1 // SPDX-License-Identifier: GPL-2.0-only
3 * Core driver for the High Speed UART DMA
5 * Copyright (C) 2015 Intel Corporation
6 * Author: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
8 * Partially based on the bits found in drivers/tty/serial/mfd.c.
12 * DMA channel allocation:
13 * 1. Even number chans are used for DMA Read (UART TX), odd chans for DMA
15 * 2. 0/1 channel are assigned to port 0, 2/3 chan to port 1, 4/5 chan to
19 #include <linux/delay.h>
20 #include <linux/dmaengine.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/init.h>
23 #include <linux/module.h>
24 #include <linux/slab.h>
28 #define HSU_DMA_BUSWIDTHS \
29 BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \
30 BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
31 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
32 BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \
33 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | \
34 BIT(DMA_SLAVE_BUSWIDTH_8_BYTES) | \
35 BIT(DMA_SLAVE_BUSWIDTH_16_BYTES)
37 static inline void hsu_chan_disable(struct hsu_dma_chan
*hsuc
)
39 hsu_chan_writel(hsuc
, HSU_CH_CR
, 0);
42 static inline void hsu_chan_enable(struct hsu_dma_chan
*hsuc
)
44 u32 cr
= HSU_CH_CR_CHA
;
46 if (hsuc
->direction
== DMA_MEM_TO_DEV
)
48 else if (hsuc
->direction
== DMA_DEV_TO_MEM
)
51 hsu_chan_writel(hsuc
, HSU_CH_CR
, cr
);
54 static void hsu_dma_chan_start(struct hsu_dma_chan
*hsuc
)
56 struct dma_slave_config
*config
= &hsuc
->config
;
57 struct hsu_dma_desc
*desc
= hsuc
->desc
;
58 u32 bsr
= 0, mtsr
= 0; /* to shut the compiler up */
59 u32 dcr
= HSU_CH_DCR_CHSOE
| HSU_CH_DCR_CHEI
;
60 unsigned int i
, count
;
62 if (hsuc
->direction
== DMA_MEM_TO_DEV
) {
63 bsr
= config
->dst_maxburst
;
64 mtsr
= config
->dst_addr_width
;
65 } else if (hsuc
->direction
== DMA_DEV_TO_MEM
) {
66 bsr
= config
->src_maxburst
;
67 mtsr
= config
->src_addr_width
;
70 hsu_chan_disable(hsuc
);
72 hsu_chan_writel(hsuc
, HSU_CH_DCR
, 0);
73 hsu_chan_writel(hsuc
, HSU_CH_BSR
, bsr
);
74 hsu_chan_writel(hsuc
, HSU_CH_MTSR
, mtsr
);
77 count
= desc
->nents
- desc
->active
;
78 for (i
= 0; i
< count
&& i
< HSU_DMA_CHAN_NR_DESC
; i
++) {
79 hsu_chan_writel(hsuc
, HSU_CH_DxSAR(i
), desc
->sg
[i
].addr
);
80 hsu_chan_writel(hsuc
, HSU_CH_DxTSR(i
), desc
->sg
[i
].len
);
82 /* Prepare value for DCR */
83 dcr
|= HSU_CH_DCR_DESCA(i
);
84 dcr
|= HSU_CH_DCR_CHTOI(i
); /* timeout bit, see HSU Errata 1 */
88 /* Only for the last descriptor in the chain */
89 dcr
|= HSU_CH_DCR_CHSOD(count
- 1);
90 dcr
|= HSU_CH_DCR_CHDI(count
- 1);
92 hsu_chan_writel(hsuc
, HSU_CH_DCR
, dcr
);
94 hsu_chan_enable(hsuc
);
97 static void hsu_dma_stop_channel(struct hsu_dma_chan
*hsuc
)
99 hsu_chan_disable(hsuc
);
100 hsu_chan_writel(hsuc
, HSU_CH_DCR
, 0);
103 static void hsu_dma_start_channel(struct hsu_dma_chan
*hsuc
)
105 hsu_dma_chan_start(hsuc
);
108 static void hsu_dma_start_transfer(struct hsu_dma_chan
*hsuc
)
110 struct virt_dma_desc
*vdesc
;
112 /* Get the next descriptor */
113 vdesc
= vchan_next_desc(&hsuc
->vchan
);
119 list_del(&vdesc
->node
);
120 hsuc
->desc
= to_hsu_dma_desc(vdesc
);
122 /* Start the channel with a new descriptor */
123 hsu_dma_start_channel(hsuc
);
127 * hsu_dma_get_status() - get DMA channel status
128 * @chip: HSUART DMA chip
129 * @nr: DMA channel number
130 * @status: pointer for DMA Channel Status Register value
133 * The function reads and clears the DMA Channel Status Register, checks
134 * if it was a timeout interrupt and returns a corresponding value.
