC;
3221 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
3222 blk_mq_add_queue_tag_set(set, q);
3223 blk_mq_map_swqueue(q);
3225 if (elevator_init)
3226 elevator_init_mq(q);
3228 return q;
3230 err_hctxs:
3231 kfree(q->queue_hw_ctx);
3232 q->nr_hw_queues = 0;
3233 blk_mq_sysfs_deinit(q);
3234 err_poll:
3235 blk_stat_free_callback(q->poll_cb);
3236 q->poll_cb = NULL;
3237 err_exit:
3238 q->mq_ops = NULL;
3239 return ERR_PTR(-ENOMEM);
3241 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
3243 /* tags can _not_ be used after returning from blk_mq_exit_queue */
3244 void blk_mq_exit_queue(struct request_queue *q)
3246 struct blk_mq_tag_set *set = q->tag_set;
3248 blk_mq_del_queue_tag_set(q);
3249 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
3252 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
3254 int i;
3256 for (i = 0; i < set->nr_hw_queues; i++) {
3257 if (!__blk_mq_alloc_map_and_request(set, i))
3258 goto out_unwind;
3259 cond_resched();
3262 return 0;
3264 out_unwind:
3265 while (--i >= 0)
3266 blk_mq_free_map_and_requests(set, i);
3268 return -ENOMEM;
3272 * Allocate the request maps associated with this tag_set. Note that this
3273 * may reduce the depth asked for, if memory is tight. set->queue_depth
3274 * will be updated to reflect the allocated depth.
3276 static int blk_mq_alloc_map_and_requests(struct blk_mq_tag_set *set)
3278 unsigned int depth;
3279 int err;
3281 depth = set->queue_depth;
3282 do {
3283 err = __blk_mq_alloc_rq_maps(set);
3284 if (!err)
3285 break;
3287 set->queue_depth >>= 1;
3288 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
3289 err = -ENOMEM;
3290 break;
3292 } while (set->queue_depth);
3294 if (!set->queue_depth || err) {
3295 pr_err("blk-mq: failed to allocate request map\n");
3296 return -ENOMEM;
3299 if (depth != set->queue_depth)
3300 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
3301 depth, set->queue_depth);
3303 return 0;
3306 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
3309 * blk_mq_map_queues() and multiple .map_queues() implementations
3310 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
3311 * number of hardware queues.
3313 if (set->nr_maps == 1)
3314 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
3316 if (set->ops->map_queues && !is_kdump_kernel()) {
3317 int i;
3320 * transport .map_queues is usually done in the following
3321 * way:
3323 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
3324 * mask = get_cpu_mask(queue)
3325 * for_each_cpu(cpu, mask)
3326 * set->map[x].mq_map[cpu] = queue;
3329 * When we need to remap, the table has to be cleared for
3330 * killing stale mapping since one CPU may not be mapped
3331 * to any hw queue.
3333 for (i = 0; i < set->nr_maps; i++)
3334 blk_mq_clear_mq_map(&set->map[i]);
3336 return set->ops->map_queues(set);
3337 } else {
3338 BUG_ON(set->nr_maps > 1);
3339 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3343 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
3344 int cur_nr_hw_queues, int new_nr_hw_queues)
3346 struct blk_mq_tags **new_tags;
3348 if (cur_nr_hw_queues >= new_nr_hw_queues)
3349 return 0;
3351 new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
3352 GFP_KERNEL, set->numa_node);
3353 if (!new_tags)
3354 return -ENOMEM;
3356 if (set->tags)
3357 memcpy(new_tags, set->tags, cur_nr_hw_queues *
3358 sizeof(*set->tags));
3359 kfree(set->tags);
3360 set->tags = new_tags;
3361 set->nr_hw_queues = new_nr_hw_queues;
3363 return 0;
3366 static int blk_mq_alloc_tag_set_tags(struct blk_mq_tag_set *set,
3367 int new_nr_hw_queues)
3369 return blk_mq_realloc_tag_set_tags(set, 0, new_nr_hw_queues);
3373 * Alloc a tag set to be associated with one or more request queues.
