2 * linux/drivers/block/loop.c
4 * Written by Theodore Ts'o, 3/29/93
6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is
7 * permitted under the GNU General Public License.
9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
21 * Loadable modules and other fixes by AK, 1998
23 * Make real block number available to downstream transfer functions, enables
24 * CBC (and relatives) mode encryption requiring unique IVs per data block.
25 * Reed H. Petty, rhp@draper.net
27 * Maximum number of loop devices now dynamic via max_loop module parameter.
28 * Russell Kroll <rkroll@exploits.org> 19990701
30 * Maximum number of loop devices when compiled-in now selectable by passing
31 * max_loop=<1-255> to the kernel on boot.
32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
34 * Completely rewrite request handling to be make_request_fn style and
35 * non blocking, pushing work to a helper thread. Lots of fixes from
37 * Jens Axboe <axboe@suse.de>, Nov 2000
39 * Support up to 256 loop devices
40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
42 * Support for falling back on the write file operation when the address space
43 * operations write_begin is not available on the backing filesystem.
44 * Anton Altaparmakov, 16 Feb 2005
47 * - Advisory locking is ignored here.
48 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/sched.h>
56 #include <linux/file.h>
57 #include <linux/stat.h>
58 #include <linux/errno.h>
59 #include <linux/major.h>
60 #include <linux/wait.h>
61 #include <linux/blkdev.h>
62 #include <linux/blkpg.h>
63 #include <linux/init.h>
64 #include <linux/swap.h>
65 #include <linux/slab.h>
66 #include <linux/compat.h>
67 #include <linux/suspend.h>
68 #include <linux/freezer.h>
69 #include <linux/mutex.h>
70 #include <linux/writeback.h>
71 #include <linux/completion.h>
72 #include <linux/highmem.h>
73 #include <linux/kthread.h>
74 #include <linux/splice.h>
75 #include <linux/sysfs.h>
76 #include <linux/miscdevice.h>
77 #include <linux/falloc.h>
78 #include <linux/uio.h>
79 #include <linux/ioprio.h>
80 #include <linux/blk-cgroup.h>
84 #include <linux/uaccess.h>
86 static DEFINE_IDR(loop_index_idr
);
87 static DEFINE_MUTEX(loop_ctl_mutex
);
90 static int part_shift
;
92 static int transfer_xor(struct loop_device
*lo
, int cmd
,
93 struct page
*raw_page
, unsigned raw_off
,
94 struct page
*loop_page
, unsigned loop_off
,
95 int size
, sector_t real_block
)
97 char *raw_buf
= kmap_atomic(raw_page
) + raw_off
;
98 char *loop_buf
= kmap_atomic(loop_page
) + loop_off
;
110 key
= lo
->lo_encrypt_key
;
111 keysize
= lo
->lo_encrypt_key_size
;
112 for (i
= 0; i
< size
; i
++)
113 *out
++ = *in
++ ^ key
[(i
& 511) % keysize
];
115 kunmap_atomic(loop_buf
);
116 kunmap_atomic(raw_buf
);
121 static int xor_init(struct loop_device
*lo
, const struct loop_info64
*info
)
123 if (unlikely(info
->lo_encrypt_key_size
<= 0))
128 static struct loop_func_table none_funcs
= {
129 .number
= LO_CRYPT_NONE
,
132 static struct loop_func_table xor_funcs
= {
133 .number
= LO_CRYPT_XOR
,
134 .transfer
= transfer_xor
,
138 /* xfer_funcs[0] is special - its release function is never called */
139 static struct loop_func_table
*xfer_funcs
[MAX_LO_CRYPT
] = {
144 static loff_t
get_size(loff_t offset
, loff_t sizelimit
, struct file
*file
)
148 /* Compute loopsize in bytes */
149 loopsize
= i_size_read(file
->f_mapping
->host
);
152 /* offset is beyond i_size, weird but possible */
156 if (sizelimit
> 0 && sizelimit
< loopsize
)
157 loopsize
= sizelimit
;
159 * Unfortunately, if we want to do I/O on the device,
160 * the number of 512-byte sectors has to fit into a sector_t.
162 return loopsize
>> 9;
165 static loff_t
get_loop_size(struct loop_device
*lo
, struct file
*file
)
167 return get_size(lo
->lo_offset
, lo
->lo_sizelimit
, file
);
170 static void __loop_update_dio(struct loop_device
*lo
, bool dio
)
172 struct file
*file
= lo
->lo_backing_file
;
173 struct address_space
*mapping
= file
->f_mapping
;
174 struct inode
*inode
= mapping
->host
;
175 unsigned short sb_bsize
= 0;
176 unsigned dio_align
= 0;
179 if (inode
->i_sb
->s_bdev
) {
180 sb_bsize
= bdev_logical_block_size(inode
->i_sb
->s_bdev
);
181 dio_align
= sb_bsize
- 1;
185 * We support direct I/O only if lo_offset is aligned with the
186 * logical I/O size of backing device, and the logical block
187 * size of loop is bigger than the backing device's and the loop
188 * needn't transform transfer.
190 * TODO: the above condition may be loosed in the future, and
191 * direct I/O may be switched runtime at that time because most
192 * of requests in sane applications should be PAGE_SIZE aligned
195 if (queue_logical_block_size(lo
->lo_queue
) >= sb_bsize
&&
196 !(lo
->lo_offset
& dio_align
) &&
197 mapping
->a_ops
->direct_IO
&&
206 if (lo
->use_dio
== use_dio
)
209 /* flush dirty pages before changing direct IO */
213 * The flag of LO_FLAGS_DIRECT_IO is handled similarly with
214 * LO_FLAGS_READ_ONLY, both are set from kernel, and losetup
215 * will get updated by ioctl(LOOP_GET_STATUS)
217 if (lo
->lo_state
== Lo_bound
)
218 blk_mq_freeze_queue(lo
->lo_queue
);
219 lo
->use_dio
= use_dio
;
221 blk_queue_flag_clear(QUEUE_FLAG_NOMERGES
, lo
->lo_queue
);
222 lo
->lo_flags
|= LO_FLAGS_DIRECT_IO
;
224 blk_queue_flag_set(QUEUE_FLAG_NOMERGES
, lo
->lo_queue
);
225 lo
->lo_flags
&= ~LO_FLAGS_DIRECT_IO
;
227 if (lo
->lo_state
== Lo_bound
)
228 blk_mq_unfreeze_queue(lo
->lo_queue
);
232 * loop_validate_block_size() - validates the passed in block size
233 * @bsize: size to validate
236 loop_validate_block_size(unsigned short bsize
)
238 if (bsize
< 512 || bsize
> PAGE_SIZE
|| !is_power_of_2(bsize
))
245 * loop_set_size() - sets device size and notifies userspace
246 * @lo: struct loop_device to set the size for
247 * @size: new size of the loop device
249 * Callers must validate that the size passed into this function fits into
250 * a sector_t, eg using loop_validate_size()
252 static void loop_set_size(struct loop_device
*lo
, loff_t size
)
254 if (!set_capacity_and_notify(lo
->lo_disk
, size
))
255 kobject_uevent(&disk_to_dev(lo
->lo_disk
)->kobj
, KOBJ_CHANGE
);
259 lo_do_transfer(struct loop_device
*lo
, int cmd
,
260 struct page
*rpage
, unsigned roffs
,
261 struct page
*lpage
, unsigned loffs
,
262 int size
, sector_t rblock
)
266 ret
= lo
->transfer(lo
, cmd
, rpage
, roffs
, lpage
, loffs
, size
, rblock
);
270 printk_ratelimited(KERN_ERR
271 "loop: Transfer error at byte offset %llu, length %i.\n",
272 (unsigned long long)rblock
<< 9, size
);
276 static int lo_write_bvec(struct file
*file
, struct bio_vec
*bvec
, loff_t
*ppos
)
281 iov_iter_bvec(&i
, WRITE
, bvec
, 1, bvec
->bv_len
);
283 file_start_write(file
);
284 bw
= vfs_iter_write(file
, &i
, ppos
, 0);
285 file_end_write(file
);
287 if (likely(bw
== bvec
->bv_len
))
290 printk_ratelimited(KERN_ERR
291 "loop: Write error at byte offset %llu, length %i.\n",
292 (unsigned long long)*ppos
, bvec
->bv_len
);
298 static int lo_write_simple(struct loop_device
*lo
, struct request
*rq
,
302 struct req_iterator iter
;
305 rq_for_each_segment(bvec
, rq
, iter
) {
306 ret
= lo_write_bvec(lo
->lo_backing_file
, &bvec
, &pos
);
316 * This is the slow, transforming version that needs to double buffer the
317 * data as it cannot do the transformations in place without having direct
318 * access to the destination pages of the backing file.