136 * Caller should provide a valid pointer for the DMA Channel Status
137 * Register value that will be returned in @status.
140 * 1 for DMA timeout status, 0 for other DMA status, or error code for
141 * invalid parameters or no interrupt pending.
143 int hsu_dma_get_status(struct hsu_dma_chip
*chip
, unsigned short nr
,
146 struct hsu_dma_chan
*hsuc
;
151 if (nr
>= chip
->hsu
->nr_channels
)
154 hsuc
= &chip
->hsu
->chan
[nr
];
157 * No matter what situation, need read clear the IRQ status
158 * There is a bug, see Errata 5, HSD 2900918
160 spin_lock_irqsave(&hsuc
->vchan
.lock
, flags
);
161 sr
= hsu_chan_readl(hsuc
, HSU_CH_SR
);
162 spin_unlock_irqrestore(&hsuc
->vchan
.lock
, flags
);
164 /* Check if any interrupt is pending */
165 sr
&= ~(HSU_CH_SR_DESCE_ANY
| HSU_CH_SR_CDESC_ANY
);
169 /* Timeout IRQ, need wait some time, see Errata 2 */
170 if (sr
& HSU_CH_SR_DESCTO_ANY
)
174 * At this point, at least one of Descriptor Time Out, Channel Error
175 * or Descriptor Done bits must be set. Clear the Descriptor Time Out
176 * bits and if sr is still non-zero, it must be channel error or
177 * descriptor done which are higher priority than timeout and handled
178 * in hsu_dma_do_irq(). Else, it must be a timeout.
180 sr
&= ~HSU_CH_SR_DESCTO_ANY
;
186 EXPORT_SYMBOL_GPL(hsu_dma_get_status
);
189 * hsu_dma_do_irq() - DMA interrupt handler
190 * @chip: HSUART DMA chip
191 * @nr: DMA channel number
192 * @status: Channel Status Register value
195 * This function handles Channel Error and Descriptor Done interrupts.
196 * This function should be called after determining that the DMA interrupt
197 * is not a normal timeout interrupt, ie. hsu_dma_get_status() returned 0.
200 * 0 for invalid channel number, 1 otherwise.
202 int hsu_dma_do_irq(struct hsu_dma_chip
*chip
, unsigned short nr
, u32 status
)
204 struct hsu_dma_chan
*hsuc
;
205 struct hsu_dma_desc
*desc
;
209 if (nr
>= chip
->hsu
->nr_channels
)
212 hsuc
= &chip
->hsu
->chan
[nr
];
214 spin_lock_irqsave(&hsuc
->vchan
.lock
, flags
);
217 if (status
& HSU_CH_SR_CHE
) {
218 desc
->status
= DMA_ERROR
;
219 } else if (desc
->active
< desc
->nents
) {
220 hsu_dma_start_channel(hsuc
);
222 vchan_cookie_complete(&desc
->vdesc
);
223 desc
->status
= DMA_COMPLETE
;
224 hsu_dma_start_transfer(hsuc
);
227 spin_unlock_irqrestore(&hsuc
->vchan
.lock
, flags
);
231 EXPORT_SYMBOL_GPL(hsu_dma_do_irq
);
233 static struct hsu_dma_desc
*hsu_dma_alloc_desc(unsigned int nents
)
235 struct hsu_dma_desc
*desc
;
237 desc
= kzalloc(sizeof(*desc
), GFP_NOWAIT
);
241 desc
->sg
= kcalloc(nents
, sizeof(*desc
->sg
), GFP_NOWAIT
);
250 static void hsu_dma_desc_free(struct virt_dma_desc
*vdesc
)
252 struct hsu_dma_desc
*desc
= to_hsu_dma_desc(vdesc
);
258 static struct dma_async_tx_descriptor
*hsu_dma_prep_slave_sg(
259 struct dma_chan
*chan
, struct scatterlist
*sgl
,
260 unsigned int sg_len
, enum dma_transfer_direction direction
,
261 unsigned long flags
, void *context
)
