1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Intel Sandy Bridge -EN/-EP/-EX Memory Controller kernel module
4 * This driver supports the memory controllers found on the Intel
5 * processor family Sandy Bridge.
7 * Copyright (c) 2011 by:
8 * Mauro Carvalho Chehab
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/pci.h>
14 #include <linux/pci_ids.h>
15 #include <linux/slab.h>
16 #include <linux/delay.h>
17 #include <linux/edac.h>
18 #include <linux/mmzone.h>
19 #include <linux/smp.h>
20 #include <linux/bitmap.h>
21 #include <linux/math64.h>
22 #include <linux/mod_devicetable.h>
23 #include <asm/cpu_device_id.h>
24 #include <asm/intel-family.h>
25 #include <asm/processor.h>
28 #include "edac_module.h"
31 static LIST_HEAD(sbridge_edac_list
);
34 * Alter this version for the module when modifications are made
36 #define SBRIDGE_REVISION " Ver: 1.1.2 "
37 #define EDAC_MOD_STR "sb_edac"
42 #define sbridge_printk(level, fmt, arg...) \
43 edac_printk(level, "sbridge", fmt, ##arg)
45 #define sbridge_mc_printk(mci, level, fmt, arg...) \
46 edac_mc_chipset_printk(mci, level, "sbridge", fmt, ##arg)
49 * Get a bit field at register value <v>, from bit <lo> to bit <hi>
51 #define GET_BITFIELD(v, lo, hi) \
52 (((v) & GENMASK_ULL(hi, lo)) >> (lo))
54 /* Devices 12 Function 6, Offsets 0x80 to 0xcc */
55 static const u32 sbridge_dram_rule
[] = {
56 0x80, 0x88, 0x90, 0x98, 0xa0,
57 0xa8, 0xb0, 0xb8, 0xc0, 0xc8,
60 static const u32 ibridge_dram_rule
[] = {
61 0x60, 0x68, 0x70, 0x78, 0x80,
62 0x88, 0x90, 0x98, 0xa0, 0xa8,
63 0xb0, 0xb8, 0xc0, 0xc8, 0xd0,
64 0xd8, 0xe0, 0xe8, 0xf0, 0xf8,
67 static const u32 knl_dram_rule
[] = {
68 0x60, 0x68, 0x70, 0x78, 0x80, /* 0-4 */
69 0x88, 0x90, 0x98, 0xa0, 0xa8, /* 5-9 */
70 0xb0, 0xb8, 0xc0, 0xc8, 0xd0, /* 10-14 */
71 0xd8, 0xe0, 0xe8, 0xf0, 0xf8, /* 15-19 */
72 0x100, 0x108, 0x110, 0x118, /* 20-23 */
75 #define DRAM_RULE_ENABLE(reg) GET_BITFIELD(reg, 0, 0)
76 #define A7MODE(reg) GET_BITFIELD(reg, 26, 26)
78 static char *show_dram_attr(u32 attr
)
92 static const u32 sbridge_interleave_list
[] = {
93 0x84, 0x8c, 0x94, 0x9c, 0xa4,
94 0xac, 0xb4, 0xbc, 0xc4, 0xcc,
97 static const u32 ibridge_interleave_list
[] = {
98 0x64, 0x6c, 0x74, 0x7c, 0x84,
99 0x8c, 0x94, 0x9c, 0xa4, 0xac,
100 0xb4, 0xbc, 0xc4, 0xcc, 0xd4,
101 0xdc, 0xe4, 0xec, 0xf4, 0xfc,
104 static const u32 knl_interleave_list
[] = {
105 0x64, 0x6c, 0x74, 0x7c, 0x84, /* 0-4 */
106 0x8c, 0x94, 0x9c, 0xa4, 0xac, /* 5-9 */
107 0xb4, 0xbc, 0xc4, 0xcc, 0xd4, /* 10-14 */
108 0xdc, 0xe4, 0xec, 0xf4, 0xfc, /* 15-19 */
109 0x104, 0x10c, 0x114, 0x11c, /* 20-23 */
111 #define MAX_INTERLEAVE \
112 (max_t(unsigned int, ARRAY_SIZE(sbridge_interleave_list), \
113 max_t(unsigned int, ARRAY_SIZE(ibridge_interleave_list), \
114 ARRAY_SIZE(knl_interleave_list))))
116 struct interleave_pkg
{
121 static const struct interleave_pkg sbridge_interleave_pkg
[] = {
132 static const struct interleave_pkg ibridge_interleave_pkg
[] = {
143 static inline int sad_pkg(const struct interleave_pkg
*table
, u32 reg
,
146 return GET_BITFIELD(reg
, table
[interleave
].start
,
147 table
[interleave
].end
);
150 /* Devices 12 Function 7 */
154 #define HASWELL_TOLM 0xd0
155 #define HASWELL_TOHM_0 0xd4
156 #define HASWELL_TOHM_1 0xd8
157 #define KNL_TOLM 0xd0
158 #define KNL_TOHM_0 0xd4
159 #define KNL_TOHM_1 0xd8
161 #define GET_TOLM(reg) ((GET_BITFIELD(reg, 0, 3) << 28) | 0x3ffffff)
162 #define GET_TOHM(reg) ((GET_BITFIELD(reg, 0, 20) << 25) | 0x3ffffff)
164 /* Device 13 Function 6 */
166 #define SAD_TARGET 0xf0
168 #define SOURCE_ID(reg) GET_BITFIELD(reg, 9, 11)
170 #define SOURCE_ID_KNL(reg) GET_BITFIELD(reg, 12, 14)
172 #define SAD_CONTROL 0xf4
174 /* Device 14 function 0 */
176 static const u32 tad_dram_rule
[] = {
177 0x40, 0x44, 0x48, 0x4c,
178 0x50, 0x54, 0x58, 0x5c,
179 0x60, 0x64, 0x68, 0x6c,
181 #define MAX_TAD ARRAY_SIZE(tad_dram_rule)
183 #define TAD_LIMIT(reg) ((GET_BITFIELD(reg, 12, 31) << 26) | 0x3ffffff)
184 #define TAD_SOCK(reg) GET_BITFIELD(reg, 10, 11)
185 #define TAD_CH(reg) GET_BITFIELD(reg, 8, 9)
186 #define TAD_TGT3(reg) GET_BITFIELD(reg, 6, 7)
187 #define TAD_TGT2(reg) GET_BITFIELD(reg, 4, 5)
188 #define TAD_TGT1(reg) GET_BITFIELD(reg, 2, 3)
189 #define TAD_TGT0(reg) GET_BITFIELD(reg, 0, 1)
191 /* Device 15, function 0 */
194 #define KNL_MCMTR 0x624
196 #define IS_ECC_ENABLED(mcmtr) GET_BITFIELD(mcmtr, 2, 2)
197 #define IS_LOCKSTEP_ENABLED(mcmtr) GET_BITFIELD(mcmtr, 1, 1)
198 #define IS_CLOSE_PG(mcmtr) GET_BITFIELD(mcmtr, 0, 0)
200 /* Device 15, function 1 */
202 #define RASENABLES 0xac
203 #define IS_MIRROR_ENABLED(reg) GET_BITFIELD(reg, 0, 0)
205 /* Device 15, functions 2-5 */
207 static const int mtr_regs
[] = {
211 static const int knl_mtr_reg
= 0xb60;
213 #define RANK_DISABLE(mtr) GET_BITFIELD(mtr, 16, 19)
214 #define IS_DIMM_PRESENT(mtr) GET_BITFIELD(mtr, 14, 14)
215 #define RANK_CNT_BITS(mtr) GET_BITFIELD(mtr, 12, 13)
216 #define RANK_WIDTH_BITS(mtr) GET_BITFIELD(mtr, 2, 4)
217 #define COL_WIDTH_BITS(mtr) GET_BITFIELD(mtr, 0, 1)
219 static const u32 tad_ch_nilv_offset
[] = {
220 0x90, 0x94, 0x98, 0x9c,
221 0xa0, 0xa4, 0xa8, 0xac,
222 0xb0, 0xb4, 0xb8, 0xbc,
224 #define CHN_IDX_OFFSET(reg) GET_BITFIELD(reg, 28, 29)
225 #define TAD_OFFSET(reg) (GET_BITFIELD(reg, 6, 25) << 26)
227 static const u32 rir_way_limit
[] = {
228 0x108, 0x10c, 0x110, 0x114, 0x118,
230 #define MAX_RIR_RANGES ARRAY_SIZE(rir_way_limit)
232 #define IS_RIR_VALID(reg) GET_BITFIELD(reg, 31, 31)
233 #define RIR_WAY(reg) GET_BITFIELD(reg, 28, 29)
235 #define MAX_RIR_WAY 8
237 static const u32 rir_offset
[MAX_RIR_RANGES
][MAX_RIR_WAY
] = {
238 { 0x120, 0x124, 0x128, 0x12c, 0x130, 0x134, 0x138, 0x13c },
239 { 0x140, 0x144, 0x148, 0x14c, 0x150, 0x154, 0x158, 0x15c },
240 { 0x160, 0x164, 0x168, 0x16c, 0x170, 0x174, 0x178, 0x17c },
241 { 0x180, 0x184, 0x188, 0x18c, 0x190, 0x194, 0x198, 0x19c },
242 { 0x1a0, 0x1a4, 0x1a8, 0x1ac, 0x1b0, 0x1b4, 0x1b8, 0x1bc },
245 #define RIR_RNK_TGT(type, reg) (((type) == BROADWELL) ? \
246 GET_BITFIELD(reg, 20, 23) : GET_BITFIELD(reg, 16, 19))
248 #define RIR_OFFSET(type, reg) (((type) == HASWELL || (type) == BROADWELL) ? \
249 GET_BITFIELD(reg, 2, 15) : GET_BITFIELD(reg, 2, 14))
251 /* Device 16, functions 2-7 */
254 * FIXME: Implement the error count reads directly
257 #define RANK_ODD_OV(reg) GET_BITFIELD(reg, 31, 31)
258 #define RANK_ODD_ERR_CNT(reg) GET_BITFIELD(reg, 16, 30)
259 #define RANK_EVEN_OV(reg) GET_BITFIELD(reg, 15, 15)
260 #define RANK_EVEN_ERR_CNT(reg) GET_BITFIELD(reg, 0, 14)
262 #if 0 /* Currently unused*/
263 static const u32 correrrcnt
[] = {
264 0x104, 0x108, 0x10c, 0x110,
267 static const u32 correrrthrsld
[] = {
268 0x11c, 0x120, 0x124, 0x128,
272 #define RANK_ODD_ERR_THRSLD(reg) GET_BITFIELD(reg, 16, 30)
273 #define RANK_EVEN_ERR_THRSLD(reg) GET_BITFIELD(reg, 0, 14)
276 /* Device 17, function 0 */
278 #define SB_RANK_CFG_A 0x0328
280 #define IB_RANK_CFG_A 0x0320
286 #define NUM_CHANNELS 6 /* Max channels per MC */
287 #define MAX_DIMMS 3 /* Max DIMMS per channel */
288 #define KNL_MAX_CHAS 38 /* KNL max num. of Cache Home Agents */
289 #define KNL_MAX_CHANNELS 6 /* KNL max num. of PCI channels */
290 #define KNL_MAX_EDCS 8 /* Embedded DRAM controllers */
291 #define CHANNEL_UNSPECIFIED 0xf /* Intel IA32 SDM 15-14 */
307 enum mirroring_mode
{
309 ADDR_RANGE_MIRRORING
,
314 struct sbridge_info
{
318 u64 (*get_tolm
)(struct sbridge_pvt
*pvt
);
319 u64 (*get_tohm
)(struct sbridge_pvt
*pvt
);
320 u64 (*rir_limit
)(u32 reg
);
321 u64 (*sad_limit
)(u32 reg
);
322 u32 (*interleave_mode
)(u32 reg
);
323 u32 (*dram_attr
)(u32 reg
);
324 const u32
*dram_rule
;
325 const u32
*interleave_list
;
326 const struct interleave_pkg
*interleave_pkg
;
328 u8 (*get_node_id
)(struct sbridge_pvt
*pvt
);
329 u8 (*get_ha
)(u8 bank
);
330 enum mem_type (*get_memory_type
)(struct sbridge_pvt
*pvt
);
331 enum dev_type (*get_width
)(struct sbridge_pvt
*pvt
, u32 mtr
);
332 struct pci_dev
*pci_vtd
;
335 struct sbridge_channel
{
340 struct pci_id_descr
{
346 struct pci_id_table
{
347 const struct pci_id_descr
*descr
;
355 struct list_head list
;
358 u8 node_id
, source_id
;
359 struct pci_dev
**pdev
;
363 struct mem_ctl_info
*mci
;
367 struct pci_dev
*pci_cha
[KNL_MAX_CHAS
];
368 struct pci_dev
*pci_channel
[KNL_MAX_CHANNELS
];
369 struct pci_dev
*pci_mc0
;
370 struct pci_dev
*pci_mc1
;
371 struct pci_dev
*pci_mc0_misc
;
372 struct pci_dev
*pci_mc1_misc
;
373 struct pci_dev
*pci_mc_info
; /* tolm, tohm */
377 /* Devices per socket */
378 struct pci_dev
*pci_ddrio
;
379 struct pci_dev
*pci_sad0
, *pci_sad1
;
380 struct pci_dev
*pci_br0
, *pci_br1
;
381 /* Devices per memory controller */
382 struct pci_dev
*pci_ha
, *pci_ta
, *pci_ras
;
383 struct pci_dev
*pci_tad
[NUM_CHANNELS
];
385 struct sbridge_dev
*sbridge_dev
;
387 struct sbridge_info info
;
388 struct sbridge_channel channel
[NUM_CHANNELS
];
390 /* Memory type detection */
391 bool is_cur_addr_mirrored
, is_lockstep
, is_close_pg
;
393 enum mirroring_mode mirror_mode
;
395 /* Memory description */
400 #define PCI_DESCR(device_id, opt, domain) \
401 .dev_id = (device_id), \
405 static const struct pci_id_descr pci_dev_descr_sbridge
[] = {
406 /* Processor Home Agent */
407 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0
, 0, IMC0
) },
409 /* Memory controller */
410 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA
, 0, IMC0
) },
411 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS
, 0, IMC0
) },
412 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0
, 0, IMC0
) },
413 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1
, 0, IMC0
) },
414 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2
, 0, IMC0
) },
415 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3
, 0, IMC0
) },
416 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO
, 1, SOCK
) },
418 /* System Address Decoder */
419 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0
, 0, SOCK
) },
420 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1
, 0, SOCK
) },
422 /* Broadcast Registers */
423 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_BR
, 0, SOCK
) },
426 #define PCI_ID_TABLE_ENTRY(A, N, M, T) { \
428 .n_devs_per_imc = N, \
429 .n_devs_per_sock = ARRAY_SIZE(A), \
430 .n_imcs_per_sock = M, \
434 static const struct pci_id_table pci_dev_descr_sbridge_table
[] = {
435 PCI_ID_TABLE_ENTRY(pci_dev_descr_sbridge
, ARRAY_SIZE(pci_dev_descr_sbridge
), 1, SANDY_BRIDGE
),
436 {0,} /* 0 terminated list. */
439 /* This changes depending if 1HA or 2HA:
441 * 0x0eb8 (17.0) is DDRIO0
443 * 0x0ebc (17.4) is DDRIO0
445 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0 0x0eb8
446 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0 0x0ebc
449 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0 0x0ea0
450 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA 0x0ea8
451 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS 0x0e71
452 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0 0x0eaa
453 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1 0x0eab
454 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2 0x0eac
455 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3 0x0ead
456 #define PCI_DEVICE_ID_INTEL_IBRIDGE_SAD 0x0ec8
457 #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR0 0x0ec9
458 #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR1 0x0eca
459 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1 0x0e60
460 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA 0x0e68
461 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS 0x0e79
462 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0 0x0e6a
463 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1 0x0e6b
464 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2 0x0e6c
465 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3 0x0e6d
467 static const struct pci_id_descr pci_dev_descr_ibridge
