Merge tag 'block-5.11-2021-01-10' of git://git.kernel.dk/linux-block
[linux/fpc-iii.git] / drivers / char / ipmi / ipmi_msghandler.c
blobc44ad18464f15c87943c7746773bcf3794aa0d09
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * ipmi_msghandler.c
5 * Incoming and outgoing message routing for an IPMI interface.
7 * Author: MontaVista Software, Inc.
8 * Corey Minyard <minyard@mvista.com>
9 * source@mvista.com
11 * Copyright 2002 MontaVista Software Inc.
14 #define pr_fmt(fmt) "%s" fmt, "IPMI message handler: "
15 #define dev_fmt pr_fmt
17 #include <linux/module.h>
18 #include <linux/errno.h>
19 #include <linux/poll.h>
20 #include <linux/sched.h>
21 #include <linux/seq_file.h>
22 #include <linux/spinlock.h>
23 #include <linux/mutex.h>
24 #include <linux/slab.h>
25 #include <linux/ipmi.h>
26 #include <linux/ipmi_smi.h>
27 #include <linux/notifier.h>
28 #include <linux/init.h>
29 #include <linux/proc_fs.h>
30 #include <linux/rcupdate.h>
31 #include <linux/interrupt.h>
32 #include <linux/moduleparam.h>
33 #include <linux/workqueue.h>
34 #include <linux/uuid.h>
35 #include <linux/nospec.h>
36 #include <linux/vmalloc.h>
37 #include <linux/delay.h>
39 #define IPMI_DRIVER_VERSION "39.2"
41 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void);
42 static int ipmi_init_msghandler(void);
43 static void smi_recv_tasklet(struct tasklet_struct *t);
44 static void handle_new_recv_msgs(struct ipmi_smi *intf);
45 static void need_waiter(struct ipmi_smi *intf);
46 static int handle_one_recv_msg(struct ipmi_smi *intf,
47 struct ipmi_smi_msg *msg);
49 static bool initialized;
50 static bool drvregistered;
52 enum ipmi_panic_event_op {
53 IPMI_SEND_PANIC_EVENT_NONE,
54 IPMI_SEND_PANIC_EVENT,
55 IPMI_SEND_PANIC_EVENT_STRING
57 #ifdef CONFIG_IPMI_PANIC_STRING
58 #define IPMI_PANIC_DEFAULT IPMI_SEND_PANIC_EVENT_STRING
59 #elif defined(CONFIG_IPMI_PANIC_EVENT)
60 #define IPMI_PANIC_DEFAULT IPMI_SEND_PANIC_EVENT
61 #else
62 #define IPMI_PANIC_DEFAULT IPMI_SEND_PANIC_EVENT_NONE
63 #endif
65 static enum ipmi_panic_event_op ipmi_send_panic_event = IPMI_PANIC_DEFAULT;
67 static int panic_op_write_handler(const char *val,
68 const struct kernel_param *kp)
70 char valcp[16];
71 char *s;
73 strncpy(valcp, val, 15);
74 valcp[15] = '\0';
76 s = strstrip(valcp);
78 if (strcmp(s, "none") == 0)
79 ipmi_send_panic_event = IPMI_SEND_PANIC_EVENT_NONE;
80 else if (strcmp(s, "event") == 0)
81 ipmi_send_panic_event = IPMI_SEND_PANIC_EVENT;
82 else if (strcmp(s, "string") == 0)
83 ipmi_send_panic_event = IPMI_SEND_PANIC_EVENT_STRING;
84 else
85 return -EINVAL;
87 return 0;
90 static int panic_op_read_handler(char *buffer, const struct kernel_param *kp)
92 switch (ipmi_send_panic_event) {
93 case IPMI_SEND_PANIC_EVENT_NONE:
94 strcpy(buffer, "none\n");
95 break;
97 case IPMI_SEND_PANIC_EVENT:
98 strcpy(buffer, "event\n");
99 break;
101 case IPMI_SEND_PANIC_EVENT_STRING:
102 strcpy(buffer, "string\n");
103 break;
105 default:
106 strcpy(buffer, "???\n");
107 break;
110 return strlen(buffer);
113 static const struct kernel_param_ops panic_op_ops = {
114 .set = panic_op_write_handler,
115 .get = panic_op_read_handler
117 module_param_cb(panic_op, &panic_op_ops, NULL, 0600);
118 MODULE_PARM_DESC(panic_op, "Sets if the IPMI driver will attempt to store panic information in the event log in the event of a panic. Set to 'none' for no, 'event' for a single event, or 'string' for a generic event and the panic string in IPMI OEM events.");
121 #define MAX_EVENTS_IN_QUEUE 25
123 /* Remain in auto-maintenance mode for this amount of time (in ms). */
124 static unsigned long maintenance_mode_timeout_ms = 30000;
125 module_param(maintenance_mode_timeout_ms, ulong, 0644);
126 MODULE_PARM_DESC(maintenance_mode_timeout_ms,
127 "The time (milliseconds) after the last maintenance message that the connection stays in maintenance mode.");
130 * Don't let a message sit in a queue forever, always time it with at lest
131 * the max message timer. This is in milliseconds.
133 #define MAX_MSG_TIMEOUT 60000
136 * Timeout times below are in milliseconds, and are done off a 1
137 * second timer. So setting the value to 1000 would mean anything
138 * between 0 and 1000ms. So really the only reasonable minimum
139 * setting it 2000ms, which is between 1 and 2 seconds.
142 /* The default timeout for message retries. */
143 static unsigned long default_retry_ms = 2000;
144 module_param(default_retry_ms, ulong, 0644);
145 MODULE_PARM_DESC(default_retry_ms,
146 "The time (milliseconds) between retry sends");
148 /* The default timeout for maintenance mode message retries. */
149 static unsigned long default_maintenance_retry_ms = 3000;
150 module_param(default_maintenance_retry_ms, ulong, 0644);
151 MODULE_PARM_DESC(default_maintenance_retry_ms,
152 "The time (milliseconds) between retry sends in maintenance mode");
154 /* The default maximum number of retries */
155 static unsigned int default_max_retries = 4;
156 module_param(default_max_retries, uint, 0644);
157 MODULE_PARM_DESC(default_max_retries,
158 "The time (milliseconds) between retry sends in maintenance mode");
160 /* Call every ~1000 ms. */
161 #define IPMI_TIMEOUT_TIME 1000
163 /* How many jiffies does it take to get to the timeout time. */
164 #define IPMI_TIMEOUT_JIFFIES ((IPMI_TIMEOUT_TIME * HZ) / 1000)
167 * Request events from the queue every second (this is the number of
168 * IPMI_TIMEOUT_TIMES between event requests). Hopefully, in the
169 * future, IPMI will add a way to know immediately if an event is in
170 * the queue and this silliness can go away.
172 #define IPMI_REQUEST_EV_TIME (1000 / (IPMI_TIMEOUT_TIME))
174 /* How long should we cache dynamic device IDs? */
175 #define IPMI_DYN_DEV_ID_EXPIRY (10 * HZ)
178 * The main "user" data structure.
180 struct ipmi_user {
181 struct list_head link;
184 * Set to NULL when the user is destroyed, a pointer to myself
185 * so srcu_dereference can be used on it.
187 struct ipmi_user *self;
188 struct srcu_struct release_barrier;
190 struct kref refcount;
192 /* The upper layer that handles receive messages. */
193 const struct ipmi_user_hndl *handler;
194 void *handler_data;
196 /* The interface this user is bound to. */
197 struct ipmi_smi *intf;
199 /* Does this interface receive IPMI events? */
200 bool gets_events;
202 /* Free must run in process context for RCU cleanup. */
203 struct work_struct remove_work;
206 static struct ipmi_user *acquire_ipmi_user(struct ipmi_user *user, int *index)
207 __acquires(user->release_barrier)
209 struct ipmi_user *ruser;
211 *index = srcu_read_lock(&user->release_barrier);
212 ruser = srcu_dereference(user->self, &user->release_barrier);
213 if (!ruser)
214 srcu_read_unlock(&user->release_barrier, *index);
215 return ruser;
218 static void release_ipmi_user(struct ipmi_user *user, int index)
220 srcu_read_unlock(&user->release_barrier, index);
223 struct cmd_rcvr {
224 struct list_head link;
226 struct ipmi_user *user;
227 unsigned char netfn;
228 unsigned char cmd;
229 unsigned int chans;
232 * This is used to form a linked lised during mass deletion.
233 * Since this is in an RCU list, we cannot use the link above
234 * or change any data until the RCU period completes. So we
235 * use this next variable during mass deletion so we can have
236 * a list and don't have to wait and restart the search on
237 * every individual deletion of a command.
239 struct cmd_rcvr *next;
242 struct seq_table {
243 unsigned int inuse : 1;
244 unsigned int broadcast : 1;
246 unsigned long timeout;
247 unsigned long orig_timeout;
248 unsigned int retries_left;
251 * To verify on an incoming send message response that this is
252 * the message that the response is for, we keep a sequence id
253 * and increment it every time we send a message.
255 long seqid;
258 * This is held so we can properly respond to the message on a
259 * timeout, and it is used to hold the temporary data for
260 * retransmission, too.
262 struct ipmi_recv_msg *recv_msg;
266 * Store the information in a msgid (long) to allow us to find a
267 * sequence table entry from the msgid.
269 #define STORE_SEQ_IN_MSGID(seq, seqid) \
270 ((((seq) & 0x3f) << 26) | ((seqid) & 0x3ffffff))
272 #define GET_SEQ_FROM_MSGID(msgid, seq, seqid) \
273 do { \
274 seq = (((msgid) >> 26) & 0x3f); \
275 seqid = ((msgid) & 0x3ffffff); \
276 } while (0)
278 #define NEXT_SEQID(seqid) (((seqid) + 1) & 0x3ffffff)
280 #define IPMI_MAX_CHANNELS 16
281 struct ipmi_channel {
282 unsigned char medium;
283 unsigned char protocol;
286 struct ipmi_channel_set {
287 struct ipmi_channel c[IPMI_MAX_CHANNELS];
290 struct ipmi_my_addrinfo {
292 * My slave address. This is initialized to IPMI_BMC_SLAVE_ADDR,
293 * but may be changed by the user.
295 unsigned char address;
298 * My LUN. This should generally stay the SMS LUN, but just in
299 * case...
301 unsigned char lun;
305 * Note that the product id, manufacturer id, guid, and device id are
306 * immutable in this structure, so dyn_mutex is not required for
307 * accessing those. If those change on a BMC, a new BMC is allocated.
309 struct bmc_device {
310 struct platform_device pdev;
311 struct list_head intfs; /* Interfaces on this BMC. */
312 struct ipmi_device_id id;
313 struct ipmi_device_id fetch_id;
314 int dyn_id_set;
315 unsigned long dyn_id_expiry;
316 struct mutex dyn_mutex; /* Protects id, intfs, & dyn* */
317 guid_t guid;
318 guid_t fetch_guid;
319 int dyn_guid_set;
320 struct kref usecount;
321 struct work_struct remove_work;
322 unsigned char cc; /* completion code */
324 #define to_bmc_device(x) container_of((x), struct bmc_device, pdev.dev)
326 static int bmc_get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc,
327 struct ipmi_device_id *id,
328 bool *guid_set, guid_t *guid);
331 * Various statistics for IPMI, these index stats[] in the ipmi_smi
332 * structure.
334 enum ipmi_stat_indexes {
335 /* Commands we got from the user that were invalid. */
336 IPMI_STAT_sent_invalid_commands = 0,
338 /* Commands we sent to the MC. */
339 IPMI_STAT_sent_local_commands,
341 /* Responses from the MC that were delivered to a user. */
342 IPMI_STAT_handled_local_responses,
344 /* Responses from the MC that were not delivered to a user. */
345 IPMI_STAT_unhandled_local_responses,
347 /* Commands we sent out to the IPMB bus. */
348 IPMI_STAT_sent_ipmb_commands,
350 /* Commands sent on the IPMB that had errors on the SEND CMD */
351 IPMI_STAT_sent_ipmb_command_errs,
353 /* Each retransmit increments this count. */
354 IPMI_STAT_retransmitted_ipmb_commands,
357 * When a message times out (runs out of retransmits) this is
358 * incremented.
360 IPMI_STAT_timed_out_ipmb_commands,
363 * This is like above, but for broadcasts. Broadcasts are
364 * *not* included in the above count (they are expected to
365 * time out).
367 IPMI_STAT_timed_out_ipmb_broadcasts,
369 /* Responses I have sent to the IPMB bus. */
370 IPMI_STAT_sent_ipmb_responses,
372 /* The response was delivered to the user. */
373 IPMI_STAT_handled_ipmb_responses,
375 /* The response had invalid data in it. */
376 IPMI_STAT_invalid_ipmb_responses,
378 /* The response didn't have anyone waiting for it. */
379 IPMI_STAT_unhandled_ipmb_responses,
381 /* Commands we sent out to the IPMB bus. */
382 IPMI_STAT_sent_lan_commands,
384 /* Commands sent on the IPMB that had errors on the SEND CMD */
385 IPMI_STAT_sent_lan_command_errs,
387 /* Each retransmit increments this count. */
388 IPMI_STAT_retransmitted_lan_commands,
391 * When a message times out (runs out of retransmits) this is
392 * incremented.
394 IPMI_STAT_timed_out_lan_commands,
396 /* Responses I have sent to the IPMB bus. */
397 IPMI_STAT_sent_lan_responses,
399 /* The response was delivered to the user. */
400 IPMI_STAT_handled_lan_responses,
402 /* The response had invalid data in it. */
403 IPMI_STAT_invalid_lan_responses,
405 /* The response didn't have anyone waiting for it. */
406 IPMI_STAT_unhandled_lan_responses,
408 /* The command was delivered to the user. */
409 IPMI_STAT_handled_commands,
411 /* The command had invalid data in it. */
412 IPMI_STAT_invalid_commands,
414 /* The command didn't have anyone waiting for it. */
415 IPMI_STAT_unhandled_commands,
417 /* Invalid data in an event. */
418 IPMI_STAT_invalid_events,
420 /* Events that were received with the proper format. */
421 IPMI_STAT_events,
423 /* Retransmissions on IPMB that failed. */
424 IPMI_STAT_dropped_rexmit_ipmb_commands,
426 /* Retransmissions on LAN that failed. */
427 IPMI_STAT_dropped_rexmit_lan_commands,
429 /* This *must* remain last, add new values above this. */
430 IPMI_NUM_STATS
434 #define IPMI_IPMB_NUM_SEQ 64
435 struct ipmi_smi {
436 struct module *owner;
438 /* What interface number are we? */
439 int intf_num;
441 struct kref refcount;
443 /* Set when the interface is being unregistered. */
444 bool in_shutdown;
446 /* Used for a list of interfaces. */
447 struct list_head link;
450 * The list of upper layers that are using me. seq_lock write
451 * protects this. Read protection is with srcu.
453 struct list_head users;
454 struct srcu_struct users_srcu;
456 /* Used for wake ups at startup. */
457 wait_queue_head_t waitq;
460 * Prevents the interface from being unregistered when the
461 * interface is used by being looked up through the BMC
462 * structure.
464 struct mutex bmc_reg_mutex;
466 struct bmc_device tmp_bmc;
467 struct bmc_device *bmc;
468 bool bmc_registered;
469 struct list_head bmc_link;
470 char *my_dev_name;
471 bool in_bmc_register; /* Handle recursive situations. Yuck. */
472 struct work_struct bmc_reg_work;
474 const struct ipmi_smi_handlers *handlers;
475 void *send_info;
477 /* Driver-model device for the system interface. */
478 struct device *si_dev;
481 * A table of sequence numbers for this interface. We use the
482 * sequence numbers for IPMB messages that go out of the
483 * interface to match them up with their responses. A routine
484 * is called periodically to time the items in this list.
486 spinlock_t seq_lock;
487 struct seq_table seq_table[IPMI_IPMB_NUM_SEQ];
488 int curr_seq;
491 * Messages queued for delivery. If delivery fails (out of memory
492 * for instance), They will stay in here to be processed later in a
493 * periodic timer interrupt. The tasklet is for handling received
494 * messages directly from the handler.
496 spinlock_t waiting_rcv_msgs_lock;
497 struct list_head waiting_rcv_msgs;
498 atomic_t watchdog_pretimeouts_to_deliver;
499 struct tasklet_struct recv_tasklet;
501 spinlock_t xmit_msgs_lock;
502 struct list_head xmit_msgs;
503 struct ipmi_smi_msg *curr_msg;
504 struct list_head hp_xmit_msgs;
507 * The list of command receivers that are registered for commands
508 * on this interface.
510 struct mutex cmd_rcvrs_mutex;
511 struct list_head cmd_rcvrs;
514 * Events that were queues because no one was there to receive
515 * them.
517 spinlock_t events_lock; /* For dealing with event stuff. */
518 struct list_head waiting_events;
519 unsigned int waiting_events_count; /* How many events in queue? */
520 char delivering_events;
521 char event_msg_printed;
523 /* How many users are waiting for events? */
524 atomic_t event_waiters;
525 unsigned int ticks_to_req_ev;
527 spinlock_t watch_lock; /* For dealing with watch stuff below. */
529 /* How many users are waiting for commands? */
530 unsigned int command_waiters;
532 /* How many users are waiting for watchdogs? */
533 unsigned int watchdog_waiters;
535 /* How many users are waiting for message responses? */
536 unsigned int response_waiters;
539 * Tells what the lower layer has last been asked to watch for,
540 * messages and/or watchdogs. Protected by watch_lock.
542 unsigned int last_watch_mask;
545 * The event receiver for my BMC, only really used at panic
546 * shutdown as a place to store this.
548 unsigned char event_receiver;
549 unsigned char event_receiver_lun;
550 unsigned char local_sel_device;
551 unsigned char local_event_generator;
553 /* For handling of maintenance mode. */
554 int maintenance_mode;
555 bool maintenance_mode_enable;
556 int auto_maintenance_timeout;
557 spinlock_t maintenance_mode_lock; /* Used in a timer... */
560 * If we are doing maintenance on something on IPMB, extend
561 * the timeout time to avoid timeouts writing firmware and
562 * such.
564 int ipmb_maintenance_mode_timeout;
567 * A cheap hack, if this is non-null and a message to an
568 * interface comes in with a NULL user, call this routine with
569 * it. Note that the message will still be freed by the
570 * caller. This only works on the system interface.
572 * Protected by bmc_reg_mutex.
574 void (*null_user_handler)(struct ipmi_smi *intf,
575 struct ipmi_recv_msg *msg);
578 * When we are scanning the channels for an SMI, this will
579 * tell which channel we are scanning.
581 int curr_channel;
583 /* Channel information */
584 struct ipmi_channel_set *channel_list;
585 unsigned int curr_working_cset; /* First index into the following. */
586 struct ipmi_channel_set wchannels[2];
587 struct ipmi_my_addrinfo addrinfo[IPMI_MAX_CHANNELS];
588 bool channels_ready;
590 atomic_t stats[IPMI_NUM_STATS];
593 * run_to_completion duplicate of smb_info, smi_info
594 * and ipmi_serial_info structures. Used to decrease numbers of
595 * parameters passed by "low" level IPMI code.
597 int run_to_completion;
599 #define to_si_intf_from_dev(device) container_of(device, struct ipmi_smi, dev)
601 static void __get_guid(struct ipmi_smi *intf);
602 static void __ipmi_bmc_unregister(struct ipmi_smi *intf);
603 static int __ipmi_bmc_register(struct ipmi_smi *intf,
604 struct ipmi_device_id *id,
605 bool guid_set, guid_t *guid, int intf_num);
606 static int __scan_channels(struct ipmi_smi *intf, struct ipmi_device_id *id);
610 * The driver model view of the IPMI messaging driver.
612 static struct platform_driver ipmidriver = {
613 .driver = {
614 .name = "ipmi",
615 .bus = &platform_bus_type
619 * This mutex keeps us from adding the same BMC twice.
621 static DEFINE_MUTEX(ipmidriver_mutex);
623 static LIST_HEAD(ipmi_interfaces);
624 static DEFINE_MUTEX(ipmi_interfaces_mutex);
625 #define ipmi_interfaces_mutex_held() \
626 lockdep_is_held(&ipmi_interfaces_mutex)
627 static struct srcu_struct ipmi_interfaces_srcu;
630 * List of watchers that want to know when smi's are added and deleted.
