1 // SPDX-License-Identifier: GPL-2.0
3 * pptt.c - parsing of Processor Properties Topology Table (PPTT)
5 * Copyright (C) 2018, ARM
7 * This file implements parsing of the Processor Properties Topology Table
8 * which is optionally used to describe the processor and cache topology.
9 * Due to the relative pointers used throughout the table, this doesn't
10 * leverage the existing subtable parsing in the kernel.
12 * The PPTT structure is an inverted tree, with each node potentially
13 * holding one or two inverted tree data structures describing
14 * the caches available at that level. Each cache structure optionally
15 * contains properties describing the cache at a given level which can be
16 * used to override hardware probed values.
18 #define pr_fmt(fmt) "ACPI PPTT: " fmt
20 #include <linux/acpi.h>
21 #include <linux/cacheinfo.h>
22 #include <acpi/processor.h>
24 static struct acpi_subtable_header
*fetch_pptt_subtable(struct acpi_table_header
*table_hdr
,
27 struct acpi_subtable_header
*entry
;
29 /* there isn't a subtable at reference 0 */
30 if (pptt_ref
< sizeof(struct acpi_subtable_header
))
33 if (pptt_ref
+ sizeof(struct acpi_subtable_header
) > table_hdr
->length
)
36 entry
= ACPI_ADD_PTR(struct acpi_subtable_header
, table_hdr
, pptt_ref
);
38 if (entry
->length
== 0)
41 if (pptt_ref
+ entry
->length
> table_hdr
->length
)
47 static struct acpi_pptt_processor
*fetch_pptt_node(struct acpi_table_header
*table_hdr
,
50 return (struct acpi_pptt_processor
*)fetch_pptt_subtable(table_hdr
, pptt_ref
);
53 static struct acpi_pptt_cache
*fetch_pptt_cache(struct acpi_table_header
*table_hdr
,
56 return (struct acpi_pptt_cache
*)fetch_pptt_subtable(table_hdr
, pptt_ref
);
59 static struct acpi_subtable_header
*acpi_get_pptt_resource(struct acpi_table_header
*table_hdr
,
60 struct acpi_pptt_processor
*node
,
65 if (resource
>= node
->number_of_priv_resources
)
68 ref
= ACPI_ADD_PTR(u32
, node
, sizeof(struct acpi_pptt_processor
));
71 return fetch_pptt_subtable(table_hdr
, *ref
);
74 static inline bool acpi_pptt_match_type(int table_type
, int type
)
76 return ((table_type
& ACPI_PPTT_MASK_CACHE_TYPE
) == type
||
77 table_type
& ACPI_PPTT_CACHE_TYPE_UNIFIED
& type
);
81 * acpi_pptt_walk_cache() - Attempt to find the requested acpi_pptt_cache
82 * @table_hdr: Pointer to the head of the PPTT table
83 * @local_level: passed res reflects this cache level
84 * @res: cache resource in the PPTT we want to walk
85 * @found: returns a pointer to the requested level if found
86 * @level: the requested cache level
87 * @type: the requested cache type
89 * Attempt to find a given cache level, while counting the max number
90 * of cache levels for the cache node.
92 * Given a pptt resource, verify that it is a cache node, then walk
93 * down each level of caches, counting how many levels are found
94 * as well as checking the cache type (icache, dcache, unified). If a
95 * level & type match, then we set found, and continue the search.
96 * Once the entire cache branch has been walked return its max
99 * Return: The cache structure and the level we terminated with.