320 static int lo_write_transfer(struct loop_device
*lo
, struct request
*rq
,
323 struct bio_vec bvec
, b
;
324 struct req_iterator iter
;
328 page
= alloc_page(GFP_NOIO
);
332 rq_for_each_segment(bvec
, rq
, iter
) {
333 ret
= lo_do_transfer(lo
, WRITE
, page
, 0, bvec
.bv_page
,
334 bvec
.bv_offset
, bvec
.bv_len
, pos
>> 9);
340 b
.bv_len
= bvec
.bv_len
;
341 ret
= lo_write_bvec(lo
->lo_backing_file
, &b
, &pos
);
350 static int lo_read_simple(struct loop_device
*lo
, struct request
*rq
,
354 struct req_iterator iter
;
358 rq_for_each_segment(bvec
, rq
, iter
) {
359 iov_iter_bvec(&i
, READ
, &bvec
, 1, bvec
.bv_len
);
360 len
= vfs_iter_read(lo
->lo_backing_file
, &i
, &pos
, 0);
364 flush_dcache_page(bvec
.bv_page
);
366 if (len
!= bvec
.bv_len
) {
369 __rq_for_each_bio(bio
, rq
)
379 static int lo_read_transfer(struct loop_device
*lo
, struct request
*rq
,
382 struct bio_vec bvec
, b
;
383 struct req_iterator iter
;
389 page
= alloc_page(GFP_NOIO
);
393 rq_for_each_segment(bvec
, rq
, iter
) {
398 b
.bv_len
= bvec
.bv_len
;
400 iov_iter_bvec(&i
, READ
, &b
, 1, b
.bv_len
);
401 len
= vfs_iter_read(lo
->lo_backing_file
, &i
, &pos
, 0);
407 ret
= lo_do_transfer(lo
, READ
, page
, 0, bvec
.bv_page
,
408 bvec
.bv_offset
, len
, offset
>> 9);
412 flush_dcache_page(bvec
.bv_page
);
414 if (len
!= bvec
.bv_len
) {
417 __rq_for_each_bio(bio
, rq
)
429 static int lo_fallocate(struct loop_device
*lo
, struct request
*rq
, loff_t pos
,
433 * We use fallocate to manipulate the space mappings used by the image
434 * a.k.a. discard/zerorange. However we do not support this if
435 * encryption is enabled, because it may give an attacker useful
438 struct file
*file
= lo
->lo_backing_file
;
439 struct request_queue
*q
= lo
->lo_queue
;
442 mode
|= FALLOC_FL_KEEP_SIZE
;
444 if (!blk_queue_discard(q
)) {
449 ret
= file
->f_op
->fallocate(file
, mode
, pos
, blk_rq_bytes(rq
));
450 if (unlikely(ret
&& ret
!= -EINVAL
&& ret
!= -EOPNOTSUPP
))
456 static int lo_req_flush(struct loop_device
*lo
, struct request
*rq
)
458 struct file
*file
= lo
->lo_backing_file
;
459 int ret
= vfs_fsync(file
, 0);
460 if (unlikely(ret
&& ret
!= -EINVAL
))
466 static void lo_complete_rq(struct request
*rq
)
468 struct loop_cmd
*cmd
= blk_mq_rq_to_pdu(rq
);
469 blk_status_t ret
= BLK_STS_OK
;
471 if (!cmd
->use_aio
|| cmd
->ret
< 0 || cmd
->ret
== blk_rq_bytes(rq
) ||
472 req_op(rq
) != REQ_OP_READ
) {
474 ret
= errno_to_blk_status(cmd
->ret
);
479 * Short READ - if we got some data, advance our request and
480 * retry it. If we got no data, end the rest with EIO.
483 blk_update_request(rq
, BLK_STS_OK
, cmd
->ret
);
485 blk_mq_requeue_request(rq
, true);
488 struct bio
*bio
= rq
->bio
;
497 blk_mq_end_request(rq
, ret
);
501 static void lo_rw_aio_do_completion(struct loop_cmd
*cmd
)
503 struct request
*rq
= blk_mq_rq_from_pdu(cmd
);
505 if (!atomic_dec_and_test(&cmd
->ref
))
509 if (likely(!blk_should_fake_timeout(rq
->q
)))
510 blk_mq_complete_request(rq
);
513 static void lo_rw_aio_complete(struct kiocb
*iocb
, long ret
, long ret2
)
515 struct loop_cmd
*cmd
= container_of(iocb
, struct loop_cmd
, iocb
);
520 lo_rw_aio_do_completion(cmd
);
523 static int lo_rw_aio(struct loop_device
*lo
, struct loop_cmd
*cmd
,
526 struct iov_iter iter
;
527 struct req_iterator rq_iter
;
528 struct bio_vec
*bvec
;
529 struct request
*rq
= blk_mq_rq_from_pdu(cmd
);
530 struct bio
*bio
= rq
->bio
;
531 struct file
*file
= lo
->lo_backing_file
;
537 rq_for_each_bvec(tmp
, rq
, rq_iter
)
540 if (rq
->bio
!= rq
->biotail
) {
542 bvec
= kmalloc_array(nr_bvec
, sizeof(struct bio_vec
),
549 * The bios of the request may be started from the middle of
550 * the 'bvec' because of bio splitting, so we can't directly
551 * copy bio->bi_iov_vec to new bvec. The rq_for_each_bvec
552 * API will take care of all details for us.
554 rq_for_each_bvec(tmp
, rq
, rq_iter
) {
562 * Same here, this bio may be started from the middle of the
563 * 'bvec' because of bio splitting, so offset from the bvec
564 * must be passed to iov iterator
566 offset
= bio
->bi_iter
.bi_bvec_done
;
567 bvec
= __bvec_iter_bvec(bio
->bi_io_vec
, bio
->bi_iter
);
569 atomic_set(&cmd
->ref
, 2);
571 iov_iter_bvec(&iter
, rw
, bvec
, nr_bvec
, blk_rq_bytes(rq
));
572 iter
.iov_offset
= offset
;
574 cmd
->iocb
.ki_pos
= pos
;
575 cmd
->iocb
.ki_filp
= file
;
576 cmd
->iocb
.ki_complete
= lo_rw_aio_complete
;
577 cmd
->iocb
.ki_flags
= IOCB_DIRECT
;
578 cmd
->iocb
.ki_ioprio
= IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE
, 0);
580 kthread_associate_blkcg(cmd
->css
);
583 ret
= call_write_iter(file
, &cmd
->iocb
, &iter
);
585 ret
= call_read_iter(file
, &cmd
->iocb
, &iter
);
587 lo_rw_aio_do_completion(cmd
);
588 kthread_associate_blkcg(NULL
);
590 if (ret
!= -EIOCBQUEUED
)
591 cmd
->iocb
.ki_complete(&cmd
->iocb
, ret
, 0);
595 static int do_req_filebacked(struct loop_device
*lo
, struct request
*rq
)
597 struct loop_cmd
*cmd
= blk_mq_rq_to_pdu(rq
);
598 loff_t pos
= ((loff_t
) blk_rq_pos(rq
) << 9) + lo
->lo_offset
;
601 * lo_write_simple and lo_read_simple should have been covered
602 * by io submit style function like lo_rw_aio(), one blocker
603 * is that lo_read_simple() need to call flush_dcache_page after
604 * the page is written from kernel, and it isn't easy to handle
605 * this in io submit style function which submits all segments
606 * of the req at one time. And direct read IO doesn't need to
607 * run flush_dcache_page().
609 switch (req_op(rq
)) {
611 return lo_req_flush(lo
, rq
);
612 case REQ_OP_WRITE_ZEROES
:
614 * If the caller doesn't want deallocation, call zeroout to
615 * write zeroes the range. Otherwise, punch them out.
617 return lo_fallocate(lo
, rq
, pos
,
618 (rq
->cmd_flags
& REQ_NOUNMAP
) ?
619 FALLOC_FL_ZERO_RANGE
:
620 FALLOC_FL_PUNCH_HOLE
);
622 return lo_fallocate(lo
, rq
, pos
, FALLOC_FL_PUNCH_HOLE
);
625 return lo_write_transfer(lo
, rq
, pos
);
626 else if (cmd
->use_aio
)
627 return lo_rw_aio(lo
, cmd
, pos
, WRITE
);
629 return lo_write_simple(lo
, rq
, pos
);
632 return lo_read_transfer(lo
, rq
, pos
);
633 else if (cmd
->use_aio
)
634 return lo_rw_aio(lo
, cmd
, pos
, READ
);
636 return lo_read_simple(lo
, rq
, pos
);
643 static inline void loop_update_dio(struct loop_device
*lo
)
645 __loop_update_dio(lo
, (lo
->lo_backing_file
->f_flags
& O_DIRECT
) |
649 static void loop_reread_partitions(struct loop_device
*lo
,
650 struct block_device
*bdev
)
654 mutex_lock(&bdev
->bd_mutex
);
655 rc
= bdev_disk_changed(bdev
, false);
656 mutex_unlock(&bdev
->bd_mutex
);
658 pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n",
659 __func__
, lo
->lo_number
, lo
->lo_file_name
, rc
);
662 static inline int is_loop_device(struct file
*file
)
664 struct inode
*i
= file
->f_mapping
->host
;
666 return i
&& S_ISBLK(i
->i_mode
) && MAJOR(i
->i_rdev
) == LOOP_MAJOR
;
669 static int loop_validate_file(struct file
*file
, struct block_device
*bdev
)
671 struct inode
*inode
= file
->f_mapping
->host
;
672 struct file
*f
= file
;
674 /* Avoid recursion */
675 while (is_loop_device(f
)) {
676 struct loop_device
*l
;
678 if (f
->f_mapping
->host
->i_rdev
== bdev
->bd_dev
)
681 l
= I_BDEV(f
->f_mapping
->host
)->bd_disk
->private_data
;
682 if (l
->lo_state
!= Lo_bound
) {
685 f
= l
->lo_backing_file
;
687 if (!S_ISREG(inode
->i_mode
) && !S_ISBLK(inode
->i_mode
))
693 * loop_change_fd switched the backing store of a loopback device to
694 * a new file. This is useful for operating system installers to free up
695 * the original file and in High Availability environments to switch to
696 * an alternative location for the content in case of server meltdown.
