Merge tag 'block-5.11-2021-01-10' of git://git.kernel.dk/linux-block
[linux/fpc-iii.git] / drivers / block / pktcdvd.c
blobb8bb8ec7538d9b2109e1433e80ab0ce5650367ab
1 /*
2 * Copyright (C) 2000 Jens Axboe <axboe@suse.de>
3 * Copyright (C) 2001-2004 Peter Osterlund <petero2@telia.com>
4 * Copyright (C) 2006 Thomas Maier <balagi@justmail.de>
6 * May be copied or modified under the terms of the GNU General Public
7 * License. See linux/COPYING for more information.
9 * Packet writing layer for ATAPI and SCSI CD-RW, DVD+RW, DVD-RW and
10 * DVD-RAM devices.
12 * Theory of operation:
14 * At the lowest level, there is the standard driver for the CD/DVD device,
15 * typically ide-cd.c or sr.c. This driver can handle read and write requests,
16 * but it doesn't know anything about the special restrictions that apply to
17 * packet writing. One restriction is that write requests must be aligned to
18 * packet boundaries on the physical media, and the size of a write request
19 * must be equal to the packet size. Another restriction is that a
20 * GPCMD_FLUSH_CACHE command has to be issued to the drive before a read
21 * command, if the previous command was a write.
23 * The purpose of the packet writing driver is to hide these restrictions from
24 * higher layers, such as file systems, and present a block device that can be
25 * randomly read and written using 2kB-sized blocks.
27 * The lowest layer in the packet writing driver is the packet I/O scheduler.
28 * Its data is defined by the struct packet_iosched and includes two bio
29 * queues with pending read and write requests. These queues are processed
30 * by the pkt_iosched_process_queue() function. The write requests in this
31 * queue are already properly aligned and sized. This layer is responsible for
32 * issuing the flush cache commands and scheduling the I/O in a good order.
34 * The next layer transforms unaligned write requests to aligned writes. This
35 * transformation requires reading missing pieces of data from the underlying
36 * block device, assembling the pieces to full packets and queuing them to the
37 * packet I/O scheduler.
39 * At the top layer there is a custom ->submit_bio function that forwards
40 * read requests directly to the iosched queue and puts write requests in the
41 * unaligned write queue. A kernel thread performs the necessary read
42 * gathering to convert the unaligned writes to aligned writes and then feeds
43 * them to the packet I/O scheduler.
45 *************************************************************************/
47 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
49 #include <linux/pktcdvd.h>
50 #include <linux/module.h>
51 #include <linux/types.h>
52 #include <linux/kernel.h>
53 #include <linux/compat.h>
54 #include <linux/kthread.h>
55 #include <linux/errno.h>
56 #include <linux/spinlock.h>
57 #include <linux/file.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/miscdevice.h>
61 #include <linux/freezer.h>
62 #include <linux/mutex.h>
63 #include <linux/slab.h>
64 #include <linux/backing-dev.h>
65 #include <scsi/scsi_cmnd.h>
66 #include <scsi/scsi_ioctl.h>
67 #include <scsi/scsi.h>
68 #include <linux/debugfs.h>
69 #include <linux/device.h>
70 #include <linux/nospec.h>
71 #include <linux/uaccess.h>
73 #define DRIVER_NAME "pktcdvd"
75 #define pkt_err(pd, fmt, ...) \
76 pr_err("%s: " fmt, pd->name, ##__VA_ARGS__)
77 #define pkt_notice(pd, fmt, ...) \
78 pr_notice("%s: " fmt, pd->name, ##__VA_ARGS__)
79 #define pkt_info(pd, fmt, ...) \
80 pr_info("%s: " fmt, pd->name, ##__VA_ARGS__)
82 #define pkt_dbg(level, pd, fmt, ...) \
83 do { \
84 if (level == 2 && PACKET_DEBUG >= 2) \
85 pr_notice("%s: %s():" fmt, \
86 pd->name, __func__, ##__VA_ARGS__); \
87 else if (level == 1 && PACKET_DEBUG >= 1) \
88 pr_notice("%s: " fmt, pd->name, ##__VA_ARGS__); \
89 } while (0)
91 #define MAX_SPEED 0xffff
93 static DEFINE_MUTEX(pktcdvd_mutex);
94 static struct pktcdvd_device *pkt_devs[MAX_WRITERS];
95 static struct proc_dir_entry *pkt_proc;
96 static int pktdev_major;
97 static int write_congestion_on = PKT_WRITE_CONGESTION_ON;
98 static int write_congestion_off = PKT_WRITE_CONGESTION_OFF;
99 static struct mutex ctl_mutex; /* Serialize open/close/setup/teardown */
100 static mempool_t psd_pool;
101 static struct bio_set pkt_bio_set;
103 static struct class *class_pktcdvd = NULL; /* /sys/class/pktcdvd */
104 static struct dentry *pkt_debugfs_root = NULL; /* /sys/kernel/debug/pktcdvd */
106 /* forward declaration */
107 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev);
108 static int pkt_remove_dev(dev_t pkt_dev);
109 static int pkt_seq_show(struct seq_file *m, void *p);
111 static sector_t get_zone(sector_t sector, struct pktcdvd_device *pd)
113 return (sector + pd->offset) & ~(sector_t)(pd->settings.size - 1);
117 * create and register a pktcdvd kernel object.
119 static struct pktcdvd_kobj* pkt_kobj_create(struct pktcdvd_device *pd,
120 const char* name,
121 struct kobject* parent,
122 struct kobj_type* ktype)
124 struct pktcdvd_kobj *p;
125 int error;
127 p = kzalloc(sizeof(*p), GFP_KERNEL);
128 if (!p)
129 return NULL;
130 p->pd = pd;
131 error = kobject_init_and_add(&p->kobj, ktype, parent, "%s", name);
132 if (error) {
133 kobject_put(&p->kobj);
134 return NULL;
136 kobject_uevent(&p->kobj, KOBJ_ADD);
137 return p;
140 * remove a pktcdvd kernel object.
142 static void pkt_kobj_remove(struct pktcdvd_kobj *p)
144 if (p)
145 kobject_put(&p->kobj);
148 * default release function for pktcdvd kernel objects.
150 static void pkt_kobj_release(struct kobject *kobj)
152 kfree(to_pktcdvdkobj(kobj));
156 /**********************************************************
158 * sysfs interface for pktcdvd
159 * by (C) 2006 Thomas Maier <balagi@justmail.de>
161 **********************************************************/
163 #define DEF_ATTR(_obj,_name,_mode) \
164 static struct attribute _obj = { .name = _name, .mode = _mode }
166 /**********************************************************
167 /sys/class/pktcdvd/pktcdvd[0-7]/
168 stat/reset
169 stat/packets_started
170 stat/packets_finished
171 stat/kb_written
172 stat/kb_read
173 stat/kb_read_gather
174 write_queue/size
175 write_queue/congestion_off
176 write_queue/congestion_on
177 **********************************************************/
179 DEF_ATTR(kobj_pkt_attr_st1, "reset", 0200);
180 DEF_ATTR(kobj_pkt_attr_st2, "packets_started", 0444);
181 DEF_ATTR(kobj_pkt_attr_st3, "packets_finished", 0444);
182 DEF_ATTR(kobj_pkt_attr_st4, "kb_written", 0444);
183 DEF_ATTR(kobj_pkt_attr_st5, "kb_read", 0444);
184 DEF_ATTR(kobj_pkt_attr_st6, "kb_read_gather", 0444);
186 static struct attribute *kobj_pkt_attrs_stat[] = {
187 &kobj_pkt_attr_st1,
188 &kobj_pkt_attr_st2,
189 &kobj_pkt_attr_st3,
190 &kobj_pkt_attr_st4,
191 &kobj_pkt_attr_st5,
192 &kobj_pkt_attr_st6,
193 NULL
196 DEF_ATTR(kobj_pkt_attr_wq1, "size", 0444);
197 DEF_ATTR(kobj_pkt_attr_wq2, "congestion_off", 0644);
198 DEF_ATTR(kobj_pkt_attr_wq3, "congestion_on", 0644);
200 static struct attribute *kobj_pkt_attrs_wqueue[] = {
201 &kobj_pkt_attr_wq1,
202 &kobj_pkt_attr_wq2,
203 &kobj_pkt_attr_wq3,
204 NULL
207 static ssize_t kobj_pkt_show(struct kobject *kobj,
208 struct attribute *attr, char *data)
210 struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd;
211 int n = 0;
212 int v;
213 if (strcmp(attr->name, "packets_started") == 0) {
214 n = sprintf(data, "%lu\n", pd->stats.pkt_started);
216 } else if (strcmp(attr->name, "packets_finished") == 0) {
217 n = sprintf(data, "%lu\n", pd->stats.pkt_ended);
219 } else if (strcmp(attr->name, "kb_written") == 0) {
220 n = sprintf(data, "%lu\n", pd->stats.secs_w >> 1);
222 } else if (strcmp(attr->name, "kb_read") == 0) {
223 n = sprintf(data, "%lu\n", pd->stats.secs_r >> 1);
225 } else if (strcmp(attr->name, "kb_read_gather") == 0) {
226 n = sprintf(data, "%lu\n", pd->stats.secs_rg >> 1);
228 } else if (strcmp(attr->name, "size") == 0) {
229 spin_lock(&pd->lock);
230 v = pd->bio_queue_size;
231 spin_unlock(&pd->lock);
232 n = sprintf(data, "%d\n", v);
234 } else if (strcmp(attr->name, "congestion_off") == 0) {
235 spin_lock(&pd->lock);
236 v = pd->write_congestion_off;
237 spin_unlock(&pd->lock);
238 n = sprintf(data, "%d\n", v);
240 } else if (strcmp(attr->name, "congestion_on") == 0) {
241 spin_lock(&pd->lock);
242 v = pd->write_congestion_on;
243 spin_unlock(&pd->lock);
244 n = sprintf(data, "%d\n", v);
246 return n;
249 static void init_write_congestion_marks(int* lo, int* hi)
251 if (*hi > 0) {
252 *hi = max(*hi, 500);
253 *hi = min(*hi, 1000000);
254 if (*lo <= 0)
255 *lo = *hi - 100;
256 else {
257 *lo = min(*lo, *hi - 100);
258 *lo = max(*lo, 100);
260 } else {
261 *hi = -1;
262 *lo = -1;
266 static ssize_t kobj_pkt_store(struct kobject *kobj,
267 struct attribute *attr,
268 const char *data, size_t len)
270 struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd;
271 int val;
273 if (strcmp(attr->name, "reset") == 0 && len > 0) {
274 pd->stats.pkt_started = 0;
275 pd->stats.pkt_ended = 0;
276 pd->stats.secs_w = 0;
277 pd->stats.secs_rg = 0;
278 pd->stats.secs_r = 0;
280 } else if (strcmp(attr->name, "congestion_off") == 0
281 && sscanf(data, "%d", &val) == 1) {
282 spin_lock(&pd->lock);
283 pd->write_congestion_off = val;
284 init_write_congestion_marks(&pd->write_congestion_off,
285 &pd->write_congestion_on);
286 spin_unlock(&pd->lock);
288 } else if (strcmp(attr->name, "congestion_on") == 0
289 && sscanf(data, "%d", &val) == 1) {
290 spin_lock(&pd->lock);
291 pd->write_congestion_on = val;
292 init_write_congestion_marks(&pd->write_congestion_off,
293 &pd->write_congestion_on);
294 spin_unlock(&pd->lock);
296 return len;
299 static const struct sysfs_ops kobj_pkt_ops = {
300 .show = kobj_pkt_show,
301 .store = kobj_pkt_store
303 static struct kobj_type kobj_pkt_type_stat = {
304 .release = pkt_kobj_release,
305 .sysfs_ops = &kobj_pkt_ops,
306 .default_attrs = kobj_pkt_attrs_stat
308 static struct kobj_type kobj_pkt_type_wqueue = {
309 .release = pkt_kobj_release,
310 .sysfs_ops = &kobj_pkt_ops,
311 .default_attrs = kobj_pkt_attrs_wqueue
314 static void pkt_sysfs_dev_new(struct pktcdvd_device *pd)
316 if (class_pktcdvd) {
317 pd->dev = device_create(class_pktcdvd, NULL, MKDEV(0, 0), NULL,
318 "%s", pd->name);
319 if (IS_ERR(pd->dev))
320 pd->dev = NULL;
322 if (pd->dev) {
323 pd->kobj_stat = pkt_kobj_create(pd, "stat",
324 &pd->dev->kobj,
325 &kobj_pkt_type_stat);
326 pd->kobj_wqueue = pkt_kobj_create(pd, "write_queue",
327 &pd->dev->kobj,
328 &kobj_pkt_type_wqueue);
332 static void pkt_sysfs_dev_remove(struct pktcdvd_device *pd)
334 pkt_kobj_remove(pd->kobj_stat);
335 pkt_kobj_remove(pd->kobj_wqueue);
336 if (class_pktcdvd)
337 device_unregister(pd->dev);
341 /********************************************************************
342 /sys/class/pktcdvd/
343 add map block device
344 remove unmap packet dev
345 device_map show mappings
346 *******************************************************************/
348 static void class_pktcdvd_release(struct class *cls)
350 kfree(cls);
353 static ssize_t device_map_show(struct class *c, struct class_attribute *attr,
354 char *data)
356 int n = 0;
357 int idx;
358 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
359 for (idx = 0; idx < MAX_WRITERS; idx++) {
360 struct pktcdvd_device *pd = pkt_devs[idx];
361 if (!pd)
362 continue;
363 n += sprintf(data+n, "%s %u:%u %u:%u\n",
364 pd->name,
365 MAJOR(pd->pkt_dev), MINOR(pd->pkt_dev),
366 MAJOR(pd->bdev->bd_dev),
367 MINOR(pd->bdev->bd_dev));
369 mutex_unlock(&ctl_mutex);
370 return n;
372 static CLASS_ATTR_RO(device_map);
374 static ssize_t add_store(struct class *c, struct class_attribute *attr,
375 const char *buf, size_t count)
377 unsigned int major, minor;
379 if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
380 /* pkt_setup_dev() expects caller to hold reference to self */
381 if (!try_module_get(THIS_MODULE))
382 return -ENODEV;
384 pkt_setup_dev(MKDEV(major, minor), NULL);
386 module_put(THIS_MODULE);
388 return count;
391 return -EINVAL;
393 static CLASS_ATTR_WO(add);
395 static ssize_t remove_store(struct class *c, struct class_attribute *attr,
396 const char *buf, size_t count)
398 unsigned int major, minor;
399 if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
400 pkt_remove_dev(MKDEV(major, minor));
401 return count;
403 return -EINVAL;
405 static CLASS_ATTR_WO(remove);
407 static struct attribute *class_pktcdvd_attrs[] = {
408 &class_attr_add.attr,
409 &class_attr_remove.attr,
410 &class_attr_device_map.attr,
411 NULL,
413 ATTRIBUTE_GROUPS(class_pktcdvd);
415 static int pkt_sysfs_init(void)
417 int ret = 0;
420 * create control files in sysfs
421 * /sys/class/pktcdvd/...