101 static unsigned int acpi_pptt_walk_cache(struct acpi_table_header
*table_hdr
,
102 unsigned int local_level
,
103 struct acpi_subtable_header
*res
,
104 struct acpi_pptt_cache
**found
,
105 unsigned int level
, int type
)
107 struct acpi_pptt_cache
*cache
;
109 if (res
->type
!= ACPI_PPTT_TYPE_CACHE
)
112 cache
= (struct acpi_pptt_cache
*) res
;
116 if (local_level
== level
&&
117 cache
->flags
& ACPI_PPTT_CACHE_TYPE_VALID
&&
118 acpi_pptt_match_type(cache
->attributes
, type
)) {
119 if (*found
!= NULL
&& cache
!= *found
)
120 pr_warn("Found duplicate cache level/type unable to determine uniqueness\n");
122 pr_debug("Found cache @ level %u\n", level
);
125 * continue looking at this node's resource list
126 * to verify that we don't find a duplicate
130 cache
= fetch_pptt_cache(table_hdr
, cache
->next_level_of_cache
);
135 static struct acpi_pptt_cache
*
136 acpi_find_cache_level(struct acpi_table_header
*table_hdr
,
137 struct acpi_pptt_processor
*cpu_node
,
138 unsigned int *starting_level
, unsigned int level
,
141 struct acpi_subtable_header
*res
;
142 unsigned int number_of_levels
= *starting_level
;
144 struct acpi_pptt_cache
*ret
= NULL
;
145 unsigned int local_level
;
147 /* walk down from processor node */
148 while ((res
= acpi_get_pptt_resource(table_hdr
, cpu_node
, resource
))) {
151 local_level
= acpi_pptt_walk_cache(table_hdr
, *starting_level
,
152 res
, &ret
, level
, type
);
154 * we are looking for the max depth. Since its potentially
155 * possible for a given node to have resources with differing
156 * depths verify that the depth we have found is the largest.
158 if (number_of_levels
< local_level
)
159 number_of_levels
= local_level
;
161 if (number_of_levels
> *starting_level
)
162 *starting_level
= number_of_levels
;
168 * acpi_count_levels() - Given a PPTT table, and a CPU node, count the caches
169 * @table_hdr: Pointer to the head of the PPTT table
170 * @cpu_node: processor node we wish to count caches for
172 * Given a processor node containing a processing unit, walk into it and count
173 * how many levels exist solely for it, and then walk up each level until we hit
174 * the root node (ignore the package level because it may be possible to have
175 * caches that exist across packages). Count the number of cache levels that
176 * exist at each level on the way up.
178 * Return: Total number of levels found.
180 static int acpi_count_levels(struct acpi_table_header
*table_hdr
,
181 struct acpi_pptt_processor
*cpu_node
)
183 int total_levels
= 0;
186 acpi_find_cache_level(table_hdr
, cpu_node
, &total_levels
, 0, 0);
187 cpu_node
= fetch_pptt_node(table_hdr
, cpu_node
->parent
);
194 * acpi_pptt_leaf_node() - Given a processor node, determine if its a leaf
195 * @table_hdr: Pointer to the head of the PPTT table
196 * @node: passed node is checked to see if its a leaf
198 * Determine if the *node parameter is a leaf node by iterating the
199 * PPTT table, looking for nodes which reference it.
201 * Return: 0 if we find a node referencing the passed node (or table error),
204 static int acpi_pptt_leaf_node(struct acpi_table_header
*table_hdr
,
205 struct acpi_pptt_processor
*node
)
207 struct acpi_subtable_header
*entry
;
208 unsigned long table_end
;
210 struct acpi_pptt_processor
*cpu_node
;
213 if (table_hdr
->revision
> 1)
214 return (node
->flags
& ACPI_PPTT_ACPI_LEAF_NODE
);
216 table_end
= (unsigned long)table_hdr
+ table_hdr
->length
;
217 node_entry
= ACPI_PTR_DIFF(node
, table_hdr
);
218 entry
= ACPI_ADD_PTR(struct acpi_subtable_header
, table_hdr
,
219 sizeof(struct acpi_table_pptt
));
220 proc_sz
= sizeof(struct acpi_pptt_processor
*);
222 while ((unsigned long)entry
+ proc_sz
< table_end
) {
223 cpu_node
= (struct acpi_pptt_processor
*)entry
;
224 if (entry
->type
== ACPI_PPTT_TYPE_PROCESSOR
&&
225 cpu_node
->parent
== node_entry
)
227 if (entry
->length
== 0)
229 entry
= ACPI_ADD_PTR(struct acpi_subtable_header
, entry
,
237 * acpi_find_processor_node() - Given a PPTT table find the requested processor
238 * @table_hdr: Pointer to the head of the PPTT table
239 * @acpi_cpu_id: CPU we are searching for
241 * Find the subtable entry describing the provided processor.