632 static LIST_HEAD(smi_watchers);
633 static DEFINE_MUTEX(smi_watchers_mutex);
635 #define ipmi_inc_stat(intf, stat) \
636 atomic_inc(&(intf)->stats[IPMI_STAT_ ## stat])
637 #define ipmi_get_stat(intf, stat) \
638 ((unsigned int) atomic_read(&(intf)->stats[IPMI_STAT_ ## stat]))
640 static const char * const addr_src_to_str[] = {
641 "invalid", "hotmod", "hardcoded", "SPMI", "ACPI", "SMBIOS", "PCI",
642 "device-tree", "platform"
645 const char *ipmi_addr_src_to_str(enum ipmi_addr_src src)
647 if (src >= SI_LAST)
648 src = 0; /* Invalid */
649 return addr_src_to_str[src];
651 EXPORT_SYMBOL(ipmi_addr_src_to_str);
653 static int is_lan_addr(struct ipmi_addr *addr)
655 return addr->addr_type == IPMI_LAN_ADDR_TYPE;
658 static int is_ipmb_addr(struct ipmi_addr *addr)
660 return addr->addr_type == IPMI_IPMB_ADDR_TYPE;
663 static int is_ipmb_bcast_addr(struct ipmi_addr *addr)
665 return addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE;
668 static void free_recv_msg_list(struct list_head *q)
670 struct ipmi_recv_msg *msg, *msg2;
672 list_for_each_entry_safe(msg, msg2, q, link) {
673 list_del(&msg->link);
674 ipmi_free_recv_msg(msg);
678 static void free_smi_msg_list(struct list_head *q)
680 struct ipmi_smi_msg *msg, *msg2;
682 list_for_each_entry_safe(msg, msg2, q, link) {
683 list_del(&msg->link);
684 ipmi_free_smi_msg(msg);
688 static void clean_up_interface_data(struct ipmi_smi *intf)
690 int i;
691 struct cmd_rcvr *rcvr, *rcvr2;
692 struct list_head list;
694 tasklet_kill(&intf->recv_tasklet);
696 free_smi_msg_list(&intf->waiting_rcv_msgs);
697 free_recv_msg_list(&intf->waiting_events);
700 * Wholesale remove all the entries from the list in the
701 * interface and wait for RCU to know that none are in use.
703 mutex_lock(&intf->cmd_rcvrs_mutex);
704 INIT_LIST_HEAD(&list);
705 list_splice_init_rcu(&intf->cmd_rcvrs, &list, synchronize_rcu);
706 mutex_unlock(&intf->cmd_rcvrs_mutex);
708 list_for_each_entry_safe(rcvr, rcvr2, &list, link)
709 kfree(rcvr);
711 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
712 if ((intf->seq_table[i].inuse)
713 && (intf->seq_table[i].recv_msg))
714 ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
718 static void intf_free(struct kref *ref)
720 struct ipmi_smi *intf = container_of(ref, struct ipmi_smi, refcount);
722 clean_up_interface_data(intf);
723 kfree(intf);
726 struct watcher_entry {
727 int intf_num;
728 struct ipmi_smi *intf;
729 struct list_head link;
732 int ipmi_smi_watcher_register(struct ipmi_smi_watcher *watcher)
734 struct ipmi_smi *intf;
735 int index, rv;
738 * Make sure the driver is actually initialized, this handles
739 * problems with initialization order.
741 rv = ipmi_init_msghandler();
742 if (rv)
743 return rv;
745 mutex_lock(&smi_watchers_mutex);
747 list_add(&watcher->link, &smi_watchers);
749 index = srcu_read_lock(&ipmi_interfaces_srcu);
750 list_for_each_entry_rcu(intf, &ipmi_interfaces, link,
751 lockdep_is_held(&smi_watchers_mutex)) {
752 int intf_num = READ_ONCE(intf->intf_num);
754 if (intf_num == -1)
755 continue;
756 watcher->new_smi(intf_num, intf->si_dev);
758 srcu_read_unlock(&ipmi_interfaces_srcu, index);
760 mutex_unlock(&smi_watchers_mutex);
762 return 0;
764 EXPORT_SYMBOL(ipmi_smi_watcher_register);
766 int ipmi_smi_watcher_unregister(struct ipmi_smi_watcher *watcher)
768 mutex_lock(&smi_watchers_mutex);
769 list_del(&watcher->link);
770 mutex_unlock(&smi_watchers_mutex);
771 return 0;
773 EXPORT_SYMBOL(ipmi_smi_watcher_unregister);
776 * Must be called with smi_watchers_mutex held.
778 static void
779 call_smi_watchers(int i, struct device *dev)
781 struct ipmi_smi_watcher *w;
783 mutex_lock(&smi_watchers_mutex);
784 list_for_each_entry(w, &smi_watchers, link) {
785 if (try_module_get(w->owner)) {
786 w->new_smi(i, dev);
787 module_put(w->owner);
790 mutex_unlock(&smi_watchers_mutex);
793 static int
794 ipmi_addr_equal(struct ipmi_addr *addr1, struct ipmi_addr *addr2)
796 if (addr1->addr_type != addr2->addr_type)
797 return 0;
799 if (addr1->channel != addr2->channel)
800 return 0;
802 if (addr1->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
803 struct ipmi_system_interface_addr *smi_addr1
804 = (struct ipmi_system_interface_addr *) addr1;
805 struct ipmi_system_interface_addr *smi_addr2
806 = (struct ipmi_system_interface_addr *) addr2;
807 return (smi_addr1->lun == smi_addr2->lun);
810 if (is_ipmb_addr(addr1) || is_ipmb_bcast_addr(addr1)) {
811 struct ipmi_ipmb_addr *ipmb_addr1
812 = (struct ipmi_ipmb_addr *) addr1;
813 struct ipmi_ipmb_addr *ipmb_addr2
814 = (struct ipmi_ipmb_addr *) addr2;
816 return ((ipmb_addr1->slave_addr == ipmb_addr2->slave_addr)
817 && (ipmb_addr1->lun == ipmb_addr2->lun));
820 if (is_lan_addr(addr1)) {
821 struct ipmi_lan_addr *lan_addr1
822 = (struct ipmi_lan_addr *) addr1;
823 struct ipmi_lan_addr *lan_addr2
824 = (struct ipmi_lan_addr *) addr2;
826 return ((lan_addr1->remote_SWID == lan_addr2->remote_SWID)
827 && (lan_addr1->local_SWID == lan_addr2->local_SWID)
828 && (lan_addr1->session_handle
829 == lan_addr2->session_handle)
830 && (lan_addr1->lun == lan_addr2->lun));
833 return 1;
836 int ipmi_validate_addr(struct ipmi_addr *addr, int len)
838 if (len < sizeof(struct ipmi_system_interface_addr))
839 return -EINVAL;
841 if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
842 if (addr->channel != IPMI_BMC_CHANNEL)
843 return -EINVAL;
844 return 0;
847 if ((addr->channel == IPMI_BMC_CHANNEL)
848 || (addr->channel >= IPMI_MAX_CHANNELS)
849 || (addr->channel < 0))
850 return -EINVAL;
852 if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
853 if (len < sizeof(struct ipmi_ipmb_addr))
854 return -EINVAL;
855 return 0;
858 if (is_lan_addr(addr)) {
859 if (len < sizeof(struct ipmi_lan_addr))
860 return -EINVAL;
861 return 0;
864 return -EINVAL;
866 EXPORT_SYMBOL(ipmi_validate_addr);
868 unsigned int ipmi_addr_length(int addr_type)
870 if (addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
871 return sizeof(struct ipmi_system_interface_addr);
873 if ((addr_type == IPMI_IPMB_ADDR_TYPE)
874 || (addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE))
875 return sizeof(struct ipmi_ipmb_addr);
877 if (addr_type == IPMI_LAN_ADDR_TYPE)
878 return sizeof(struct ipmi_lan_addr);
880 return 0;
882 EXPORT_SYMBOL(ipmi_addr_length);
884 static int deliver_response(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)
886 int rv = 0;
888 if (!msg->user) {
889 /* Special handling for NULL users. */
890 if (intf->null_user_handler) {
891 intf->null_user_handler(intf, msg);
892 } else {
893 /* No handler, so give up. */
894 rv = -EINVAL;
896 ipmi_free_recv_msg(msg);
897 } else if (oops_in_progress) {
899 * If we are running in the panic context, calling the
900 * receive handler doesn't much meaning and has a deadlock
901 * risk. At this moment, simply skip it in that case.
903 ipmi_free_recv_msg(msg);
904 } else {
905 int index;
906 struct ipmi_user *user = acquire_ipmi_user(msg->user, &index);
908 if (user) {
909 user->handler->ipmi_recv_hndl(msg, user->handler_data);
910 release_ipmi_user(user, index);
911 } else {
912 /* User went away, give up. */
913 ipmi_free_recv_msg(msg);
914 rv = -EINVAL;
918 return rv;
921 static void deliver_local_response(struct ipmi_smi *intf,
922 struct ipmi_recv_msg *msg)
924 if (deliver_response(intf, msg))
925 ipmi_inc_stat(intf, unhandled_local_responses);
926 else
927 ipmi_inc_stat(intf, handled_local_responses);
930 static void deliver_err_response(struct ipmi_smi *intf,
931 struct ipmi_recv_msg *msg, int err)
933 msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
934 msg->msg_data[0] = err;
935 msg->msg.netfn |= 1; /* Convert to a response. */
936 msg->msg.data_len = 1;
937 msg->msg.data = msg->msg_data;
938 deliver_local_response(intf, msg);
941 static void smi_add_watch(struct ipmi_smi *intf, unsigned int flags)
943 unsigned long iflags;
945 if (!intf->handlers->set_need_watch)
946 return;
948 spin_lock_irqsave(&intf->watch_lock, iflags);
949 if (flags & IPMI_WATCH_MASK_CHECK_MESSAGES)
950 intf->response_waiters++;
952 if (flags & IPMI_WATCH_MASK_CHECK_WATCHDOG)
953 intf->watchdog_waiters++;
955 if (flags & IPMI_WATCH_MASK_CHECK_COMMANDS)
956 intf->command_waiters++;
958 if ((intf->last_watch_mask & flags) != flags) {
959 intf->last_watch_mask |= flags;
960 intf->handlers->set_need_watch(intf->send_info,
961 intf->last_watch_mask);
963 spin_unlock_irqrestore(&intf->watch_lock, iflags);
966 static void smi_remove_watch(struct ipmi_smi *intf, unsigned int flags)
968 unsigned long iflags;
970 if (!intf->handlers->set_need_watch)
971 return;
973 spin_lock_irqsave(&intf->watch_lock, iflags);
974 if (flags & IPMI_WATCH_MASK_CHECK_MESSAGES)
975 intf->response_waiters--;
977 if (flags & IPMI_WATCH_MASK_CHECK_WATCHDOG)
978 intf->watchdog_waiters--;
980 if (flags & IPMI_WATCH_MASK_CHECK_COMMANDS)
981 intf->command_waiters--;
983 flags = 0;
984 if (intf->response_waiters)
985 flags |= IPMI_WATCH_MASK_CHECK_MESSAGES;
986 if (intf->watchdog_waiters)
987 flags |= IPMI_WATCH_MASK_CHECK_WATCHDOG;
988 if (intf->command_waiters)
989 flags |= IPMI_WATCH_MASK_CHECK_COMMANDS;
991 if (intf->last_watch_mask != flags) {
992 intf->last_watch_mask = flags;
993 intf->handlers->set_need_watch(intf->send_info,
994 intf->last_watch_mask);
996 spin_unlock_irqrestore(&intf->watch_lock, iflags);
1000 * Find the next sequence number not being used and add the given
1001 * message with the given timeout to the sequence table. This must be
1002 * called with the interface's seq_lock held.
1004 static int intf_next_seq(struct ipmi_smi *intf,
1005 struct ipmi_recv_msg *recv_msg,
1006 unsigned long timeout,
1007 int retries,
1008 int broadcast,
1009 unsigned char *seq,
1010 long *seqid)
1012 int rv = 0;
1013 unsigned int i;
1015 if (timeout == 0)
1016 timeout = default_retry_ms;
1017 if (retries < 0)
1018 retries = default_max_retries;
1020 for (i = intf->curr_seq; (i+1)%IPMI_IPMB_NUM_SEQ != intf->curr_seq;
1021 i = (i+1)%IPMI_IPMB_NUM_SEQ) {
1022 if (!intf->seq_table[i].inuse)
1023 break;
1026 if (!intf->seq_table[i].inuse) {
1027 intf->seq_table[i].recv_msg = recv_msg;
1030 * Start with the maximum timeout, when the send response
1031 * comes in we will start the real timer.
1033 intf->seq_table[i].timeout = MAX_MSG_TIMEOUT;
1034 intf->seq_table[i].orig_timeout = timeout;
1035 intf->seq_table[i].retries_left = retries;
1036 intf->seq_table[i].broadcast = broadcast;
1037 intf->seq_table[i].inuse = 1;
1038 intf->seq_table[i].seqid = NEXT_SEQID(intf->seq_table[i].seqid);
1039 *seq = i;
1040 *seqid = intf->seq_table[i].seqid;
1041 intf->curr_seq = (i+1)%IPMI_IPMB_NUM_SEQ;
1042 smi_add_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
1043 need_waiter(intf);
1044 } else {
1045 rv = -EAGAIN;
1048 return rv;
1052 * Return the receive message for the given sequence number and
1053 * release the sequence number so it can be reused. Some other data
1054 * is passed in to be sure the message matches up correctly (to help
1055 * guard against message coming in after their timeout and the
1056 * sequence number being reused).
1058 static int intf_find_seq(struct ipmi_smi *intf,
1059 unsigned char seq,
1060 short channel,
1061 unsigned char cmd,
1062 unsigned char netfn,
1063 struct ipmi_addr *addr,
1064 struct ipmi_recv_msg **recv_msg)
1066 int rv = -ENODEV;
1067 unsigned long flags;
1069 if (seq >= IPMI_IPMB_NUM_SEQ)
1070 return -EINVAL;
1072 spin_lock_irqsave(&intf->seq_lock, flags);
1073 if (intf->seq_table[seq].inuse) {
1074 struct ipmi_recv_msg *msg = intf->seq_table[seq].recv_msg;
1076 if ((msg->addr.channel == channel) && (msg->msg.cmd == cmd)
1077 && (msg->msg.netfn == netfn)
1078 && (ipmi_addr_equal(addr, &msg->addr))) {
1079 *recv_msg = msg;
1080 intf->seq_table[seq].inuse = 0;
1081 smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
1082 rv = 0;
1085 spin_unlock_irqrestore(&intf->seq_lock, flags);
1087 return rv;
1091 /* Start the timer for a specific sequence table entry. */
1092 static int intf_start_seq_timer(struct ipmi_smi *intf,
1093 long msgid)
1095 int rv = -ENODEV;
1096 unsigned long flags;
1097 unsigned char seq;
1098 unsigned long seqid;
1101 GET_SEQ_FROM_MSGID(msgid, seq, seqid);
1103 spin_lock_irqsave(&intf->seq_lock, flags);
1105 * We do this verification because the user can be deleted
1106 * while a message is outstanding.
1108 if ((intf->seq_table[seq].inuse)
1109 && (intf->seq_table[seq].seqid == seqid)) {
1110 struct seq_table *ent = &intf->seq_table[seq];
1111 ent->timeout = ent->orig_timeout;
1112 rv = 0;
1114 spin_unlock_irqrestore(&intf->seq_lock, flags);
1116 return rv;
1119 /* Got an error for the send message for a specific sequence number. */
1120 static int intf_err_seq(struct ipmi_smi *intf,
1121 long msgid,
1122 unsigned int err)
1124 int rv = -ENODEV;
1125 unsigned long flags;
1126 unsigned char seq;
1127 unsigned long seqid;
1128 struct ipmi_recv_msg *msg = NULL;
1131 GET_SEQ_FROM_MSGID(msgid, seq, seqid);
1133 spin_lock_irqsave(&intf->seq_lock, flags);
1135 * We do this verification because the user can be deleted
1136 * while a message is outstanding.
1138 if ((intf->seq_table[seq].inuse)
1139 && (intf->seq_table[seq].seqid == seqid)) {
1140 struct seq_table *ent = &intf->seq_table[seq];
1142 ent->inuse = 0;
1143 smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
1144 msg = ent->recv_msg;
1145 rv = 0;
1147 spin_unlock_irqrestore(&intf->seq_lock, flags);
1149 if (msg)
1150 deliver_err_response(intf, msg, err);
1152 return rv;
1155 static void free_user_work(struct work_struct *work)
1157 struct ipmi_user *user = container_of(work, struct ipmi_user,
1158 remove_work);
1160 cleanup_srcu_struct(&user->release_barrier);
1161 vfree(user);
1164 int ipmi_create_user(unsigned int if_num,
1165 const struct ipmi_user_hndl *handler,
1166 void *handler_data,
1167 struct ipmi_user **user)
1169 unsigned long flags;
1170 struct ipmi_user *new_user;
1171 int rv, index;
1172 struct ipmi_smi *intf;
1175 * There is no module usecount here, because it's not
1176 * required. Since this can only be used by and called from
1177 * other modules, they will implicitly use this module, and
1178 * thus this can't be removed unless the other modules are
1179 * removed.
1182 if (handler == NULL)
1183 return -EINVAL;
1186 * Make sure the driver is actually initialized, this handles
1187 * problems with initialization order.
1189 rv = ipmi_init_msghandler();
1190 if (rv)
1191 return rv;
1193 new_user = vzalloc(sizeof(*new_user));
1194 if (!new_user)
1195 return -ENOMEM;
1197 index = srcu_read_lock(&ipmi_interfaces_srcu);
1198 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
1199 if (intf->intf_num == if_num)
1200 goto found;
1202 /* Not found, return an error */
1203 rv = -EINVAL;
1204 goto out_kfree;
1206 found:
1207 INIT_WORK(&new_user->remove_work, free_user_work);
1209 rv = init_srcu_struct(&new_user->release_barrier);
1210 if (rv)
1211 goto out_kfree;
1213 if (!try_module_get(intf->owner)) {
1214 rv = -ENODEV;
1215 goto out_kfree;
1218 /* Note that each existing user holds a refcount to the interface. */
1219 kref_get(&intf->refcount);
1221 kref_init(&new_user->refcount);
1222 new_user->handler = handler;
1223 new_user->handler_data = handler_data;
1224 new_user->intf = intf;
1225 new_user->gets_events = false;
1227 rcu_assign_pointer(new_user->self, new_user);
1228 spin_lock_irqsave(&intf->seq_lock, flags);
1229 list_add_rcu(&new_user->link, &intf->users);
1230 spin_unlock_irqrestore(&intf->seq_lock, flags);
1231 if (handler->ipmi_watchdog_pretimeout)
1232 /* User wants pretimeouts, so make sure to watch for them. */
1233 smi_add_watch(intf, IPMI_WATCH_MASK_CHECK_WATCHDOG);
1234 srcu_read_unlock(&ipmi_interfaces_srcu, index);
1235 *user = new_user;
1236 return 0;
1238 out_kfree:
1239 srcu_read_unlock(&ipmi_interfaces_srcu, index);
1240 vfree(new_user);
1241 return rv;
1243 EXPORT_SYMBOL(ipmi_create_user);
1245 int ipmi_get_smi_info(int if_num, struct ipmi_smi_info *data)
1247 int rv, index;
1248 struct ipmi_smi *intf;
1250 index = srcu_read_lock(&ipmi_interfaces_srcu);
1251 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
1252 if (intf->intf_num == if_num)
1253 goto found;
1255 srcu_read_unlock(&ipmi_interfaces_srcu, index);
1257 /* Not found, return an error */
1258 return -EINVAL;
1260 found:
1261 if (!intf->handlers->get_smi_info)
1262 rv = -ENOTTY;
1263 else
1264 rv = intf->handlers->get_smi_info(intf->send_info, data);
1265 srcu_read_unlock(&ipmi_interfaces_srcu, index);
1267 return rv;
1269 EXPORT_SYMBOL(ipmi_get_smi_info);
1271 static void free_user(struct kref *ref)
1273 struct ipmi_user *user = container_of(ref, struct ipmi_user, refcount);
1275 /* SRCU cleanup must happen in task context. */
1276 schedule_work(&user->remove_work);
1279 static void _ipmi_destroy_user(struct ipmi_user *user)
1281 struct ipmi_smi *intf = user->intf;
1282 int i;
1283 unsigned long flags;
1284 struct cmd_rcvr *rcvr;
1285 struct cmd_rcvr *rcvrs = NULL;
1287 if (!acquire_ipmi_user(user, &i)) {
1289 * The user has already been cleaned up, just make sure
1290 * nothing is using it and return.
1292 synchronize_srcu(&user->release_barrier);
1293 return;
1296 rcu_assign_pointer(user->self, NULL);
1297 release_ipmi_user(user, i);
1299 synchronize_srcu(&user->release_barrier);
1301 if (user->handler->shutdown)
1302 user->handler->shutdown(user->handler_data);
1304 if (user->handler->ipmi_watchdog_pretimeout)
1305 smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_WATCHDOG);
1307 if (user->gets_events)
1308 atomic_dec(&intf->event_waiters);
1310 /* Remove the user from the interface's sequence table. */
1311 spin_lock_irqsave(&intf->seq_lock, flags);
1312 list_del_rcu(&user->link);
1314 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
1315 if (intf->seq_table[i].inuse
1316 && (intf->seq_table[i].recv_msg->user == user)) {
1317 intf->seq_table[i].inuse = 0;
1318 smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
1319 ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
1322 spin_unlock_irqrestore(&intf->seq_lock, flags);
1325 * Remove the user from the command receiver's table. First
1326 * we build a list of everything (not using the standard link,
1327 * since other things may be using it till we do
1328 * synchronize_srcu()) then free everything in that list.