263 struct hsu_dma_chan
*hsuc
= to_hsu_dma_chan(chan
);
264 struct hsu_dma_desc
*desc
;
265 struct scatterlist
*sg
;
268 desc
= hsu_dma_alloc_desc(sg_len
);
272 for_each_sg(sgl
, sg
, sg_len
, i
) {
273 desc
->sg
[i
].addr
= sg_dma_address(sg
);
274 desc
->sg
[i
].len
= sg_dma_len(sg
);
276 desc
->length
+= sg_dma_len(sg
);
279 desc
->nents
= sg_len
;
280 desc
->direction
= direction
;
281 /* desc->active = 0 by kzalloc */
282 desc
->status
= DMA_IN_PROGRESS
;
284 return vchan_tx_prep(&hsuc
->vchan
, &desc
->vdesc
, flags
);
287 static void hsu_dma_issue_pending(struct dma_chan
*chan
)
289 struct hsu_dma_chan
*hsuc
= to_hsu_dma_chan(chan
);
292 spin_lock_irqsave(&hsuc
->vchan
.lock
, flags
);
293 if (vchan_issue_pending(&hsuc
->vchan
) && !hsuc
->desc
)
294 hsu_dma_start_transfer(hsuc
);
295 spin_unlock_irqrestore(&hsuc
->vchan
.lock
, flags
);
298 static size_t hsu_dma_active_desc_size(struct hsu_dma_chan
*hsuc
)
300 struct hsu_dma_desc
*desc
= hsuc
->desc
;
304 for (i
= desc
->active
; i
< desc
->nents
; i
++)
305 bytes
+= desc
->sg
[i
].len
;
307 i
= HSU_DMA_CHAN_NR_DESC
- 1;
309 bytes
+= hsu_chan_readl(hsuc
, HSU_CH_DxTSR(i
));
315 static enum dma_status
hsu_dma_tx_status(struct dma_chan
*chan
,
316 dma_cookie_t cookie
, struct dma_tx_state
*state
)
318 struct hsu_dma_chan
*hsuc
= to_hsu_dma_chan(chan
);
319 struct virt_dma_desc
*vdesc
;
320 enum dma_status status
;
324 status
= dma_cookie_status(chan
, cookie
, state
);
325 if (status
== DMA_COMPLETE
)
328 spin_lock_irqsave(&hsuc
->vchan
.lock
, flags
);
329 vdesc
= vchan_find_desc(&hsuc
->vchan
, cookie
);
330 if (hsuc
->desc
&& cookie
== hsuc
->desc
->vdesc
.tx
.cookie
) {
331 bytes
= hsu_dma_active_desc_size(hsuc
);
332 dma_set_residue(state
, bytes
);
333 status
= hsuc
->desc
->status
;
335 bytes
= to_hsu_dma_desc(vdesc
)->length
;
336 dma_set_residue(state
, bytes
);
338 spin_unlock_irqrestore(&hsuc
->vchan
.lock
, flags
);
343 static int hsu_dma_slave_config(struct dma_chan
*chan
,
344 struct dma_slave_config
*config
)
346 struct hsu_dma_chan
*hsuc
= to_hsu_dma_chan(chan
);
348 memcpy(&hsuc
->config
, config
, sizeof(hsuc
->config
));
353 static int hsu_dma_pause(struct dma_chan
*chan
)
355 struct hsu_dma_chan
*hsuc
= to_hsu_dma_chan(chan
);
358 spin_lock_irqsave(&hsuc
->vchan
.lock
, flags
);
359 if (hsuc
->desc
&& hsuc
->desc
->status
== DMA_IN_PROGRESS
) {
360 hsu_chan_disable(hsuc
);
361 hsuc
->desc
->status
= DMA_PAUSED
;
363 spin_unlock_irqrestore(&hsuc
->vchan
.lock
, flags
);
368 static int hsu_dma_resume(struct dma_chan
*chan
)
370 struct hsu_dma_chan
*hsuc
= to_hsu_dma_chan(chan
);
373 spin_lock_irqsave(&hsuc
->vchan
.lock
, flags
);
374 if (hsuc
->desc
&& hsuc
->desc
->status
== DMA_PAUSED
) {
375 hsuc
->desc
->status
= DMA_IN_PROGRESS
;
376 hsu_chan_enable(hsuc
);
378 spin_unlock_irqrestore(&hsuc
->vchan
.lock
, flags
);
383 static int hsu_dma_terminate_all(struct dma_chan
*chan
)
385 struct hsu_dma_chan
*hsuc
= to_hsu_dma_chan(chan