423 class_pktcdvd = kzalloc(sizeof(*class_pktcdvd), GFP_KERNEL);
424 if (!class_pktcdvd)
425 return -ENOMEM;
426 class_pktcdvd->name = DRIVER_NAME;
427 class_pktcdvd->owner = THIS_MODULE;
428 class_pktcdvd->class_release = class_pktcdvd_release;
429 class_pktcdvd->class_groups = class_pktcdvd_groups;
430 ret = class_register(class_pktcdvd);
431 if (ret) {
432 kfree(class_pktcdvd);
433 class_pktcdvd = NULL;
434 pr_err("failed to create class pktcdvd\n");
435 return ret;
437 return 0;
440 static void pkt_sysfs_cleanup(void)
442 if (class_pktcdvd)
443 class_destroy(class_pktcdvd);
444 class_pktcdvd = NULL;
447 /********************************************************************
448 entries in debugfs
450 /sys/kernel/debug/pktcdvd[0-7]/
451 info
453 *******************************************************************/
455 static int pkt_debugfs_seq_show(struct seq_file *m, void *p)
457 return pkt_seq_show(m, p);
460 static int pkt_debugfs_fops_open(struct inode *inode, struct file *file)
462 return single_open(file, pkt_debugfs_seq_show, inode->i_private);
465 static const struct file_operations debug_fops = {
466 .open = pkt_debugfs_fops_open,
467 .read = seq_read,
468 .llseek = seq_lseek,
469 .release = single_release,
470 .owner = THIS_MODULE,
473 static void pkt_debugfs_dev_new(struct pktcdvd_device *pd)
475 if (!pkt_debugfs_root)
476 return;
477 pd->dfs_d_root = debugfs_create_dir(pd->name, pkt_debugfs_root);
478 if (!pd->dfs_d_root)
479 return;
481 pd->dfs_f_info = debugfs_create_file("info", 0444,
482 pd->dfs_d_root, pd, &debug_fops);
485 static void pkt_debugfs_dev_remove(struct pktcdvd_device *pd)
487 if (!pkt_debugfs_root)
488 return;
489 debugfs_remove(pd->dfs_f_info);
490 debugfs_remove(pd->dfs_d_root);
491 pd->dfs_f_info = NULL;
492 pd->dfs_d_root = NULL;
495 static void pkt_debugfs_init(void)
497 pkt_debugfs_root = debugfs_create_dir(DRIVER_NAME, NULL);
500 static void pkt_debugfs_cleanup(void)
502 debugfs_remove(pkt_debugfs_root);
503 pkt_debugfs_root = NULL;
506 /* ----------------------------------------------------------*/
509 static void pkt_bio_finished(struct pktcdvd_device *pd)
511 BUG_ON(atomic_read(&pd->cdrw.pending_bios) <= 0);
512 if (atomic_dec_and_test(&pd->cdrw.pending_bios)) {
513 pkt_dbg(2, pd, "queue empty\n");
514 atomic_set(&pd->iosched.attention, 1);
515 wake_up(&pd->wqueue);
520 * Allocate a packet_data struct
522 static struct packet_data *pkt_alloc_packet_data(int frames)
524 int i;
525 struct packet_data *pkt;
527 pkt = kzalloc(sizeof(struct packet_data), GFP_KERNEL);
528 if (!pkt)
529 goto no_pkt;
531 pkt->frames = frames;
532 pkt->w_bio = bio_kmalloc(GFP_KERNEL, frames);
533 if (!pkt->w_bio)
534 goto no_bio;
536 for (i = 0; i < frames / FRAMES_PER_PAGE; i++) {
537 pkt->pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO);
538 if (!pkt->pages[i])
539 goto no_page;
542 spin_lock_init(&pkt->lock);
543 bio_list_init(&pkt->orig_bios);
545 for (i = 0; i < frames; i++) {
546 struct bio *bio = bio_kmalloc(GFP_KERNEL, 1);
547 if (!bio)
548 goto no_rd_bio;
550 pkt->r_bios[i] = bio;
553 return pkt;
555 no_rd_bio:
556 for (i = 0; i < frames; i++) {
557 struct bio *bio = pkt->r_bios[i];
558 if (bio)
559 bio_put(bio);
562 no_page:
563 for (i = 0; i < frames / FRAMES_PER_PAGE; i++)
564 if (pkt->pages[i])
565 __free_page(pkt->pages[i]);
566 bio_put(pkt->w_bio);
567 no_bio:
568 kfree(pkt);
569 no_pkt:
570 return NULL;
574 * Free a packet_data struct
576 static void pkt_free_packet_data(struct packet_data *pkt)
578 int i;
580 for (i = 0; i < pkt->frames; i++) {
581 struct bio *bio = pkt->r_bios[i];
582 if (bio)
583 bio_put(bio);
585 for (i = 0; i < pkt->frames / FRAMES_PER_PAGE; i++)
586 __free_page(pkt->pages[i]);
587 bio_put(pkt->w_bio);
588 kfree(pkt);
591 static void pkt_shrink_pktlist(struct pktcdvd_device *pd)
593 struct packet_data *pkt, *next;
595 BUG_ON(!list_empty(&pd->cdrw.pkt_active_list));
597 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_free_list, list) {
598 pkt_free_packet_data(pkt);
600 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
603 static int pkt_grow_pktlist(struct pktcdvd_device *pd, int nr_packets)
605 struct packet_data *pkt;
607 BUG_ON(!list_empty(&pd->cdrw.pkt_free_list));
609 while (nr_packets > 0) {
610 pkt = pkt_alloc_packet_data(pd->settings.size >> 2);
611 if (!pkt) {
612 pkt_shrink_pktlist(pd);
613 return 0;
615 pkt->id = nr_packets;
616 pkt->pd = pd;
617 list_add(&pkt->list, &pd->cdrw.pkt_free_list);
618 nr_packets--;
620 return 1;
623 static inline struct pkt_rb_node *pkt_rbtree_next(struct pkt_rb_node *node)
625 struct rb_node *n = rb_next(&node->rb_node);
626 if (!n)
627 return NULL;
628 return rb_entry(n, struct pkt_rb_node, rb_node);
631 static void pkt_rbtree_erase(struct pktcdvd_device *pd, struct pkt_rb_node *node)
633 rb_erase(&node->rb_node, &pd->bio_queue);
634 mempool_free(node, &pd->rb_pool);
635 pd->bio_queue_size--;
636 BUG_ON(pd->bio_queue_size < 0);
640 * Find the first node in the pd->bio_queue rb tree with a starting sector >= s.
642 static struct pkt_rb_node *pkt_rbtree_find(struct pktcdvd_device *pd, sector_t s)
644 struct rb_node *n = pd->bio_queue.rb_node;
645 struct rb_node *next;
646 struct pkt_rb_node *tmp;
648 if (!n) {
649 BUG_ON(pd->bio_queue_size > 0);
650 return NULL;
653 for (;;) {
654 tmp = rb_entry(n, struct pkt_rb_node, rb_node);
655 if (s <= tmp->bio->bi_iter.bi_sector)
656 next = n->rb_left;
657 else
658 next = n->rb_right;
659 if (!next)
660 break;
661 n = next;
664 if (s > tmp->bio->bi_iter.bi_sector) {
665 tmp = pkt_rbtree_next(tmp);
666 if (!tmp)
667 return NULL;
669 BUG_ON(s > tmp->bio->bi_iter.bi_sector);
670 return tmp;
674 * Insert a node into the pd->bio_queue rb tree.
676 static void pkt_rbtree_insert(struct pktcdvd_device *pd, struct pkt_rb_node *node)
678 struct rb_node **p = &pd->bio_queue.rb_node;
679 struct rb_node *parent = NULL;
680 sector_t s = node->bio->bi_iter.bi_sector;
681 struct pkt_rb_node *tmp;
683 while (*p) {
684 parent = *p;
685 tmp = rb_entry(parent, struct pkt_rb_node, rb_node);
686 if (s < tmp->bio->bi_iter.bi_sector)
687 p = &(*p)->rb_left;
688 else
689 p = &(*p)->rb_right;
691 rb_link_node(&node->rb_node, parent, p);
692 rb_insert_color(&node->rb_node, &pd->bio_queue);
693 pd->bio_queue_size++;
697 * Send a packet_command to the underlying block device and
698 * wait for completion.
700 static int pkt_generic_packet(struct pktcdvd_device *pd, struct packet_command *cgc)
702 struct request_queue *q = bdev_get_queue(pd->bdev);
703 struct request *rq;
704 int ret = 0;
706 rq = blk_get_request(q, (cgc->data_direction == CGC_DATA_WRITE) ?
707 REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN, 0);
708 if (IS_ERR(rq))
709 return PTR_ERR(rq);
711 if (cgc->buflen) {
712 ret = blk_rq_map_kern(q, rq, cgc->buffer, cgc->buflen,
713 GFP_NOIO);
714 if (ret)
715 goto out;
718 scsi_req(rq)->cmd_len = COMMAND_SIZE(cgc->cmd[0]);
719 memcpy(scsi_req(rq)->cmd, cgc->cmd, CDROM_PACKET_SIZE);
721 rq->timeout = 60*HZ;
722 if (cgc->quiet)
723 rq->rq_flags |= RQF_QUIET;
725 blk_execute_rq(rq->q, pd->bdev->bd_disk, rq, 0);
726 if (scsi_req(rq)->result)
727 ret = -EIO;
728 out:
729 blk_put_request(rq);
730 return ret;
733 static const char *sense_key_string(__u8 index)
735 static const char * const info[] = {
736 "No sense", "Recovered error", "Not ready",
737 "Medium error", "Hardware error", "Illegal request",
738 "Unit attention", "Data protect", "Blank check",
741 return index < ARRAY_SIZE(info) ? info[index] : "INVALID";
745 * A generic sense dump / resolve mechanism should be implemented across
746 * all ATAPI + SCSI devices.