242 * This is done by iterating the PPTT table looking for processor nodes
243 * which have an acpi_processor_id that matches the acpi_cpu_id parameter
244 * passed into the function. If we find a node that matches this criteria
245 * we verify that its a leaf node in the topology rather than depending
246 * on the valid flag, which doesn't need to be set for leaf nodes.
248 * Return: NULL, or the processors acpi_pptt_processor*
250 static struct acpi_pptt_processor
*acpi_find_processor_node(struct acpi_table_header
*table_hdr
,
253 struct acpi_subtable_header
*entry
;
254 unsigned long table_end
;
255 struct acpi_pptt_processor
*cpu_node
;
258 table_end
= (unsigned long)table_hdr
+ table_hdr
->length
;
259 entry
= ACPI_ADD_PTR(struct acpi_subtable_header
, table_hdr
,
260 sizeof(struct acpi_table_pptt
));
261 proc_sz
= sizeof(struct acpi_pptt_processor
*);
263 /* find the processor structure associated with this cpuid */
264 while ((unsigned long)entry
+ proc_sz
< table_end
) {
265 cpu_node
= (struct acpi_pptt_processor
*)entry
;
267 if (entry
->length
== 0) {
268 pr_warn("Invalid zero length subtable\n");
271 if (entry
->type
== ACPI_PPTT_TYPE_PROCESSOR
&&
272 acpi_cpu_id
== cpu_node
->acpi_processor_id
&&
273 acpi_pptt_leaf_node(table_hdr
, cpu_node
)) {
274 return (struct acpi_pptt_processor
*)entry
;
277 entry
= ACPI_ADD_PTR(struct acpi_subtable_header
, entry
,
284 static int acpi_find_cache_levels(struct acpi_table_header
*table_hdr
,
287 int number_of_levels
= 0;
288 struct acpi_pptt_processor
*cpu
;
290 cpu
= acpi_find_processor_node(table_hdr
, acpi_cpu_id
);
292 number_of_levels
= acpi_count_levels(table_hdr
, cpu
);
294 return number_of_levels
;
297 static u8
acpi_cache_type(enum cache_type type
)
300 case CACHE_TYPE_DATA
:
301 pr_debug("Looking for data cache\n");
302 return ACPI_PPTT_CACHE_TYPE_DATA
;
303 case CACHE_TYPE_INST
:
304 pr_debug("Looking for instruction cache\n");
305 return ACPI_PPTT_CACHE_TYPE_INSTR
;
307 case CACHE_TYPE_UNIFIED
:
308 pr_debug("Looking for unified cache\n");
310 * It is important that ACPI_PPTT_CACHE_TYPE_UNIFIED
311 * contains the bit pattern that will match both
312 * ACPI unified bit patterns because we use it later
313 * to match both cases.
