Merge tag 'block-5.11-2021-01-10' of git://git.kernel.dk/linux-block
[linux/fpc-iii.git] / drivers / dma / mmp_pdma.c
blobb84303be8edf55d5ed1dfdf80e5705d8f30fc918
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright 2012 Marvell International Ltd.
4 */
6 #include <linux/err.h>
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/types.h>
10 #include <linux/interrupt.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/slab.h>
13 #include <linux/dmaengine.h>
14 #include <linux/platform_device.h>
15 #include <linux/device.h>
16 #include <linux/platform_data/mmp_dma.h>
17 #include <linux/dmapool.h>
18 #include <linux/of_device.h>
19 #include <linux/of_dma.h>
20 #include <linux/of.h>
21 #include <linux/dma/mmp-pdma.h>
23 #include "dmaengine.h"
25 #define DCSR 0x0000
26 #define DALGN 0x00a0
27 #define DINT 0x00f0
28 #define DDADR 0x0200
29 #define DSADR(n) (0x0204 + ((n) << 4))
30 #define DTADR(n) (0x0208 + ((n) << 4))
31 #define DCMD 0x020c
33 #define DCSR_RUN BIT(31) /* Run Bit (read / write) */
34 #define DCSR_NODESC BIT(30) /* No-Descriptor Fetch (read / write) */
35 #define DCSR_STOPIRQEN BIT(29) /* Stop Interrupt Enable (read / write) */
36 #define DCSR_REQPEND BIT(8) /* Request Pending (read-only) */
37 #define DCSR_STOPSTATE BIT(3) /* Stop State (read-only) */
38 #define DCSR_ENDINTR BIT(2) /* End Interrupt (read / write) */
39 #define DCSR_STARTINTR BIT(1) /* Start Interrupt (read / write) */
40 #define DCSR_BUSERR BIT(0) /* Bus Error Interrupt (read / write) */
42 #define DCSR_EORIRQEN BIT(28) /* End of Receive Interrupt Enable (R/W) */
43 #define DCSR_EORJMPEN BIT(27) /* Jump to next descriptor on EOR */
44 #define DCSR_EORSTOPEN BIT(26) /* STOP on an EOR */
45 #define DCSR_SETCMPST BIT(25) /* Set Descriptor Compare Status */
46 #define DCSR_CLRCMPST BIT(24) /* Clear Descriptor Compare Status */
47 #define DCSR_CMPST BIT(10) /* The Descriptor Compare Status */
48 #define DCSR_EORINTR BIT(9) /* The end of Receive */
50 #define DRCMR(n) ((((n) < 64) ? 0x0100 : 0x1100) + (((n) & 0x3f) << 2))
51 #define DRCMR_MAPVLD BIT(7) /* Map Valid (read / write) */
52 #define DRCMR_CHLNUM 0x1f /* mask for Channel Number (read / write) */
54 #define DDADR_DESCADDR 0xfffffff0 /* Address of next descriptor (mask) */
55 #define DDADR_STOP BIT(0) /* Stop (read / write) */
57 #define DCMD_INCSRCADDR BIT(31) /* Source Address Increment Setting. */
58 #define DCMD_INCTRGADDR BIT(30) /* Target Address Increment Setting. */
59 #define DCMD_FLOWSRC BIT(29) /* Flow Control by the source. */
60 #define DCMD_FLOWTRG BIT(28) /* Flow Control by the target. */
61 #define DCMD_STARTIRQEN BIT(22) /* Start Interrupt Enable */
62 #define DCMD_ENDIRQEN BIT(21) /* End Interrupt Enable */
63 #define DCMD_ENDIAN BIT(18) /* Device Endian-ness. */
64 #define DCMD_BURST8 (1 << 16) /* 8 byte burst */
65 #define DCMD_BURST16 (2 << 16) /* 16 byte burst */
66 #define DCMD_BURST32 (3 << 16) /* 32 byte burst */
67 #define DCMD_WIDTH1 (1 << 14) /* 1 byte width */
68 #define DCMD_WIDTH2 (2 << 14) /* 2 byte width (HalfWord) */
69 #define DCMD_WIDTH4 (3 << 14) /* 4 byte width (Word) */
70 #define DCMD_LENGTH 0x01fff /* length mask (max = 8K - 1) */
72 #define PDMA_MAX_DESC_BYTES DCMD_LENGTH
74 struct mmp_pdma_desc_hw {
75 u32 ddadr; /* Points to the next descriptor + flags */
76 u32 dsadr; /* DSADR value for the current transfer */
77 u32 dtadr; /* DTADR value for the current transfer */
78 u32 dcmd; /* DCMD value for the current transfer */
79 } __aligned(32);
81 struct mmp_pdma_desc_sw {
82 struct mmp_pdma_desc_hw desc;
83 struct list_head node;
84 struct list_head tx_list;
85 struct dma_async_tx_descriptor async_tx;
88 struct mmp_pdma_phy;
90 struct mmp_pdma_chan {
91 struct device *dev;