697 * This can only work if the loop device is used read-only, and if the
698 * new backing store is the same size and type as the old backing store.
700 static int loop_change_fd(struct loop_device
*lo
, struct block_device
*bdev
,
703 struct file
*file
= NULL
, *old_file
;
707 error
= mutex_lock_killable(&loop_ctl_mutex
);
711 if (lo
->lo_state
!= Lo_bound
)
714 /* the loop device has to be read-only */
716 if (!(lo
->lo_flags
& LO_FLAGS_READ_ONLY
))
724 error
= loop_validate_file(file
, bdev
);
728 old_file
= lo
->lo_backing_file
;
732 /* size of the new backing store needs to be the same */
733 if (get_loop_size(lo
, file
) != get_loop_size(lo
, old_file
))
737 blk_mq_freeze_queue(lo
->lo_queue
);
738 mapping_set_gfp_mask(old_file
->f_mapping
, lo
->old_gfp_mask
);
739 lo
->lo_backing_file
= file
;
740 lo
->old_gfp_mask
= mapping_gfp_mask(file
->f_mapping
);
741 mapping_set_gfp_mask(file
->f_mapping
,
742 lo
->old_gfp_mask
& ~(__GFP_IO
|__GFP_FS
));
744 blk_mq_unfreeze_queue(lo
->lo_queue
);
745 partscan
= lo
->lo_flags
& LO_FLAGS_PARTSCAN
;
746 mutex_unlock(&loop_ctl_mutex
);
748 * We must drop file reference outside of loop_ctl_mutex as dropping
749 * the file ref can take bd_mutex which creates circular locking
754 loop_reread_partitions(lo
, bdev
);
758 mutex_unlock(&loop_ctl_mutex
);
764 /* loop sysfs attributes */
766 static ssize_t
loop_attr_show(struct device
*dev
, char *page
,
767 ssize_t (*callback
)(struct loop_device
*, char *))
769 struct gendisk
*disk
= dev_to_disk(dev
);
770 struct loop_device
*lo
= disk
->private_data
;
772 return callback(lo
, page
);
775 #define LOOP_ATTR_RO(_name) \
776 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \
777 static ssize_t loop_attr_do_show_##_name(struct device *d, \
778 struct device_attribute *attr, char *b) \
780 return loop_attr_show(d, b, loop_attr_##_name##_show); \
782 static struct device_attribute loop_attr_##_name = \
783 __ATTR(_name, 0444, loop_attr_do_show_##_name, NULL);
785 static ssize_t
loop_attr_backing_file_show(struct loop_device
*lo
, char *buf
)
790 spin_lock_irq(&lo
->lo_lock
);
791 if (lo
->lo_backing_file
)
792 p
= file_path(lo
->lo_backing_file
, buf
, PAGE_SIZE
- 1);
793 spin_unlock_irq(&lo
->lo_lock
);
795 if (IS_ERR_OR_NULL(p
))
799 memmove(buf
, p
, ret
);
807 static ssize_t
loop_attr_offset_show(struct loop_device
*lo
, char *buf
)
809 return sprintf(buf
, "%llu\n", (unsigned long long)lo
->lo_offset
);
812 static ssize_t
loop_attr_sizelimit_show(struct loop_device
*lo
, char *buf
)
814 return sprintf(buf
, "%llu\n", (unsigned long long)lo
->lo_sizelimit
);
817 static ssize_t
loop_attr_autoclear_show(struct loop_device
*lo
, char *buf
)
819 int autoclear
= (lo
->lo_flags
& LO_FLAGS_AUTOCLEAR
);
821 return sprintf(buf
, "%s\n", autoclear
? "1" : "0");
824 static ssize_t
loop_attr_partscan_show(struct loop_device
*lo
, char *buf
)
826 int partscan
= (lo
->lo_flags
& LO_FLAGS_PARTSCAN
);
828 return sprintf(buf
, "%s\n", partscan
? "1" : "0");
831 static ssize_t
loop_attr_dio_show(struct loop_device
*lo
, char *buf
)
833 int dio
= (lo
->lo_flags
& LO_FLAGS_DIRECT_IO
);
835 return sprintf(buf
, "%s\n", dio
? "1" : "0");
838 LOOP_ATTR_RO(backing_file
);
839 LOOP_ATTR_RO(offset
);
840 LOOP_ATTR_RO(sizelimit
);
841 LOOP_ATTR_RO(autoclear
);
842 LOOP_ATTR_RO(partscan
);
845 static struct attribute
*loop_attrs
[] = {
846 &loop_attr_backing_file
.attr
,
847 &loop_attr_offset
.attr
,
848 &loop_attr_sizelimit
.attr
,
849 &loop_attr_autoclear
.attr
,
850 &loop_attr_partscan
.attr
,
855 static struct attribute_group loop_attribute_group
= {
860 static void loop_sysfs_init(struct loop_device
*lo
)
862 lo
->sysfs_inited
= !sysfs_create_group(&disk_to_dev(lo
->lo_disk
)->kobj
,
863 &loop_attribute_group
);
866 static void loop_sysfs_exit(struct loop_device
*lo
)
868 if (lo
->sysfs_inited
)
869 sysfs_remove_group(&disk_to_dev(lo
->lo_disk
)->kobj
,
870 &loop_attribute_group
);
873 static void loop_config_discard(struct loop_device
*lo
)
875 struct file
*file
= lo
->lo_backing_file
;
876 struct inode
*inode
= file
->f_mapping
->host
;
877 struct request_queue
*q
= lo
->lo_queue
;
878 u32 granularity
, max_discard_sectors
;
881 * If the backing device is a block device, mirror its zeroing
882 * capability. Set the discard sectors to the block device's zeroing
883 * capabilities because loop discards result in blkdev_issue_zeroout(),
884 * not blkdev_issue_discard(). This maintains consistent behavior with
885 * file-backed loop devices: discarded regions read back as zero.
887 if (S_ISBLK(inode
->i_mode
) && !lo
->lo_encrypt_key_size
) {
888 struct request_queue
*backingq
= bdev_get_queue(I_BDEV(inode
));
890 max_discard_sectors
= backingq
->limits
.max_write_zeroes_sectors
;
891 granularity
= backingq
->limits
.discard_granularity
?:
892 queue_physical_block_size(backingq
);
895 * We use punch hole to reclaim the free space used by the
896 * image a.k.a. discard. However we do not support discard if
897 * encryption is enabled, because it may give an attacker
898 * useful information.
900 } else if (!file
->f_op
->fallocate
|| lo
->lo_encrypt_key_size
) {
901 max_discard_sectors
= 0;
905 max_discard_sectors
= UINT_MAX
>> 9;
906 granularity
= inode
->i_sb
->s_blocksize
;
909 if (max_discard_sectors
) {
910 q
->limits
.discard_granularity
= granularity
;
911 blk_queue_max_discard_sectors(q
, max_discard_sectors
);
912 blk_queue_max_write_zeroes_sectors(q
, max_discard_sectors
);
913 blk_queue_flag_set(QUEUE_FLAG_DISCARD
, q
);
915 q
->limits
.discard_granularity
= 0;
916 blk_queue_max_discard_sectors(q
, 0);
917 blk_queue_max_write_zeroes_sectors(q
, 0);
918 blk_queue_flag_clear(QUEUE_FLAG_DISCARD
, q
);
920 q
->limits
.discard_alignment
= 0;
923 static void loop_unprepare_queue(struct loop_device
*lo
)
925 kthread_flush_worker(&lo
->worker
);
926 kthread_stop(lo
->worker_task
);
929 static int loop_kthread_worker_fn(void *worker_ptr
)
931 current
->flags
|= PF_LOCAL_THROTTLE
| PF_MEMALLOC_NOIO
;
932 return kthread_worker_fn(worker_ptr
);
935 static int loop_prepare_queue(struct loop_device
*lo
)
937 kthread_init_worker(&lo
->worker
);
938 lo
->worker_task
= kthread_run(loop_kthread_worker_fn
,
939 &lo
->worker
, "loop%d", lo
->lo_number
);
940 if (IS_ERR(lo
->worker_task
))
942 set_user_nice(lo
->worker_task
, MIN_NICE
);
946 static void loop_update_rotational(struct loop_device
*lo
)
948 struct file
*file
= lo
->lo_backing_file
;
949 struct inode
*file_inode
= file
->f_mapping
->host
;
950 struct block_device
*file_bdev
= file_inode
->i_sb
->s_bdev
;
951 struct request_queue
*q
= lo
->lo_queue
;
954 /* not all filesystems (e.g. tmpfs) have a sb->s_bdev */
956 nonrot
= blk_queue_nonrot(bdev_get_queue(file_bdev
));
959 blk_queue_flag_set(QUEUE_FLAG_NONROT
, q
);
961 blk_queue_flag_clear(QUEUE_FLAG_NONROT
, q
);
965 loop_release_xfer(struct loop_device
*lo
)
968 struct loop_func_table
*xfer
= lo
->lo_encryption
;
972 err
= xfer
->release(lo
);
974 lo
->lo_encryption
= NULL
;
975 module_put(xfer
->owner
);
981 loop_init_xfer(struct loop_device
*lo
, struct loop_func_table
*xfer
,
982 const struct loop_info64
*i
)
987 struct module
*owner
= xfer
->owner
;
989 if (!try_module_get(owner
))
992 err
= xfer
->init(lo
, i
);
996 lo
->lo_encryption
= xfer
;
1002 * loop_set_status_from_info - configure device from loop_info
1003 * @lo: struct loop_device to configure
1004 * @info: struct loop_info64 to configure the device with
1006 * Configures the loop device parameters according to the passed
1007 * in loop_info64 configuration.