1330 mutex_lock(&intf->cmd_rcvrs_mutex);
1331 list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link,
1332 lockdep_is_held(&intf->cmd_rcvrs_mutex)) {
1333 if (rcvr->user == user) {
1334 list_del_rcu(&rcvr->link);
1335 rcvr->next = rcvrs;
1336 rcvrs = rcvr;
1339 mutex_unlock(&intf->cmd_rcvrs_mutex);
1340 synchronize_rcu();
1341 while (rcvrs) {
1342 rcvr = rcvrs;
1343 rcvrs = rcvr->next;
1344 kfree(rcvr);
1347 kref_put(&intf->refcount, intf_free);
1348 module_put(intf->owner);
1351 int ipmi_destroy_user(struct ipmi_user *user)
1353 _ipmi_destroy_user(user);
1355 kref_put(&user->refcount, free_user);
1357 return 0;
1359 EXPORT_SYMBOL(ipmi_destroy_user);
1361 int ipmi_get_version(struct ipmi_user *user,
1362 unsigned char *major,
1363 unsigned char *minor)
1365 struct ipmi_device_id id;
1366 int rv, index;
1368 user = acquire_ipmi_user(user, &index);
1369 if (!user)
1370 return -ENODEV;
1372 rv = bmc_get_device_id(user->intf, NULL, &id, NULL, NULL);
1373 if (!rv) {
1374 *major = ipmi_version_major(&id);
1375 *minor = ipmi_version_minor(&id);
1377 release_ipmi_user(user, index);
1379 return rv;
1381 EXPORT_SYMBOL(ipmi_get_version);
1383 int ipmi_set_my_address(struct ipmi_user *user,
1384 unsigned int channel,
1385 unsigned char address)
1387 int index, rv = 0;
1389 user = acquire_ipmi_user(user, &index);
1390 if (!user)
1391 return -ENODEV;
1393 if (channel >= IPMI_MAX_CHANNELS) {
1394 rv = -EINVAL;
1395 } else {
1396 channel = array_index_nospec(channel, IPMI_MAX_CHANNELS);
1397 user->intf->addrinfo[channel].address = address;
1399 release_ipmi_user(user, index);
1401 return rv;
1403 EXPORT_SYMBOL(ipmi_set_my_address);
1405 int ipmi_get_my_address(struct ipmi_user *user,
1406 unsigned int channel,
1407 unsigned char *address)
1409 int index, rv = 0;
1411 user = acquire_ipmi_user(user, &index);
1412 if (!user)
1413 return -ENODEV;
1415 if (channel >= IPMI_MAX_CHANNELS) {
1416 rv = -EINVAL;
1417 } else {
1418 channel = array_index_nospec(channel, IPMI_MAX_CHANNELS);
1419 *address = user->intf->addrinfo[channel].address;
1421 release_ipmi_user(user, index);
1423 return rv;
1425 EXPORT_SYMBOL(ipmi_get_my_address);
1427 int ipmi_set_my_LUN(struct ipmi_user *user,
1428 unsigned int channel,
1429 unsigned char LUN)
1431 int index, rv = 0;
1433 user = acquire_ipmi_user(user, &index);
1434 if (!user)
1435 return -ENODEV;
1437 if (channel >= IPMI_MAX_CHANNELS) {
1438 rv = -EINVAL;
1439 } else {
1440 channel = array_index_nospec(channel, IPMI_MAX_CHANNELS);
1441 user->intf->addrinfo[channel].lun = LUN & 0x3;
1443 release_ipmi_user(user, index);
1445 return rv;
1447 EXPORT_SYMBOL(ipmi_set_my_LUN);
1449 int ipmi_get_my_LUN(struct ipmi_user *user,
1450 unsigned int channel,
1451 unsigned char *address)
1453 int index, rv = 0;
1455 user = acquire_ipmi_user(user, &index);
1456 if (!user)
1457 return -ENODEV;
1459 if (channel >= IPMI_MAX_CHANNELS) {
1460 rv = -EINVAL;
1461 } else {
1462 channel = array_index_nospec(channel, IPMI_MAX_CHANNELS);
1463 *address = user->intf->addrinfo[channel].lun;
1465 release_ipmi_user(user, index);
1467 return rv;
1469 EXPORT_SYMBOL(ipmi_get_my_LUN);
1471 int ipmi_get_maintenance_mode(struct ipmi_user *user)
1473 int mode, index;
1474 unsigned long flags;
1476 user = acquire_ipmi_user(user, &index);
1477 if (!user)
1478 return -ENODEV;
1480 spin_lock_irqsave(&user->intf->maintenance_mode_lock, flags);
1481 mode = user->intf->maintenance_mode;
1482 spin_unlock_irqrestore(&user->intf->maintenance_mode_lock, flags);
1483 release_ipmi_user(user, index);
1485 return mode;
1487 EXPORT_SYMBOL(ipmi_get_maintenance_mode);
1489 static void maintenance_mode_update(struct ipmi_smi *intf)
1491 if (intf->handlers->set_maintenance_mode)
1492 intf->handlers->set_maintenance_mode(
1493 intf->send_info, intf->maintenance_mode_enable);
1496 int ipmi_set_maintenance_mode(struct ipmi_user *user, int mode)
1498 int rv = 0, index;
1499 unsigned long flags;
1500 struct ipmi_smi *intf = user->intf;
1502 user = acquire_ipmi_user(user, &index);
1503 if (!user)
1504 return -ENODEV;
1506 spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1507 if (intf->maintenance_mode != mode) {
1508 switch (mode) {
1509 case IPMI_MAINTENANCE_MODE_AUTO:
1510 intf->maintenance_mode_enable
1511 = (intf->auto_maintenance_timeout > 0);
1512 break;
1514 case IPMI_MAINTENANCE_MODE_OFF:
1515 intf->maintenance_mode_enable = false;
1516 break;
1518 case IPMI_MAINTENANCE_MODE_ON:
1519 intf->maintenance_mode_enable = true;
1520 break;
1522 default:
1523 rv = -EINVAL;
1524 goto out_unlock;
1526 intf->maintenance_mode = mode;
1528 maintenance_mode_update(intf);
1530 out_unlock:
1531 spin_unlock_irqrestore(&intf->maintenance_mode_lock, flags);
1532 release_ipmi_user(user, index);
1534 return rv;
1536 EXPORT_SYMBOL(ipmi_set_maintenance_mode);
1538 int ipmi_set_gets_events(struct ipmi_user *user, bool val)
1540 unsigned long flags;
1541 struct ipmi_smi *intf = user->intf;
1542 struct ipmi_recv_msg *msg, *msg2;
1543 struct list_head msgs;
1544 int index;
1546 user = acquire_ipmi_user(user, &index);
1547 if (!user)
1548 return -ENODEV;
1550 INIT_LIST_HEAD(&msgs);
1552 spin_lock_irqsave(&intf->events_lock, flags);
1553 if (user->gets_events == val)
1554 goto out;
1556 user->gets_events = val;
1558 if (val) {
1559 if (atomic_inc_return(&intf->event_waiters) == 1)
1560 need_waiter(intf);
1561 } else {
1562 atomic_dec(&intf->event_waiters);
1565 if (intf->delivering_events)
1567 * Another thread is delivering events for this, so
1568 * let it handle any new events.
1570 goto out;
1572 /* Deliver any queued events. */
1573 while (user->gets_events && !list_empty(&intf->waiting_events)) {
1574 list_for_each_entry_safe(msg, msg2, &intf->waiting_events, link)
1575 list_move_tail(&msg->link, &msgs);
1576 intf->waiting_events_count = 0;
1577 if (intf->event_msg_printed) {
1578 dev_warn(intf->si_dev, "Event queue no longer full\n");
1579 intf->event_msg_printed = 0;
1582 intf->delivering_events = 1;
1583 spin_unlock_irqrestore(&intf->events_lock, flags);
1585 list_for_each_entry_safe(msg, msg2, &msgs, link) {
1586 msg->user = user;
1587 kref_get(&user->refcount);
1588 deliver_local_response(intf, msg);
1591 spin_lock_irqsave(&intf->events_lock, flags);
1592 intf->delivering_events = 0;
1595 out:
1596 spin_unlock_irqrestore(&intf->events_lock, flags);
1597 release_ipmi_user(user, index);
1599 return 0;
1601 EXPORT_SYMBOL(ipmi_set_gets_events);
1603 static struct cmd_rcvr *find_cmd_rcvr(struct ipmi_smi *intf,
1604 unsigned char netfn,
1605 unsigned char cmd,
1606 unsigned char chan)
1608 struct cmd_rcvr *rcvr;
1610 list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link,
1611 lockdep_is_held(&intf->cmd_rcvrs_mutex)) {
1612 if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1613 && (rcvr->chans & (1 << chan)))
1614 return rcvr;
1616 return NULL;
1619 static int is_cmd_rcvr_exclusive(struct ipmi_smi *intf,
1620 unsigned char netfn,
1621 unsigned char cmd,
1622 unsigned int chans)
1624 struct cmd_rcvr *rcvr;
1626 list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link,
1627 lockdep_is_held(&intf->cmd_rcvrs_mutex)) {
1628 if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1629 && (rcvr->chans & chans))
1630 return 0;
1632 return 1;
1635 int ipmi_register_for_cmd(struct ipmi_user *user,
1636 unsigned char netfn,
1637 unsigned char cmd,
1638 unsigned int chans)
1640 struct ipmi_smi *intf = user->intf;
1641 struct cmd_rcvr *rcvr;
1642 int rv = 0, index;
1644 user = acquire_ipmi_user(user, &index);
1645 if (!user)
1646 return -ENODEV;
1648 rcvr = kmalloc(sizeof(*rcvr), GFP_KERNEL);
1649 if (!rcvr) {
1650 rv = -ENOMEM;
1651 goto out_release;
1653 rcvr->cmd = cmd;
1654 rcvr->netfn = netfn;
1655 rcvr->chans = chans;
1656 rcvr->user = user;
1658 mutex_lock(&intf->cmd_rcvrs_mutex);
1659 /* Make sure the command/netfn is not already registered. */
1660 if (!is_cmd_rcvr_exclusive(intf, netfn, cmd, chans)) {
1661 rv = -EBUSY;
1662 goto out_unlock;
1665 smi_add_watch(intf, IPMI_WATCH_MASK_CHECK_COMMANDS);
1667 list_add_rcu(&rcvr->link, &intf->cmd_rcvrs);
1669 out_unlock:
1670 mutex_unlock(&intf->cmd_rcvrs_mutex);
1671 if (rv)
1672 kfree(rcvr);
1673 out_release:
1674 release_ipmi_user(user, index);
1676 return rv;
1678 EXPORT_SYMBOL(ipmi_register_for_cmd);
1680 int ipmi_unregister_for_cmd(struct ipmi_user *user,
1681 unsigned char netfn,
1682 unsigned char cmd,
1683 unsigned int chans)
1685 struct ipmi_smi *intf = user->intf;
1686 struct cmd_rcvr *rcvr;
1687 struct cmd_rcvr *rcvrs = NULL;
1688 int i, rv = -ENOENT, index;
1690 user = acquire_ipmi_user(user, &index);
1691 if (!user)
1692 return -ENODEV;
1694 mutex_lock(&intf->cmd_rcvrs_mutex);
1695 for (i = 0; i < IPMI_NUM_CHANNELS; i++) {
1696 if (((1 << i) & chans) == 0)
1697 continue;
1698 rcvr = find_cmd_rcvr(intf, netfn, cmd, i);
1699 if (rcvr == NULL)
1700 continue;
1701 if (rcvr->user == user) {
1702 rv = 0;
1703 rcvr->chans &= ~chans;
1704 if (rcvr->chans == 0) {
1705 list_del_rcu(&rcvr->link);
1706 rcvr->next = rcvrs;
1707 rcvrs = rcvr;
1711 mutex_unlock(&intf->cmd_rcvrs_mutex);
1712 synchronize_rcu();
1713 release_ipmi_user(user, index);
1714 while (rcvrs) {
1715 smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_COMMANDS);
1716 rcvr = rcvrs;
1717 rcvrs = rcvr->next;
1718 kfree(rcvr);
1721 return rv;
1723 EXPORT_SYMBOL(ipmi_unregister_for_cmd);
1725 static unsigned char
1726 ipmb_checksum(unsigned char *data, int size)
1728 unsigned char csum = 0;
1730 for (; size > 0; size--, data++)
1731 csum += *data;
1733 return -csum;
1736 static inline void format_ipmb_msg(struct ipmi_smi_msg *smi_msg,
1737 struct kernel_ipmi_msg *msg,
1738 struct ipmi_ipmb_addr *ipmb_addr,
1739 long msgid,
1740 unsigned char ipmb_seq,
1741 int broadcast,
1742 unsigned char source_address,
1743 unsigned char source_lun)
1745 int i = broadcast;
1747 /* Format the IPMB header data. */
1748 smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1749 smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1750 smi_msg->data[2] = ipmb_addr->channel;
1751 if (broadcast)
1752 smi_msg->data[3] = 0;
1753 smi_msg->data[i+3] = ipmb_addr->slave_addr;
1754 smi_msg->data[i+4] = (msg->netfn << 2) | (ipmb_addr->lun & 0x3);
1755 smi_msg->data[i+5] = ipmb_checksum(&smi_msg->data[i + 3], 2);
1756 smi_msg->data[i+6] = source_address;
1757 smi_msg->data[i+7] = (ipmb_seq << 2) | source_lun;
1758 smi_msg->data[i+8] = msg->cmd;
1760 /* Now tack on the data to the message. */
1761 if (msg->data_len > 0)
1762 memcpy(&smi_msg->data[i + 9], msg->data, msg->data_len);
1763 smi_msg->data_size = msg->data_len + 9;
1765 /* Now calculate the checksum and tack it on. */
1766 smi_msg->data[i+smi_msg->data_size]
1767 = ipmb_checksum(&smi_msg->data[i + 6], smi_msg->data_size - 6);
1770 * Add on the checksum size and the offset from the
1771 * broadcast.
1773 smi_msg->data_size += 1 + i;
1775 smi_msg->msgid = msgid;
1778 static inline void format_lan_msg(struct ipmi_smi_msg *smi_msg,
1779 struct kernel_ipmi_msg *msg,
1780 struct ipmi_lan_addr *lan_addr,
1781 long msgid,
1782 unsigned char ipmb_seq,
1783 unsigned char source_lun)
1785 /* Format the IPMB header data. */
1786 smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1787 smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1788 smi_msg->data[2] = lan_addr->channel;
1789 smi_msg->data[3] = lan_addr->session_handle;
1790 smi_msg->data[4] = lan_addr->remote_SWID;
1791 smi_msg->data[5] = (msg->netfn << 2) | (lan_addr->lun & 0x3);
1792 smi_msg->data[6] = ipmb_checksum(&smi_msg->data[4], 2);
1793 smi_msg->data[7] = lan_addr->local_SWID;
1794 smi_msg->data[8] = (ipmb_seq << 2) | source_lun;
1795 smi_msg->data[9] = msg->cmd;
1797 /* Now tack on the data to the message. */
1798 if (msg->data_len > 0)
1799 memcpy(&smi_msg->data[10], msg->data, msg->data_len);
1800 smi_msg->data_size = msg->data_len + 10;
1802 /* Now calculate the checksum and tack it on. */
1803 smi_msg->data[smi_msg->data_size]
1804 = ipmb_checksum(&smi_msg->data[7], smi_msg->data_size - 7);
1807 * Add on the checksum size and the offset from the
1808 * broadcast.
1810 smi_msg->data_size += 1;
1812 smi_msg->msgid = msgid;
1815 static struct ipmi_smi_msg *smi_add_send_msg(struct ipmi_smi *intf,
1816 struct ipmi_smi_msg *smi_msg,
1817 int priority)
1819 if (intf->curr_msg) {
1820 if (priority > 0)
1821 list_add_tail(&smi_msg->link, &intf->hp_xmit_msgs);
1822 else
1823 list_add_tail(&smi_msg->link, &intf->xmit_msgs);
1824 smi_msg = NULL;
1825 } else {
1826 intf->curr_msg = smi_msg;
1829 return smi_msg;
1832 static void smi_send(struct ipmi_smi *intf,
1833 const struct ipmi_smi_handlers *handlers,
1834 struct ipmi_smi_msg *smi_msg, int priority)
1836 int run_to_completion = intf->run_to_completion;
1837 unsigned long flags = 0;
1839 if (!run_to_completion)
1840 spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
1841 smi_msg = smi_add_send_msg(intf, smi_msg, priority);
1843 if (!run_to_completion)
1844 spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
1846 if (smi_msg)
1847 handlers->sender(intf->send_info, smi_msg);
1850 static bool is_maintenance_mode_cmd(struct kernel_ipmi_msg *msg)
1852 return (((msg->netfn == IPMI_NETFN_APP_REQUEST)
1853 && ((msg->cmd == IPMI_COLD_RESET_CMD)
1854 || (msg->cmd == IPMI_WARM_RESET_CMD)))
1855 || (msg->netfn == IPMI_NETFN_FIRMWARE_REQUEST));
1858 static int i_ipmi_req_sysintf(struct ipmi_smi *intf,
1859 struct ipmi_addr *addr,
1860 long msgid,
1861 struct kernel_ipmi_msg *msg,
1862 struct ipmi_smi_msg *smi_msg,
1863 struct ipmi_recv_msg *recv_msg,
1864 int retries,
1865 unsigned int retry_time_ms)
1867 struct ipmi_system_interface_addr *smi_addr;
1869 if (msg->netfn & 1)
1870 /* Responses are not allowed to the SMI. */
1871 return -EINVAL;
1873 smi_addr = (struct ipmi_system_interface_addr *) addr;
1874 if (smi_addr->lun > 3) {
1875 ipmi_inc_stat(intf, sent_invalid_commands);
1876 return -EINVAL;
1879 memcpy(&recv_msg->addr, smi_addr, sizeof(*smi_addr));
1881 if ((msg->netfn == IPMI_NETFN_APP_REQUEST)
1882 && ((msg->cmd == IPMI_SEND_MSG_CMD)
1883 || (msg->cmd == IPMI_GET_MSG_CMD)
1884 || (msg->cmd == IPMI_READ_EVENT_MSG_BUFFER_CMD))) {
1886 * We don't let the user do these, since we manage
1887 * the sequence numbers.
1889 ipmi_inc_stat(intf, sent_invalid_commands);
1890 return -EINVAL;
1893 if (is_maintenance_mode_cmd(msg)) {
1894 unsigned long flags;
1896 spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1897 intf->auto_maintenance_timeout
1898 = maintenance_mode_timeout_ms;
1899 if (!intf->maintenance_mode
1900 && !intf->maintenance_mode_enable) {
1901 intf->maintenance_mode_enable = true;
1902 maintenance_mode_update(intf);
1904 spin_unlock_irqrestore(&intf->maintenance_mode_lock,
1905 flags);
1908 if (msg->data_len + 2 > IPMI_MAX_MSG_LENGTH) {
1909 ipmi_inc_stat(intf, sent_invalid_commands);
1910 return -EMSGSIZE;
1913 smi_msg->data[0] = (msg->netfn << 2) | (smi_addr->lun & 0x3);
1914 smi_msg->data[1] = msg->cmd;
1915 smi_msg->msgid = msgid;
1916 smi_msg->user_data = recv_msg;
1917 if (msg->data_len > 0)
1918 memcpy(&smi_msg->data[2], msg->data, msg->data_len);
1919 smi_msg->data_size = msg->data_len + 2;
1920 ipmi_inc_stat(intf, sent_local_commands);
1922 return 0;
1925 static int i_ipmi_req_ipmb(struct ipmi_smi *intf,
1926 struct ipmi_addr *addr,
1927 long msgid,
1928 struct kernel_ipmi_msg *msg,
1929 struct ipmi_smi_msg *smi_msg,
1930 struct ipmi_recv_msg *recv_msg,
1931 unsigned char source_address,
1932 unsigned char source_lun,
1933 int retries,
1934 unsigned int retry_time_ms)
1936 struct ipmi_ipmb_addr *ipmb_addr;
1937 unsigned char ipmb_seq;
1938 long seqid;
1939 int broadcast = 0;
1940 struct ipmi_channel *chans;
1941 int rv = 0;
1943 if (addr->channel >= IPMI_MAX_CHANNELS) {
1944 ipmi_inc_stat(intf, sent_invalid_commands);
1945 return -EINVAL;
1948 chans = READ_ONCE(intf->channel_list)->c;
1950 if (chans[addr->channel].medium != IPMI_CHANNEL_MEDIUM_IPMB) {
1951 ipmi_inc_stat(intf, sent_invalid_commands);
1952 return -EINVAL;
1955 if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE) {
1957 * Broadcasts add a zero at the beginning of the
1958 * message, but otherwise is the same as an IPMB
1959 * address.
1961 addr->addr_type = IPMI_IPMB_ADDR_TYPE;
1962 broadcast = 1;
1963 retries = 0; /* Don't retry broadcasts. */
1967 * 9 for the header and 1 for the checksum, plus
1968 * possibly one for the broadcast.
1970 if ((msg->data_len + 10 + broadcast) > IPMI_MAX_MSG_LENGTH) {
1971 ipmi_inc_stat(intf, sent_invalid_commands);
1972 return -EMSGSIZE;
1975 ipmb_addr = (struct ipmi_ipmb_addr *) addr;
1976 if (ipmb_addr->lun > 3) {
1977 ipmi_inc_stat(intf, sent_invalid_commands);
1978 return -EINVAL;
1981 memcpy(&recv_msg->addr, ipmb_addr, sizeof(*ipmb_addr));
1983 if (recv_msg->msg.netfn & 0x1) {
1985 * It's a response, so use the user's sequence
1986 * from msgid.
1988 ipmi_inc_stat(intf, sent_ipmb_responses);
1989 format_ipmb_msg(smi_msg, msg, ipmb_addr, msgid,
1990 msgid, broadcast,
1991 source_address, source_lun);
1994 * Save the receive message so we can use it
1995 * to deliver the response.