92 struct dma_chan chan;
93 struct dma_async_tx_descriptor desc;
94 struct mmp_pdma_phy *phy;
95 enum dma_transfer_direction dir;
96 struct dma_slave_config slave_config;
98 struct mmp_pdma_desc_sw *cyclic_first; /* first desc_sw if channel
99 * is in cyclic mode */
101 /* channel's basic info */
102 struct tasklet_struct tasklet;
103 u32 dcmd;
104 u32 drcmr;
105 u32 dev_addr;
107 /* list for desc */
108 spinlock_t desc_lock; /* Descriptor list lock */
109 struct list_head chain_pending; /* Link descriptors queue for pending */
110 struct list_head chain_running; /* Link descriptors queue for running */
111 bool idle; /* channel statue machine */
112 bool byte_align;
114 struct dma_pool *desc_pool; /* Descriptors pool */
117 struct mmp_pdma_phy {
118 int idx;
119 void __iomem *base;
120 struct mmp_pdma_chan *vchan;
123 struct mmp_pdma_device {
124 int dma_channels;
125 void __iomem *base;
126 struct device *dev;
127 struct dma_device device;
128 struct mmp_pdma_phy *phy;
129 spinlock_t phy_lock; /* protect alloc/free phy channels */
132 #define tx_to_mmp_pdma_desc(tx) \
133 container_of(tx, struct mmp_pdma_desc_sw, async_tx)
134 #define to_mmp_pdma_desc(lh) \
135 container_of(lh, struct mmp_pdma_desc_sw, node)
136 #define to_mmp_pdma_chan(dchan) \
137 container_of(dchan, struct mmp_pdma_chan, chan)
138 #define to_mmp_pdma_dev(dmadev) \
139 container_of(dmadev, struct mmp_pdma_device, device)
141 static int mmp_pdma_config_write(struct dma_chan *dchan,
142 struct dma_slave_config *cfg,
143 enum dma_transfer_direction direction);
145 static void set_desc(struct mmp_pdma_phy *phy, dma_addr_t addr)
147 u32 reg = (phy->idx << 4) + DDADR;
149 writel(addr, phy->base + reg);
152 static void enable_chan(struct mmp_pdma_phy *phy)
154 u32 reg, dalgn;
156 if (!phy->vchan)
157 return;
159 reg = DRCMR(phy->vchan->drcmr);
160 writel(DRCMR_MAPVLD | phy->idx, phy->base + reg);
162 dalgn = readl(phy->base + DALGN);
163 if (phy->vchan->byte_align)
164 dalgn |= 1 << phy->idx;
165 else
166 dalgn &= ~(1 << phy->idx);
167 writel(dalgn, phy->base + DALGN);
169 reg = (phy->idx << 2) + DCSR;
170 writel(readl(phy->base + reg) | DCSR_RUN, phy->base + reg);
173 static void disable_chan(struct mmp_pdma_phy *phy)
175 u32 reg;
177 if (!phy)
178 return;
180 reg = (phy->idx << 2) + DCSR;
181 writel(readl(phy->base + reg) & ~DCSR_RUN, phy->base + reg);
184 static int clear_chan_irq(struct mmp_pdma_phy *phy)
186 u32 dcsr;
187 u32 dint = readl(phy->base + DINT);
188 u32 reg = (phy->idx << 2) + DCSR;
190 if (!(dint & BIT(phy->idx)))
191 return -EAGAIN;
193 /* clear irq */
194 dcsr = readl(phy->base + reg);
195 writel(dcsr, phy->base + reg);
196 if ((dcsr & DCSR_BUSERR) && (phy->vchan))
197 dev_warn(phy->vchan->dev, "DCSR_BUSERR\n");
199 return 0;
202 static irqreturn_t mmp_pdma_chan_handler(int irq, void *dev_id)
204 struct mmp_pdma_phy *phy = dev_id;
206 if (clear_chan_irq(phy) != 0)
207 return IRQ_NONE;
209 tasklet_schedule(&phy->vchan->tasklet);
210 return IRQ_HANDLED;
213 static irqreturn_t mmp_pdma_int_handler(int irq, void *dev_id)
215 struct mmp_pdma_device *pdev = dev_id;
216 struct mmp_pdma_phy *phy;
217 u32 dint = readl(pdev->base + DINT);
218 int i, ret;
219 int irq_num = 0;
221 while (dint) {
222 i = __ffs(dint);
223 /* only handle interrupts belonging to pdma driver*/
224 if (i >= pdev->dma_channels)
225 break;
226 dint &= (dint - 1);
227 phy = &pdev->phy[i];
228 ret = mmp_pdma_chan_handler(irq, phy);
229 if (ret == IRQ_HANDLED)
230 irq_num++;
233 if (irq_num)
234 return IRQ_HANDLED;
236 return IRQ_NONE;
239 /* lookup free phy channel as descending priority */
240 static struct mmp_pdma_phy *lookup_phy(struct mmp_pdma_chan *pchan)
242 int prio, i;
243 struct mmp_pdma_device *pdev = to_mmp_pdma_dev(pchan->chan.device);