[] = {
468 /* Processor Home Agent */
469 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0
, 0, IMC0
) },
470 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1
, 1, IMC1
) },
472 /* Memory controller */
473 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA
, 0, IMC0
) },
474 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS
, 0, IMC0
) },
475 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0
, 0, IMC0
) },
476 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1
, 0, IMC0
) },
477 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2
, 0, IMC0
) },
478 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3
, 0, IMC0
) },
480 /* Optional, mode 2HA */
481 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA
, 1, IMC1
) },
482 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS
, 1, IMC1
) },
483 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0
, 1, IMC1
) },
484 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1
, 1, IMC1
) },
485 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2
, 1, IMC1
) },
486 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3
, 1, IMC1
) },
488 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0
, 1, SOCK
) },
489 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0
, 1, SOCK
) },
491 /* System Address Decoder */
492 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_SAD
, 0, SOCK
) },
494 /* Broadcast Registers */
495 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR0
, 1, SOCK
) },
496 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR1
, 0, SOCK
) },
500 static const struct pci_id_table pci_dev_descr_ibridge_table
[] = {
501 PCI_ID_TABLE_ENTRY(pci_dev_descr_ibridge
, 12, 2, IVY_BRIDGE
),
502 {0,} /* 0 terminated list. */
505 /* Haswell support */
508 * - 3 DDR3 channels, 2 DPC per channel
511 * - 4 DDR4 channels, 3 DPC per channel
514 * - 4 DDR4 channels, 3 DPC per channel
517 * - each IMC interfaces with a SMI 2 channel
518 * - each SMI channel interfaces with a scalable memory buffer
519 * - each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
521 #define HASWELL_DDRCRCLKCONTROLS 0xa10 /* Ditto on Broadwell */
522 #define HASWELL_HASYSDEFEATURE2 0x84
523 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC 0x2f28
524 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0 0x2fa0
525 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1 0x2f60
526 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA 0x2fa8
527 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM 0x2f71
528 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA 0x2f68
529 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM 0x2f79
530 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0 0x2ffc
531 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1 0x2ffd
532 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0 0x2faa
533 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1 0x2fab
534 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2 0x2fac
535 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3 0x2fad
536 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0 0x2f6a
537 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1 0x2f6b
538 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2 0x2f6c
539 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3 0x2f6d
540 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0 0x2fbd
541 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1 0x2fbf
542 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2 0x2fb9
543 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3 0x2fbb
544 static const struct pci_id_descr pci_dev_descr_haswell
[] = {
545 /* first item must be the HA */
546 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0
, 0, IMC0
) },
547 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1
, 1, IMC1
) },
549 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA
, 0, IMC0
) },
550 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM
, 0, IMC0
) },
551 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0
, 0, IMC0
) },
552 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1
, 0, IMC0
) },
553 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2
, 1, IMC0
) },
554 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3
, 1, IMC0
) },
556 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA
, 1, IMC1
) },
557 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM
, 1, IMC1
) },
558 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0
, 1, IMC1
) },
559 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1
, 1, IMC1
) },
560 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2
, 1, IMC1
) },
561 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3
, 1, IMC1
) },
563 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0
, 0, SOCK
) },
564 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1
, 0, SOCK
) },
565 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0
, 1, SOCK
) },
566 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1
, 1, SOCK
) },
567 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2
, 1, SOCK
) },
568 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3
, 1, SOCK
) },
571 static const struct pci_id_table pci_dev_descr_haswell_table
[] = {
572 PCI_ID_TABLE_ENTRY(pci_dev_descr_haswell
, 13, 2, HASWELL
),
573 {0,} /* 0 terminated list. */
576 /* Knight's Landing Support */
578 * KNL's memory channels are swizzled between memory controllers.
579 * MC0 is mapped to CH3,4,5 and MC1 is mapped to CH0,1,2
581 #define knl_channel_remap(mc, chan) ((mc) ? (chan) : (chan) + 3)
583 /* Memory controller, TAD tables, error injection - 2-8-0, 2-9-0 (2 of these) */
584 #define PCI_DEVICE_ID_INTEL_KNL_IMC_MC 0x7840
585 /* DRAM channel stuff; bank addrs, dimmmtr, etc.. 2-8-2 - 2-9-4 (6 of these) */
586 #define PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN 0x7843
587 /* kdrwdbu TAD limits/offsets, MCMTR - 2-10-1, 2-11-1 (2 of these) */
588 #define PCI_DEVICE_ID_INTEL_KNL_IMC_TA 0x7844
589 /* CHA broadcast registers, dram rules - 1-29-0 (1 of these) */
590 #define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0 0x782a
591 /* SAD target - 1-29-1 (1 of these) */
592 #define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1 0x782b
593 /* Caching / Home Agent */
594 #define PCI_DEVICE_ID_INTEL_KNL_IMC_CHA 0x782c
595 /* Device with TOLM and TOHM, 0-5-0 (1 of these) */
596 #define PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM 0x7810
599 * KNL differs from SB, IB, and Haswell in that it has multiple
600 * instances of the same device with the same device ID, so we handle that
601 * by creating as many copies in the table as we expect to find.
602 * (Like device ID must be grouped together.)
605 static const struct pci_id_descr pci_dev_descr_knl
[] = {
606 [0 ... 1] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_MC
, 0, IMC0
)},
607 [2 ... 7] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN
, 0, IMC0
) },
608 [8] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TA
, 0, IMC0
) },
609 [9] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM
, 0, IMC0
) },
610 [10] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0
, 0, SOCK
) },
611 [11] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1
, 0, SOCK
) },
612 [12 ... 49] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHA
, 0, SOCK
) },
615 static const struct pci_id_table pci_dev_descr_knl_table
[] = {
616 PCI_ID_TABLE_ENTRY(pci_dev_descr_knl
, ARRAY_SIZE(pci_dev_descr_knl
), 1, KNIGHTS_LANDING
),
625 * - 2 DDR3 channels, 2 DPC per channel
628 * - 4 DDR4 channels, 3 DPC per channel
631 * - 4 DDR4 channels, 3 DPC per channel
634 * - each IMC interfaces with a SMI 2 channel
635 * - each SMI channel interfaces with a scalable memory buffer
636 * - each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
638 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC 0x6f28
639 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0 0x6fa0
640 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1 0x6f60
641 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA 0x6fa8
642 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM 0x6f71
643 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA 0x6f68
644 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM 0x6f79
645 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0 0x6ffc
646 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1 0x6ffd
647 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0 0x6faa
648 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1 0x6fab
649 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2 0x6fac
650 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3 0x6fad
651 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0 0x6f6a
652 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1 0x6f6b
653 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2 0x6f6c
654 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3 0x6f6d
655 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0 0x6faf
657 static const struct pci_id_descr pci_dev_descr_broadwell
[] = {
658 /* first item must be the HA */
659 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0
, 0, IMC0
) },
660 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1
, 1, IMC1
) },
662 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA
, 0, IMC0
) },
663 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM
, 0, IMC0
) },
664 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0
, 0, IMC0
) },
665 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1
, 0, IMC0
) },
666 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2
, 1, IMC0
) },
667 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3
, 1, IMC0
) },
669 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA
, 1, IMC1
) },
670 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM
, 1, IMC1
) },
671 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0
, 1, IMC1
) },
672 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1
, 1, IMC1
) },
673 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2
, 1, IMC1
) },
674 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3
, 1, IMC1
) },
676 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0
, 0, SOCK
) },
677 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1
, 0, SOCK
) },
678 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0
, 1, SOCK
) },
681 static const struct pci_id_table pci_dev_descr_broadwell_table
[] = {
682 PCI_ID_TABLE_ENTRY(pci_dev_descr_broadwell
, 10, 2, BROADWELL
),
683 {0,} /* 0 terminated list. */
687 /****************************************************************************
688 Ancillary status routines
689 ****************************************************************************/
691 static inline int numrank(enum type type
, u32 mtr
)
693 int ranks
= (1 << RANK_CNT_BITS(mtr
));
696 if (type
== HASWELL
|| type
== BROADWELL
|| type
== KNIGHTS_LANDING
)
700 edac_dbg(0, "Invalid number of ranks: %d (max = %i) raw value = %x (%04x)\n",
701 ranks
, max
, (unsigned int)RANK_CNT_BITS(mtr
), mtr
);
708 static inline int numrow(u32 mtr
)
710 int rows
= (RANK_WIDTH_BITS(mtr
) + 12);
712 if (rows
< 13 || rows
> 18) {
713 edac_dbg(0, "Invalid number of rows: %d (should be between 14 and 17) raw value = %x (%04x)\n",
714 rows
, (unsigned int)RANK_WIDTH_BITS(mtr
), mtr
);
721 static inline int numcol(u32 mtr
)
723 int cols
= (COL_WIDTH_BITS(mtr
) + 10);
726 edac_dbg(0, "Invalid number of cols: %d (max = 4) raw value = %x (%04x)\n",
727 cols
, (unsigned int)COL_WIDTH_BITS(mtr
), mtr
);
734 static struct sbridge_dev
*get_sbridge_dev(int seg
, u8 bus
, enum domain dom
,
736 struct sbridge_dev
*prev
)
738 struct sbridge_dev
*sbridge_dev
;
741 * If we have devices scattered across several busses that pertain
742 * to the same memory controller, we'll lump them all together.