3374 * May fail with EINVAL for various error conditions. May adjust the
3375 * requested depth down, if it's too large. In that case, the set
3376 * value will be stored in set->queue_depth.
3378 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
3380 int i, ret;
3382 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
3384 if (!set->nr_hw_queues)
3385 return -EINVAL;
3386 if (!set->queue_depth)
3387 return -EINVAL;
3388 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
3389 return -EINVAL;
3391 if (!set->ops->queue_rq)
3392 return -EINVAL;
3394 if (!set->ops->get_budget ^ !set->ops->put_budget)
3395 return -EINVAL;
3397 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
3398 pr_info("blk-mq: reduced tag depth to %u\n",
3399 BLK_MQ_MAX_DEPTH);
3400 set->queue_depth = BLK_MQ_MAX_DEPTH;
3403 if (!set->nr_maps)
3404 set->nr_maps = 1;
3405 else if (set->nr_maps > HCTX_MAX_TYPES)
3406 return -EINVAL;
3409 * If a crashdump is active, then we are potentially in a very
3410 * memory constrained environment. Limit us to 1 queue and
3411 * 64 tags to prevent using too much memory.
3413 if (is_kdump_kernel()) {
3414 set->nr_hw_queues = 1;
3415 set->nr_maps = 1;
3416 set->queue_depth = min(64U, set->queue_depth);
3419 * There is no use for more h/w queues than cpus if we just have
3420 * a single map
3422 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
3423 set->nr_hw_queues = nr_cpu_ids;
3425 if (blk_mq_alloc_tag_set_tags(set, set->nr_hw_queues) < 0)
3426 return -ENOMEM;
3428 ret = -ENOMEM;
3429 for (i = 0; i < set->nr_maps; i++) {
3430 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3431 sizeof(set->map[i].mq_map[0]),
3432 GFP_KERNEL, set->numa_node);
3433 if (!set->map[i].mq_map)
3434 goto out_free_mq_map;
3435 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
3438 ret = blk_mq_update_queue_map(set);
3439 if (ret)
3440 goto out_free_mq_map;
3442 ret = blk_mq_alloc_map_and_requests(set);
3443 if (ret)
3444 goto out_free_mq_map;
3446 if (blk_mq_is_sbitmap_shared(set->flags)) {
3447 atomic_set(&set->active_queues_shared_sbitmap, 0);
3449 if (blk_mq_init_shared_sbitmap(set, set->flags)) {
3450 ret = -ENOMEM;
3451 goto out_free_mq_rq_maps;
3455 mutex_init(&set->tag_list_lock);
3456 INIT_LIST_HEAD(&set->tag_list);
3458 return 0;
3460 out_free_mq_rq_maps:
3461 for (i = 0; i < set->nr_hw_queues; i++)
3462 blk_mq_free_map_and_requests(set, i);
3463 out_free_mq_map:
3464 for (i = 0; i < set->nr_maps; i++) {
3465 kfree(set->map[i].mq_map);
3466 set->map[i].mq_map = NULL;
3468 kfree(set->tags);
3469 set->tags = NULL;
3470 return ret;
3472 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
3474 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
3476 int i, j;
3478 for (i = 0; i < set->nr_hw_queues; i++)
3479 blk_mq_free_map_and_requests(set, i);
3481 if (blk_mq_is_sbitmap_shared(set->flags))
3482 blk_mq_exit_shared_sbitmap(set);
3484 for (j = 0; j < set->nr_maps; j++) {
3485 kfree(set->map[j].mq_map);
3486 set->map[j].mq_map = NULL;
3489 kfree(set->tags);
3490 set->tags = NULL;
3492 EXPORT_SYMBOL(blk_mq_free_tag_set);
3494 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
3496 struct blk_mq_tag_set *set = q->tag_set;
3497 struct blk_mq_hw_ctx *hctx;
3498 int i, ret;
3500 if (!set)
3501 return -EINVAL;
3503 if (q->nr_requests == nr)
3504 return 0;
3506 blk_mq_freeze_queue(q);
3507 blk_mq_quiesce_queue(q);
3509 ret = 0;
3510 queue_for_each_hw_ctx(q, hctx, i) {
3511 if (!hctx->tags)
3512 continue;
3514 * If we're using an MQ scheduler, just update the scheduler
3515 * queue depth. This is similar to what the old code would do.