244 struct mmp_pdma_phy *phy, *found = NULL;
245 unsigned long flags;
248 * dma channel priorities
249 * ch 0 - 3, 16 - 19 <--> (0)
250 * ch 4 - 7, 20 - 23 <--> (1)
251 * ch 8 - 11, 24 - 27 <--> (2)
252 * ch 12 - 15, 28 - 31 <--> (3)
255 spin_lock_irqsave(&pdev->phy_lock, flags);
256 for (prio = 0; prio <= ((pdev->dma_channels - 1) & 0xf) >> 2; prio++) {
257 for (i = 0; i < pdev->dma_channels; i++) {
258 if (prio != (i & 0xf) >> 2)
259 continue;
260 phy = &pdev->phy[i];
261 if (!phy->vchan) {
262 phy->vchan = pchan;
263 found = phy;
264 goto out_unlock;
269 out_unlock:
270 spin_unlock_irqrestore(&pdev->phy_lock, flags);
271 return found;
274 static void mmp_pdma_free_phy(struct mmp_pdma_chan *pchan)
276 struct mmp_pdma_device *pdev = to_mmp_pdma_dev(pchan->chan.device);
277 unsigned long flags;
278 u32 reg;
280 if (!pchan->phy)
281 return;
283 /* clear the channel mapping in DRCMR */
284 reg = DRCMR(pchan->drcmr);
285 writel(0, pchan->phy->base + reg);
287 spin_lock_irqsave(&pdev->phy_lock, flags);
288 pchan->phy->vchan = NULL;
289 pchan->phy = NULL;
290 spin_unlock_irqrestore(&pdev->phy_lock, flags);
294 * start_pending_queue - transfer any pending transactions
295 * pending list ==> running list
297 static void start_pending_queue(struct mmp_pdma_chan *chan)
299 struct mmp_pdma_desc_sw *desc;
301 /* still in running, irq will start the pending list */
302 if (!chan->idle) {
303 dev_dbg(chan->dev, "DMA controller still busy\n");
304 return;
307 if (list_empty(&chan->chain_pending)) {
308 /* chance to re-fetch phy channel with higher prio */
309 mmp_pdma_free_phy(chan);
310 dev_dbg(chan->dev, "no pending list\n");
311 return;
314 if (!chan->phy) {
315 chan->phy = lookup_phy(chan);
316 if (!chan->phy) {
317 dev_dbg(chan->dev, "no free dma channel\n");
318 return;
323 * pending -> running
324 * reintilize pending list
326 desc = list_first_entry(&chan->chain_pending,
327 struct mmp_pdma_desc_sw, node);
328 list_splice_tail_init(&chan->chain_pending, &chan->chain_running);
331 * Program the descriptor's address into the DMA controller,
332 * then start the DMA transaction
334 set_desc(chan->phy, desc->async_tx.phys);
335 enable_chan(chan->phy);
336 chan->idle = false;
340 /* desc->tx_list ==> pending list */
341 static dma_cookie_t mmp_pdma_tx_submit(struct dma_async_tx_descriptor *tx)
343 struct mmp_pdma_chan *chan = to_mmp_pdma_chan(tx->chan);
344 struct mmp_pdma_desc_sw *desc = tx_to_mmp_pdma_desc(tx);
345 struct mmp_pdma_desc_sw *child;
346 unsigned long flags;
347 dma_cookie_t cookie = -EBUSY;
349 spin_lock_irqsave(&chan->desc_lock, flags);
351 list_for_each_entry(child, &desc->tx_list, node) {
352 cookie = dma_cookie_assign(&child->async_tx);
355 /* softly link to pending list - desc->tx_list ==> pending list */
356 list_splice_tail_init(&desc->tx_list, &chan->chain_pending);
358 spin_unlock_irqrestore(&chan->desc_lock, flags);
360 return cookie;
363 static struct mmp_pdma_desc_sw *
364 mmp_pdma_alloc_descriptor(struct mmp_pdma_chan *chan)
366 struct mmp_pdma_desc_sw *desc;
367 dma_addr_t pdesc;
369 desc = dma_pool_zalloc(chan->desc_pool, GFP_ATOMIC, &pdesc);
370 if (!desc) {
371 dev_err(chan->dev, "out of memory for link descriptor\n");
372 return NULL;
375 INIT_LIST_HEAD(&desc->tx_list);
376 dma_async_tx_descriptor_init(&desc->async_tx, &chan->chan);
377 /* each desc has submit */
378 desc->async_tx.tx_submit = mmp_pdma_tx_submit;
379 desc->async_tx.phys = pdesc;
381 return desc;
385 * mmp_pdma_alloc_chan_resources - Allocate resources for DMA channel.
387 * This function will create a dma pool for descriptor allocation.
388 * Request irq only when channel is requested
389 * Return - The number of allocated descriptors.