1997 smi_msg->user_data = recv_msg;
1998 } else {
1999 /* It's a command, so get a sequence for it. */
2000 unsigned long flags;
2002 spin_lock_irqsave(&intf->seq_lock, flags);
2004 if (is_maintenance_mode_cmd(msg))
2005 intf->ipmb_maintenance_mode_timeout =
2006 maintenance_mode_timeout_ms;
2008 if (intf->ipmb_maintenance_mode_timeout && retry_time_ms == 0)
2009 /* Different default in maintenance mode */
2010 retry_time_ms = default_maintenance_retry_ms;
2013 * Create a sequence number with a 1 second
2014 * timeout and 4 retries.
2016 rv = intf_next_seq(intf,
2017 recv_msg,
2018 retry_time_ms,
2019 retries,
2020 broadcast,
2021 &ipmb_seq,
2022 &seqid);
2023 if (rv)
2025 * We have used up all the sequence numbers,
2026 * probably, so abort.
2028 goto out_err;
2030 ipmi_inc_stat(intf, sent_ipmb_commands);
2033 * Store the sequence number in the message,
2034 * so that when the send message response
2035 * comes back we can start the timer.
2037 format_ipmb_msg(smi_msg, msg, ipmb_addr,
2038 STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
2039 ipmb_seq, broadcast,
2040 source_address, source_lun);
2043 * Copy the message into the recv message data, so we
2044 * can retransmit it later if necessary.
2046 memcpy(recv_msg->msg_data, smi_msg->data,
2047 smi_msg->data_size);
2048 recv_msg->msg.data = recv_msg->msg_data;
2049 recv_msg->msg.data_len = smi_msg->data_size;
2052 * We don't unlock until here, because we need
2053 * to copy the completed message into the
2054 * recv_msg before we release the lock.
2055 * Otherwise, race conditions may bite us. I
2056 * know that's pretty paranoid, but I prefer
2057 * to be correct.
2059 out_err:
2060 spin_unlock_irqrestore(&intf->seq_lock, flags);
2063 return rv;
2066 static int i_ipmi_req_lan(struct ipmi_smi *intf,
2067 struct ipmi_addr *addr,
2068 long msgid,
2069 struct kernel_ipmi_msg *msg,
2070 struct ipmi_smi_msg *smi_msg,
2071 struct ipmi_recv_msg *recv_msg,
2072 unsigned char source_lun,
2073 int retries,
2074 unsigned int retry_time_ms)
2076 struct ipmi_lan_addr *lan_addr;
2077 unsigned char ipmb_seq;
2078 long seqid;
2079 struct ipmi_channel *chans;
2080 int rv = 0;
2082 if (addr->channel >= IPMI_MAX_CHANNELS) {
2083 ipmi_inc_stat(intf, sent_invalid_commands);
2084 return -EINVAL;
2087 chans = READ_ONCE(intf->channel_list)->c;
2089 if ((chans[addr->channel].medium
2090 != IPMI_CHANNEL_MEDIUM_8023LAN)
2091 && (chans[addr->channel].medium
2092 != IPMI_CHANNEL_MEDIUM_ASYNC)) {
2093 ipmi_inc_stat(intf, sent_invalid_commands);
2094 return -EINVAL;
2097 /* 11 for the header and 1 for the checksum. */
2098 if ((msg->data_len + 12) > IPMI_MAX_MSG_LENGTH) {
2099 ipmi_inc_stat(intf, sent_invalid_commands);
2100 return -EMSGSIZE;
2103 lan_addr = (struct ipmi_lan_addr *) addr;
2104 if (lan_addr->lun > 3) {
2105 ipmi_inc_stat(intf, sent_invalid_commands);
2106 return -EINVAL;
2109 memcpy(&recv_msg->addr, lan_addr, sizeof(*lan_addr));
2111 if (recv_msg->msg.netfn & 0x1) {
2113 * It's a response, so use the user's sequence
2114 * from msgid.
2116 ipmi_inc_stat(intf, sent_lan_responses);
2117 format_lan_msg(smi_msg, msg, lan_addr, msgid,
2118 msgid, source_lun);
2121 * Save the receive message so we can use it
2122 * to deliver the response.
2124 smi_msg->user_data = recv_msg;
2125 } else {
2126 /* It's a command, so get a sequence for it. */
2127 unsigned long flags;
2129 spin_lock_irqsave(&intf->seq_lock, flags);
2132 * Create a sequence number with a 1 second
2133 * timeout and 4 retries.
2135 rv = intf_next_seq(intf,
2136 recv_msg,
2137 retry_time_ms,
2138 retries,
2140 &ipmb_seq,
2141 &seqid);
2142 if (rv)
2144 * We have used up all the sequence numbers,
2145 * probably, so abort.
2147 goto out_err;
2149 ipmi_inc_stat(intf, sent_lan_commands);
2152 * Store the sequence number in the message,
2153 * so that when the send message response
2154 * comes back we can start the timer.
2156 format_lan_msg(smi_msg, msg, lan_addr,
2157 STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
2158 ipmb_seq, source_lun);
2161 * Copy the message into the recv message data, so we
2162 * can retransmit it later if necessary.
2164 memcpy(recv_msg->msg_data, smi_msg->data,
2165 smi_msg->data_size);
2166 recv_msg->msg.data = recv_msg->msg_data;
2167 recv_msg->msg.data_len = smi_msg->data_size;
2170 * We don't unlock until here, because we need
2171 * to copy the completed message into the
2172 * recv_msg before we release the lock.
2173 * Otherwise, race conditions may bite us. I
2174 * know that's pretty paranoid, but I prefer
2175 * to be correct.
2177 out_err:
2178 spin_unlock_irqrestore(&intf->seq_lock, flags);
2181 return rv;
2185 * Separate from ipmi_request so that the user does not have to be
2186 * supplied in certain circumstances (mainly at panic time). If
2187 * messages are supplied, they will be freed, even if an error
2188 * occurs.
2190 static int i_ipmi_request(struct ipmi_user *user,
2191 struct ipmi_smi *intf,
2192 struct ipmi_addr *addr,
2193 long msgid,
2194 struct kernel_ipmi_msg *msg,
2195 void *user_msg_data,
2196 void *supplied_smi,
2197 struct ipmi_recv_msg *supplied_recv,
2198 int priority,
2199 unsigned char source_address,
2200 unsigned char source_lun,
2201 int retries,
2202 unsigned int retry_time_ms)
2204 struct ipmi_smi_msg *smi_msg;
2205 struct ipmi_recv_msg *recv_msg;
2206 int rv = 0;
2208 if (supplied_recv)
2209 recv_msg = supplied_recv;
2210 else {
2211 recv_msg = ipmi_alloc_recv_msg();
2212 if (recv_msg == NULL) {
2213 rv = -ENOMEM;
2214 goto out;
2217 recv_msg->user_msg_data = user_msg_data;
2219 if (supplied_smi)
2220 smi_msg = (struct ipmi_smi_msg *) supplied_smi;
2221 else {
2222 smi_msg = ipmi_alloc_smi_msg();
2223 if (smi_msg == NULL) {
2224 if (!supplied_recv)
2225 ipmi_free_recv_msg(recv_msg);
2226 rv = -ENOMEM;
2227 goto out;
2231 rcu_read_lock();
2232 if (intf->in_shutdown) {
2233 rv = -ENODEV;
2234 goto out_err;
2237 recv_msg->user = user;
2238 if (user)
2239 /* The put happens when the message is freed. */
2240 kref_get(&user->refcount);
2241 recv_msg->msgid = msgid;
2243 * Store the message to send in the receive message so timeout
2244 * responses can get the proper response data.
2246 recv_msg->msg = *msg;
2248 if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
2249 rv = i_ipmi_req_sysintf(intf, addr, msgid, msg, smi_msg,
2250 recv_msg, retries, retry_time_ms);
2251 } else if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
2252 rv = i_ipmi_req_ipmb(intf, addr, msgid, msg, smi_msg, recv_msg,
2253 source_address, source_lun,
2254 retries, retry_time_ms);
2255 } else if (is_lan_addr(addr)) {
2256 rv = i_ipmi_req_lan(intf, addr, msgid, msg, smi_msg, recv_msg,
2257 source_lun, retries, retry_time_ms);
2258 } else {
2259 /* Unknown address type. */
2260 ipmi_inc_stat(intf, sent_invalid_commands);
2261 rv = -EINVAL;
2264 if (rv) {
2265 out_err:
2266 ipmi_free_smi_msg(smi_msg);
2267 ipmi_free_recv_msg(recv_msg);
2268 } else {
2269 pr_debug("Send: %*ph\n", smi_msg->data_size, smi_msg->data);
2271 smi_send(intf, intf->handlers, smi_msg, priority);
2273 rcu_read_unlock();
2275 out:
2276 return rv;
2279 static int check_addr(struct ipmi_smi *intf,
2280 struct ipmi_addr *addr,
2281 unsigned char *saddr,
2282 unsigned char *lun)
2284 if (addr->channel >= IPMI_MAX_CHANNELS)
2285 return -EINVAL;
2286 addr->channel = array_index_nospec(addr->channel, IPMI_MAX_CHANNELS);
2287 *lun = intf->addrinfo[addr->channel].lun;
2288 *saddr = intf->addrinfo[addr->channel].address;
2289 return 0;
2292 int ipmi_request_settime(struct ipmi_user *user,
2293 struct ipmi_addr *addr,
2294 long msgid,
2295 struct kernel_ipmi_msg *msg,
2296 void *user_msg_data,
2297 int priority,
2298 int retries,
2299 unsigned int retry_time_ms)
2301 unsigned char saddr = 0, lun = 0;
2302 int rv, index;
2304 if (!user)
2305 return -EINVAL;
2307 user = acquire_ipmi_user(user, &index);
2308 if (!user)
2309 return -ENODEV;
2311 rv = check_addr(user->intf, addr, &saddr, &lun);
2312 if (!rv)
2313 rv = i_ipmi_request(user,
2314 user->intf,
2315 addr,
2316 msgid,
2317 msg,
2318 user_msg_data,
2319 NULL, NULL,
2320 priority,
2321 saddr,
2322 lun,
2323 retries,
2324 retry_time_ms);
2326 release_ipmi_user(user, index);
2327 return rv;
2329 EXPORT_SYMBOL(ipmi_request_settime);
2331 int ipmi_request_supply_msgs(struct ipmi_user *user,
2332 struct ipmi_addr *addr,
2333 long msgid,
2334 struct kernel_ipmi_msg *msg,
2335 void *user_msg_data,
2336 void *supplied_smi,
2337 struct ipmi_recv_msg *supplied_recv,
2338 int priority)
2340 unsigned char saddr = 0, lun = 0;
2341 int rv, index;
2343 if (!user)
2344 return -EINVAL;
2346 user = acquire_ipmi_user(user, &index);
2347 if (!user)
2348 return -ENODEV;
2350 rv = check_addr(user->intf, addr, &saddr, &lun);
2351 if (!rv)
2352 rv = i_ipmi_request(user,
2353 user->intf,
2354 addr,
2355 msgid,
2356 msg,
2357 user_msg_data,
2358 supplied_smi,
2359 supplied_recv,
2360 priority,
2361 saddr,
2362 lun,
2363 -1, 0);
2365 release_ipmi_user(user, index);
2366 return rv;
2368 EXPORT_SYMBOL(ipmi_request_supply_msgs);
2370 static void bmc_device_id_handler(struct ipmi_smi *intf,
2371 struct ipmi_recv_msg *msg)
2373 int rv;
2375 if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
2376 || (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE)
2377 || (msg->msg.cmd != IPMI_GET_DEVICE_ID_CMD)) {
2378 dev_warn(intf->si_dev,
2379 "invalid device_id msg: addr_type=%d netfn=%x cmd=%x\n",
2380 msg->addr.addr_type, msg->msg.netfn, msg->msg.cmd);
2381 return;
2384 rv = ipmi_demangle_device_id(msg->msg.netfn, msg->msg.cmd,
2385 msg->msg.data, msg->msg.data_len, &intf->bmc->fetch_id);
2386 if (rv) {
2387 dev_warn(intf->si_dev, "device id demangle failed: %d\n", rv);
2388 /* record completion code when error */
2389 intf->bmc->cc = msg->msg.data[0];
2390 intf->bmc->dyn_id_set = 0;
2391 } else {
2393 * Make sure the id data is available before setting
2394 * dyn_id_set.
2396 smp_wmb();
2397 intf->bmc->dyn_id_set = 1;
2400 wake_up(&intf->waitq);
2403 static int
2404 send_get_device_id_cmd(struct ipmi_smi *intf)
2406 struct ipmi_system_interface_addr si;
2407 struct kernel_ipmi_msg msg;
2409 si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
2410 si.channel = IPMI_BMC_CHANNEL;
2411 si.lun = 0;
2413 msg.netfn = IPMI_NETFN_APP_REQUEST;
2414 msg.cmd = IPMI_GET_DEVICE_ID_CMD;
2415 msg.data = NULL;
2416 msg.data_len = 0;
2418 return i_ipmi_request(NULL,
2419 intf,
2420 (struct ipmi_addr *) &si,
2422 &msg,
2423 intf,
2424 NULL,
2425 NULL,
2427 intf->addrinfo[0].address,
2428 intf->addrinfo[0].lun,
2429 -1, 0);
2432 static int __get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc)
2434 int rv;
2435 unsigned int retry_count = 0;
2437 intf->null_user_handler = bmc_device_id_handler;
2439 retry:
2440 bmc->cc = 0;
2441 bmc->dyn_id_set = 2;
2443 rv = send_get_device_id_cmd(intf);
2444 if (rv)
2445 goto out_reset_handler;
2447 wait_event(intf->waitq, bmc->dyn_id_set != 2);
2449 if (!bmc->dyn_id_set) {
2450 if ((bmc->cc == IPMI_DEVICE_IN_FW_UPDATE_ERR
2451 || bmc->cc == IPMI_DEVICE_IN_INIT_ERR
2452 || bmc->cc == IPMI_NOT_IN_MY_STATE_ERR)
2453 && ++retry_count <= GET_DEVICE_ID_MAX_RETRY) {
2454 msleep(500);
2455 dev_warn(intf->si_dev,
2456 "BMC returned 0x%2.2x, retry get bmc device id\n",
2457 bmc->cc);
2458 goto retry;
2461 rv = -EIO; /* Something went wrong in the fetch. */
2464 /* dyn_id_set makes the id data available. */
2465 smp_rmb();
2467 out_reset_handler:
2468 intf->null_user_handler = NULL;
2470 return rv;
2474 * Fetch the device id for the bmc/interface. You must pass in either
2475 * bmc or intf, this code will get the other one. If the data has
2476 * been recently fetched, this will just use the cached data. Otherwise
2477 * it will run a new fetch.
2479 * Except for the first time this is called (in ipmi_add_smi()),
2480 * this will always return good data;
2482 static int __bmc_get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc,
2483 struct ipmi_device_id *id,
2484 bool *guid_set, guid_t *guid, int intf_num)
2486 int rv = 0;
2487 int prev_dyn_id_set, prev_guid_set;
2488 bool intf_set = intf != NULL;
2490 if (!intf) {
2491 mutex_lock(&bmc->dyn_mutex);
2492 retry_bmc_lock:
2493 if (list_empty(&bmc->intfs)) {
2494 mutex_unlock(&bmc->dyn_mutex);
2495 return -ENOENT;
2497 intf = list_first_entry(&bmc->intfs, struct ipmi_smi,
2498 bmc_link);
2499 kref_get(&intf->refcount);
2500 mutex_unlock(&bmc->dyn_mutex);
2501 mutex_lock(&intf->bmc_reg_mutex);
2502 mutex_lock(&bmc->dyn_mutex);
2503 if (intf != list_first_entry(&bmc->intfs, struct ipmi_smi,
2504 bmc_link)) {
2505 mutex_unlock(&intf->bmc_reg_mutex);
2506 kref_put(&intf->refcount, intf_free);
2507 goto retry_bmc_lock;
2509 } else {
2510 mutex_lock(&intf->bmc_reg_mutex);
2511 bmc = intf->bmc;
2512 mutex_lock(&bmc->dyn_mutex);
2513 kref_get(&intf->refcount);
2516 /* If we have a valid and current ID, just return that. */
2517 if (intf->in_bmc_register ||
2518 (bmc->dyn_id_set && time_is_after_jiffies(bmc->dyn_id_expiry)))
2519 goto out_noprocessing;
2521 prev_guid_set = bmc->dyn_guid_set;
2522 __get_guid(intf);
2524 prev_dyn_id_set = bmc->dyn_id_set;
2525 rv = __get_device_id(intf, bmc);
2526 if (rv)
2527 goto out;
2530 * The guid, device id, manufacturer id, and product id should
2531 * not change on a BMC. If it does we have to do some dancing.
2533 if (!intf->bmc_registered
2534 || (!prev_guid_set && bmc->dyn_guid_set)
2535 || (!prev_dyn_id_set && bmc->dyn_id_set)
2536 || (prev_guid_set && bmc->dyn_guid_set
2537 && !guid_equal(&bmc->guid, &bmc->fetch_guid))
2538 || bmc->id.device_id != bmc->fetch_id.device_id
2539 || bmc->id.manufacturer_id != bmc->fetch_id.manufacturer_id
2540 || bmc->id.product_id != bmc->fetch_id.product_id) {
2541 struct ipmi_device_id id = bmc->fetch_id;
2542 int guid_set = bmc->dyn_guid_set;
2543 guid_t guid;
2545 guid = bmc->fetch_guid;
2546 mutex_unlock(&bmc->dyn_mutex);
2548 __ipmi_bmc_unregister(intf);
2549 /* Fill in the temporary BMC for good measure. */
2550 intf->bmc->id = id;
2551 intf->bmc->dyn_guid_set = guid_set;
2552 intf->bmc->guid = guid;
2553 if (__ipmi_bmc_register(intf, &id, guid_set, &guid, intf_num))
2554 need_waiter(intf); /* Retry later on an error. */
2555 else
2556 __scan_channels(intf, &id);
2559 if (!intf_set) {
2561 * We weren't given the interface on the
2562 * command line, so restart the operation on
2563 * the next interface for the BMC.
2565 mutex_unlock(&intf->bmc_reg_mutex);
2566 mutex_lock(&bmc->dyn_mutex);
2567 goto retry_bmc_lock;
2570 /* We have a new BMC, set it up. */
2571 bmc = intf->bmc;
2572 mutex_lock(&bmc->dyn_mutex);
2573 goto out_noprocessing;
2574 } else if (memcmp(&bmc->fetch_id, &bmc->id, sizeof(bmc->id)))
2575 /* Version info changes, scan the channels again. */
2576 __scan_channels(intf, &bmc->fetch_id);
2578 bmc->dyn_id_expiry = jiffies + IPMI_DYN_DEV_ID_EXPIRY;
2580 out:
2581 if (rv && prev_dyn_id_set) {
2582 rv = 0; /* Ignore failures if we have previous data. */
2583 bmc->dyn_id_set = prev_dyn_id_set;
2585 if (!rv) {
2586 bmc->id = bmc->fetch_id;
2587 if (bmc->dyn_guid_set)
2588 bmc->guid = bmc->fetch_guid;
2589 else if (prev_guid_set)
2591 * The guid used to be valid and it failed to fetch,
2592 * just use the cached value.