1010 loop_set_status_from_info(struct loop_device
*lo
,
1011 const struct loop_info64
*info
)
1014 struct loop_func_table
*xfer
;
1015 kuid_t uid
= current_uid();
1017 if ((unsigned int) info
->lo_encrypt_key_size
> LO_KEY_SIZE
)
1020 err
= loop_release_xfer(lo
);
1024 if (info
->lo_encrypt_type
) {
1025 unsigned int type
= info
->lo_encrypt_type
;
1027 if (type
>= MAX_LO_CRYPT
)
1029 xfer
= xfer_funcs
[type
];
1035 err
= loop_init_xfer(lo
, xfer
, info
);
1039 lo
->lo_offset
= info
->lo_offset
;
1040 lo
->lo_sizelimit
= info
->lo_sizelimit
;
1041 memcpy(lo
->lo_file_name
, info
->lo_file_name
, LO_NAME_SIZE
);
1042 memcpy(lo
->lo_crypt_name
, info
->lo_crypt_name
, LO_NAME_SIZE
);
1043 lo
->lo_file_name
[LO_NAME_SIZE
-1] = 0;
1044 lo
->lo_crypt_name
[LO_NAME_SIZE
-1] = 0;
1048 lo
->transfer
= xfer
->transfer
;
1049 lo
->ioctl
= xfer
->ioctl
;
1051 lo
->lo_flags
= info
->lo_flags
;
1053 lo
->lo_encrypt_key_size
= info
->lo_encrypt_key_size
;
1054 lo
->lo_init
[0] = info
->lo_init
[0];
1055 lo
->lo_init
[1] = info
->lo_init
[1];
1056 if (info
->lo_encrypt_key_size
) {
1057 memcpy(lo
->lo_encrypt_key
, info
->lo_encrypt_key
,
1058 info
->lo_encrypt_key_size
);
1059 lo
->lo_key_owner
= uid
;
1065 static int loop_configure(struct loop_device
*lo
, fmode_t mode
,
1066 struct block_device
*bdev
,
1067 const struct loop_config
*config
)
1070 struct inode
*inode
;
1071 struct address_space
*mapping
;
1075 unsigned short bsize
;
1077 /* This is safe, since we have a reference from open(). */
1078 __module_get(THIS_MODULE
);
1081 file
= fget(config
->fd
);
1086 * If we don't hold exclusive handle for the device, upgrade to it
1087 * here to avoid changing device under exclusive owner.
1089 if (!(mode
& FMODE_EXCL
)) {
1090 error
= bd_prepare_to_claim(bdev
, loop_configure
);
1095 error
= mutex_lock_killable(&loop_ctl_mutex
);
1100 if (lo
->lo_state
!= Lo_unbound
)
1103 error
= loop_validate_file(file
, bdev
);
1107 mapping
= file
->f_mapping
;
1108 inode
= mapping
->host
;
1110 if ((config
->info
.lo_flags
& ~LOOP_CONFIGURE_SETTABLE_FLAGS
) != 0) {
1115 if (config
->block_size
) {
1116 error
= loop_validate_block_size(config
->block_size
);
1121 error
= loop_set_status_from_info(lo
, &config
->info
);
1125 if (!(file
->f_mode
& FMODE_WRITE
) || !(mode
& FMODE_WRITE
) ||
1126 !file
->f_op
->write_iter
)
1127 lo
->lo_flags
|= LO_FLAGS_READ_ONLY
;
1129 error
= loop_prepare_queue(lo
);
1133 set_disk_ro(lo
->lo_disk
, (lo
->lo_flags
& LO_FLAGS_READ_ONLY
) != 0);
1135 lo
->use_dio
= lo
->lo_flags
& LO_FLAGS_DIRECT_IO
;
1136 lo
->lo_device
= bdev
;
1137 lo
->lo_backing_file
= file
;
1138 lo
->old_gfp_mask
= mapping_gfp_mask(mapping
);
1139 mapping_set_gfp_mask(mapping
, lo
->old_gfp_mask
& ~(__GFP_IO
|__GFP_FS
));
1141 if (!(lo
->lo_flags
& LO_FLAGS_READ_ONLY
) && file
->f_op
->fsync
)
1142 blk_queue_write_cache(lo
->lo_queue
, true, false);
1144 if (config
->block_size
)
1145 bsize
= config
->block_size
;
1146 else if ((lo
->lo_backing_file
->f_flags
& O_DIRECT
) && inode
->i_sb
->s_bdev
)
1147 /* In case of direct I/O, match underlying block size */
1148 bsize
= bdev_logical_block_size(inode
->i_sb
->s_bdev
);
1152 blk_queue_logical_block_size(lo
->lo_queue
, bsize
);
1153 blk_queue_physical_block_size(lo
->lo_queue
, bsize
);
1154 blk_queue_io_min(lo
->lo_queue
, bsize
);
1156 loop_update_rotational(lo
);
1157 loop_update_dio(lo
);
1158 loop_sysfs_init(lo
);
1160 size
= get_loop_size(lo
, file
);
1161 loop_set_size(lo
, size
);
1163 lo
->lo_state
= Lo_bound
;
1165 lo
->lo_flags
|= LO_FLAGS_PARTSCAN
;
1166 partscan
= lo
->lo_flags
& LO_FLAGS_PARTSCAN
;
1168 lo
->lo_disk
->flags
&= ~GENHD_FL_NO_PART_SCAN
;
1170 /* Grab the block_device to prevent its destruction after we
1171 * put /dev/loopXX inode. Later in __loop_clr_fd() we bdput(bdev).
1174 mutex_unlock(&loop_ctl_mutex
);
1176 loop_reread_partitions(lo
, bdev
);
1177 if (!(mode
& FMODE_EXCL
))
1178 bd_abort_claiming(bdev
, loop_configure
);
1182 mutex_unlock(&loop_ctl_mutex
);
1184 if (!(mode
& FMODE_EXCL
))
1185 bd_abort_claiming(bdev
, loop_configure
);
1189 /* This is safe: open() is still holding a reference. */
1190 module_put(THIS_MODULE
);
1194 static int __loop_clr_fd(struct loop_device
*lo
, bool release
)
1196 struct file
*filp
= NULL
;
1197 gfp_t gfp
= lo
->old_gfp_mask
;
1198 struct block_device
*bdev
= lo
->lo_device
;
1200 bool partscan
= false;
1203 mutex_lock(&loop_ctl_mutex
);
1204 if (WARN_ON_ONCE(lo
->lo_state
!= Lo_rundown
)) {
1209 filp
= lo
->lo_backing_file
;
1215 /* freeze request queue during the transition */
1216 blk_mq_freeze_queue(lo
->lo_queue
);
1218 spin_lock_irq(&lo
->lo_lock
);
1219 lo
->lo_backing_file
= NULL
;
1220 spin_unlock_irq(&lo
->lo_lock
);
1222 loop_release_xfer(lo
);
1223 lo
->transfer
= NULL
;
1225 lo
->lo_device
= NULL
;
1226 lo
->lo_encryption
= NULL
;
1228 lo
->lo_sizelimit
= 0;
1229 lo
->lo_encrypt_key_size
= 0;
1230 memset(lo
->lo_encrypt_key
, 0, LO_KEY_SIZE
);
1231 memset(lo
->lo_crypt_name
, 0, LO_NAME_SIZE
);
1232 memset(lo
->lo_file_name
, 0, LO_NAME_SIZE
);
1233 blk_queue_logical_block_size(lo
->lo_queue
, 512);
1234 blk_queue_physical_block_size(lo
->lo_queue
, 512);
1235 blk_queue_io_min(lo
->lo_queue
, 512);
1238 invalidate_bdev(bdev
);
1239 bdev
->bd_inode
->i_mapping
->wb_err
= 0;
1241 set_capacity(lo
->lo_disk
, 0);
1242 loop_sysfs_exit(lo
);
1244 /* let user-space know about this change */
1245 kobject_uevent(&disk_to_dev(bdev
->bd_disk
)->kobj
, KOBJ_CHANGE
);
1247 mapping_set_gfp_mask(filp
->f_mapping
, gfp
);
1248 /* This is safe: open() is still holding a reference. */
1249 module_put(THIS_MODULE
);
1250 blk_mq_unfreeze_queue(lo
->lo_queue
);
1252 partscan
= lo
->lo_flags
& LO_FLAGS_PARTSCAN
&& bdev
;
1253 lo_number
= lo
->lo_number
;
1254 loop_unprepare_queue(lo
);
1256 mutex_unlock(&loop_ctl_mutex
);
1259 * bd_mutex has been held already in release path, so don't
1260 * acquire it if this function is called in such case.
