Merge tag 'block-5.11-2021-01-10' of git://git.kernel.dk/linux-block
[linux/fpc-iii.git] / drivers / dma-buf / heaps / cma_heap.c
blob3c4e343011721e336869567f5292959ec634b1a1
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * DMABUF CMA heap exporter
5 * Copyright (C) 2012, 2019, 2020 Linaro Ltd.
6 * Author: <benjamin.gaignard@linaro.org> for ST-Ericsson.
8 * Also utilizing parts of Andrew Davis' SRAM heap:
9 * Copyright (C) 2019 Texas Instruments Incorporated - http://www.ti.com/
10 * Andrew F. Davis <afd@ti.com>
12 #include <linux/cma.h>
13 #include <linux/dma-buf.h>
14 #include <linux/dma-heap.h>
15 #include <linux/dma-map-ops.h>
16 #include <linux/err.h>
17 #include <linux/highmem.h>
18 #include <linux/io.h>
19 #include <linux/mm.h>
20 #include <linux/module.h>
21 #include <linux/scatterlist.h>
22 #include <linux/slab.h>
23 #include <linux/vmalloc.h>
26 struct cma_heap {
27 struct dma_heap *heap;
28 struct cma *cma;
31 struct cma_heap_buffer {
32 struct cma_heap *heap;
33 struct list_head attachments;
34 struct mutex lock;
35 unsigned long len;
36 struct page *cma_pages;
37 struct page **pages;
38 pgoff_t pagecount;
39 int vmap_cnt;
40 void *vaddr;
43 struct dma_heap_attachment {
44 struct device *dev;
45 struct sg_table table;
46 struct list_head list;
47 bool mapped;
50 static int cma_heap_attach(struct dma_buf *dmabuf,
51 struct dma_buf_attachment *attachment)
53 struct cma_heap_buffer *buffer = dmabuf->priv;
54 struct dma_heap_attachment *a;
55 int ret;
57 a = kzalloc(sizeof(*a), GFP_KERNEL);
58 if (!a)
59 return -ENOMEM;
61 ret = sg_alloc_table_from_pages(&a->table, buffer->pages,
62 buffer->pagecount, 0,
63 buffer->pagecount << PAGE_SHIFT,
64 GFP_KERNEL);
65 if (ret) {
66 kfree(a);
67 return ret;
70 a->dev = attachment->dev;
71 INIT_LIST_HEAD(&a->list);
72 a->mapped = false;
74 attachment->priv = a;
76 mutex_lock(&buffer->lock);
77 list_add(&a->list, &buffer->attachments);
78 mutex_unlock(&buffer->lock);
80 return 0;
83 static void cma_heap_detach(struct dma_buf *dmabuf,
84 struct dma_buf_attachment *attachment)
86 struct cma_heap_buffer *buffer = dmabuf->priv;
87 struct dma_heap_attachment *a = attachment->priv;
89 mutex_lock(&buffer->lock);
90 list_del(&a->list);
91 mutex_unlock(&buffer->lock);
93 sg_free_table(&a->table);
94 kfree(a);
97 static struct sg_table *cma_heap_map_dma_buf(struct dma_buf_attachment *attachment,
98 enum dma_data_direction direction)
100 struct dma_heap_attachment *a = attachment->priv;
101 struct sg_table *table = &a->table;
102 int ret;
104 ret = dma_map_sgtable(attachment->dev, table, direction, 0);
105 if (ret)
106 return ERR_PTR(-ENOMEM);
107 a->mapped = true;
108 return table;
111 static void cma_heap_unmap_dma_buf(struct dma_buf_attachment *attachment,
112 struct sg_table *table,
113 enum dma_data_direction direction)
115 struct dma_heap_attachment *a = attachment->priv;
117 a->mapped = false;
118 dma_unmap_sgtable(attachment->dev, table, direction, 0);
121 static int cma_heap_dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
122 enum dma_data_direction direction)
124 struct cma_heap_buffer *buffer = dmabuf->priv;
125 struct dma_heap_attachment *a;
127 if (buffer->vmap_cnt)
128 invalidate_kernel_vmap_range(buffer->vaddr, buffer->len);
130 mutex_lock(&buffer->lock);