2594 bmc->dyn_guid_set = prev_guid_set;
2596 out_noprocessing:
2597 if (!rv) {
2598 if (id)
2599 *id = bmc->id;
2601 if (guid_set)
2602 *guid_set = bmc->dyn_guid_set;
2604 if (guid && bmc->dyn_guid_set)
2605 *guid = bmc->guid;
2608 mutex_unlock(&bmc->dyn_mutex);
2609 mutex_unlock(&intf->bmc_reg_mutex);
2611 kref_put(&intf->refcount, intf_free);
2612 return rv;
2615 static int bmc_get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc,
2616 struct ipmi_device_id *id,
2617 bool *guid_set, guid_t *guid)
2619 return __bmc_get_device_id(intf, bmc, id, guid_set, guid, -1);
2622 static ssize_t device_id_show(struct device *dev,
2623 struct device_attribute *attr,
2624 char *buf)
2626 struct bmc_device *bmc = to_bmc_device(dev);
2627 struct ipmi_device_id id;
2628 int rv;
2630 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2631 if (rv)
2632 return rv;
2634 return snprintf(buf, 10, "%u\n", id.device_id);
2636 static DEVICE_ATTR_RO(device_id);
2638 static ssize_t provides_device_sdrs_show(struct device *dev,
2639 struct device_attribute *attr,
2640 char *buf)
2642 struct bmc_device *bmc = to_bmc_device(dev);
2643 struct ipmi_device_id id;
2644 int rv;
2646 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2647 if (rv)
2648 return rv;
2650 return snprintf(buf, 10, "%u\n", (id.device_revision & 0x80) >> 7);
2652 static DEVICE_ATTR_RO(provides_device_sdrs);
2654 static ssize_t revision_show(struct device *dev, struct device_attribute *attr,
2655 char *buf)
2657 struct bmc_device *bmc = to_bmc_device(dev);
2658 struct ipmi_device_id id;
2659 int rv;
2661 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2662 if (rv)
2663 return rv;
2665 return snprintf(buf, 20, "%u\n", id.device_revision & 0x0F);
2667 static DEVICE_ATTR_RO(revision);
2669 static ssize_t firmware_revision_show(struct device *dev,
2670 struct device_attribute *attr,
2671 char *buf)
2673 struct bmc_device *bmc = to_bmc_device(dev);
2674 struct ipmi_device_id id;
2675 int rv;
2677 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2678 if (rv)
2679 return rv;
2681 return snprintf(buf, 20, "%u.%x\n", id.firmware_revision_1,
2682 id.firmware_revision_2);
2684 static DEVICE_ATTR_RO(firmware_revision);
2686 static ssize_t ipmi_version_show(struct device *dev,
2687 struct device_attribute *attr,
2688 char *buf)
2690 struct bmc_device *bmc = to_bmc_device(dev);
2691 struct ipmi_device_id id;
2692 int rv;
2694 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2695 if (rv)
2696 return rv;
2698 return snprintf(buf, 20, "%u.%u\n",
2699 ipmi_version_major(&id),
2700 ipmi_version_minor(&id));
2702 static DEVICE_ATTR_RO(ipmi_version);
2704 static ssize_t add_dev_support_show(struct device *dev,
2705 struct device_attribute *attr,
2706 char *buf)
2708 struct bmc_device *bmc = to_bmc_device(dev);
2709 struct ipmi_device_id id;
2710 int rv;
2712 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2713 if (rv)
2714 return rv;
2716 return snprintf(buf, 10, "0x%02x\n", id.additional_device_support);
2718 static DEVICE_ATTR(additional_device_support, S_IRUGO, add_dev_support_show,
2719 NULL);
2721 static ssize_t manufacturer_id_show(struct device *dev,
2722 struct device_attribute *attr,
2723 char *buf)
2725 struct bmc_device *bmc = to_bmc_device(dev);
2726 struct ipmi_device_id id;
2727 int rv;
2729 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2730 if (rv)
2731 return rv;
2733 return snprintf(buf, 20, "0x%6.6x\n", id.manufacturer_id);
2735 static DEVICE_ATTR_RO(manufacturer_id);
2737 static ssize_t product_id_show(struct device *dev,
2738 struct device_attribute *attr,
2739 char *buf)
2741 struct bmc_device *bmc = to_bmc_device(dev);
2742 struct ipmi_device_id id;
2743 int rv;
2745 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2746 if (rv)
2747 return rv;
2749 return snprintf(buf, 10, "0x%4.4x\n", id.product_id);
2751 static DEVICE_ATTR_RO(product_id);
2753 static ssize_t aux_firmware_rev_show(struct device *dev,
2754 struct device_attribute *attr,
2755 char *buf)
2757 struct bmc_device *bmc = to_bmc_device(dev);
2758 struct ipmi_device_id id;
2759 int rv;
2761 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2762 if (rv)
2763 return rv;
2765 return snprintf(buf, 21, "0x%02x 0x%02x 0x%02x 0x%02x\n",
2766 id.aux_firmware_revision[3],
2767 id.aux_firmware_revision[2],
2768 id.aux_firmware_revision[1],
2769 id.aux_firmware_revision[0]);
2771 static DEVICE_ATTR(aux_firmware_revision, S_IRUGO, aux_firmware_rev_show, NULL);
2773 static ssize_t guid_show(struct device *dev, struct device_attribute *attr,
2774 char *buf)
2776 struct bmc_device *bmc = to_bmc_device(dev);
2777 bool guid_set;
2778 guid_t guid;
2779 int rv;
2781 rv = bmc_get_device_id(NULL, bmc, NULL, &guid_set, &guid);
2782 if (rv)
2783 return rv;
2784 if (!guid_set)
2785 return -ENOENT;
2787 return snprintf(buf, UUID_STRING_LEN + 1 + 1, "%pUl\n", &guid);
2789 static DEVICE_ATTR_RO(guid);
2791 static struct attribute *bmc_dev_attrs[] = {
2792 &dev_attr_device_id.attr,
2793 &dev_attr_provides_device_sdrs.attr,
2794 &dev_attr_revision.attr,
2795 &dev_attr_firmware_revision.attr,
2796 &dev_attr_ipmi_version.attr,
2797 &dev_attr_additional_device_support.attr,
2798 &dev_attr_manufacturer_id.attr,
2799 &dev_attr_product_id.attr,
2800 &dev_attr_aux_firmware_revision.attr,
2801 &dev_attr_guid.attr,
2802 NULL
2805 static umode_t bmc_dev_attr_is_visible(struct kobject *kobj,
2806 struct attribute *attr, int idx)
2808 struct device *dev = kobj_to_dev(kobj);
2809 struct bmc_device *bmc = to_bmc_device(dev);
2810 umode_t mode = attr->mode;
2811 int rv;
2813 if (attr == &dev_attr_aux_firmware_revision.attr) {
2814 struct ipmi_device_id id;
2816 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2817 return (!rv && id.aux_firmware_revision_set) ? mode : 0;
2819 if (attr == &dev_attr_guid.attr) {
2820 bool guid_set;
2822 rv = bmc_get_device_id(NULL, bmc, NULL, &guid_set, NULL);
2823 return (!rv && guid_set) ? mode : 0;
2825 return mode;
2828 static const struct attribute_group bmc_dev_attr_group = {
2829 .attrs = bmc_dev_attrs,
2830 .is_visible = bmc_dev_attr_is_visible,
2833 static const struct attribute_group *bmc_dev_attr_groups[] = {
2834 &bmc_dev_attr_group,
2835 NULL
2838 static const struct device_type bmc_device_type = {
2839 .groups = bmc_dev_attr_groups,
2842 static int __find_bmc_guid(struct device *dev, const void *data)
2844 const guid_t *guid = data;
2845 struct bmc_device *bmc;
2846 int rv;
2848 if (dev->type != &bmc_device_type)
2849 return 0;
2851 bmc = to_bmc_device(dev);
2852 rv = bmc->dyn_guid_set && guid_equal(&bmc->guid, guid);
2853 if (rv)
2854 rv = kref_get_unless_zero(&bmc->usecount);
2855 return rv;
2859 * Returns with the bmc's usecount incremented, if it is non-NULL.
2861 static struct bmc_device *ipmi_find_bmc_guid(struct device_driver *drv,
2862 guid_t *guid)
2864 struct device *dev;
2865 struct bmc_device *bmc = NULL;
2867 dev = driver_find_device(drv, NULL, guid, __find_bmc_guid);
2868 if (dev) {
2869 bmc = to_bmc_device(dev);
2870 put_device(dev);
2872 return bmc;
2875 struct prod_dev_id {
2876 unsigned int product_id;
2877 unsigned char device_id;
2880 static int __find_bmc_prod_dev_id(struct device *dev, const void *data)
2882 const struct prod_dev_id *cid = data;
2883 struct bmc_device *bmc;
2884 int rv;
2886 if (dev->type != &bmc_device_type)
2887 return 0;
2889 bmc = to_bmc_device(dev);
2890 rv = (bmc->id.product_id == cid->product_id
2891 && bmc->id.device_id == cid->device_id);
2892 if (rv)
2893 rv = kref_get_unless_zero(&bmc->usecount);
2894 return rv;
2898 * Returns with the bmc's usecount incremented, if it is non-NULL.
2900 static struct bmc_device *ipmi_find_bmc_prod_dev_id(
2901 struct device_driver *drv,
2902 unsigned int product_id, unsigned char device_id)
2904 struct prod_dev_id id = {
2905 .product_id = product_id,
2906 .device_id = device_id,
2908 struct device *dev;
2909 struct bmc_device *bmc = NULL;
2911 dev = driver_find_device(drv, NULL, &id, __find_bmc_prod_dev_id);
2912 if (dev) {
2913 bmc = to_bmc_device(dev);
2914 put_device(dev);
2916 return bmc;
2919 static DEFINE_IDA(ipmi_bmc_ida);
2921 static void
2922 release_bmc_device(struct device *dev)
2924 kfree(to_bmc_device(dev));
2927 static void cleanup_bmc_work(struct work_struct *work)
2929 struct bmc_device *bmc = container_of(work, struct bmc_device,
2930 remove_work);
2931 int id = bmc->pdev.id; /* Unregister overwrites id */
2933 platform_device_unregister(&bmc->pdev);
2934 ida_simple_remove(&ipmi_bmc_ida, id);
2937 static void
2938 cleanup_bmc_device(struct kref *ref)
2940 struct bmc_device *bmc = container_of(ref, struct bmc_device, usecount);
2943 * Remove the platform device in a work queue to avoid issues
2944 * with removing the device attributes while reading a device
2945 * attribute.
2947 schedule_work(&bmc->remove_work);
2951 * Must be called with intf->bmc_reg_mutex held.
2953 static void __ipmi_bmc_unregister(struct ipmi_smi *intf)
2955 struct bmc_device *bmc = intf->bmc;
2957 if (!intf->bmc_registered)
2958 return;
2960 sysfs_remove_link(&intf->si_dev->kobj, "bmc");
2961 sysfs_remove_link(&bmc->pdev.dev.kobj, intf->my_dev_name);
2962 kfree(intf->my_dev_name);
2963 intf->my_dev_name = NULL;
2965 mutex_lock(&bmc->dyn_mutex);
2966 list_del(&intf->bmc_link);
2967 mutex_unlock(&bmc->dyn_mutex);
2968 intf->bmc = &intf->tmp_bmc;
2969 kref_put(&bmc->usecount, cleanup_bmc_device);
2970 intf->bmc_registered = false;
2973 static void ipmi_bmc_unregister(struct ipmi_smi *intf)
2975 mutex_lock(&intf->bmc_reg_mutex);
2976 __ipmi_bmc_unregister(intf);
2977 mutex_unlock(&intf->bmc_reg_mutex);
2981 * Must be called with intf->bmc_reg_mutex held.
2983 static int __ipmi_bmc_register(struct ipmi_smi *intf,
2984 struct ipmi_device_id *id,
2985 bool guid_set, guid_t *guid, int intf_num)
2987 int rv;
2988 struct bmc_device *bmc;
2989 struct bmc_device *old_bmc;
2992 * platform_device_register() can cause bmc_reg_mutex to
2993 * be claimed because of the is_visible functions of
2994 * the attributes. Eliminate possible recursion and
2995 * release the lock.
2997 intf->in_bmc_register = true;
2998 mutex_unlock(&intf->bmc_reg_mutex);
3001 * Try to find if there is an bmc_device struct
3002 * representing the interfaced BMC already
3004 mutex_lock(&ipmidriver_mutex);
3005 if (guid_set)
3006 old_bmc = ipmi_find_bmc_guid(&ipmidriver.driver, guid);
3007 else
3008 old_bmc = ipmi_find_bmc_prod_dev_id(&ipmidriver.driver,
3009 id->product_id,
3010 id->device_id);
3013 * If there is already an bmc_device, free the new one,
3014 * otherwise register the new BMC device
3016 if (old_bmc) {
3017 bmc = old_bmc;
3019 * Note: old_bmc already has usecount incremented by
3020 * the BMC find functions.
3022 intf->bmc = old_bmc;
3023 mutex_lock(&bmc->dyn_mutex);
3024 list_add_tail(&intf->bmc_link, &bmc->intfs);
3025 mutex_unlock(&bmc->dyn_mutex);
3027 dev_info(intf->si_dev,
3028 "interfacing existing BMC (man_id: 0x%6.6x, prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
3029 bmc->id.manufacturer_id,
3030 bmc->id.product_id,
3031 bmc->id.device_id);
3032 } else {
3033 bmc = kzalloc(sizeof(*bmc), GFP_KERNEL);
3034 if (!bmc) {
3035 rv = -ENOMEM;
3036 goto out;
3038 INIT_LIST_HEAD(&bmc->intfs);
3039 mutex_init(&bmc->dyn_mutex);
3040 INIT_WORK(&bmc->remove_work, cleanup_bmc_work);
3042 bmc->id = *id;
3043 bmc->dyn_id_set = 1;
3044 bmc->dyn_guid_set = guid_set;
3045 bmc->guid = *guid;
3046 bmc->dyn_id_expiry = jiffies + IPMI_DYN_DEV_ID_EXPIRY;
3048 bmc->pdev.name = "ipmi_bmc";
3050 rv = ida_simple_get(&ipmi_bmc_ida, 0, 0, GFP_KERNEL);
3051 if (rv < 0) {
3052 kfree(bmc);
3053 goto out;
3056 bmc->pdev.dev.driver = &ipmidriver.driver;
3057 bmc->pdev.id = rv;
3058 bmc->pdev.dev.release = release_bmc_device;
3059 bmc->pdev.dev.type = &bmc_device_type;
3060 kref_init(&bmc->usecount);
3062 intf->bmc = bmc;
3063 mutex_lock(&bmc->dyn_mutex);
3064 list_add_tail(&intf->bmc_link, &bmc->intfs);
3065 mutex_unlock(&bmc->dyn_mutex);
3067 rv = platform_device_register(&bmc->pdev);
3068 if (rv) {
3069 dev_err(intf->si_dev,
3070 "Unable to register bmc device: %d\n",
3071 rv);
3072 goto out_list_del;
3075 dev_info(intf->si_dev,
3076 "Found new BMC (man_id: 0x%6.6x, prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
3077 bmc->id.manufacturer_id,
3078 bmc->id.product_id,
3079 bmc->id.device_id);
3083 * create symlink from system interface device to bmc device
3084 * and back.
3086 rv = sysfs_create_link(&intf->si_dev->kobj, &bmc->pdev.dev.kobj, "bmc");
3087 if (rv) {
3088 dev_err(intf->si_dev, "Unable to create bmc symlink: %d\n", rv);
3089 goto out_put_bmc;
3092 if (intf_num == -1)
3093 intf_num = intf->intf_num;
3094 intf->my_dev_name = kasprintf(GFP_KERNEL, "ipmi%d", intf_num);
3095 if (!intf->my_dev_name) {
3096 rv = -ENOMEM;
3097 dev_err(intf->si_dev, "Unable to allocate link from BMC: %d\n",
3098 rv);
3099 goto out_unlink1;
3102 rv = sysfs_create_link(&bmc->pdev.dev.kobj, &intf->si_dev->kobj,
3103 intf->my_dev_name);
3104 if (rv) {
3105 dev_err(intf->si_dev, "Unable to create symlink to bmc: %d\n",
3106 rv);
3107 goto out_free_my_dev_name;
3110 intf->bmc_registered = true;
3112 out:
3113 mutex_unlock(&ipmidriver_mutex);
3114 mutex_lock(&intf->bmc_reg_mutex);
3115 intf->in_bmc_register = false;
3116 return rv;
3119 out_free_my_dev_name:
3120 kfree(intf->my_dev_name);
3121 intf->my_dev_name = NULL;
3123 out_unlink1:
3124 sysfs_remove_link(&intf->si_dev->kobj, "bmc");
3126 out_put_bmc:
3127 mutex_lock(&bmc->dyn_mutex);
3128 list_del(&intf->bmc_link);
3129 mutex_unlock(&bmc->dyn_mutex);
3130 intf->bmc = &intf->tmp_bmc;
3131 kref_put(&bmc->usecount, cleanup_bmc_device);
3132 goto out;
3134 out_list_del:
3135 mutex_lock(&bmc->dyn_mutex);
3136 list_del(&intf->bmc_link);
3137 mutex_unlock(&bmc->dyn_mutex);
3138 intf->bmc = &intf->tmp_bmc;
3139 put_device(&bmc->pdev.dev);
3140 goto out;
3143 static int
3144 send_guid_cmd(struct ipmi_smi *intf, int chan)
3146 struct kernel_ipmi_msg msg;
3147 struct ipmi_system_interface_addr si;
3149 si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3150 si.channel = IPMI_BMC_CHANNEL;
3151 si.lun = 0;
3153 msg.netfn = IPMI_NETFN_APP_REQUEST;
3154 msg.cmd = IPMI_GET_DEVICE_GUID_CMD;
3155 msg.data = NULL;
3156 msg.data_len = 0;
3157 return i_ipmi_request(NULL,
3158 intf,
3159 (struct ipmi_addr *) &si,
3161 &msg,
3162 intf,
3163 NULL,
3164 NULL,
3166 intf->addrinfo[0].address,
3167 intf->addrinfo[0].lun,
3168 -1, 0);
3171 static void guid_handler(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)
3173 struct bmc_device *bmc = intf->bmc;
3175 if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
3176 || (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE)
3177 || (msg->msg.cmd != IPMI_GET_DEVICE_GUID_CMD))
3178 /* Not for me */
3179 return;
3181 if (msg->msg.data[0] != 0) {
3182 /* Error from getting the GUID, the BMC doesn't have one. */
3183 bmc->dyn_guid_set = 0;
3184 goto out;
3187 if (msg->msg.data_len < UUID_SIZE + 1) {
3188 bmc->dyn_guid_set = 0;
3189 dev_warn(intf->si_dev,
3190 "The GUID response from the BMC was too short, it was %d but should have been %d. Assuming GUID is not available.\n",
3191 msg->msg.data_len, UUID_SIZE + 1);
3192 goto out;
3195 import_guid(&bmc->fetch_guid, msg->msg.data + 1);
3197 * Make sure the guid data is available before setting
3198 * dyn_guid_set.
3200 smp_wmb();
3201 bmc->dyn_guid_set = 1;
3202 out:
3203 wake_up(&intf->waitq);
3206 static void __get_guid(struct ipmi_smi *intf)
3208 int rv;
3209 struct bmc_device *bmc = intf->bmc;
3211 bmc->dyn_guid_set = 2;
3212 intf->null_user_handler = guid_handler;
3213 rv = send_guid_cmd(intf, 0);
3214 if (rv)
3215 /* Send failed, no GUID available. */
3216 bmc->dyn_guid_set = 0;
3217 else
3218 wait_event(intf->waitq, bmc->dyn_guid_set != 2);
3220 /* dyn_guid_set makes the guid data available. */
3221 smp_rmb();
3223 intf->null_user_handler = NULL;
3226 static int
3227 send_channel_info_cmd(struct ipmi_smi *intf, int chan)
3229 struct kernel_ipmi_msg msg;
3230 unsigned char data[1];
3231 struct ipmi_system_interface_addr si;
3233 si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3234 si.channel = IPMI_BMC_CHANNEL;
3235 si.lun = 0;
3237 msg.netfn = IPMI_NETFN_APP_REQUEST;
3238 msg.cmd = IPMI_GET_CHANNEL_INFO_CMD;
3239 msg.data = data;
3240 msg.data_len = 1;
3241 data[0] = chan;
3242 return i_ipmi_request(NULL,
3243 intf,
3244 (struct ipmi_addr *) &si,
3246 &msg,
3247 intf,
3248 NULL,
3249 NULL,
3251 intf->addrinfo[0].address,
3252 intf->addrinfo[0].lun,
3253 -1, 0);
3256 static void
3257 channel_handler(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)
3259 int rv = 0;
3260 int ch;
3261 unsigned int set = intf->curr_working_cset;
3262 struct ipmi_channel *chans;
3264 if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
3265 && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
3266 && (msg->msg.cmd == IPMI_GET_CHANNEL_INFO_CMD)) {
3267 /* It's the one we want */
3268 if (msg->msg.data[0] != 0) {
3269 /* Got an error from the channel, just go on. */
3270 if (msg->msg.data[0] == IPMI_INVALID_COMMAND_ERR) {
3272 * If the MC does not support this
3273 * command, that is legal. We just
3274 * assume it has one IPMB at channel
3275 * zero.
3277 intf->wchannels[set].c[0].medium
3278 = IPMI_CHANNEL_MEDIUM_IPMB;
3279 intf->wchannels[set].c[0].protocol
3280 = IPMI_CHANNEL_PROTOCOL_IPMB;
3282 intf->channel_list = intf->wchannels + set;
3283 intf->channels_ready = true;
3284 wake_up(&intf->waitq);
3285 goto out;
3287 goto next_channel;
3289 if (msg->msg.data_len < 4) {
3290 /* Message not big enough, just go on. */
3291 goto next_channel;
3293 ch = intf->curr_channel;
3294 chans = intf->wchannels[set].c;
3295 chans[ch].medium = msg->msg.data[2] & 0x7f;
3296 chans[ch].protocol = msg->msg.data[3] & 0x1f;
3298 next_channel:
3299 intf->curr_channel++;
3300 if (intf->curr_channel >= IPMI_MAX_CHANNELS) {
3301 intf->channel_list = intf->wchannels + set;
3302 intf->channels_ready = true;
3303 wake_up(&intf->waitq);
3304 } else {
3305 intf->channel_list = intf->wchannels + set;
3306 intf->channels_ready = true;
3307 rv = send_channel_info_cmd(intf, intf->curr_channel);
3310 if (rv) {
3311 /* Got an error somehow, just give up. */
3312 dev_warn(intf->si_dev,
3313 "Error sending channel information for channel %d: %d\n",
3314 intf->curr_channel, rv);
3316 intf->channel_list = intf->wchannels + set;
3317 intf->channels_ready = true;
3318 wake_up(&intf->waitq);
3321 out:
3322 return;
3326 * Must be holding intf->bmc_reg_mutex to call this.
3328 static int __scan_channels(struct ipmi_smi *intf, struct ipmi_device_id *id)
3330 int rv;
3332 if (ipmi_version_major(id) > 1
3333 || (ipmi_version_major(id) == 1
3334 && ipmi_version_minor(id) >= 5)) {
3335 unsigned int set;
3338 * Start scanning the channels to see what is
3339 * available.