748 static void pkt_dump_sense(struct pktcdvd_device *pd,
749 struct packet_command *cgc)
751 struct scsi_sense_hdr *sshdr = cgc->sshdr;
753 if (sshdr)
754 pkt_err(pd, "%*ph - sense %02x.%02x.%02x (%s)\n",
755 CDROM_PACKET_SIZE, cgc->cmd,
756 sshdr->sense_key, sshdr->asc, sshdr->ascq,
757 sense_key_string(sshdr->sense_key));
758 else
759 pkt_err(pd, "%*ph - no sense\n", CDROM_PACKET_SIZE, cgc->cmd);
763 * flush the drive cache to media
765 static int pkt_flush_cache(struct pktcdvd_device *pd)
767 struct packet_command cgc;
769 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
770 cgc.cmd[0] = GPCMD_FLUSH_CACHE;
771 cgc.quiet = 1;
774 * the IMMED bit -- we default to not setting it, although that
775 * would allow a much faster close, this is safer
777 #if 0
778 cgc.cmd[1] = 1 << 1;
779 #endif
780 return pkt_generic_packet(pd, &cgc);
784 * speed is given as the normal factor, e.g. 4 for 4x
786 static noinline_for_stack int pkt_set_speed(struct pktcdvd_device *pd,
787 unsigned write_speed, unsigned read_speed)
789 struct packet_command cgc;
790 struct scsi_sense_hdr sshdr;
791 int ret;
793 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
794 cgc.sshdr = &sshdr;
795 cgc.cmd[0] = GPCMD_SET_SPEED;
796 cgc.cmd[2] = (read_speed >> 8) & 0xff;
797 cgc.cmd[3] = read_speed & 0xff;
798 cgc.cmd[4] = (write_speed >> 8) & 0xff;
799 cgc.cmd[5] = write_speed & 0xff;
801 ret = pkt_generic_packet(pd, &cgc);
802 if (ret)
803 pkt_dump_sense(pd, &cgc);
805 return ret;
809 * Queue a bio for processing by the low-level CD device. Must be called
810 * from process context.
812 static void pkt_queue_bio(struct pktcdvd_device *pd, struct bio *bio)
814 spin_lock(&pd->iosched.lock);
815 if (bio_data_dir(bio) == READ)
816 bio_list_add(&pd->iosched.read_queue, bio);
817 else
818 bio_list_add(&pd->iosched.write_queue, bio);
819 spin_unlock(&pd->iosched.lock);
821 atomic_set(&pd->iosched.attention, 1);
822 wake_up(&pd->wqueue);
826 * Process the queued read/write requests. This function handles special
827 * requirements for CDRW drives:
828 * - A cache flush command must be inserted before a read request if the
829 * previous request was a write.
830 * - Switching between reading and writing is slow, so don't do it more often
831 * than necessary.
832 * - Optimize for throughput at the expense of latency. This means that streaming
833 * writes will never be interrupted by a read, but if the drive has to seek
834 * before the next write, switch to reading instead if there are any pending
835 * read requests.
836 * - Set the read speed according to current usage pattern. When only reading
837 * from the device, it's best to use the highest possible read speed, but
838 * when switching often between reading and writing, it's better to have the
839 * same read and write speeds.
841 static void pkt_iosched_process_queue(struct pktcdvd_device *pd)
844 if (atomic_read(&pd->iosched.attention) == 0)
845 return;
846 atomic_set(&pd->iosched.attention, 0);
848 for (;;) {
849 struct bio *bio;
850 int reads_queued, writes_queued;
852 spin_lock(&pd->iosched.lock);
853 reads_queued = !bio_list_empty(&pd->iosched.read_queue);
854 writes_queued = !bio_list_empty(&pd->iosched.write_queue);
855 spin_unlock(&pd->iosched.lock);
857 if (!reads_queued && !writes_queued)
858 break;
860 if (pd->iosched.writing) {
861 int need_write_seek = 1;
862 spin_lock(&pd->iosched.lock);
863 bio = bio_list_peek(&pd->iosched.write_queue);
864 spin_unlock(&pd->iosched.lock);
865 if (bio && (bio->bi_iter.bi_sector ==
866 pd->iosched.last_write))
867 need_write_seek = 0;
868 if (need_write_seek && reads_queued) {
869 if (atomic_read(&pd->cdrw.pending_bios) > 0) {
870 pkt_dbg(2, pd, "write, waiting\n");
871 break;
873 pkt_flush_cache(pd);
874 pd->iosched.writing = 0;
876 } else {
877 if (!reads_queued && writes_queued) {
878 if (atomic_read(&pd->cdrw.pending_bios) > 0) {
879 pkt_dbg(2, pd, "read, waiting\n");
880 break;
882 pd->iosched.writing = 1;
886 spin_lock(&pd->iosched.lock);
887 if (pd->iosched.writing)
888 bio = bio_list_pop(&pd->iosched.write_queue);
889 else
890 bio = bio_list_pop(&pd->iosched.read_queue);
891 spin_unlock(&pd->iosched.lock);
893 if (!bio)
894 continue;
896 if (bio_data_dir(bio) == READ)
897 pd->iosched.successive_reads +=
898 bio->bi_iter.bi_size >> 10;
899 else {
900 pd->iosched.successive_reads = 0;
901 pd->iosched.last_write = bio_end_sector(bio);
903 if (pd->iosched.successive_reads >= HI_SPEED_SWITCH) {
904 if (pd->read_speed == pd->write_speed) {
905 pd->read_speed = MAX_SPEED;
906 pkt_set_speed(pd, pd->write_speed, pd->read_speed);
908 } else {
909 if (pd->read_speed != pd->write_speed) {
910 pd->read_speed = pd->write_speed;
911 pkt_set_speed(pd, pd->write_speed, pd->read_speed);
915 atomic_inc(&pd->cdrw.pending_bios);
916 submit_bio_noacct(bio);
921 * Special care is needed if the underlying block device has a small
922 * max_phys_segments value.
924 static int pkt_set_segment_merging(struct pktcdvd_device *pd, struct request_queue *q)
926 if ((pd->settings.size << 9) / CD_FRAMESIZE
927 <= queue_max_segments(q)) {
929 * The cdrom device can handle one segment/frame
931 clear_bit(PACKET_MERGE_SEGS, &pd->flags);
932 return 0;
933 } else if ((pd->settings.size << 9) / PAGE_SIZE
934 <= queue_max_segments(q)) {
936 * We can handle this case at the expense of some extra memory
937 * copies during write operations
939 set_bit(PACKET_MERGE_SEGS, &pd->flags);
940 return 0;
941 } else {
942 pkt_err(pd, "cdrom max_phys_segments too small\n");
943 return -EIO;
947 static void pkt_end_io_read(struct bio *bio)
949 struct packet_data *pkt = bio->bi_private;
950 struct pktcdvd_device *pd = pkt->pd;
951 BUG_ON(!pd);
953 pkt_dbg(2, pd, "bio=%p sec0=%llx sec=%llx err=%d\n",
954 bio, (unsigned long long)pkt->sector,
955 (unsigned long long)bio->bi_iter.bi_sector, bio->bi_status);
957 if (bio->bi_status)
958 atomic_inc(&pkt->io_errors);
959 if (atomic_dec_and_test(&pkt->io_wait)) {
960 atomic_inc(&pkt->run_sm);
961 wake_up(&pd->wqueue);
963 pkt_bio_finished(pd);
966 static void pkt_end_io_packet_write(struct bio *bio)
968 struct packet_data *pkt = bio->bi_private;
969 struct pktcdvd_device *pd = pkt->pd;
970 BUG_ON(!pd);
972 pkt_dbg(2, pd, "id=%d, err=%d\n", pkt->id, bio->bi_status);
974 pd->stats.pkt_ended++;
976 pkt_bio_finished(pd);
977 atomic_dec(&pkt->io_wait);
978 atomic_inc(&pkt->run_sm);
979 wake_up(&pd->wqueue);
983 * Schedule reads for the holes in a packet
985 static void pkt_gather_data(struct pktcdvd_device *pd, struct packet_data *pkt)
987 int frames_read = 0;
988 struct bio *bio;
989 int f;
990 char written[PACKET_MAX_SIZE];
992 BUG_ON(bio_list_empty(&pkt->orig_bios));
994 atomic_set(&pkt->io_wait, 0);
995 atomic_set(&pkt->io_errors, 0);
998 * Figure out which frames we need to read before we can write.
1000 memset(written, 0, sizeof(written));
1001 spin_lock(&pkt->lock);
1002 bio_list_for_each(bio, &pkt->orig_bios) {
1003 int first_frame = (bio->bi_iter.bi_sector - pkt->sector) /
1004 (CD_FRAMESIZE >> 9);
1005 int num_frames = bio->bi_iter.bi_size / CD_FRAMESIZE;
1006 pd->stats.secs_w += num_frames * (CD_FRAMESIZE >> 9);
1007 BUG_ON(first_frame < 0);
1008 BUG_ON(first_frame + num_frames > pkt->frames);
1009 for (f = first_frame; f < first_frame + num_frames; f++)
1010 written[f] = 1;
1012 spin_unlock(&pkt->lock);
1014 if (pkt->cache_valid) {
1015 pkt_dbg(2, pd, "zone %llx cached\n",
1016 (unsigned long long)pkt->sector);
1017 goto out_account;
1021 * Schedule reads for missing parts of the packet.
1023 for (f = 0; f < pkt->frames; f++) {
1024 int p, offset;
1026 if (written[f])
1027 continue;
1029 bio = pkt->r_bios[f];
1030 bio_reset(bio);
1031 bio->bi_iter.bi_sector = pkt->sector + f * (CD_FRAMESIZE >> 9);
1032 bio_set_dev(bio, pd->bdev);
1033 bio->bi_end_io = pkt_end_io_read;
1034 bio->bi_private = pkt;
1036 p = (f * CD_FRAMESIZE) / PAGE_SIZE;
1037 offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1038 pkt_dbg(2, pd, "Adding frame %d, page:%p offs:%d\n",
1039 f, pkt->pages[p], offset);
1040 if (!bio_add_page(bio, pkt->pages[p], CD_FRAMESIZE, offset))
1041 BUG();
1043 atomic_inc(&pkt->io_wait);
1044 bio_set_op_attrs(bio, REQ_OP_READ, 0);
1045 pkt_queue_bio(pd, bio);
1046 frames_read++;
1049 out_account:
1050 pkt_dbg(2, pd, "need %d frames for zone %llx\n",
1051 frames_read, (unsigned long long)pkt->sector);
1052 pd->stats.pkt_started++;
1053 pd->stats.secs_rg += frames_read * (CD_FRAMESIZE >> 9);
1057 * Find a packet matching zone, or the least recently used packet if
1058 * there is no match.
1060 static struct packet_data *pkt_get_packet_data(struct pktcdvd_device *pd, int zone)
1062 struct packet_data *pkt;
1064 list_for_each_entry(pkt, &pd->cdrw.pkt_free_list, list) {
1065 if (pkt->sector == zone || pkt->list.next == &pd->cdrw.pkt_free_list) {
1066 list_del_init(&pkt->list);
1067 if (pkt->sector != zone)
1068 pkt->cache_valid = 0;
1069 return pkt;
1072 BUG();
1073 return NULL;
1076 static void pkt_put_packet_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1078 if (pkt->cache_valid) {
1079 list_add(&pkt->list, &pd->cdrw.pkt_free_list);
1080 } else {
1081 list_add_tail(&pkt->list, &pd->cdrw.pkt_free_list);
1085 static inline void pkt_set_state(struct packet_data *pkt, enum packet_data_state state)
1087 #if PACKET_DEBUG > 1
1088 static const char *state_name[] = {
1089 "IDLE", "WAITING", "READ_WAIT", "WRITE_WAIT", "RECOVERY", "FINISHED"
1091 enum packet_data_state old_state = pkt->state;
1092 pkt_dbg(2, pd, "pkt %2d : s=%6llx %s -> %s\n",
1093 pkt->id, (unsigned long long)pkt->sector,
1094 state_name[old_state], state_name[state]);
1095 #endif
1096 pkt->state = state;
1100 * Scan the work queue to see if we can start a new packet.
1101 * returns non-zero if any work was done.
