Merge tag 'block-5.11-2021-01-10' of git://git.kernel.dk/linux-block
[linux/fpc-iii.git] / drivers / block / skd_main.c
bloba962b4551bed0c58c8eca7c165a0210afdaacb8f
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Driver for sTec s1120 PCIe SSDs. sTec was acquired in 2013 by HGST and HGST
4 * was acquired by Western Digital in 2012.
6 * Copyright 2012 sTec, Inc.
7 * Copyright (c) 2017 Western Digital Corporation or its affiliates.
8 */
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/pci.h>
14 #include <linux/slab.h>
15 #include <linux/spinlock.h>
16 #include <linux/blkdev.h>
17 #include <linux/blk-mq.h>
18 #include <linux/sched.h>
19 #include <linux/interrupt.h>
20 #include <linux/compiler.h>
21 #include <linux/workqueue.h>
22 #include <linux/delay.h>
23 #include <linux/time.h>
24 #include <linux/hdreg.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/completion.h>
27 #include <linux/scatterlist.h>
28 #include <linux/err.h>
29 #include <linux/aer.h>
30 #include <linux/wait.h>
31 #include <linux/stringify.h>
32 #include <scsi/scsi.h>
33 #include <scsi/sg.h>
34 #include <linux/io.h>
35 #include <linux/uaccess.h>
36 #include <asm/unaligned.h>
38 #include "skd_s1120.h"
40 static int skd_dbg_level;
41 static int skd_isr_comp_limit = 4;
43 #define SKD_ASSERT(expr) \
44 do { \
45 if (unlikely(!(expr))) { \
46 pr_err("Assertion failed! %s,%s,%s,line=%d\n", \
47 # expr, __FILE__, __func__, __LINE__); \
48 } \
49 } while (0)
51 #define DRV_NAME "skd"
52 #define PFX DRV_NAME ": "
54 MODULE_LICENSE("GPL");
56 MODULE_DESCRIPTION("STEC s1120 PCIe SSD block driver");
58 #define PCI_VENDOR_ID_STEC 0x1B39
59 #define PCI_DEVICE_ID_S1120 0x0001
61 #define SKD_FUA_NV (1 << 1)
62 #define SKD_MINORS_PER_DEVICE 16
64 #define SKD_MAX_QUEUE_DEPTH 200u
66 #define SKD_PAUSE_TIMEOUT (5 * 1000)
68 #define SKD_N_FITMSG_BYTES (512u)
69 #define SKD_MAX_REQ_PER_MSG 14
71 #define SKD_N_SPECIAL_FITMSG_BYTES (128u)
73 /* SG elements are 32 bytes, so we can make this 4096 and still be under the
74 * 128KB limit. That allows 4096*4K = 16M xfer size
76 #define SKD_N_SG_PER_REQ_DEFAULT 256u
78 #define SKD_N_COMPLETION_ENTRY 256u
79 #define SKD_N_READ_CAP_BYTES (8u)
81 #define SKD_N_INTERNAL_BYTES (512u)
83 #define SKD_SKCOMP_SIZE \
84 ((sizeof(struct fit_completion_entry_v1) + \
85 sizeof(struct fit_comp_error_info)) * SKD_N_COMPLETION_ENTRY)
87 /* 5 bits of uniqifier, 0xF800 */
88 #define SKD_ID_TABLE_MASK (3u << 8u)
89 #define SKD_ID_RW_REQUEST (0u << 8u)
90 #define SKD_ID_INTERNAL (1u << 8u)
91 #define SKD_ID_FIT_MSG (3u << 8u)
92 #define SKD_ID_SLOT_MASK 0x00FFu
93 #define SKD_ID_SLOT_AND_TABLE_MASK 0x03FFu
95 #define SKD_N_MAX_SECTORS 2048u
97 #define SKD_MAX_RETRIES 2u
99 #define SKD_TIMER_SECONDS(seconds) (seconds)
100 #define SKD_TIMER_MINUTES(minutes) ((minutes) * (60))
102 #define INQ_STD_NBYTES 36
104 enum skd_drvr_state {
105 SKD_DRVR_STATE_LOAD,
106 SKD_DRVR_STATE_IDLE,
107 SKD_DRVR_STATE_BUSY,
108 SKD_DRVR_STATE_STARTING,
109 SKD_DRVR_STATE_ONLINE,
110 SKD_DRVR_STATE_PAUSING,
111 SKD_DRVR_STATE_PAUSED,
112 SKD_DRVR_STATE_RESTARTING,
113 SKD_DRVR_STATE_RESUMING,
114 SKD_DRVR_STATE_STOPPING,
115 SKD_DRVR_STATE_FAULT,
116 SKD_DRVR_STATE_DISAPPEARED,
117 SKD_DRVR_STATE_PROTOCOL_MISMATCH,
118 SKD_DRVR_STATE_BUSY_ERASE,
119 SKD_DRVR_STATE_BUSY_SANITIZE,
120 SKD_DRVR_STATE_BUSY_IMMINENT,
121 SKD_DRVR_STATE_WAIT_BOOT,
122 SKD_DRVR_STATE_SYNCING,
125 #define SKD_WAIT_BOOT_TIMO SKD_TIMER_SECONDS(90u)
126 #define SKD_STARTING_TIMO SKD_TIMER_SECONDS(8u)
127 #define SKD_RESTARTING_TIMO SKD_TIMER_MINUTES(4u)
128 #define SKD_BUSY_TIMO SKD_TIMER_MINUTES(20u)
129 #define SKD_STARTED_BUSY_TIMO SKD_TIMER_SECONDS(60u)
130 #define SKD_START_WAIT_SECONDS 90u
132 enum skd_req_state {
133 SKD_REQ_STATE_IDLE,
134 SKD_REQ_STATE_SETUP,
135 SKD_REQ_STATE_BUSY,
136 SKD_REQ_STATE_COMPLETED,
137 SKD_REQ_STATE_TIMEOUT,
140 enum skd_check_status_action {
141 SKD_CHECK_STATUS_REPORT_GOOD,
142 SKD_CHECK_STATUS_REPORT_SMART_ALERT,
143 SKD_CHECK_STATUS_REQUEUE_REQUEST,
144 SKD_CHECK_STATUS_REPORT_ERROR,
145 SKD_CHECK_STATUS_BUSY_IMMINENT,
148 struct skd_msg_buf {
149 struct fit_msg_hdr fmh;
150 struct skd_scsi_request scsi[SKD_MAX_REQ_PER_MSG];
153 struct skd_fitmsg_context {
154 u32 id;
156 u32 length;
158 struct skd_msg_buf *msg_buf;
159 dma_addr_t mb_dma_address;
162 struct skd_request_context {
163 enum skd_req_state state;
165 u16 id;
166 u32 fitmsg_id;
168 u8 flush_cmd;
170 enum dma_data_direction data_dir;
171 struct scatterlist *sg;
172 u32 n_sg;
173 u32 sg_byte_count;
175 struct fit_sg_descriptor *sksg_list;
176 dma_addr_t sksg_dma_address;
178 struct fit_completion_entry_v1 completion;
180 struct fit_comp_error_info err_info;
181 int retries;
183 blk_status_t status;
186 struct skd_special_context {
187 struct skd_request_context req;
189 void *data_buf;
190 dma_addr_t db_dma_address;
192 struct skd_msg_buf *msg_buf;
193 dma_addr_t mb_dma_address;
196 typedef enum skd_irq_type {
197 SKD_IRQ_LEGACY,
198 SKD_IRQ_MSI,
199 SKD_IRQ_MSIX
200 } skd_irq_type_t;
202 #define SKD_MAX_BARS 2
204 struct skd_device {
205 void __iomem *mem_map[SKD_MAX_BARS];
206 resource_size_t mem_phys[SKD_MAX_BARS];
207 u32 mem_size[SKD_MAX_BARS];
209 struct skd_msix_entry *msix_entries;
211 struct pci_dev *pdev;
212 int pcie_error_reporting_is_enabled;
214 spinlock_t lock;
215 struct gendisk *disk;
216 struct blk_mq_tag_set tag_set;
217 struct request_queue *queue;
218 struct skd_fitmsg_context *skmsg;
219 struct device *class_dev;
220 int gendisk_on;
221 int sync_done;
223 u32 devno;
224 u32 major;
225 char isr_name[30];
227 enum skd_drvr_state state;
228 u32 drive_state;
230 u32 cur_max_queue_depth;
231 u32 queue_low_water_mark;
232 u32 dev_max_queue_depth;
234 u32 num_fitmsg_context;
235 u32 num_req_context;
237 struct skd_fitmsg_context *skmsg_table;
239 struct skd_special_context internal_skspcl;
240 u32 read_cap_blocksize;
241 u32 read_cap_last_lba;
242 int read_cap_is_valid;
243 int inquiry_is_valid;
244 u8 inq_serial_num[13]; /*12 chars plus null term */
246 u8 skcomp_cycle;
247 u32 skcomp_ix;
248 struct kmem_cache *msgbuf_cache;
249 struct kmem_cache *sglist_cache;
250 struct kmem_cache *databuf_cache;
251 struct fit_completion_entry_v1 *skcomp_table;
252 struct fit_comp_error_info *skerr_table;
253 dma_addr_t cq_dma_address;
255 wait_queue_head_t waitq;
257 struct timer_list timer;
258 u32 timer_countdown;
259 u32 timer_substate;
261 int sgs_per_request;
262 u32 last_mtd;
264 u32 proto_ver;
266 int dbg_level;
267 u32 connect_time_stamp;
268 int connect_retries;
269 #define SKD_MAX_CONNECT_RETRIES 16
270 u32 drive_jiffies;
272 u32 timo_slot;
274 struct work_struct start_queue;
275 struct work_struct completion_worker;
278 #define SKD_WRITEL(DEV, VAL, OFF) skd_reg_write32(DEV, VAL, OFF)
279 #define SKD_READL(DEV, OFF) skd_reg_read32(DEV, OFF)
280 #define SKD_WRITEQ(DEV, VAL, OFF) skd_reg_write64(DEV, VAL, OFF)
282 static inline u32 skd_reg_read32(struct skd_device *skdev, u32 offset)
284 u32 val = readl(skdev->mem_map[1] + offset);
286 if (unlikely(skdev->dbg_level >= 2))
287 dev_dbg(&skdev->pdev->dev, "offset %x = %x\n", offset, val);
288 return val;
291 static inline void skd_reg_write32(struct skd_device *skdev, u32 val,
292 u32 offset)
294 writel(val, skdev->mem_map[1] + offset);
295 if (unlikely(skdev->dbg_level >= 2))
296 dev_dbg(&skdev->pdev->dev, "offset %x = %x\n", offset, val);
299 static inline void skd_reg_write64(struct skd_device *skdev, u64 val,
300 u32 offset)
302 writeq(val, skdev->mem_map[1] + offset);
303 if (unlikely(skdev->dbg_level >= 2))
304 dev_dbg(&skdev->pdev->dev, "offset %x = %016llx\n", offset,
305 val);
309 #define SKD_IRQ_DEFAULT SKD_IRQ_MSIX
310 static int skd_isr_type = SKD_IRQ_DEFAULT;
312 module_param(skd_isr_type, int, 0444);
313 MODULE_PARM_DESC(skd_isr_type, "Interrupt type capability."
314 " (0==legacy, 1==MSI, 2==MSI-X, default==1)");
316 #define SKD_MAX_REQ_PER_MSG_DEFAULT 1
317 static int skd_max_req_per_msg = SKD_MAX_REQ_PER_MSG_DEFAULT;
319 module_param(skd_max_req_per_msg, int, 0444);
320 MODULE_PARM_DESC(skd_max_req_per_msg,
321 "Maximum SCSI requests packed in a single message."
322 " (1-" __stringify(SKD_MAX_REQ_PER_MSG) ", default==1)");
324 #define SKD_MAX_QUEUE_DEPTH_DEFAULT 64
325 #define SKD_MAX_QUEUE_DEPTH_DEFAULT_STR "64"
326 static int skd_max_queue_depth = SKD_MAX_QUEUE_DEPTH_DEFAULT;
328 module_param(skd_max_queue_depth, int, 0444);
329 MODULE_PARM_DESC(skd_max_queue_depth,
330 "Maximum SCSI requests issued to s1120."
331 " (1-200, default==" SKD_MAX_QUEUE_DEPTH_DEFAULT_STR ")");
333 static int skd_sgs_per_request = SKD_N_SG_PER_REQ_DEFAULT;
334 module_param(skd_sgs_per_request, int, 0444);
335 MODULE_PARM_DESC(skd_sgs_per_request,
336 "Maximum SG elements per block request."
337 " (1-4096, default==256)");
339 static int skd_max_pass_thru = 1;
340 module_param(skd_max_pass_thru, int, 0444);
341 MODULE_PARM_DESC(skd_max_pass_thru,
342 "Maximum SCSI pass-thru at a time. IGNORED");
344 module_param(skd_dbg_level, int, 0444);
345 MODULE_PARM_DESC(skd_dbg_level, "s1120 debug level (0,1,2)");
347 module_param(skd_isr_comp_limit, int, 0444);
348 MODULE_PARM_DESC(skd_isr_comp_limit, "s1120 isr comp limit (0=none) default=4");
350 /* Major device number dynamically assigned. */
351 static u32 skd_major;
353 static void skd_destruct(struct skd_device *skdev);
354 static const struct block_device_operations skd_blockdev_ops;
355 static void skd_send_fitmsg(struct skd_device *skdev,
356 struct skd_fitmsg_context *skmsg);
357 static void skd_send_special_fitmsg(struct skd_device *skdev,
358 struct skd_special_context *skspcl);
359 static bool skd_preop_sg_list(struct skd_device *skdev,
360 struct skd_request_context *skreq);
361 static void skd_postop_sg_list(struct skd_device *skdev,
362 struct skd_request_context *skreq);
364 static void skd_restart_device(struct skd_device *skdev);
365 static int skd_quiesce_dev(struct skd_device *skdev);
366 static int skd_unquiesce_dev(struct skd_device *skdev);
367 static void skd_disable_interrupts(struct skd_device *skdev);
368 static void skd_isr_fwstate(struct skd_device *skdev);
369 static void skd_recover_requests(struct skd_device *skdev);
370 static void skd_soft_reset(struct skd_device *skdev);
372 const char *skd_drive_state_to_str(int state);
373 const char *skd_skdev_state_to_str(enum skd_drvr_state state);
374 static void skd_log_skdev(struct skd_device *skdev, const char *event);
375 static void skd_log_skreq(struct skd_device *skdev,
376 struct skd_request_context *skreq, const char *event);
379 *****************************************************************************
380 * READ/WRITE REQUESTS
381 *****************************************************************************
383 static bool skd_inc_in_flight(struct request *rq, void *data, bool reserved)
385 int *count = data;
387 count++;
388 return true;
391 static int skd_in_flight(struct skd_device *skdev)
393 int count = 0;
395 blk_mq_tagset_busy_iter(&skdev->tag_set, skd_inc_in_flight, &count);
397 return count;
400 static void
401 skd_prep_rw_cdb(struct skd_scsi_request *scsi_req,
402 int data_dir, unsigned lba,
403 unsigned count)
405 if (data_dir == READ)
406 scsi_req->cdb[0] = READ_10;
407 else
408 scsi_req->cdb[0] = WRITE_10;
410 scsi_req->cdb[1] = 0;
411 scsi_req->cdb[2] = (lba & 0xff000000) >> 24;
412 scsi_req->cdb[3] = (lba & 0xff0000) >> 16;
413 scsi_req->cdb[4] = (lba & 0xff00) >> 8;
414 scsi_req->cdb[5] = (lba & 0xff);
415 scsi_req->cdb[6] = 0;
416 scsi_req->cdb[7] = (count & 0xff00) >> 8;
417 scsi_req->cdb[8] = count & 0xff;
418 scsi_req->cdb[9] = 0;
421 static void
422 skd_prep_zerosize_flush_cdb(struct skd_scsi_request *scsi_req,
423 struct skd_request_context *skreq)
425 skreq->flush_cmd = 1;
427 scsi_req->cdb[0] = SYNCHRONIZE_CACHE;
428 scsi_req->cdb[1] = 0;
429 scsi_req->cdb[2] = 0;
430 scsi_req->cdb[3] = 0;
431 scsi_req->cdb[4] = 0;
432 scsi_req->cdb[5] = 0;
433 scsi_req->cdb[6] = 0;
434 scsi_req->cdb[7] = 0;
435 scsi_req->cdb[8] = 0;
436 scsi_req->cdb[9] = 0;
440 * Return true if and only if all pending requests should be failed.
442 static bool skd_fail_all(struct request_queue *q)
444 struct skd_device *skdev = q->queuedata;
446 SKD_ASSERT(skdev->state != SKD_DRVR_STATE_ONLINE);
448 skd_log_skdev(skdev, "req_not_online");
449 switch (skdev->state) {
450 case SKD_DRVR_STATE_PAUSING:
451 case SKD_DRVR_STATE_PAUSED:
452 case SKD_DRVR_STATE_STARTING:
453 case SKD_DRVR_STATE_RESTARTING:
454 case SKD_DRVR_STATE_WAIT_BOOT:
455 /* In case of starting, we haven't started the queue,
456 * so we can't get here... but requests are
457 * possibly hanging out waiting for us because we
458 * reported the dev/skd0 already. They'll wait
459 * forever if connect doesn't complete.