3341 set = !intf->curr_working_cset;
3342 intf->curr_working_cset = set;
3343 memset(&intf->wchannels[set], 0,
3344 sizeof(struct ipmi_channel_set));
3346 intf->null_user_handler = channel_handler;
3347 intf->curr_channel = 0;
3348 rv = send_channel_info_cmd(intf, 0);
3349 if (rv) {
3350 dev_warn(intf->si_dev,
3351 "Error sending channel information for channel 0, %d\n",
3352 rv);
3353 intf->null_user_handler = NULL;
3354 return -EIO;
3357 /* Wait for the channel info to be read. */
3358 wait_event(intf->waitq, intf->channels_ready);
3359 intf->null_user_handler = NULL;
3360 } else {
3361 unsigned int set = intf->curr_working_cset;
3363 /* Assume a single IPMB channel at zero. */
3364 intf->wchannels[set].c[0].medium = IPMI_CHANNEL_MEDIUM_IPMB;
3365 intf->wchannels[set].c[0].protocol = IPMI_CHANNEL_PROTOCOL_IPMB;
3366 intf->channel_list = intf->wchannels + set;
3367 intf->channels_ready = true;
3370 return 0;
3373 static void ipmi_poll(struct ipmi_smi *intf)
3375 if (intf->handlers->poll)
3376 intf->handlers->poll(intf->send_info);
3377 /* In case something came in */
3378 handle_new_recv_msgs(intf);
3381 void ipmi_poll_interface(struct ipmi_user *user)
3383 ipmi_poll(user->intf);
3385 EXPORT_SYMBOL(ipmi_poll_interface);
3387 static void redo_bmc_reg(struct work_struct *work)
3389 struct ipmi_smi *intf = container_of(work, struct ipmi_smi,
3390 bmc_reg_work);
3392 if (!intf->in_shutdown)
3393 bmc_get_device_id(intf, NULL, NULL, NULL, NULL);
3395 kref_put(&intf->refcount, intf_free);
3398 int ipmi_add_smi(struct module *owner,
3399 const struct ipmi_smi_handlers *handlers,
3400 void *send_info,
3401 struct device *si_dev,
3402 unsigned char slave_addr)
3404 int i, j;
3405 int rv;
3406 struct ipmi_smi *intf, *tintf;
3407 struct list_head *link;
3408 struct ipmi_device_id id;
3411 * Make sure the driver is actually initialized, this handles
3412 * problems with initialization order.
3414 rv = ipmi_init_msghandler();
3415 if (rv)
3416 return rv;
3418 intf = kzalloc(sizeof(*intf), GFP_KERNEL);
3419 if (!intf)
3420 return -ENOMEM;
3422 rv = init_srcu_struct(&intf->users_srcu);
3423 if (rv) {
3424 kfree(intf);
3425 return rv;
3428 intf->owner = owner;
3429 intf->bmc = &intf->tmp_bmc;
3430 INIT_LIST_HEAD(&intf->bmc->intfs);
3431 mutex_init(&intf->bmc->dyn_mutex);
3432 INIT_LIST_HEAD(&intf->bmc_link);
3433 mutex_init(&intf->bmc_reg_mutex);
3434 intf->intf_num = -1; /* Mark it invalid for now. */
3435 kref_init(&intf->refcount);
3436 INIT_WORK(&intf->bmc_reg_work, redo_bmc_reg);
3437 intf->si_dev = si_dev;
3438 for (j = 0; j < IPMI_MAX_CHANNELS; j++) {
3439 intf->addrinfo[j].address = IPMI_BMC_SLAVE_ADDR;
3440 intf->addrinfo[j].lun = 2;
3442 if (slave_addr != 0)
3443 intf->addrinfo[0].address = slave_addr;
3444 INIT_LIST_HEAD(&intf->users);
3445 intf->handlers = handlers;
3446 intf->send_info = send_info;
3447 spin_lock_init(&intf->seq_lock);
3448 for (j = 0; j < IPMI_IPMB_NUM_SEQ; j++) {
3449 intf->seq_table[j].inuse = 0;
3450 intf->seq_table[j].seqid = 0;
3452 intf->curr_seq = 0;
3453 spin_lock_init(&intf->waiting_rcv_msgs_lock);
3454 INIT_LIST_HEAD(&intf->waiting_rcv_msgs);
3455 tasklet_setup(&intf->recv_tasklet,
3456 smi_recv_tasklet);
3457 atomic_set(&intf->watchdog_pretimeouts_to_deliver, 0);
3458 spin_lock_init(&intf->xmit_msgs_lock);
3459 INIT_LIST_HEAD(&intf->xmit_msgs);
3460 INIT_LIST_HEAD(&intf->hp_xmit_msgs);
3461 spin_lock_init(&intf->events_lock);
3462 spin_lock_init(&intf->watch_lock);
3463 atomic_set(&intf->event_waiters, 0);
3464 intf->ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
3465 INIT_LIST_HEAD(&intf->waiting_events);
3466 intf->waiting_events_count = 0;
3467 mutex_init(&intf->cmd_rcvrs_mutex);
3468 spin_lock_init(&intf->maintenance_mode_lock);
3469 INIT_LIST_HEAD(&intf->cmd_rcvrs);
3470 init_waitqueue_head(&intf->waitq);
3471 for (i = 0; i < IPMI_NUM_STATS; i++)
3472 atomic_set(&intf->stats[i], 0);
3474 mutex_lock(&ipmi_interfaces_mutex);
3475 /* Look for a hole in the numbers. */
3476 i = 0;
3477 link = &ipmi_interfaces;
3478 list_for_each_entry_rcu(tintf, &ipmi_interfaces, link,
3479 ipmi_interfaces_mutex_held()) {
3480 if (tintf->intf_num != i) {
3481 link = &tintf->link;
3482 break;
3484 i++;
3486 /* Add the new interface in numeric order. */
3487 if (i == 0)
3488 list_add_rcu(&intf->link, &ipmi_interfaces);
3489 else
3490 list_add_tail_rcu(&intf->link, link);
3492 rv = handlers->start_processing(send_info, intf);
3493 if (rv)
3494 goto out_err;
3496 rv = __bmc_get_device_id(intf, NULL, &id, NULL, NULL, i);
3497 if (rv) {
3498 dev_err(si_dev, "Unable to get the device id: %d\n", rv);
3499 goto out_err_started;
3502 mutex_lock(&intf->bmc_reg_mutex);
3503 rv = __scan_channels(intf, &id);
3504 mutex_unlock(&intf->bmc_reg_mutex);
3505 if (rv)
3506 goto out_err_bmc_reg;
3509 * Keep memory order straight for RCU readers. Make
3510 * sure everything else is committed to memory before
3511 * setting intf_num to mark the interface valid.
3513 smp_wmb();
3514 intf->intf_num = i;
3515 mutex_unlock(&ipmi_interfaces_mutex);
3517 /* After this point the interface is legal to use. */
3518 call_smi_watchers(i, intf->si_dev);
3520 return 0;
3522 out_err_bmc_reg:
3523 ipmi_bmc_unregister(intf);
3524 out_err_started:
3525 if (intf->handlers->shutdown)
3526 intf->handlers->shutdown(intf->send_info);
3527 out_err:
3528 list_del_rcu(&intf->link);
3529 mutex_unlock(&ipmi_interfaces_mutex);
3530 synchronize_srcu(&ipmi_interfaces_srcu);
3531 cleanup_srcu_struct(&intf->users_srcu);
3532 kref_put(&intf->refcount, intf_free);
3534 return rv;
3536 EXPORT_SYMBOL(ipmi_add_smi);
3538 static void deliver_smi_err_response(struct ipmi_smi *intf,
3539 struct ipmi_smi_msg *msg,
3540 unsigned char err)
3542 msg->rsp[0] = msg->data[0] | 4;
3543 msg->rsp[1] = msg->data[1];
3544 msg->rsp[2] = err;
3545 msg->rsp_size = 3;
3546 /* It's an error, so it will never requeue, no need to check return. */
3547 handle_one_recv_msg(intf, msg);
3550 static void cleanup_smi_msgs(struct ipmi_smi *intf)
3552 int i;
3553 struct seq_table *ent;
3554 struct ipmi_smi_msg *msg;
3555 struct list_head *entry;
3556 struct list_head tmplist;
3558 /* Clear out our transmit queues and hold the messages. */
3559 INIT_LIST_HEAD(&tmplist);
3560 list_splice_tail(&intf->hp_xmit_msgs, &tmplist);
3561 list_splice_tail(&intf->xmit_msgs, &tmplist);
3563 /* Current message first, to preserve order */
3564 while (intf->curr_msg && !list_empty(&intf->waiting_rcv_msgs)) {
3565 /* Wait for the message to clear out. */
3566 schedule_timeout(1);
3569 /* No need for locks, the interface is down. */
3572 * Return errors for all pending messages in queue and in the
3573 * tables waiting for remote responses.
3575 while (!list_empty(&tmplist)) {
3576 entry = tmplist.next;
3577 list_del(entry);
3578 msg = list_entry(entry, struct ipmi_smi_msg, link);
3579 deliver_smi_err_response(intf, msg, IPMI_ERR_UNSPECIFIED);
3582 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
3583 ent = &intf->seq_table[i];
3584 if (!ent->inuse)
3585 continue;
3586 deliver_err_response(intf, ent->recv_msg, IPMI_ERR_UNSPECIFIED);
3590 void ipmi_unregister_smi(struct ipmi_smi *intf)
3592 struct ipmi_smi_watcher *w;
3593 int intf_num = intf->intf_num, index;
3595 mutex_lock(&ipmi_interfaces_mutex);
3596 intf->intf_num = -1;
3597 intf->in_shutdown = true;
3598 list_del_rcu(&intf->link);
3599 mutex_unlock(&ipmi_interfaces_mutex);
3600 synchronize_srcu(&ipmi_interfaces_srcu);
3602 /* At this point no users can be added to the interface. */
3605 * Call all the watcher interfaces to tell them that
3606 * an interface is going away.
3608 mutex_lock(&smi_watchers_mutex);
3609 list_for_each_entry(w, &smi_watchers, link)
3610 w->smi_gone(intf_num);
3611 mutex_unlock(&smi_watchers_mutex);
3613 index = srcu_read_lock(&intf->users_srcu);
3614 while (!list_empty(&intf->users)) {
3615 struct ipmi_user *user =
3616 container_of(list_next_rcu(&intf->users),
3617 struct ipmi_user, link);
3619 _ipmi_destroy_user(user);
3621 srcu_read_unlock(&intf->users_srcu, index);
3623 if (intf->handlers->shutdown)
3624 intf->handlers->shutdown(intf->send_info);
3626 cleanup_smi_msgs(intf);
3628 ipmi_bmc_unregister(intf);
3630 cleanup_srcu_struct(&intf->users_srcu);
3631 kref_put(&intf->refcount, intf_free);
3633 EXPORT_SYMBOL(ipmi_unregister_smi);
3635 static int handle_ipmb_get_msg_rsp(struct ipmi_smi *intf,
3636 struct ipmi_smi_msg *msg)
3638 struct ipmi_ipmb_addr ipmb_addr;
3639 struct ipmi_recv_msg *recv_msg;
3642 * This is 11, not 10, because the response must contain a
3643 * completion code.
3645 if (msg->rsp_size < 11) {
3646 /* Message not big enough, just ignore it. */
3647 ipmi_inc_stat(intf, invalid_ipmb_responses);
3648 return 0;
3651 if (msg->rsp[2] != 0) {
3652 /* An error getting the response, just ignore it. */
3653 return 0;
3656 ipmb_addr.addr_type = IPMI_IPMB_ADDR_TYPE;
3657 ipmb_addr.slave_addr = msg->rsp[6];
3658 ipmb_addr.channel = msg->rsp[3] & 0x0f;
3659 ipmb_addr.lun = msg->rsp[7] & 3;
3662 * It's a response from a remote entity. Look up the sequence
3663 * number and handle the response.
3665 if (intf_find_seq(intf,
3666 msg->rsp[7] >> 2,
3667 msg->rsp[3] & 0x0f,
3668 msg->rsp[8],
3669 (msg->rsp[4] >> 2) & (~1),
3670 (struct ipmi_addr *) &ipmb_addr,
3671 &recv_msg)) {
3673 * We were unable to find the sequence number,
3674 * so just nuke the message.
3676 ipmi_inc_stat(intf, unhandled_ipmb_responses);
3677 return 0;
3680 memcpy(recv_msg->msg_data, &msg->rsp[9], msg->rsp_size - 9);
3682 * The other fields matched, so no need to set them, except
3683 * for netfn, which needs to be the response that was
3684 * returned, not the request value.
3686 recv_msg->msg.netfn = msg->rsp[4] >> 2;
3687 recv_msg->msg.data = recv_msg->msg_data;
3688 recv_msg->msg.data_len = msg->rsp_size - 10;
3689 recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3690 if (deliver_response(intf, recv_msg))
3691 ipmi_inc_stat(intf, unhandled_ipmb_responses);
3692 else
3693 ipmi_inc_stat(intf, handled_ipmb_responses);
3695 return 0;
3698 static int handle_ipmb_get_msg_cmd(struct ipmi_smi *intf,
3699 struct ipmi_smi_msg *msg)
3701 struct cmd_rcvr *rcvr;
3702 int rv = 0;
3703 unsigned char netfn;
3704 unsigned char cmd;
3705 unsigned char chan;
3706 struct ipmi_user *user = NULL;
3707 struct ipmi_ipmb_addr *ipmb_addr;
3708 struct ipmi_recv_msg *recv_msg;
3710 if (msg->rsp_size < 10) {
3711 /* Message not big enough, just ignore it. */
3712 ipmi_inc_stat(intf, invalid_commands);
3713 return 0;
3716 if (msg->rsp[2] != 0) {
3717 /* An error getting the response, just ignore it. */
3718 return 0;
3721 netfn = msg->rsp[4] >> 2;
3722 cmd = msg->rsp[8];
3723 chan = msg->rsp[3] & 0xf;
3725 rcu_read_lock();
3726 rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3727 if (rcvr) {
3728 user = rcvr->user;
3729 kref_get(&user->refcount);
3730 } else
3731 user = NULL;
3732 rcu_read_unlock();
3734 if (user == NULL) {
3735 /* We didn't find a user, deliver an error response. */
3736 ipmi_inc_stat(intf, unhandled_commands);
3738 msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
3739 msg->data[1] = IPMI_SEND_MSG_CMD;
3740 msg->data[2] = msg->rsp[3];
3741 msg->data[3] = msg->rsp[6];
3742 msg->data[4] = ((netfn + 1) << 2) | (msg->rsp[7] & 0x3);
3743 msg->data[5] = ipmb_checksum(&msg->data[3], 2);
3744 msg->data[6] = intf->addrinfo[msg->rsp[3] & 0xf].address;
3745 /* rqseq/lun */
3746 msg->data[7] = (msg->rsp[7] & 0xfc) | (msg->rsp[4] & 0x3);
3747 msg->data[8] = msg->rsp[8]; /* cmd */
3748 msg->data[9] = IPMI_INVALID_CMD_COMPLETION_CODE;
3749 msg->data[10] = ipmb_checksum(&msg->data[6], 4);
3750 msg->data_size = 11;
3752 pr_debug("Invalid command: %*ph\n", msg->data_size, msg->data);
3754 rcu_read_lock();
3755 if (!intf->in_shutdown) {
3756 smi_send(intf, intf->handlers, msg, 0);
3758 * We used the message, so return the value
3759 * that causes it to not be freed or
3760 * queued.
3762 rv = -1;
3764 rcu_read_unlock();
3765 } else {
3766 recv_msg = ipmi_alloc_recv_msg();
3767 if (!recv_msg) {
3769 * We couldn't allocate memory for the
3770 * message, so requeue it for handling
3771 * later.
3773 rv = 1;
3774 kref_put(&user->refcount, free_user);
3775 } else {
3776 /* Extract the source address from the data. */
3777 ipmb_addr = (struct ipmi_ipmb_addr *) &recv_msg->addr;
3778 ipmb_addr->addr_type = IPMI_IPMB_ADDR_TYPE;
3779 ipmb_addr->slave_addr = msg->rsp[6];
3780 ipmb_addr->lun = msg->rsp[7] & 3;
3781 ipmb_addr->channel = msg->rsp[3] & 0xf;
3784 * Extract the rest of the message information
3785 * from the IPMB header.
3787 recv_msg->user = user;
3788 recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
3789 recv_msg->msgid = msg->rsp[7] >> 2;
3790 recv_msg->msg.netfn = msg->rsp[4] >> 2;
3791 recv_msg->msg.cmd = msg->rsp[8];
3792 recv_msg->msg.data = recv_msg->msg_data;
3795 * We chop off 10, not 9 bytes because the checksum
3796 * at the end also needs to be removed.
3798 recv_msg->msg.data_len = msg->rsp_size - 10;
3799 memcpy(recv_msg->msg_data, &msg->rsp[9],
3800 msg->rsp_size - 10);
3801 if (deliver_response(intf, recv_msg))
3802 ipmi_inc_stat(intf, unhandled_commands);
3803 else
3804 ipmi_inc_stat(intf, handled_commands);
3808 return rv;
3811 static int handle_lan_get_msg_rsp(struct ipmi_smi *intf,
3812 struct ipmi_smi_msg *msg)
3814 struct ipmi_lan_addr lan_addr;
3815 struct ipmi_recv_msg *recv_msg;
3819 * This is 13, not 12, because the response must contain a
3820 * completion code.
3822 if (msg->rsp_size < 13) {
3823 /* Message not big enough, just ignore it. */
3824 ipmi_inc_stat(intf, invalid_lan_responses);
3825 return 0;
3828 if (msg->rsp[2] != 0) {
3829 /* An error getting the response, just ignore it. */
3830 return 0;
3833 lan_addr.addr_type = IPMI_LAN_ADDR_TYPE;
3834 lan_addr.session_handle = msg->rsp[4];
3835 lan_addr.remote_SWID = msg->rsp[8];
3836 lan_addr.local_SWID = msg->rsp[5];
3837 lan_addr.channel = msg->rsp[3] & 0x0f;
3838 lan_addr.privilege = msg->rsp[3] >> 4;
3839 lan_addr.lun = msg->rsp[9] & 3;
3842 * It's a response from a remote entity. Look up the sequence
3843 * number and handle the response.
3845 if (intf_find_seq(intf,
3846 msg->rsp[9] >> 2,
3847 msg->rsp[3] & 0x0f,
3848 msg->rsp[10],
3849 (msg->rsp[6] >> 2) & (~1),
3850 (struct ipmi_addr *) &lan_addr,
3851 &recv_msg)) {
3853 * We were unable to find the sequence number,
3854 * so just nuke the message.
3856 ipmi_inc_stat(intf, unhandled_lan_responses);
3857 return 0;
3860 memcpy(recv_msg->msg_data, &msg->rsp[11], msg->rsp_size - 11);
3862 * The other fields matched, so no need to set them, except
3863 * for netfn, which needs to be the response that was
3864 * returned, not the request value.
3866 recv_msg->msg.netfn = msg->rsp[6] >> 2;
3867 recv_msg->msg.data = recv_msg->msg_data;
3868 recv_msg->msg.data_len = msg->rsp_size - 12;
3869 recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3870 if (deliver_response(intf, recv_msg))
3871 ipmi_inc_stat(intf, unhandled_lan_responses);
3872 else
3873 ipmi_inc_stat(intf, handled_lan_responses);
3875 return 0;
3878 static int handle_lan_get_msg_cmd(struct ipmi_smi *intf,
3879 struct ipmi_smi_msg *msg)
3881 struct cmd_rcvr *rcvr;
3882 int rv = 0;
3883 unsigned char netfn;
3884 unsigned char cmd;
3885 unsigned char chan;
3886 struct ipmi_user *user = NULL;
3887 struct ipmi_lan_addr *lan_addr;
3888 struct ipmi_recv_msg *recv_msg;
3890 if (msg->rsp_size < 12) {
3891 /* Message not big enough, just ignore it. */
3892 ipmi_inc_stat(intf, invalid_commands);
3893 return 0;
3896 if (msg->rsp[2] != 0) {
3897 /* An error getting the response, just ignore it. */
3898 return 0;
3901 netfn = msg->rsp[6] >> 2;
3902 cmd = msg->rsp[10];
3903 chan = msg->rsp[3] & 0xf;
3905 rcu_read_lock();
3906 rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3907 if (rcvr) {
3908 user = rcvr->user;
3909 kref_get(&user->refcount);
3910 } else
3911 user = NULL;
3912 rcu_read_unlock();
3914 if (user == NULL) {
3915 /* We didn't find a user, just give up. */
3916 ipmi_inc_stat(intf, unhandled_commands);
3919 * Don't do anything with these messages, just allow
3920 * them to be freed.
3922 rv = 0;
3923 } else {
3924 recv_msg = ipmi_alloc_recv_msg();
3925 if (!recv_msg) {
3927 * We couldn't allocate memory for the
3928 * message, so requeue it for handling later.
3930 rv = 1;
3931 kref_put(&user->refcount, free_user);
3932 } else {
3933 /* Extract the source address from the data. */
3934 lan_addr = (struct ipmi_lan_addr *) &recv_msg->addr;
3935 lan_addr->addr_type = IPMI_LAN_ADDR_TYPE;
3936 lan_addr->session_handle = msg->rsp[4];
3937 lan_addr->remote_SWID = msg->rsp[8];
3938 lan_addr->local_SWID = msg->rsp[5];
3939 lan_addr->lun = msg->rsp[9] & 3;
3940 lan_addr->channel = msg->rsp[3] & 0xf;
3941 lan_addr->privilege = msg->rsp[3] >> 4;
3944 * Extract the rest of the message information
3945 * from the IPMB header.