315 return ACPI_PPTT_CACHE_TYPE_UNIFIED
;
319 static struct acpi_pptt_cache
*acpi_find_cache_node(struct acpi_table_header
*table_hdr
,
321 enum cache_type type
,
323 struct acpi_pptt_processor
**node
)
325 unsigned int total_levels
= 0;
326 struct acpi_pptt_cache
*found
= NULL
;
327 struct acpi_pptt_processor
*cpu_node
;
328 u8 acpi_type
= acpi_cache_type(type
);
330 pr_debug("Looking for CPU %d's level %u cache type %d\n",
331 acpi_cpu_id
, level
, acpi_type
);
333 cpu_node
= acpi_find_processor_node(table_hdr
, acpi_cpu_id
);
335 while (cpu_node
&& !found
) {
336 found
= acpi_find_cache_level(table_hdr
, cpu_node
,
337 &total_levels
, level
, acpi_type
);
339 cpu_node
= fetch_pptt_node(table_hdr
, cpu_node
->parent
);
346 * update_cache_properties() - Update cacheinfo for the given processor
347 * @this_leaf: Kernel cache info structure being updated
348 * @found_cache: The PPTT node describing this cache instance
349 * @cpu_node: A unique reference to describe this cache instance
351 * The ACPI spec implies that the fields in the cache structures are used to
352 * extend and correct the information probed from the hardware. Lets only
353 * set fields that we determine are VALID.
355 * Return: nothing. Side effect of updating the global cacheinfo
357 static void update_cache_properties(struct cacheinfo
*this_leaf
,
358 struct acpi_pptt_cache
*found_cache
,
359 struct acpi_pptt_processor
*cpu_node
)
361 this_leaf
->fw_token
= cpu_node
;
362 if (found_cache
->flags
& ACPI_PPTT_SIZE_PROPERTY_VALID
)
363 this_leaf
->size
= found_cache
->size
;
364 if (found_cache
->flags
& ACPI_PPTT_LINE_SIZE_VALID
)
365 this_leaf
->coherency_line_size
= found_cache
->line_size
;
366 if (found_cache
->flags
& ACPI_PPTT_NUMBER_OF_SETS_VALID
)
367 this_leaf
->number_of_sets
= found_cache
->number_of_sets
;
368 if (found_cache
->flags
& ACPI_PPTT_ASSOCIATIVITY_VALID
)
369 this_leaf
->ways_of_associativity
= found_cache
->associativity
;
370 if (found_cache
->flags
& ACPI_PPTT_WRITE_POLICY_VALID
) {
371 switch (found_cache
->attributes
& ACPI_PPTT_MASK_WRITE_POLICY
) {
372 case ACPI_PPTT_CACHE_POLICY_WT
:
373 this_leaf
->attributes
= CACHE_WRITE_THROUGH
;
375 case ACPI_PPTT_CACHE_POLICY_WB
:
376 this_leaf
->attributes
= CACHE_WRITE_BACK
;
380 if (found_cache
->flags
& ACPI_PPTT_ALLOCATION_TYPE_VALID
) {
381 switch (found_cache
->attributes
& ACPI_PPTT_MASK_ALLOCATION_TYPE
) {
382 case ACPI_PPTT_CACHE_READ_ALLOCATE
:
383 this_leaf
->attributes
|= CACHE_READ_ALLOCATE
;
385 case ACPI_PPTT_CACHE_WRITE_ALLOCATE
:
386 this_leaf
->attributes
|= CACHE_WRITE_ALLOCATE
;
388 case ACPI_PPTT_CACHE_RW_ALLOCATE
:
389 case ACPI_PPTT_CACHE_RW_ALLOCATE_ALT
:
390 this_leaf
->attributes
|=
391 CACHE_READ_ALLOCATE
| CACHE_WRITE_ALLOCATE
;
396 * If cache type is NOCACHE, then the cache hasn't been specified
397 * via other mechanisms. Update the type if a cache type has been
400 * Note, we assume such caches are unified based on conventional system
401 * design and known examples. Significant work is required elsewhere to
402 * fully support data/instruction only type caches which are only
405 if (this_leaf
->type
== CACHE_TYPE_NOCACHE
&&
406 found_cache
->flags
& ACPI_PPTT_CACHE_TYPE_VALID
)
407 this_leaf
->type
= CACHE_TYPE_UNIFIED
;
410 static void cache_setup_acpi_cpu(struct acpi_table_header
*table
,
413 struct acpi_pptt_cache
*found_cache
;
414 struct cpu_cacheinfo
*this_cpu_ci
= get_cpu_cacheinfo(cpu
);
415 u32 acpi_cpu_id
= get_acpi_id_for_cpu(cpu
);
416 struct cacheinfo
*this_leaf