1103 static int pkt_handle_queue(struct pktcdvd_device *pd)
1105 struct packet_data *pkt, *p;
1106 struct bio *bio = NULL;
1107 sector_t zone = 0; /* Suppress gcc warning */
1108 struct pkt_rb_node *node, *first_node;
1109 struct rb_node *n;
1110 int wakeup;
1112 atomic_set(&pd->scan_queue, 0);
1114 if (list_empty(&pd->cdrw.pkt_free_list)) {
1115 pkt_dbg(2, pd, "no pkt\n");
1116 return 0;
1120 * Try to find a zone we are not already working on.
1122 spin_lock(&pd->lock);
1123 first_node = pkt_rbtree_find(pd, pd->current_sector);
1124 if (!first_node) {
1125 n = rb_first(&pd->bio_queue);
1126 if (n)
1127 first_node = rb_entry(n, struct pkt_rb_node, rb_node);
1129 node = first_node;
1130 while (node) {
1131 bio = node->bio;
1132 zone = get_zone(bio->bi_iter.bi_sector, pd);
1133 list_for_each_entry(p, &pd->cdrw.pkt_active_list, list) {
1134 if (p->sector == zone) {
1135 bio = NULL;
1136 goto try_next_bio;
1139 break;
1140 try_next_bio:
1141 node = pkt_rbtree_next(node);
1142 if (!node) {
1143 n = rb_first(&pd->bio_queue);
1144 if (n)
1145 node = rb_entry(n, struct pkt_rb_node, rb_node);
1147 if (node == first_node)
1148 node = NULL;
1150 spin_unlock(&pd->lock);
1151 if (!bio) {
1152 pkt_dbg(2, pd, "no bio\n");
1153 return 0;
1156 pkt = pkt_get_packet_data(pd, zone);
1158 pd->current_sector = zone + pd->settings.size;
1159 pkt->sector = zone;
1160 BUG_ON(pkt->frames != pd->settings.size >> 2);
1161 pkt->write_size = 0;
1164 * Scan work queue for bios in the same zone and link them
1165 * to this packet.
1167 spin_lock(&pd->lock);
1168 pkt_dbg(2, pd, "looking for zone %llx\n", (unsigned long long)zone);
1169 while ((node = pkt_rbtree_find(pd, zone)) != NULL) {
1170 bio = node->bio;
1171 pkt_dbg(2, pd, "found zone=%llx\n", (unsigned long long)
1172 get_zone(bio->bi_iter.bi_sector, pd));
1173 if (get_zone(bio->bi_iter.bi_sector, pd) != zone)
1174 break;
1175 pkt_rbtree_erase(pd, node);
1176 spin_lock(&pkt->lock);
1177 bio_list_add(&pkt->orig_bios, bio);
1178 pkt->write_size += bio->bi_iter.bi_size / CD_FRAMESIZE;
1179 spin_unlock(&pkt->lock);
1181 /* check write congestion marks, and if bio_queue_size is
1182 below, wake up any waiters */
1183 wakeup = (pd->write_congestion_on > 0
1184 && pd->bio_queue_size <= pd->write_congestion_off);
1185 spin_unlock(&pd->lock);
1186 if (wakeup) {
1187 clear_bdi_congested(pd->disk->queue->backing_dev_info,
1188 BLK_RW_ASYNC);
1191 pkt->sleep_time = max(PACKET_WAIT_TIME, 1);
1192 pkt_set_state(pkt, PACKET_WAITING_STATE);
1193 atomic_set(&pkt->run_sm, 1);
1195 spin_lock(&pd->cdrw.active_list_lock);
1196 list_add(&pkt->list, &pd->cdrw.pkt_active_list);
1197 spin_unlock(&pd->cdrw.active_list_lock);
1199 return 1;
1203 * Assemble a bio to write one packet and queue the bio for processing
1204 * by the underlying block device.
1206 static void pkt_start_write(struct pktcdvd_device *pd, struct packet_data *pkt)
1208 int f;
1210 bio_reset(pkt->w_bio);
1211 pkt->w_bio->bi_iter.bi_sector = pkt->sector;
1212 bio_set_dev(pkt->w_bio, pd->bdev);
1213 pkt->w_bio->bi_end_io = pkt_end_io_packet_write;
1214 pkt->w_bio->bi_private = pkt;
1216 /* XXX: locking? */
1217 for (f = 0; f < pkt->frames; f++) {
1218 struct page *page = pkt->pages[(f * CD_FRAMESIZE) / PAGE_SIZE];
1219 unsigned offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1221 if (!bio_add_page(pkt->w_bio, page, CD_FRAMESIZE, offset))
1222 BUG();
1224 pkt_dbg(2, pd, "vcnt=%d\n", pkt->w_bio->bi_vcnt);
1227 * Fill-in bvec with data from orig_bios.
1229 spin_lock(&pkt->lock);
1230 bio_list_copy_data(pkt->w_bio, pkt->orig_bios.head);
1232 pkt_set_state(pkt, PACKET_WRITE_WAIT_STATE);
1233 spin_unlock(&pkt->lock);
1235 pkt_dbg(2, pd, "Writing %d frames for zone %llx\n",
1236 pkt->write_size, (unsigned long long)pkt->sector);
1238 if (test_bit(PACKET_MERGE_SEGS, &pd->flags) || (pkt->write_size < pkt->frames))
1239 pkt->cache_valid = 1;
1240 else
1241 pkt->cache_valid = 0;
1243 /* Start the write request */
1244 atomic_set(&pkt->io_wait, 1);
1245 bio_set_op_attrs(pkt->w_bio, REQ_OP_WRITE, 0);
1246 pkt_queue_bio(pd, pkt->w_bio);
1249 static void pkt_finish_packet(struct packet_data *pkt, blk_status_t status)
1251 struct bio *bio;
1253 if (status)
1254 pkt->cache_valid = 0;
1256 /* Finish all bios corresponding to this packet */
1257 while ((bio = bio_list_pop(&pkt->orig_bios))) {
1258 bio->bi_status = status;
1259 bio_endio(bio);
1263 static void pkt_run_state_machine(struct pktcdvd_device *pd, struct packet_data *pkt)
1265 pkt_dbg(2, pd, "pkt %d\n", pkt->id);
1267 for (;;) {
1268 switch (pkt->state) {
1269 case PACKET_WAITING_STATE:
1270 if ((pkt->write_size < pkt->frames) && (pkt->sleep_time > 0))
1271 return;
1273 pkt->sleep_time = 0;
1274 pkt_gather_data(pd, pkt);
1275 pkt_set_state(pkt, PACKET_READ_WAIT_STATE);
1276 break;
1278 case PACKET_READ_WAIT_STATE:
1279 if (atomic_read(&pkt->io_wait) > 0)
1280 return;
1282 if (atomic_read(&pkt->io_errors) > 0) {
1283 pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1284 } else {
1285 pkt_start_write(pd, pkt);
1287 break;
1289 case PACKET_WRITE_WAIT_STATE:
1290 if (atomic_read(&pkt->io_wait) > 0)
1291 return;
1293 if (!pkt->w_bio->bi_status) {
1294 pkt_set_state(pkt, PACKET_FINISHED_STATE);
1295 } else {
1296 pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1298 break;
1300 case PACKET_RECOVERY_STATE:
1301 pkt_dbg(2, pd, "No recovery possible\n");
1302 pkt_set_state(pkt, PACKET_FINISHED_STATE);
1303 break;
1305 case PACKET_FINISHED_STATE:
1306 pkt_finish_packet(pkt, pkt->w_bio->bi_status);
1307 return;
1309 default:
1310 BUG();
1311 break;
1316 static void pkt_handle_packets(struct pktcdvd_device *pd)
1318 struct packet_data *pkt, *next;
1321 * Run state machine for active packets
1323 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1324 if (atomic_read(&pkt->run_sm) > 0) {
1325 atomic_set(&pkt->run_sm, 0);
1326 pkt_run_state_machine(pd, pkt);
1331 * Move no longer active packets to the free list
1333 spin_lock(&pd->cdrw.active_list_lock);
1334 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_active_list, list) {
1335 if (pkt->state == PACKET_FINISHED_STATE) {
1336 list_del(&pkt->list);
1337 pkt_put_packet_data(pd, pkt);
1338 pkt_set_state(pkt, PACKET_IDLE_STATE);
1339 atomic_set(&pd->scan_queue, 1);
1342 spin_unlock(&pd->cdrw.active_list_lock);
1345 static void pkt_count_states(struct pktcdvd_device *pd, int *states)
1347 struct packet_data *pkt;
1348 int i;
1350 for (i = 0; i < PACKET_NUM_STATES; i++)
1351 states[i] = 0;
1353 spin_lock(&pd->cdrw.active_list_lock);
1354 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1355 states[pkt->state]++;
1357 spin_unlock(&pd->cdrw.active_list_lock);
1361 * kcdrwd is woken up when writes have been queued for one of our
1362 * registered devices
1364 static int kcdrwd(void *foobar)
1366 struct pktcdvd_device *pd = foobar;
1367 struct packet_data *pkt;
1368 long min_sleep_time, residue;
1370 set_user_nice(current, MIN_NICE);
1371 set_freezable();
1373 for (;;) {
1374 DECLARE_WAITQUEUE(wait, current);
1377 * Wait until there is something to do
1379 add_wait_queue(&pd->wqueue, &wait);
1380 for (;;) {
1381 set_current_state(TASK_INTERRUPTIBLE);
1383 /* Check if we need to run pkt_handle_queue */
1384 if (atomic_read(&pd->scan_queue) > 0)
1385 goto work_to_do;
1387 /* Check if we need to run the state machine for some packet */
1388 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1389 if (atomic_read(&pkt->run_sm) > 0)
1390 goto work_to_do;
1393 /* Check if we need to process the iosched queues */
1394 if (atomic_read(&pd->iosched.attention) != 0)
1395 goto work_to_do;
1397 /* Otherwise, go to sleep */
1398 if (PACKET_DEBUG > 1) {
1399 int states[PACKET_NUM_STATES];
1400 pkt_count_states(pd, states);
1401 pkt_dbg(2, pd, "i:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
1402 states[0], states[1], states[2],
1403 states[3], states[4], states[5]);
1406 min_sleep_time = MAX_SCHEDULE_TIMEOUT;
1407 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1408 if (pkt->sleep_time && pkt->sleep_time < min_sleep_time)
1409 min_sleep_time = pkt->sleep_time;
1412 pkt_dbg(2, pd, "sleeping\n");
1413 residue = schedule_timeout(min_sleep_time);
1414 pkt_dbg(2, pd, "wake up\n");
1416 /* make swsusp happy with our thread */
1417 try_to_freeze();
1419 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1420 if (!pkt->sleep_time)
1421 continue;
1422 pkt->sleep_time -= min_sleep_time - residue;
1423 if (pkt->sleep_time <= 0) {
1424 pkt->sleep_time = 0;
1425 atomic_inc(&pkt->run_sm);
1429 if (kthread_should_stop())
1430 break;
1432 work_to_do:
1433 set_current_state(TASK_RUNNING);
1434 remove_wait_queue(&pd->wqueue, &wait);
1436 if (kthread_should_stop())
1437 break;
1440 * if pkt_handle_queue returns true, we can queue
1441 * another request.