460 * What to do??? delay dev/skd0 ??
462 case SKD_DRVR_STATE_BUSY:
463 case SKD_DRVR_STATE_BUSY_IMMINENT:
464 case SKD_DRVR_STATE_BUSY_ERASE:
465 return false;
467 case SKD_DRVR_STATE_BUSY_SANITIZE:
468 case SKD_DRVR_STATE_STOPPING:
469 case SKD_DRVR_STATE_SYNCING:
470 case SKD_DRVR_STATE_FAULT:
471 case SKD_DRVR_STATE_DISAPPEARED:
472 default:
473 return true;
477 static blk_status_t skd_mq_queue_rq(struct blk_mq_hw_ctx *hctx,
478 const struct blk_mq_queue_data *mqd)
480 struct request *const req = mqd->rq;
481 struct request_queue *const q = req->q;
482 struct skd_device *skdev = q->queuedata;
483 struct skd_fitmsg_context *skmsg;
484 struct fit_msg_hdr *fmh;
485 const u32 tag = blk_mq_unique_tag(req);
486 struct skd_request_context *const skreq = blk_mq_rq_to_pdu(req);
487 struct skd_scsi_request *scsi_req;
488 unsigned long flags = 0;
489 const u32 lba = blk_rq_pos(req);
490 const u32 count = blk_rq_sectors(req);
491 const int data_dir = rq_data_dir(req);
493 if (unlikely(skdev->state != SKD_DRVR_STATE_ONLINE))
494 return skd_fail_all(q) ? BLK_STS_IOERR : BLK_STS_RESOURCE;
496 if (!(req->rq_flags & RQF_DONTPREP)) {
497 skreq->retries = 0;
498 req->rq_flags |= RQF_DONTPREP;
501 blk_mq_start_request(req);
503 WARN_ONCE(tag >= skd_max_queue_depth, "%#x > %#x (nr_requests = %lu)\n",
504 tag, skd_max_queue_depth, q->nr_requests);
506 SKD_ASSERT(skreq->state == SKD_REQ_STATE_IDLE);
508 dev_dbg(&skdev->pdev->dev,
509 "new req=%p lba=%u(0x%x) count=%u(0x%x) dir=%d\n", req, lba,
510 lba, count, count, data_dir);
512 skreq->id = tag + SKD_ID_RW_REQUEST;
513 skreq->flush_cmd = 0;
514 skreq->n_sg = 0;
515 skreq->sg_byte_count = 0;
517 skreq->fitmsg_id = 0;
519 skreq->data_dir = data_dir == READ ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
521 if (req->bio && !skd_preop_sg_list(skdev, skreq)) {
522 dev_dbg(&skdev->pdev->dev, "error Out\n");
523 skreq->status = BLK_STS_RESOURCE;
524 blk_mq_complete_request(req);
525 return BLK_STS_OK;
528 dma_sync_single_for_device(&skdev->pdev->dev, skreq->sksg_dma_address,
529 skreq->n_sg *
530 sizeof(struct fit_sg_descriptor),
531 DMA_TO_DEVICE);
533 /* Either a FIT msg is in progress or we have to start one. */
534 if (skd_max_req_per_msg == 1) {
535 skmsg = NULL;
536 } else {
537 spin_lock_irqsave(&skdev->lock, flags);
538 skmsg = skdev->skmsg;
540 if (!skmsg) {
541 skmsg = &skdev->skmsg_table[tag];
542 skdev->skmsg = skmsg;
544 /* Initialize the FIT msg header */
545 fmh = &skmsg->msg_buf->fmh;
546 memset(fmh, 0, sizeof(*fmh));
547 fmh->protocol_id = FIT_PROTOCOL_ID_SOFIT;
548 skmsg->length = sizeof(*fmh);
549 } else {
550 fmh = &skmsg->msg_buf->fmh;
553 skreq->fitmsg_id = skmsg->id;
555 scsi_req = &skmsg->msg_buf->scsi[fmh->num_protocol_cmds_coalesced];
556 memset(scsi_req, 0, sizeof(*scsi_req));
558 scsi_req->hdr.tag = skreq->id;
559 scsi_req->hdr.sg_list_dma_address =
560 cpu_to_be64(skreq->sksg_dma_address);
562 if (req_op(req) == REQ_OP_FLUSH) {
563 skd_prep_zerosize_flush_cdb(scsi_req, skreq);
564 SKD_ASSERT(skreq->flush_cmd == 1);
565 } else {
566 skd_prep_rw_cdb(scsi_req, data_dir, lba, count);
569 if (req->cmd_flags & REQ_FUA)
570 scsi_req->cdb[1] |= SKD_FUA_NV;
572 scsi_req->hdr.sg_list_len_bytes = cpu_to_be32(skreq->sg_byte_count);
574 /* Complete resource allocations. */
575 skreq->state = SKD_REQ_STATE_BUSY;
577 skmsg->length += sizeof(struct skd_scsi_request);
578 fmh->num_protocol_cmds_coalesced++;
580 dev_dbg(&skdev->pdev->dev, "req=0x%x busy=%d\n", skreq->id,
581 skd_in_flight(skdev));
584 * If the FIT msg buffer is full send it.
586 if (skd_max_req_per_msg == 1) {
587 skd_send_fitmsg(skdev, skmsg);
588 } else {
589 if (mqd->last ||
590 fmh->num_protocol_cmds_coalesced >= skd_max_req_per_msg) {
591 skd_send_fitmsg(skdev, skmsg);
592 skdev->skmsg = NULL;
594 spin_unlock_irqrestore(&skdev->lock, flags);
597 return BLK_STS_OK;
600 static enum blk_eh_timer_return skd_timed_out(struct request *req,
601 bool reserved)
603 struct skd_device *skdev = req->q->queuedata;
605 dev_err(&skdev->pdev->dev, "request with tag %#x timed out\n",
606 blk_mq_unique_tag(req));
608 return BLK_EH_RESET_TIMER;
611 static void skd_complete_rq(struct request *req)
613 struct skd_request_context *skreq = blk_mq_rq_to_pdu(req);
615 blk_mq_end_request(req, skreq->status);
618 static bool skd_preop_sg_list(struct skd_device *skdev,
619 struct skd_request_context *skreq)
621 struct request *req = blk_mq_rq_from_pdu(skreq);
622 struct scatterlist *sgl = &skreq->sg[0], *sg;
623 int n_sg;
624 int i;
626 skreq->sg_byte_count = 0;
628 WARN_ON_ONCE(skreq->data_dir != DMA_TO_DEVICE &&
629 skreq->data_dir != DMA_FROM_DEVICE);
631 n_sg = blk_rq_map_sg(skdev->queue, req, sgl);
632 if (n_sg <= 0)
633 return false;
636 * Map scatterlist to PCI bus addresses.
637 * Note PCI might change the number of entries.
639 n_sg = dma_map_sg(&skdev->pdev->dev, sgl, n_sg, skreq->data_dir);
640 if (n_sg <= 0)
641 return false;
643 SKD_ASSERT(n_sg <= skdev->sgs_per_request);
645 skreq->n_sg = n_sg;
647 for_each_sg(sgl, sg, n_sg, i) {
648 struct fit_sg_descriptor *sgd = &skreq->sksg_list[i];
649 u32 cnt = sg_dma_len(sg);
650 uint64_t dma_addr = sg_dma_address(sg);
652 sgd->control = FIT_SGD_CONTROL_NOT_LAST;
653 sgd->byte_count = cnt;
654 skreq->sg_byte_count += cnt;
655 sgd->host_side_addr = dma_addr;
656 sgd->dev_side_addr = 0;
659 skreq->sksg_list[n_sg - 1].next_desc_ptr = 0LL;
660 skreq->sksg_list[n_sg - 1].control = FIT_SGD_CONTROL_LAST;
662 if (unlikely(skdev->dbg_level > 1)) {
663 dev_dbg(&skdev->pdev->dev,
664 "skreq=%x sksg_list=%p sksg_dma=%pad\n",
665 skreq->id, skreq->sksg_list, &skreq->sksg_dma_address);
666 for (i = 0; i < n_sg; i++) {
667 struct fit_sg_descriptor *sgd = &skreq->sksg_list[i];
669 dev_dbg(&skdev->pdev->dev,
670 " sg[%d] count=%u ctrl=0x%x addr=0x%llx next=0x%llx\n",
671 i, sgd->byte_count, sgd->control,
672 sgd->host_side_addr, sgd->next_desc_ptr);
676 return true;
679 static void skd_postop_sg_list(struct skd_device *skdev,
680 struct skd_request_context *skreq)
683 * restore the next ptr for next IO request so we
684 * don't have to set it every time.
686 skreq->sksg_list[skreq->n_sg - 1].next_desc_ptr =
687 skreq->sksg_dma_address +
688 ((skreq->n_sg) * sizeof(struct fit_sg_descriptor));
689 dma_unmap_sg(&skdev->pdev->dev, &skreq->sg[0], skreq->n_sg,
690 skreq->data_dir);
694 *****************************************************************************
695 * TIMER
696 *****************************************************************************
699 static void skd_timer_tick_not_online(struct skd_device *skdev);
701 static void skd_start_queue(struct work_struct *work)
703 struct skd_device *skdev = container_of(work, typeof(*skdev),
704 start_queue);
707 * Although it is safe to call blk_start_queue() from interrupt
708 * context, blk_mq_start_hw_queues() must not be called from
709 * interrupt context.
711 blk_mq_start_hw_queues(skdev->queue);
714 static void skd_timer_tick(struct timer_list *t)
716 struct skd_device *skdev = from_timer(skdev, t, timer);
717 unsigned long reqflags;
718 u32 state;
720 if (skdev->state == SKD_DRVR_STATE_FAULT)
721 /* The driver has declared fault, and we want it to
722 * stay that way until driver is reloaded.
724 return;
726 spin_lock_irqsave(&skdev->lock, reqflags);
728 state = SKD_READL(skdev, FIT_STATUS);
729 state &= FIT_SR_DRIVE_STATE_MASK;
730 if (state != skdev->drive_state)
731 skd_isr_fwstate(skdev);
733 if (skdev->state != SKD_DRVR_STATE_ONLINE)
734 skd_timer_tick_not_online(skdev);
736 mod_timer(&skdev->timer, (jiffies + HZ));
738 spin_unlock_irqrestore(&skdev->lock, reqflags);
741 static void skd_timer_tick_not_online(struct skd_device *skdev)
743 switch (skdev->state) {
744 case SKD_DRVR_STATE_IDLE:
745 case SKD_DRVR_STATE_LOAD:
746 break;
747 case SKD_DRVR_STATE_BUSY_SANITIZE:
748 dev_dbg(&skdev->pdev->dev,
749 "drive busy sanitize[%x], driver[%x]\n",
750 skdev->drive_state, skdev->state);
751 /* If we've been in sanitize for 3 seconds, we figure we're not
752 * going to get anymore completions, so recover requests now
754 if (skdev->timer_countdown > 0) {
755 skdev->timer_countdown--;
756 return;
758 skd_recover_requests(skdev);
759 break;
761 case SKD_DRVR_STATE_BUSY:
762 case SKD_DRVR_STATE_BUSY_IMMINENT:
763 case SKD_DRVR_STATE_BUSY_ERASE:
764 dev_dbg(&skdev->pdev->dev, "busy[%x], countdown=%d\n",
765 skdev->state, skdev->timer_countdown);
766 if (skdev->timer_countdown > 0) {
767 skdev->timer_countdown--;
768 return;
770 dev_dbg(&skdev->pdev->dev,
771 "busy[%x], timedout=%d, restarting device.",
772 skdev->state, skdev->timer_countdown);
773 skd_restart_device(skdev);
774 break;
776 case SKD_DRVR_STATE_WAIT_BOOT:
777 case SKD_DRVR_STATE_STARTING:
778 if (skdev->timer_countdown > 0) {
779 skdev->timer_countdown--;
780 return;
782 /* For now, we fault the drive. Could attempt resets to
783 * revcover at some point. */
784 skdev->state = SKD_DRVR_STATE_FAULT;
786 dev_err(&skdev->pdev->dev, "DriveFault Connect Timeout (%x)\n",
787 skdev->drive_state);
789 /*start the queue so we can respond with error to requests */
790 /* wakeup anyone waiting for startup complete */
791 schedule_work(&skdev->start_queue);
792 skdev->gendisk_on = -1;
793 wake_up_interruptible(&skdev->waitq);
794 break;
796 case SKD_DRVR_STATE_ONLINE:
797 /* shouldn't get here. */
798 break;
800 case SKD_DRVR_STATE_PAUSING:
801 case SKD_DRVR_STATE_PAUSED:
802 break;
804 case SKD_DRVR_STATE_RESTARTING:
805 if (skdev->timer_countdown > 0) {
806 skdev->timer_countdown--;
807 return;
809 /* For now, we fault the drive. Could attempt resets to
810 * revcover at some point. */
811 skdev->state = SKD_DRVR_STATE_FAULT;
812 dev_err(&skdev->pdev->dev,
813 "DriveFault Reconnect Timeout (%x)\n",
814 skdev->drive_state);
817 * Recovering does two things:
818 * 1. completes IO with error
819 * 2. reclaims dma resources
820 * When is it safe to recover requests?
821 * - if the drive state is faulted
822 * - if the state is still soft reset after out timeout
823 * - if the drive registers are dead (state = FF)
824 * If it is "unsafe", we still need to recover, so we will
825 * disable pci bus mastering and disable our interrupts.
828 if ((skdev->drive_state == FIT_SR_DRIVE_SOFT_RESET) ||
829 (skdev->drive_state == FIT_SR_DRIVE_FAULT) ||
830 (skdev->drive_state == FIT_SR_DRIVE_STATE_MASK))
831 /* It never came out of soft reset. Try to
832 * recover the requests and then let them
833 * fail. This is to mitigate hung processes. */
834 skd_recover_requests(skdev);
835 else {
836 dev_err(&skdev->pdev->dev, "Disable BusMaster (%x)\n",
837 skdev->drive_state);
838 pci_disable_device(skdev->pdev);
839 skd_disable_interrupts(skdev);
840 skd_recover_requests(skdev);
843 /*start the queue so we can respond with error to requests */
844 /* wakeup anyone waiting for startup complete */
845 schedule_work(&skdev->start_queue);
846 skdev->gendisk_on = -1;
847 wake_up_interruptible(&skdev->waitq);
848 break;
850 case SKD_DRVR_STATE_RESUMING:
851 case SKD_DRVR_STATE_STOPPING:
852 case SKD_DRVR_STATE_SYNCING:
853 case SKD_DRVR_STATE_FAULT:
854 case SKD_DRVR_STATE_DISAPPEARED:
855 default:
856 break;
860 static int skd_start_timer(struct skd_device *skdev)
862 int rc;
864 timer_setup(&skdev->timer, skd_timer_tick, 0);
866 rc = mod_timer(&skdev->timer, (jiffies + HZ));
867 if (rc)
868 dev_err(&skdev->pdev->dev, "failed to start timer %d\n", rc);
869 return rc;
872 static void skd_kill_timer(struct skd_device *skdev)
874 del_timer_sync(&skdev->timer);
878 *****************************************************************************
879 * INTERNAL REQUESTS -- generated by driver itself
880 *****************************************************************************
883 static int skd_format_internal_skspcl(struct skd_device *skdev)
885 struct skd_special_context *skspcl = &skdev->internal_skspcl;
886 struct fit_sg_descriptor *sgd = &skspcl->req.sksg_list[0];
887 struct fit_msg_hdr *fmh;
888 uint64_t dma_address;
889 struct skd_scsi_request *scsi;
891 fmh = &skspcl->msg_buf->fmh;
892 fmh->protocol_id = FIT_PROTOCOL_ID_SOFIT;
893 fmh->num_protocol_cmds_coalesced = 1;
895 scsi = &skspcl->msg_buf->scsi[0];
896 memset(scsi, 0, sizeof(*scsi));
897 dma_address = skspcl->req.sksg_dma_address;
898 scsi->hdr.sg_list_dma_address = cpu_to_be64(dma_address);
899 skspcl->req.n_sg = 1;
900 sgd->control = FIT_SGD_CONTROL_LAST;
901 sgd->byte_count = 0;
902 sgd->host_side_addr = skspcl->db_dma_address;
903 sgd->dev_side_addr = 0;
904 sgd->next_desc_ptr = 0LL;
906 return 1;
909 #define WR_BUF_SIZE SKD_N_INTERNAL_BYTES
911 static void skd_send_internal_skspcl(struct skd_device *skdev,
912 struct skd_special_context *skspcl,
913 u8 opcode)
915 struct fit_sg_descriptor *sgd = &skspcl->req.sksg_list[0];
916 struct skd_scsi_request *scsi;
917 unsigned char *buf = skspcl->data_buf;
918 int i;
920 if (skspcl->req.state != SKD_REQ_STATE_IDLE)
922 * A refresh is already in progress.
923 * Just wait for it to finish.