1262 * If the reread partition isn't from release path, lo_refcnt
1263 * must be at least one and it can only become zero when the
1264 * current holder is released.
1267 mutex_lock(&bdev
->bd_mutex
);
1268 err
= bdev_disk_changed(bdev
, false);
1270 mutex_unlock(&bdev
->bd_mutex
);
1272 pr_warn("%s: partition scan of loop%d failed (rc=%d)\n",
1273 __func__
, lo_number
, err
);
1274 /* Device is gone, no point in returning error */
1279 * lo->lo_state is set to Lo_unbound here after above partscan has
1282 * There cannot be anybody else entering __loop_clr_fd() as
1283 * lo->lo_backing_file is already cleared and Lo_rundown state
1284 * protects us from all the other places trying to change the 'lo'
1287 mutex_lock(&loop_ctl_mutex
);
1290 lo
->lo_disk
->flags
|= GENHD_FL_NO_PART_SCAN
;
1291 lo
->lo_state
= Lo_unbound
;
1292 mutex_unlock(&loop_ctl_mutex
);
1295 * Need not hold loop_ctl_mutex to fput backing file.
1296 * Calling fput holding loop_ctl_mutex triggers a circular
1297 * lock dependency possibility warning as fput can take
1298 * bd_mutex which is usually taken before loop_ctl_mutex.
1305 static int loop_clr_fd(struct loop_device
*lo
)
1309 err
= mutex_lock_killable(&loop_ctl_mutex
);
1312 if (lo
->lo_state
!= Lo_bound
) {
1313 mutex_unlock(&loop_ctl_mutex
);
1317 * If we've explicitly asked to tear down the loop device,
1318 * and it has an elevated reference count, set it for auto-teardown when
1319 * the last reference goes away. This stops $!~#$@ udev from
1320 * preventing teardown because it decided that it needs to run blkid on
1321 * the loopback device whenever they appear. xfstests is notorious for
1322 * failing tests because blkid via udev races with a losetup
1323 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d
1324 * command to fail with EBUSY.
1326 if (atomic_read(&lo
->lo_refcnt
) > 1) {
1327 lo
->lo_flags
|= LO_FLAGS_AUTOCLEAR
;
1328 mutex_unlock(&loop_ctl_mutex
);
1331 lo
->lo_state
= Lo_rundown
;
1332 mutex_unlock(&loop_ctl_mutex
);
1334 return __loop_clr_fd(lo
, false);
1338 loop_set_status(struct loop_device
*lo
, const struct loop_info64
*info
)
1341 struct block_device
*bdev
;
1342 kuid_t uid
= current_uid();
1344 bool partscan
= false;
1345 bool size_changed
= false;
1347 err
= mutex_lock_killable(&loop_ctl_mutex
);
1350 if (lo
->lo_encrypt_key_size
&&
1351 !uid_eq(lo
->lo_key_owner
, uid
) &&
1352 !capable(CAP_SYS_ADMIN
)) {
1356 if (lo
->lo_state
!= Lo_bound
) {
1361 if (lo
->lo_offset
!= info
->lo_offset
||
1362 lo
->lo_sizelimit
!= info
->lo_sizelimit
) {
1363 size_changed
= true;
1364 sync_blockdev(lo
->lo_device
);
1365 invalidate_bdev(lo
->lo_device
);
1368 /* I/O need to be drained during transfer transition */
1369 blk_mq_freeze_queue(lo
->lo_queue
);
1371 if (size_changed
&& lo
->lo_device
->bd_inode
->i_mapping
->nrpages
) {
1372 /* If any pages were dirtied after invalidate_bdev(), try again */
1374 pr_warn("%s: loop%d (%s) has still dirty pages (nrpages=%lu)\n",
1375 __func__
, lo
->lo_number
, lo
->lo_file_name
,
1376 lo
->lo_device
->bd_inode
->i_mapping
->nrpages
);
1380 prev_lo_flags
= lo
->lo_flags
;
1382 err
= loop_set_status_from_info(lo
, info
);
1386 /* Mask out flags that can't be set using LOOP_SET_STATUS. */
1387 lo
->lo_flags
&= LOOP_SET_STATUS_SETTABLE_FLAGS
;
1388 /* For those flags, use the previous values instead */
1389 lo
->lo_flags
|= prev_lo_flags
& ~LOOP_SET_STATUS_SETTABLE_FLAGS
;
1390 /* For flags that can't be cleared, use previous values too */
1391 lo
->lo_flags
|= prev_lo_flags
& ~LOOP_SET_STATUS_CLEARABLE_FLAGS
;
1394 loff_t new_size
= get_size(lo
->lo_offset
, lo
->lo_sizelimit
,
1395 lo
->lo_backing_file
);
1396 loop_set_size(lo
, new_size
);
1399 loop_config_discard(lo
);
1401 /* update dio if lo_offset or transfer is changed */
1402 __loop_update_dio(lo
, lo
->use_dio
);
1405 blk_mq_unfreeze_queue(lo
->lo_queue
);
1407 if (!err
&& (lo
->lo_flags
& LO_FLAGS_PARTSCAN
) &&
1408 !(prev_lo_flags
& LO_FLAGS_PARTSCAN
)) {
1409 lo
->lo_disk
->flags
&= ~GENHD_FL_NO_PART_SCAN
;
1410 bdev
= lo
->lo_device
;
1414 mutex_unlock(&loop_ctl_mutex
);
1416 loop_reread_partitions(lo
, bdev
);
1422 loop_get_status(struct loop_device
*lo
, struct loop_info64
*info
)
1428 ret
= mutex_lock_killable(&loop_ctl_mutex
);
1431 if (lo
->lo_state
!= Lo_bound
) {
1432 mutex_unlock(&loop_ctl_mutex
);
1436 memset(info
, 0, sizeof(*info
));
1437 info
->lo_number
= lo
->lo_number
;
1438 info
->lo_offset
= lo
->lo_offset
;
1439 info
->lo_sizelimit
= lo
->lo_sizelimit
;
1440 info
->lo_flags
= lo
->lo_flags
;
1441 memcpy(info
->lo_file_name
, lo
->lo_file_name
, LO_NAME_SIZE
);
1442 memcpy(info
->lo_crypt_name
, lo
->lo_crypt_name
, LO_NAME_SIZE
);
1443 info
->lo_encrypt_type
=
1444 lo
->lo_encryption
? lo
->lo_encryption
->number
: 0;
1445 if (lo
->lo_encrypt_key_size
&& capable(CAP_SYS_ADMIN
)) {
1446 info
->lo_encrypt_key_size
= lo
->lo_encrypt_key_size
;
1447 memcpy(info
->lo_encrypt_key
, lo
->lo_encrypt_key
,
1448 lo
->lo_encrypt_key_size
);
1451 /* Drop loop_ctl_mutex while we call into the filesystem. */
1452 path
= lo
->lo_backing_file
->f_path
;
1454 mutex_unlock(&loop_ctl_mutex
);
1455 ret
= vfs_getattr(&path
, &stat
, STATX_INO
, AT_STATX_SYNC_AS_STAT
);
1457 info
->lo_device
= huge_encode_dev(stat
.dev
);
1458 info
->lo_inode
= stat
.ino
;
1459 info
->lo_rdevice
= huge_encode_dev(stat
.rdev
);
1466 loop_info64_from_old(const struct loop_info
*info
, struct loop_info64
*info64
)
1468 memset(info64
, 0, sizeof(*info64
));
1469 info64
->lo_number
= info
->lo_number
;
1470 info64
->lo_device
= info
->lo_device
;
1471 info64
->lo_inode
= info
->lo_inode
;
1472 info64
->lo_rdevice
= info
->lo_rdevice
;
1473 info64
->lo_offset
= info
->lo_offset
;
1474 info64
->lo_sizelimit
= 0;
1475 info64
->lo_encrypt_type
= info
->lo_encrypt_type
;
1476 info64
->lo_encrypt_key_size
= info
->lo_encrypt_key_size
;
1477 info64
->lo_flags
= info
->lo_flags
;
1478 info64
->lo_init
[0] = info
->lo_init
[0];
1479 info64
->lo_init
[1] = info
->lo_init
[1];
1480 if (info
->lo_encrypt_type
== LO_CRYPT_CRYPTOAPI
)
1481 memcpy(info64
->lo_crypt_name
, info
->lo_name
, LO_NAME_SIZE
);
1483 memcpy(info64
->lo_file_name
, info
->lo_name
, LO_NAME_SIZE
);
1484 memcpy(info64
->lo_encrypt_key
, info
->lo_encrypt_key
, LO_KEY_SIZE
);
1488 loop_info64_to_old(const struct loop_info64
*info64
, struct loop_info
*info
)
1490 memset(info
, 0, sizeof(*info
));
1491 info
->lo_number
= info64
->lo_number
;
1492 info
->lo_device
= info64
->lo_device
;
1493 info
->lo_inode
= info64
->lo_inode
;
1494 info
->lo_rdevice
= info64
->lo_rdevice
;
1495 info
->lo_offset
= info64
->lo_offset
;
1496 info
->lo_encrypt_type
= info64
->lo_encrypt_type
;
1497 info
->lo_encrypt_key_size
= info64
->lo_encrypt_key_size
;
1498 info
->lo_flags
= info64
->lo_flags
;
1499 info
->lo_init
[0] = info64
->lo_init
[0];
1500 info
->lo_init
[1] = info64
->lo_init
[1];
1501 if (info
->lo_encrypt_type
== LO_CRYPT_CRYPTOAPI
)
1502 memcpy(info
->lo_name
, info64
->lo_crypt_name
, LO_NAME_SIZE
);
1504 memcpy(info
->lo_name
, info64
->lo_file_name
, LO_NAME_SIZE
);
1505 memcpy(info
->lo_encrypt_key
, info64
->lo_encrypt_key
, LO_KEY_SIZE
);