1443 while (pkt_handle_queue(pd))
1447 * Handle packet state machine
1449 pkt_handle_packets(pd);
1452 * Handle iosched queues
1454 pkt_iosched_process_queue(pd);
1457 return 0;
1460 static void pkt_print_settings(struct pktcdvd_device *pd)
1462 pkt_info(pd, "%s packets, %u blocks, Mode-%c disc\n",
1463 pd->settings.fp ? "Fixed" : "Variable",
1464 pd->settings.size >> 2,
1465 pd->settings.block_mode == 8 ? '1' : '2');
1468 static int pkt_mode_sense(struct pktcdvd_device *pd, struct packet_command *cgc, int page_code, int page_control)
1470 memset(cgc->cmd, 0, sizeof(cgc->cmd));
1472 cgc->cmd[0] = GPCMD_MODE_SENSE_10;
1473 cgc->cmd[2] = page_code | (page_control << 6);
1474 cgc->cmd[7] = cgc->buflen >> 8;
1475 cgc->cmd[8] = cgc->buflen & 0xff;
1476 cgc->data_direction = CGC_DATA_READ;
1477 return pkt_generic_packet(pd, cgc);
1480 static int pkt_mode_select(struct pktcdvd_device *pd, struct packet_command *cgc)
1482 memset(cgc->cmd, 0, sizeof(cgc->cmd));
1483 memset(cgc->buffer, 0, 2);
1484 cgc->cmd[0] = GPCMD_MODE_SELECT_10;
1485 cgc->cmd[1] = 0x10; /* PF */
1486 cgc->cmd[7] = cgc->buflen >> 8;
1487 cgc->cmd[8] = cgc->buflen & 0xff;
1488 cgc->data_direction = CGC_DATA_WRITE;
1489 return pkt_generic_packet(pd, cgc);
1492 static int pkt_get_disc_info(struct pktcdvd_device *pd, disc_information *di)
1494 struct packet_command cgc;
1495 int ret;
1497 /* set up command and get the disc info */
1498 init_cdrom_command(&cgc, di, sizeof(*di), CGC_DATA_READ);
1499 cgc.cmd[0] = GPCMD_READ_DISC_INFO;
1500 cgc.cmd[8] = cgc.buflen = 2;
1501 cgc.quiet = 1;
1503 ret = pkt_generic_packet(pd, &cgc);
1504 if (ret)
1505 return ret;
1507 /* not all drives have the same disc_info length, so requeue
1508 * packet with the length the drive tells us it can supply
1510 cgc.buflen = be16_to_cpu(di->disc_information_length) +
1511 sizeof(di->disc_information_length);
1513 if (cgc.buflen > sizeof(disc_information))
1514 cgc.buflen = sizeof(disc_information);
1516 cgc.cmd[8] = cgc.buflen;
1517 return pkt_generic_packet(pd, &cgc);
1520 static int pkt_get_track_info(struct pktcdvd_device *pd, __u16 track, __u8 type, track_information *ti)
1522 struct packet_command cgc;
1523 int ret;
1525 init_cdrom_command(&cgc, ti, 8, CGC_DATA_READ);
1526 cgc.cmd[0] = GPCMD_READ_TRACK_RZONE_INFO;
1527 cgc.cmd[1] = type & 3;
1528 cgc.cmd[4] = (track & 0xff00) >> 8;
1529 cgc.cmd[5] = track & 0xff;
1530 cgc.cmd[8] = 8;
1531 cgc.quiet = 1;
1533 ret = pkt_generic_packet(pd, &cgc);
1534 if (ret)
1535 return ret;
1537 cgc.buflen = be16_to_cpu(ti->track_information_length) +
1538 sizeof(ti->track_information_length);
1540 if (cgc.buflen > sizeof(track_information))
1541 cgc.buflen = sizeof(track_information);
1543 cgc.cmd[8] = cgc.buflen;
1544 return pkt_generic_packet(pd, &cgc);
1547 static noinline_for_stack int pkt_get_last_written(struct pktcdvd_device *pd,
1548 long *last_written)
1550 disc_information di;
1551 track_information ti;
1552 __u32 last_track;
1553 int ret;
1555 ret = pkt_get_disc_info(pd, &di);
1556 if (ret)
1557 return ret;
1559 last_track = (di.last_track_msb << 8) | di.last_track_lsb;
1560 ret = pkt_get_track_info(pd, last_track, 1, &ti);
1561 if (ret)
1562 return ret;
1564 /* if this track is blank, try the previous. */
1565 if (ti.blank) {
1566 last_track--;
1567 ret = pkt_get_track_info(pd, last_track, 1, &ti);
1568 if (ret)
1569 return ret;
1572 /* if last recorded field is valid, return it. */
1573 if (ti.lra_v) {
1574 *last_written = be32_to_cpu(ti.last_rec_address);
1575 } else {
1576 /* make it up instead */
1577 *last_written = be32_to_cpu(ti.track_start) +
1578 be32_to_cpu(ti.track_size);
1579 if (ti.free_blocks)
1580 *last_written -= (be32_to_cpu(ti.free_blocks) + 7);
1582 return 0;
1586 * write mode select package based on pd->settings
1588 static noinline_for_stack int pkt_set_write_settings(struct pktcdvd_device *pd)
1590 struct packet_command cgc;
1591 struct scsi_sense_hdr sshdr;
1592 write_param_page *wp;
1593 char buffer[128];
1594 int ret, size;
1596 /* doesn't apply to DVD+RW or DVD-RAM */
1597 if ((pd->mmc3_profile == 0x1a) || (pd->mmc3_profile == 0x12))
1598 return 0;
1600 memset(buffer, 0, sizeof(buffer));
1601 init_cdrom_command(&cgc, buffer, sizeof(*wp), CGC_DATA_READ);
1602 cgc.sshdr = &sshdr;
1603 ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0);
1604 if (ret) {
1605 pkt_dump_sense(pd, &cgc);
1606 return ret;
1609 size = 2 + ((buffer[0] << 8) | (buffer[1] & 0xff));
1610 pd->mode_offset = (buffer[6] << 8) | (buffer[7] & 0xff);
1611 if (size > sizeof(buffer))
1612 size = sizeof(buffer);
1615 * now get it all
1617 init_cdrom_command(&cgc, buffer, size, CGC_DATA_READ);
1618 cgc.sshdr = &sshdr;
1619 ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0);
1620 if (ret) {
1621 pkt_dump_sense(pd, &cgc);
1622 return ret;
1626 * write page is offset header + block descriptor length
1628 wp = (write_param_page *) &buffer[sizeof(struct mode_page_header) + pd->mode_offset];
1630 wp->fp = pd->settings.fp;
1631 wp->track_mode = pd->settings.track_mode;
1632 wp->write_type = pd->settings.write_type;
1633 wp->data_block_type = pd->settings.block_mode;
1635 wp->multi_session = 0;
1637 #ifdef PACKET_USE_LS
1638 wp->link_size = 7;
1639 wp->ls_v = 1;
1640 #endif
1642 if (wp->data_block_type == PACKET_BLOCK_MODE1) {
1643 wp->session_format = 0;
1644 wp->subhdr2 = 0x20;
1645 } else if (wp->data_block_type == PACKET_BLOCK_MODE2) {
1646 wp->session_format = 0x20;
1647 wp->subhdr2 = 8;
1648 #if 0
1649 wp->mcn[0] = 0x80;
1650 memcpy(&wp->mcn[1], PACKET_MCN, sizeof(wp->mcn) - 1);
1651 #endif
1652 } else {
1654 * paranoia
1656 pkt_err(pd, "write mode wrong %d\n", wp->data_block_type);
1657 return 1;
1659 wp->packet_size = cpu_to_be32(pd->settings.size >> 2);
1661 cgc.buflen = cgc.cmd[8] = size;
1662 ret = pkt_mode_select(pd, &cgc);
1663 if (ret) {
1664 pkt_dump_sense(pd, &cgc);
1665 return ret;
1668 pkt_print_settings(pd);
1669 return 0;
1673 * 1 -- we can write to this track, 0 -- we can't
1675 static int pkt_writable_track(struct pktcdvd_device *pd, track_information *ti)
1677 switch (pd->mmc3_profile) {
1678 case 0x1a: /* DVD+RW */
1679 case 0x12: /* DVD-RAM */
1680 /* The track is always writable on DVD+RW/DVD-RAM */
1681 return 1;
1682 default:
1683 break;
1686 if (!ti->packet || !ti->fp)
1687 return 0;
1690 * "good" settings as per Mt Fuji.
1692 if (ti->rt == 0 && ti->blank == 0)
1693 return 1;
1695 if (ti->rt == 0 && ti->blank == 1)
1696 return 1;
1698 if (ti->rt == 1 && ti->blank == 0)
1699 return 1;
1701 pkt_err(pd, "bad state %d-%d-%d\n", ti->rt, ti->blank, ti->packet);
1702 return 0;
1706 * 1 -- we can write to this disc, 0 -- we can't
1708 static int pkt_writable_disc(struct pktcdvd_device *pd, disc_information *di)
1710 switch (pd->mmc3_profile) {
1711 case 0x0a: /* CD-RW */
1712 case 0xffff: /* MMC3 not supported */
1713 break;
1714 case 0x1a: /* DVD+RW */
1715 case 0x13: /* DVD-RW */
1716 case 0x12: /* DVD-RAM */
1717 return 1;
1718 default:
1719 pkt_dbg(2, pd, "Wrong disc profile (%x)\n",
1720 pd->mmc3_profile);
1721 return 0;
1725 * for disc type 0xff we should probably reserve a new track.
1726 * but i'm not sure, should we leave this to user apps? probably.
1728 if (di->disc_type == 0xff) {
1729 pkt_notice(pd, "unknown disc - no track?\n");
1730 return 0;
1733 if (di->disc_type != 0x20 && di->disc_type != 0) {
1734 pkt_err(pd, "wrong disc type (%x)\n", di->disc_type);
1735 return 0;
1738 if (di->erasable == 0) {
1739 pkt_notice(pd, "disc not erasable\n");
1740 return 0;
1743 if (di->border_status == PACKET_SESSION_RESERVED) {
1744 pkt_err(pd, "can't write to last track (reserved)\n");
1745 return 0;
1748 return 1;
1751 static noinline_for_stack int pkt_probe_settings(struct pktcdvd_device *pd)
1753 struct packet_command cgc;
1754 unsigned char buf[12];
1755 disc_information di;
1756 track_information ti;
1757 int ret, track;
1759 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1760 cgc.cmd[0] = GPCMD_GET_CONFIGURATION;
1761 cgc.cmd[8] = 8;
1762 ret = pkt_generic_packet(pd, &cgc);
1763 pd->mmc3_profile = ret ? 0xffff : buf[6] << 8 | buf[7];
1765 memset(&di, 0, sizeof(disc_information));
1766 memset(&ti, 0, sizeof(track_information));
1768 ret = pkt_get_disc_info(pd, &di);
1769 if (ret) {
1770 pkt_err(pd, "failed get_disc\n");
1771 return ret;
1774 if (!pkt_writable_disc(pd, &di))
1775 return -EROFS;
1777 pd->type = di.erasable ? PACKET_CDRW : PACKET_CDR;
1779 track = 1; /* (di.last_track_msb << 8) | di.last_track_lsb; */
1780 ret = pkt_get_track_info(pd, track, 1, &ti);
1781 if (ret) {
1782 pkt_err(pd, "failed get_track\n");
1783 return ret;
1786 if (!pkt_writable_track(pd, &ti)) {
1787 pkt_err(pd, "can't write to this track\n");
1788 return -EROFS;
1792 * we keep packet size in 512 byte units, makes it easier to
1793 * deal with request calculations.
1795 pd->settings.size = be32_to_cpu(ti.fixed_packet_size) << 2;
1796 if (pd->settings.size == 0) {
1797 pkt_notice(pd, "detected zero packet size!\n");
1798 return -ENXIO;
1800 if (pd->settings.size > PACKET_MAX_SECTORS) {
1801 pkt_err(pd, "packet size is too big\n");
1802 return -EROFS;
1804 pd->settings.fp = ti.fp;
1805 pd->offset = (be32_to_cpu(ti.track_start) << 2) & (pd->settings.size - 1);
1807 if (ti.nwa_v) {
1808 pd->nwa = be32_to_cpu(ti.next_writable);
1809 set_bit(PACKET_NWA_VALID, &pd->flags);
1813 * in theory we could use lra on -RW media as well and just zero
1814 * blocks that haven't been written yet, but in practice that
1815 * is just a no-go. we'll use that for -R, naturally.