131 list_for_each_entry(a, &buffer->attachments, list) {
132 if (!a->mapped)
133 continue;
134 dma_sync_sgtable_for_cpu(a->dev, &a->table, direction);
136 mutex_unlock(&buffer->lock);
138 return 0;
141 static int cma_heap_dma_buf_end_cpu_access(struct dma_buf *dmabuf,
142 enum dma_data_direction direction)
144 struct cma_heap_buffer *buffer = dmabuf->priv;
145 struct dma_heap_attachment *a;
147 if (buffer->vmap_cnt)
148 flush_kernel_vmap_range(buffer->vaddr, buffer->len);
150 mutex_lock(&buffer->lock);
151 list_for_each_entry(a, &buffer->attachments, list) {
152 if (!a->mapped)
153 continue;
154 dma_sync_sgtable_for_device(a->dev, &a->table, direction);
156 mutex_unlock(&buffer->lock);
158 return 0;
161 static vm_fault_t cma_heap_vm_fault(struct vm_fault *vmf)
163 struct vm_area_struct *vma = vmf->vma;
164 struct cma_heap_buffer *buffer = vma->vm_private_data;
166 if (vmf->pgoff > buffer->pagecount)
167 return VM_FAULT_SIGBUS;
169 vmf->page = buffer->pages[vmf->pgoff];
170 get_page(vmf->page);
172 return 0;
175 static const struct vm_operations_struct dma_heap_vm_ops = {
176 .fault = cma_heap_vm_fault,
179 static int cma_heap_mmap(struct dma_buf *dmabuf, struct vm_area_struct *vma)
181 struct cma_heap_buffer *buffer = dmabuf->priv;
183 if ((vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) == 0)
184 return -EINVAL;
186 vma->vm_ops = &dma_heap_vm_ops;
187 vma->vm_private_data = buffer;
189 return 0;
192 static void *cma_heap_do_vmap(struct cma_heap_buffer *buffer)
194 void *vaddr;
196 vaddr = vmap(buffer->pages, buffer->pagecount, VM_MAP, PAGE_KERNEL);
197 if (!vaddr)
198 return ERR_PTR(-ENOMEM);
200 return vaddr;
203 static int cma_heap_vmap(struct dma_buf *dmabuf, struct dma_buf_map *map)
205 struct cma_heap_buffer *buffer = dmabuf->priv;
206 void *vaddr;
207 int ret = 0;
209 mutex_lock(&buffer->lock);
210 if (buffer->vmap_cnt) {
211 buffer->vmap_cnt++;
212 dma_buf_map_set_vaddr(map, buffer->vaddr);
213 goto out;
216 vaddr = cma_heap_do_vmap(buffer);
217 if (IS_ERR(vaddr)) {
218 ret = PTR_ERR(vaddr);
219 goto out;
221 buffer->vaddr = vaddr;
222 buffer->vmap_cnt++;
223 dma_buf_map_set_vaddr(map, buffer->vaddr);
224 out:
225 mutex_unlock(&buffer->lock);
227 return ret;
230 static void cma_heap_vunmap(struct dma_buf *dmabuf, struct dma_buf_map *map)
232 struct cma_heap_buffer *buffer = dmabuf->priv;
234 mutex_lock(&buffer->lock);
235 if (!--buffer->vmap_cnt) {
236 vunmap(buffer->vaddr);
237 buffer->vaddr = NULL;
239 mutex_unlock(&buffer->lock);
240 dma_buf_map_clear(map);
243 static void cma_heap_dma_buf_release(struct dma_buf *dmabuf)
245 struct cma_heap_buffer *buffer = dmabuf->priv;
246 struct cma_heap *cma_heap = buffer->heap;
248 if (buffer->vmap_cnt > 0) {
249 WARN(1, "%s: buffer still mapped in the kernel\n", __func__);
250 vunmap(buffer->vaddr);
251 buffer->vaddr = NULL;
254 cma_release(cma_heap->cma, buffer->cma_pages, buffer->pagecount);
255 kfree(buffer);
258 static const struct dma_buf_ops cma_heap_buf_ops = {
259 .attach = cma_heap_attach,
260 .detach = cma_heap_detach,
261 .map_dma_buf = cma_heap_map_dma_buf,
262 .unmap_dma_buf = cma_heap_unmap_dma_buf,
263 .begin_cpu_access = cma_heap_dma_buf_begin_cpu_access,
264 .end_cpu_access = cma_heap_dma_buf_end_cpu_access,
265 .mmap = cma_heap_mmap,
266 .vmap = cma_heap_vmap,