1507 /* error in case values were truncated */
1508 if (info
->lo_device
!= info64
->lo_device
||
1509 info
->lo_rdevice
!= info64
->lo_rdevice
||
1510 info
->lo_inode
!= info64
->lo_inode
||
1511 info
->lo_offset
!= info64
->lo_offset
)
1518 loop_set_status_old(struct loop_device
*lo
, const struct loop_info __user
*arg
)
1520 struct loop_info info
;
1521 struct loop_info64 info64
;
1523 if (copy_from_user(&info
, arg
, sizeof (struct loop_info
)))
1525 loop_info64_from_old(&info
, &info64
);
1526 return loop_set_status(lo
, &info64
);
1530 loop_set_status64(struct loop_device
*lo
, const struct loop_info64 __user
*arg
)
1532 struct loop_info64 info64
;
1534 if (copy_from_user(&info64
, arg
, sizeof (struct loop_info64
)))
1536 return loop_set_status(lo
, &info64
);
1540 loop_get_status_old(struct loop_device
*lo
, struct loop_info __user
*arg
) {
1541 struct loop_info info
;
1542 struct loop_info64 info64
;
1547 err
= loop_get_status(lo
, &info64
);
1549 err
= loop_info64_to_old(&info64
, &info
);
1550 if (!err
&& copy_to_user(arg
, &info
, sizeof(info
)))
1557 loop_get_status64(struct loop_device
*lo
, struct loop_info64 __user
*arg
) {
1558 struct loop_info64 info64
;
1563 err
= loop_get_status(lo
, &info64
);
1564 if (!err
&& copy_to_user(arg
, &info64
, sizeof(info64
)))
1570 static int loop_set_capacity(struct loop_device
*lo
)
1574 if (unlikely(lo
->lo_state
!= Lo_bound
))
1577 size
= get_loop_size(lo
, lo
->lo_backing_file
);
1578 loop_set_size(lo
, size
);
1583 static int loop_set_dio(struct loop_device
*lo
, unsigned long arg
)
1586 if (lo
->lo_state
!= Lo_bound
)
1589 __loop_update_dio(lo
, !!arg
);
1590 if (lo
->use_dio
== !!arg
)
1597 static int loop_set_block_size(struct loop_device
*lo
, unsigned long arg
)
1601 if (lo
->lo_state
!= Lo_bound
)
1604 err
= loop_validate_block_size(arg
);
1608 if (lo
->lo_queue
->limits
.logical_block_size
== arg
)
1611 sync_blockdev(lo
->lo_device
);
1612 invalidate_bdev(lo
->lo_device
);
1614 blk_mq_freeze_queue(lo
->lo_queue
);
1616 /* invalidate_bdev should have truncated all the pages */
1617 if (lo
->lo_device
->bd_inode
->i_mapping
->nrpages
) {
1619 pr_warn("%s: loop%d (%s) has still dirty pages (nrpages=%lu)\n",
1620 __func__
, lo
->lo_number
, lo
->lo_file_name
,
1621 lo
->lo_device
->bd_inode
->i_mapping
->nrpages
);
1625 blk_queue_logical_block_size(lo
->lo_queue
, arg
);
1626 blk_queue_physical_block_size(lo
->lo_queue
, arg
);
1627 blk_queue_io_min(lo
->lo_queue
, arg
);
1628 loop_update_dio(lo
);
1630 blk_mq_unfreeze_queue(lo
->lo_queue
);
1635 static int lo_simple_ioctl(struct loop_device
*lo
, unsigned int cmd
,
1640 err
= mutex_lock_killable(&loop_ctl_mutex
);
1644 case LOOP_SET_CAPACITY
:
1645 err
= loop_set_capacity(lo
);
1647 case LOOP_SET_DIRECT_IO
:
1648 err
= loop_set_dio(lo
, arg
);
1650 case LOOP_SET_BLOCK_SIZE
:
1651 err
= loop_set_block_size(lo
, arg
);
1654 err
= lo
->ioctl
? lo
->ioctl(lo
, cmd
, arg
) : -EINVAL
;
1656 mutex_unlock(&loop_ctl_mutex
);
1660 static int lo_ioctl(struct block_device
*bdev
, fmode_t mode
,
1661 unsigned int cmd
, unsigned long arg
)
1663 struct loop_device
*lo
= bdev
->bd_disk
->private_data
;
1664 void __user
*argp
= (void __user
*) arg
;
1670 * Legacy case - pass in a zeroed out struct loop_config with
1671 * only the file descriptor set , which corresponds with the
1672 * default parameters we'd have used otherwise.
1674 struct loop_config config
;
1676 memset(&config
, 0, sizeof(config
));
1679 return loop_configure(lo
, mode
, bdev
, &config
);
1681 case LOOP_CONFIGURE
: {
1682 struct loop_config config
;
1684 if (copy_from_user(&config
, argp
, sizeof(config
)))
1687 return loop_configure(lo
, mode
, bdev
, &config
);
1689 case LOOP_CHANGE_FD
:
1690 return loop_change_fd(lo
, bdev
, arg
);
1692 return loop_clr_fd(lo
);
1693 case LOOP_SET_STATUS
:
1695 if ((mode
& FMODE_WRITE
) || capable(CAP_SYS_ADMIN
)) {
1696 err
= loop_set_status_old(lo
, argp
);
1699 case LOOP_GET_STATUS
:
1700 return loop_get_status_old(lo
, argp
);
1701 case LOOP_SET_STATUS64
:
1703 if ((mode
& FMODE_WRITE
) || capable(CAP_SYS_ADMIN
)) {
1704 err
= loop_set_status64(lo
, argp
);
1707 case LOOP_GET_STATUS64
:
1708 return loop_get_status64(lo
, argp
);
1709 case LOOP_SET_CAPACITY
:
1710 case LOOP_SET_DIRECT_IO
:
1711 case LOOP_SET_BLOCK_SIZE
:
1712 if (!(mode
& FMODE_WRITE
) && !capable(CAP_SYS_ADMIN
))
1716 err
= lo_simple_ioctl(lo
, cmd
, arg
);
1723 #ifdef CONFIG_COMPAT
1724 struct compat_loop_info
{
1725 compat_int_t lo_number
; /* ioctl r/o */
1726 compat_dev_t lo_device
; /* ioctl r/o */
1727 compat_ulong_t lo_inode
; /* ioctl r/o */
1728 compat_dev_t lo_rdevice
; /* ioctl r/o */
1729 compat_int_t lo_offset
;
1730 compat_int_t lo_encrypt_type
;
1731 compat_int_t lo_encrypt_key_size
; /* ioctl w/o */
1732 compat_int_t lo_flags
; /* ioctl r/o */
1733 char lo_name
[LO_NAME_SIZE
];
1734 unsigned char lo_encrypt_key
[LO_KEY_SIZE
]; /* ioctl w/o */
1735 compat_ulong_t lo_init
[2];
1740 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1741 * - noinlined to reduce stack space usage in main part of driver
1744 loop_info64_from_compat(const struct compat_loop_info __user
*arg
,
1745 struct loop_info64
*info64
)
1747 struct compat_loop_info info
;
1749 if (copy_from_user(&info
, arg
, sizeof(info
)))
1752 memset(info64
, 0, sizeof(*info64
));
1753 info64
->lo_number
= info
.lo_number
;
1754 info64
->lo_device
= info
.lo_device
;
1755 info64
->lo_inode
= info
.lo_inode
;
1756 info64
->lo_rdevice
= info
.lo_rdevice
;
1757 info64
->lo_offset
= info
.lo_offset
;
1758 info64
->lo_sizelimit
= 0;
1759 info64
->lo_encrypt_type
= info
.lo_encrypt_type
;
1760 info64
->lo_encrypt_key_size
= info
.lo_encrypt_key_size
;
1761 info64
->lo_flags
= info
.lo_flags
;
1762 info64
->lo_init
[0] = info
.lo_init
[0];
1763 info64
->lo_init
[1] = info
.lo_init
[1];
1764 if (info
.lo_encrypt_type
== LO_CRYPT_CRYPTOAPI
)
1765 memcpy(info64
->lo_crypt_name
, info
.lo_name
, LO_NAME_SIZE
);
1767 memcpy(info64
->lo_file_name
, info
.lo_name
, LO_NAME_SIZE
);
1768 memcpy(info64
->lo_encrypt_key
, info
.lo_encrypt_key
, LO_KEY_SIZE
);
1773 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1774 * - noinlined to reduce stack space usage in main part of driver
1777 loop_info64_to_compat(const struct loop_info64
*info64
,
1778 struct compat_loop_info __user
*arg
)
1780 struct compat_loop_info info
;
1782 memset(&info
, 0, sizeof(info
));
1783 info
.lo_number
= info64
->lo_number
;
1784 info
.lo_device
= info64
->lo_device
;
1785 info
.lo_inode
= info64
->lo_inode
;
1786 info
.lo_rdevice
= info64
->lo_rdevice
;
1787 info
.lo_offset
= info64
->lo_offset
;
1788 info
.lo_encrypt_type
= info64
->lo_encrypt_type
;
1789 info
.lo_encrypt_key_size
= info64
->lo_encrypt_key_size
;
1790 info
.lo_flags
= info64
->lo_flags
;
1791 info
.lo_init
[0] = info64
->lo_init
[0];
1792 info
.lo_init
[1] = info64
->lo_init
[1];
1793 if (info
.lo_encrypt_type
== LO_CRYPT_CRYPTOAPI
)
1794 memcpy(info
.lo_name
, info64
->lo_crypt_name
, LO_NAME_SIZE
);
1796 memcpy(info
.lo_name
, info64
->lo_file_name
, LO_NAME_SIZE
);
1797 memcpy(info
.lo_encrypt_key
, info64
->lo_encrypt_key
, LO_KEY_SIZE
);