925 return;
927 skspcl->req.state = SKD_REQ_STATE_BUSY;
929 scsi = &skspcl->msg_buf->scsi[0];
930 scsi->hdr.tag = skspcl->req.id;
932 memset(scsi->cdb, 0, sizeof(scsi->cdb));
934 switch (opcode) {
935 case TEST_UNIT_READY:
936 scsi->cdb[0] = TEST_UNIT_READY;
937 sgd->byte_count = 0;
938 scsi->hdr.sg_list_len_bytes = 0;
939 break;
941 case READ_CAPACITY:
942 scsi->cdb[0] = READ_CAPACITY;
943 sgd->byte_count = SKD_N_READ_CAP_BYTES;
944 scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
945 break;
947 case INQUIRY:
948 scsi->cdb[0] = INQUIRY;
949 scsi->cdb[1] = 0x01; /* evpd */
950 scsi->cdb[2] = 0x80; /* serial number page */
951 scsi->cdb[4] = 0x10;
952 sgd->byte_count = 16;
953 scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
954 break;
956 case SYNCHRONIZE_CACHE:
957 scsi->cdb[0] = SYNCHRONIZE_CACHE;
958 sgd->byte_count = 0;
959 scsi->hdr.sg_list_len_bytes = 0;
960 break;
962 case WRITE_BUFFER:
963 scsi->cdb[0] = WRITE_BUFFER;
964 scsi->cdb[1] = 0x02;
965 scsi->cdb[7] = (WR_BUF_SIZE & 0xFF00) >> 8;
966 scsi->cdb[8] = WR_BUF_SIZE & 0xFF;
967 sgd->byte_count = WR_BUF_SIZE;
968 scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
969 /* fill incrementing byte pattern */
970 for (i = 0; i < sgd->byte_count; i++)
971 buf[i] = i & 0xFF;
972 break;
974 case READ_BUFFER:
975 scsi->cdb[0] = READ_BUFFER;
976 scsi->cdb[1] = 0x02;
977 scsi->cdb[7] = (WR_BUF_SIZE & 0xFF00) >> 8;
978 scsi->cdb[8] = WR_BUF_SIZE & 0xFF;
979 sgd->byte_count = WR_BUF_SIZE;
980 scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
981 memset(skspcl->data_buf, 0, sgd->byte_count);
982 break;
984 default:
985 SKD_ASSERT("Don't know what to send");
986 return;
989 skd_send_special_fitmsg(skdev, skspcl);
992 static void skd_refresh_device_data(struct skd_device *skdev)
994 struct skd_special_context *skspcl = &skdev->internal_skspcl;
996 skd_send_internal_skspcl(skdev, skspcl, TEST_UNIT_READY);
999 static int skd_chk_read_buf(struct skd_device *skdev,
1000 struct skd_special_context *skspcl)
1002 unsigned char *buf = skspcl->data_buf;
1003 int i;
1005 /* check for incrementing byte pattern */
1006 for (i = 0; i < WR_BUF_SIZE; i++)
1007 if (buf[i] != (i & 0xFF))
1008 return 1;
1010 return 0;
1013 static void skd_log_check_status(struct skd_device *skdev, u8 status, u8 key,
1014 u8 code, u8 qual, u8 fruc)
1016 /* If the check condition is of special interest, log a message */
1017 if ((status == SAM_STAT_CHECK_CONDITION) && (key == 0x02)
1018 && (code == 0x04) && (qual == 0x06)) {
1019 dev_err(&skdev->pdev->dev,
1020 "*** LOST_WRITE_DATA ERROR *** key/asc/ascq/fruc %02x/%02x/%02x/%02x\n",
1021 key, code, qual, fruc);
1025 static void skd_complete_internal(struct skd_device *skdev,
1026 struct fit_completion_entry_v1 *skcomp,
1027 struct fit_comp_error_info *skerr,
1028 struct skd_special_context *skspcl)
1030 u8 *buf = skspcl->data_buf;
1031 u8 status;
1032 int i;
1033 struct skd_scsi_request *scsi = &skspcl->msg_buf->scsi[0];
1035 lockdep_assert_held(&skdev->lock);
1037 SKD_ASSERT(skspcl == &skdev->internal_skspcl);
1039 dev_dbg(&skdev->pdev->dev, "complete internal %x\n", scsi->cdb[0]);
1041 dma_sync_single_for_cpu(&skdev->pdev->dev,
1042 skspcl->db_dma_address,
1043 skspcl->req.sksg_list[0].byte_count,
1044 DMA_BIDIRECTIONAL);
1046 skspcl->req.completion = *skcomp;
1047 skspcl->req.state = SKD_REQ_STATE_IDLE;
1049 status = skspcl->req.completion.status;
1051 skd_log_check_status(skdev, status, skerr->key, skerr->code,
1052 skerr->qual, skerr->fruc);
1054 switch (scsi->cdb[0]) {
1055 case TEST_UNIT_READY:
1056 if (status == SAM_STAT_GOOD)
1057 skd_send_internal_skspcl(skdev, skspcl, WRITE_BUFFER);
1058 else if ((status == SAM_STAT_CHECK_CONDITION) &&
1059 (skerr->key == MEDIUM_ERROR))
1060 skd_send_internal_skspcl(skdev, skspcl, WRITE_BUFFER);
1061 else {
1062 if (skdev->state == SKD_DRVR_STATE_STOPPING) {
1063 dev_dbg(&skdev->pdev->dev,
1064 "TUR failed, don't send anymore state 0x%x\n",
1065 skdev->state);
1066 return;
1068 dev_dbg(&skdev->pdev->dev,
1069 "**** TUR failed, retry skerr\n");
1070 skd_send_internal_skspcl(skdev, skspcl,
1071 TEST_UNIT_READY);
1073 break;
1075 case WRITE_BUFFER:
1076 if (status == SAM_STAT_GOOD)
1077 skd_send_internal_skspcl(skdev, skspcl, READ_BUFFER);
1078 else {
1079 if (skdev->state == SKD_DRVR_STATE_STOPPING) {
1080 dev_dbg(&skdev->pdev->dev,
1081 "write buffer failed, don't send anymore state 0x%x\n",
1082 skdev->state);
1083 return;
1085 dev_dbg(&skdev->pdev->dev,
1086 "**** write buffer failed, retry skerr\n");
1087 skd_send_internal_skspcl(skdev, skspcl,
1088 TEST_UNIT_READY);
1090 break;
1092 case READ_BUFFER:
1093 if (status == SAM_STAT_GOOD) {
1094 if (skd_chk_read_buf(skdev, skspcl) == 0)
1095 skd_send_internal_skspcl(skdev, skspcl,
1096 READ_CAPACITY);
1097 else {
1098 dev_err(&skdev->pdev->dev,
1099 "*** W/R Buffer mismatch %d ***\n",
1100 skdev->connect_retries);
1101 if (skdev->connect_retries <
1102 SKD_MAX_CONNECT_RETRIES) {
1103 skdev->connect_retries++;
1104 skd_soft_reset(skdev);
1105 } else {
1106 dev_err(&skdev->pdev->dev,
1107 "W/R Buffer Connect Error\n");
1108 return;
1112 } else {
1113 if (skdev->state == SKD_DRVR_STATE_STOPPING) {
1114 dev_dbg(&skdev->pdev->dev,
1115 "read buffer failed, don't send anymore state 0x%x\n",
1116 skdev->state);
1117 return;
1119 dev_dbg(&skdev->pdev->dev,
1120 "**** read buffer failed, retry skerr\n");
1121 skd_send_internal_skspcl(skdev, skspcl,
1122 TEST_UNIT_READY);
1124 break;
1126 case READ_CAPACITY:
1127 skdev->read_cap_is_valid = 0;
1128 if (status == SAM_STAT_GOOD) {
1129 skdev->read_cap_last_lba =
1130 (buf[0] << 24) | (buf[1] << 16) |
1131 (buf[2] << 8) | buf[3];
1132 skdev->read_cap_blocksize =
1133 (buf[4] << 24) | (buf[5] << 16) |
1134 (buf[6] << 8) | buf[7];
1136 dev_dbg(&skdev->pdev->dev, "last lba %d, bs %d\n",
1137 skdev->read_cap_last_lba,
1138 skdev->read_cap_blocksize);
1140 set_capacity(skdev->disk, skdev->read_cap_last_lba + 1);
1142 skdev->read_cap_is_valid = 1;
1144 skd_send_internal_skspcl(skdev, skspcl, INQUIRY);
1145 } else if ((status == SAM_STAT_CHECK_CONDITION) &&
1146 (skerr->key == MEDIUM_ERROR)) {
1147 skdev->read_cap_last_lba = ~0;
1148 set_capacity(skdev->disk, skdev->read_cap_last_lba + 1);
1149 dev_dbg(&skdev->pdev->dev, "**** MEDIUM ERROR caused READCAP to fail, ignore failure and continue to inquiry\n");
1150 skd_send_internal_skspcl(skdev, skspcl, INQUIRY);
1151 } else {
1152 dev_dbg(&skdev->pdev->dev, "**** READCAP failed, retry TUR\n");
1153 skd_send_internal_skspcl(skdev, skspcl,
1154 TEST_UNIT_READY);
1156 break;
1158 case INQUIRY:
1159 skdev->inquiry_is_valid = 0;
1160 if (status == SAM_STAT_GOOD) {
1161 skdev->inquiry_is_valid = 1;
1163 for (i = 0; i < 12; i++)
1164 skdev->inq_serial_num[i] = buf[i + 4];
1165 skdev->inq_serial_num[12] = 0;
1168 if (skd_unquiesce_dev(skdev) < 0)
1169 dev_dbg(&skdev->pdev->dev, "**** failed, to ONLINE device\n");
1170 /* connection is complete */
1171 skdev->connect_retries = 0;
1172 break;
1174 case SYNCHRONIZE_CACHE:
1175 if (status == SAM_STAT_GOOD)
1176 skdev->sync_done = 1;
1177 else
1178 skdev->sync_done = -1;
1179 wake_up_interruptible(&skdev->waitq);
1180 break;
1182 default:
1183 SKD_ASSERT("we didn't send this");
1188 *****************************************************************************
1189 * FIT MESSAGES
1190 *****************************************************************************
1193 static void skd_send_fitmsg(struct skd_device *skdev,
1194 struct skd_fitmsg_context *skmsg)
1196 u64 qcmd;
1198 dev_dbg(&skdev->pdev->dev, "dma address %pad, busy=%d\n",
1199 &skmsg->mb_dma_address, skd_in_flight(skdev));
1200 dev_dbg(&skdev->pdev->dev, "msg_buf %p\n", skmsg->msg_buf);
1202 qcmd = skmsg->mb_dma_address;
1203 qcmd |= FIT_QCMD_QID_NORMAL;
1205 if (unlikely(skdev->dbg_level > 1)) {
1206 u8 *bp = (u8 *)skmsg->msg_buf;
1207 int i;
1208 for (i = 0; i < skmsg->length; i += 8) {
1209 dev_dbg(&skdev->pdev->dev, "msg[%2d] %8ph\n", i,
1210 &bp[i]);
1211 if (i == 0)
1212 i = 64 - 8;
1216 if (skmsg->length > 256)
1217 qcmd |= FIT_QCMD_MSGSIZE_512;
1218 else if (skmsg->length > 128)
1219 qcmd |= FIT_QCMD_MSGSIZE_256;
1220 else if (skmsg->length > 64)
1221 qcmd |= FIT_QCMD_MSGSIZE_128;
1222 else
1224 * This makes no sense because the FIT msg header is
1225 * 64 bytes. If the msg is only 64 bytes long it has
1226 * no payload.
1228 qcmd |= FIT_QCMD_MSGSIZE_64;
1230 dma_sync_single_for_device(&skdev->pdev->dev, skmsg->mb_dma_address,
1231 skmsg->length, DMA_TO_DEVICE);
1233 /* Make sure skd_msg_buf is written before the doorbell is triggered. */
1234 smp_wmb();
1236 SKD_WRITEQ(skdev, qcmd, FIT_Q_COMMAND);
1239 static void skd_send_special_fitmsg(struct skd_device *skdev,
1240 struct skd_special_context *skspcl)
1242 u64 qcmd;
1244 WARN_ON_ONCE(skspcl->req.n_sg != 1);
1246 if (unlikely(skdev->dbg_level > 1)) {
1247 u8 *bp = (u8 *)skspcl->msg_buf;
1248 int i;
1250 for (i = 0; i < SKD_N_SPECIAL_FITMSG_BYTES; i += 8) {
1251 dev_dbg(&skdev->pdev->dev, " spcl[%2d] %8ph\n", i,
1252 &bp[i]);
1253 if (i == 0)
1254 i = 64 - 8;
1257 dev_dbg(&skdev->pdev->dev,
1258 "skspcl=%p id=%04x sksg_list=%p sksg_dma=%pad\n",
1259 skspcl, skspcl->req.id, skspcl->req.sksg_list,
1260 &skspcl->req.sksg_dma_address);
1261 for (i = 0; i < skspcl->req.n_sg; i++) {
1262 struct fit_sg_descriptor *sgd =
1263 &skspcl->req.sksg_list[i];
1265 dev_dbg(&skdev->pdev->dev,
1266 " sg[%d] count=%u ctrl=0x%x addr=0x%llx next=0x%llx\n",
1267 i, sgd->byte_count, sgd->control,
1268 sgd->host_side_addr, sgd->next_desc_ptr);
1273 * Special FIT msgs are always 128 bytes: a 64-byte FIT hdr
1274 * and one 64-byte SSDI command.
1276 qcmd = skspcl->mb_dma_address;
1277 qcmd |= FIT_QCMD_QID_NORMAL + FIT_QCMD_MSGSIZE_128;
1279 dma_sync_single_for_device(&skdev->pdev->dev, skspcl->mb_dma_address,
1280 SKD_N_SPECIAL_FITMSG_BYTES, DMA_TO_DEVICE);
1281 dma_sync_single_for_device(&skdev->pdev->dev,
1282 skspcl->req.sksg_dma_address,
1283 1 * sizeof(struct fit_sg_descriptor),
1284 DMA_TO_DEVICE);
1285 dma_sync_single_for_device(&skdev->pdev->dev,
1286 skspcl->db_dma_address,
1287 skspcl->req.sksg_list[0].byte_count,
1288 DMA_BIDIRECTIONAL);
1290 /* Make sure skd_msg_buf is written before the doorbell is triggered. */
1291 smp_wmb();
1293 SKD_WRITEQ(skdev, qcmd, FIT_Q_COMMAND);
1297 *****************************************************************************
1298 * COMPLETION QUEUE
1299 *****************************************************************************
1302 static void skd_complete_other(struct skd_device *skdev,
1303 struct fit_completion_entry_v1 *skcomp,
1304 struct fit_comp_error_info *skerr);
1306 struct sns_info {
1307 u8 type;
1308 u8 stat;
1309 u8 key;
1310 u8 asc;
1311 u8 ascq;
1312 u8 mask;
1313 enum skd_check_status_action action;
1316 static struct sns_info skd_chkstat_table[] = {
1317 /* Good */
1318 { 0x70, 0x02, RECOVERED_ERROR, 0, 0, 0x1c,
1319 SKD_CHECK_STATUS_REPORT_GOOD },
1321 /* Smart alerts */
1322 { 0x70, 0x02, NO_SENSE, 0x0B, 0x00, 0x1E, /* warnings */
1323 SKD_CHECK_STATUS_REPORT_SMART_ALERT },
1324 { 0x70, 0x02, NO_SENSE, 0x5D, 0x00, 0x1E, /* thresholds */
1325 SKD_CHECK_STATUS_REPORT_SMART_ALERT },
1326 { 0x70, 0x02, RECOVERED_ERROR, 0x0B, 0x01, 0x1F, /* temperature over trigger */
1327 SKD_CHECK_STATUS_REPORT_SMART_ALERT },
1329 /* Retry (with limits) */
1330 { 0x70, 0x02, 0x0B, 0, 0, 0x1C, /* This one is for DMA ERROR */
1331 SKD_CHECK_STATUS_REQUEUE_REQUEST },
1332 { 0x70, 0x02, 0x06, 0x0B, 0x00, 0x1E, /* warnings */
1333 SKD_CHECK_STATUS_REQUEUE_REQUEST },
1334 { 0x70, 0x02, 0x06, 0x5D, 0x00, 0x1E, /* thresholds */
1335 SKD_CHECK_STATUS_REQUEUE_REQUEST },
1336 { 0x70, 0x02, 0x06, 0x80, 0x30, 0x1F, /* backup power */
1337 SKD_CHECK_STATUS_REQUEUE_REQUEST },
1339 /* Busy (or about to be) */
1340 { 0x70, 0x02, 0x06, 0x3f, 0x01, 0x1F, /* fw changed */
1341 SKD_CHECK_STATUS_BUSY_IMMINENT },
1345 * Look up status and sense data to decide how to handle the error
1346 * from the device.
1347 * mask says which fields must match e.g., mask=0x18 means check
1348 * type and stat, ignore key, asc, ascq.
