Merge tag 'block-5.11-2021-01-10' of git://git.kernel.dk/linux-block
[linux/fpc-iii.git] / drivers / clocksource / hyperv_timer.c
blobba04cb381cd3fd6133dc54bc7749f7b05c52273d
1 // SPDX-License-Identifier: GPL-2.0
3 /*
4 * Clocksource driver for the synthetic counter and timers
5 * provided by the Hyper-V hypervisor to guest VMs, as described
6 * in the Hyper-V Top Level Functional Spec (TLFS). This driver
7 * is instruction set architecture independent.
9 * Copyright (C) 2019, Microsoft, Inc.
11 * Author: Michael Kelley <mikelley@microsoft.com>
14 #include <linux/percpu.h>
15 #include <linux/cpumask.h>
16 #include <linux/clockchips.h>
17 #include <linux/clocksource.h>
18 #include <linux/sched_clock.h>
19 #include <linux/mm.h>
20 #include <linux/cpuhotplug.h>
21 #include <clocksource/hyperv_timer.h>
22 #include <asm/hyperv-tlfs.h>
23 #include <asm/mshyperv.h>
25 static struct clock_event_device __percpu *hv_clock_event;
26 static u64 hv_sched_clock_offset __ro_after_init;
29 * If false, we're using the old mechanism for stimer0 interrupts
30 * where it sends a VMbus message when it expires. The old
31 * mechanism is used when running on older versions of Hyper-V
32 * that don't support Direct Mode. While Hyper-V provides
33 * four stimer's per CPU, Linux uses only stimer0.
35 * Because Direct Mode does not require processing a VMbus
36 * message, stimer interrupts can be enabled earlier in the
37 * process of booting a CPU, and consistent with when timer
38 * interrupts are enabled for other clocksource drivers.
39 * However, for legacy versions of Hyper-V when Direct Mode
40 * is not enabled, setting up stimer interrupts must be
41 * delayed until VMbus is initialized and can process the
42 * interrupt message.
44 static bool direct_mode_enabled;
46 static int stimer0_irq;
47 static int stimer0_vector;
48 static int stimer0_message_sint;
51 * ISR for when stimer0 is operating in Direct Mode. Direct Mode
52 * does not use VMbus or any VMbus messages, so process here and not
53 * in the VMbus driver code.
55 void hv_stimer0_isr(void)
57 struct clock_event_device *ce;
59 ce = this_cpu_ptr(hv_clock_event);
60 ce->event_handler(ce);
62 EXPORT_SYMBOL_GPL(hv_stimer0_isr);
64 static int hv_ce_set_next_event(unsigned long delta,
65 struct clock_event_device *evt)
67 u64 current_tick;
69 current_tick = hv_read_reference_counter();
70 current_tick += delta;
71 hv_init_timer(0, current_tick);
72 return 0;
75 static int hv_ce_shutdown(struct clock_event_device *evt)
77 hv_init_timer(0, 0);
78 hv_init_timer_config(0, 0);
79 if (direct_mode_enabled)
80 hv_disable_stimer0_percpu_irq(stimer0_irq);
82 return 0;
85 static int hv_ce_set_oneshot(struct clock_event_device *evt)
87 union hv_stimer_config timer_cfg;
89 timer_cfg.as_uint64 = 0;
90 timer_cfg.enable = 1;
91 timer_cfg.auto_enable = 1;
92 if (direct_mode_enabled) {
94 * When it expires, the timer will directly interrupt
95 * on the specified hardware vector/IRQ.
97 timer_cfg.direct_mode = 1;
98 timer_cfg.apic_vector = stimer0_vector;
99 hv_enable_stimer0_percpu_irq(stimer0_irq);
100 } else {
102 * When it expires, the timer will generate a VMbus message,
103 * to be handled by the normal VMbus interrupt handler.