3947 recv_msg->user = user;
3948 recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
3949 recv_msg->msgid = msg->rsp[9] >> 2;
3950 recv_msg->msg.netfn = msg->rsp[6] >> 2;
3951 recv_msg->msg.cmd = msg->rsp[10];
3952 recv_msg->msg.data = recv_msg->msg_data;
3955 * We chop off 12, not 11 bytes because the checksum
3956 * at the end also needs to be removed.
3958 recv_msg->msg.data_len = msg->rsp_size - 12;
3959 memcpy(recv_msg->msg_data, &msg->rsp[11],
3960 msg->rsp_size - 12);
3961 if (deliver_response(intf, recv_msg))
3962 ipmi_inc_stat(intf, unhandled_commands);
3963 else
3964 ipmi_inc_stat(intf, handled_commands);
3968 return rv;
3972 * This routine will handle "Get Message" command responses with
3973 * channels that use an OEM Medium. The message format belongs to
3974 * the OEM. See IPMI 2.0 specification, Chapter 6 and
3975 * Chapter 22, sections 22.6 and 22.24 for more details.
3977 static int handle_oem_get_msg_cmd(struct ipmi_smi *intf,
3978 struct ipmi_smi_msg *msg)
3980 struct cmd_rcvr *rcvr;
3981 int rv = 0;
3982 unsigned char netfn;
3983 unsigned char cmd;
3984 unsigned char chan;
3985 struct ipmi_user *user = NULL;
3986 struct ipmi_system_interface_addr *smi_addr;
3987 struct ipmi_recv_msg *recv_msg;
3990 * We expect the OEM SW to perform error checking
3991 * so we just do some basic sanity checks
3993 if (msg->rsp_size < 4) {
3994 /* Message not big enough, just ignore it. */
3995 ipmi_inc_stat(intf, invalid_commands);
3996 return 0;
3999 if (msg->rsp[2] != 0) {
4000 /* An error getting the response, just ignore it. */
4001 return 0;
4005 * This is an OEM Message so the OEM needs to know how
4006 * handle the message. We do no interpretation.
4008 netfn = msg->rsp[0] >> 2;
4009 cmd = msg->rsp[1];
4010 chan = msg->rsp[3] & 0xf;
4012 rcu_read_lock();
4013 rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
4014 if (rcvr) {
4015 user = rcvr->user;
4016 kref_get(&user->refcount);
4017 } else
4018 user = NULL;
4019 rcu_read_unlock();
4021 if (user == NULL) {
4022 /* We didn't find a user, just give up. */
4023 ipmi_inc_stat(intf, unhandled_commands);
4026 * Don't do anything with these messages, just allow
4027 * them to be freed.
4030 rv = 0;
4031 } else {
4032 recv_msg = ipmi_alloc_recv_msg();
4033 if (!recv_msg) {
4035 * We couldn't allocate memory for the
4036 * message, so requeue it for handling
4037 * later.
4039 rv = 1;
4040 kref_put(&user->refcount, free_user);
4041 } else {
4043 * OEM Messages are expected to be delivered via
4044 * the system interface to SMS software. We might
4045 * need to visit this again depending on OEM
4046 * requirements
4048 smi_addr = ((struct ipmi_system_interface_addr *)
4049 &recv_msg->addr);
4050 smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4051 smi_addr->channel = IPMI_BMC_CHANNEL;
4052 smi_addr->lun = msg->rsp[0] & 3;
4054 recv_msg->user = user;
4055 recv_msg->user_msg_data = NULL;
4056 recv_msg->recv_type = IPMI_OEM_RECV_TYPE;
4057 recv_msg->msg.netfn = msg->rsp[0] >> 2;
4058 recv_msg->msg.cmd = msg->rsp[1];
4059 recv_msg->msg.data = recv_msg->msg_data;
4062 * The message starts at byte 4 which follows the
4063 * the Channel Byte in the "GET MESSAGE" command
4065 recv_msg->msg.data_len = msg->rsp_size - 4;
4066 memcpy(recv_msg->msg_data, &msg->rsp[4],
4067 msg->rsp_size - 4);
4068 if (deliver_response(intf, recv_msg))
4069 ipmi_inc_stat(intf, unhandled_commands);
4070 else
4071 ipmi_inc_stat(intf, handled_commands);
4075 return rv;
4078 static void copy_event_into_recv_msg(struct ipmi_recv_msg *recv_msg,
4079 struct ipmi_smi_msg *msg)
4081 struct ipmi_system_interface_addr *smi_addr;
4083 recv_msg->msgid = 0;
4084 smi_addr = (struct ipmi_system_interface_addr *) &recv_msg->addr;
4085 smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4086 smi_addr->channel = IPMI_BMC_CHANNEL;
4087 smi_addr->lun = msg->rsp[0] & 3;
4088 recv_msg->recv_type = IPMI_ASYNC_EVENT_RECV_TYPE;
4089 recv_msg->msg.netfn = msg->rsp[0] >> 2;
4090 recv_msg->msg.cmd = msg->rsp[1];
4091 memcpy(recv_msg->msg_data, &msg->rsp[3], msg->rsp_size - 3);
4092 recv_msg->msg.data = recv_msg->msg_data;
4093 recv_msg->msg.data_len = msg->rsp_size - 3;
4096 static int handle_read_event_rsp(struct ipmi_smi *intf,
4097 struct ipmi_smi_msg *msg)
4099 struct ipmi_recv_msg *recv_msg, *recv_msg2;
4100 struct list_head msgs;
4101 struct ipmi_user *user;
4102 int rv = 0, deliver_count = 0, index;
4103 unsigned long flags;
4105 if (msg->rsp_size < 19) {
4106 /* Message is too small to be an IPMB event. */
4107 ipmi_inc_stat(intf, invalid_events);
4108 return 0;
4111 if (msg->rsp[2] != 0) {
4112 /* An error getting the event, just ignore it. */
4113 return 0;
4116 INIT_LIST_HEAD(&msgs);
4118 spin_lock_irqsave(&intf->events_lock, flags);
4120 ipmi_inc_stat(intf, events);
4123 * Allocate and fill in one message for every user that is
4124 * getting events.
4126 index = srcu_read_lock(&intf->users_srcu);
4127 list_for_each_entry_rcu(user, &intf->users, link) {
4128 if (!user->gets_events)
4129 continue;
4131 recv_msg = ipmi_alloc_recv_msg();
4132 if (!recv_msg) {
4133 rcu_read_unlock();
4134 list_for_each_entry_safe(recv_msg, recv_msg2, &msgs,
4135 link) {
4136 list_del(&recv_msg->link);
4137 ipmi_free_recv_msg(recv_msg);
4140 * We couldn't allocate memory for the
4141 * message, so requeue it for handling
4142 * later.
4144 rv = 1;
4145 goto out;
4148 deliver_count++;
4150 copy_event_into_recv_msg(recv_msg, msg);
4151 recv_msg->user = user;
4152 kref_get(&user->refcount);
4153 list_add_tail(&recv_msg->link, &msgs);
4155 srcu_read_unlock(&intf->users_srcu, index);
4157 if (deliver_count) {
4158 /* Now deliver all the messages. */
4159 list_for_each_entry_safe(recv_msg, recv_msg2, &msgs, link) {
4160 list_del(&recv_msg->link);
4161 deliver_local_response(intf, recv_msg);
4163 } else if (intf->waiting_events_count < MAX_EVENTS_IN_QUEUE) {
4165 * No one to receive the message, put it in queue if there's
4166 * not already too many things in the queue.
4168 recv_msg = ipmi_alloc_recv_msg();
4169 if (!recv_msg) {
4171 * We couldn't allocate memory for the
4172 * message, so requeue it for handling
4173 * later.
4175 rv = 1;
4176 goto out;
4179 copy_event_into_recv_msg(recv_msg, msg);
4180 list_add_tail(&recv_msg->link, &intf->waiting_events);
4181 intf->waiting_events_count++;
4182 } else if (!intf->event_msg_printed) {
4184 * There's too many things in the queue, discard this
4185 * message.
4187 dev_warn(intf->si_dev,
4188 "Event queue full, discarding incoming events\n");
4189 intf->event_msg_printed = 1;
4192 out:
4193 spin_unlock_irqrestore(&intf->events_lock, flags);
4195 return rv;
4198 static int handle_bmc_rsp(struct ipmi_smi *intf,
4199 struct ipmi_smi_msg *msg)
4201 struct ipmi_recv_msg *recv_msg;
4202 struct ipmi_system_interface_addr *smi_addr;
4204 recv_msg = (struct ipmi_recv_msg *) msg->user_data;
4205 if (recv_msg == NULL) {
4206 dev_warn(intf->si_dev,
4207 "IPMI message received with no owner. This could be because of a malformed message, or because of a hardware error. Contact your hardware vendor for assistance.\n");
4208 return 0;
4211 recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
4212 recv_msg->msgid = msg->msgid;
4213 smi_addr = ((struct ipmi_system_interface_addr *)
4214 &recv_msg->addr);
4215 smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4216 smi_addr->channel = IPMI_BMC_CHANNEL;
4217 smi_addr->lun = msg->rsp[0] & 3;
4218 recv_msg->msg.netfn = msg->rsp[0] >> 2;
4219 recv_msg->msg.cmd = msg->rsp[1];
4220 memcpy(recv_msg->msg_data, &msg->rsp[2], msg->rsp_size - 2);
4221 recv_msg->msg.data = recv_msg->msg_data;
4222 recv_msg->msg.data_len = msg->rsp_size - 2;
4223 deliver_local_response(intf, recv_msg);
4225 return 0;
4229 * Handle a received message. Return 1 if the message should be requeued,
4230 * 0 if the message should be freed, or -1 if the message should not
4231 * be freed or requeued.
4233 static int handle_one_recv_msg(struct ipmi_smi *intf,
4234 struct ipmi_smi_msg *msg)
4236 int requeue;
4237 int chan;
4239 pr_debug("Recv: %*ph\n", msg->rsp_size, msg->rsp);
4241 if ((msg->data_size >= 2)
4242 && (msg->data[0] == (IPMI_NETFN_APP_REQUEST << 2))
4243 && (msg->data[1] == IPMI_SEND_MSG_CMD)
4244 && (msg->user_data == NULL)) {
4246 if (intf->in_shutdown)
4247 goto free_msg;
4250 * This is the local response to a command send, start
4251 * the timer for these. The user_data will not be
4252 * NULL if this is a response send, and we will let
4253 * response sends just go through.
4257 * Check for errors, if we get certain errors (ones
4258 * that mean basically we can try again later), we
4259 * ignore them and start the timer. Otherwise we
4260 * report the error immediately.
4262 if ((msg->rsp_size >= 3) && (msg->rsp[2] != 0)
4263 && (msg->rsp[2] != IPMI_NODE_BUSY_ERR)
4264 && (msg->rsp[2] != IPMI_LOST_ARBITRATION_ERR)
4265 && (msg->rsp[2] != IPMI_BUS_ERR)
4266 && (msg->rsp[2] != IPMI_NAK_ON_WRITE_ERR)) {
4267 int ch = msg->rsp[3] & 0xf;
4268 struct ipmi_channel *chans;
4270 /* Got an error sending the message, handle it. */
4272 chans = READ_ONCE(intf->channel_list)->c;
4273 if ((chans[ch].medium == IPMI_CHANNEL_MEDIUM_8023LAN)
4274 || (chans[ch].medium == IPMI_CHANNEL_MEDIUM_ASYNC))
4275 ipmi_inc_stat(intf, sent_lan_command_errs);
4276 else
4277 ipmi_inc_stat(intf, sent_ipmb_command_errs);
4278 intf_err_seq(intf, msg->msgid, msg->rsp[2]);
4279 } else
4280 /* The message was sent, start the timer. */
4281 intf_start_seq_timer(intf, msg->msgid);
4282 free_msg:
4283 requeue = 0;
4284 goto out;
4286 } else if (msg->rsp_size < 2) {
4287 /* Message is too small to be correct. */
4288 dev_warn(intf->si_dev,
4289 "BMC returned too small a message for netfn %x cmd %x, got %d bytes\n",
4290 (msg->data[0] >> 2) | 1, msg->data[1], msg->rsp_size);
4292 /* Generate an error response for the message. */
4293 msg->rsp[0] = msg->data[0] | (1 << 2);
4294 msg->rsp[1] = msg->data[1];
4295 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
4296 msg->rsp_size = 3;
4297 } else if (((msg->rsp[0] >> 2) != ((msg->data[0] >> 2) | 1))
4298 || (msg->rsp[1] != msg->data[1])) {
4300 * The NetFN and Command in the response is not even
4301 * marginally correct.
4303 dev_warn(intf->si_dev,
4304 "BMC returned incorrect response, expected netfn %x cmd %x, got netfn %x cmd %x\n",
4305 (msg->data[0] >> 2) | 1, msg->data[1],
4306 msg->rsp[0] >> 2, msg->rsp[1]);
4308 /* Generate an error response for the message. */
4309 msg->rsp[0] = msg->data[0] | (1 << 2);
4310 msg->rsp[1] = msg->data[1];
4311 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
4312 msg->rsp_size = 3;
4315 if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
4316 && (msg->rsp[1] == IPMI_SEND_MSG_CMD)
4317 && (msg->user_data != NULL)) {
4319 * It's a response to a response we sent. For this we
4320 * deliver a send message response to the user.
4322 struct ipmi_recv_msg *recv_msg = msg->user_data;
4324 requeue = 0;
4325 if (msg->rsp_size < 2)
4326 /* Message is too small to be correct. */
4327 goto out;
4329 chan = msg->data[2] & 0x0f;
4330 if (chan >= IPMI_MAX_CHANNELS)
4331 /* Invalid channel number */
4332 goto out;
4334 if (!recv_msg)
4335 goto out;
4337 recv_msg->recv_type = IPMI_RESPONSE_RESPONSE_TYPE;
4338 recv_msg->msg.data = recv_msg->msg_data;
4339 recv_msg->msg.data_len = 1;
4340 recv_msg->msg_data[0] = msg->rsp[2];
4341 deliver_local_response(intf, recv_msg);
4342 } else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
4343 && (msg->rsp[1] == IPMI_GET_MSG_CMD)) {
4344 struct ipmi_channel *chans;
4346 /* It's from the receive queue. */
4347 chan = msg->rsp[3] & 0xf;
4348 if (chan >= IPMI_MAX_CHANNELS) {
4349 /* Invalid channel number */
4350 requeue = 0;
4351 goto out;
4355 * We need to make sure the channels have been initialized.
4356 * The channel_handler routine will set the "curr_channel"
4357 * equal to or greater than IPMI_MAX_CHANNELS when all the
4358 * channels for this interface have been initialized.
4360 if (!intf->channels_ready) {
4361 requeue = 0; /* Throw the message away */
4362 goto out;
4365 chans = READ_ONCE(intf->channel_list)->c;
4367 switch (chans[chan].medium) {
4368 case IPMI_CHANNEL_MEDIUM_IPMB:
4369 if (msg->rsp[4] & 0x04) {
4371 * It's a response, so find the
4372 * requesting message and send it up.
4374 requeue = handle_ipmb_get_msg_rsp(intf, msg);
4375 } else {
4377 * It's a command to the SMS from some other
4378 * entity. Handle that.
4380 requeue = handle_ipmb_get_msg_cmd(intf, msg);
4382 break;
4384 case IPMI_CHANNEL_MEDIUM_8023LAN:
4385 case IPMI_CHANNEL_MEDIUM_ASYNC:
4386 if (msg->rsp[6] & 0x04) {
4388 * It's a response, so find the
4389 * requesting message and send it up.
4391 requeue = handle_lan_get_msg_rsp(intf, msg);
4392 } else {
4394 * It's a command to the SMS from some other
4395 * entity. Handle that.
4397 requeue = handle_lan_get_msg_cmd(intf, msg);
4399 break;
4401 default:
4402 /* Check for OEM Channels. Clients had better
4403 register for these commands. */
4404 if ((chans[chan].medium >= IPMI_CHANNEL_MEDIUM_OEM_MIN)
4405 && (chans[chan].medium
4406 <= IPMI_CHANNEL_MEDIUM_OEM_MAX)) {
4407 requeue = handle_oem_get_msg_cmd(intf, msg);
4408 } else {
4410 * We don't handle the channel type, so just
4411 * free the message.
4413 requeue = 0;
4417 } else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
4418 && (msg->rsp[1] == IPMI_READ_EVENT_MSG_BUFFER_CMD)) {
4419 /* It's an asynchronous event. */
4420 requeue = handle_read_event_rsp(intf, msg);
4421 } else {
4422 /* It's a response from the local BMC. */
4423 requeue = handle_bmc_rsp(intf, msg);
4426 out:
4427 return requeue;
4431 * If there are messages in the queue or pretimeouts, handle them.
4433 static void handle_new_recv_msgs(struct ipmi_smi *intf)
4435 struct ipmi_smi_msg *smi_msg;
4436 unsigned long flags = 0;
4437 int rv;
4438 int run_to_completion = intf->run_to_completion;
4440 /* See if any waiting messages need to be processed. */
4441 if (!run_to_completion)
4442 spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
4443 while (!list_empty(&intf->waiting_rcv_msgs)) {
4444 smi_msg = list_entry(intf->waiting_rcv_msgs.next,
4445 struct ipmi_smi_msg, link);
4446 list_del(&smi_msg->link);
4447 if (!run_to_completion)
4448 spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock,
4449 flags);
4450 rv = handle_one_recv_msg(intf, smi_msg);
4451 if (!run_to_completion)
4452 spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
4453 if (rv > 0) {
4455 * To preserve message order, quit if we
4456 * can't handle a message. Add the message
4457 * back at the head, this is safe because this
4458 * tasklet is the only thing that pulls the
4459 * messages.
4461 list_add(&smi_msg->link, &intf->waiting_rcv_msgs);
4462 break;
4463 } else {
4464 if (rv == 0)
4465 /* Message handled */
4466 ipmi_free_smi_msg(smi_msg);
4467 /* If rv < 0, fatal error, del but don't free. */
4470 if (!run_to_completion)
4471 spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock, flags);
4474 * If the pretimout count is non-zero, decrement one from it and
4475 * deliver pretimeouts to all the users.
4477 if (atomic_add_unless(&intf->watchdog_pretimeouts_to_deliver, -1, 0)) {
4478 struct ipmi_user *user;
4479 int index;
4481 index = srcu_read_lock(&intf->users_srcu);
4482 list_for_each_entry_rcu(user, &intf->users, link) {
4483 if (user->handler->ipmi_watchdog_pretimeout)
4484 user->handler->ipmi_watchdog_pretimeout(
4485 user->handler_data);
4487 srcu_read_unlock(&intf->users_srcu, index);
4491 static void smi_recv_tasklet(struct tasklet_struct *t)
4493 unsigned long flags = 0; /* keep us warning-free. */
4494 struct ipmi_smi *intf = from_tasklet(intf, t, recv_tasklet);
4495 int run_to_completion = intf->run_to_completion;
4496 struct ipmi_smi_msg *newmsg = NULL;
4499 * Start the next message if available.
4501 * Do this here, not in the actual receiver, because we may deadlock
4502 * because the lower layer is allowed to hold locks while calling
4503 * message delivery.
4506 rcu_read_lock();
4508 if (!run_to_completion)
4509 spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
4510 if (intf->curr_msg == NULL && !intf->in_shutdown) {
4511 struct list_head *entry = NULL;
4513 /* Pick the high priority queue first. */
4514 if (!list_empty(&intf->hp_xmit_msgs))
4515 entry = intf->hp_xmit_msgs.next;
4516 else if (!list_empty(&intf->xmit_msgs))
4517 entry = intf->xmit_msgs.next;
4519 if (entry) {
4520 list_del(entry);
4521 newmsg = list_entry(entry, struct ipmi_smi_msg, link);
4522 intf->curr_msg = newmsg;
4526 if (!run_to_completion)
4527 spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
4528 if (newmsg)
4529 intf->handlers->sender(intf->send_info, newmsg);
4531 rcu_read_unlock();
4533 handle_new_recv_msgs(intf);
4536 /* Handle a new message from the lower layer. */
4537 void ipmi_smi_msg_received(struct ipmi_smi *intf,
4538 struct ipmi_smi_msg *msg)
4540 unsigned long flags = 0; /* keep us warning-free. */
4541 int run_to_completion = intf->run_to_completion;
4544 * To preserve message order, we keep a queue and deliver from
4545 * a tasklet.
4547 if (!run_to_completion)
4548 spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
4549 list_add_tail(&msg->link, &intf->waiting_rcv_msgs);
4550 if (!run_to_completion)
4551 spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock,
4552 flags);
4554 if (!run_to_completion)
4555 spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
4557 * We can get an asynchronous event or receive message in addition
4558 * to commands we send.