1351 static enum skd_check_status_action
1352 skd_check_status(struct skd_device *skdev,
1353 u8 cmp_status, struct fit_comp_error_info *skerr)
1355 int i;
1357 dev_err(&skdev->pdev->dev, "key/asc/ascq/fruc %02x/%02x/%02x/%02x\n",
1358 skerr->key, skerr->code, skerr->qual, skerr->fruc);
1360 dev_dbg(&skdev->pdev->dev,
1361 "stat: t=%02x stat=%02x k=%02x c=%02x q=%02x fruc=%02x\n",
1362 skerr->type, cmp_status, skerr->key, skerr->code, skerr->qual,
1363 skerr->fruc);
1365 /* Does the info match an entry in the good category? */
1366 for (i = 0; i < ARRAY_SIZE(skd_chkstat_table); i++) {
1367 struct sns_info *sns = &skd_chkstat_table[i];
1369 if (sns->mask & 0x10)
1370 if (skerr->type != sns->type)
1371 continue;
1373 if (sns->mask & 0x08)
1374 if (cmp_status != sns->stat)
1375 continue;
1377 if (sns->mask & 0x04)
1378 if (skerr->key != sns->key)
1379 continue;
1381 if (sns->mask & 0x02)
1382 if (skerr->code != sns->asc)
1383 continue;
1385 if (sns->mask & 0x01)
1386 if (skerr->qual != sns->ascq)
1387 continue;
1389 if (sns->action == SKD_CHECK_STATUS_REPORT_SMART_ALERT) {
1390 dev_err(&skdev->pdev->dev,
1391 "SMART Alert: sense key/asc/ascq %02x/%02x/%02x\n",
1392 skerr->key, skerr->code, skerr->qual);
1394 return sns->action;
1397 /* No other match, so nonzero status means error,
1398 * zero status means good
1400 if (cmp_status) {
1401 dev_dbg(&skdev->pdev->dev, "status check: error\n");
1402 return SKD_CHECK_STATUS_REPORT_ERROR;
1405 dev_dbg(&skdev->pdev->dev, "status check good default\n");
1406 return SKD_CHECK_STATUS_REPORT_GOOD;
1409 static void skd_resolve_req_exception(struct skd_device *skdev,
1410 struct skd_request_context *skreq,
1411 struct request *req)
1413 u8 cmp_status = skreq->completion.status;
1415 switch (skd_check_status(skdev, cmp_status, &skreq->err_info)) {
1416 case SKD_CHECK_STATUS_REPORT_GOOD:
1417 case SKD_CHECK_STATUS_REPORT_SMART_ALERT:
1418 skreq->status = BLK_STS_OK;
1419 if (likely(!blk_should_fake_timeout(req->q)))
1420 blk_mq_complete_request(req);
1421 break;
1423 case SKD_CHECK_STATUS_BUSY_IMMINENT:
1424 skd_log_skreq(skdev, skreq, "retry(busy)");
1425 blk_mq_requeue_request(req, true);
1426 dev_info(&skdev->pdev->dev, "drive BUSY imminent\n");
1427 skdev->state = SKD_DRVR_STATE_BUSY_IMMINENT;
1428 skdev->timer_countdown = SKD_TIMER_MINUTES(20);
1429 skd_quiesce_dev(skdev);
1430 break;
1432 case SKD_CHECK_STATUS_REQUEUE_REQUEST:
1433 if (++skreq->retries < SKD_MAX_RETRIES) {
1434 skd_log_skreq(skdev, skreq, "retry");
1435 blk_mq_requeue_request(req, true);
1436 break;
1438 fallthrough;
1440 case SKD_CHECK_STATUS_REPORT_ERROR:
1441 default:
1442 skreq->status = BLK_STS_IOERR;
1443 if (likely(!blk_should_fake_timeout(req->q)))
1444 blk_mq_complete_request(req);
1445 break;
1449 static void skd_release_skreq(struct skd_device *skdev,
1450 struct skd_request_context *skreq)
1453 * Reclaim the skd_request_context
1455 skreq->state = SKD_REQ_STATE_IDLE;
1458 static int skd_isr_completion_posted(struct skd_device *skdev,
1459 int limit, int *enqueued)
1461 struct fit_completion_entry_v1 *skcmp;
1462 struct fit_comp_error_info *skerr;
1463 u16 req_id;
1464 u32 tag;
1465 u16 hwq = 0;
1466 struct request *rq;
1467 struct skd_request_context *skreq;
1468 u16 cmp_cntxt;
1469 u8 cmp_status;
1470 u8 cmp_cycle;
1471 u32 cmp_bytes;
1472 int rc = 0;
1473 int processed = 0;
1475 lockdep_assert_held(&skdev->lock);
1477 for (;; ) {
1478 SKD_ASSERT(skdev->skcomp_ix < SKD_N_COMPLETION_ENTRY);
1480 skcmp = &skdev->skcomp_table[skdev->skcomp_ix];
1481 cmp_cycle = skcmp->cycle;
1482 cmp_cntxt = skcmp->tag;
1483 cmp_status = skcmp->status;
1484 cmp_bytes = be32_to_cpu(skcmp->num_returned_bytes);
1486 skerr = &skdev->skerr_table[skdev->skcomp_ix];
1488 dev_dbg(&skdev->pdev->dev,
1489 "cycle=%d ix=%d got cycle=%d cmdctxt=0x%x stat=%d busy=%d rbytes=0x%x proto=%d\n",
1490 skdev->skcomp_cycle, skdev->skcomp_ix, cmp_cycle,
1491 cmp_cntxt, cmp_status, skd_in_flight(skdev),
1492 cmp_bytes, skdev->proto_ver);
1494 if (cmp_cycle != skdev->skcomp_cycle) {
1495 dev_dbg(&skdev->pdev->dev, "end of completions\n");
1496 break;
1499 * Update the completion queue head index and possibly
1500 * the completion cycle count. 8-bit wrap-around.
1502 skdev->skcomp_ix++;
1503 if (skdev->skcomp_ix >= SKD_N_COMPLETION_ENTRY) {
1504 skdev->skcomp_ix = 0;
1505 skdev->skcomp_cycle++;
1509 * The command context is a unique 32-bit ID. The low order
1510 * bits help locate the request. The request is usually a
1511 * r/w request (see skd_start() above) or a special request.
1513 req_id = cmp_cntxt;
1514 tag = req_id & SKD_ID_SLOT_AND_TABLE_MASK;
1516 /* Is this other than a r/w request? */
1517 if (tag >= skdev->num_req_context) {
1519 * This is not a completion for a r/w request.
1521 WARN_ON_ONCE(blk_mq_tag_to_rq(skdev->tag_set.tags[hwq],
1522 tag));
1523 skd_complete_other(skdev, skcmp, skerr);
1524 continue;
1527 rq = blk_mq_tag_to_rq(skdev->tag_set.tags[hwq], tag);
1528 if (WARN(!rq, "No request for tag %#x -> %#x\n", cmp_cntxt,
1529 tag))
1530 continue;
1531 skreq = blk_mq_rq_to_pdu(rq);
1534 * Make sure the request ID for the slot matches.
1536 if (skreq->id != req_id) {
1537 dev_err(&skdev->pdev->dev,
1538 "Completion mismatch comp_id=0x%04x skreq=0x%04x new=0x%04x\n",
1539 req_id, skreq->id, cmp_cntxt);
1541 continue;
1544 SKD_ASSERT(skreq->state == SKD_REQ_STATE_BUSY);
1546 skreq->completion = *skcmp;
1547 if (unlikely(cmp_status == SAM_STAT_CHECK_CONDITION)) {
1548 skreq->err_info = *skerr;
1549 skd_log_check_status(skdev, cmp_status, skerr->key,
1550 skerr->code, skerr->qual,
1551 skerr->fruc);
1553 /* Release DMA resources for the request. */
1554 if (skreq->n_sg > 0)
1555 skd_postop_sg_list(skdev, skreq);
1557 skd_release_skreq(skdev, skreq);
1560 * Capture the outcome and post it back to the native request.
1562 if (likely(cmp_status == SAM_STAT_GOOD)) {
1563 skreq->status = BLK_STS_OK;
1564 if (likely(!blk_should_fake_timeout(rq->q)))
1565 blk_mq_complete_request(rq);
1566 } else {
1567 skd_resolve_req_exception(skdev, skreq, rq);
1570 /* skd_isr_comp_limit equal zero means no limit */
1571 if (limit) {
1572 if (++processed >= limit) {
1573 rc = 1;
1574 break;
1579 if (skdev->state == SKD_DRVR_STATE_PAUSING &&
1580 skd_in_flight(skdev) == 0) {
1581 skdev->state = SKD_DRVR_STATE_PAUSED;
1582 wake_up_interruptible(&skdev->waitq);
1585 return rc;
1588 static void skd_complete_other(struct skd_device *skdev,
1589 struct fit_completion_entry_v1 *skcomp,
1590 struct fit_comp_error_info *skerr)
1592 u32 req_id = 0;
1593 u32 req_table;
1594 u32 req_slot;
1595 struct skd_special_context *skspcl;
1597 lockdep_assert_held(&skdev->lock);
1599 req_id = skcomp->tag;
1600 req_table = req_id & SKD_ID_TABLE_MASK;
1601 req_slot = req_id & SKD_ID_SLOT_MASK;
1603 dev_dbg(&skdev->pdev->dev, "table=0x%x id=0x%x slot=%d\n", req_table,
1604 req_id, req_slot);
1607 * Based on the request id, determine how to dispatch this completion.
1608 * This swich/case is finding the good cases and forwarding the
1609 * completion entry. Errors are reported below the switch.
1611 switch (req_table) {
1612 case SKD_ID_RW_REQUEST:
1614 * The caller, skd_isr_completion_posted() above,
1615 * handles r/w requests. The only way we get here
1616 * is if the req_slot is out of bounds.
1618 break;
1620 case SKD_ID_INTERNAL:
1621 if (req_slot == 0) {
1622 skspcl = &skdev->internal_skspcl;
1623 if (skspcl->req.id == req_id &&
1624 skspcl->req.state == SKD_REQ_STATE_BUSY) {
1625 skd_complete_internal(skdev,
1626 skcomp, skerr, skspcl);
1627 return;
1630 break;
1632 case SKD_ID_FIT_MSG:
1634 * These id's should never appear in a completion record.
1636 break;
1638 default:
1640 * These id's should never appear anywhere;
1642 break;
1646 * If we get here it is a bad or stale id.
1650 static void skd_reset_skcomp(struct skd_device *skdev)
1652 memset(skdev->skcomp_table, 0, SKD_SKCOMP_SIZE);
1654 skdev->skcomp_ix = 0;
1655 skdev->skcomp_cycle = 1;
1659 *****************************************************************************
1660 * INTERRUPTS
1661 *****************************************************************************
1663 static void skd_completion_worker(struct work_struct *work)
1665 struct skd_device *skdev =
1666 container_of(work, struct skd_device, completion_worker);
1667 unsigned long flags;
1668 int flush_enqueued = 0;
1670 spin_lock_irqsave(&skdev->lock, flags);
1673 * pass in limit=0, which means no limit..
1674 * process everything in compq
1676 skd_isr_completion_posted(skdev, 0, &flush_enqueued);
1677 schedule_work(&skdev->start_queue);
1679 spin_unlock_irqrestore(&skdev->lock, flags);
1682 static void skd_isr_msg_from_dev(struct skd_device *skdev);
1684 static irqreturn_t
1685 skd_isr(int irq, void *ptr)
1687 struct skd_device *skdev = ptr;
1688 u32 intstat;
1689 u32 ack;
1690 int rc = 0;
1691 int deferred = 0;
1692 int flush_enqueued = 0;
1694 spin_lock(&skdev->lock);
1696 for (;; ) {
1697 intstat = SKD_READL(skdev, FIT_INT_STATUS_HOST);
1699 ack = FIT_INT_DEF_MASK;
1700 ack &= intstat;
1702 dev_dbg(&skdev->pdev->dev, "intstat=0x%x ack=0x%x\n", intstat,
1703 ack);
1705 /* As long as there is an int pending on device, keep
1706 * running loop. When none, get out, but if we've never
1707 * done any processing, call completion handler?
1709 if (ack == 0) {
1710 /* No interrupts on device, but run the completion
1711 * processor anyway?
1713 if (rc == 0)
1714 if (likely (skdev->state
1715 == SKD_DRVR_STATE_ONLINE))
1716 deferred = 1;
1717 break;
1720 rc = IRQ_HANDLED;
1722 SKD_WRITEL(skdev, ack, FIT_INT_STATUS_HOST);
1724 if (likely((skdev->state != SKD_DRVR_STATE_LOAD) &&
1725 (skdev->state != SKD_DRVR_STATE_STOPPING))) {
1726 if (intstat & FIT_ISH_COMPLETION_POSTED) {
1728 * If we have already deferred completion
1729 * processing, don't bother running it again
1731 if (deferred == 0)
1732 deferred =
1733 skd_isr_completion_posted(skdev,
1734 skd_isr_comp_limit, &flush_enqueued);
1737 if (intstat & FIT_ISH_FW_STATE_CHANGE) {
1738 skd_isr_fwstate(skdev);
1739 if (skdev->state == SKD_DRVR_STATE_FAULT ||
1740 skdev->state ==
1741 SKD_DRVR_STATE_DISAPPEARED) {
1742 spin_unlock(&skdev->lock);
1743 return rc;
1747 if (intstat & FIT_ISH_MSG_FROM_DEV)
1748 skd_isr_msg_from_dev(skdev);
1752 if (unlikely(flush_enqueued))
1753 schedule_work(&skdev->start_queue);
1755 if (deferred)
1756 schedule_work(&skdev->completion_worker);
1757 else if (!flush_enqueued)
1758 schedule_work(&skdev->start_queue);
1760 spin_unlock(&skdev->lock);
1762 return rc;
1765 static void skd_drive_fault(struct skd_device *skdev)
1767 skdev->state = SKD_DRVR_STATE_FAULT;
1768 dev_err(&skdev->pdev->dev, "Drive FAULT\n");
1771 static void skd_drive_disappeared(struct skd_device *skdev)
1773 skdev->state = SKD_DRVR_STATE_DISAPPEARED;
1774 dev_err(&skdev->pdev->dev, "Drive DISAPPEARED\n");
1777 static void skd_isr_fwstate(struct skd_device *skdev)
1779 u32 sense;
1780 u32 state;
1781 u32 mtd;
1782 int prev_driver_state = skdev->state;
1784 sense = SKD_READL(skdev, FIT_STATUS);
1785 state = sense & FIT_SR_DRIVE_STATE_MASK;
1787 dev_err(&skdev->pdev->dev, "s1120 state %s(%d)=>%s(%d)\n",
1788 skd_drive_state_to_str(skdev->drive_state), skdev->drive_state,
1789 skd_drive_state_to_str(state), state);
1791 skdev->drive_state = state;
1793 switch (skdev->drive_state) {
1794 case FIT_SR_DRIVE_INIT:
1795 if (skdev->state == SKD_DRVR_STATE_PROTOCOL_MISMATCH) {
1796 skd_disable_interrupts(skdev);
1797 break;
1799 if (skdev->state == SKD_DRVR_STATE_RESTARTING)
1800 skd_recover_requests(skdev);
1801 if (skdev->state == SKD_DRVR_STATE_WAIT_BOOT) {
1802 skdev->timer_countdown = SKD_STARTING_TIMO;
1803 skdev->state = SKD_DRVR_STATE_STARTING;
1804 skd_soft_reset(skdev);
1805 break;
1807 mtd = FIT_MXD_CONS(FIT_MTD_FITFW_INIT, 0, 0);
1808 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1809 skdev->last_mtd = mtd;
1810 break;
1812 case FIT_SR_DRIVE_ONLINE:
1813 skdev->cur_max_queue_depth = skd_max_queue_depth;
1814 if (skdev->cur_max_queue_depth > skdev->dev_max_queue_depth)
1815 skdev->cur_max_queue_depth = skdev->dev_max_queue_depth;
1817 skdev->queue_low_water_mark =
1818 skdev->cur_max_queue_depth * 2 / 3 + 1;
1819 if (skdev->queue_low_water_mark < 1)
1820 skdev->queue_low_water_mark = 1;
1821 dev_info(&skdev->pdev->dev,
1822 "Queue depth limit=%d dev=%d lowat=%d\n",
1823 skdev->cur_max_queue_depth,
1824 skdev->dev_max_queue_depth,
1825 skdev->queue_low_water_mark);
1827 skd_refresh_device_data(skdev);
1828 break;
1830 case FIT_SR_DRIVE_BUSY:
1831 skdev->state = SKD_DRVR_STATE_BUSY;
1832 skdev->timer_countdown = SKD_BUSY_TIMO;
1833 skd_quiesce_dev(skdev);
1834 break;
1835 case FIT_SR_DRIVE_BUSY_SANITIZE:
1836 /* set timer for 3 seconds, we'll abort any unfinished
1837 * commands after that expires
1839 skdev->state = SKD_DRVR_STATE_BUSY_SANITIZE;
1840 skdev->timer_countdown = SKD_TIMER_SECONDS(3);
1841 schedule_work(&skdev->start_queue);
1842 break;
1843 case FIT_SR_DRIVE_BUSY_ERASE:
1844 skdev->state = SKD_DRVR_STATE_BUSY_ERASE;
1845 skdev->timer_countdown = SKD_BUSY_TIMO;
1846 break;
1847 case FIT_SR_DRIVE_OFFLINE:
1848 skdev->state = SKD_DRVR_STATE_IDLE;
1849 break;
1850 case FIT_SR_DRIVE_SOFT_RESET:
1851 switch (skdev->state) {
1852 case SKD_DRVR_STATE_STARTING:
1853 case SKD_DRVR_STATE_RESTARTING:
1854 /* Expected by a caller of skd_soft_reset() */
1855 break;
1856 default:
1857 skdev->state = SKD_DRVR_STATE_RESTARTING;
1858 break;
1860 break;
1861 case FIT_SR_DRIVE_FW_BOOTING:
1862 dev_dbg(&skdev->pdev->dev, "ISR FIT_SR_DRIVE_FW_BOOTING\n");
1863 skdev->state = SKD_DRVR_STATE_WAIT_BOOT;
1864 skdev->timer_countdown = SKD_WAIT_BOOT_TIMO;
1865 break;
1867 case FIT_SR_DRIVE_DEGRADED:
1868 case FIT_SR_PCIE_LINK_DOWN:
1869 case FIT_SR_DRIVE_NEED_FW_DOWNLOAD:
1870 break;
1872 case FIT_SR_DRIVE_FAULT:
1873 skd_drive_fault(skdev);
1874 skd_recover_requests(skdev);
1875 schedule_work(&skdev->start_queue);
1876 break;
1878 /* PCIe bus returned all Fs? */
1879 case 0xFF:
1880 dev_info(&skdev->pdev->dev, "state=0x%x sense=0x%x\n", state,
1881 sense);
1882 skd_drive_disappeared(skdev);
1883 skd_recover_requests(skdev);
1884 schedule_work(&skdev->start_queue);
1885 break;
1886 default:
1888 * Uknown FW State. Wait for a state we recognize.