1817 if (ti.lra_v) {
1818 pd->lra = be32_to_cpu(ti.last_rec_address);
1819 set_bit(PACKET_LRA_VALID, &pd->flags);
1820 } else {
1821 pd->lra = 0xffffffff;
1822 set_bit(PACKET_LRA_VALID, &pd->flags);
1826 * fine for now
1828 pd->settings.link_loss = 7;
1829 pd->settings.write_type = 0; /* packet */
1830 pd->settings.track_mode = ti.track_mode;
1833 * mode1 or mode2 disc
1835 switch (ti.data_mode) {
1836 case PACKET_MODE1:
1837 pd->settings.block_mode = PACKET_BLOCK_MODE1;
1838 break;
1839 case PACKET_MODE2:
1840 pd->settings.block_mode = PACKET_BLOCK_MODE2;
1841 break;
1842 default:
1843 pkt_err(pd, "unknown data mode\n");
1844 return -EROFS;
1846 return 0;
1850 * enable/disable write caching on drive
1852 static noinline_for_stack int pkt_write_caching(struct pktcdvd_device *pd,
1853 int set)
1855 struct packet_command cgc;
1856 struct scsi_sense_hdr sshdr;
1857 unsigned char buf[64];
1858 int ret;
1860 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1861 cgc.sshdr = &sshdr;
1862 cgc.buflen = pd->mode_offset + 12;
1865 * caching mode page might not be there, so quiet this command
1867 cgc.quiet = 1;
1869 ret = pkt_mode_sense(pd, &cgc, GPMODE_WCACHING_PAGE, 0);
1870 if (ret)
1871 return ret;
1873 buf[pd->mode_offset + 10] |= (!!set << 2);
1875 cgc.buflen = cgc.cmd[8] = 2 + ((buf[0] << 8) | (buf[1] & 0xff));
1876 ret = pkt_mode_select(pd, &cgc);
1877 if (ret) {
1878 pkt_err(pd, "write caching control failed\n");
1879 pkt_dump_sense(pd, &cgc);
1880 } else if (!ret && set)
1881 pkt_notice(pd, "enabled write caching\n");
1882 return ret;
1885 static int pkt_lock_door(struct pktcdvd_device *pd, int lockflag)
1887 struct packet_command cgc;
1889 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
1890 cgc.cmd[0] = GPCMD_PREVENT_ALLOW_MEDIUM_REMOVAL;
1891 cgc.cmd[4] = lockflag ? 1 : 0;
1892 return pkt_generic_packet(pd, &cgc);
1896 * Returns drive maximum write speed
1898 static noinline_for_stack int pkt_get_max_speed(struct pktcdvd_device *pd,
1899 unsigned *write_speed)
1901 struct packet_command cgc;
1902 struct scsi_sense_hdr sshdr;
1903 unsigned char buf[256+18];
1904 unsigned char *cap_buf;
1905 int ret, offset;
1907 cap_buf = &buf[sizeof(struct mode_page_header) + pd->mode_offset];
1908 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_UNKNOWN);
1909 cgc.sshdr = &sshdr;
1911 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
1912 if (ret) {
1913 cgc.buflen = pd->mode_offset + cap_buf[1] + 2 +
1914 sizeof(struct mode_page_header);
1915 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
1916 if (ret) {
1917 pkt_dump_sense(pd, &cgc);
1918 return ret;
1922 offset = 20; /* Obsoleted field, used by older drives */
1923 if (cap_buf[1] >= 28)
1924 offset = 28; /* Current write speed selected */
1925 if (cap_buf[1] >= 30) {
1926 /* If the drive reports at least one "Logical Unit Write
1927 * Speed Performance Descriptor Block", use the information
1928 * in the first block. (contains the highest speed)
1930 int num_spdb = (cap_buf[30] << 8) + cap_buf[31];
1931 if (num_spdb > 0)
1932 offset = 34;
1935 *write_speed = (cap_buf[offset] << 8) | cap_buf[offset + 1];
1936 return 0;
1939 /* These tables from cdrecord - I don't have orange book */
1940 /* standard speed CD-RW (1-4x) */
1941 static char clv_to_speed[16] = {
1942 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
1943 0, 2, 4, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
1945 /* high speed CD-RW (-10x) */
1946 static char hs_clv_to_speed[16] = {
1947 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
1948 0, 2, 4, 6, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
1950 /* ultra high speed CD-RW */
1951 static char us_clv_to_speed[16] = {
1952 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
1953 0, 2, 4, 8, 0, 0,16, 0,24,32,40,48, 0, 0, 0, 0
1957 * reads the maximum media speed from ATIP
1959 static noinline_for_stack int pkt_media_speed(struct pktcdvd_device *pd,
1960 unsigned *speed)
1962 struct packet_command cgc;
1963 struct scsi_sense_hdr sshdr;
1964 unsigned char buf[64];
1965 unsigned int size, st, sp;
1966 int ret;
1968 init_cdrom_command(&cgc, buf, 2, CGC_DATA_READ);
1969 cgc.sshdr = &sshdr;
1970 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
1971 cgc.cmd[1] = 2;
1972 cgc.cmd[2] = 4; /* READ ATIP */
1973 cgc.cmd[8] = 2;
1974 ret = pkt_generic_packet(pd, &cgc);
1975 if (ret) {
1976 pkt_dump_sense(pd, &cgc);
1977 return ret;
1979 size = ((unsigned int) buf[0]<<8) + buf[1] + 2;
1980 if (size > sizeof(buf))
1981 size = sizeof(buf);
1983 init_cdrom_command(&cgc, buf, size, CGC_DATA_READ);
1984 cgc.sshdr = &sshdr;
1985 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
1986 cgc.cmd[1] = 2;
1987 cgc.cmd[2] = 4;
1988 cgc.cmd[8] = size;
1989 ret = pkt_generic_packet(pd, &cgc);
1990 if (ret) {
1991 pkt_dump_sense(pd, &cgc);
1992 return ret;
1995 if (!(buf[6] & 0x40)) {
1996 pkt_notice(pd, "disc type is not CD-RW\n");
1997 return 1;
1999 if (!(buf[6] & 0x4)) {
2000 pkt_notice(pd, "A1 values on media are not valid, maybe not CDRW?\n");
2001 return 1;
2004 st = (buf[6] >> 3) & 0x7; /* disc sub-type */
2006 sp = buf[16] & 0xf; /* max speed from ATIP A1 field */
2008 /* Info from cdrecord */
2009 switch (st) {
2010 case 0: /* standard speed */
2011 *speed = clv_to_speed[sp];
2012 break;
2013 case 1: /* high speed */
2014 *speed = hs_clv_to_speed[sp];
2015 break;
2016 case 2: /* ultra high speed */
2017 *speed = us_clv_to_speed[sp];
2018 break;
2019 default:
2020 pkt_notice(pd, "unknown disc sub-type %d\n", st);
2021 return 1;
2023 if (*speed) {
2024 pkt_info(pd, "maximum media speed: %d\n", *speed);
2025 return 0;
2026 } else {
2027 pkt_notice(pd, "unknown speed %d for sub-type %d\n", sp, st);
2028 return 1;
2032 static noinline_for_stack int pkt_perform_opc(struct pktcdvd_device *pd)
2034 struct packet_command cgc;
2035 struct scsi_sense_hdr sshdr;
2036 int ret;
2038 pkt_dbg(2, pd, "Performing OPC\n");
2040 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
2041 cgc.sshdr = &sshdr;
2042 cgc.timeout = 60*HZ;
2043 cgc.cmd[0] = GPCMD_SEND_OPC;
2044 cgc.cmd[1] = 1;
2045 ret = pkt_generic_packet(pd, &cgc);
2046 if (ret)
2047 pkt_dump_sense(pd, &cgc);
2048 return ret;
2051 static int pkt_open_write(struct pktcdvd_device *pd)
2053 int ret;
2054 unsigned int write_speed, media_write_speed, read_speed;
2056 ret = pkt_probe_settings(pd);
2057 if (ret) {
2058 pkt_dbg(2, pd, "failed probe\n");
2059 return ret;
2062 ret = pkt_set_write_settings(pd);
2063 if (ret) {
2064 pkt_dbg(1, pd, "failed saving write settings\n");
2065 return -EIO;
2068 pkt_write_caching(pd, USE_WCACHING);
2070 ret = pkt_get_max_speed(pd, &write_speed);
2071 if (ret)
2072 write_speed = 16 * 177;
2073 switch (pd->mmc3_profile) {
2074 case 0x13: /* DVD-RW */
2075 case 0x1a: /* DVD+RW */
2076 case 0x12: /* DVD-RAM */
2077 pkt_dbg(1, pd, "write speed %ukB/s\n", write_speed);
2078 break;
2079 default:
2080 ret = pkt_media_speed(pd, &media_write_speed);
2081 if (ret)
2082 media_write_speed = 16;
2083 write_speed = min(write_speed, media_write_speed * 177);
2084 pkt_dbg(1, pd, "write speed %ux\n", write_speed / 176);
2085 break;
2087 read_speed = write_speed;
2089 ret = pkt_set_speed(pd, write_speed, read_speed);
2090 if (ret) {
2091 pkt_dbg(1, pd, "couldn't set write speed\n");
2092 return -EIO;
2094 pd->write_speed = write_speed;
2095 pd->read_speed = read_speed;
2097 ret = pkt_perform_opc(pd);
2098 if (ret) {
2099 pkt_dbg(1, pd, "Optimum Power Calibration failed\n");
2102 return 0;
2106 * called at open time.
2108 static int pkt_open_dev(struct pktcdvd_device *pd, fmode_t write)
2110 int ret;
2111 long lba;
2112 struct request_queue *q;
2113 struct block_device *bdev;
2116 * We need to re-open the cdrom device without O_NONBLOCK to be able
2117 * to read/write from/to it. It is already opened in O_NONBLOCK mode
2118 * so open should not fail.
2120 bdev = blkdev_get_by_dev(pd->bdev->bd_dev, FMODE_READ | FMODE_EXCL, pd);
2121 if (IS_ERR(bdev)) {
2122 ret = PTR_ERR(bdev);
2123 goto out;
2126 ret = pkt_get_last_written(pd, &lba);
2127 if (ret) {
2128 pkt_err(pd, "pkt_get_last_written failed\n");
2129 goto out_putdev;
2132 set_capacity(pd->disk, lba << 2);
2133 set_capacity_and_notify(pd->bdev->bd_disk, lba << 2);
2135 q = bdev_get_queue(pd->bdev);
2136 if (write) {
2137 ret = pkt_open_write(pd);
2138 if (ret)
2139 goto out_putdev;
2141 * Some CDRW drives can not handle writes larger than one packet,
2142 * even if the size is a multiple of the packet size.
2144 blk_queue_max_hw_sectors(q, pd->settings.size);
2145 set_bit(PACKET_WRITABLE, &pd->flags);
2146 } else {
2147 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2148 clear_bit(PACKET_WRITABLE, &pd->flags);
2151 ret = pkt_set_segment_merging(pd, q);
2152 if (ret)
2153 goto out_putdev;
2155 if (write) {
2156 if (!pkt_grow_pktlist(pd, CONFIG_CDROM_PKTCDVD_BUFFERS)) {
2157 pkt_err(pd, "not enough memory for buffers\n");
2158 ret = -ENOMEM;
2159 goto out_putdev;
2161 pkt_info(pd, "%lukB available on disc\n", lba << 1);
2164 return 0;
2166 out_putdev:
2167 blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
2168 out:
2169 return ret;
2173 * called when the device is closed. makes sure that the device flushes
2174 * the internal cache before we close.