745 return list_first_entry_or_null(&sbridge_edac_list
,
746 struct sbridge_dev
, list
);
749 sbridge_dev
= list_entry(prev
? prev
->list
.next
750 : sbridge_edac_list
.next
, struct sbridge_dev
, list
);
752 list_for_each_entry_from(sbridge_dev
, &sbridge_edac_list
, list
) {
753 if ((sbridge_dev
->seg
== seg
) && (sbridge_dev
->bus
== bus
) &&
754 (dom
== SOCK
|| dom
== sbridge_dev
->dom
))
761 static struct sbridge_dev
*alloc_sbridge_dev(int seg
, u8 bus
, enum domain dom
,
762 const struct pci_id_table
*table
)
764 struct sbridge_dev
*sbridge_dev
;
766 sbridge_dev
= kzalloc(sizeof(*sbridge_dev
), GFP_KERNEL
);
770 sbridge_dev
->pdev
= kcalloc(table
->n_devs_per_imc
,
771 sizeof(*sbridge_dev
->pdev
),
773 if (!sbridge_dev
->pdev
) {
778 sbridge_dev
->seg
= seg
;
779 sbridge_dev
->bus
= bus
;
780 sbridge_dev
->dom
= dom
;
781 sbridge_dev
->n_devs
= table
->n_devs_per_imc
;
782 list_add_tail(&sbridge_dev
->list
, &sbridge_edac_list
);
787 static void free_sbridge_dev(struct sbridge_dev
*sbridge_dev
)
789 list_del(&sbridge_dev
->list
);
790 kfree(sbridge_dev
->pdev
);
794 static u64
sbridge_get_tolm(struct sbridge_pvt
*pvt
)
798 /* Address range is 32:28 */
799 pci_read_config_dword(pvt
->pci_sad1
, TOLM
, ®
);
800 return GET_TOLM(reg
);
803 static u64
sbridge_get_tohm(struct sbridge_pvt
*pvt
)
807 pci_read_config_dword(pvt
->pci_sad1
, TOHM
, ®
);
808 return GET_TOHM(reg
);
811 static u64
ibridge_get_tolm(struct sbridge_pvt
*pvt
)
815 pci_read_config_dword(pvt
->pci_br1
, TOLM
, ®
);
817 return GET_TOLM(reg
);
820 static u64
ibridge_get_tohm(struct sbridge_pvt
*pvt
)
824 pci_read_config_dword(pvt
->pci_br1
, TOHM
, ®
);
826 return GET_TOHM(reg
);
829 static u64
rir_limit(u32 reg
)
831 return ((u64
)GET_BITFIELD(reg
, 1, 10) << 29) | 0x1fffffff;
834 static u64
sad_limit(u32 reg
)
836 return (GET_BITFIELD(reg
, 6, 25) << 26) | 0x3ffffff;
839 static u32
interleave_mode(u32 reg
)
841 return GET_BITFIELD(reg
, 1, 1);
844 static u32
dram_attr(u32 reg
)
846 return GET_BITFIELD(reg
, 2, 3);
849 static u64
knl_sad_limit(u32 reg
)
851 return (GET_BITFIELD(reg
, 7, 26) << 26) | 0x3ffffff;
854 static u32
knl_interleave_mode(u32 reg
)
856 return GET_BITFIELD(reg
, 1, 2);
859 static const char * const knl_intlv_mode
[] = {
860 "[8:6]", "[10:8]", "[14:12]", "[32:30]"
863 static const char *get_intlv_mode_str(u32 reg
, enum type t
)
865 if (t
== KNIGHTS_LANDING
)
866 return knl_intlv_mode
[knl_interleave_mode(reg
)];
868 return interleave_mode(reg
) ? "[8:6]" : "[8:6]XOR[18:16]";
871 static u32
dram_attr_knl(u32 reg
)
873 return GET_BITFIELD(reg
, 3, 4);
877 static enum mem_type
get_memory_type(struct sbridge_pvt
*pvt
)
882 if (pvt
->pci_ddrio
) {
883 pci_read_config_dword(pvt
->pci_ddrio
, pvt
->info
.rankcfgr
,
885 if (GET_BITFIELD(reg
, 11, 11))
886 /* FIXME: Can also be LRDIMM */
896 static enum mem_type
haswell_get_memory_type(struct sbridge_pvt
*pvt
)
899 bool registered
= false;
900 enum mem_type mtype
= MEM_UNKNOWN
;
905 pci_read_config_dword(pvt
->pci_ddrio
,
906 HASWELL_DDRCRCLKCONTROLS
, ®
);
908 if (GET_BITFIELD(reg
, 16, 16))
911 pci_read_config_dword(pvt
->pci_ta
, MCMTR
, ®
);
912 if (GET_BITFIELD(reg
, 14, 14)) {
928 static enum dev_type
knl_get_width(struct sbridge_pvt
*pvt
, u32 mtr
)
930 /* for KNL value is fixed */
934 static enum dev_type
sbridge_get_width(struct sbridge_pvt
*pvt
, u32 mtr
)
936 /* there's no way to figure out */
940 static enum dev_type
__ibridge_get_width(u32 mtr
)
942 enum dev_type type
= DEV_UNKNOWN
;
959 static enum dev_type
ibridge_get_width(struct sbridge_pvt
*pvt
, u32 mtr
)
962 * ddr3_width on the documentation but also valid for DDR4 on
965 return __ibridge_get_width(GET_BITFIELD(mtr
, 7, 8));
968 static enum dev_type
broadwell_get_width(struct sbridge_pvt
*pvt
, u32 mtr
)
970 /* ddr3_width on the documentation but also valid for DDR4 */
971 return __ibridge_get_width(GET_BITFIELD(mtr
, 8, 9));
974 static enum mem_type
knl_get_memory_type(struct sbridge_pvt
*pvt
)
976 /* DDR4 RDIMMS and LRDIMMS are supported */
980 static u8
get_node_id(struct sbridge_pvt
*pvt
)
983 pci_read_config_dword(pvt
->pci_br0
, SAD_CONTROL
, ®
);
984 return GET_BITFIELD(reg
, 0, 2);
987 static u8
haswell_get_node_id(struct sbridge_pvt
*pvt
)
991 pci_read_config_dword(pvt
->pci_sad1
, SAD_CONTROL
, ®
);
992 return GET_BITFIELD(reg
, 0, 3);
995 static u8
knl_get_node_id(struct sbridge_pvt
*pvt
)
999 pci_read_config_dword(pvt
->pci_sad1
, SAD_CONTROL
, ®
);
1000 return GET_BITFIELD(reg
, 0, 2);
1004 * Use the reporting bank number to determine which memory
1005 * controller (also known as "ha" for "home agent"). Sandy
1006 * Bridge only has one memory controller per socket, so the
1007 * answer is always zero.
1009 static u8
sbridge_get_ha(u8 bank
)
1015 * On Ivy Bridge, Haswell and Broadwell the error may be in a
1016 * home agent bank (7, 8), or one of the per-channel memory
1017 * controller banks (9 .. 16).
1019 static u8
ibridge_get_ha(u8 bank
)
1025 return (bank
- 9) / 4;
1031 /* Not used, but included for safety/symmetry */
1032 static u8
knl_get_ha(u8 bank
)
1037 static u64
haswell_get_tolm(struct sbridge_pvt
*pvt
)
1041 pci_read_config_dword(pvt
->info
.pci_vtd
, HASWELL_TOLM
, ®
);
1042 return (GET_BITFIELD(reg
, 26, 31) << 26) | 0x3ffffff;
1045 static u64
haswell_get_tohm(struct sbridge_pvt
*pvt
)
1050 pci_read_config_dword(pvt
->info
.pci_vtd
, HASWELL_TOHM_0
, ®
);
1051 rc
= GET_BITFIELD(reg
, 26, 31);
1052 pci_read_config_dword(pvt
->info
.pci_vtd
, HASWELL_TOHM_1
, ®
);
1053 rc
= ((reg
<< 6) | rc
) << 26;
1055 return rc
| 0x1ffffff;
1058 static u64
knl_get_tolm(struct sbridge_pvt
*pvt
)
1062 pci_read_config_dword(pvt
->knl
.pci_mc_info
, KNL_TOLM
, ®
);
1063 return (GET_BITFIELD(reg
, 26, 31) << 26) | 0x3ffffff;
1066 static u64
knl_get_tohm(struct sbridge_pvt
*pvt
)
1071 pci_read_config_dword(pvt
->knl
.pci_mc_info
, KNL_TOHM_0
, ®_lo
);
1072 pci_read_config_dword(pvt
->knl
.pci_mc_info
, KNL_TOHM_1
, ®_hi
);
1073 rc
= ((u64
)reg_hi
<< 32) | reg_lo
;
1074 return rc
| 0x3ffffff;
1078 static u64
haswell_rir_limit(u32 reg
)
1080 return (((u64
)GET_BITFIELD(reg
, 1, 11) + 1) << 29) - 1;
1083 static inline u8
sad_pkg_socket(u8 pkg
)
1085 /* on Ivy Bridge, nodeID is SASS, where A is HA and S is node id */
1086 return ((pkg
>> 3) << 2) | (pkg
& 0x3);
1089 static inline u8
sad_pkg_ha(u8 pkg
)
1091 return (pkg
>> 2) & 0x1;
1094 static int haswell_chan_hash(int idx
, u64 addr
)
1099 * XOR even bits from 12:26 to bit0 of idx,
1100 * odd bits from 13:27 to bit1
1102 for (i
= 12; i
< 28; i
+= 2)
1103 idx
^= (addr
>> i
) & 3;
1108 /* Low bits of TAD limit, and some metadata. */
1109 static const u32 knl_tad_dram_limit_lo
[] = {
1110 0x400, 0x500, 0x600, 0x700,
1111 0x800, 0x900, 0xa00, 0xb00,
1114 /* Low bits of TAD offset. */
1115 static const u32 knl_tad_dram_offset_lo
[] = {
1116 0x404, 0x504, 0x604, 0x704,
1117 0x804, 0x904, 0xa04, 0xb04,
1120 /* High 16 bits of TAD limit and offset. */
1121 static const u32 knl_tad_dram_hi
[] = {
1122 0x408, 0x508, 0x608, 0x708,
1123 0x808, 0x908, 0xa08, 0xb08,
1126 /* Number of ways a tad entry is interleaved. */
1127 static const u32 knl_tad_ways
[] = {
1132 * Retrieve the n'th Target Address Decode table entry
1133 * from the memory controller's TAD table.
1135 * @pvt: driver private data
1136 * @entry: which entry you want to retrieve
1137 * @mc: which memory controller (0 or 1)
1138 * @offset: output tad range offset
1139 * @limit: output address of first byte above tad range
1140 * @ways: output number of interleave ways
1142 * The offset value has curious semantics. It's a sort of running total
1143 * of the sizes of all the memory regions that aren't mapped in this
1146 static int knl_get_tad(const struct sbridge_pvt
*pvt
,
1153 u32 reg_limit_lo
, reg_offset_lo
, reg_hi
;
1154 struct pci_dev
*pci_mc
;
1159 pci_mc
= pvt
->knl
.pci_mc0
;
1162 pci_mc
= pvt
->knl
.pci_mc1
;
1169 pci_read_config_dword(pci_mc
,
1170 knl_tad_dram_limit_lo
[entry
], ®_limit_lo
);
1171 pci_read_config_dword(pci_mc
,
1172 knl_tad_dram_offset_lo
[entry
], ®_offset_lo
);
1173 pci_read_config_dword(pci_mc
,
1174 knl_tad_dram_hi
[entry
], ®_hi
);
1176 /* Is this TAD entry enabled? */
1177 if (!GET_BITFIELD(reg_limit_lo
, 0, 0))
1180 way_id
= GET_BITFIELD(reg_limit_lo
, 3, 5);
1182 if (way_id
< ARRAY_SIZE(knl_tad_ways
)) {
1183 *ways
= knl_tad_ways
[way_id
];
1186 sbridge_printk(KERN_ERR
,
1187 "Unexpected value %d in mc_tad_limit_lo wayness field\n",
1193 * The least significant 6 bits of base and limit are truncated.