392 static int mmp_pdma_alloc_chan_resources(struct dma_chan *dchan)
394 struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan);
396 if (chan->desc_pool)
397 return 1;
399 chan->desc_pool = dma_pool_create(dev_name(&dchan->dev->device),
400 chan->dev,
401 sizeof(struct mmp_pdma_desc_sw),
402 __alignof__(struct mmp_pdma_desc_sw),
404 if (!chan->desc_pool) {
405 dev_err(chan->dev, "unable to allocate descriptor pool\n");
406 return -ENOMEM;
409 mmp_pdma_free_phy(chan);
410 chan->idle = true;
411 chan->dev_addr = 0;
412 return 1;
415 static void mmp_pdma_free_desc_list(struct mmp_pdma_chan *chan,
416 struct list_head *list)
418 struct mmp_pdma_desc_sw *desc, *_desc;
420 list_for_each_entry_safe(desc, _desc, list, node) {
421 list_del(&desc->node);
422 dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
426 static void mmp_pdma_free_chan_resources(struct dma_chan *dchan)
428 struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan);
429 unsigned long flags;
431 spin_lock_irqsave(&chan->desc_lock, flags);
432 mmp_pdma_free_desc_list(chan, &chan->chain_pending);
433 mmp_pdma_free_desc_list(chan, &chan->chain_running);
434 spin_unlock_irqrestore(&chan->desc_lock, flags);
436 dma_pool_destroy(chan->desc_pool);
437 chan->desc_pool = NULL;
438 chan->idle = true;
439 chan->dev_addr = 0;
440 mmp_pdma_free_phy(chan);
441 return;
444 static struct dma_async_tx_descriptor *
445 mmp_pdma_prep_memcpy(struct dma_chan *dchan,
446 dma_addr_t dma_dst, dma_addr_t dma_src,
447 size_t len, unsigned long flags)
449 struct mmp_pdma_chan *chan;
450 struct mmp_pdma_desc_sw *first = NULL, *prev = NULL, *new;
451 size_t copy = 0;
453 if (!dchan)
454 return NULL;
456 if (!len)
457 return NULL;
459 chan = to_mmp_pdma_chan(dchan);
460 chan->byte_align = false;
462 if (!chan->dir) {
463 chan->dir = DMA_MEM_TO_MEM;
464 chan->dcmd = DCMD_INCTRGADDR | DCMD_INCSRCADDR;
465 chan->dcmd |= DCMD_BURST32;
468 do {
469 /* Allocate the link descriptor from DMA pool */
470 new = mmp_pdma_alloc_descriptor(chan);
471 if (!new) {
472 dev_err(chan->dev, "no memory for desc\n");
473 goto fail;
476 copy = min_t(size_t, len, PDMA_MAX_DESC_BYTES);
477 if (dma_src & 0x7 || dma_dst & 0x7)
478 chan->byte_align = true;
480 new->desc.dcmd = chan->dcmd | (DCMD_LENGTH & copy);
481 new->desc.dsadr = dma_src;
482 new->desc.dtadr = dma_dst;
484 if (!first)
485 first = new;
486 else
487 prev->desc.ddadr = new->async_tx.phys;
489 new->async_tx.cookie = 0;
490 async_tx_ack(&new->async_tx);
492 prev = new;
493 len -= copy;
495 if (chan->dir == DMA_MEM_TO_DEV) {
496 dma_src += copy;
497 } else if (chan->dir == DMA_DEV_TO_MEM) {
498 dma_dst += copy;
499 } else if (chan->dir == DMA_MEM_TO_MEM) {
500 dma_src += copy;
501 dma_dst += copy;
504 /* Insert the link descriptor to the LD ring */
505 list_add_tail(&new->node, &first->tx_list);
506 } while (len);
508 first->async_tx.flags = flags; /* client is in control of this ack */
509 first->async_tx.cookie = -EBUSY;
511 /* last desc and fire IRQ */
512 new->desc.ddadr = DDADR_STOP;
513 new->desc.dcmd |= DCMD_ENDIRQEN;
515 chan->cyclic_first = NULL;
517 return &first->async_tx;
519 fail:
520 if (first)
521 mmp_pdma_free_desc_list(chan, &first->tx_list);
522 return NULL;
525 static struct dma_async_tx_descriptor *
526 mmp_pdma_prep_slave_sg(struct dma_chan *dchan, struct scatterlist *sgl,
527 unsigned int sg_len, enum dma_transfer_direction dir,
528 unsigned long flags, void *context)
530 struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan);
531 struct mmp_pdma_desc_sw *first = NULL, *prev = NULL, *new = NULL;
532 size_t len, avail;
533 struct scatterlist *sg;
534 dma_addr_t addr;
535 int i;
537 if ((sgl == NULL) || (sg_len == 0))
538 return NULL;
540 chan->byte_align = false;
542 mmp_pdma_config_write(dchan, &chan->slave_config, dir);
544 for_each_sg(sgl, sg, sg_len, i) {
545 addr = sg_dma_address(sg);
546 avail = sg_dma_len(sgl);
548 do {
549 len = min_t(size_t, avail, PDMA_MAX_DESC_BYTES);
550 if (addr & 0x7)
551 chan->byte_align = true;
553 /* allocate and populate the descriptor */
554 new = mmp_pdma_alloc_descriptor(chan);
555 if (!new) {
556 dev_err(chan->dev, "no memory for desc\n");
557 goto fail;
560 new->desc.dcmd = chan->dcmd | (DCMD_LENGTH & len);
561 if (dir == DMA_MEM_TO_DEV) {