;
417 unsigned int index
= 0;
418 struct acpi_pptt_processor
*cpu_node
= NULL
;
420 while (index
< get_cpu_cacheinfo(cpu
)->num_leaves
) {
421 this_leaf
= this_cpu_ci
->info_list
+ index
;
422 found_cache
= acpi_find_cache_node(table
, acpi_cpu_id
,
426 pr_debug("found = %p %p\n", found_cache
, cpu_node
);
428 update_cache_properties(this_leaf
,
436 static bool flag_identical(struct acpi_table_header
*table_hdr
,
437 struct acpi_pptt_processor
*cpu
)
439 struct acpi_pptt_processor
*next
;
441 /* heterogeneous machines must use PPTT revision > 1 */
442 if (table_hdr
->revision
< 2)
445 /* Locate the last node in the tree with IDENTICAL set */
446 if (cpu
->flags
& ACPI_PPTT_ACPI_IDENTICAL
) {
447 next
= fetch_pptt_node(table_hdr
, cpu
->parent
);
448 if (!(next
&& next
->flags
& ACPI_PPTT_ACPI_IDENTICAL
))
455 /* Passing level values greater than this will result in search termination */
456 #define PPTT_ABORT_PACKAGE 0xFF
458 static struct acpi_pptt_processor
*acpi_find_processor_tag(struct acpi_table_header
*table_hdr
,
459 struct acpi_pptt_processor
*cpu
,
462 struct acpi_pptt_processor
*prev_node
;
464 while (cpu
&& level
) {
465 /* special case the identical flag to find last identical */
466 if (flag
== ACPI_PPTT_ACPI_IDENTICAL
) {
467 if (flag_identical(table_hdr
, cpu
))
469 } else if (cpu
->flags
& flag
)
471 pr_debug("level %d\n", level
);
472 prev_node
= fetch_pptt_node(table_hdr
, cpu
->parent
);
473 if (prev_node
== NULL
)
481 static void acpi_pptt_warn_missing(void)
483 pr_warn_once("No PPTT table found, CPU and cache topology may be inaccurate\n");
487 * topology_get_acpi_cpu_tag() - Find a unique topology value for a feature
488 * @table: Pointer to the head of the PPTT table
489 * @cpu: Kernel logical CPU number
490 * @level: A level that terminates the search
491 * @flag: A flag which terminates the search
493 * Get a unique value given a CPU, and a topology level, that can be
494 * matched to determine which cpus share common topological features
497 * Return: Unique value, or -ENOENT if unable to locate CPU
499 static int topology_get_acpi_cpu_tag(struct acpi_table_header
*table
,
500 unsigned int cpu
, int level
, int flag
)
502 struct acpi_pptt_processor
*cpu_node
;
503 u32 acpi_cpu_id
= get_acpi_id_for_cpu(cpu
);
505 cpu_node
= acpi_find_processor_node(table
, acpi_cpu_id
);
507 cpu_node
= acpi_find_processor_tag(table
, cpu_node
,
510 * As per specification if the processor structure represents
511 * an actual processor, then ACPI processor ID must be valid.
512 * For processor containers ACPI_PPTT_ACPI_PROCESSOR_ID_VALID
513 * should be set if the UID is valid
516 cpu_node
->flags
& ACPI_PPTT_ACPI_PROCESSOR_ID_VALID
)
517 return cpu_node
->acpi_processor_id
;
518 return ACPI_PTR_DIFF(cpu_node
, table
);
520 pr_warn_once("PPTT table found, but unable to locate core %d (%d)\n",
525 static int find_acpi_cpu_topology_tag(unsigned int cpu
, int level
, int flag
)
527 struct acpi_table_header
*table
;
531 status
= acpi_get_table(ACPI_SIG_PPTT
, 0, &table
);
532 if (ACPI_FAILURE(status
)) {
533 acpi_pptt_warn_missing();
536 retval
= topology_get_acpi_cpu_tag(table
, cpu
, level
, flag
);
537 pr_debug("Topology Setup ACPI CPU %d, level %d ret = %d\n",
539 acpi_put_table(table
);
545 * check_acpi_cpu_flag() - Determine if CPU node has a flag set
546 * @cpu: Kernel logical CPU number
547 * @rev: The minimum PPTT revision defining the flag
548 * @flag: The flag itself
550 * Check the node representing a CPU for a given flag.