3517 if (!hctx->sched_tags) {
3518 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
3519 false);
3520 if (!ret && blk_mq_is_sbitmap_shared(set->flags))
3521 blk_mq_tag_resize_shared_sbitmap(set, nr);
3522 } else {
3523 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
3524 nr, true);
3526 if (ret)
3527 break;
3528 if (q->elevator && q->elevator->type->ops.depth_updated)
3529 q->elevator->type->ops.depth_updated(hctx);
3532 if (!ret)
3533 q->nr_requests = nr;
3535 blk_mq_unquiesce_queue(q);
3536 blk_mq_unfreeze_queue(q);
3538 return ret;
3542 * request_queue and elevator_type pair.
3543 * It is just used by __blk_mq_update_nr_hw_queues to cache
3544 * the elevator_type associated with a request_queue.
3546 struct blk_mq_qe_pair {
3547 struct list_head node;
3548 struct request_queue *q;
3549 struct elevator_type *type;
3553 * Cache the elevator_type in qe pair list and switch the
3554 * io scheduler to 'none'
3556 static bool blk_mq_elv_switch_none(struct list_head *head,
3557 struct request_queue *q)
3559 struct blk_mq_qe_pair *qe;
3561 if (!q->elevator)
3562 return true;
3564 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
3565 if (!qe)
3566 return false;
3568 INIT_LIST_HEAD(&qe->node);
3569 qe->q = q;
3570 qe->type = q->elevator->type;
3571 list_add(&qe->node, head);
3573 mutex_lock(&q->sysfs_lock);
3575 * After elevator_switch_mq, the previous elevator_queue will be
3576 * released by elevator_release. The reference of the io scheduler
3577 * module get by elevator_get will also be put. So we need to get
3578 * a reference of the io scheduler module here to prevent it to be
3579 * removed.
3581 __module_get(qe->type->elevator_owner);
3582 elevator_switch_mq(q, NULL);
3583 mutex_unlock(&q->sysfs_lock);
3585 return true;
3588 static void blk_mq_elv_switch_back(struct list_head *head,
3589 struct request_queue *q)
3591 struct blk_mq_qe_pair *qe;
3592 struct elevator_type *t = NULL;
3594 list_for_each_entry(qe, head, node)
3595 if (qe->q == q) {
3596 t = qe->type;
3597 break;
3600 if (!t)
3601 return;
3603 list_del(&qe->node);
3604 kfree(qe);
3606 mutex_lock(&q->sysfs_lock);
3607 elevator_switch_mq(q, t);
3608 mutex_unlock(&q->sysfs_lock);
3611 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3612 int nr_hw_queues)
3614 struct request_queue *q;
3615 LIST_HEAD(head);
3616 int prev_nr_hw_queues;
3618 lockdep_assert_held(&set->tag_list_lock);
3620 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
3621 nr_hw_queues = nr_cpu_ids;
3622 if (nr_hw_queues < 1)
3623 return;
3624 if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
3625 return;
3627 list_for_each_entry(q, &set->tag_list, tag_set_list)
3628 blk_mq_freeze_queue(q);
3630 * Switch IO scheduler to 'none', cleaning up the data associated
3631 * with the previous scheduler. We will switch back once we are done
3632 * updating the new sw to hw queue mappings.