1890 break;
1892 dev_err(&skdev->pdev->dev, "Driver state %s(%d)=>%s(%d)\n",
1893 skd_skdev_state_to_str(prev_driver_state), prev_driver_state,
1894 skd_skdev_state_to_str(skdev->state), skdev->state);
1897 static bool skd_recover_request(struct request *req, void *data, bool reserved)
1899 struct skd_device *const skdev = data;
1900 struct skd_request_context *skreq = blk_mq_rq_to_pdu(req);
1902 if (skreq->state != SKD_REQ_STATE_BUSY)
1903 return true;
1905 skd_log_skreq(skdev, skreq, "recover");
1907 /* Release DMA resources for the request. */
1908 if (skreq->n_sg > 0)
1909 skd_postop_sg_list(skdev, skreq);
1911 skreq->state = SKD_REQ_STATE_IDLE;
1912 skreq->status = BLK_STS_IOERR;
1913 blk_mq_complete_request(req);
1914 return true;
1917 static void skd_recover_requests(struct skd_device *skdev)
1919 blk_mq_tagset_busy_iter(&skdev->tag_set, skd_recover_request, skdev);
1922 static void skd_isr_msg_from_dev(struct skd_device *skdev)
1924 u32 mfd;
1925 u32 mtd;
1926 u32 data;
1928 mfd = SKD_READL(skdev, FIT_MSG_FROM_DEVICE);
1930 dev_dbg(&skdev->pdev->dev, "mfd=0x%x last_mtd=0x%x\n", mfd,
1931 skdev->last_mtd);
1933 /* ignore any mtd that is an ack for something we didn't send */
1934 if (FIT_MXD_TYPE(mfd) != FIT_MXD_TYPE(skdev->last_mtd))
1935 return;
1937 switch (FIT_MXD_TYPE(mfd)) {
1938 case FIT_MTD_FITFW_INIT:
1939 skdev->proto_ver = FIT_PROTOCOL_MAJOR_VER(mfd);
1941 if (skdev->proto_ver != FIT_PROTOCOL_VERSION_1) {
1942 dev_err(&skdev->pdev->dev, "protocol mismatch\n");
1943 dev_err(&skdev->pdev->dev, " got=%d support=%d\n",
1944 skdev->proto_ver, FIT_PROTOCOL_VERSION_1);
1945 dev_err(&skdev->pdev->dev, " please upgrade driver\n");
1946 skdev->state = SKD_DRVR_STATE_PROTOCOL_MISMATCH;
1947 skd_soft_reset(skdev);
1948 break;
1950 mtd = FIT_MXD_CONS(FIT_MTD_GET_CMDQ_DEPTH, 0, 0);
1951 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1952 skdev->last_mtd = mtd;
1953 break;
1955 case FIT_MTD_GET_CMDQ_DEPTH:
1956 skdev->dev_max_queue_depth = FIT_MXD_DATA(mfd);
1957 mtd = FIT_MXD_CONS(FIT_MTD_SET_COMPQ_DEPTH, 0,
1958 SKD_N_COMPLETION_ENTRY);
1959 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1960 skdev->last_mtd = mtd;
1961 break;
1963 case FIT_MTD_SET_COMPQ_DEPTH:
1964 SKD_WRITEQ(skdev, skdev->cq_dma_address, FIT_MSG_TO_DEVICE_ARG);
1965 mtd = FIT_MXD_CONS(FIT_MTD_SET_COMPQ_ADDR, 0, 0);
1966 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1967 skdev->last_mtd = mtd;
1968 break;
1970 case FIT_MTD_SET_COMPQ_ADDR:
1971 skd_reset_skcomp(skdev);
1972 mtd = FIT_MXD_CONS(FIT_MTD_CMD_LOG_HOST_ID, 0, skdev->devno);
1973 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1974 skdev->last_mtd = mtd;
1975 break;
1977 case FIT_MTD_CMD_LOG_HOST_ID:
1978 /* hardware interface overflows in y2106 */
1979 skdev->connect_time_stamp = (u32)ktime_get_real_seconds();
1980 data = skdev->connect_time_stamp & 0xFFFF;
1981 mtd = FIT_MXD_CONS(FIT_MTD_CMD_LOG_TIME_STAMP_LO, 0, data);
1982 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1983 skdev->last_mtd = mtd;
1984 break;
1986 case FIT_MTD_CMD_LOG_TIME_STAMP_LO:
1987 skdev->drive_jiffies = FIT_MXD_DATA(mfd);
1988 data = (skdev->connect_time_stamp >> 16) & 0xFFFF;
1989 mtd = FIT_MXD_CONS(FIT_MTD_CMD_LOG_TIME_STAMP_HI, 0, data);
1990 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1991 skdev->last_mtd = mtd;
1992 break;
1994 case FIT_MTD_CMD_LOG_TIME_STAMP_HI:
1995 skdev->drive_jiffies |= (FIT_MXD_DATA(mfd) << 16);
1996 mtd = FIT_MXD_CONS(FIT_MTD_ARM_QUEUE, 0, 0);
1997 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1998 skdev->last_mtd = mtd;
2000 dev_err(&skdev->pdev->dev, "Time sync driver=0x%x device=0x%x\n",
2001 skdev->connect_time_stamp, skdev->drive_jiffies);
2002 break;
2004 case FIT_MTD_ARM_QUEUE:
2005 skdev->last_mtd = 0;
2007 * State should be, or soon will be, FIT_SR_DRIVE_ONLINE.
2009 break;
2011 default:
2012 break;
2016 static void skd_disable_interrupts(struct skd_device *skdev)
2018 u32 sense;
2020 sense = SKD_READL(skdev, FIT_CONTROL);
2021 sense &= ~FIT_CR_ENABLE_INTERRUPTS;
2022 SKD_WRITEL(skdev, sense, FIT_CONTROL);
2023 dev_dbg(&skdev->pdev->dev, "sense 0x%x\n", sense);
2025 /* Note that the 1s is written. A 1-bit means
2026 * disable, a 0 means enable.
2028 SKD_WRITEL(skdev, ~0, FIT_INT_MASK_HOST);
2031 static void skd_enable_interrupts(struct skd_device *skdev)
2033 u32 val;
2035 /* unmask interrupts first */
2036 val = FIT_ISH_FW_STATE_CHANGE +
2037 FIT_ISH_COMPLETION_POSTED + FIT_ISH_MSG_FROM_DEV;
2039 /* Note that the compliment of mask is written. A 1-bit means
2040 * disable, a 0 means enable. */
2041 SKD_WRITEL(skdev, ~val, FIT_INT_MASK_HOST);
2042 dev_dbg(&skdev->pdev->dev, "interrupt mask=0x%x\n", ~val);
2044 val = SKD_READL(skdev, FIT_CONTROL);
2045 val |= FIT_CR_ENABLE_INTERRUPTS;
2046 dev_dbg(&skdev->pdev->dev, "control=0x%x\n", val);
2047 SKD_WRITEL(skdev, val, FIT_CONTROL);
2051 *****************************************************************************
2052 * START, STOP, RESTART, QUIESCE, UNQUIESCE
2053 *****************************************************************************
2056 static void skd_soft_reset(struct skd_device *skdev)
2058 u32 val;
2060 val = SKD_READL(skdev, FIT_CONTROL);
2061 val |= (FIT_CR_SOFT_RESET);
2062 dev_dbg(&skdev->pdev->dev, "control=0x%x\n", val);
2063 SKD_WRITEL(skdev, val, FIT_CONTROL);
2066 static void skd_start_device(struct skd_device *skdev)
2068 unsigned long flags;
2069 u32 sense;
2070 u32 state;
2072 spin_lock_irqsave(&skdev->lock, flags);
2074 /* ack all ghost interrupts */
2075 SKD_WRITEL(skdev, FIT_INT_DEF_MASK, FIT_INT_STATUS_HOST);
2077 sense = SKD_READL(skdev, FIT_STATUS);
2079 dev_dbg(&skdev->pdev->dev, "initial status=0x%x\n", sense);
2081 state = sense & FIT_SR_DRIVE_STATE_MASK;
2082 skdev->drive_state = state;
2083 skdev->last_mtd = 0;
2085 skdev->state = SKD_DRVR_STATE_STARTING;
2086 skdev->timer_countdown = SKD_STARTING_TIMO;
2088 skd_enable_interrupts(skdev);
2090 switch (skdev->drive_state) {
2091 case FIT_SR_DRIVE_OFFLINE:
2092 dev_err(&skdev->pdev->dev, "Drive offline...\n");
2093 break;
2095 case FIT_SR_DRIVE_FW_BOOTING:
2096 dev_dbg(&skdev->pdev->dev, "FIT_SR_DRIVE_FW_BOOTING\n");
2097 skdev->state = SKD_DRVR_STATE_WAIT_BOOT;
2098 skdev->timer_countdown = SKD_WAIT_BOOT_TIMO;
2099 break;
2101 case FIT_SR_DRIVE_BUSY_SANITIZE:
2102 dev_info(&skdev->pdev->dev, "Start: BUSY_SANITIZE\n");
2103 skdev->state = SKD_DRVR_STATE_BUSY_SANITIZE;
2104 skdev->timer_countdown = SKD_STARTED_BUSY_TIMO;
2105 break;
2107 case FIT_SR_DRIVE_BUSY_ERASE:
2108 dev_info(&skdev->pdev->dev, "Start: BUSY_ERASE\n");
2109 skdev->state = SKD_DRVR_STATE_BUSY_ERASE;
2110 skdev->timer_countdown = SKD_STARTED_BUSY_TIMO;
2111 break;
2113 case FIT_SR_DRIVE_INIT:
2114 case FIT_SR_DRIVE_ONLINE:
2115 skd_soft_reset(skdev);
2116 break;
2118 case FIT_SR_DRIVE_BUSY:
2119 dev_err(&skdev->pdev->dev, "Drive Busy...\n");
2120 skdev->state = SKD_DRVR_STATE_BUSY;
2121 skdev->timer_countdown = SKD_STARTED_BUSY_TIMO;
2122 break;
2124 case FIT_SR_DRIVE_SOFT_RESET:
2125 dev_err(&skdev->pdev->dev, "drive soft reset in prog\n");
2126 break;
2128 case FIT_SR_DRIVE_FAULT:
2129 /* Fault state is bad...soft reset won't do it...
2130 * Hard reset, maybe, but does it work on device?
2131 * For now, just fault so the system doesn't hang.
2133 skd_drive_fault(skdev);
2134 /*start the queue so we can respond with error to requests */
2135 dev_dbg(&skdev->pdev->dev, "starting queue\n");
2136 schedule_work(&skdev->start_queue);
2137 skdev->gendisk_on = -1;
2138 wake_up_interruptible(&skdev->waitq);
2139 break;
2141 case 0xFF:
2142 /* Most likely the device isn't there or isn't responding
2143 * to the BAR1 addresses. */
2144 skd_drive_disappeared(skdev);
2145 /*start the queue so we can respond with error to requests */
2146 dev_dbg(&skdev->pdev->dev,
2147 "starting queue to error-out reqs\n");
2148 schedule_work(&skdev->start_queue);
2149 skdev->gendisk_on = -1;
2150 wake_up_interruptible(&skdev->waitq);
2151 break;
2153 default:
2154 dev_err(&skdev->pdev->dev, "Start: unknown state %x\n",
2155 skdev->drive_state);
2156 break;
2159 state = SKD_READL(skdev, FIT_CONTROL);
2160 dev_dbg(&skdev->pdev->dev, "FIT Control Status=0x%x\n", state);
2162 state = SKD_READL(skdev, FIT_INT_STATUS_HOST);
2163 dev_dbg(&skdev->pdev->dev, "Intr Status=0x%x\n", state);
2165 state = SKD_READL(skdev, FIT_INT_MASK_HOST);
2166 dev_dbg(&skdev->pdev->dev, "Intr Mask=0x%x\n", state);
2168 state = SKD_READL(skdev, FIT_MSG_FROM_DEVICE);
2169 dev_dbg(&skdev->pdev->dev, "Msg from Dev=0x%x\n", state);
2171 state = SKD_READL(skdev, FIT_HW_VERSION);
2172 dev_dbg(&skdev->pdev->dev, "HW version=0x%x\n", state);
2174 spin_unlock_irqrestore(&skdev->lock, flags);
2177 static void skd_stop_device(struct skd_device *skdev)
2179 unsigned long flags;
2180 struct skd_special_context *skspcl = &skdev->internal_skspcl;
2181 u32 dev_state;
2182 int i;
2184 spin_lock_irqsave(&skdev->lock, flags);
2186 if (skdev->state != SKD_DRVR_STATE_ONLINE) {
2187 dev_err(&skdev->pdev->dev, "%s not online no sync\n", __func__);
2188 goto stop_out;
2191 if (skspcl->req.state != SKD_REQ_STATE_IDLE) {
2192 dev_err(&skdev->pdev->dev, "%s no special\n", __func__);
2193 goto stop_out;
2196 skdev->state = SKD_DRVR_STATE_SYNCING;
2197 skdev->sync_done = 0;
2199 skd_send_internal_skspcl(skdev, skspcl, SYNCHRONIZE_CACHE);
2201 spin_unlock_irqrestore(&skdev->lock, flags);
2203 wait_event_interruptible_timeout(skdev->waitq,
2204 (skdev->sync_done), (10 * HZ));
2206 spin_lock_irqsave(&skdev->lock, flags);
2208 switch (skdev->sync_done) {
2209 case 0:
2210 dev_err(&skdev->pdev->dev, "%s no sync\n", __func__);
2211 break;
2212 case 1:
2213 dev_err(&skdev->pdev->dev, "%s sync done\n", __func__);
2214 break;
2215 default:
2216 dev_err(&skdev->pdev->dev, "%s sync error\n", __func__);
2219 stop_out:
2220 skdev->state = SKD_DRVR_STATE_STOPPING;
2221 spin_unlock_irqrestore(&skdev->lock, flags);
2223 skd_kill_timer(skdev);
2225 spin_lock_irqsave(&skdev->lock, flags);
2226 skd_disable_interrupts(skdev);
2228 /* ensure all ints on device are cleared */
2229 /* soft reset the device to unload with a clean slate */
2230 SKD_WRITEL(skdev, FIT_INT_DEF_MASK, FIT_INT_STATUS_HOST);
2231 SKD_WRITEL(skdev, FIT_CR_SOFT_RESET, FIT_CONTROL);
2233 spin_unlock_irqrestore(&skdev->lock, flags);
2235 /* poll every 100ms, 1 second timeout */
2236 for (i = 0; i < 10; i++) {
2237 dev_state =
2238 SKD_READL(skdev, FIT_STATUS) & FIT_SR_DRIVE_STATE_MASK;
2239 if (dev_state == FIT_SR_DRIVE_INIT)
2240 break;
2241 set_current_state(TASK_INTERRUPTIBLE);
2242 schedule_timeout(msecs_to_jiffies(100));
2245 if (dev_state != FIT_SR_DRIVE_INIT)
2246 dev_err(&skdev->pdev->dev, "%s state error 0x%02x\n", __func__,
2247 dev_state);
2250 /* assume spinlock is held */
2251 static void skd_restart_device(struct skd_device *skdev)
2253 u32 state;
2255 /* ack all ghost interrupts */
2256 SKD_WRITEL(skdev, FIT_INT_DEF_MASK, FIT_INT_STATUS_HOST);
2258 state = SKD_READL(skdev, FIT_STATUS);
2260 dev_dbg(&skdev->pdev->dev, "drive status=0x%x\n", state);
2262 state &= FIT_SR_DRIVE_STATE_MASK;
2263 skdev->drive_state = state;
2264 skdev->last_mtd = 0;
2266 skdev->state = SKD_DRVR_STATE_RESTARTING;
2267 skdev->timer_countdown = SKD_RESTARTING_TIMO;
2269 skd_soft_reset(skdev);
2272 /* assume spinlock is held */
2273 static int skd_quiesce_dev(struct skd_device *skdev)
2275 int rc = 0;
2277 switch (skdev->state) {
2278 case SKD_DRVR_STATE_BUSY:
2279 case SKD_DRVR_STATE_BUSY_IMMINENT:
2280 dev_dbg(&skdev->pdev->dev, "stopping queue\n");
2281 blk_mq_stop_hw_queues(skdev->queue);
2282 break;
2283 case SKD_DRVR_STATE_ONLINE:
2284 case SKD_DRVR_STATE_STOPPING:
2285 case SKD_DRVR_STATE_SYNCING:
2286 case SKD_DRVR_STATE_PAUSING:
2287 case SKD_DRVR_STATE_PAUSED:
2288 case SKD_DRVR_STATE_STARTING:
2289 case SKD_DRVR_STATE_RESTARTING:
2290 case SKD_DRVR_STATE_RESUMING:
2291 default:
2292 rc = -EINVAL;
2293 dev_dbg(&skdev->pdev->dev, "state [%d] not implemented\n",
2294 skdev->state);
2296 return rc;
2299 /* assume spinlock is held */
2300 static int skd_unquiesce_dev(struct skd_device *skdev)
2302 int prev_driver_state = skdev->state;
2304 skd_log_skdev(skdev, "unquiesce");
2305 if (skdev->state == SKD_DRVR_STATE_ONLINE) {
2306 dev_dbg(&skdev->pdev->dev, "**** device already ONLINE\n");
2307 return 0;
2309 if (skdev->drive_state != FIT_SR_DRIVE_ONLINE) {
2311 * If there has been an state change to other than
2312 * ONLINE, we will rely on controller state change
2313 * to come back online and restart the queue.