);
389 spin_lock_irqsave(&hsuc
->vchan
.lock
, flags
);
391 hsu_dma_stop_channel(hsuc
);
393 hsu_dma_desc_free(&hsuc
->desc
->vdesc
);
397 vchan_get_all_descriptors(&hsuc
->vchan
, &head
);
398 spin_unlock_irqrestore(&hsuc
->vchan
.lock
, flags
);
399 vchan_dma_desc_free_list(&hsuc
->vchan
, &head
);
404 static void hsu_dma_free_chan_resources(struct dma_chan
*chan
)
406 vchan_free_chan_resources(to_virt_chan(chan
));
409 static void hsu_dma_synchronize(struct dma_chan
*chan
)
411 struct hsu_dma_chan
*hsuc
= to_hsu_dma_chan(chan
);
413 vchan_synchronize(&hsuc
->vchan
);
416 int hsu_dma_probe(struct hsu_dma_chip
*chip
)
419 void __iomem
*addr
= chip
->regs
+ chip
->offset
;
423 hsu
= devm_kzalloc(chip
->dev
, sizeof(*hsu
), GFP_KERNEL
);
429 /* Calculate nr_channels from the IO space length */
430 hsu
->nr_channels
= (chip
->length
- chip
->offset
) / HSU_DMA_CHAN_LENGTH
;
432 hsu
->chan
= devm_kcalloc(chip
->dev
, hsu
->nr_channels
,
433 sizeof(*hsu
->chan
), GFP_KERNEL
);
437 INIT_LIST_HEAD(&hsu
->dma
.channels
);
438 for (i
= 0; i
< hsu
->nr_channels
; i
++) {
439 struct hsu_dma_chan
*hsuc
= &hsu
->chan
[i
];
441 hsuc
->vchan
.desc_free
= hsu_dma_desc_free
;
442 vchan_init(&hsuc
->vchan
, &hsu
->dma
);
444 hsuc
->direction
= (i
& 0x1) ? DMA_DEV_TO_MEM
: DMA_MEM_TO_DEV
;
445 hsuc
->reg
= addr
+ i
* HSU_DMA_CHAN_LENGTH
;
448 dma_cap_set(DMA_SLAVE
, hsu
->dma
.cap_mask
);
449 dma_cap_set(DMA_PRIVATE
, hsu
->dma
.cap_mask
);
451 hsu
->dma
.device_free_chan_resources
= hsu_dma_free_chan_resources
;
453 hsu
->dma
.device_prep_slave_sg
= hsu_dma_prep_slave_sg
;
455 hsu
->dma
.device_issue_pending
= hsu_dma_issue_pending
;
456 hsu
->dma
.device_tx_status
= hsu_dma_tx_status
;
458 hsu
->dma
.device_config
= hsu_dma_slave_config
;
459 hsu
->dma
.device_pause
= hsu_dma_pause
;
460 hsu
->dma
.device_resume
= hsu_dma_resume
;
461 hsu
->dma
.device_terminate_all
= hsu_dma_terminate_all
;
462 hsu
->dma
.device_synchronize
= hsu_dma_synchronize
;
464 hsu
->dma
.src_addr_widths
= HSU_DMA_BUSWIDTHS
;
465 hsu
->dma
.dst_addr_widths
= HSU_DMA_BUSWIDTHS
;
466 hsu
->dma
.directions
= BIT(DMA_DEV_TO_MEM
) | BIT(DMA_MEM_TO_DEV
);
467 hsu
->dma
.residue_granularity
= DMA_RESIDUE_GRANULARITY_BURST
;
469 hsu
->dma
.dev
= chip
->dev
;
471 dma_set_max_seg_size(hsu
->dma
.dev
, HSU_CH_DxTSR_MASK
);
473 ret
= dma_async_device_register(&hsu
->dma
);
477 dev_info(chip
->dev
, "Found HSU DMA, %d channels\n", hsu
->nr_channels
);
480 EXPORT_SYMBOL_GPL(hsu_dma_probe
);
482 int hsu_dma_remove(struct hsu_dma_chip
*chip
)
484 struct hsu_dma
*hsu
= chip
->hsu
;
487 dma_async_device_unregister(&hsu
->dma
);
489 for (i
= 0; i
< hsu
->nr_channels
; i
++) {
490 struct hsu_dma_chan
*hsuc
= &hsu
->chan
[i
];
492 tasklet_kill(&hsuc
->vchan
.task
);
497 EXPORT_SYMBOL_GPL(hsu_dma_remove
);
499 MODULE_LICENSE("GPL v2");
500 MODULE_DESCRIPTION("High Speed UART DMA core driver");
501 MODULE_AUTHOR("Andy Shevchenko <andriy.shevchenko@linux.intel.com>");