1799 /* error in case values were truncated */
1800 if (info
.lo_device
!= info64
->lo_device
||
1801 info
.lo_rdevice
!= info64
->lo_rdevice
||
1802 info
.lo_inode
!= info64
->lo_inode
||
1803 info
.lo_offset
!= info64
->lo_offset
||
1804 info
.lo_init
[0] != info64
->lo_init
[0] ||
1805 info
.lo_init
[1] != info64
->lo_init
[1])
1808 if (copy_to_user(arg
, &info
, sizeof(info
)))
1814 loop_set_status_compat(struct loop_device
*lo
,
1815 const struct compat_loop_info __user
*arg
)
1817 struct loop_info64 info64
;
1820 ret
= loop_info64_from_compat(arg
, &info64
);
1823 return loop_set_status(lo
, &info64
);
1827 loop_get_status_compat(struct loop_device
*lo
,
1828 struct compat_loop_info __user
*arg
)
1830 struct loop_info64 info64
;
1835 err
= loop_get_status(lo
, &info64
);
1837 err
= loop_info64_to_compat(&info64
, arg
);
1841 static int lo_compat_ioctl(struct block_device
*bdev
, fmode_t mode
,
1842 unsigned int cmd
, unsigned long arg
)
1844 struct loop_device
*lo
= bdev
->bd_disk
->private_data
;
1848 case LOOP_SET_STATUS
:
1849 err
= loop_set_status_compat(lo
,
1850 (const struct compat_loop_info __user
*)arg
);
1852 case LOOP_GET_STATUS
:
1853 err
= loop_get_status_compat(lo
,
1854 (struct compat_loop_info __user
*)arg
);
1856 case LOOP_SET_CAPACITY
:
1858 case LOOP_GET_STATUS64
:
1859 case LOOP_SET_STATUS64
:
1860 case LOOP_CONFIGURE
:
1861 arg
= (unsigned long) compat_ptr(arg
);
1864 case LOOP_CHANGE_FD
:
1865 case LOOP_SET_BLOCK_SIZE
:
1866 case LOOP_SET_DIRECT_IO
:
1867 err
= lo_ioctl(bdev
, mode
, cmd
, arg
);
1877 static int lo_open(struct block_device
*bdev
, fmode_t mode
)
1879 struct loop_device
*lo
;
1882 err
= mutex_lock_killable(&loop_ctl_mutex
);
1885 lo
= bdev
->bd_disk
->private_data
;
1891 atomic_inc(&lo
->lo_refcnt
);
1893 mutex_unlock(&loop_ctl_mutex
);
1897 static void lo_release(struct gendisk
*disk
, fmode_t mode
)
1899 struct loop_device
*lo
;
1901 mutex_lock(&loop_ctl_mutex
);
1902 lo
= disk
->private_data
;
1903 if (atomic_dec_return(&lo
->lo_refcnt
))
1906 if (lo
->lo_flags
& LO_FLAGS_AUTOCLEAR
) {
1907 if (lo
->lo_state
!= Lo_bound
)
1909 lo
->lo_state
= Lo_rundown
;
1910 mutex_unlock(&loop_ctl_mutex
);
1912 * In autoclear mode, stop the loop thread
1913 * and remove configuration after last close.
1915 __loop_clr_fd(lo
, true);
1917 } else if (lo
->lo_state
== Lo_bound
) {
1919 * Otherwise keep thread (if running) and config,
1920 * but flush possible ongoing bios in thread.
1922 blk_mq_freeze_queue(lo
->lo_queue
);
1923 blk_mq_unfreeze_queue(lo
->lo_queue
);
1927 mutex_unlock(&loop_ctl_mutex
);
1930 static const struct block_device_operations lo_fops
= {
1931 .owner
= THIS_MODULE
,
1933 .release
= lo_release
,
1935 #ifdef CONFIG_COMPAT
1936 .compat_ioctl
= lo_compat_ioctl
,
1941 * And now the modules code and kernel interface.
1943 static int max_loop
;
1944 module_param(max_loop
, int, 0444);
1945 MODULE_PARM_DESC(max_loop
, "Maximum number of loop devices");
1946 module_param(max_part
, int, 0444);
1947 MODULE_PARM_DESC(max_part
, "Maximum number of partitions per loop device");
1948 MODULE_LICENSE("GPL");
1949 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR
);
1951 int loop_register_transfer(struct loop_func_table
*funcs
)
1953 unsigned int n
= funcs
->number
;
1955 if (n
>= MAX_LO_CRYPT
|| xfer_funcs
[n
])
1957 xfer_funcs
[n
] = funcs
;
1961 static int unregister_transfer_cb(int id
, void *ptr
, void *data
)
1963 struct loop_device
*lo
= ptr
;
1964 struct loop_func_table
*xfer
= data
;
1966 mutex_lock(&loop_ctl_mutex
);
1967 if (lo
->lo_encryption
== xfer
)
1968 loop_release_xfer(lo
);
1969 mutex_unlock(&loop_ctl_mutex
);
1973 int loop_unregister_transfer(int number
)
1975 unsigned int n
= number
;
1976 struct loop_func_table
*xfer
;
1978 if (n
== 0 || n
>= MAX_LO_CRYPT
|| (xfer
= xfer_funcs
[n
]) == NULL
)
1981 xfer_funcs
[n
] = NULL
;
1982 idr_for_each(&loop_index_idr
, &unregister_transfer_cb
, xfer
);
1986 EXPORT_SYMBOL(loop_register_transfer
);
1987 EXPORT_SYMBOL(loop_unregister_transfer
);
1989 static blk_status_t
loop_queue_rq(struct blk_mq_hw_ctx
*hctx
,
1990 const struct blk_mq_queue_data
*bd
)
1992 struct request
*rq
= bd
->rq
;
1993 struct loop_cmd
*cmd
= blk_mq_rq_to_pdu(rq
);
1994 struct loop_device
*lo
= rq
->q
->queuedata
;
1996 blk_mq_start_request(rq
);
1998 if (lo
->lo_state
!= Lo_bound
)
1999 return BLK_STS_IOERR
;
2001 switch (req_op(rq
)) {
2003 case REQ_OP_DISCARD
:
2004 case REQ_OP_WRITE_ZEROES
:
2005 cmd
->use_aio
= false;
2008 cmd
->use_aio
= lo
->use_dio
;
2012 /* always use the first bio's css */
2013 #ifdef CONFIG_BLK_CGROUP
2014 if (cmd
->use_aio
&& rq
->bio
&& rq
->bio
->bi_blkg
) {
2015 cmd
->css
= &bio_blkcg(rq
->bio
)->css
;
2020 kthread_queue_work(&lo
->worker
, &cmd
->work
);
2025 static void loop_handle_cmd(struct loop_cmd
*cmd
)
2027 struct request
*rq
= blk_mq_rq_from_pdu(cmd
);
2028 const bool write
= op_is_write(req_op(rq
));
2029 struct loop_device
*lo
= rq
->q
->queuedata
;
2032 if (write
&& (lo
->lo_flags
& LO_FLAGS_READ_ONLY
)) {
2037 ret
= do_req_filebacked(lo
, rq
);
2039 /* complete non-aio request */
2040 if (!cmd
->use_aio
|| ret
) {
2041 if (ret
== -EOPNOTSUPP
)
2044 cmd
->ret
= ret
? -EIO
: 0;
2045 if (likely(!blk_should_fake_timeout(rq
->q
)))
2046 blk_mq_complete_request(rq
);
2050 static void loop_queue_work(struct kthread_work
*work
)
2052 struct loop_cmd
*cmd
=
2053 container_of(work
, struct loop_cmd
, work
);
2055 loop_handle_cmd(cmd
);
2058 static int loop_init_request(struct blk_mq_tag_set
*set
, struct request
*rq
,
2059 unsigned int hctx_idx
, unsigned int numa_node
)
2061 struct loop_cmd
*cmd
= blk_mq_rq_to_pdu(rq
);
2063 kthread_init_work(&cmd
->work
, loop_queue_work
);
2067 static const struct blk_mq_ops loop_mq_ops
= {
2068 .queue_rq
= loop_queue_rq
,
2069 .init_request
= loop_init_request
,
2070 .complete
= lo_complete_rq
,
2073 static int loop_add(struct loop_device
**l
, int i
)
2075 struct loop_device
*lo
;
2076 struct gendisk
*disk
;
2080 lo
= kzalloc(sizeof(*lo
), GFP_KERNEL
);
2084 lo
->lo_state
= Lo_unbound
;
2086 /* allocate id, if @id >= 0, we're requesting that specific id */
2088 err
= idr_alloc(&loop_index_idr
, lo
, i
, i
+ 1, GFP_KERNEL
);
2092 err
= idr_alloc(&loop_index_idr
, lo
, 0, 0, GFP_KERNEL
);
2099 lo
->tag_set
.ops
= &loop_mq_ops
;
2100 lo
->tag_set
.nr_hw_queues
= 1;
2101 lo
->tag_set
.queue_depth
= 128;
2102 lo
->tag_set
.numa_node
= NUMA_NO_NODE
;
2103 lo
->tag_set
.cmd_size
= sizeof(struct loop_cmd
);
2104 lo
->tag_set
.flags
= BLK_MQ_F_SHOULD_MERGE
| BLK_MQ_F_STACKING
;
2105 lo
->tag_set
.driver_data
= lo
;
2107 err
= blk_mq_alloc_tag_set(&lo
->tag_set
);
2111 lo
->lo_queue
= blk_mq_init_queue(&lo
->tag_set
);
2112 if (IS_ERR(lo
->lo_queue
)) {
2113 err
= PTR_ERR(lo
->lo_queue
);
2114 goto out_cleanup_tags
;
2116 lo
->lo_queue
->queuedata
= lo
;
2118 blk_queue_max_hw_sectors(lo
->lo_queue
, BLK_DEF_MAX_SECTORS
);
2121 * By default, we do buffer IO, so it doesn't make sense to enable
2122 * merge because the I/O submitted to backing file is handled page by
2123 * page. For directio mode, merge does help to dispatch bigger request
2124 * to underlayer disk. We will enable merge once directio is enabled.