2314 * The BUSY state means that driver is ready to
2315 * continue normal processing but waiting for controller
2316 * to become available.
2318 skdev->state = SKD_DRVR_STATE_BUSY;
2319 dev_dbg(&skdev->pdev->dev, "drive BUSY state\n");
2320 return 0;
2324 * Drive has just come online, driver is either in startup,
2325 * paused performing a task, or bust waiting for hardware.
2327 switch (skdev->state) {
2328 case SKD_DRVR_STATE_PAUSED:
2329 case SKD_DRVR_STATE_BUSY:
2330 case SKD_DRVR_STATE_BUSY_IMMINENT:
2331 case SKD_DRVR_STATE_BUSY_ERASE:
2332 case SKD_DRVR_STATE_STARTING:
2333 case SKD_DRVR_STATE_RESTARTING:
2334 case SKD_DRVR_STATE_FAULT:
2335 case SKD_DRVR_STATE_IDLE:
2336 case SKD_DRVR_STATE_LOAD:
2337 skdev->state = SKD_DRVR_STATE_ONLINE;
2338 dev_err(&skdev->pdev->dev, "Driver state %s(%d)=>%s(%d)\n",
2339 skd_skdev_state_to_str(prev_driver_state),
2340 prev_driver_state, skd_skdev_state_to_str(skdev->state),
2341 skdev->state);
2342 dev_dbg(&skdev->pdev->dev,
2343 "**** device ONLINE...starting block queue\n");
2344 dev_dbg(&skdev->pdev->dev, "starting queue\n");
2345 dev_info(&skdev->pdev->dev, "STEC s1120 ONLINE\n");
2346 schedule_work(&skdev->start_queue);
2347 skdev->gendisk_on = 1;
2348 wake_up_interruptible(&skdev->waitq);
2349 break;
2351 case SKD_DRVR_STATE_DISAPPEARED:
2352 default:
2353 dev_dbg(&skdev->pdev->dev,
2354 "**** driver state %d, not implemented\n",
2355 skdev->state);
2356 return -EBUSY;
2358 return 0;
2362 *****************************************************************************
2363 * PCIe MSI/MSI-X INTERRUPT HANDLERS
2364 *****************************************************************************
2367 static irqreturn_t skd_reserved_isr(int irq, void *skd_host_data)
2369 struct skd_device *skdev = skd_host_data;
2370 unsigned long flags;
2372 spin_lock_irqsave(&skdev->lock, flags);
2373 dev_dbg(&skdev->pdev->dev, "MSIX = 0x%x\n",
2374 SKD_READL(skdev, FIT_INT_STATUS_HOST));
2375 dev_err(&skdev->pdev->dev, "MSIX reserved irq %d = 0x%x\n", irq,
2376 SKD_READL(skdev, FIT_INT_STATUS_HOST));
2377 SKD_WRITEL(skdev, FIT_INT_RESERVED_MASK, FIT_INT_STATUS_HOST);
2378 spin_unlock_irqrestore(&skdev->lock, flags);
2379 return IRQ_HANDLED;
2382 static irqreturn_t skd_statec_isr(int irq, void *skd_host_data)
2384 struct skd_device *skdev = skd_host_data;
2385 unsigned long flags;
2387 spin_lock_irqsave(&skdev->lock, flags);
2388 dev_dbg(&skdev->pdev->dev, "MSIX = 0x%x\n",
2389 SKD_READL(skdev, FIT_INT_STATUS_HOST));
2390 SKD_WRITEL(skdev, FIT_ISH_FW_STATE_CHANGE, FIT_INT_STATUS_HOST);
2391 skd_isr_fwstate(skdev);
2392 spin_unlock_irqrestore(&skdev->lock, flags);
2393 return IRQ_HANDLED;
2396 static irqreturn_t skd_comp_q(int irq, void *skd_host_data)
2398 struct skd_device *skdev = skd_host_data;
2399 unsigned long flags;
2400 int flush_enqueued = 0;
2401 int deferred;
2403 spin_lock_irqsave(&skdev->lock, flags);
2404 dev_dbg(&skdev->pdev->dev, "MSIX = 0x%x\n",
2405 SKD_READL(skdev, FIT_INT_STATUS_HOST));
2406 SKD_WRITEL(skdev, FIT_ISH_COMPLETION_POSTED, FIT_INT_STATUS_HOST);
2407 deferred = skd_isr_completion_posted(skdev, skd_isr_comp_limit,
2408 &flush_enqueued);
2409 if (flush_enqueued)
2410 schedule_work(&skdev->start_queue);
2412 if (deferred)
2413 schedule_work(&skdev->completion_worker);
2414 else if (!flush_enqueued)
2415 schedule_work(&skdev->start_queue);
2417 spin_unlock_irqrestore(&skdev->lock, flags);
2419 return IRQ_HANDLED;
2422 static irqreturn_t skd_msg_isr(int irq, void *skd_host_data)
2424 struct skd_device *skdev = skd_host_data;
2425 unsigned long flags;
2427 spin_lock_irqsave(&skdev->lock, flags);
2428 dev_dbg(&skdev->pdev->dev, "MSIX = 0x%x\n",
2429 SKD_READL(skdev, FIT_INT_STATUS_HOST));
2430 SKD_WRITEL(skdev, FIT_ISH_MSG_FROM_DEV, FIT_INT_STATUS_HOST);
2431 skd_isr_msg_from_dev(skdev);
2432 spin_unlock_irqrestore(&skdev->lock, flags);
2433 return IRQ_HANDLED;
2436 static irqreturn_t skd_qfull_isr(int irq, void *skd_host_data)
2438 struct skd_device *skdev = skd_host_data;
2439 unsigned long flags;
2441 spin_lock_irqsave(&skdev->lock, flags);
2442 dev_dbg(&skdev->pdev->dev, "MSIX = 0x%x\n",
2443 SKD_READL(skdev, FIT_INT_STATUS_HOST));
2444 SKD_WRITEL(skdev, FIT_INT_QUEUE_FULL, FIT_INT_STATUS_HOST);
2445 spin_unlock_irqrestore(&skdev->lock, flags);
2446 return IRQ_HANDLED;
2450 *****************************************************************************
2451 * PCIe MSI/MSI-X SETUP
2452 *****************************************************************************
2455 struct skd_msix_entry {
2456 char isr_name[30];
2459 struct skd_init_msix_entry {
2460 const char *name;
2461 irq_handler_t handler;
2464 #define SKD_MAX_MSIX_COUNT 13
2465 #define SKD_MIN_MSIX_COUNT 7
2466 #define SKD_BASE_MSIX_IRQ 4
2468 static struct skd_init_msix_entry msix_entries[SKD_MAX_MSIX_COUNT] = {
2469 { "(DMA 0)", skd_reserved_isr },
2470 { "(DMA 1)", skd_reserved_isr },
2471 { "(DMA 2)", skd_reserved_isr },
2472 { "(DMA 3)", skd_reserved_isr },
2473 { "(State Change)", skd_statec_isr },
2474 { "(COMPL_Q)", skd_comp_q },
2475 { "(MSG)", skd_msg_isr },
2476 { "(Reserved)", skd_reserved_isr },
2477 { "(Reserved)", skd_reserved_isr },
2478 { "(Queue Full 0)", skd_qfull_isr },
2479 { "(Queue Full 1)", skd_qfull_isr },
2480 { "(Queue Full 2)", skd_qfull_isr },
2481 { "(Queue Full 3)", skd_qfull_isr },
2484 static int skd_acquire_msix(struct skd_device *skdev)
2486 int i, rc;
2487 struct pci_dev *pdev = skdev->pdev;
2489 rc = pci_alloc_irq_vectors(pdev, SKD_MAX_MSIX_COUNT, SKD_MAX_MSIX_COUNT,
2490 PCI_IRQ_MSIX);
2491 if (rc < 0) {
2492 dev_err(&skdev->pdev->dev, "failed to enable MSI-X %d\n", rc);
2493 goto out;
2496 skdev->msix_entries = kcalloc(SKD_MAX_MSIX_COUNT,
2497 sizeof(struct skd_msix_entry), GFP_KERNEL);
2498 if (!skdev->msix_entries) {
2499 rc = -ENOMEM;
2500 dev_err(&skdev->pdev->dev, "msix table allocation error\n");
2501 goto out;
2504 /* Enable MSI-X vectors for the base queue */
2505 for (i = 0; i < SKD_MAX_MSIX_COUNT; i++) {
2506 struct skd_msix_entry *qentry = &skdev->msix_entries[i];
2508 snprintf(qentry->isr_name, sizeof(qentry->isr_name),
2509 "%s%d-msix %s", DRV_NAME, skdev->devno,
2510 msix_entries[i].name);
2512 rc = devm_request_irq(&skdev->pdev->dev,
2513 pci_irq_vector(skdev->pdev, i),
2514 msix_entries[i].handler, 0,
2515 qentry->isr_name, skdev);
2516 if (rc) {
2517 dev_err(&skdev->pdev->dev,
2518 "Unable to register(%d) MSI-X handler %d: %s\n",
2519 rc, i, qentry->isr_name);
2520 goto msix_out;
2524 dev_dbg(&skdev->pdev->dev, "%d msix irq(s) enabled\n",
2525 SKD_MAX_MSIX_COUNT);
2526 return 0;
2528 msix_out:
2529 while (--i >= 0)
2530 devm_free_irq(&pdev->dev, pci_irq_vector(pdev, i), skdev);
2531 out:
2532 kfree(skdev->msix_entries);
2533 skdev->msix_entries = NULL;
2534 return rc;
2537 static int skd_acquire_irq(struct skd_device *skdev)
2539 struct pci_dev *pdev = skdev->pdev;
2540 unsigned int irq_flag = PCI_IRQ_LEGACY;
2541 int rc;
2543 if (skd_isr_type == SKD_IRQ_MSIX) {
2544 rc = skd_acquire_msix(skdev);
2545 if (!rc)
2546 return 0;
2548 dev_err(&skdev->pdev->dev,
2549 "failed to enable MSI-X, re-trying with MSI %d\n", rc);
2552 snprintf(skdev->isr_name, sizeof(skdev->isr_name), "%s%d", DRV_NAME,
2553 skdev->devno);
2555 if (skd_isr_type != SKD_IRQ_LEGACY)
2556 irq_flag |= PCI_IRQ_MSI;
2557 rc = pci_alloc_irq_vectors(pdev, 1, 1, irq_flag);
2558 if (rc < 0) {
2559 dev_err(&skdev->pdev->dev,
2560 "failed to allocate the MSI interrupt %d\n", rc);
2561 return rc;
2564 rc = devm_request_irq(&pdev->dev, pdev->irq, skd_isr,
2565 pdev->msi_enabled ? 0 : IRQF_SHARED,
2566 skdev->isr_name, skdev);
2567 if (rc) {
2568 pci_free_irq_vectors(pdev);
2569 dev_err(&skdev->pdev->dev, "failed to allocate interrupt %d\n",
2570 rc);
2571 return rc;
2574 return 0;
2577 static void skd_release_irq(struct skd_device *skdev)
2579 struct pci_dev *pdev = skdev->pdev;
2581 if (skdev->msix_entries) {
2582 int i;
2584 for (i = 0; i < SKD_MAX_MSIX_COUNT; i++) {
2585 devm_free_irq(&pdev->dev, pci_irq_vector(pdev, i),
2586 skdev);
2589 kfree(skdev->msix_entries);
2590 skdev->msix_entries = NULL;
2591 } else {
2592 devm_free_irq(&pdev->dev, pdev->irq, skdev);
2595 pci_free_irq_vectors(pdev);
2599 *****************************************************************************
2600 * CONSTRUCT
2601 *****************************************************************************
2604 static void *skd_alloc_dma(struct skd_device *skdev, struct kmem_cache *s,
2605 dma_addr_t *dma_handle, gfp_t gfp,
2606 enum dma_data_direction dir)
2608 struct device *dev = &skdev->pdev->dev;
2609 void *buf;
2611 buf = kmem_cache_alloc(s, gfp);
2612 if (!buf)
2613 return NULL;
2614 *dma_handle = dma_map_single(dev, buf,
2615 kmem_cache_size(s), dir);
2616 if (dma_mapping_error(dev, *dma_handle)) {
2617 kmem_cache_free(s, buf);
2618 buf = NULL;
2620 return buf;
2623 static void skd_free_dma(struct skd_device *skdev, struct kmem_cache *s,
2624 void *vaddr, dma_addr_t dma_handle,
2625 enum dma_data_direction dir)
2627 if (!vaddr)
2628 return;
2630 dma_unmap_single(&skdev->pdev->dev, dma_handle,
2631 kmem_cache_size(s), dir);
2632 kmem_cache_free(s, vaddr);
2635 static int skd_cons_skcomp(struct skd_device *skdev)
2637 int rc = 0;
2638 struct fit_completion_entry_v1 *skcomp;
2640 dev_dbg(&skdev->pdev->dev,
2641 "comp pci_alloc, total bytes %zd entries %d\n",
2642 SKD_SKCOMP_SIZE, SKD_N_COMPLETION_ENTRY);
2644 skcomp = dma_alloc_coherent(&skdev->pdev->dev, SKD_SKCOMP_SIZE,
2645 &skdev->cq_dma_address, GFP_KERNEL);
2647 if (skcomp == NULL) {
2648 rc = -ENOMEM;
2649 goto err_out;
2652 skdev->skcomp_table = skcomp;
2653 skdev->skerr_table = (struct fit_comp_error_info *)((char *)skcomp +
2654 sizeof(*skcomp) *
2655 SKD_N_COMPLETION_ENTRY);
2657 err_out:
2658 return rc;
2661 static int skd_cons_skmsg(struct skd_device *skdev)
2663 int rc = 0;
2664 u32 i;
2666 dev_dbg(&skdev->pdev->dev,
2667 "skmsg_table kcalloc, struct %lu, count %u total %lu\n",
2668 sizeof(struct skd_fitmsg_context), skdev->num_fitmsg_context,
2669 sizeof(struct skd_fitmsg_context) * skdev->num_fitmsg_context);
2671 skdev->skmsg_table = kcalloc(skdev->num_fitmsg_context,
2672 sizeof(struct skd_fitmsg_context),
2673 GFP_KERNEL);
2674 if (skdev->skmsg_table == NULL) {
2675 rc = -ENOMEM;
2676 goto err_out;
2679 for (i = 0; i < skdev->num_fitmsg_context; i++) {
2680 struct skd_fitmsg_context *skmsg;
2682 skmsg = &skdev->skmsg_table[i];
2684 skmsg->id = i + SKD_ID_FIT_MSG;
2686 skmsg->msg_buf = dma_alloc_coherent(&skdev->pdev->dev,
2687 SKD_N_FITMSG_BYTES,
2688 &skmsg->mb_dma_address,
2689 GFP_KERNEL);
2690 if (skmsg->msg_buf == NULL) {
2691 rc = -ENOMEM;
2692 goto err_out;
2695 WARN(((uintptr_t)skmsg->msg_buf | skmsg->mb_dma_address) &
2696 (FIT_QCMD_ALIGN - 1),
2697 "not aligned: msg_buf %p mb_dma_address %pad\n",
2698 skmsg->msg_buf, &skmsg->mb_dma_address);
2701 err_out:
2702 return rc;
2705 static struct fit_sg_descriptor *skd_cons_sg_list(struct skd_device *skdev,
2706 u32 n_sg,
2707 dma_addr_t *ret_dma_addr)
2709 struct fit_sg_descriptor *sg_list;
2711 sg_list = skd_alloc_dma(skdev, skdev->sglist_cache, ret_dma_addr,
2712 GFP_DMA | __GFP_ZERO, DMA_TO_DEVICE);
2714 if (sg_list != NULL) {
2715 uint64_t dma_address = *ret_dma_addr;
2716 u32 i;
2718 for (i = 0; i < n_sg - 1; i++) {
2719 uint64_t ndp_off;
2720 ndp_off = (i + 1) * sizeof(struct fit_sg_descriptor);
2722 sg_list[i].next_desc_ptr = dma_address + ndp_off;
2724 sg_list[i].next_desc_ptr = 0LL;
2727 return sg_list;
2730 static void skd_free_sg_list(struct skd_device *skdev,
2731 struct fit_sg_descriptor *sg_list,
2732 dma_addr_t dma_addr)
2734 if (WARN_ON_ONCE(!sg_list))
2735 return;
2737 skd_free_dma(skdev, skdev->sglist_cache, sg_list, dma_addr,
2738 DMA_TO_DEVICE);
2741 static int skd_init_request(struct blk_mq_tag_set *set, struct request *rq,
2742 unsigned int hctx_idx, unsigned int numa_node)
2744 struct skd_device *skdev = set->driver_data;
2745 struct skd_request_context *skreq = blk_mq_rq_to_pdu(rq);
2747 skreq->state = SKD_REQ_STATE_IDLE;
2748 skreq->sg = (void *)(skreq + 1);
2749 sg_init_table(skreq->sg, skd_sgs_per_request);
2750 skreq->sksg_list = skd_cons_sg_list(skdev, skd_sgs_per_request,