1194 * For limit, we fill the missing bits with 1s.
1196 *offset
= ((u64
) GET_BITFIELD(reg_offset_lo
, 6, 31) << 6) |
1197 ((u64
) GET_BITFIELD(reg_hi
, 0, 15) << 32);
1198 *limit
= ((u64
) GET_BITFIELD(reg_limit_lo
, 6, 31) << 6) | 63 |
1199 ((u64
) GET_BITFIELD(reg_hi
, 16, 31) << 32);
1204 /* Determine which memory controller is responsible for a given channel. */
1205 static int knl_channel_mc(int channel
)
1207 WARN_ON(channel
< 0 || channel
>= 6);
1209 return channel
< 3 ? 1 : 0;
1213 * Get the Nth entry from EDC_ROUTE_TABLE register.
1214 * (This is the per-tile mapping of logical interleave targets to
1215 * physical EDC modules.)
1227 static u32
knl_get_edc_route(int entry
, u32 reg
)
1229 WARN_ON(entry
>= KNL_MAX_EDCS
);
1230 return GET_BITFIELD(reg
, entry
*3, (entry
*3)+2);
1234 * Get the Nth entry from MC_ROUTE_TABLE register.
1235 * (This is the per-tile mapping of logical interleave targets to
1236 * physical DRAM channels modules.)
1238 * entry 0: mc 0:2 channel 18:19
1239 * 1: mc 3:5 channel 20:21
1240 * 2: mc 6:8 channel 22:23
1241 * 3: mc 9:11 channel 24:25
1242 * 4: mc 12:14 channel 26:27
1243 * 5: mc 15:17 channel 28:29
1246 * Though we have 3 bits to identify the MC, we should only see
1247 * the values 0 or 1.
1250 static u32
knl_get_mc_route(int entry
, u32 reg
)
1254 WARN_ON(entry
>= KNL_MAX_CHANNELS
);
1256 mc
= GET_BITFIELD(reg
, entry
*3, (entry
*3)+2);
1257 chan
= GET_BITFIELD(reg
, (entry
*2) + 18, (entry
*2) + 18 + 1);
1259 return knl_channel_remap(mc
, chan
);
1263 * Render the EDC_ROUTE register in human-readable form.
1264 * Output string s should be at least KNL_MAX_EDCS*2 bytes.
1266 static void knl_show_edc_route(u32 reg
, char *s
)
1270 for (i
= 0; i
< KNL_MAX_EDCS
; i
++) {
1271 s
[i
*2] = knl_get_edc_route(i
, reg
) + '0';
1275 s
[KNL_MAX_EDCS
*2 - 1] = '\0';
1279 * Render the MC_ROUTE register in human-readable form.
1280 * Output string s should be at least KNL_MAX_CHANNELS*2 bytes.
1282 static void knl_show_mc_route(u32 reg
, char *s
)
1286 for (i
= 0; i
< KNL_MAX_CHANNELS
; i
++) {
1287 s
[i
*2] = knl_get_mc_route(i
, reg
) + '0';
1291 s
[KNL_MAX_CHANNELS
*2 - 1] = '\0';
1294 #define KNL_EDC_ROUTE 0xb8
1295 #define KNL_MC_ROUTE 0xb4
1297 /* Is this dram rule backed by regular DRAM in flat mode? */
1298 #define KNL_EDRAM(reg) GET_BITFIELD(reg, 29, 29)
1300 /* Is this dram rule cached? */
1301 #define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28)
1303 /* Is this rule backed by edc ? */
1304 #define KNL_EDRAM_ONLY(reg) GET_BITFIELD(reg, 29, 29)
1306 /* Is this rule backed by DRAM, cacheable in EDRAM? */
1307 #define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28)
1309 /* Is this rule mod3? */
1310 #define KNL_MOD3(reg) GET_BITFIELD(reg, 27, 27)
1313 * Figure out how big our RAM modules are.
1315 * The DIMMMTR register in KNL doesn't tell us the size of the DIMMs, so we
1316 * have to figure this out from the SAD rules, interleave lists, route tables,
1319 * SAD rules can have holes in them (e.g. the 3G-4G hole), so we have to
1320 * inspect the TAD rules to figure out how large the SAD regions really are.
1322 * When we know the real size of a SAD region and how many ways it's
1323 * interleaved, we know the individual contribution of each channel to
1326 * Finally, we have to check whether each channel participates in each SAD
1329 * Fortunately, KNL only supports one DIMM per channel, so once we know how
1330 * much memory the channel uses, we know the DIMM is at least that large.
1331 * (The BIOS might possibly choose not to map all available memory, in which
1332 * case we will underreport the size of the DIMM.)
1334 * In theory, we could try to determine the EDC sizes as well, but that would
1335 * only work in flat mode, not in cache mode.
1337 * @mc_sizes: Output sizes of channels (must have space for KNL_MAX_CHANNELS
1340 static int knl_get_dimm_capacity(struct sbridge_pvt
*pvt
, u64
*mc_sizes
)
1342 u64 sad_base
, sad_limit
= 0;
1343 u64 tad_base
, tad_size
, tad_limit
, tad_deadspace
, tad_livespace
;
1346 int intrlv_ways
, tad_ways
;
1349 u64 sad_actual_size
[2]; /* sad size accounting for holes, per mc */
1350 u32 dram_rule
, interleave_reg
;
1351 u32 mc_route_reg
[KNL_MAX_CHAS
];
1352 u32 edc_route_reg
[KNL_MAX_CHAS
];
1354 char edc_route_string
[KNL_MAX_EDCS
*2];
1355 char mc_route_string
[KNL_MAX_CHANNELS
*2];
1359 int participants
[KNL_MAX_CHANNELS
];
1361 for (i
= 0; i
< KNL_MAX_CHANNELS
; i
++)
1364 /* Read the EDC route table in each CHA. */
1366 for (i
= 0; i
< KNL_MAX_CHAS
; i
++) {
1367 pci_read_config_dword(pvt
->knl
.pci_cha
[i
],
1368 KNL_EDC_ROUTE
, &edc_route_reg
[i
]);
1370 if (i
> 0 && edc_route_reg
[i
] != edc_route_reg
[i
-1]) {
1371 knl_show_edc_route(edc_route_reg
[i
-1],
1373 if (cur_reg_start
== i
-1)
1374 edac_dbg(0, "edc route table for CHA %d: %s\n",
1375 cur_reg_start
, edc_route_string
);
1377 edac_dbg(0, "edc route table for CHA %d-%d: %s\n",
1378 cur_reg_start
, i
-1, edc_route_string
);
1382 knl_show_edc_route(edc_route_reg
[i
-1], edc_route_string
);
1383 if (cur_reg_start
== i
-1)
1384 edac_dbg(0, "edc route table for CHA %d: %s\n",
1385 cur_reg_start
, edc_route_string
);
1387 edac_dbg(0, "edc route table for CHA %d-%d: %s\n",
1388 cur_reg_start
, i
-1, edc_route_string
);
1390 /* Read the MC route table in each CHA. */
1392 for (i
= 0; i
< KNL_MAX_CHAS
; i
++) {
1393 pci_read_config_dword(pvt
->knl
.pci_cha
[i
],
1394 KNL_MC_ROUTE
, &mc_route_reg
[i
]);
1396 if (i
> 0 && mc_route_reg
[i
] != mc_route_reg
[i
-1]) {
1397 knl_show_mc_route(mc_route_reg
[i
-1], mc_route_string
);
1398 if (cur_reg_start
== i
-1)
1399 edac_dbg(0, "mc route table for CHA %d: %s\n",
1400 cur_reg_start
, mc_route_string
);
1402 edac_dbg(0, "mc route table for CHA %d-%d: %s\n",
1403 cur_reg_start
, i
-1, mc_route_string
);
1407 knl_show_mc_route(mc_route_reg
[i
-1], mc_route_string
);
1408 if (cur_reg_start
== i
-1)
1409 edac_dbg(0, "mc route table for CHA %d: %s\n",
1410 cur_reg_start
, mc_route_string
);
1412 edac_dbg(0, "mc route table for CHA %d-%d: %s\n",
1413 cur_reg_start
, i
-1, mc_route_string
);
1415 /* Process DRAM rules */
1416 for (sad_rule
= 0; sad_rule
< pvt
->info
.max_sad
; sad_rule
++) {
1417 /* previous limit becomes the new base */
1418 sad_base
= sad_limit
;
1420 pci_read_config_dword(pvt
->pci_sad0
,
1421 pvt
->info
.dram_rule
[sad_rule
], &dram_rule
);
1423 if (!DRAM_RULE_ENABLE(dram_rule
))
1426 edram_only
= KNL_EDRAM_ONLY(dram_rule
);
1428 sad_limit
= pvt
->info
.sad_limit(dram_rule
)+1;
1430 pci_read_config_dword(pvt
->pci_sad0
,
1431 pvt
->info
.interleave_list
[sad_rule
], &interleave_reg
);
1434 * Find out how many ways this dram rule is interleaved.
1435 * We stop when we see the first channel again.
1437 first_pkg
= sad_pkg(pvt
->info
.interleave_pkg
,
1439 for (intrlv_ways
= 1; intrlv_ways
< 8; intrlv_ways
++) {
1440 pkg
= sad_pkg(pvt
->info
.interleave_pkg
,
1441 interleave_reg
, intrlv_ways
);
1443 if ((pkg
& 0x8) == 0) {
1445 * 0 bit means memory is non-local,
1446 * which KNL doesn't support
1448 edac_dbg(0, "Unexpected interleave target %d\n",
1453 if (pkg
== first_pkg
)
1456 if (KNL_MOD3(dram_rule
))
1459 edac_dbg(3, "dram rule %d (base 0x%llx, limit 0x%llx), %d way interleave%s\n",
1464 edram_only
? ", EDRAM" : "");
1467 * Find out how big the SAD region really is by iterating
1468 * over TAD tables (SAD regions may contain holes).
1469 * Each memory controller might have a different TAD table, so
1470 * we have to look at both.
1472 * Livespace is the memory that's mapped in this TAD table,
1473 * deadspace is the holes (this could be the MMIO hole, or it
1474 * could be memory that's mapped by the other TAD table but
1477 for (mc
= 0; mc
< 2; mc
++) {
1478 sad_actual_size
[mc
] = 0;
1481 tad_rule
< ARRAY_SIZE(
1482 knl_tad_dram_limit_lo
);
1484 if (knl_get_tad(pvt
,
1492 tad_size
= (tad_limit
+1) -
1493 (tad_livespace
+ tad_deadspace
);
1494 tad_livespace
+= tad_size
;
1495 tad_base
= (tad_limit
+1) - tad_size
;
1497 if (tad_base
< sad_base
) {
1498 if (tad_limit
> sad_base
)
1499 edac_dbg(0, "TAD region overlaps lower SAD boundary -- TAD tables may be configured incorrectly.\n");
1500 } else if (tad_base
< sad_limit
) {
1501 if (tad_limit
+1 > sad_limit
) {
1502 edac_dbg(0, "TAD region overlaps upper SAD boundary -- TAD tables may be configured incorrectly.\n");
1504 /* TAD region is completely inside SAD region */
1505 edac_dbg(3, "TAD region %d 0x%llx - 0x%llx (%lld bytes) table%d\n",
1507 tad_limit
, tad_size
,
1509 sad_actual_size
[mc
] += tad_size
;
1515 for (mc
= 0; mc
< 2; mc
++) {
1516 edac_dbg(3, " total TAD DRAM footprint in table%d : 0x%llx (%lld bytes)\n",
1517 mc
, sad_actual_size
[mc
], sad_actual_size
[mc
]);
1520 /* Ignore EDRAM rule */
1524 /* Figure out which channels participate in interleave. */
1525 for (channel
= 0; channel
< KNL_MAX_CHANNELS
; channel
++)
1526 participants
[channel
] = 0;
1528 /* For each channel, does at least one CHA have
1529 * this channel mapped to the given target?