105 timer_cfg.direct_mode = 0;
106 timer_cfg.sintx = stimer0_message_sint;
108 hv_init_timer_config(0, timer_cfg.as_uint64);
109 return 0;
113 * hv_stimer_init - Per-cpu initialization of the clockevent
115 static int hv_stimer_init(unsigned int cpu)
117 struct clock_event_device *ce;
119 if (!hv_clock_event)
120 return 0;
122 ce = per_cpu_ptr(hv_clock_event, cpu);
123 ce->name = "Hyper-V clockevent";
124 ce->features = CLOCK_EVT_FEAT_ONESHOT;
125 ce->cpumask = cpumask_of(cpu);
126 ce->rating = 1000;
127 ce->set_state_shutdown = hv_ce_shutdown;
128 ce->set_state_oneshot = hv_ce_set_oneshot;
129 ce->set_next_event = hv_ce_set_next_event;
131 clockevents_config_and_register(ce,
132 HV_CLOCK_HZ,
133 HV_MIN_DELTA_TICKS,
134 HV_MAX_MAX_DELTA_TICKS);
135 return 0;
139 * hv_stimer_cleanup - Per-cpu cleanup of the clockevent
141 int hv_stimer_cleanup(unsigned int cpu)
143 struct clock_event_device *ce;
145 if (!hv_clock_event)
146 return 0;
149 * In the legacy case where Direct Mode is not enabled
150 * (which can only be on x86/64), stimer cleanup happens
151 * relatively early in the CPU offlining process. We
152 * must unbind the stimer-based clockevent device so
153 * that the LAPIC timer can take over until clockevents
154 * are no longer needed in the offlining process. Note
155 * that clockevents_unbind_device() eventually calls
156 * hv_ce_shutdown().
158 * The unbind should not be done when Direct Mode is
159 * enabled because we may be on an architecture where
160 * there are no other clockevent devices to fallback to.
162 ce = per_cpu_ptr(hv_clock_event, cpu);
163 if (direct_mode_enabled)
164 hv_ce_shutdown(ce);
165 else
166 clockevents_unbind_device(ce, cpu);
168 return 0;
170 EXPORT_SYMBOL_GPL(hv_stimer_cleanup);
172 /* hv_stimer_alloc - Global initialization of the clockevent and stimer0 */
173 int hv_stimer_alloc(void)
175 int ret = 0;
178 * Synthetic timers are always available except on old versions of
179 * Hyper-V on x86. In that case, return as error as Linux will use a
180 * clockevent based on emulated LAPIC timer hardware.
182 if (!(ms_hyperv.features & HV_MSR_SYNTIMER_AVAILABLE))
183 return -EINVAL;
185 hv_clock_event = alloc_percpu(struct clock_event_device);
186 if (!hv_clock_event)
187 return -ENOMEM;
189 direct_mode_enabled = ms_hyperv.misc_features &
190 HV_STIMER_DIRECT_MODE_AVAILABLE;
191 if (direct_mode_enabled) {
192 ret = hv_setup_stimer0_irq(&stimer0_irq, &stimer0_vector,
193 hv_stimer0_isr);
194 if (ret)
195 goto free_percpu;
198 * Since we are in Direct Mode, stimer initialization
199 * can be done now with a CPUHP value in the same range
200 * as other clockevent devices.
202 ret = cpuhp_setup_state(CPUHP_AP_HYPERV_TIMER_STARTING,
203 "clockevents/hyperv/stimer:starting",
204 hv_stimer_init, hv_stimer_cleanup);
205 if (ret < 0)
206 goto free_stimer0_irq;
208 return ret;
210 free_stimer0_irq:
211 hv_remove_stimer0_irq(stimer0_irq);
212 stimer0_irq = 0;
213 free_percpu:
214 free_percpu(hv_clock_event);
215 hv_clock_event = NULL;
216 return ret;
218 EXPORT_SYMBOL_GPL(hv_stimer_alloc);
221 * hv_stimer_legacy_init -- Called from the VMbus driver to handle
222 * the case when Direct Mode is not enabled, and the stimer
223 * must be initialized late in the CPU onlining process.
226 void hv_stimer_legacy_init(unsigned int cpu, int sint)
228 if (direct_mode_enabled)
229 return;
232 * This function gets called by each vCPU, so setting the
233 * global stimer_message_sint value each time is conceptually
234 * not ideal, but the value passed in is always the same and
235 * it avoids introducing yet another interface into this
236 * clocksource driver just to set the sint in the legacy case.