2751 &skreq->sksg_dma_address);
2753 return skreq->sksg_list ? 0 : -ENOMEM;
2756 static void skd_exit_request(struct blk_mq_tag_set *set, struct request *rq,
2757 unsigned int hctx_idx)
2759 struct skd_device *skdev = set->driver_data;
2760 struct skd_request_context *skreq = blk_mq_rq_to_pdu(rq);
2762 skd_free_sg_list(skdev, skreq->sksg_list, skreq->sksg_dma_address);
2765 static int skd_cons_sksb(struct skd_device *skdev)
2767 int rc = 0;
2768 struct skd_special_context *skspcl;
2770 skspcl = &skdev->internal_skspcl;
2772 skspcl->req.id = 0 + SKD_ID_INTERNAL;
2773 skspcl->req.state = SKD_REQ_STATE_IDLE;
2775 skspcl->data_buf = skd_alloc_dma(skdev, skdev->databuf_cache,
2776 &skspcl->db_dma_address,
2777 GFP_DMA | __GFP_ZERO,
2778 DMA_BIDIRECTIONAL);
2779 if (skspcl->data_buf == NULL) {
2780 rc = -ENOMEM;
2781 goto err_out;
2784 skspcl->msg_buf = skd_alloc_dma(skdev, skdev->msgbuf_cache,
2785 &skspcl->mb_dma_address,
2786 GFP_DMA | __GFP_ZERO, DMA_TO_DEVICE);
2787 if (skspcl->msg_buf == NULL) {
2788 rc = -ENOMEM;
2789 goto err_out;
2792 skspcl->req.sksg_list = skd_cons_sg_list(skdev, 1,
2793 &skspcl->req.sksg_dma_address);
2794 if (skspcl->req.sksg_list == NULL) {
2795 rc = -ENOMEM;
2796 goto err_out;
2799 if (!skd_format_internal_skspcl(skdev)) {
2800 rc = -EINVAL;
2801 goto err_out;
2804 err_out:
2805 return rc;
2808 static const struct blk_mq_ops skd_mq_ops = {
2809 .queue_rq = skd_mq_queue_rq,
2810 .complete = skd_complete_rq,
2811 .timeout = skd_timed_out,
2812 .init_request = skd_init_request,
2813 .exit_request = skd_exit_request,
2816 static int skd_cons_disk(struct skd_device *skdev)
2818 int rc = 0;
2819 struct gendisk *disk;
2820 struct request_queue *q;
2821 unsigned long flags;
2823 disk = alloc_disk(SKD_MINORS_PER_DEVICE);
2824 if (!disk) {
2825 rc = -ENOMEM;
2826 goto err_out;
2829 skdev->disk = disk;
2830 sprintf(disk->disk_name, DRV_NAME "%u", skdev->devno);
2832 disk->major = skdev->major;
2833 disk->first_minor = skdev->devno * SKD_MINORS_PER_DEVICE;
2834 disk->fops = &skd_blockdev_ops;
2835 disk->private_data = skdev;
2837 memset(&skdev->tag_set, 0, sizeof(skdev->tag_set));
2838 skdev->tag_set.ops = &skd_mq_ops;
2839 skdev->tag_set.nr_hw_queues = 1;
2840 skdev->tag_set.queue_depth = skd_max_queue_depth;
2841 skdev->tag_set.cmd_size = sizeof(struct skd_request_context) +
2842 skdev->sgs_per_request * sizeof(struct scatterlist);
2843 skdev->tag_set.numa_node = NUMA_NO_NODE;
2844 skdev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE |
2845 BLK_ALLOC_POLICY_TO_MQ_FLAG(BLK_TAG_ALLOC_FIFO);
2846 skdev->tag_set.driver_data = skdev;
2847 rc = blk_mq_alloc_tag_set(&skdev->tag_set);
2848 if (rc)
2849 goto err_out;
2850 q = blk_mq_init_queue(&skdev->tag_set);
2851 if (IS_ERR(q)) {
2852 blk_mq_free_tag_set(&skdev->tag_set);
2853 rc = PTR_ERR(q);
2854 goto err_out;
2856 q->queuedata = skdev;
2858 skdev->queue = q;
2859 disk->queue = q;
2861 blk_queue_write_cache(q, true, true);
2862 blk_queue_max_segments(q, skdev->sgs_per_request);
2863 blk_queue_max_hw_sectors(q, SKD_N_MAX_SECTORS);
2865 /* set optimal I/O size to 8KB */
2866 blk_queue_io_opt(q, 8192);
2868 blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
2869 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
2871 blk_queue_rq_timeout(q, 8 * HZ);
2873 spin_lock_irqsave(&skdev->lock, flags);
2874 dev_dbg(&skdev->pdev->dev, "stopping queue\n");
2875 blk_mq_stop_hw_queues(skdev->queue);
2876 spin_unlock_irqrestore(&skdev->lock, flags);
2878 err_out:
2879 return rc;
2882 #define SKD_N_DEV_TABLE 16u
2883 static u32 skd_next_devno;
2885 static struct skd_device *skd_construct(struct pci_dev *pdev)
2887 struct skd_device *skdev;
2888 int blk_major = skd_major;
2889 size_t size;
2890 int rc;
2892 skdev = kzalloc(sizeof(*skdev), GFP_KERNEL);
2894 if (!skdev) {
2895 dev_err(&pdev->dev, "memory alloc failure\n");
2896 return NULL;
2899 skdev->state = SKD_DRVR_STATE_LOAD;
2900 skdev->pdev = pdev;
2901 skdev->devno = skd_next_devno++;
2902 skdev->major = blk_major;
2903 skdev->dev_max_queue_depth = 0;
2905 skdev->num_req_context = skd_max_queue_depth;
2906 skdev->num_fitmsg_context = skd_max_queue_depth;
2907 skdev->cur_max_queue_depth = 1;
2908 skdev->queue_low_water_mark = 1;
2909 skdev->proto_ver = 99;
2910 skdev->sgs_per_request = skd_sgs_per_request;
2911 skdev->dbg_level = skd_dbg_level;
2913 spin_lock_init(&skdev->lock);
2915 INIT_WORK(&skdev->start_queue, skd_start_queue);
2916 INIT_WORK(&skdev->completion_worker, skd_completion_worker);
2918 size = max(SKD_N_FITMSG_BYTES, SKD_N_SPECIAL_FITMSG_BYTES);
2919 skdev->msgbuf_cache = kmem_cache_create("skd-msgbuf", size, 0,
2920 SLAB_HWCACHE_ALIGN, NULL);
2921 if (!skdev->msgbuf_cache)
2922 goto err_out;
2923 WARN_ONCE(kmem_cache_size(skdev->msgbuf_cache) < size,
2924 "skd-msgbuf: %d < %zd\n",
2925 kmem_cache_size(skdev->msgbuf_cache), size);
2926 size = skd_sgs_per_request * sizeof(struct fit_sg_descriptor);
2927 skdev->sglist_cache = kmem_cache_create("skd-sglist", size, 0,
2928 SLAB_HWCACHE_ALIGN, NULL);
2929 if (!skdev->sglist_cache)
2930 goto err_out;
2931 WARN_ONCE(kmem_cache_size(skdev->sglist_cache) < size,
2932 "skd-sglist: %d < %zd\n",
2933 kmem_cache_size(skdev->sglist_cache), size);
2934 size = SKD_N_INTERNAL_BYTES;
2935 skdev->databuf_cache = kmem_cache_create("skd-databuf", size, 0,
2936 SLAB_HWCACHE_ALIGN, NULL);
2937 if (!skdev->databuf_cache)
2938 goto err_out;
2939 WARN_ONCE(kmem_cache_size(skdev->databuf_cache) < size,
2940 "skd-databuf: %d < %zd\n",
2941 kmem_cache_size(skdev->databuf_cache), size);
2943 dev_dbg(&skdev->pdev->dev, "skcomp\n");
2944 rc = skd_cons_skcomp(skdev);
2945 if (rc < 0)
2946 goto err_out;
2948 dev_dbg(&skdev->pdev->dev, "skmsg\n");
2949 rc = skd_cons_skmsg(skdev);
2950 if (rc < 0)
2951 goto err_out;
2953 dev_dbg(&skdev->pdev->dev, "sksb\n");
2954 rc = skd_cons_sksb(skdev);
2955 if (rc < 0)
2956 goto err_out;
2958 dev_dbg(&skdev->pdev->dev, "disk\n");
2959 rc = skd_cons_disk(skdev);
2960 if (rc < 0)
2961 goto err_out;
2963 dev_dbg(&skdev->pdev->dev, "VICTORY\n");
2964 return skdev;
2966 err_out:
2967 dev_dbg(&skdev->pdev->dev, "construct failed\n");
2968 skd_destruct(skdev);
2969 return NULL;
2973 *****************************************************************************
2974 * DESTRUCT (FREE)
2975 *****************************************************************************
2978 static void skd_free_skcomp(struct skd_device *skdev)
2980 if (skdev->skcomp_table)
2981 dma_free_coherent(&skdev->pdev->dev, SKD_SKCOMP_SIZE,
2982 skdev->skcomp_table, skdev->cq_dma_address);
2984 skdev->skcomp_table = NULL;
2985 skdev->cq_dma_address = 0;
2988 static void skd_free_skmsg(struct skd_device *skdev)
2990 u32 i;
2992 if (skdev->skmsg_table == NULL)
2993 return;
2995 for (i = 0; i < skdev->num_fitmsg_context; i++) {
2996 struct skd_fitmsg_context *skmsg;
2998 skmsg = &skdev->skmsg_table[i];
3000 if (skmsg->msg_buf != NULL) {
3001 dma_free_coherent(&skdev->pdev->dev, SKD_N_FITMSG_BYTES,
3002 skmsg->msg_buf,
3003 skmsg->mb_dma_address);
3005 skmsg->msg_buf = NULL;
3006 skmsg->mb_dma_address = 0;
3009 kfree(skdev->skmsg_table);
3010 skdev->skmsg_table = NULL;
3013 static void skd_free_sksb(struct skd_device *skdev)
3015 struct skd_special_context *skspcl = &skdev->internal_skspcl;
3017 skd_free_dma(skdev, skdev->databuf_cache, skspcl->data_buf,
3018 skspcl->db_dma_address, DMA_BIDIRECTIONAL);
3020 skspcl->data_buf = NULL;
3021 skspcl->db_dma_address = 0;
3023 skd_free_dma(skdev, skdev->msgbuf_cache, skspcl->msg_buf,
3024 skspcl->mb_dma_address, DMA_TO_DEVICE);
3026 skspcl->msg_buf = NULL;
3027 skspcl->mb_dma_address = 0;
3029 skd_free_sg_list(skdev, skspcl->req.sksg_list,
3030 skspcl->req.sksg_dma_address);
3032 skspcl->req.sksg_list = NULL;
3033 skspcl->req.sksg_dma_address = 0;
3036 static void skd_free_disk(struct skd_device *skdev)
3038 struct gendisk *disk = skdev->disk;
3040 if (disk && (disk->flags & GENHD_FL_UP))
3041 del_gendisk(disk);
3043 if (skdev->queue) {
3044 blk_cleanup_queue(skdev->queue);
3045 skdev->queue = NULL;
3046 if (disk)
3047 disk->queue = NULL;
3050 if (skdev->tag_set.tags)
3051 blk_mq_free_tag_set(&skdev->tag_set);
3053 put_disk(disk);
3054 skdev->disk = NULL;
3057 static void skd_destruct(struct skd_device *skdev)
3059 if (skdev == NULL)
3060 return;
3062 cancel_work_sync(&skdev->start_queue);
3064 dev_dbg(&skdev->pdev->dev, "disk\n");
3065 skd_free_disk(skdev);
3067 dev_dbg(&skdev->pdev->dev, "sksb\n");
3068 skd_free_sksb(skdev);
3070 dev_dbg(&skdev->pdev->dev, "skmsg\n");
3071 skd_free_skmsg(skdev);
3073 dev_dbg(&skdev->pdev->dev, "skcomp\n");
3074 skd_free_skcomp(skdev);
3076 kmem_cache_destroy(skdev->databuf_cache);
3077 kmem_cache_destroy(skdev->sglist_cache);
3078 kmem_cache_destroy(skdev->msgbuf_cache);
3080 dev_dbg(&skdev->pdev->dev, "skdev\n");
3081 kfree(skdev);
3085 *****************************************************************************
3086 * BLOCK DEVICE (BDEV) GLUE
3087 *****************************************************************************
3090 static int skd_bdev_getgeo(struct block_device *bdev, struct hd_geometry *geo)
3092 struct skd_device *skdev;
3093 u64 capacity;
3095 skdev = bdev->bd_disk->private_data;
3097 dev_dbg(&skdev->pdev->dev, "%s: CMD[%s] getgeo device\n",
3098 bdev->bd_disk->disk_name, current->comm);
3100 if (skdev->read_cap_is_valid) {
3101 capacity = get_capacity(skdev->disk);
3102 geo->heads = 64;
3103 geo->sectors = 255;
3104 geo->cylinders = (capacity) / (255 * 64);
3106 return 0;
3108 return -EIO;
3111 static int skd_bdev_attach(struct device *parent, struct skd_device *skdev)
3113 dev_dbg(&skdev->pdev->dev, "add_disk\n");
3114 device_add_disk(parent, skdev->disk, NULL);
3115 return 0;
3118 static const struct block_device_operations skd_blockdev_ops = {
3119 .owner = THIS_MODULE,
3120 .getgeo = skd_bdev_getgeo,
3124 *****************************************************************************
3125 * PCIe DRIVER GLUE
3126 *****************************************************************************
3129 static const struct pci_device_id skd_pci_tbl[] = {
3130 { PCI_VENDOR_ID_STEC, PCI_DEVICE_ID_S1120,
3131 PCI_ANY_ID, PCI_ANY_ID, 0, 0, },
3132 { 0 } /* terminate list */
3135 MODULE_DEVICE_TABLE(pci, skd_pci_tbl);
3137 static char *skd_pci_info(struct skd_device *skdev, char *str)
3139 int pcie_reg;
3141 strcpy(str, "PCIe (");
3142 pcie_reg = pci_find_capability(skdev->pdev, PCI_CAP_ID_EXP);
3144 if (pcie_reg) {
3146 char lwstr[6];
3147 uint16_t pcie_lstat, lspeed, lwidth;
3149 pcie_reg += 0x12;
3150 pci_read_config_word(skdev->pdev, pcie_reg, &pcie_lstat);
3151 lspeed = pcie_lstat & (0xF);
3152 lwidth = (pcie_lstat & 0x3F0) >> 4;
3154 if (lspeed == 1)
3155 strcat(str, "2.5GT/s ");
3156 else if (lspeed == 2)
3157 strcat(str, "5.0GT/s ");
3158 else
3159 strcat(str, "<unknown> ");
3160 snprintf(lwstr, sizeof(lwstr), "%dX)", lwidth);
3161 strcat(str, lwstr);
3163 return str;
3166 static int skd_pci_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3168 int i;
3169 int rc = 0;
3170 char pci_str[32];
3171 struct skd_device *skdev;
3173 dev_dbg(&pdev->dev, "vendor=%04X device=%04x\n", pdev->vendor,
3174 pdev->device);
3176 rc = pci_enable_device(pdev);
3177 if (rc)
3178 return rc;
3179 rc = pci_request_regions(pdev, DRV_NAME);
3180 if (rc)
3181 goto err_out;
3182 rc = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3183 if (rc)
3184 rc = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3185 if (rc) {
3186 dev_err(&pdev->dev, "DMA mask error %d\n", rc);
3187 goto err_out_regions;
3190 if (!skd_major) {
3191 rc = register_blkdev(0, DRV_NAME);
3192 if (rc < 0)
3193 goto err_out_regions;
3194 BUG_ON(!rc);
3195 skd_major = rc;
3198 skdev = skd_construct(pdev);
3199 if (skdev == NULL) {
3200 rc = -ENOMEM;
3201 goto err_out_regions;
3204 skd_pci_info(skdev, pci_str);
3205 dev_info(&pdev->dev, "%s 64bit\n", pci_str);
3207 pci_set_master(pdev);
3208 rc = pci_enable_pcie_error_reporting(pdev);
3209 if (rc) {
3210 dev_err(&pdev->dev,
3211 "bad enable of PCIe error reporting rc=%d\n", rc);
3212 skdev->pcie_error_reporting_is_enabled = 0;
3213 } else
3214 skdev->pcie_error_reporting_is_enabled = 1;
3216 pci_set_drvdata(pdev, skdev);