267 .vunmap = cma_heap_vunmap,
268 .release = cma_heap_dma_buf_release,
271 static int cma_heap_allocate(struct dma_heap *heap,
272 unsigned long len,
273 unsigned long fd_flags,
274 unsigned long heap_flags)
276 struct cma_heap *cma_heap = dma_heap_get_drvdata(heap);
277 struct cma_heap_buffer *buffer;
278 DEFINE_DMA_BUF_EXPORT_INFO(exp_info);
279 size_t size = PAGE_ALIGN(len);
280 pgoff_t pagecount = size >> PAGE_SHIFT;
281 unsigned long align = get_order(size);
282 struct page *cma_pages;
283 struct dma_buf *dmabuf;
284 int ret = -ENOMEM;
285 pgoff_t pg;
287 buffer = kzalloc(sizeof(*buffer), GFP_KERNEL);
288 if (!buffer)
289 return -ENOMEM;
291 INIT_LIST_HEAD(&buffer->attachments);
292 mutex_init(&buffer->lock);
293 buffer->len = size;
295 if (align > CONFIG_CMA_ALIGNMENT)
296 align = CONFIG_CMA_ALIGNMENT;
298 cma_pages = cma_alloc(cma_heap->cma, pagecount, align, false);
299 if (!cma_pages)
300 goto free_buffer;
302 /* Clear the cma pages */
303 if (PageHighMem(cma_pages)) {
304 unsigned long nr_clear_pages = pagecount;
305 struct page *page = cma_pages;
307 while (nr_clear_pages > 0) {
308 void *vaddr = kmap_atomic(page);
310 memset(vaddr, 0, PAGE_SIZE);
311 kunmap_atomic(vaddr);
313 * Avoid wasting time zeroing memory if the process
314 * has been killed by by SIGKILL
316 if (fatal_signal_pending(current))
317 goto free_cma;
318 page++;
319 nr_clear_pages--;
321 } else {
322 memset(page_address(cma_pages), 0, size);
325 buffer->pages = kmalloc_array(pagecount, sizeof(*buffer->pages), GFP_KERNEL);
326 if (!buffer->pages) {
327 ret = -ENOMEM;
328 goto free_cma;
331 for (pg = 0; pg < pagecount; pg++)
332 buffer->pages[pg] = &cma_pages[pg];
334 buffer->cma_pages = cma_pages;
335 buffer->heap = cma_heap;
336 buffer->pagecount = pagecount;
338 /* create the dmabuf */
339 exp_info.ops = &cma_heap_buf_ops;
340 exp_info.size = buffer->len;
341 exp_info.flags = fd_flags;
342 exp_info.priv = buffer;
343 dmabuf = dma_buf_export(&exp_info);
344 if (IS_ERR(dmabuf)) {
345 ret = PTR_ERR(dmabuf);
346 goto free_pages;
349 ret = dma_buf_fd(dmabuf, fd_flags);
350 if (ret < 0) {
351 dma_buf_put(dmabuf);
352 /* just return, as put will call release and that will free */
353 return ret;
356 return ret;
358 free_pages:
359 kfree(buffer->pages);
360 free_cma:
361 cma_release(cma_heap->cma, cma_pages, pagecount);
362 free_buffer:
363 kfree(buffer);
365 return ret;
368 static const struct dma_heap_ops cma_heap_ops = {
369 .allocate = cma_heap_allocate,
372 static int __add_cma_heap(struct cma *cma, void *data)
374 struct cma_heap *cma_heap;
375 struct dma_heap_export_info exp_info;
377 cma_heap = kzalloc(sizeof(*cma_heap), GFP_KERNEL);
378 if (!cma_heap)
379 return -ENOMEM;
380 cma_heap->cma = cma;
382 exp_info.name = cma_get_name(cma);
383 exp_info.ops = &cma_heap_ops;
384 exp_info.priv = cma_heap;
386 cma_heap->heap = dma_heap_add(&exp_info);
387 if (IS_ERR(cma_heap->heap)) {
388 int ret = PTR_ERR(cma_heap->heap);
390 kfree(cma_heap);
391 return ret;
394 return 0;
397 static int add_default_cma_heap(void)
399 struct cma *default_cma = dev_get_cma_area(NULL);
400 int ret = 0;
402 if (default_cma)
403 ret = __add_cma_heap(default_cma, NULL);
405 return ret;
407 module_init(add_default_cma_heap);
408 MODULE_DESCRIPTION("DMA-BUF CMA Heap");
409 MODULE_LICENSE("GPL v2");