562 new->desc.dsadr = addr;
563 new->desc.dtadr = chan->dev_addr;
564 } else {
565 new->desc.dsadr = chan->dev_addr;
566 new->desc.dtadr = addr;
569 if (!first)
570 first = new;
571 else
572 prev->desc.ddadr = new->async_tx.phys;
574 new->async_tx.cookie = 0;
575 async_tx_ack(&new->async_tx);
576 prev = new;
578 /* Insert the link descriptor to the LD ring */
579 list_add_tail(&new->node, &first->tx_list);
581 /* update metadata */
582 addr += len;
583 avail -= len;
584 } while (avail);
587 first->async_tx.cookie = -EBUSY;
588 first->async_tx.flags = flags;
590 /* last desc and fire IRQ */
591 new->desc.ddadr = DDADR_STOP;
592 new->desc.dcmd |= DCMD_ENDIRQEN;
594 chan->dir = dir;
595 chan->cyclic_first = NULL;
597 return &first->async_tx;
599 fail:
600 if (first)
601 mmp_pdma_free_desc_list(chan, &first->tx_list);
602 return NULL;
605 static struct dma_async_tx_descriptor *
606 mmp_pdma_prep_dma_cyclic(struct dma_chan *dchan,
607 dma_addr_t buf_addr, size_t len, size_t period_len,
608 enum dma_transfer_direction direction,
609 unsigned long flags)
611 struct mmp_pdma_chan *chan;
612 struct mmp_pdma_desc_sw *first = NULL, *prev = NULL, *new;
613 dma_addr_t dma_src, dma_dst;
615 if (!dchan || !len || !period_len)
616 return NULL;
618 /* the buffer length must be a multiple of period_len */
619 if (len % period_len != 0)
620 return NULL;
622 if (period_len > PDMA_MAX_DESC_BYTES)
623 return NULL;
625 chan = to_mmp_pdma_chan(dchan);
626 mmp_pdma_config_write(dchan, &chan->slave_config, direction);
628 switch (direction) {
629 case DMA_MEM_TO_DEV:
630 dma_src = buf_addr;
631 dma_dst = chan->dev_addr;
632 break;
633 case DMA_DEV_TO_MEM:
634 dma_dst = buf_addr;
635 dma_src = chan->dev_addr;
636 break;
637 default:
638 dev_err(chan->dev, "Unsupported direction for cyclic DMA\n");
639 return NULL;
642 chan->dir = direction;
644 do {
645 /* Allocate the link descriptor from DMA pool */
646 new = mmp_pdma_alloc_descriptor(chan);
647 if (!new) {
648 dev_err(chan->dev, "no memory for desc\n");
649 goto fail;
652 new->desc.dcmd = (chan->dcmd | DCMD_ENDIRQEN |
653 (DCMD_LENGTH & period_len));
654 new->desc.dsadr = dma_src;
655 new->desc.dtadr = dma_dst;
657 if (!first)
658 first = new;
659 else
660 prev->desc.ddadr = new->async_tx.phys;
662 new->async_tx.cookie = 0;
663 async_tx_ack(&new->async_tx);
665 prev = new;
666 len -= period_len;
668 if (chan->dir == DMA_MEM_TO_DEV)
669 dma_src += period_len;
670 else
671 dma_dst += period_len;
673 /* Insert the link descriptor to the LD ring */
674 list_add_tail(&new->node, &first->tx_list);
675 } while (len);
677 first->async_tx.flags = flags; /* client is in control of this ack */
678 first->async_tx.cookie = -EBUSY;
680 /* make the cyclic link */
681 new->desc.ddadr = first->async_tx.phys;
682 chan->cyclic_first = first;
684 return &first->async_tx;
686 fail:
687 if (first)
688 mmp_pdma_free_desc_list(chan, &first->tx_list);
689 return NULL;
692 static int mmp_pdma_config_write(struct dma_chan *dchan,
693 struct dma_slave_config *cfg,
694 enum dma_transfer_direction direction)
696 struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan);
697 u32 maxburst = 0, addr = 0;
698 enum dma_slave_buswidth width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
700 if (!dchan)
701 return -EINVAL;
703 if (direction == DMA_DEV_TO_MEM) {
704 chan->dcmd = DCMD_INCTRGADDR | DCMD_FLOWSRC;
705 maxburst = cfg->src_maxburst;
706 width = cfg->src_addr_width;
707 addr = cfg->src_addr;
708 } else if (direction == DMA_MEM_TO_DEV) {
709 chan->dcmd = DCMD_INCSRCADDR | DCMD_FLOWTRG;
710 maxburst = cfg->dst_maxburst;
711 width = cfg->dst_addr_width;
712 addr = cfg->dst_addr;
715 if (width == DMA_SLAVE_BUSWIDTH_1_BYTE)
716 chan->dcmd |= DCMD_WIDTH1;
717 else if (width == DMA_SLAVE_BUSWIDTH_2_BYTES)
718 chan->dcmd |= DCMD_WIDTH2;
719 else if (width == DMA_SLAVE_BUSWIDTH_4_BYTES)
720 chan->dcmd |= DCMD_WIDTH4;
722 if (maxburst == 8)
723 chan->dcmd |= DCMD_BURST8;
724 else if (maxburst == 16)
725 chan->dcmd |= DCMD_BURST16;
726 else if (maxburst == 32)
727 chan->dcmd |= DCMD_BURST32;
729 chan->dir = direction;
730 chan->dev_addr = addr;
731 /* FIXME: drivers should be ported over to use the filter
732 * function. Once that's done, the following two lines can
733 * be removed.