552 * Return: -ENOENT if the PPTT doesn't exist, the CPU cannot be found or
553 * the table revision isn't new enough.
554 * 1, any passed flag set
557 static int check_acpi_cpu_flag(unsigned int cpu
, int rev
, u32 flag
)
559 struct acpi_table_header
*table
;
561 u32 acpi_cpu_id
= get_acpi_id_for_cpu(cpu
);
562 struct acpi_pptt_processor
*cpu_node
= NULL
;
565 status
= acpi_get_table(ACPI_SIG_PPTT
, 0, &table
);
566 if (ACPI_FAILURE(status
)) {
567 acpi_pptt_warn_missing();
571 if (table
->revision
>= rev
)
572 cpu_node
= acpi_find_processor_node(table
, acpi_cpu_id
);
575 ret
= (cpu_node
->flags
& flag
) != 0;
577 acpi_put_table(table
);
583 * acpi_find_last_cache_level() - Determines the number of cache levels for a PE
584 * @cpu: Kernel logical CPU number
586 * Given a logical CPU number, returns the number of levels of cache represented
587 * in the PPTT. Errors caused by lack of a PPTT table, or otherwise, return 0
588 * indicating we didn't find any cache levels.
590 * Return: Cache levels visible to this core.
592 int acpi_find_last_cache_level(unsigned int cpu
)
595 struct acpi_table_header
*table
;
596 int number_of_levels
= 0;
599 pr_debug("Cache Setup find last level CPU=%d\n", cpu
);
601 acpi_cpu_id
= get_acpi_id_for_cpu(cpu
);
602 status
= acpi_get_table(ACPI_SIG_PPTT
, 0, &table
);
603 if (ACPI_FAILURE(status
)) {
604 acpi_pptt_warn_missing();
606 number_of_levels
= acpi_find_cache_levels(table
, acpi_cpu_id
);
607 acpi_put_table(table
);
609 pr_debug("Cache Setup find last level level=%d\n", number_of_levels
);
611 return number_of_levels
;
615 * cache_setup_acpi() - Override CPU cache topology with data from the PPTT
616 * @cpu: Kernel logical CPU number
618 * Updates the global cache info provided by cpu_get_cacheinfo()
619 * when there are valid properties in the acpi_pptt_cache nodes. A
620 * successful parse may not result in any updates if none of the
621 * cache levels have any valid flags set. Further, a unique value is
622 * associated with each known CPU cache entry. This unique value
623 * can be used to determine whether caches are shared between CPUs.
625 * Return: -ENOENT on failure to find table, or 0 on success
627 int cache_setup_acpi(unsigned int cpu
)
629 struct acpi_table_header
*table
;
632 pr_debug("Cache Setup ACPI CPU %d\n", cpu
);
634 status
= acpi_get_table(ACPI_SIG_PPTT
, 0, &table
);
635 if (ACPI_FAILURE(status
)) {
636 acpi_pptt_warn_missing();
640 cache_setup_acpi_cpu(table
, cpu
);
641 acpi_put_table(table
);
647 * acpi_pptt_cpu_is_thread() - Determine if CPU is a thread
648 * @cpu: Kernel logical CPU number
650 * Return: 1, a thread
652 * -ENOENT ,if the PPTT doesn't exist, the CPU cannot be found or
653 * the table revision isn't new enough.