3634 list_for_each_entry(q, &set->tag_list, tag_set_list)
3635 if (!blk_mq_elv_switch_none(&head, q))
3636 goto switch_back;
3638 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3639 blk_mq_debugfs_unregister_hctxs(q);
3640 blk_mq_sysfs_unregister(q);
3643 prev_nr_hw_queues = set->nr_hw_queues;
3644 if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
3646 goto reregister;
3648 set->nr_hw_queues = nr_hw_queues;
3649 fallback:
3650 blk_mq_update_queue_map(set);
3651 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3652 blk_mq_realloc_hw_ctxs(set, q);
3653 if (q->nr_hw_queues != set->nr_hw_queues) {
3654 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3655 nr_hw_queues, prev_nr_hw_queues);
3656 set->nr_hw_queues = prev_nr_hw_queues;
3657 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3658 goto fallback;
3660 blk_mq_map_swqueue(q);
3663 reregister:
3664 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3665 blk_mq_sysfs_register(q);
3666 blk_mq_debugfs_register_hctxs(q);
3669 switch_back:
3670 list_for_each_entry(q, &set->tag_list, tag_set_list)
3671 blk_mq_elv_switch_back(&head, q);
3673 list_for_each_entry(q, &set->tag_list, tag_set_list)
3674 blk_mq_unfreeze_queue(q);
3677 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3679 mutex_lock(&set->tag_list_lock);
3680 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3681 mutex_unlock(&set->tag_list_lock);
3683 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3685 /* Enable polling stats and return whether they were already enabled. */
3686 static bool blk_poll_stats_enable(struct request_queue *q)
3688 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3689 blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3690 return true;
3691 blk_stat_add_callback(q, q->poll_cb);
3692 return false;
3695 static void blk_mq_poll_stats_start(struct request_queue *q)
3698 * We don't arm the callback if polling stats are not enabled or the
3699 * callback is already active.
3701 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3702 blk_stat_is_active(q->poll_cb))
3703 return;
3705 blk_stat_activate_msecs(q->poll_cb, 100);
3708 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3710 struct request_queue *q = cb->data;
3711 int bucket;
3713 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3714 if (cb->stat[bucket].nr_samples)
3715 q->poll_stat[bucket] = cb->stat[bucket];
3719 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3720 struct request *rq)
3722 unsigned long ret = 0;
3723 int bucket;
3726 * If stats collection isn't on, don't sleep but turn it on for
3727 * future users
3729 if (!blk_poll_stats_enable(q))
3730 return 0;
3733 * As an optimistic guess, use half of the mean service time
3734 * for this type of request. We can (and should) make this smarter.
3735 * For instance, if the completion latencies are tight, we can
3736 * get closer than just half the mean. This is especially
3737 * important on devices where the completion latencies are longer
3738 * than ~10 usec. We do use the stats for the relevant IO size
3739 * if available which does lead to better estimates.
3741 bucket = blk_mq_poll_stats_bkt(rq);
3742 if (bucket < 0)
3743 return ret;
3745 if (q->poll_stat[bucket].nr_samples)
3746 ret = (q->poll_stat[bucket].mean + 1) / 2;
3748 return ret;
3751 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3752 struct request *rq)
3754 struct hrtimer_sleeper hs;
3755 enum hrtimer_mode mode;
3756 unsigned int nsecs;
3757 ktime_t kt;
3759 if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3760 return false;
3763 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
3765 * 0: use half of prev avg
3766 * >0: use this specific value
3768 if (q->poll_nsec > 0)
3769 nsecs = q->poll_nsec;
3770 else
3771 nsecs = blk_mq_poll_nsecs(q, rq);
3773 if (!nsecs)
3774 return false;
3776 rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3779 * This will be replaced with the stats tracking code, using
3780 * 'avg_completion_time / 2' as the pre-sleep target.