2126 blk_queue_flag_set(QUEUE_FLAG_NOMERGES
, lo
->lo_queue
);
2129 disk
= lo
->lo_disk
= alloc_disk(1 << part_shift
);
2131 goto out_free_queue
;
2134 * Disable partition scanning by default. The in-kernel partition
2135 * scanning can be requested individually per-device during its
2136 * setup. Userspace can always add and remove partitions from all
2137 * devices. The needed partition minors are allocated from the
2138 * extended minor space, the main loop device numbers will continue
2139 * to match the loop minors, regardless of the number of partitions
2142 * If max_part is given, partition scanning is globally enabled for
2143 * all loop devices. The minors for the main loop devices will be
2144 * multiples of max_part.
2146 * Note: Global-for-all-devices, set-only-at-init, read-only module
2147 * parameteters like 'max_loop' and 'max_part' make things needlessly
2148 * complicated, are too static, inflexible and may surprise
2149 * userspace tools. Parameters like this in general should be avoided.
2152 disk
->flags
|= GENHD_FL_NO_PART_SCAN
;
2153 disk
->flags
|= GENHD_FL_EXT_DEVT
;
2154 atomic_set(&lo
->lo_refcnt
, 0);
2156 spin_lock_init(&lo
->lo_lock
);
2157 disk
->major
= LOOP_MAJOR
;
2158 disk
->first_minor
= i
<< part_shift
;
2159 disk
->fops
= &lo_fops
;
2160 disk
->private_data
= lo
;
2161 disk
->queue
= lo
->lo_queue
;
2162 sprintf(disk
->disk_name
, "loop%d", i
);
2165 return lo
->lo_number
;
2168 blk_cleanup_queue(lo
->lo_queue
);
2170 blk_mq_free_tag_set(&lo
->tag_set
);
2172 idr_remove(&loop_index_idr
, i
);
2179 static void loop_remove(struct loop_device
*lo
)
2181 del_gendisk(lo
->lo_disk
);
2182 blk_cleanup_queue(lo
->lo_queue
);
2183 blk_mq_free_tag_set(&lo
->tag_set
);
2184 put_disk(lo
->lo_disk
);
2188 static int find_free_cb(int id
, void *ptr
, void *data
)
2190 struct loop_device
*lo
= ptr
;
2191 struct loop_device
**l
= data
;
2193 if (lo
->lo_state
== Lo_unbound
) {
2200 static int loop_lookup(struct loop_device
**l
, int i
)
2202 struct loop_device
*lo
;
2208 err
= idr_for_each(&loop_index_idr
, &find_free_cb
, &lo
);
2211 ret
= lo
->lo_number
;
2216 /* lookup and return a specific i */
2217 lo
= idr_find(&loop_index_idr
, i
);
2220 ret
= lo
->lo_number
;
2226 static void loop_probe(dev_t dev
)
2228 int idx
= MINOR(dev
) >> part_shift
;
2229 struct loop_device
*lo
;
2231 if (max_loop
&& idx
>= max_loop
)
2234 mutex_lock(&loop_ctl_mutex
);
2235 if (loop_lookup(&lo
, idx
) < 0)
2237 mutex_unlock(&loop_ctl_mutex
);
2240 static long loop_control_ioctl(struct file
*file
, unsigned int cmd
,
2243 struct loop_device
*lo
;
2246 ret
= mutex_lock_killable(&loop_ctl_mutex
);
2253 ret
= loop_lookup(&lo
, parm
);
2258 ret
= loop_add(&lo
, parm
);
2260 case LOOP_CTL_REMOVE
:
2261 ret
= loop_lookup(&lo
, parm
);
2264 if (lo
->lo_state
!= Lo_unbound
) {
2268 if (atomic_read(&lo
->lo_refcnt
) > 0) {
2272 lo
->lo_disk
->private_data
= NULL
;
2273 idr_remove(&loop_index_idr
, lo
->lo_number
);
2276 case LOOP_CTL_GET_FREE
:
2277 ret
= loop_lookup(&lo
, -1);
2280 ret
= loop_add(&lo
, -1);
2282 mutex_unlock(&loop_ctl_mutex
);
2287 static const struct file_operations loop_ctl_fops
= {
2288 .open
= nonseekable_open
,
2289 .unlocked_ioctl
= loop_control_ioctl
,
2290 .compat_ioctl
= loop_control_ioctl
,
2291 .owner
= THIS_MODULE
,
2292 .llseek
= noop_llseek
,
2295 static struct miscdevice loop_misc
= {
2296 .minor
= LOOP_CTRL_MINOR
,
2297 .name
= "loop-control",
2298 .fops
= &loop_ctl_fops
,
2301 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR
);
2302 MODULE_ALIAS("devname:loop-control");
2304 static int __init
loop_init(void)
2307 struct loop_device
*lo
;
2312 part_shift
= fls(max_part
);
2315 * Adjust max_part according to part_shift as it is exported
2316 * to user space so that user can decide correct minor number
2317 * if [s]he want to create more devices.
2319 * Note that -1 is required because partition 0 is reserved
2320 * for the whole disk.
2322 max_part
= (1UL << part_shift
) - 1;
2325 if ((1UL << part_shift
) > DISK_MAX_PARTS
) {
2330 if (max_loop
> 1UL << (MINORBITS
- part_shift
)) {
2336 * If max_loop is specified, create that many devices upfront.
2337 * This also becomes a hard limit. If max_loop is not specified,
2338 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
2339 * init time. Loop devices can be requested on-demand with the
2340 * /dev/loop-control interface, or be instantiated by accessing
2341 * a 'dead' device node.
2346 nr
= CONFIG_BLK_DEV_LOOP_MIN_COUNT
;
2348 err
= misc_register(&loop_misc
);
2353 if (__register_blkdev(LOOP_MAJOR
, "loop", loop_probe
)) {
2358 /* pre-create number of devices given by config or max_loop */
2359 mutex_lock(&loop_ctl_mutex
);
2360 for (i
= 0; i
< nr
; i
++)
2362 mutex_unlock(&loop_ctl_mutex
);
2364 printk(KERN_INFO
"loop: module loaded\n");
2368 misc_deregister(&loop_misc
);
2373 static int loop_exit_cb(int id
, void *ptr
, void *data
)
2375 struct loop_device
*lo
= ptr
;
2381 static void __exit
loop_exit(void)
2383 mutex_lock(&loop_ctl_mutex
);
2385 idr_for_each(&loop_index_idr
, &loop_exit_cb
, NULL
);
2386 idr_destroy(&loop_index_idr
);
2388 unregister_blkdev(LOOP_MAJOR
, "loop");
2390 misc_deregister(&loop_misc
);
2392 mutex_unlock(&loop_ctl_mutex
);
2395 module_init(loop_init
);
2396 module_exit(loop_exit
);
2399 static int __init
max_loop_setup(char *str
)
2401 max_loop
= simple_strtol(str
, NULL
, 0);
2405 __setup("max_loop=", max_loop_setup
);