1531 for (channel
= 0; channel
< KNL_MAX_CHANNELS
; channel
++) {
1535 for (target
= 0; target
< KNL_MAX_CHANNELS
; target
++) {
1536 for (cha
= 0; cha
< KNL_MAX_CHAS
; cha
++) {
1537 if (knl_get_mc_route(target
,
1538 mc_route_reg
[cha
]) == channel
1539 && !participants
[channel
]) {
1540 participants
[channel
] = 1;
1547 for (channel
= 0; channel
< KNL_MAX_CHANNELS
; channel
++) {
1548 mc
= knl_channel_mc(channel
);
1549 if (participants
[channel
]) {
1550 edac_dbg(4, "mc channel %d contributes %lld bytes via sad entry %d\n",
1552 sad_actual_size
[mc
]/intrlv_ways
,
1554 mc_sizes
[channel
] +=
1555 sad_actual_size
[mc
]/intrlv_ways
;
1563 static void get_source_id(struct mem_ctl_info
*mci
)
1565 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
1568 if (pvt
->info
.type
== HASWELL
|| pvt
->info
.type
== BROADWELL
||
1569 pvt
->info
.type
== KNIGHTS_LANDING
)
1570 pci_read_config_dword(pvt
->pci_sad1
, SAD_TARGET
, ®
);
1572 pci_read_config_dword(pvt
->pci_br0
, SAD_TARGET
, ®
);
1574 if (pvt
->info
.type
== KNIGHTS_LANDING
)
1575 pvt
->sbridge_dev
->source_id
= SOURCE_ID_KNL(reg
);
1577 pvt
->sbridge_dev
->source_id
= SOURCE_ID(reg
);
1580 static int __populate_dimms(struct mem_ctl_info
*mci
,
1581 u64 knl_mc_sizes
[KNL_MAX_CHANNELS
],
1582 enum edac_type mode
)
1584 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
1585 int channels
= pvt
->info
.type
== KNIGHTS_LANDING
? KNL_MAX_CHANNELS
1587 unsigned int i
, j
, banks
, ranks
, rows
, cols
, npages
;
1588 struct dimm_info
*dimm
;
1589 enum mem_type mtype
;
1592 mtype
= pvt
->info
.get_memory_type(pvt
);
1593 if (mtype
== MEM_RDDR3
|| mtype
== MEM_RDDR4
)
1594 edac_dbg(0, "Memory is registered\n");
1595 else if (mtype
== MEM_UNKNOWN
)
1596 edac_dbg(0, "Cannot determine memory type\n");
1598 edac_dbg(0, "Memory is unregistered\n");
1600 if (mtype
== MEM_DDR4
|| mtype
== MEM_RDDR4
)
1605 for (i
= 0; i
< channels
; i
++) {
1608 int max_dimms_per_channel
;
1610 if (pvt
->info
.type
== KNIGHTS_LANDING
) {
1611 max_dimms_per_channel
= 1;
1612 if (!pvt
->knl
.pci_channel
[i
])
1615 max_dimms_per_channel
= ARRAY_SIZE(mtr_regs
);
1616 if (!pvt
->pci_tad
[i
])
1620 for (j
= 0; j
< max_dimms_per_channel
; j
++) {
1621 dimm
= edac_get_dimm(mci
, i
, j
, 0);
1622 if (pvt
->info
.type
== KNIGHTS_LANDING
) {
1623 pci_read_config_dword(pvt
->knl
.pci_channel
[i
],
1626 pci_read_config_dword(pvt
->pci_tad
[i
],
1629 edac_dbg(4, "Channel #%d MTR%d = %x\n", i
, j
, mtr
);
1630 if (IS_DIMM_PRESENT(mtr
)) {
1631 if (!IS_ECC_ENABLED(pvt
->info
.mcmtr
)) {
1632 sbridge_printk(KERN_ERR
, "CPU SrcID #%d, Ha #%d, Channel #%d has DIMMs, but ECC is disabled\n",
1633 pvt
->sbridge_dev
->source_id
,
1634 pvt
->sbridge_dev
->dom
, i
);
1637 pvt
->channel
[i
].dimms
++;
1639 ranks
= numrank(pvt
->info
.type
, mtr
);
1641 if (pvt
->info
.type
== KNIGHTS_LANDING
) {
1642 /* For DDR4, this is fixed. */
1644 rows
= knl_mc_sizes
[i
] /
1645 ((u64
) cols
* ranks
* banks
* 8);
1651 size
= ((u64
)rows
* cols
* banks
* ranks
) >> (20 - 3);
1652 npages
= MiB_TO_PAGES(size
);
1654 edac_dbg(0, "mc#%d: ha %d channel %d, dimm %d, %lld MiB (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n",
1655 pvt
->sbridge_dev
->mc
, pvt
->sbridge_dev
->dom
, i
, j
,
1657 banks
, ranks
, rows
, cols
);
1659 dimm
->nr_pages
= npages
;
1661 dimm
->dtype
= pvt
->info
.get_width(pvt
, mtr
);
1662 dimm
->mtype
= mtype
;
1663 dimm
->edac_mode
= mode
;
1664 snprintf(dimm
->label
, sizeof(dimm
->label
),
1665 "CPU_SrcID#%u_Ha#%u_Chan#%u_DIMM#%u",
1666 pvt
->sbridge_dev
->source_id
, pvt
->sbridge_dev
->dom
, i
, j
);
1674 static int get_dimm_config(struct mem_ctl_info
*mci
)
1676 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
1677 u64 knl_mc_sizes
[KNL_MAX_CHANNELS
];
1678 enum edac_type mode
;
1681 pvt
->sbridge_dev
->node_id
= pvt
->info
.get_node_id(pvt
);
1682 edac_dbg(0, "mc#%d: Node ID: %d, source ID: %d\n",
1683 pvt
->sbridge_dev
->mc
,
1684 pvt
->sbridge_dev
->node_id
,
1685 pvt
->sbridge_dev
->source_id
);
1687 /* KNL doesn't support mirroring or lockstep,
1688 * and is always closed page
1690 if (pvt
->info
.type
== KNIGHTS_LANDING
) {
1691 mode
= EDAC_S4ECD4ED
;
1692 pvt
->mirror_mode
= NON_MIRRORING
;
1693 pvt
->is_cur_addr_mirrored
= false;
1695 if (knl_get_dimm_capacity(pvt
, knl_mc_sizes
) != 0)
1697 if (pci_read_config_dword(pvt
->pci_ta
, KNL_MCMTR
, &pvt
->info
.mcmtr
)) {
1698 edac_dbg(0, "Failed to read KNL_MCMTR register\n");
1702 if (pvt
->info
.type
== HASWELL
|| pvt
->info
.type
== BROADWELL
) {
1703 if (pci_read_config_dword(pvt
->pci_ha
, HASWELL_HASYSDEFEATURE2
, ®
)) {
1704 edac_dbg(0, "Failed to read HASWELL_HASYSDEFEATURE2 register\n");
1707 pvt
->is_chan_hash
= GET_BITFIELD(reg
, 21, 21);
1708 if (GET_BITFIELD(reg
, 28, 28)) {
1709 pvt
->mirror_mode
= ADDR_RANGE_MIRRORING
;
1710 edac_dbg(0, "Address range partial memory mirroring is enabled\n");
1714 if (pci_read_config_dword(pvt
->pci_ras
, RASENABLES
, ®
)) {
1715 edac_dbg(0, "Failed to read RASENABLES register\n");
1718 if (IS_MIRROR_ENABLED(reg
)) {
1719 pvt
->mirror_mode
= FULL_MIRRORING
;
1720 edac_dbg(0, "Full memory mirroring is enabled\n");
1722 pvt
->mirror_mode
= NON_MIRRORING
;
1723 edac_dbg(0, "Memory mirroring is disabled\n");
1727 if (pci_read_config_dword(pvt
->pci_ta
, MCMTR
, &pvt
->info
.mcmtr
)) {
1728 edac_dbg(0, "Failed to read MCMTR register\n");
1731 if (IS_LOCKSTEP_ENABLED(pvt
->info
.mcmtr
)) {
1732 edac_dbg(0, "Lockstep is enabled\n");
1733 mode
= EDAC_S8ECD8ED
;
1734 pvt
->is_lockstep
= true;
1736 edac_dbg(0, "Lockstep is disabled\n");
1737 mode
= EDAC_S4ECD4ED
;
1738 pvt
->is_lockstep
= false;
1740 if (IS_CLOSE_PG(pvt
->info
.mcmtr
)) {
1741 edac_dbg(0, "address map is on closed page mode\n");
1742 pvt
->is_close_pg
= true;
1744 edac_dbg(0, "address map is on open page mode\n");
1745 pvt
->is_close_pg
= false;
1749 return __populate_dimms(mci
, knl_mc_sizes
, mode
);
1752 static void get_memory_layout(const struct mem_ctl_info
*mci
)
1754 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
1755 int i
, j
, k
, n_sads
, n_tads
, sad_interl
;
1763 * Step 1) Get TOLM/TOHM ranges
1766 pvt
->tolm
= pvt
->info
.get_tolm(pvt
);
1767 tmp_mb
= (1 + pvt
->tolm
) >> 20;
1769 gb
= div_u64_rem(tmp_mb
, 1024, &mb
);
1770 edac_dbg(0, "TOLM: %u.%03u GB (0x%016Lx)\n",
1771 gb
, (mb
*1000)/1024, (u64
)pvt
->tolm
);
1773 /* Address range is already 45:25 */
1774 pvt
->tohm
= pvt
->info
.get_tohm(pvt
);
1775 tmp_mb
= (1 + pvt
->tohm
) >> 20;
1777 gb
= div_u64_rem(tmp_mb
, 1024, &mb
);
1778 edac_dbg(0, "TOHM: %u.%03u GB (0x%016Lx)\n",
1779 gb
, (mb
*1000)/1024, (u64
)pvt
->tohm
);
1782 * Step 2) Get SAD range and SAD Interleave list
1783 * TAD registers contain the interleave wayness. However, it
1784 * seems simpler to just discover it indirectly, with the
1788 for (n_sads
= 0; n_sads
< pvt
->info
.max_sad
; n_sads
++) {
1789 /* SAD_LIMIT Address range is 45:26 */
1790 pci_read_config_dword(pvt
->pci_sad0
, pvt
->info
.dram_rule
[n_sads
],
1792 limit
= pvt
->info
.sad_limit(reg
);
1794 if (!DRAM_RULE_ENABLE(reg
))
1800 tmp_mb
= (limit
+ 1) >> 20;
1801 gb
= div_u64_rem(tmp_mb
, 1024, &mb
);
1802 edac_dbg(0, "SAD#%d %s up to %u.%03u GB (0x%016Lx) Interleave: %s reg=0x%08x\n",
1804 show_dram_attr(pvt
->info
.dram_attr(reg
)),
1806 ((u64
)tmp_mb
) << 20L,
1807 get_intlv_mode_str(reg
, pvt
->info
.type
),
1811 pci_read_config_dword(pvt
->pci_sad0
, pvt
->info
.interleave_list
[n_sads
],
1813 sad_interl
= sad_pkg(pvt
->info
.interleave_pkg
, reg
, 0);
1814 for (j
= 0; j
< 8; j
++) {
1815 u32 pkg
= sad_pkg(pvt
->info
.interleave_pkg
, reg
, j
);
1816 if (j
> 0 && sad_interl
== pkg
)
1819 edac_dbg(0, "SAD#%d, interleave #%d: %d\n",
1824 if (pvt
->info
.type
== KNIGHTS_LANDING
)
1828 * Step 3) Get TAD range
1831 for (n_tads
= 0; n_tads
< MAX_TAD
; n_tads
++) {
1832 pci_read_config_dword(pvt
->pci_ha
, tad_dram_rule
[n_tads
], ®
);
1833 limit
= TAD_LIMIT(reg
);
1836 tmp_mb
= (limit
+ 1) >> 20;
1838 gb
= div_u64_rem(tmp_mb
, 1024, &mb
);
1839 edac_dbg(0, "TAD#%d: up to %u.%03u GB (0x%016Lx), socket interleave %d, memory interleave %d, TGT: %d, %d, %d, %d, reg=0x%08x\n",
1840 n_tads
, gb
, (mb
*1000)/1024,
1841 ((u64
)tmp_mb
) << 20L,
1842 (u32
)(1 << TAD_SOCK(reg
)),
1843 (u32
)TAD_CH(reg
) + 1,
1853 * Step 4) Get TAD offsets, per each channel
1855 for (i
= 0; i
< NUM_CHANNELS
; i
++) {
1856 if (!pvt
->channel
[i
].dimms
)
1858 for (j
= 0; j
< n_tads
; j
++) {
1859 pci_read_config_dword(pvt
->pci_tad
[i
],
1860 tad_ch_nilv_offset
[j
],
1862 tmp_mb
= TAD_OFFSET(reg
) >> 20;
1863 gb
= div_u64_rem(tmp_mb
, 1024, &mb
);
1864 edac_dbg(0, "TAD CH#%d, offset #%d: %u.%03u GB (0x%016Lx), reg=0x%08x\n",
1867 ((u64
)tmp_mb
) << 20L,
1873 * Step 6) Get RIR Wayness/Limit, per each channel
1875 for (i
= 0; i
< NUM_CHANNELS
; i
++) {
1876 if (!pvt
->channel
[i
].dimms
)
1878 for (j
= 0; j
< MAX_RIR_RANGES
; j
++) {
1879 pci_read_config_dword(pvt
->pci_tad
[i
],
1883 if (!IS_RIR_VALID(reg
))
1886 tmp_mb
= pvt
->info
.rir_limit(reg
) >> 20;
1887 rir_way
= 1 << RIR_WAY(reg
);
1888 gb
= div_u64_rem(tmp_mb
, 1024, &mb
);
1889 edac_dbg(0, "CH#%d RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d, reg=0x%08x\n",
1892 ((u64
)tmp_mb
) << 20L,
1896 for (k
= 0; k
< rir_way
; k
++) {
1897 pci_read_config_dword(pvt
->pci_tad
[i
],
1900 tmp_mb
= RIR_OFFSET(pvt
->info
.type
, reg
) << 6;
1902 gb
= div_u64_rem(tmp_mb
, 1024, &mb
);
1903 edac_dbg(0, "CH#%d RIR#%d INTL#%d, offset %u.%03u GB (0x%016Lx), tgt: %d, reg=0x%08x\n",
1906 ((u64
)tmp_mb
) << 20L,
1907 (u32
)RIR_RNK_TGT(pvt
->info
.type
, reg
),
1914 static struct mem_ctl_info
*get_mci_for_node_id(u8 node_id
, u8 ha
)
1916 struct sbridge_dev
*sbridge_dev
;
1918 list_for_each_entry(sbridge_dev
, &sbridge_edac_list
, list
) {
1919 if (sbridge_dev
->node_id
== node_id
&& sbridge_dev
->dom
== ha
)
1920 return sbridge_dev
->mci
;
1925 static int get_memory_error_data(struct mem_ctl_info
*mci
,
1930 char **area_type
, char *msg
)
1932 struct mem_ctl_info
*new_mci
;
1933 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
1934 struct pci_dev
*pci_ha
;
1935 int n_rir
, n_sads
, n_tads
, sad_way
, sck_xch
;
1936 int sad_interl
, idx
, base_ch
;
1937 int interleave_mode
, shiftup
= 0;
1938 unsigned int sad_interleave
[MAX_INTERLEAVE
];
1940 u8 ch_way
, sck_way
, pkg
, sad_ha
= 0;
1944 u64 ch_addr
, offset
, limit
= 0, prv
= 0;
1948 * Step 0) Check if the address is at special memory ranges
1949 * The check bellow is probably enough to fill all cases where
1950 * the error is not inside a memory, except for the legacy
1951 * range (e. g. VGA addresses). It is unlikely, however, that the
1952 * memory controller would generate an error on that range.