655 int acpi_pptt_cpu_is_thread(unsigned int cpu
)
657 return check_acpi_cpu_flag(cpu
, 2, ACPI_PPTT_ACPI_PROCESSOR_IS_THREAD
);
661 * find_acpi_cpu_topology() - Determine a unique topology value for a given CPU
662 * @cpu: Kernel logical CPU number
663 * @level: The topological level for which we would like a unique ID
665 * Determine a topology unique ID for each thread/core/cluster/mc_grouping
666 * /socket/etc. This ID can then be used to group peers, which will have
669 * The search terminates when either the requested level is found or
670 * we reach a root node. Levels beyond the termination point will return the
671 * same unique ID. The unique id for level 0 is the acpi processor id. All
672 * other levels beyond this use a generated value to uniquely identify
673 * a topological feature.
675 * Return: -ENOENT if the PPTT doesn't exist, or the CPU cannot be found.
676 * Otherwise returns a value which represents a unique topological feature.
678 int find_acpi_cpu_topology(unsigned int cpu
, int level
)
680 return find_acpi_cpu_topology_tag(cpu
, level
, 0);
684 * find_acpi_cpu_cache_topology() - Determine a unique cache topology value
685 * @cpu: Kernel logical CPU number
686 * @level: The cache level for which we would like a unique ID
688 * Determine a unique ID for each unified cache in the system
690 * Return: -ENOENT if the PPTT doesn't exist, or the CPU cannot be found.
691 * Otherwise returns a value which represents a unique topological feature.
693 int find_acpi_cpu_cache_topology(unsigned int cpu
, int level
)
695 struct acpi_table_header
*table
;
696 struct acpi_pptt_cache
*found_cache
;
698 u32 acpi_cpu_id
= get_acpi_id_for_cpu(cpu
);
699 struct acpi_pptt_processor
*cpu_node
= NULL
;
702 status
= acpi_get_table(ACPI_SIG_PPTT
, 0, &table
);
703 if (ACPI_FAILURE(status
)) {
704 acpi_pptt_warn_missing();
708 found_cache
= acpi_find_cache_node(table
, acpi_cpu_id
,
713 ret
= ACPI_PTR_DIFF(cpu_node
, table
);
715 acpi_put_table(table
);
721 * find_acpi_cpu_topology_package() - Determine a unique CPU package value
722 * @cpu: Kernel logical CPU number
724 * Determine a topology unique package ID for the given CPU.
725 * This ID can then be used to group peers, which will have matching ids.
727 * The search terminates when either a level is found with the PHYSICAL_PACKAGE
728 * flag set or we reach a root node.
730 * Return: -ENOENT if the PPTT doesn't exist, or the CPU cannot be found.
731 * Otherwise returns a value which represents the package for this CPU.
733 int find_acpi_cpu_topology_package(unsigned int cpu
)
735 return find_acpi_cpu_topology_tag(cpu
, PPTT_ABORT_PACKAGE
,
736 ACPI_PPTT_PHYSICAL_PACKAGE
);
740 * find_acpi_cpu_topology_hetero_id() - Get a core architecture tag
741 * @cpu: Kernel logical CPU number
743 * Determine a unique heterogeneous tag for the given CPU. CPUs with the same
744 * implementation should have matching tags.
746 * The returned tag can be used to group peers with identical implementation.
748 * The search terminates when a level is found with the identical implementation
749 * flag set or we reach a root node.
751 * Due to limitations in the PPTT data structure, there may be rare situations
752 * where two cores in a heterogeneous machine may be identical, but won't have
755 * Return: -ENOENT if the PPTT doesn't exist, or the CPU cannot be found.
756 * Otherwise returns a value which represents a group of identical cores
757 * similar to this CPU.
759 int find_acpi_cpu_topology_hetero_id(unsigned int cpu
)
761 return find_acpi_cpu_topology_tag(cpu
, PPTT_ABORT_PACKAGE
,
762 ACPI_PPTT_ACPI_IDENTICAL
);