3782 kt = nsecs;
3784 mode = HRTIMER_MODE_REL;
3785 hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
3786 hrtimer_set_expires(&hs.timer, kt);
3788 do {
3789 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3790 break;
3791 set_current_state(TASK_UNINTERRUPTIBLE);
3792 hrtimer_sleeper_start_expires(&hs, mode);
3793 if (hs.task)
3794 io_schedule();
3795 hrtimer_cancel(&hs.timer);
3796 mode = HRTIMER_MODE_ABS;
3797 } while (hs.task && !signal_pending(current));
3799 __set_current_state(TASK_RUNNING);
3800 destroy_hrtimer_on_stack(&hs.timer);
3801 return true;
3804 static bool blk_mq_poll_hybrid(struct request_queue *q,
3805 struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
3807 struct request *rq;
3809 if (q->poll_nsec == BLK_MQ_POLL_CLASSIC)
3810 return false;
3812 if (!blk_qc_t_is_internal(cookie))
3813 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3814 else {
3815 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3817 * With scheduling, if the request has completed, we'll
3818 * get a NULL return here, as we clear the sched tag when
3819 * that happens. The request still remains valid, like always,
3820 * so we should be safe with just the NULL check.
3822 if (!rq)
3823 return false;
3826 return blk_mq_poll_hybrid_sleep(q, rq);
3830 * blk_poll - poll for IO completions
3831 * @q: the queue
3832 * @cookie: cookie passed back at IO submission time
3833 * @spin: whether to spin for completions
3835 * Description:
3836 * Poll for completions on the passed in queue. Returns number of
3837 * completed entries found. If @spin is true, then blk_poll will continue
3838 * looping until at least one completion is found, unless the task is
3839 * otherwise marked running (or we need to reschedule).
3841 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
3843 struct blk_mq_hw_ctx *hctx;
3844 long state;
3846 if (!blk_qc_t_valid(cookie) ||
3847 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3848 return 0;
3850 if (current->plug)
3851 blk_flush_plug_list(current->plug, false);
3853 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3856 * If we sleep, have the caller restart the poll loop to reset
3857 * the state. Like for the other success return cases, the
3858 * caller is responsible for checking if the IO completed. If
3859 * the IO isn't complete, we'll get called again and will go
3860 * straight to the busy poll loop. If specified not to spin,
3861 * we also should not sleep.
3863 if (spin && blk_mq_poll_hybrid(q, hctx, cookie))
3864 return 1;
3866 hctx->poll_considered++;
3868 state = current->state;
3869 do {
3870 int ret;
3872 hctx->poll_invoked++;
3874 ret = q->mq_ops->poll(hctx);
3875 if (ret > 0) {
3876 hctx->poll_success++;
3877 __set_current_state(TASK_RUNNING);
3878 return ret;
3881 if (signal_pending_state(state, current))
3882 __set_current_state(TASK_RUNNING);
3884 if (current->state == TASK_RUNNING)
3885 return 1;
3886 if (ret < 0 || !spin)
3887 break;
3888 cpu_relax();
3889 } while (!need_resched());
3891 __set_current_state(TASK_RUNNING);
3892 return 0;
3894 EXPORT_SYMBOL_GPL(blk_poll);
3896 unsigned int blk_mq_rq_cpu(struct request *rq)
3898 return rq->mq_ctx->cpu;
3900 EXPORT_SYMBOL(blk_mq_rq_cpu);
3902 static int __init blk_mq_init(void)
3904 int i;
3906 for_each_possible_cpu(i)
3907 INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i));
3908 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
3910 cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
3911 "block/softirq:dead", NULL,
3912 blk_softirq_cpu_dead);
3913 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3914 blk_mq_hctx_notify_dead);
3915 cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
3916 blk_mq_hctx_notify_online,
3917 blk_mq_hctx_notify_offline);
3918 return 0;
3920 subsys_initcall(blk_mq_init);