1954 if ((addr
> (u64
) pvt
->tolm
) && (addr
< (1LL << 32))) {
1955 sprintf(msg
, "Error at TOLM area, on addr 0x%08Lx", addr
);
1958 if (addr
>= (u64
)pvt
->tohm
) {
1959 sprintf(msg
, "Error at MMIOH area, on addr 0x%016Lx", addr
);
1964 * Step 1) Get socket
1966 for (n_sads
= 0; n_sads
< pvt
->info
.max_sad
; n_sads
++) {
1967 pci_read_config_dword(pvt
->pci_sad0
, pvt
->info
.dram_rule
[n_sads
],
1970 if (!DRAM_RULE_ENABLE(reg
))
1973 limit
= pvt
->info
.sad_limit(reg
);
1975 sprintf(msg
, "Can't discover the memory socket");
1982 if (n_sads
== pvt
->info
.max_sad
) {
1983 sprintf(msg
, "Can't discover the memory socket");
1987 *area_type
= show_dram_attr(pvt
->info
.dram_attr(dram_rule
));
1988 interleave_mode
= pvt
->info
.interleave_mode(dram_rule
);
1990 pci_read_config_dword(pvt
->pci_sad0
, pvt
->info
.interleave_list
[n_sads
],
1993 if (pvt
->info
.type
== SANDY_BRIDGE
) {
1994 sad_interl
= sad_pkg(pvt
->info
.interleave_pkg
, reg
, 0);
1995 for (sad_way
= 0; sad_way
< 8; sad_way
++) {
1996 u32 pkg
= sad_pkg(pvt
->info
.interleave_pkg
, reg
, sad_way
);
1997 if (sad_way
> 0 && sad_interl
== pkg
)
1999 sad_interleave
[sad_way
] = pkg
;
2000 edac_dbg(0, "SAD interleave #%d: %d\n",
2001 sad_way
, sad_interleave
[sad_way
]);
2003 edac_dbg(0, "mc#%d: Error detected on SAD#%d: address 0x%016Lx < 0x%016Lx, Interleave [%d:6]%s\n",
2004 pvt
->sbridge_dev
->mc
,
2009 !interleave_mode
? "" : "XOR[18:16]");
2010 if (interleave_mode
)
2011 idx
= ((addr
>> 6) ^ (addr
>> 16)) & 7;
2013 idx
= (addr
>> 6) & 7;
2027 sprintf(msg
, "Can't discover socket interleave");
2030 *socket
= sad_interleave
[idx
];
2031 edac_dbg(0, "SAD interleave index: %d (wayness %d) = CPU socket %d\n",
2032 idx
, sad_way
, *socket
);
2033 } else if (pvt
->info
.type
== HASWELL
|| pvt
->info
.type
== BROADWELL
) {
2034 int bits
, a7mode
= A7MODE(dram_rule
);
2037 /* A7 mode swaps P9 with P6 */
2038 bits
= GET_BITFIELD(addr
, 7, 8) << 1;
2039 bits
|= GET_BITFIELD(addr
, 9, 9);
2041 bits
= GET_BITFIELD(addr
, 6, 8);
2043 if (interleave_mode
== 0) {
2044 /* interleave mode will XOR {8,7,6} with {18,17,16} */
2045 idx
= GET_BITFIELD(addr
, 16, 18);
2050 pkg
= sad_pkg(pvt
->info
.interleave_pkg
, reg
, idx
);
2051 *socket
= sad_pkg_socket(pkg
);
2052 sad_ha
= sad_pkg_ha(pkg
);
2055 /* MCChanShiftUpEnable */
2056 pci_read_config_dword(pvt
->pci_ha
, HASWELL_HASYSDEFEATURE2
, ®
);
2057 shiftup
= GET_BITFIELD(reg
, 22, 22);
2060 edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %i, shiftup: %i\n",
2061 idx
, *socket
, sad_ha
, shiftup
);
2063 /* Ivy Bridge's SAD mode doesn't support XOR interleave mode */
2064 idx
= (addr
>> 6) & 7;
2065 pkg
= sad_pkg(pvt
->info
.interleave_pkg
, reg
, idx
);
2066 *socket
= sad_pkg_socket(pkg
);
2067 sad_ha
= sad_pkg_ha(pkg
);
2068 edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %d\n",
2069 idx
, *socket
, sad_ha
);
2075 * Move to the proper node structure, in order to access the
2076 * right PCI registers
2078 new_mci
= get_mci_for_node_id(*socket
, sad_ha
);
2080 sprintf(msg
, "Struct for socket #%u wasn't initialized",
2085 pvt
= mci
->pvt_info
;
2088 * Step 2) Get memory channel
2091 pci_ha
= pvt
->pci_ha
;
2092 for (n_tads
= 0; n_tads
< MAX_TAD
; n_tads
++) {
2093 pci_read_config_dword(pci_ha
, tad_dram_rule
[n_tads
], ®
);
2094 limit
= TAD_LIMIT(reg
);
2096 sprintf(msg
, "Can't discover the memory channel");
2103 if (n_tads
== MAX_TAD
) {
2104 sprintf(msg
, "Can't discover the memory channel");
2108 ch_way
= TAD_CH(reg
) + 1;
2109 sck_way
= TAD_SOCK(reg
);
2114 idx
= (addr
>> (6 + sck_way
+ shiftup
)) & 0x3;
2115 if (pvt
->is_chan_hash
)
2116 idx
= haswell_chan_hash(idx
, addr
);
2121 * FIXME: Shouldn't we use CHN_IDX_OFFSET() here, when ch_way == 3 ???
2125 base_ch
= TAD_TGT0(reg
);
2128 base_ch
= TAD_TGT1(reg
);
2131 base_ch
= TAD_TGT2(reg
);
2134 base_ch
= TAD_TGT3(reg
);
2137 sprintf(msg
, "Can't discover the TAD target");
2140 *channel_mask
= 1 << base_ch
;
2142 pci_read_config_dword(pvt
->pci_tad
[base_ch
], tad_ch_nilv_offset
[n_tads
], &tad_offset
);
2144 if (pvt
->mirror_mode
== FULL_MIRRORING
||
2145 (pvt
->mirror_mode
== ADDR_RANGE_MIRRORING
&& n_tads
== 0)) {
2146 *channel_mask
|= 1 << ((base_ch
+ 2) % 4);
2150 sck_xch
= (1 << sck_way
) * (ch_way
>> 1);
2153 sprintf(msg
, "Invalid mirror set. Can't decode addr");
2157 pvt
->is_cur_addr_mirrored
= true;
2159 sck_xch
= (1 << sck_way
) * ch_way
;
2160 pvt
->is_cur_addr_mirrored
= false;
2163 if (pvt
->is_lockstep
)
2164 *channel_mask
|= 1 << ((base_ch
+ 1) % 4);
2166 offset
= TAD_OFFSET(tad_offset
);
2168 edac_dbg(0, "TAD#%d: address 0x%016Lx < 0x%016Lx, socket interleave %d, channel interleave %d (offset 0x%08Lx), index %d, base ch: %d, ch mask: 0x%02lx\n",
2179 /* Calculate channel address */
2180 /* Remove the TAD offset */
2182 if (offset
> addr
) {
2183 sprintf(msg
, "Can't calculate ch addr: TAD offset 0x%08Lx is too high for addr 0x%08Lx!",
2188 ch_addr
= addr
- offset
;
2189 ch_addr
>>= (6 + shiftup
);
2191 ch_addr
<<= (6 + shiftup
);
2192 ch_addr
|= addr
& ((1 << (6 + shiftup
)) - 1);
2195 * Step 3) Decode rank
2197 for (n_rir
= 0; n_rir
< MAX_RIR_RANGES
; n_rir
++) {
2198 pci_read_config_dword(pvt
->pci_tad
[base_ch
], rir_way_limit
[n_rir
], ®
);
2200 if (!IS_RIR_VALID(reg
))
2203 limit
= pvt
->info
.rir_limit(reg
);
2204 gb
= div_u64_rem(limit
>> 20, 1024, &mb
);
2205 edac_dbg(0, "RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d\n",
2210 if (ch_addr
<= limit
)
2213 if (n_rir
== MAX_RIR_RANGES
) {
2214 sprintf(msg
, "Can't discover the memory rank for ch addr 0x%08Lx",
2218 rir_way
= RIR_WAY(reg
);
2220 if (pvt
->is_close_pg
)
2221 idx
= (ch_addr
>> 6);
2223 idx
= (ch_addr
>> 13); /* FIXME: Datasheet says to shift by 15 */
2224 idx
%= 1 << rir_way
;
2226 pci_read_config_dword(pvt
->pci_tad
[base_ch
], rir_offset
[n_rir
][idx
], ®
);
2227 *rank
= RIR_RNK_TGT(pvt
->info
.type
, reg
);
2229 edac_dbg(0, "RIR#%d: channel address 0x%08Lx < 0x%08Lx, RIR interleave %d, index %d\n",
2239 static int get_memory_error_data_from_mce(struct mem_ctl_info
*mci
,
2240 const struct mce
*m
, u8
*socket
,
2241 u8
*ha
, long *channel_mask
,
2244 u32 reg
, channel
= GET_BITFIELD(m
->status
, 0, 3);
2245 struct mem_ctl_info
*new_mci
;
2246 struct sbridge_pvt
*pvt
;
2247 struct pci_dev
*pci_ha
;
2250 if (channel
>= NUM_CHANNELS
) {
2251 sprintf(msg
, "Invalid channel 0x%x", channel
);
2255 pvt
= mci
->pvt_info
;
2256 if (!pvt
->info
.get_ha
) {
2257 sprintf(msg
, "No get_ha()");
2260 *ha
= pvt
->info
.get_ha(m
->bank
);
2261 if (*ha
!= 0 && *ha
!= 1) {
2262 sprintf(msg
, "Impossible bank %d", m
->bank
);
2266 *socket
= m
->socketid
;
2267 new_mci
= get_mci_for_node_id(*socket
, *ha
);
2269 strcpy(msg
, "mci socket got corrupted!");
2273 pvt
= new_mci
->pvt_info
;
2274 pci_ha
= pvt
->pci_ha
;
2275 pci_read_config_dword(pci_ha
, tad_dram_rule
[0], ®
);
2276 tad0
= m
->addr
<= TAD_LIMIT(reg
);
2278 *channel_mask
= 1 << channel
;
2279 if (pvt
->mirror_mode
== FULL_MIRRORING
||
2280 (pvt
->mirror_mode
== ADDR_RANGE_MIRRORING
&& tad0
)) {
2281 *channel_mask
|= 1 << ((channel
+ 2) % 4);
2282 pvt
->is_cur_addr_mirrored
= true;
2284 pvt
->is_cur_addr_mirrored
= false;
2287 if (pvt
->is_lockstep
)
2288 *channel_mask
|= 1 << ((channel
+ 1) % 4);
2293 /****************************************************************************
2294 Device initialization routines: put/get, init/exit
2295 ****************************************************************************/
2298 * sbridge_put_all_devices 'put' all the devices that we have
2299 * reserved via 'get'
2301 static void sbridge_put_devices(struct sbridge_dev
*sbridge_dev
)
2306 for (i
= 0; i
< sbridge_dev
->n_devs
; i
++) {
2307 struct pci_dev
*pdev
= sbridge_dev
->pdev
[i
];
2310 edac_dbg(0, "Removing dev %02x:%02x.%d\n",
2312 PCI_SLOT(pdev
->devfn
), PCI_FUNC(pdev
->devfn
));
2317 static void sbridge_put_all_devices(void)
2319 struct sbridge_dev
*sbridge_dev
, *tmp
;
2321 list_for_each_entry_safe(sbridge_dev
, tmp
, &sbridge_edac_list
, list
) {
2322 sbridge_put_devices(sbridge_dev
);
2323 free_sbridge_dev(sbridge_dev
);
2327 static int sbridge_get_onedevice(struct pci_dev
**prev
,
2329 const struct pci_id_table
*table
,
2330 const unsigned devno
,
2331 const int multi_bus
)
2333 struct sbridge_dev
*sbridge_dev
= NULL
;
2334 const struct pci_id_descr
*dev_descr
= &table
->descr
[devno
];
2335 struct pci_dev
*pdev
= NULL
;
2340 sbridge_printk(KERN_DEBUG
,
2341 "Seeking for: PCI ID %04x:%04x\n",
2342 PCI_VENDOR_ID_INTEL
, dev_descr
->dev_id
);
2344 pdev
= pci_get_device(PCI_VENDOR_ID_INTEL
,
2345 dev_descr
->dev_id
, *prev
);
2353 if (dev_descr
->optional
)
2356 /* if the HA wasn't found */
2360 sbridge_printk(KERN_INFO
,
2361 "Device not found: %04x:%04x\n",
2362 PCI_VENDOR_ID_INTEL
, dev_descr
->dev_id
);
2364 /* End of list, leave */
2367 seg
= pci_domain_nr(pdev
->bus
);
2368 bus
= pdev
->bus
->number
;
2371 sbridge_dev
= get_sbridge_dev(seg
, bus
, dev_descr
->dom
,
2372 multi_bus
, sbridge_dev
);
2374 /* If the HA1 wasn't found, don't create EDAC second memory controller */
2375 if (dev_descr
->dom
== IMC1
&& devno
!= 1) {
2376 edac_dbg(0, "Skip IMC1: %04x:%04x (since HA1 was absent)\n",
2377 PCI_VENDOR_ID_INTEL
, dev_descr
->dev_id
);
2382 if (dev_descr