3218 for (i = 0; i < SKD_MAX_BARS; i++) {
3219 skdev->mem_phys[i] = pci_resource_start(pdev, i);
3220 skdev->mem_size[i] = (u32)pci_resource_len(pdev, i);
3221 skdev->mem_map[i] = ioremap(skdev->mem_phys[i],
3222 skdev->mem_size[i]);
3223 if (!skdev->mem_map[i]) {
3224 dev_err(&pdev->dev,
3225 "Unable to map adapter memory!\n");
3226 rc = -ENODEV;
3227 goto err_out_iounmap;
3229 dev_dbg(&pdev->dev, "mem_map=%p, phyd=%016llx, size=%d\n",
3230 skdev->mem_map[i], (uint64_t)skdev->mem_phys[i],
3231 skdev->mem_size[i]);
3234 rc = skd_acquire_irq(skdev);
3235 if (rc) {
3236 dev_err(&pdev->dev, "interrupt resource error %d\n", rc);
3237 goto err_out_iounmap;
3240 rc = skd_start_timer(skdev);
3241 if (rc)
3242 goto err_out_timer;
3244 init_waitqueue_head(&skdev->waitq);
3246 skd_start_device(skdev);
3248 rc = wait_event_interruptible_timeout(skdev->waitq,
3249 (skdev->gendisk_on),
3250 (SKD_START_WAIT_SECONDS * HZ));
3251 if (skdev->gendisk_on > 0) {
3252 /* device came on-line after reset */
3253 skd_bdev_attach(&pdev->dev, skdev);
3254 rc = 0;
3255 } else {
3256 /* we timed out, something is wrong with the device,
3257 don't add the disk structure */
3258 dev_err(&pdev->dev, "error: waiting for s1120 timed out %d!\n",
3259 rc);
3260 /* in case of no error; we timeout with ENXIO */
3261 if (!rc)
3262 rc = -ENXIO;
3263 goto err_out_timer;
3266 return rc;
3268 err_out_timer:
3269 skd_stop_device(skdev);
3270 skd_release_irq(skdev);
3272 err_out_iounmap:
3273 for (i = 0; i < SKD_MAX_BARS; i++)
3274 if (skdev->mem_map[i])
3275 iounmap(skdev->mem_map[i]);
3277 if (skdev->pcie_error_reporting_is_enabled)
3278 pci_disable_pcie_error_reporting(pdev);
3280 skd_destruct(skdev);
3282 err_out_regions:
3283 pci_release_regions(pdev);
3285 err_out:
3286 pci_disable_device(pdev);
3287 pci_set_drvdata(pdev, NULL);
3288 return rc;
3291 static void skd_pci_remove(struct pci_dev *pdev)
3293 int i;
3294 struct skd_device *skdev;
3296 skdev = pci_get_drvdata(pdev);
3297 if (!skdev) {
3298 dev_err(&pdev->dev, "no device data for PCI\n");
3299 return;
3301 skd_stop_device(skdev);
3302 skd_release_irq(skdev);
3304 for (i = 0; i < SKD_MAX_BARS; i++)
3305 if (skdev->mem_map[i])
3306 iounmap(skdev->mem_map[i]);
3308 if (skdev->pcie_error_reporting_is_enabled)
3309 pci_disable_pcie_error_reporting(pdev);
3311 skd_destruct(skdev);
3313 pci_release_regions(pdev);
3314 pci_disable_device(pdev);
3315 pci_set_drvdata(pdev, NULL);
3317 return;
3320 static int skd_pci_suspend(struct pci_dev *pdev, pm_message_t state)
3322 int i;
3323 struct skd_device *skdev;
3325 skdev = pci_get_drvdata(pdev);
3326 if (!skdev) {
3327 dev_err(&pdev->dev, "no device data for PCI\n");
3328 return -EIO;
3331 skd_stop_device(skdev);
3333 skd_release_irq(skdev);
3335 for (i = 0; i < SKD_MAX_BARS; i++)
3336 if (skdev->mem_map[i])
3337 iounmap(skdev->mem_map[i]);
3339 if (skdev->pcie_error_reporting_is_enabled)
3340 pci_disable_pcie_error_reporting(pdev);
3342 pci_release_regions(pdev);
3343 pci_save_state(pdev);
3344 pci_disable_device(pdev);
3345 pci_set_power_state(pdev, pci_choose_state(pdev, state));
3346 return 0;
3349 static int skd_pci_resume(struct pci_dev *pdev)
3351 int i;
3352 int rc = 0;
3353 struct skd_device *skdev;
3355 skdev = pci_get_drvdata(pdev);
3356 if (!skdev) {
3357 dev_err(&pdev->dev, "no device data for PCI\n");
3358 return -1;
3361 pci_set_power_state(pdev, PCI_D0);
3362 pci_enable_wake(pdev, PCI_D0, 0);
3363 pci_restore_state(pdev);
3365 rc = pci_enable_device(pdev);
3366 if (rc)
3367 return rc;
3368 rc = pci_request_regions(pdev, DRV_NAME);
3369 if (rc)
3370 goto err_out;
3371 rc = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3372 if (rc)
3373 rc = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3374 if (rc) {
3375 dev_err(&pdev->dev, "DMA mask error %d\n", rc);
3376 goto err_out_regions;
3379 pci_set_master(pdev);
3380 rc = pci_enable_pcie_error_reporting(pdev);
3381 if (rc) {
3382 dev_err(&pdev->dev,
3383 "bad enable of PCIe error reporting rc=%d\n", rc);
3384 skdev->pcie_error_reporting_is_enabled = 0;
3385 } else
3386 skdev->pcie_error_reporting_is_enabled = 1;
3388 for (i = 0; i < SKD_MAX_BARS; i++) {
3390 skdev->mem_phys[i] = pci_resource_start(pdev, i);
3391 skdev->mem_size[i] = (u32)pci_resource_len(pdev, i);
3392 skdev->mem_map[i] = ioremap(skdev->mem_phys[i],
3393 skdev->mem_size[i]);
3394 if (!skdev->mem_map[i]) {
3395 dev_err(&pdev->dev, "Unable to map adapter memory!\n");
3396 rc = -ENODEV;
3397 goto err_out_iounmap;
3399 dev_dbg(&pdev->dev, "mem_map=%p, phyd=%016llx, size=%d\n",
3400 skdev->mem_map[i], (uint64_t)skdev->mem_phys[i],
3401 skdev->mem_size[i]);
3403 rc = skd_acquire_irq(skdev);
3404 if (rc) {
3405 dev_err(&pdev->dev, "interrupt resource error %d\n", rc);
3406 goto err_out_iounmap;
3409 rc = skd_start_timer(skdev);
3410 if (rc)
3411 goto err_out_timer;
3413 init_waitqueue_head(&skdev->waitq);
3415 skd_start_device(skdev);
3417 return rc;
3419 err_out_timer:
3420 skd_stop_device(skdev);
3421 skd_release_irq(skdev);
3423 err_out_iounmap:
3424 for (i = 0; i < SKD_MAX_BARS; i++)
3425 if (skdev->mem_map[i])
3426 iounmap(skdev->mem_map[i]);
3428 if (skdev->pcie_error_reporting_is_enabled)
3429 pci_disable_pcie_error_reporting(pdev);
3431 err_out_regions:
3432 pci_release_regions(pdev);
3434 err_out:
3435 pci_disable_device(pdev);
3436 return rc;
3439 static void skd_pci_shutdown(struct pci_dev *pdev)
3441 struct skd_device *skdev;
3443 dev_err(&pdev->dev, "%s called\n", __func__);
3445 skdev = pci_get_drvdata(pdev);
3446 if (!skdev) {
3447 dev_err(&pdev->dev, "no device data for PCI\n");
3448 return;
3451 dev_err(&pdev->dev, "calling stop\n");
3452 skd_stop_device(skdev);
3455 static struct pci_driver skd_driver = {
3456 .name = DRV_NAME,
3457 .id_table = skd_pci_tbl,
3458 .probe = skd_pci_probe,
3459 .remove = skd_pci_remove,
3460 .suspend = skd_pci_suspend,
3461 .resume = skd_pci_resume,
3462 .shutdown = skd_pci_shutdown,
3466 *****************************************************************************
3467 * LOGGING SUPPORT
3468 *****************************************************************************
3471 const char *skd_drive_state_to_str(int state)
3473 switch (state) {
3474 case FIT_SR_DRIVE_OFFLINE:
3475 return "OFFLINE";
3476 case FIT_SR_DRIVE_INIT:
3477 return "INIT";
3478 case FIT_SR_DRIVE_ONLINE:
3479 return "ONLINE";
3480 case FIT_SR_DRIVE_BUSY:
3481 return "BUSY";
3482 case FIT_SR_DRIVE_FAULT:
3483 return "FAULT";
3484 case FIT_SR_DRIVE_DEGRADED:
3485 return "DEGRADED";
3486 case FIT_SR_PCIE_LINK_DOWN:
3487 return "INK_DOWN";
3488 case FIT_SR_DRIVE_SOFT_RESET:
3489 return "SOFT_RESET";
3490 case FIT_SR_DRIVE_NEED_FW_DOWNLOAD:
3491 return "NEED_FW";
3492 case FIT_SR_DRIVE_INIT_FAULT:
3493 return "INIT_FAULT";
3494 case FIT_SR_DRIVE_BUSY_SANITIZE:
3495 return "BUSY_SANITIZE";
3496 case FIT_SR_DRIVE_BUSY_ERASE:
3497 return "BUSY_ERASE";
3498 case FIT_SR_DRIVE_FW_BOOTING:
3499 return "FW_BOOTING";
3500 default:
3501 return "???";
3505 const char *skd_skdev_state_to_str(enum skd_drvr_state state)
3507 switch (state) {
3508 case SKD_DRVR_STATE_LOAD:
3509 return "LOAD";
3510 case SKD_DRVR_STATE_IDLE:
3511 return "IDLE";
3512 case SKD_DRVR_STATE_BUSY:
3513 return "BUSY";
3514 case SKD_DRVR_STATE_STARTING:
3515 return "STARTING";
3516 case SKD_DRVR_STATE_ONLINE:
3517 return "ONLINE";
3518 case SKD_DRVR_STATE_PAUSING:
3519 return "PAUSING";
3520 case SKD_DRVR_STATE_PAUSED:
3521 return "PAUSED";
3522 case SKD_DRVR_STATE_RESTARTING:
3523 return "RESTARTING";
3524 case SKD_DRVR_STATE_RESUMING:
3525 return "RESUMING";
3526 case SKD_DRVR_STATE_STOPPING:
3527 return "STOPPING";
3528 case SKD_DRVR_STATE_SYNCING:
3529 return "SYNCING";
3530 case SKD_DRVR_STATE_FAULT:
3531 return "FAULT";
3532 case SKD_DRVR_STATE_DISAPPEARED:
3533 return "DISAPPEARED";
3534 case SKD_DRVR_STATE_BUSY_ERASE:
3535 return "BUSY_ERASE";
3536 case SKD_DRVR_STATE_BUSY_SANITIZE:
3537 return "BUSY_SANITIZE";
3538 case SKD_DRVR_STATE_BUSY_IMMINENT:
3539 return "BUSY_IMMINENT";
3540 case SKD_DRVR_STATE_WAIT_BOOT:
3541 return "WAIT_BOOT";
3543 default:
3544 return "???";
3548 static const char *skd_skreq_state_to_str(enum skd_req_state state)
3550 switch (state) {
3551 case SKD_REQ_STATE_IDLE:
3552 return "IDLE";
3553 case SKD_REQ_STATE_SETUP:
3554 return "SETUP";
3555 case SKD_REQ_STATE_BUSY:
3556 return "BUSY";
3557 case SKD_REQ_STATE_COMPLETED:
3558 return "COMPLETED";
3559 case SKD_REQ_STATE_TIMEOUT:
3560 return "TIMEOUT";
3561 default:
3562 return "???";
3566 static void skd_log_skdev(struct skd_device *skdev, const char *event)
3568 dev_dbg(&skdev->pdev->dev, "skdev=%p event='%s'\n", skdev, event);
3569 dev_dbg(&skdev->pdev->dev, " drive_state=%s(%d) driver_state=%s(%d)\n",
3570 skd_drive_state_to_str(skdev->drive_state), skdev->drive_state,
3571 skd_skdev_state_to_str(skdev->state), skdev->state);
3572 dev_dbg(&skdev->pdev->dev, " busy=%d limit=%d dev=%d lowat=%d\n",
3573 skd_in_flight(skdev), skdev->cur_max_queue_depth,
3574 skdev->dev_max_queue_depth, skdev->queue_low_water_mark);
3575 dev_dbg(&skdev->pdev->dev, " cycle=%d cycle_ix=%d\n",
3576 skdev->skcomp_cycle, skdev->skcomp_ix);
3579 static void skd_log_skreq(struct skd_device *skdev,
3580 struct skd_request_context *skreq, const char *event)
3582 struct request *req = blk_mq_rq_from_pdu(skreq);
3583 u32 lba = blk_rq_pos(req);
3584 u32 count = blk_rq_sectors(req);
3586 dev_dbg(&skdev->pdev->dev, "skreq=%p event='%s'\n", skreq, event);
3587 dev_dbg(&skdev->pdev->dev, " state=%s(%d) id=0x%04x fitmsg=0x%04x\n",
3588 skd_skreq_state_to_str(skreq->state), skreq->state, skreq->id,
3589 skreq->fitmsg_id);
3590 dev_dbg(&skdev->pdev->dev, " sg_dir=%d n_sg=%d\n",
3591 skreq->data_dir, skreq->n_sg);
3593 dev_dbg(&skdev->pdev->dev,
3594 "req=%p lba=%u(0x%x) count=%u(0x%x) dir=%d\n", req, lba, lba,
3595 count, count, (int)rq_data_dir(req));
3599 *****************************************************************************
3600 * MODULE GLUE
3601 *****************************************************************************
3604 static int __init skd_init(void)
3606 BUILD_BUG_ON(sizeof(struct fit_completion_entry_v1) != 8);
3607 BUILD_BUG_ON(sizeof(struct fit_comp_error_info) != 32);
3608 BUILD_BUG_ON(sizeof(struct skd_command_header) != 16);
3609 BUILD_BUG_ON(sizeof(struct skd_scsi_request) != 32);
3610 BUILD_BUG_ON(sizeof(struct driver_inquiry_data) != 44);
3611 BUILD_BUG_ON(offsetof(struct skd_msg_buf, fmh) != 0);
3612 BUILD_BUG_ON(offsetof(struct skd_msg_buf, scsi) != 64);
3613 BUILD_BUG_ON(sizeof(struct skd_msg_buf) != SKD_N_FITMSG_BYTES);
3615 switch (skd_isr_type) {
3616 case SKD_IRQ_LEGACY:
3617 case SKD_IRQ_MSI:
3618 case SKD_IRQ_MSIX:
3619 break;
3620 default:
3621 pr_err(PFX "skd_isr_type %d invalid, re-set to %d\n",
3622 skd_isr_type, SKD_IRQ_DEFAULT);
3623 skd_isr_type = SKD_IRQ_DEFAULT;
3626 if (skd_max_queue_depth < 1 ||
3627 skd_max_queue_depth > SKD_MAX_QUEUE_DEPTH) {
3628 pr_err(PFX "skd_max_queue_depth %d invalid, re-set to %d\n",
3629 skd_max_queue_depth, SKD_MAX_QUEUE_DEPTH_DEFAULT);
3630 skd_max_queue_depth = SKD_MAX_QUEUE_DEPTH_DEFAULT;
3633 if (skd_max_req_per_msg < 1 ||
3634 skd_max_req_per_msg > SKD_MAX_REQ_PER_MSG) {
3635 pr_err(PFX "skd_max_req_per_msg %d invalid, re-set to %d\n",
3636 skd_max_req_per_msg, SKD_MAX_REQ_PER_MSG_DEFAULT);
3637 skd_max_req_per_msg = SKD_MAX_REQ_PER_MSG_DEFAULT;
3640 if (skd_sgs_per_request < 1 || skd_sgs_per_request > 4096) {
3641 pr_err(PFX "skd_sg_per_request %d invalid, re-set to %d\n",
3642 skd_sgs_per_request, SKD_N_SG_PER_REQ_DEFAULT);
3643 skd_sgs_per_request = SKD_N_SG_PER_REQ_DEFAULT;
3646 if (skd_dbg_level < 0 || skd_dbg_level > 2) {
3647 pr_err(PFX "skd_dbg_level %d invalid, re-set to %d\n",
3648 skd_dbg_level, 0);
3649 skd_dbg_level = 0;
3652 if (skd_isr_comp_limit < 0) {
3653 pr_err(PFX "skd_isr_comp_limit %d invalid, set to %d\n",
3654 skd_isr_comp_limit, 0);
3655 skd_isr_comp_limit = 0;
3658 return pci_register_driver(&skd_driver);
3661 static void __exit skd_exit(void)
3663 pci_unregister_driver(&skd_driver);
3665 if (skd_major)
3666 unregister_blkdev(skd_major, DRV_NAME);
3669 module_init(skd_init);
3670 module_exit(skd_exit);