735 if (cfg->slave_id)
736 chan->drcmr = cfg->slave_id;
738 return 0;
741 static int mmp_pdma_config(struct dma_chan *dchan,
742 struct dma_slave_config *cfg)
744 struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan);
746 memcpy(&chan->slave_config, cfg, sizeof(*cfg));
747 return 0;
750 static int mmp_pdma_terminate_all(struct dma_chan *dchan)
752 struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan);
753 unsigned long flags;
755 if (!dchan)
756 return -EINVAL;
758 disable_chan(chan->phy);
759 mmp_pdma_free_phy(chan);
760 spin_lock_irqsave(&chan->desc_lock, flags);
761 mmp_pdma_free_desc_list(chan, &chan->chain_pending);
762 mmp_pdma_free_desc_list(chan, &chan->chain_running);
763 spin_unlock_irqrestore(&chan->desc_lock, flags);
764 chan->idle = true;
766 return 0;
769 static unsigned int mmp_pdma_residue(struct mmp_pdma_chan *chan,
770 dma_cookie_t cookie)
772 struct mmp_pdma_desc_sw *sw;
773 u32 curr, residue = 0;
774 bool passed = false;
775 bool cyclic = chan->cyclic_first != NULL;
778 * If the channel does not have a phy pointer anymore, it has already
779 * been completed. Therefore, its residue is 0.
781 if (!chan->phy)
782 return 0;
784 if (chan->dir == DMA_DEV_TO_MEM)
785 curr = readl(chan->phy->base + DTADR(chan->phy->idx));
786 else
787 curr = readl(chan->phy->base + DSADR(chan->phy->idx));
789 list_for_each_entry(sw, &chan->chain_running, node) {
790 u32 start, end, len;
792 if (chan->dir == DMA_DEV_TO_MEM)
793 start = sw->desc.dtadr;
794 else
795 start = sw->desc.dsadr;
797 len = sw->desc.dcmd & DCMD_LENGTH;
798 end = start + len;
801 * 'passed' will be latched once we found the descriptor which
802 * lies inside the boundaries of the curr pointer. All
803 * descriptors that occur in the list _after_ we found that
804 * partially handled descriptor are still to be processed and
805 * are hence added to the residual bytes counter.
808 if (passed) {
809 residue += len;
810 } else if (curr >= start && curr <= end) {
811 residue += end - curr;
812 passed = true;
816 * Descriptors that have the ENDIRQEN bit set mark the end of a
817 * transaction chain, and the cookie assigned with it has been
818 * returned previously from mmp_pdma_tx_submit().
820 * In case we have multiple transactions in the running chain,
821 * and the cookie does not match the one the user asked us
822 * about, reset the state variables and start over.
824 * This logic does not apply to cyclic transactions, where all
825 * descriptors have the ENDIRQEN bit set, and for which we
826 * can't have multiple transactions on one channel anyway.
828 if (cyclic || !(sw->desc.dcmd & DCMD_ENDIRQEN))
829 continue;
831 if (sw->async_tx.cookie == cookie) {
832 return residue;
833 } else {
834 residue = 0;
835 passed = false;
839 /* We should only get here in case of cyclic transactions */
840 return residue;
843 static enum dma_status mmp_pdma_tx_status(struct dma_chan *dchan,
844 dma_cookie_t cookie,
845 struct dma_tx_state *txstate)
847 struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan);
848 enum dma_status ret;
850 ret = dma_cookie_status(dchan, cookie, txstate);
851 if (likely(ret != DMA_ERROR))
852 dma_set_residue(txstate, mmp_pdma_residue(chan, cookie));
854 return ret;
858 * mmp_pdma_issue_pending - Issue the DMA start command
859 * pending list ==> running list
861 static void mmp_pdma_issue_pending(struct dma_chan *dchan)
863 struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan);
864 unsigned long flags;
866 spin_lock_irqsave(&chan->desc_lock, flags);
867 start_pending_queue(chan);
868 spin_unlock_irqrestore(&chan->desc_lock, flags);
872 * dma_do_tasklet
873 * Do call back
874 * Start pending list
876 static void dma_do_tasklet(struct tasklet_struct *t)
878 struct mmp_pdma_chan *chan = from_tasklet(chan, t, tasklet);
879 struct mmp_pdma_desc_sw *desc, *_desc;
880 LIST_HEAD(chain_cleanup);
881 unsigned long flags;
882 struct dmaengine_desc_callback cb;
884 if (chan->cyclic_first) {
885 spin_lock_irqsave(&chan->desc_lock, flags);
886 desc = chan->cyclic_first;
887 dmaengine_desc_get_callback(&desc->async_tx, &cb);
888 spin_unlock_irqrestore(&chan->desc_lock, flags);
890 dmaengine_desc_callback_invoke(&cb, NULL);
892 return;
895 /* submit pending list; callback for each desc; free desc */
896 spin_lock_irqsave(&chan->desc_lock, flags);
898 list_for_each_entry_safe(desc, _desc, &chan->chain_running, node) {
900 * move the descriptors to a temporary list so we can drop
901 * the lock during the entire cleanup operation
903 list_move(&desc->node, &chain_cleanup);
906 * Look for the first list entry which has the ENDIRQEN flag
907 * set. That is the descriptor we got an interrupt for, so
908 * complete that transaction and its cookie.