->dom
== SOCK
)
2385 sbridge_dev
= alloc_sbridge_dev(seg
, bus
, dev_descr
->dom
, table
);
2393 if (sbridge_dev
->pdev
[sbridge_dev
->i_devs
]) {
2394 sbridge_printk(KERN_ERR
,
2395 "Duplicated device for %04x:%04x\n",
2396 PCI_VENDOR_ID_INTEL
, dev_descr
->dev_id
);
2401 sbridge_dev
->pdev
[sbridge_dev
->i_devs
++] = pdev
;
2403 /* pdev belongs to more than one IMC, do extra gets */
2407 if (dev_descr
->dom
== SOCK
&& i
< table
->n_imcs_per_sock
)
2411 /* Be sure that the device is enabled */
2412 if (unlikely(pci_enable_device(pdev
) < 0)) {
2413 sbridge_printk(KERN_ERR
,
2414 "Couldn't enable %04x:%04x\n",
2415 PCI_VENDOR_ID_INTEL
, dev_descr
->dev_id
);
2419 edac_dbg(0, "Detected %04x:%04x\n",
2420 PCI_VENDOR_ID_INTEL
, dev_descr
->dev_id
);
2423 * As stated on drivers/pci/search.c, the reference count for
2424 * @from is always decremented if it is not %NULL. So, as we need
2425 * to get all devices up to null, we need to do a get for the device
2435 * sbridge_get_all_devices - Find and perform 'get' operation on the MCH's
2436 * devices we want to reference for this driver.
2437 * @num_mc: pointer to the memory controllers count, to be incremented in case
2439 * @table: model specific table
2441 * returns 0 in case of success or error code
2443 static int sbridge_get_all_devices(u8
*num_mc
,
2444 const struct pci_id_table
*table
)
2447 struct pci_dev
*pdev
= NULL
;
2451 if (table
->type
== KNIGHTS_LANDING
)
2452 allow_dups
= multi_bus
= 1;
2453 while (table
&& table
->descr
) {
2454 for (i
= 0; i
< table
->n_devs_per_sock
; i
++) {
2455 if (!allow_dups
|| i
== 0 ||
2456 table
->descr
[i
].dev_id
!=
2457 table
->descr
[i
-1].dev_id
) {
2461 rc
= sbridge_get_onedevice(&pdev
, num_mc
,
2462 table
, i
, multi_bus
);
2465 i
= table
->n_devs_per_sock
;
2468 sbridge_put_all_devices();
2471 } while (pdev
&& !allow_dups
);
2480 * Device IDs for {SBRIDGE,IBRIDGE,HASWELL,BROADWELL}_IMC_HA0_TAD0 are in
2481 * the format: XXXa. So we can convert from a device to the corresponding
2484 #define TAD_DEV_TO_CHAN(dev) (((dev) & 0xf) - 0xa)
2486 static int sbridge_mci_bind_devs(struct mem_ctl_info
*mci
,
2487 struct sbridge_dev
*sbridge_dev
)
2489 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
2490 struct pci_dev
*pdev
;
2491 u8 saw_chan_mask
= 0;
2494 for (i
= 0; i
< sbridge_dev
->n_devs
; i
++) {
2495 pdev
= sbridge_dev
->pdev
[i
];
2499 switch (pdev
->device
) {
2500 case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0
:
2501 pvt
->pci_sad0
= pdev
;
2503 case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1
:
2504 pvt
->pci_sad1
= pdev
;
2506 case PCI_DEVICE_ID_INTEL_SBRIDGE_BR
:
2507 pvt
->pci_br0
= pdev
;
2509 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0
:
2512 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA
:
2515 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS
:
2516 pvt
->pci_ras
= pdev
;
2518 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0
:
2519 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1
:
2520 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2
:
2521 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3
:
2523 int id
= TAD_DEV_TO_CHAN(pdev
->device
);
2524 pvt
->pci_tad
[id
] = pdev
;
2525 saw_chan_mask
|= 1 << id
;
2528 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO
:
2529 pvt
->pci_ddrio
= pdev
;
2535 edac_dbg(0, "Associated PCI %02x:%02x, bus %d with dev = %p\n",
2536 pdev
->vendor
, pdev
->device
,
2541 /* Check if everything were registered */
2542 if (!pvt
->pci_sad0
|| !pvt
->pci_sad1
|| !pvt
->pci_ha
||
2543 !pvt
->pci_ras
|| !pvt
->pci_ta
)
2546 if (saw_chan_mask
!= 0x0f)
2551 sbridge_printk(KERN_ERR
, "Some needed devices are missing\n");
2555 sbridge_printk(KERN_ERR
, "Unexpected device %02x:%02x\n",
2556 PCI_VENDOR_ID_INTEL
, pdev
->device
);
2560 static int ibridge_mci_bind_devs(struct mem_ctl_info
*mci
,
2561 struct sbridge_dev
*sbridge_dev
)
2563 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
2564 struct pci_dev
*pdev
;
2565 u8 saw_chan_mask
= 0;
2568 for (i
= 0; i
< sbridge_dev
->n_devs
; i
++) {
2569 pdev
= sbridge_dev
->pdev
[i
];
2573 switch (pdev
->device
) {
2574 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0
:
2575 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1
:
2578 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA
:
2579 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA
:
2582 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS
:
2583 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS
:
2584 pvt
->pci_ras
= pdev
;
2586 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0
:
2587 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1
:
2588 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2
:
2589 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3
:
2590 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0
:
2591 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1
:
2592 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2
:
2593 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3
:
2595 int id
= TAD_DEV_TO_CHAN(pdev
->device
);
2596 pvt
->pci_tad
[id
] = pdev
;
2597 saw_chan_mask
|= 1 << id
;
2600 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0
:
2601 pvt
->pci_ddrio
= pdev
;
2603 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0
:
2604 pvt
->pci_ddrio
= pdev
;
2606 case PCI_DEVICE_ID_INTEL_IBRIDGE_SAD
:
2607 pvt
->pci_sad0
= pdev
;
2609 case PCI_DEVICE_ID_INTEL_IBRIDGE_BR0
:
2610 pvt
->pci_br0
= pdev
;
2612 case PCI_DEVICE_ID_INTEL_IBRIDGE_BR1
:
2613 pvt
->pci_br1
= pdev
;
2619 edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2621 PCI_SLOT(pdev
->devfn
), PCI_FUNC(pdev
->devfn
),
2625 /* Check if everything were registered */
2626 if (!pvt
->pci_sad0
|| !pvt
->pci_ha
|| !pvt
->pci_br0
||
2627 !pvt
->pci_br1
|| !pvt
->pci_ras
|| !pvt
->pci_ta
)
2630 if (saw_chan_mask
!= 0x0f && /* -EN/-EX */
2631 saw_chan_mask
!= 0x03) /* -EP */
2636 sbridge_printk(KERN_ERR
, "Some needed devices are missing\n");
2640 sbridge_printk(KERN_ERR
,
2641 "Unexpected device %02x:%02x\n", PCI_VENDOR_ID_INTEL
,
2646 static int haswell_mci_bind_devs(struct mem_ctl_info
*mci
,
2647 struct sbridge_dev
*sbridge_dev
)
2649 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
2650 struct pci_dev
*pdev
;
2651 u8 saw_chan_mask
= 0;
2654 /* there's only one device per system; not tied to any bus */
2655 if (pvt
->info
.pci_vtd
== NULL
)
2656 /* result will be checked later */
2657 pvt
->info
.pci_vtd
= pci_get_device(PCI_VENDOR_ID_INTEL
,
2658 PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC
,
2661 for (i
= 0; i
< sbridge_dev
->n_devs
; i
++) {
2662 pdev
= sbridge_dev
->pdev
[i
];
2666 switch (pdev
->device
) {
2667 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0
:
2668 pvt
->pci_sad0
= pdev
;
2670 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1
:
2671 pvt
->pci_sad1
= pdev
;
2673 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0
:
2674 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1
:
2677 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA
:
2678 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA
:
2681 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM
:
2682 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM
:
2683 pvt
->pci_ras
= pdev
;
2685 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0
:
2686 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1
:
2687 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2
:
2688 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3
:
2689 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0
:
2690 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1
:
2691 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2
:
2692 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3
:
2694 int id
= TAD_DEV_TO_CHAN(pdev
->device
);
2695 pvt
->pci_tad
[id
] = pdev
;
2696 saw_chan_mask
|= 1 << id
;
2699 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0
:
2700 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1
:
2701 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2
:
2702 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3
:
2703 if (!pvt
->pci_ddrio
)
2704 pvt
->pci_ddrio
= pdev
;
2710 edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2712 PCI_SLOT(pdev
->devfn
), PCI_FUNC(pdev
->devfn
),
2716 /* Check if everything were registered */
2717 if (!pvt
->pci_sad0
|| !pvt
->pci_ha
|| !pvt
->pci_sad1
||
2718 !pvt
->pci_ras
|| !pvt
->pci_ta
|| !pvt
->info
.pci_vtd
)
2721 if (saw_chan_mask
!= 0x0f && /* -EN/-EX */
2722 saw_chan_mask
!= 0x03) /* -EP */
2727 sbridge_printk(KERN_ERR
, "Some needed devices are missing\n");
2731 static int broadwell_mci_bind_devs(struct mem_ctl_info
*mci
,
2732 struct sbridge_dev
*sbridge_dev
)
2734 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
2735 struct pci_dev
*pdev
;
2736 u8 saw_chan_mask
= 0;
2739 /* there's only one device per system; not tied to any bus */
2740 if (pvt
->info
.pci_vtd
== NULL
)
2741 /* result will be checked later */
2742 pvt
->info
.pci_vtd
= pci_get_device(PCI_VENDOR_ID_INTEL
,
2743 PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC
,
2746 for (i
= 0; i
< sbridge_dev
->n_devs
; i
++) {
2747 pdev
= sbridge_dev
->pdev
[i
];
2751 switch (pdev