4560 if (msg == intf->curr_msg)
4561 intf->curr_msg = NULL;
4562 if (!run_to_completion)
4563 spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
4565 if (run_to_completion)
4566 smi_recv_tasklet(&intf->recv_tasklet);
4567 else
4568 tasklet_schedule(&intf->recv_tasklet);
4570 EXPORT_SYMBOL(ipmi_smi_msg_received);
4572 void ipmi_smi_watchdog_pretimeout(struct ipmi_smi *intf)
4574 if (intf->in_shutdown)
4575 return;
4577 atomic_set(&intf->watchdog_pretimeouts_to_deliver, 1);
4578 tasklet_schedule(&intf->recv_tasklet);
4580 EXPORT_SYMBOL(ipmi_smi_watchdog_pretimeout);
4582 static struct ipmi_smi_msg *
4583 smi_from_recv_msg(struct ipmi_smi *intf, struct ipmi_recv_msg *recv_msg,
4584 unsigned char seq, long seqid)
4586 struct ipmi_smi_msg *smi_msg = ipmi_alloc_smi_msg();
4587 if (!smi_msg)
4589 * If we can't allocate the message, then just return, we
4590 * get 4 retries, so this should be ok.
4592 return NULL;
4594 memcpy(smi_msg->data, recv_msg->msg.data, recv_msg->msg.data_len);
4595 smi_msg->data_size = recv_msg->msg.data_len;
4596 smi_msg->msgid = STORE_SEQ_IN_MSGID(seq, seqid);
4598 pr_debug("Resend: %*ph\n", smi_msg->data_size, smi_msg->data);
4600 return smi_msg;
4603 static void check_msg_timeout(struct ipmi_smi *intf, struct seq_table *ent,
4604 struct list_head *timeouts,
4605 unsigned long timeout_period,
4606 int slot, unsigned long *flags,
4607 bool *need_timer)
4609 struct ipmi_recv_msg *msg;
4611 if (intf->in_shutdown)
4612 return;
4614 if (!ent->inuse)
4615 return;
4617 if (timeout_period < ent->timeout) {
4618 ent->timeout -= timeout_period;
4619 *need_timer = true;
4620 return;
4623 if (ent->retries_left == 0) {
4624 /* The message has used all its retries. */
4625 ent->inuse = 0;
4626 smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
4627 msg = ent->recv_msg;
4628 list_add_tail(&msg->link, timeouts);
4629 if (ent->broadcast)
4630 ipmi_inc_stat(intf, timed_out_ipmb_broadcasts);
4631 else if (is_lan_addr(&ent->recv_msg->addr))
4632 ipmi_inc_stat(intf, timed_out_lan_commands);
4633 else
4634 ipmi_inc_stat(intf, timed_out_ipmb_commands);
4635 } else {
4636 struct ipmi_smi_msg *smi_msg;
4637 /* More retries, send again. */
4639 *need_timer = true;
4642 * Start with the max timer, set to normal timer after
4643 * the message is sent.
4645 ent->timeout = MAX_MSG_TIMEOUT;
4646 ent->retries_left--;
4647 smi_msg = smi_from_recv_msg(intf, ent->recv_msg, slot,
4648 ent->seqid);
4649 if (!smi_msg) {
4650 if (is_lan_addr(&ent->recv_msg->addr))
4651 ipmi_inc_stat(intf,
4652 dropped_rexmit_lan_commands);
4653 else
4654 ipmi_inc_stat(intf,
4655 dropped_rexmit_ipmb_commands);
4656 return;
4659 spin_unlock_irqrestore(&intf->seq_lock, *flags);
4662 * Send the new message. We send with a zero
4663 * priority. It timed out, I doubt time is that
4664 * critical now, and high priority messages are really
4665 * only for messages to the local MC, which don't get
4666 * resent.
4668 if (intf->handlers) {
4669 if (is_lan_addr(&ent->recv_msg->addr))
4670 ipmi_inc_stat(intf,
4671 retransmitted_lan_commands);
4672 else
4673 ipmi_inc_stat(intf,
4674 retransmitted_ipmb_commands);
4676 smi_send(intf, intf->handlers, smi_msg, 0);
4677 } else
4678 ipmi_free_smi_msg(smi_msg);
4680 spin_lock_irqsave(&intf->seq_lock, *flags);
4684 static bool ipmi_timeout_handler(struct ipmi_smi *intf,
4685 unsigned long timeout_period)
4687 struct list_head timeouts;
4688 struct ipmi_recv_msg *msg, *msg2;
4689 unsigned long flags;
4690 int i;
4691 bool need_timer = false;
4693 if (!intf->bmc_registered) {
4694 kref_get(&intf->refcount);
4695 if (!schedule_work(&intf->bmc_reg_work)) {
4696 kref_put(&intf->refcount, intf_free);
4697 need_timer = true;
4702 * Go through the seq table and find any messages that
4703 * have timed out, putting them in the timeouts
4704 * list.
4706 INIT_LIST_HEAD(&timeouts);
4707 spin_lock_irqsave(&intf->seq_lock, flags);
4708 if (intf->ipmb_maintenance_mode_timeout) {
4709 if (intf->ipmb_maintenance_mode_timeout <= timeout_period)
4710 intf->ipmb_maintenance_mode_timeout = 0;
4711 else
4712 intf->ipmb_maintenance_mode_timeout -= timeout_period;
4714 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++)
4715 check_msg_timeout(intf, &intf->seq_table[i],
4716 &timeouts, timeout_period, i,
4717 &flags, &need_timer);
4718 spin_unlock_irqrestore(&intf->seq_lock, flags);
4720 list_for_each_entry_safe(msg, msg2, &timeouts, link)
4721 deliver_err_response(intf, msg, IPMI_TIMEOUT_COMPLETION_CODE);
4724 * Maintenance mode handling. Check the timeout
4725 * optimistically before we claim the lock. It may
4726 * mean a timeout gets missed occasionally, but that
4727 * only means the timeout gets extended by one period
4728 * in that case. No big deal, and it avoids the lock
4729 * most of the time.
4731 if (intf->auto_maintenance_timeout > 0) {
4732 spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
4733 if (intf->auto_maintenance_timeout > 0) {
4734 intf->auto_maintenance_timeout
4735 -= timeout_period;
4736 if (!intf->maintenance_mode
4737 && (intf->auto_maintenance_timeout <= 0)) {
4738 intf->maintenance_mode_enable = false;
4739 maintenance_mode_update(intf);
4742 spin_unlock_irqrestore(&intf->maintenance_mode_lock,
4743 flags);
4746 tasklet_schedule(&intf->recv_tasklet);
4748 return need_timer;
4751 static void ipmi_request_event(struct ipmi_smi *intf)
4753 /* No event requests when in maintenance mode. */
4754 if (intf->maintenance_mode_enable)
4755 return;
4757 if (!intf->in_shutdown)
4758 intf->handlers->request_events(intf->send_info);
4761 static struct timer_list ipmi_timer;
4763 static atomic_t stop_operation;
4765 static void ipmi_timeout(struct timer_list *unused)
4767 struct ipmi_smi *intf;
4768 bool need_timer = false;
4769 int index;
4771 if (atomic_read(&stop_operation))
4772 return;
4774 index = srcu_read_lock(&ipmi_interfaces_srcu);
4775 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4776 if (atomic_read(&intf->event_waiters)) {
4777 intf->ticks_to_req_ev--;
4778 if (intf->ticks_to_req_ev == 0) {
4779 ipmi_request_event(intf);
4780 intf->ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
4782 need_timer = true;
4785 need_timer |= ipmi_timeout_handler(intf, IPMI_TIMEOUT_TIME);
4787 srcu_read_unlock(&ipmi_interfaces_srcu, index);
4789 if (need_timer)
4790 mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4793 static void need_waiter(struct ipmi_smi *intf)
4795 /* Racy, but worst case we start the timer twice. */
4796 if (!timer_pending(&ipmi_timer))
4797 mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4800 static atomic_t smi_msg_inuse_count = ATOMIC_INIT(0);
4801 static atomic_t recv_msg_inuse_count = ATOMIC_INIT(0);
4803 static void free_smi_msg(struct ipmi_smi_msg *msg)
4805 atomic_dec(&smi_msg_inuse_count);
4806 kfree(msg);
4809 struct ipmi_smi_msg *ipmi_alloc_smi_msg(void)
4811 struct ipmi_smi_msg *rv;
4812 rv = kmalloc(sizeof(struct ipmi_smi_msg), GFP_ATOMIC);
4813 if (rv) {
4814 rv->done = free_smi_msg;
4815 rv->user_data = NULL;
4816 atomic_inc(&smi_msg_inuse_count);
4818 return rv;
4820 EXPORT_SYMBOL(ipmi_alloc_smi_msg);
4822 static void free_recv_msg(struct ipmi_recv_msg *msg)
4824 atomic_dec(&recv_msg_inuse_count);
4825 kfree(msg);
4828 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void)
4830 struct ipmi_recv_msg *rv;
4832 rv = kmalloc(sizeof(struct ipmi_recv_msg), GFP_ATOMIC);
4833 if (rv) {
4834 rv->user = NULL;
4835 rv->done = free_recv_msg;
4836 atomic_inc(&recv_msg_inuse_count);
4838 return rv;
4841 void ipmi_free_recv_msg(struct ipmi_recv_msg *msg)
4843 if (msg->user)
4844 kref_put(&msg->user->refcount, free_user);
4845 msg->done(msg);
4847 EXPORT_SYMBOL(ipmi_free_recv_msg);
4849 static atomic_t panic_done_count = ATOMIC_INIT(0);
4851 static void dummy_smi_done_handler(struct ipmi_smi_msg *msg)
4853 atomic_dec(&panic_done_count);
4856 static void dummy_recv_done_handler(struct ipmi_recv_msg *msg)
4858 atomic_dec(&panic_done_count);
4862 * Inside a panic, send a message and wait for a response.
4864 static void ipmi_panic_request_and_wait(struct ipmi_smi *intf,
4865 struct ipmi_addr *addr,
4866 struct kernel_ipmi_msg *msg)
4868 struct ipmi_smi_msg smi_msg;
4869 struct ipmi_recv_msg recv_msg;
4870 int rv;
4872 smi_msg.done = dummy_smi_done_handler;
4873 recv_msg.done = dummy_recv_done_handler;
4874 atomic_add(2, &panic_done_count);
4875 rv = i_ipmi_request(NULL,
4876 intf,
4877 addr,
4879 msg,
4880 intf,
4881 &smi_msg,
4882 &recv_msg,
4884 intf->addrinfo[0].address,
4885 intf->addrinfo[0].lun,
4886 0, 1); /* Don't retry, and don't wait. */
4887 if (rv)
4888 atomic_sub(2, &panic_done_count);
4889 else if (intf->handlers->flush_messages)
4890 intf->handlers->flush_messages(intf->send_info);
4892 while (atomic_read(&panic_done_count) != 0)
4893 ipmi_poll(intf);
4896 static void event_receiver_fetcher(struct ipmi_smi *intf,
4897 struct ipmi_recv_msg *msg)
4899 if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
4900 && (msg->msg.netfn == IPMI_NETFN_SENSOR_EVENT_RESPONSE)
4901 && (msg->msg.cmd == IPMI_GET_EVENT_RECEIVER_CMD)
4902 && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
4903 /* A get event receiver command, save it. */
4904 intf->event_receiver = msg->msg.data[1];
4905 intf->event_receiver_lun = msg->msg.data[2] & 0x3;
4909 static void device_id_fetcher(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)
4911 if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
4912 && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
4913 && (msg->msg.cmd == IPMI_GET_DEVICE_ID_CMD)
4914 && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
4916 * A get device id command, save if we are an event
4917 * receiver or generator.
4919 intf->local_sel_device = (msg->msg.data[6] >> 2) & 1;
4920 intf->local_event_generator = (msg->msg.data[6] >> 5) & 1;
4924 static void send_panic_events(struct ipmi_smi *intf, char *str)
4926 struct kernel_ipmi_msg msg;
4927 unsigned char data[16];
4928 struct ipmi_system_interface_addr *si;
4929 struct ipmi_addr addr;
4930 char *p = str;
4931 struct ipmi_ipmb_addr *ipmb;
4932 int j;
4934 if (ipmi_send_panic_event == IPMI_SEND_PANIC_EVENT_NONE)
4935 return;
4937 si = (struct ipmi_system_interface_addr *) &addr;
4938 si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4939 si->channel = IPMI_BMC_CHANNEL;
4940 si->lun = 0;
4942 /* Fill in an event telling that we have failed. */
4943 msg.netfn = 0x04; /* Sensor or Event. */
4944 msg.cmd = 2; /* Platform event command. */
4945 msg.data = data;
4946 msg.data_len = 8;
4947 data[0] = 0x41; /* Kernel generator ID, IPMI table 5-4 */
4948 data[1] = 0x03; /* This is for IPMI 1.0. */
4949 data[2] = 0x20; /* OS Critical Stop, IPMI table 36-3 */
4950 data[4] = 0x6f; /* Sensor specific, IPMI table 36-1 */
4951 data[5] = 0xa1; /* Runtime stop OEM bytes 2 & 3. */
4954 * Put a few breadcrumbs in. Hopefully later we can add more things
4955 * to make the panic events more useful.
4957 if (str) {
4958 data[3] = str[0];
4959 data[6] = str[1];
4960 data[7] = str[2];
4963 /* Send the event announcing the panic. */
4964 ipmi_panic_request_and_wait(intf, &addr, &msg);
4967 * On every interface, dump a bunch of OEM event holding the
4968 * string.
4970 if (ipmi_send_panic_event != IPMI_SEND_PANIC_EVENT_STRING || !str)
4971 return;
4974 * intf_num is used as an marker to tell if the
4975 * interface is valid. Thus we need a read barrier to
4976 * make sure data fetched before checking intf_num
4977 * won't be used.
4979 smp_rmb();
4982 * First job here is to figure out where to send the
4983 * OEM events. There's no way in IPMI to send OEM
4984 * events using an event send command, so we have to
4985 * find the SEL to put them in and stick them in
4986 * there.
4989 /* Get capabilities from the get device id. */
4990 intf->local_sel_device = 0;
4991 intf->local_event_generator = 0;
4992 intf->event_receiver = 0;
4994 /* Request the device info from the local MC. */
4995 msg.netfn = IPMI_NETFN_APP_REQUEST;
4996 msg.cmd = IPMI_GET_DEVICE_ID_CMD;
4997 msg.data = NULL;
4998 msg.data_len = 0;
4999 intf->null_user_handler = device_id_fetcher;
5000 ipmi_panic_request_and_wait(intf, &addr, &msg);
5002 if (intf->local_event_generator) {
5003 /* Request the event receiver from the local MC. */
5004 msg.netfn = IPMI_NETFN_SENSOR_EVENT_REQUEST;
5005 msg.cmd = IPMI_GET_EVENT_RECEIVER_CMD;
5006 msg.data = NULL;
5007 msg.data_len = 0;
5008 intf->null_user_handler = event_receiver_fetcher;
5009 ipmi_panic_request_and_wait(intf, &addr, &msg);
5011 intf->null_user_handler = NULL;
5014 * Validate the event receiver. The low bit must not
5015 * be 1 (it must be a valid IPMB address), it cannot
5016 * be zero, and it must not be my address.
5018 if (((intf->event_receiver & 1) == 0)
5019 && (intf->event_receiver != 0)
5020 && (intf->event_receiver != intf->addrinfo[0].address)) {
5022 * The event receiver is valid, send an IPMB
5023 * message.
5025 ipmb = (struct ipmi_ipmb_addr *) &addr;
5026 ipmb->addr_type = IPMI_IPMB_ADDR_TYPE;
5027 ipmb->channel = 0; /* FIXME - is this right? */
5028 ipmb->lun = intf->event_receiver_lun;
5029 ipmb->slave_addr = intf->event_receiver;
5030 } else if (intf->local_sel_device) {
5032 * The event receiver was not valid (or was
5033 * me), but I am an SEL device, just dump it
5034 * in my SEL.
5036 si = (struct ipmi_system_interface_addr *) &addr;
5037 si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
5038 si->channel = IPMI_BMC_CHANNEL;
5039 si->lun = 0;
5040 } else
5041 return; /* No where to send the event. */
5043 msg.netfn = IPMI_NETFN_STORAGE_REQUEST; /* Storage. */
5044 msg.cmd = IPMI_ADD_SEL_ENTRY_CMD;
5045 msg.data = data;
5046 msg.data_len = 16;
5048 j = 0;
5049 while (*p) {
5050 int size = strlen(p);
5052 if (size > 11)
5053 size = 11;
5054 data[0] = 0;
5055 data[1] = 0;
5056 data[2] = 0xf0; /* OEM event without timestamp. */
5057 data[3] = intf->addrinfo[0].address;
5058 data[4] = j++; /* sequence # */
5060 * Always give 11 bytes, so strncpy will fill
5061 * it with zeroes for me.
5063 strncpy(data+5, p, 11);
5064 p += size;
5066 ipmi_panic_request_and_wait(intf, &addr, &msg);
5070 static int has_panicked;
5072 static int panic_event(struct notifier_block *this,
5073 unsigned long event,
5074 void *ptr)
5076 struct ipmi_smi *intf;
5077 struct ipmi_user *user;
5079 if (has_panicked)
5080 return NOTIFY_DONE;
5081 has_panicked = 1;
5083 /* For every registered interface, set it to run to completion. */
5084 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
5085 if (!intf->handlers || intf->intf_num == -1)
5086 /* Interface is not ready. */
5087 continue;
5089 if (!intf->handlers->poll)
5090 continue;
5093 * If we were interrupted while locking xmit_msgs_lock or
5094 * waiting_rcv_msgs_lock, the corresponding list may be
5095 * corrupted. In this case, drop items on the list for
5096 * the safety.
5098 if (!spin_trylock(&intf->xmit_msgs_lock)) {
5099 INIT_LIST_HEAD(&intf->xmit_msgs);
5100 INIT_LIST_HEAD(&intf->hp_xmit_msgs);
5101 } else
5102 spin_unlock(&intf->xmit_msgs_lock);
5104 if (!spin_trylock(&intf->waiting_rcv_msgs_lock))
5105 INIT_LIST_HEAD(&intf->waiting_rcv_msgs);
5106 else
5107 spin_unlock(&intf->waiting_rcv_msgs_lock);
5109 intf->run_to_completion = 1;
5110 if (intf->handlers->set_run_to_completion)
5111 intf->handlers->set_run_to_completion(intf->send_info,
5114 list_for_each_entry_rcu(user, &intf->users, link) {
5115 if (user->handler->ipmi_panic_handler)
5116 user->handler->ipmi_panic_handler(
5117 user->handler_data);
5120 send_panic_events(intf, ptr);
5123 return NOTIFY_DONE;
5126 /* Must be called with ipmi_interfaces_mutex held. */
5127 static int ipmi_register_driver(void)
5129 int rv;
5131 if (drvregistered)
5132 return 0;
5134 rv = driver_register(&ipmidriver.driver);
5135 if (rv)
5136 pr_err("Could not register IPMI driver\n");
5137 else
5138 drvregistered = true;
5139 return rv;
5142 static struct notifier_block panic_block = {
5143 .notifier_call = panic_event,
5144 .next = NULL,
5145 .priority = 200 /* priority: INT_MAX >= x >= 0 */
5148 static int ipmi_init_msghandler(void)
5150 int rv;
5152 mutex_lock(&ipmi_interfaces_mutex);
5153 rv = ipmi_register_driver();
5154 if (rv)
5155 goto out;
5156 if (initialized)
5157 goto out;
5159 init_srcu_struct(&ipmi_interfaces_srcu);
5161 timer_setup(&ipmi_timer, ipmi_timeout, 0);
5162 mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
5164 atomic_notifier_chain_register(&panic_notifier_list, &panic_block);
5166 initialized = true;
5168 out:
5169 mutex_unlock(&ipmi_interfaces_mutex);
5170 return rv;
5173 static int __init ipmi_init_msghandler_mod(void)
5175 int rv;
5177 pr_info("version " IPMI_DRIVER_VERSION "\n");
5179 mutex_lock(&ipmi_interfaces_mutex);
5180 rv = ipmi_register_driver();
5181 mutex_unlock(&ipmi_interfaces_mutex);
5183 return rv;
5186 static void __exit cleanup_ipmi(void)
5188 int count;
5190 if (initialized) {
5191 atomic_notifier_chain_unregister(&panic_notifier_list,
5192 &panic_block);
5195 * This can't be called if any interfaces exist, so no worry
5196 * about shutting down the interfaces.
5200 * Tell the timer to stop, then wait for it to stop. This
5201 * avoids problems with race conditions removing the timer
5202 * here.
5204 atomic_set(&stop_operation, 1);
5205 del_timer_sync(&ipmi_timer);
5207 initialized = false;
5209 /* Check for buffer leaks. */
5210 count = atomic_read(&smi_msg_inuse_count);
5211 if (count != 0)
5212 pr_warn("SMI message count %d at exit\n", count);
5213 count = atomic_read(&recv_msg_inuse_count);
5214 if (count != 0)
5215 pr_warn("recv message count %d at exit\n", count);
5217 cleanup_srcu_struct(&ipmi_interfaces_srcu);
5219 if (drvregistered)
5220 driver_unregister(&ipmidriver.driver);
5222 module_exit(cleanup_ipmi);
5224 module_init(ipmi_init_msghandler_mod);
5225 MODULE_LICENSE("GPL");
5226 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
5227 MODULE_DESCRIPTION("Incoming and outgoing message routing for an IPMI"
5228 " interface.");
5229 MODULE_VERSION(IPMI_DRIVER_VERSION);
5230 MODULE_SOFTDEP("post: ipmi_devintf");