238 stimer0_message_sint = sint;
239 (void)hv_stimer_init(cpu);
241 EXPORT_SYMBOL_GPL(hv_stimer_legacy_init);
244 * hv_stimer_legacy_cleanup -- Called from the VMbus driver to
245 * handle the case when Direct Mode is not enabled, and the
246 * stimer must be cleaned up early in the CPU offlining
247 * process.
249 void hv_stimer_legacy_cleanup(unsigned int cpu)
251 if (direct_mode_enabled)
252 return;
253 (void)hv_stimer_cleanup(cpu);
255 EXPORT_SYMBOL_GPL(hv_stimer_legacy_cleanup);
258 /* hv_stimer_free - Free global resources allocated by hv_stimer_alloc() */
259 void hv_stimer_free(void)
261 if (!hv_clock_event)
262 return;
264 if (direct_mode_enabled) {
265 cpuhp_remove_state(CPUHP_AP_HYPERV_TIMER_STARTING);
266 hv_remove_stimer0_irq(stimer0_irq);
267 stimer0_irq = 0;
269 free_percpu(hv_clock_event);
270 hv_clock_event = NULL;
272 EXPORT_SYMBOL_GPL(hv_stimer_free);
275 * Do a global cleanup of clockevents for the cases of kexec and
276 * vmbus exit
278 void hv_stimer_global_cleanup(void)
280 int cpu;
283 * hv_stime_legacy_cleanup() will stop the stimer if Direct
284 * Mode is not enabled, and fallback to the LAPIC timer.
286 for_each_present_cpu(cpu) {
287 hv_stimer_legacy_cleanup(cpu);
291 * If Direct Mode is enabled, the cpuhp teardown callback
292 * (hv_stimer_cleanup) will be run on all CPUs to stop the
293 * stimers.
295 hv_stimer_free();
297 EXPORT_SYMBOL_GPL(hv_stimer_global_cleanup);
300 * Code and definitions for the Hyper-V clocksources. Two
301 * clocksources are defined: one that reads the Hyper-V defined MSR, and
302 * the other that uses the TSC reference page feature as defined in the
303 * TLFS. The MSR version is for compatibility with old versions of
304 * Hyper-V and 32-bit x86. The TSC reference page version is preferred.
306 * The Hyper-V clocksource ratings of 250 are chosen to be below the
307 * TSC clocksource rating of 300. In configurations where Hyper-V offers
308 * an InvariantTSC, the TSC is not marked "unstable", so the TSC clocksource
309 * is available and preferred. With the higher rating, it will be the
310 * default. On older hardware and Hyper-V versions, the TSC is marked
311 * "unstable", so no TSC clocksource is created and the selected Hyper-V
312 * clocksource will be the default.
315 u64 (*hv_read_reference_counter)(void);
316 EXPORT_SYMBOL_GPL(hv_read_reference_counter);
318 static union {
319 struct ms_hyperv_tsc_page page;
320 u8 reserved[PAGE_SIZE];
321 } tsc_pg __aligned(PAGE_SIZE);
323 struct ms_hyperv_tsc_page *hv_get_tsc_page(void)
325 return &tsc_pg.page;
327 EXPORT_SYMBOL_GPL(hv_get_tsc_page);
329 static u64 notrace read_hv_clock_tsc(void)
331 u64 current_tick = hv_read_tsc_page(hv_get_tsc_page());
333 if (current_tick == U64_MAX)
334 hv_get_time_ref_count(current_tick);
336 return current_tick;
339 static u64 notrace read_hv_clock_tsc_cs(struct clocksource *arg)
341 return read_hv_clock_tsc();
344 static u64 notrace read_hv_sched_clock_tsc(void)
346 return (read_hv_clock_tsc() - hv_sched_clock_offset) *
347 (NSEC_PER_SEC / HV_CLOCK_HZ);
350 static void suspend_hv_clock_tsc(struct clocksource *arg)
352 u64 tsc_msr;
354 /* Disable the TSC page */
355 hv_get_reference_tsc(tsc_msr);
356 tsc_msr &= ~BIT_ULL(0);
357 hv_set_reference_tsc(tsc_msr);
361 static void resume_hv_clock_tsc(struct clocksource *arg)
363 phys_addr_t phys_addr = virt_to_phys(&tsc_pg);
364 u64 tsc_msr;
366 /* Re-enable the TSC page */
367 hv_get_reference_tsc(tsc_msr);
368 tsc_msr &= GENMASK_ULL(11, 0);
369 tsc_msr |= BIT_ULL(0) | (u64)phys_addr;
370 hv_set_reference_tsc(tsc_msr);
373 static int hv_cs_enable(struct clocksource *cs)
375 hv_enable_vdso_clocksource();
376 return 0;
379 static struct clocksource hyperv_cs_tsc = {
380 .name = "hyperv_clocksource_tsc_page",
381 .rating = 250,
382 .read = read_hv_clock_tsc_cs,
383 .mask = CLOCKSOURCE_MASK(64),
384 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
385 .suspend= suspend_hv_clock_tsc,
386 .resume = resume_hv_clock_tsc,
387 .enable = hv_cs_enable,
390 static u64 notrace read_hv_clock_msr(void)
392 u64 current_tick;
394 * Read the partition counter to get the current tick count. This count
395 * is set to 0 when the partition is created and is incremented in
396 * 100 nanosecond units.