910 if (desc->desc.dcmd & DCMD_ENDIRQEN) {
911 dma_cookie_t cookie = desc->async_tx.cookie;
912 dma_cookie_complete(&desc->async_tx);
913 dev_dbg(chan->dev, "completed_cookie=%d\n", cookie);
914 break;
919 * The hardware is idle and ready for more when the
920 * chain_running list is empty.
922 chan->idle = list_empty(&chan->chain_running);
924 /* Start any pending transactions automatically */
925 start_pending_queue(chan);
926 spin_unlock_irqrestore(&chan->desc_lock, flags);
928 /* Run the callback for each descriptor, in order */
929 list_for_each_entry_safe(desc, _desc, &chain_cleanup, node) {
930 struct dma_async_tx_descriptor *txd = &desc->async_tx;
932 /* Remove from the list of transactions */
933 list_del(&desc->node);
934 /* Run the link descriptor callback function */
935 dmaengine_desc_get_callback(txd, &cb);
936 dmaengine_desc_callback_invoke(&cb, NULL);
938 dma_pool_free(chan->desc_pool, desc, txd->phys);
942 static int mmp_pdma_remove(struct platform_device *op)
944 struct mmp_pdma_device *pdev = platform_get_drvdata(op);
945 struct mmp_pdma_phy *phy;
946 int i, irq = 0, irq_num = 0;
948 if (op->dev.of_node)
949 of_dma_controller_free(op->dev.of_node);
951 for (i = 0; i < pdev->dma_channels; i++) {
952 if (platform_get_irq(op, i) > 0)
953 irq_num++;
956 if (irq_num != pdev->dma_channels) {
957 irq = platform_get_irq(op, 0);
958 devm_free_irq(&op->dev, irq, pdev);
959 } else {
960 for (i = 0; i < pdev->dma_channels; i++) {
961 phy = &pdev->phy[i];
962 irq = platform_get_irq(op, i);
963 devm_free_irq(&op->dev, irq, phy);
967 dma_async_device_unregister(&pdev->device);
968 return 0;
971 static int mmp_pdma_chan_init(struct mmp_pdma_device *pdev, int idx, int irq)
973 struct mmp_pdma_phy *phy = &pdev->phy[idx];
974 struct mmp_pdma_chan *chan;
975 int ret;
977 chan = devm_kzalloc(pdev->dev, sizeof(*chan), GFP_KERNEL);
978 if (chan == NULL)
979 return -ENOMEM;
981 phy->idx = idx;
982 phy->base = pdev->base;
984 if (irq) {
985 ret = devm_request_irq(pdev->dev, irq, mmp_pdma_chan_handler,
986 IRQF_SHARED, "pdma", phy);
987 if (ret) {
988 dev_err(pdev->dev, "channel request irq fail!\n");
989 return ret;
993 spin_lock_init(&chan->desc_lock);
994 chan->dev = pdev->dev;
995 chan->chan.device = &pdev->device;
996 tasklet_setup(&chan->tasklet, dma_do_tasklet);
997 INIT_LIST_HEAD(&chan->chain_pending);
998 INIT_LIST_HEAD(&chan->chain_running);
1000 /* register virt channel to dma engine */
1001 list_add_tail(&chan->chan.device_node, &pdev->device.channels);
1003 return 0;
1006 static const struct of_device_id mmp_pdma_dt_ids[] = {
1007 { .compatible = "marvell,pdma-1.0", },
1010 MODULE_DEVICE_TABLE(of, mmp_pdma_dt_ids);
1012 static struct dma_chan *mmp_pdma_dma_xlate(struct of_phandle_args *dma_spec,
1013 struct of_dma *ofdma)
1015 struct mmp_pdma_device *d = ofdma->of_dma_data;
1016 struct dma_chan *chan;
1018 chan = dma_get_any_slave_channel(&d->device);
1019 if (!chan)
1020 return NULL;
1022 to_mmp_pdma_chan(chan)->drcmr = dma_spec->args[0];
1024 return chan;
1027 static int mmp_pdma_probe(struct platform_device *op)
1029 struct mmp_pdma_device *pdev;
1030 const struct of_device_id *of_id;
1031 struct mmp_dma_platdata *pdata = dev_get_platdata(&op->dev);
1032 struct resource *iores;
1033 int i, ret, irq = 0;
1034 int dma_channels = 0, irq_num = 0;
1035 const enum dma_slave_buswidth widths =
1036 DMA_SLAVE_BUSWIDTH_1_BYTE | DMA_SLAVE_BUSWIDTH_2_BYTES |
1037 DMA_SLAVE_BUSWIDTH_4_BYTES;
1039 pdev = devm_kzalloc(&op->dev, sizeof(*pdev), GFP_KERNEL);
1040 if (!pdev)
1041 return -ENOMEM;
1043 pdev->dev = &op->dev;
1045 spin_lock_init(&pdev->phy_lock);
1047 iores = platform_get_resource(op, IORESOURCE_MEM, 0);
1048 pdev->base = devm_ioremap_resource(pdev->dev, iores);
1049 if (IS_ERR(pdev->base))