2176 static void pkt_release_dev(struct pktcdvd_device *pd, int flush)
2178 if (flush && pkt_flush_cache(pd))
2179 pkt_dbg(1, pd, "not flushing cache\n");
2181 pkt_lock_door(pd, 0);
2183 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2184 blkdev_put(pd->bdev, FMODE_READ | FMODE_EXCL);
2186 pkt_shrink_pktlist(pd);
2189 static struct pktcdvd_device *pkt_find_dev_from_minor(unsigned int dev_minor)
2191 if (dev_minor >= MAX_WRITERS)
2192 return NULL;
2194 dev_minor = array_index_nospec(dev_minor, MAX_WRITERS);
2195 return pkt_devs[dev_minor];
2198 static int pkt_open(struct block_device *bdev, fmode_t mode)
2200 struct pktcdvd_device *pd = NULL;
2201 int ret;
2203 mutex_lock(&pktcdvd_mutex);
2204 mutex_lock(&ctl_mutex);
2205 pd = pkt_find_dev_from_minor(MINOR(bdev->bd_dev));
2206 if (!pd) {
2207 ret = -ENODEV;
2208 goto out;
2210 BUG_ON(pd->refcnt < 0);
2212 pd->refcnt++;
2213 if (pd->refcnt > 1) {
2214 if ((mode & FMODE_WRITE) &&
2215 !test_bit(PACKET_WRITABLE, &pd->flags)) {
2216 ret = -EBUSY;
2217 goto out_dec;
2219 } else {
2220 ret = pkt_open_dev(pd, mode & FMODE_WRITE);
2221 if (ret)
2222 goto out_dec;
2224 * needed here as well, since ext2 (among others) may change
2225 * the blocksize at mount time
2227 set_blocksize(bdev, CD_FRAMESIZE);
2230 mutex_unlock(&ctl_mutex);
2231 mutex_unlock(&pktcdvd_mutex);
2232 return 0;
2234 out_dec:
2235 pd->refcnt--;
2236 out:
2237 mutex_unlock(&ctl_mutex);
2238 mutex_unlock(&pktcdvd_mutex);
2239 return ret;
2242 static void pkt_close(struct gendisk *disk, fmode_t mode)
2244 struct pktcdvd_device *pd = disk->private_data;
2246 mutex_lock(&pktcdvd_mutex);
2247 mutex_lock(&ctl_mutex);
2248 pd->refcnt--;
2249 BUG_ON(pd->refcnt < 0);
2250 if (pd->refcnt == 0) {
2251 int flush = test_bit(PACKET_WRITABLE, &pd->flags);
2252 pkt_release_dev(pd, flush);
2254 mutex_unlock(&ctl_mutex);
2255 mutex_unlock(&pktcdvd_mutex);
2259 static void pkt_end_io_read_cloned(struct bio *bio)
2261 struct packet_stacked_data *psd = bio->bi_private;
2262 struct pktcdvd_device *pd = psd->pd;
2264 psd->bio->bi_status = bio->bi_status;
2265 bio_put(bio);
2266 bio_endio(psd->bio);
2267 mempool_free(psd, &psd_pool);
2268 pkt_bio_finished(pd);
2271 static void pkt_make_request_read(struct pktcdvd_device *pd, struct bio *bio)
2273 struct bio *cloned_bio = bio_clone_fast(bio, GFP_NOIO, &pkt_bio_set);
2274 struct packet_stacked_data *psd = mempool_alloc(&psd_pool, GFP_NOIO);
2276 psd->pd = pd;
2277 psd->bio = bio;
2278 bio_set_dev(cloned_bio, pd->bdev);
2279 cloned_bio->bi_private = psd;
2280 cloned_bio->bi_end_io = pkt_end_io_read_cloned;
2281 pd->stats.secs_r += bio_sectors(bio);
2282 pkt_queue_bio(pd, cloned_bio);
2285 static void pkt_make_request_write(struct request_queue *q, struct bio *bio)
2287 struct pktcdvd_device *pd = q->queuedata;
2288 sector_t zone;
2289 struct packet_data *pkt;
2290 int was_empty, blocked_bio;
2291 struct pkt_rb_node *node;
2293 zone = get_zone(bio->bi_iter.bi_sector, pd);
2296 * If we find a matching packet in state WAITING or READ_WAIT, we can
2297 * just append this bio to that packet.
2299 spin_lock(&pd->cdrw.active_list_lock);
2300 blocked_bio = 0;
2301 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
2302 if (pkt->sector == zone) {
2303 spin_lock(&pkt->lock);
2304 if ((pkt->state == PACKET_WAITING_STATE) ||
2305 (pkt->state == PACKET_READ_WAIT_STATE)) {
2306 bio_list_add(&pkt->orig_bios, bio);
2307 pkt->write_size +=
2308 bio->bi_iter.bi_size / CD_FRAMESIZE;
2309 if ((pkt->write_size >= pkt->frames) &&
2310 (pkt->state == PACKET_WAITING_STATE)) {
2311 atomic_inc(&pkt->run_sm);
2312 wake_up(&pd->wqueue);
2314 spin_unlock(&pkt->lock);
2315 spin_unlock(&pd->cdrw.active_list_lock);
2316 return;
2317 } else {
2318 blocked_bio = 1;
2320 spin_unlock(&pkt->lock);
2323 spin_unlock(&pd->cdrw.active_list_lock);
2326 * Test if there is enough room left in the bio work queue
2327 * (queue size >= congestion on mark).
2328 * If not, wait till the work queue size is below the congestion off mark.
2330 spin_lock(&pd->lock);
2331 if (pd->write_congestion_on > 0
2332 && pd->bio_queue_size >= pd->write_congestion_on) {
2333 set_bdi_congested(q->backing_dev_info, BLK_RW_ASYNC);
2334 do {
2335 spin_unlock(&pd->lock);
2336 congestion_wait(BLK_RW_ASYNC, HZ);
2337 spin_lock(&pd->lock);
2338 } while(pd->bio_queue_size > pd->write_congestion_off);
2340 spin_unlock(&pd->lock);
2343 * No matching packet found. Store the bio in the work queue.
2345 node = mempool_alloc(&pd->rb_pool, GFP_NOIO);
2346 node->bio = bio;
2347 spin_lock(&pd->lock);
2348 BUG_ON(pd->bio_queue_size < 0);
2349 was_empty = (pd->bio_queue_size == 0);
2350 pkt_rbtree_insert(pd, node);
2351 spin_unlock(&pd->lock);
2354 * Wake up the worker thread.
2356 atomic_set(&pd->scan_queue, 1);
2357 if (was_empty) {
2358 /* This wake_up is required for correct operation */
2359 wake_up(&pd->wqueue);
2360 } else if (!list_empty(&pd->cdrw.pkt_free_list) && !blocked_bio) {
2362 * This wake up is not required for correct operation,
2363 * but improves performance in some cases.
2365 wake_up(&pd->wqueue);
2369 static blk_qc_t pkt_submit_bio(struct bio *bio)
2371 struct pktcdvd_device *pd;
2372 char b[BDEVNAME_SIZE];
2373 struct bio *split;
2375 blk_queue_split(&bio);
2377 pd = bio->bi_disk->queue->queuedata;
2378 if (!pd) {
2379 pr_err("%s incorrect request queue\n", bio_devname(bio, b));
2380 goto end_io;
2383 pkt_dbg(2, pd, "start = %6llx stop = %6llx\n",
2384 (unsigned long long)bio->bi_iter.bi_sector,
2385 (unsigned long long)bio_end_sector(bio));
2388 * Clone READ bios so we can have our own bi_end_io callback.
2390 if (bio_data_dir(bio) == READ) {
2391 pkt_make_request_read(pd, bio);
2392 return BLK_QC_T_NONE;
2395 if (!test_bit(PACKET_WRITABLE, &pd->flags)) {
2396 pkt_notice(pd, "WRITE for ro device (%llu)\n",
2397 (unsigned long long)bio->bi_iter.bi_sector);
2398 goto end_io;
2401 if (!bio->bi_iter.bi_size || (bio->bi_iter.bi_size % CD_FRAMESIZE)) {
2402 pkt_err(pd, "wrong bio size\n");
2403 goto end_io;
2406 do {
2407 sector_t zone = get_zone(bio->bi_iter.bi_sector, pd);
2408 sector_t last_zone = get_zone(bio_end_sector(bio) - 1, pd);
2410 if (last_zone != zone) {
2411 BUG_ON(last_zone != zone + pd->settings.size);
2413 split = bio_split(bio, last_zone -
2414 bio->bi_iter.bi_sector,
2415 GFP_NOIO, &pkt_bio_set);
2416 bio_chain(split, bio);
2417 } else {
2418 split = bio;
2421 pkt_make_request_write(bio->bi_disk->queue, split);
2422 } while (split != bio);
2424 return BLK_QC_T_NONE;
2425 end_io:
2426 bio_io_error(bio);
2427 return BLK_QC_T_NONE;
2430 static void pkt_init_queue(struct pktcdvd_device *pd)
2432 struct request_queue *q = pd->disk->queue;
2434 blk_queue_logical_block_size(q, CD_FRAMESIZE);
2435 blk_queue_max_hw_sectors(q, PACKET_MAX_SECTORS);
2436 q->queuedata = pd;
2439 static int pkt_seq_show(struct seq_file *m, void *p)
2441 struct pktcdvd_device *pd = m->private;
2442 char *msg;
2443 char bdev_buf[BDEVNAME_SIZE];
2444 int states[PACKET_NUM_STATES];
2446 seq_printf(m, "Writer %s mapped to %s:\n", pd->name,
2447 bdevname(pd->bdev, bdev_buf));
2449 seq_printf(m, "\nSettings:\n");
2450 seq_printf(m, "\tpacket size:\t\t%dkB\n", pd->settings.size / 2);
2452 if (pd->settings.write_type == 0)
2453 msg = "Packet";
2454 else
2455 msg = "Unknown";
2456 seq_printf(m, "\twrite type:\t\t%s\n", msg);
2458 seq_printf(m, "\tpacket type:\t\t%s\n", pd->settings.fp ? "Fixed" : "Variable");
2459 seq_printf(m, "\tlink loss:\t\t%d\n", pd->settings.link_loss);
2461 seq_printf(m, "\ttrack mode:\t\t%d\n", pd->settings.track_mode);
2463 if (pd->settings.block_mode == PACKET_BLOCK_MODE1)
2464 msg = "Mode 1";
2465 else if (pd->settings.block_mode == PACKET_BLOCK_MODE2)
2466 msg = "Mode 2";
2467 else
2468 msg = "Unknown";
2469 seq_printf(m, "\tblock mode:\t\t%s\n", msg);
2471 seq_printf(m, "\nStatistics:\n");
2472 seq_printf(m, "\tpackets started:\t%lu\n", pd->stats.pkt_started);
2473 seq_printf(m, "\tpackets ended:\t\t%lu\n", pd->stats.pkt_ended);
2474 seq_printf(m, "\twritten:\t\t%lukB\n", pd->stats.secs_w >> 1);
2475 seq_printf(m, "\tread gather:\t\t%lukB\n", pd->stats.secs_rg >> 1);
2476 seq_printf(m, "\tread:\t\t\t%lukB\n", pd->stats.secs_r >> 1);
2478 seq_printf(m, "\nMisc:\n");
2479 seq_printf(m, "\treference count:\t%d\n", pd->refcnt);
2480 seq_printf(m, "\tflags:\t\t\t0x%lx\n", pd->flags);
2481 seq_printf(m, "\tread speed:\t\t%ukB/s\n", pd->read_speed);
2482 seq_printf(m, "\twrite speed:\t\t%ukB/s\n", pd->write_speed);
2483 seq_printf(m, "\tstart offset:\t\t%lu\n", pd->offset);
2484 seq_printf(m, "\tmode page offset:\t%u\n", pd->mode_offset);
2486 seq_printf(m, "\nQueue state:\n");
2487 seq_printf(m, "\tbios queued:\t\t%d\n", pd->bio_queue_size);
2488 seq_printf(m, "\tbios pending:\t\t%d\n", atomic_read(&pd->cdrw.pending_bios));
2489 seq_printf(m, "\tcurrent sector:\t\t0x%llx\n", (unsigned long long)pd->current_sector);
2491 pkt_count_states(pd, states);
2492 seq_printf(m, "\tstate:\t\t\ti:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
2493 states[0], states[1], states[2], states[3], states[4], states[5]);
2495 seq_printf(m, "\twrite congestion marks:\toff=%d on=%d\n",
2496 pd->write_congestion_off,
2497 pd->write_congestion_on);
2498 return 0;
2501 static int pkt_new_dev(struct pktcdvd_device *pd, dev_t dev)
2503 int i;
2504 char b[BDEVNAME_SIZE];
2505 struct block_device *bdev;
2507 if (pd->pkt_dev == dev) {
2508 pkt_err(pd, "recursive setup not allowed\n");
2509 return -EBUSY;
2511 for (i = 0; i < MAX_WRITERS; i++) {
2512 struct pktcdvd_device *pd2 = pkt_devs[i];
2513 if (!pd2)
2514 continue;
2515 if (pd2->bdev->bd_dev == dev) {
2516 pkt_err(pd, "%s already setup\n",
2517 bdevname(pd2->bdev, b));
2518 return -EBUSY;
2520 if (pd2->pkt_dev == dev) {
2521 pkt_err(pd, "can't chain pktcdvd devices\n");
2522 return -EBUSY;
2526 bdev = blkdev_get_by_dev(dev, FMODE_READ | FMODE_NDELAY, NULL);
2527 if (IS_ERR(bdev))
2528 return PTR_ERR(bdev);
2529 if (!blk_queue_scsi_passthrough(bdev_get_queue(bdev))) {
2530 blkdev_put(bdev, FMODE_READ | FMODE_NDELAY);
2531 return -EINVAL;
2534 /* This is safe, since we have a reference from open(). */
2535 __module_get(THIS_MODULE);
2537 pd->bdev = bdev;
2538 set_blocksize(bdev, CD_FRAMESIZE);
2540 pkt_init_queue(pd);
2542 atomic_set(&pd->cdrw.pending_bios, 0);
2543 pd->cdrw.thread = kthread_run(kcdrwd, pd, "%s", pd->name);
2544 if (IS_ERR(pd->cdrw.thread)) {
2545 pkt_err(pd, "can't start kernel thread\n");
2546 goto out_mem;
2549 proc_create_single_data(pd->name, 0, pkt_proc, pkt_seq_show, pd);
2550 pkt_dbg(1, pd, "writer mapped to %s\n", bdevname(bdev, b));
2551 return 0;
2553 out_mem:
2554 blkdev_put(bdev, FMODE_READ | FMODE_NDELAY);
2555 /* This is safe: open() is still holding a reference. */
2556 module_put(THIS_MODULE);
2557 return -ENOMEM;
2560 static int pkt_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg)
2562 struct pktcdvd_device *pd = bdev->bd_disk->private_data;
2563 int ret;
2565 pkt_dbg(2, pd, "cmd %x, dev %d:%d\n",
2566 cmd, MAJOR(bdev->bd_dev), MINOR(bdev->bd_dev));
2568 mutex_lock(&pktcdvd_mutex);
2569 switch (cmd) {
2570 case CDROMEJECT:
2572 * The door gets locked when the device is opened, so we
2573 * have to unlock it or else the eject command fails.