398 hv_get_time_ref_count(current_tick);
399 return current_tick;
402 static u64 notrace read_hv_clock_msr_cs(struct clocksource *arg)
404 return read_hv_clock_msr();
407 static u64 notrace read_hv_sched_clock_msr(void)
409 return (read_hv_clock_msr() - hv_sched_clock_offset) *
410 (NSEC_PER_SEC / HV_CLOCK_HZ);
413 static struct clocksource hyperv_cs_msr = {
414 .name = "hyperv_clocksource_msr",
415 .rating = 250,
416 .read = read_hv_clock_msr_cs,
417 .mask = CLOCKSOURCE_MASK(64),
418 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
421 static bool __init hv_init_tsc_clocksource(void)
423 u64 tsc_msr;
424 phys_addr_t phys_addr;
426 if (!(ms_hyperv.features & HV_MSR_REFERENCE_TSC_AVAILABLE))
427 return false;
429 hv_read_reference_counter = read_hv_clock_tsc;
430 phys_addr = virt_to_phys(hv_get_tsc_page());
433 * The Hyper-V TLFS specifies to preserve the value of reserved
434 * bits in registers. So read the existing value, preserve the
435 * low order 12 bits, and add in the guest physical address
436 * (which already has at least the low 12 bits set to zero since
437 * it is page aligned). Also set the "enable" bit, which is bit 0.
439 hv_get_reference_tsc(tsc_msr);
440 tsc_msr &= GENMASK_ULL(11, 0);
441 tsc_msr = tsc_msr | 0x1 | (u64)phys_addr;
442 hv_set_reference_tsc(tsc_msr);
444 hv_set_clocksource_vdso(hyperv_cs_tsc);
445 clocksource_register_hz(&hyperv_cs_tsc, NSEC_PER_SEC/100);
447 hv_sched_clock_offset = hv_read_reference_counter();
448 hv_setup_sched_clock(read_hv_sched_clock_tsc);
450 return true;
453 void __init hv_init_clocksource(void)
456 * Try to set up the TSC page clocksource. If it succeeds, we're
457 * done. Otherwise, set up the MSR clocksoruce. At least one of
458 * these will always be available except on very old versions of
459 * Hyper-V on x86. In that case we won't have a Hyper-V
460 * clocksource, but Linux will still run with a clocksource based
461 * on the emulated PIT or LAPIC timer.
463 if (hv_init_tsc_clocksource())
464 return;
466 if (!(ms_hyperv.features & HV_MSR_TIME_REF_COUNT_AVAILABLE))
467 return;
469 hv_read_reference_counter = read_hv_clock_msr;
470 clocksource_register_hz(&hyperv_cs_msr, NSEC_PER_SEC/100);
472 hv_sched_clock_offset = hv_read_reference_counter();
473 hv_setup_sched_clock(read_hv_sched_clock_msr);
475 EXPORT_SYMBOL_GPL(hv_init_clocksource);