1050 return PTR_ERR(pdev->base);
1052 of_id = of_match_device(mmp_pdma_dt_ids, pdev->dev);
1053 if (of_id)
1054 of_property_read_u32(pdev->dev->of_node, "#dma-channels",
1055 &dma_channels);
1056 else if (pdata && pdata->dma_channels)
1057 dma_channels = pdata->dma_channels;
1058 else
1059 dma_channels = 32; /* default 32 channel */
1060 pdev->dma_channels = dma_channels;
1062 for (i = 0; i < dma_channels; i++) {
1063 if (platform_get_irq_optional(op, i) > 0)
1064 irq_num++;
1067 pdev->phy = devm_kcalloc(pdev->dev, dma_channels, sizeof(*pdev->phy),
1068 GFP_KERNEL);
1069 if (pdev->phy == NULL)
1070 return -ENOMEM;
1072 INIT_LIST_HEAD(&pdev->device.channels);
1074 if (irq_num != dma_channels) {
1075 /* all chan share one irq, demux inside */
1076 irq = platform_get_irq(op, 0);
1077 ret = devm_request_irq(pdev->dev, irq, mmp_pdma_int_handler,
1078 IRQF_SHARED, "pdma", pdev);
1079 if (ret)
1080 return ret;
1083 for (i = 0; i < dma_channels; i++) {
1084 irq = (irq_num != dma_channels) ? 0 : platform_get_irq(op, i);
1085 ret = mmp_pdma_chan_init(pdev, i, irq);
1086 if (ret)
1087 return ret;
1090 dma_cap_set(DMA_SLAVE, pdev->device.cap_mask);
1091 dma_cap_set(DMA_MEMCPY, pdev->device.cap_mask);
1092 dma_cap_set(DMA_CYCLIC, pdev->device.cap_mask);
1093 dma_cap_set(DMA_PRIVATE, pdev->device.cap_mask);
1094 pdev->device.dev = &op->dev;
1095 pdev->device.device_alloc_chan_resources = mmp_pdma_alloc_chan_resources;
1096 pdev->device.device_free_chan_resources = mmp_pdma_free_chan_resources;
1097 pdev->device.device_tx_status = mmp_pdma_tx_status;
1098 pdev->device.device_prep_dma_memcpy = mmp_pdma_prep_memcpy;
1099 pdev->device.device_prep_slave_sg = mmp_pdma_prep_slave_sg;
1100 pdev->device.device_prep_dma_cyclic = mmp_pdma_prep_dma_cyclic;
1101 pdev->device.device_issue_pending = mmp_pdma_issue_pending;
1102 pdev->device.device_config = mmp_pdma_config;
1103 pdev->device.device_terminate_all = mmp_pdma_terminate_all;
1104 pdev->device.copy_align = DMAENGINE_ALIGN_8_BYTES;
1105 pdev->device.src_addr_widths = widths;
1106 pdev->device.dst_addr_widths = widths;
1107 pdev->device.directions = BIT(DMA_MEM_TO_DEV) | BIT(DMA_DEV_TO_MEM);
1108 pdev->device.residue_granularity = DMA_RESIDUE_GRANULARITY_DESCRIPTOR;
1110 if (pdev->dev->coherent_dma_mask)
1111 dma_set_mask(pdev->dev, pdev->dev->coherent_dma_mask);
1112 else
1113 dma_set_mask(pdev->dev, DMA_BIT_MASK(64));
1115 ret = dma_async_device_register(&pdev->device);
1116 if (ret) {
1117 dev_err(pdev->device.dev, "unable to register\n");
1118 return ret;
1121 if (op->dev.of_node) {
1122 /* Device-tree DMA controller registration */
1123 ret = of_dma_controller_register(op->dev.of_node,
1124 mmp_pdma_dma_xlate, pdev);
1125 if (ret < 0) {
1126 dev_err(&op->dev, "of_dma_controller_register failed\n");
1127 return ret;
1131 platform_set_drvdata(op, pdev);
1132 dev_info(pdev->device.dev, "initialized %d channels\n", dma_channels);
1133 return 0;
1136 static const struct platform_device_id mmp_pdma_id_table[] = {
1137 { "mmp-pdma", },
1138 { },
1141 static struct platform_driver mmp_pdma_driver = {
1142 .driver = {
1143 .name = "mmp-pdma",
1144 .of_match_table = mmp_pdma_dt_ids,
1146 .id_table = mmp_pdma_id_table,
1147 .probe = mmp_pdma_probe,
1148 .remove = mmp_pdma_remove,
1151 bool mmp_pdma_filter_fn(struct dma_chan *chan, void *param)
1153 struct mmp_pdma_chan *c = to_mmp_pdma_chan(chan);
1155 if (chan->device->dev->driver != &mmp_pdma_driver.driver)
1156 return false;
1158 c->drcmr = *(unsigned int *)param;
1160 return true;
1162 EXPORT_SYMBOL_GPL(mmp_pdma_filter_fn);
1164 module_platform_driver(mmp_pdma_driver);
1166 MODULE_DESCRIPTION("MARVELL MMP Peripheral DMA Driver");
1167 MODULE_AUTHOR("Marvell International Ltd.");
1168 MODULE_LICENSE("GPL v2");