2575 if (pd->refcnt == 1)
2576 pkt_lock_door(pd, 0);
2577 fallthrough;
2579 * forward selected CDROM ioctls to CD-ROM, for UDF
2581 case CDROMMULTISESSION:
2582 case CDROMREADTOCENTRY:
2583 case CDROM_LAST_WRITTEN:
2584 case CDROM_SEND_PACKET:
2585 case SCSI_IOCTL_SEND_COMMAND:
2586 if (!bdev->bd_disk->fops->ioctl)
2587 ret = -ENOTTY;
2588 else
2589 ret = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg);
2590 break;
2591 default:
2592 pkt_dbg(2, pd, "Unknown ioctl (%x)\n", cmd);
2593 ret = -ENOTTY;
2595 mutex_unlock(&pktcdvd_mutex);
2597 return ret;
2600 static unsigned int pkt_check_events(struct gendisk *disk,
2601 unsigned int clearing)
2603 struct pktcdvd_device *pd = disk->private_data;
2604 struct gendisk *attached_disk;
2606 if (!pd)
2607 return 0;
2608 if (!pd->bdev)
2609 return 0;
2610 attached_disk = pd->bdev->bd_disk;
2611 if (!attached_disk || !attached_disk->fops->check_events)
2612 return 0;
2613 return attached_disk->fops->check_events(attached_disk, clearing);
2616 static char *pkt_devnode(struct gendisk *disk, umode_t *mode)
2618 return kasprintf(GFP_KERNEL, "pktcdvd/%s", disk->disk_name);
2621 static const struct block_device_operations pktcdvd_ops = {
2622 .owner = THIS_MODULE,
2623 .submit_bio = pkt_submit_bio,
2624 .open = pkt_open,
2625 .release = pkt_close,
2626 .ioctl = pkt_ioctl,
2627 .compat_ioctl = blkdev_compat_ptr_ioctl,
2628 .check_events = pkt_check_events,
2629 .devnode = pkt_devnode,
2633 * Set up mapping from pktcdvd device to CD-ROM device.
2635 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev)
2637 int idx;
2638 int ret = -ENOMEM;
2639 struct pktcdvd_device *pd;
2640 struct gendisk *disk;
2642 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2644 for (idx = 0; idx < MAX_WRITERS; idx++)
2645 if (!pkt_devs[idx])
2646 break;
2647 if (idx == MAX_WRITERS) {
2648 pr_err("max %d writers supported\n", MAX_WRITERS);
2649 ret = -EBUSY;
2650 goto out_mutex;
2653 pd = kzalloc(sizeof(struct pktcdvd_device), GFP_KERNEL);
2654 if (!pd)
2655 goto out_mutex;
2657 ret = mempool_init_kmalloc_pool(&pd->rb_pool, PKT_RB_POOL_SIZE,
2658 sizeof(struct pkt_rb_node));
2659 if (ret)
2660 goto out_mem;
2662 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
2663 INIT_LIST_HEAD(&pd->cdrw.pkt_active_list);
2664 spin_lock_init(&pd->cdrw.active_list_lock);
2666 spin_lock_init(&pd->lock);
2667 spin_lock_init(&pd->iosched.lock);
2668 bio_list_init(&pd->iosched.read_queue);
2669 bio_list_init(&pd->iosched.write_queue);
2670 sprintf(pd->name, DRIVER_NAME"%d", idx);
2671 init_waitqueue_head(&pd->wqueue);
2672 pd->bio_queue = RB_ROOT;
2674 pd->write_congestion_on = write_congestion_on;
2675 pd->write_congestion_off = write_congestion_off;
2677 ret = -ENOMEM;
2678 disk = alloc_disk(1);
2679 if (!disk)
2680 goto out_mem;
2681 pd->disk = disk;
2682 disk->major = pktdev_major;
2683 disk->first_minor = idx;
2684 disk->fops = &pktcdvd_ops;
2685 disk->flags = GENHD_FL_REMOVABLE;
2686 strcpy(disk->disk_name, pd->name);
2687 disk->private_data = pd;
2688 disk->queue = blk_alloc_queue(NUMA_NO_NODE);
2689 if (!disk->queue)
2690 goto out_mem2;
2692 pd->pkt_dev = MKDEV(pktdev_major, idx);
2693 ret = pkt_new_dev(pd, dev);
2694 if (ret)
2695 goto out_mem2;
2697 /* inherit events of the host device */
2698 disk->events = pd->bdev->bd_disk->events;
2700 add_disk(disk);
2702 pkt_sysfs_dev_new(pd);
2703 pkt_debugfs_dev_new(pd);
2705 pkt_devs[idx] = pd;
2706 if (pkt_dev)
2707 *pkt_dev = pd->pkt_dev;
2709 mutex_unlock(&ctl_mutex);
2710 return 0;
2712 out_mem2:
2713 put_disk(disk);
2714 out_mem:
2715 mempool_exit(&pd->rb_pool);
2716 kfree(pd);
2717 out_mutex:
2718 mutex_unlock(&ctl_mutex);
2719 pr_err("setup of pktcdvd device failed\n");
2720 return ret;
2724 * Tear down mapping from pktcdvd device to CD-ROM device.
2726 static int pkt_remove_dev(dev_t pkt_dev)
2728 struct pktcdvd_device *pd;
2729 int idx;
2730 int ret = 0;
2732 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2734 for (idx = 0; idx < MAX_WRITERS; idx++) {
2735 pd = pkt_devs[idx];
2736 if (pd && (pd->pkt_dev == pkt_dev))
2737 break;
2739 if (idx == MAX_WRITERS) {
2740 pr_debug("dev not setup\n");
2741 ret = -ENXIO;
2742 goto out;
2745 if (pd->refcnt > 0) {
2746 ret = -EBUSY;
2747 goto out;
2749 if (!IS_ERR(pd->cdrw.thread))
2750 kthread_stop(pd->cdrw.thread);
2752 pkt_devs[idx] = NULL;
2754 pkt_debugfs_dev_remove(pd);
2755 pkt_sysfs_dev_remove(pd);
2757 blkdev_put(pd->bdev, FMODE_READ | FMODE_NDELAY);
2759 remove_proc_entry(pd->name, pkt_proc);
2760 pkt_dbg(1, pd, "writer unmapped\n");
2762 del_gendisk(pd->disk);
2763 blk_cleanup_queue(pd->disk->queue);
2764 put_disk(pd->disk);
2766 mempool_exit(&pd->rb_pool);
2767 kfree(pd);
2769 /* This is safe: open() is still holding a reference. */
2770 module_put(THIS_MODULE);
2772 out:
2773 mutex_unlock(&ctl_mutex);
2774 return ret;
2777 static void pkt_get_status(struct pkt_ctrl_command *ctrl_cmd)
2779 struct pktcdvd_device *pd;
2781 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2783 pd = pkt_find_dev_from_minor(ctrl_cmd->dev_index);
2784 if (pd) {
2785 ctrl_cmd->dev = new_encode_dev(pd->bdev->bd_dev);
2786 ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev);
2787 } else {
2788 ctrl_cmd->dev = 0;
2789 ctrl_cmd->pkt_dev = 0;
2791 ctrl_cmd->num_devices = MAX_WRITERS;
2793 mutex_unlock(&ctl_mutex);
2796 static long pkt_ctl_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2798 void __user *argp = (void __user *)arg;
2799 struct pkt_ctrl_command ctrl_cmd;
2800 int ret = 0;
2801 dev_t pkt_dev = 0;
2803 if (cmd != PACKET_CTRL_CMD)
2804 return -ENOTTY;
2806 if (copy_from_user(&ctrl_cmd, argp, sizeof(struct pkt_ctrl_command)))
2807 return -EFAULT;
2809 switch (ctrl_cmd.command) {
2810 case PKT_CTRL_CMD_SETUP:
2811 if (!capable(CAP_SYS_ADMIN))
2812 return -EPERM;
2813 ret = pkt_setup_dev(new_decode_dev(ctrl_cmd.dev), &pkt_dev);
2814 ctrl_cmd.pkt_dev = new_encode_dev(pkt_dev);
2815 break;
2816 case PKT_CTRL_CMD_TEARDOWN:
2817 if (!capable(CAP_SYS_ADMIN))
2818 return -EPERM;
2819 ret = pkt_remove_dev(new_decode_dev(ctrl_cmd.pkt_dev));
2820 break;
2821 case PKT_CTRL_CMD_STATUS:
2822 pkt_get_status(&ctrl_cmd);
2823 break;
2824 default:
2825 return -ENOTTY;
2828 if (copy_to_user(argp, &ctrl_cmd, sizeof(struct pkt_ctrl_command)))
2829 return -EFAULT;
2830 return ret;
2833 #ifdef CONFIG_COMPAT
2834 static long pkt_ctl_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2836 return pkt_ctl_ioctl(file, cmd, (unsigned long)compat_ptr(arg));
2838 #endif
2840 static const struct file_operations pkt_ctl_fops = {
2841 .open = nonseekable_open,
2842 .unlocked_ioctl = pkt_ctl_ioctl,
2843 #ifdef CONFIG_COMPAT
2844 .compat_ioctl = pkt_ctl_compat_ioctl,
2845 #endif
2846 .owner = THIS_MODULE,
2847 .llseek = no_llseek,
2850 static struct miscdevice pkt_misc = {
2851 .minor = MISC_DYNAMIC_MINOR,
2852 .name = DRIVER_NAME,
2853 .nodename = "pktcdvd/control",
2854 .fops = &pkt_ctl_fops
2857 static int __init pkt_init(void)
2859 int ret;
2861 mutex_init(&ctl_mutex);
2863 ret = mempool_init_kmalloc_pool(&psd_pool, PSD_POOL_SIZE,
2864 sizeof(struct packet_stacked_data));
2865 if (ret)
2866 return ret;
2867 ret = bioset_init(&pkt_bio_set, BIO_POOL_SIZE, 0, 0);
2868 if (ret) {
2869 mempool_exit(&psd_pool);
2870 return ret;
2873 ret = register_blkdev(pktdev_major, DRIVER_NAME);
2874 if (ret < 0) {
2875 pr_err("unable to register block device\n");
2876 goto out2;
2878 if (!pktdev_major)
2879 pktdev_major = ret;
2881 ret = pkt_sysfs_init();
2882 if (ret)
2883 goto out;
2885 pkt_debugfs_init();
2887 ret = misc_register(&pkt_misc);
2888 if (ret) {
2889 pr_err("unable to register misc device\n");
2890 goto out_misc;
2893 pkt_proc = proc_mkdir("driver/"DRIVER_NAME, NULL);
2895 return 0;
2897 out_misc:
2898 pkt_debugfs_cleanup();
2899 pkt_sysfs_cleanup();
2900 out:
2901 unregister_blkdev(pktdev_major, DRIVER_NAME);
2902 out2:
2903 mempool_exit(&psd_pool);
2904 bioset_exit(&pkt_bio_set);
2905 return ret;
2908 static void __exit pkt_exit(void)
2910 remove_proc_entry("driver/"DRIVER_NAME, NULL);
2911 misc_deregister(&pkt_misc);
2913 pkt_debugfs_cleanup();
2914 pkt_sysfs_cleanup();
2916 unregister_blkdev(pktdev_major, DRIVER_NAME);
2917 mempool_exit(&psd_pool);
2918 bioset_exit(&pkt_bio_set);
2921 MODULE_DESCRIPTION("Packet writing layer for CD/DVD drives");
2922 MODULE_AUTHOR("Jens Axboe <axboe@suse.de>");
2923 MODULE_LICENSE("GPL");
2925 module_init(pkt_init);
2926 module_exit(pkt_exit);