->device
) {
2752 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0
:
2753 pvt
->pci_sad0
= pdev
;
2755 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1
:
2756 pvt
->pci_sad1
= pdev
;
2758 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0
:
2759 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1
:
2762 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA
:
2763 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA
:
2766 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM
:
2767 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM
:
2768 pvt
->pci_ras
= pdev
;
2770 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0
:
2771 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1
:
2772 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2
:
2773 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3
:
2774 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0
:
2775 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1
:
2776 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2
:
2777 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3
:
2779 int id
= TAD_DEV_TO_CHAN(pdev
->device
);
2780 pvt
->pci_tad
[id
] = pdev
;
2781 saw_chan_mask
|= 1 << id
;
2784 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0
:
2785 pvt
->pci_ddrio
= pdev
;
2791 edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2793 PCI_SLOT(pdev
->devfn
), PCI_FUNC(pdev
->devfn
),
2797 /* Check if everything were registered */
2798 if (!pvt
->pci_sad0
|| !pvt
->pci_ha
|| !pvt
->pci_sad1
||
2799 !pvt
->pci_ras
|| !pvt
->pci_ta
|| !pvt
->info
.pci_vtd
)
2802 if (saw_chan_mask
!= 0x0f && /* -EN/-EX */
2803 saw_chan_mask
!= 0x03) /* -EP */
2808 sbridge_printk(KERN_ERR
, "Some needed devices are missing\n");
2812 static int knl_mci_bind_devs(struct mem_ctl_info
*mci
,
2813 struct sbridge_dev
*sbridge_dev
)
2815 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
2816 struct pci_dev
*pdev
;
2822 for (i
= 0; i
< sbridge_dev
->n_devs
; i
++) {
2823 pdev
= sbridge_dev
->pdev
[i
];
2827 /* Extract PCI device and function. */
2828 dev
= (pdev
->devfn
>> 3) & 0x1f;
2829 func
= pdev
->devfn
& 0x7;
2831 switch (pdev
->device
) {
2832 case PCI_DEVICE_ID_INTEL_KNL_IMC_MC
:
2834 pvt
->knl
.pci_mc0
= pdev
;
2836 pvt
->knl
.pci_mc1
= pdev
;
2838 sbridge_printk(KERN_ERR
,
2839 "Memory controller in unexpected place! (dev %d, fn %d)\n",
2845 case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0
:
2846 pvt
->pci_sad0
= pdev
;
2849 case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1
:
2850 pvt
->pci_sad1
= pdev
;
2853 case PCI_DEVICE_ID_INTEL_KNL_IMC_CHA
:
2854 /* There are one of these per tile, and range from
2857 devidx
= ((dev
-14)*8)+func
;
2859 if (devidx
< 0 || devidx
>= KNL_MAX_CHAS
) {
2860 sbridge_printk(KERN_ERR
,
2861 "Caching and Home Agent in unexpected place! (dev %d, fn %d)\n",
2866 WARN_ON(pvt
->knl
.pci_cha
[devidx
] != NULL
);
2868 pvt
->knl
.pci_cha
[devidx
] = pdev
;
2871 case PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN
:
2875 * MC0 channels 0-2 are device 9 function 2-4,
2876 * MC1 channels 3-5 are device 8 function 2-4.
2882 devidx
= 3 + (func
-2);
2884 if (devidx
< 0 || devidx
>= KNL_MAX_CHANNELS
) {
2885 sbridge_printk(KERN_ERR
,
2886 "DRAM Channel Registers in unexpected place! (dev %d, fn %d)\n",
2891 WARN_ON(pvt
->knl
.pci_channel
[devidx
] != NULL
);
2892 pvt
->knl
.pci_channel
[devidx
] = pdev
;
2895 case PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM
:
2896 pvt
->knl
.pci_mc_info
= pdev
;
2899 case PCI_DEVICE_ID_INTEL_KNL_IMC_TA
:
2904 sbridge_printk(KERN_ERR
, "Unexpected device %d\n",
2910 if (!pvt
->knl
.pci_mc0
|| !pvt
->knl
.pci_mc1
||
2911 !pvt
->pci_sad0
|| !pvt
->pci_sad1
||
2916 for (i
= 0; i
< KNL_MAX_CHANNELS
; i
++) {
2917 if (!pvt
->knl
.pci_channel
[i
]) {
2918 sbridge_printk(KERN_ERR
, "Missing channel %d\n", i
);
2923 for (i
= 0; i
< KNL_MAX_CHAS
; i
++) {
2924 if (!pvt
->knl
.pci_cha
[i
]) {
2925 sbridge_printk(KERN_ERR
, "Missing CHA %d\n", i
);
2933 sbridge_printk(KERN_ERR
, "Some needed devices are missing\n");
2937 /****************************************************************************
2938 Error check routines
2939 ****************************************************************************/
2942 * While Sandy Bridge has error count registers, SMI BIOS read values from
2943 * and resets the counters. So, they are not reliable for the OS to read
2944 * from them. So, we have no option but to just trust on whatever MCE is
2945 * telling us about the errors.
2947 static void sbridge_mce_output_error(struct mem_ctl_info
*mci
,
2948 const struct mce
*m
)
2950 struct mem_ctl_info
*new_mci
;
2951 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
2952 enum hw_event_mc_err_type tp_event
;
2953 char *optype
, msg
[256];
2954 bool ripv
= GET_BITFIELD(m
->mcgstatus
, 0, 0);
2955 bool overflow
= GET_BITFIELD(m
->status
, 62, 62);
2956 bool uncorrected_error
= GET_BITFIELD(m
->status
, 61, 61);
2958 u32 core_err_cnt
= GET_BITFIELD(m
->status
, 38, 52);
2959 u32 mscod
= GET_BITFIELD(m
->status
, 16, 31);
2960 u32 errcode
= GET_BITFIELD(m
->status
, 0, 15);
2961 u32 channel
= GET_BITFIELD(m
->status
, 0, 3);
2962 u32 optypenum
= GET_BITFIELD(m
->status
, 4, 6);
2964 * Bits 5-0 of MCi_MISC give the least significant bit that is valid.
2965 * A value 6 is for cache line aligned address, a value 12 is for page
2966 * aligned address reported by patrol scrubber.
2968 u32 lsb
= GET_BITFIELD(m
->misc
, 0, 5);
2969 long channel_mask
, first_channel
;
2970 u8 rank
= 0xff, socket
, ha
;
2972 char *area_type
= "DRAM";
2974 if (pvt
->info
.type
!= SANDY_BRIDGE
)
2977 recoverable
= GET_BITFIELD(m
->status
, 56, 56);
2979 if (uncorrected_error
) {
2982 tp_event
= HW_EVENT_ERR_UNCORRECTED
;
2984 tp_event
= HW_EVENT_ERR_FATAL
;
2987 tp_event
= HW_EVENT_ERR_CORRECTED
;
2991 * According with Table 15-9 of the Intel Architecture spec vol 3A,
2992 * memory errors should fit in this mask:
2993 * 000f 0000 1mmm cccc (binary)
2995 * f = Correction Report Filtering Bit. If 1, subsequent errors
2999 * If the mask doesn't match, report an error to the parsing logic
3001 switch (optypenum
) {
3003 optype
= "generic undef request error";
3006 optype
= "memory read error";
3009 optype
= "memory write error";
3012 optype
= "addr/cmd error";
3015 optype
= "memory scrubbing error";
3018 optype
= "reserved";
3022 if (pvt
->info
.type
== KNIGHTS_LANDING
) {
3023 if (channel
== 14) {
3024 edac_dbg(0, "%s%s err_code:%04x:%04x EDRAM bank %d\n",
3025 overflow
? " OVERFLOW" : "",
3026 (uncorrected_error
&& recoverable
)
3027 ? " recoverable" : "",
3034 * Reported channel is in range 0-2, so we can't map it
3035 * back to mc. To figure out mc we check machine check
3036 * bank register that reported this error.
3037 * bank15 means mc0 and bank16 means mc1.
3039 channel
= knl_channel_remap(m
->bank
== 16, channel
);
3040 channel_mask
= 1 << channel
;
3042 snprintf(msg
, sizeof(msg
),
3043 "%s%s err_code:%04x:%04x channel:%d (DIMM_%c)",
3044 overflow
? " OVERFLOW" : "",
3045 (uncorrected_error
&& recoverable
)
3046 ? " recoverable" : " ",
3047 mscod
, errcode
, channel
, A
+ channel
);
3048 edac_mc_handle_error(tp_event
, mci
, core_err_cnt
,
3049 m
->addr
>> PAGE_SHIFT
, m
->addr
& ~PAGE_MASK
, 0,
3054 } else if (lsb
< 12) {
3055 rc
= get_memory_error_data(mci
, m
->addr
, &socket
, &ha
,
3056 &channel_mask
, &rank
,
3059 rc
= get_memory_error_data_from_mce(mci
, m
, &socket
, &ha
,
3060 &channel_mask
, msg
);
3065 new_mci
= get_mci_for_node_id(socket
, ha
);
3067 strcpy(msg
, "Error: socket got corrupted!");
3071 pvt
= mci
->pvt_info
;
3073 first_channel
= find_first_bit(&channel_mask
, NUM_CHANNELS
);
3085 * FIXME: On some memory configurations (mirror, lockstep), the
3086 * Memory Controller can't point the error to a single DIMM. The
3087 * EDAC core should be handling the channel mask, in order to point
3088 * to the group of dimm's where the error may be happening.
3090 if (!pvt
->is_lockstep
&& !pvt
->is_cur_addr_mirrored
&& !pvt
->is_close_pg
)
3091 channel
= first_channel
;
3093 snprintf(msg
, sizeof(msg
),
3094 "%s%s area:%s err_code:%04x:%04x socket:%d ha:%d channel_mask:%ld rank:%d",
3095 overflow
? " OVERFLOW" : "",
3096 (uncorrected_error
&& recoverable
) ? " recoverable" : "",
3103 edac_dbg(0, "%s\n", msg
);
3105 /* FIXME: need support for channel mask */
3107 if (channel
== CHANNEL_UNSPECIFIED
)
3110 /* Call the helper to output message */
3111 edac_mc_handle_error(tp_event
, mci
, core_err_cnt
,
3112 m
->addr
>> PAGE_SHIFT
, m
->addr
& ~PAGE_MASK
, 0,
3117 edac_mc_handle_error(tp_event
, mci
, core_err_cnt
, 0, 0, 0,
3124 * Check that logging is enabled and that this is the right type
3125 * of error for us to handle.
3127 static int sbridge_mce_check_error(struct notifier_block
*nb
, unsigned long val
,
3130 struct mce
*mce
= (struct mce
*)data
;
3131 struct mem_ctl_info
*mci
;
3134 if (mce
->kflags
& MCE_HANDLED_CEC
)
3138 * Just let mcelog handle it if the error is
3139 * outside the memory controller. A memory error
3140 * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0.
3141 * bit 12 has an special meaning.
3143 if ((mce
->status
& 0xefff) >> 7 != 1)
3146 /* Check ADDRV bit in STATUS */
3147 if (!GET_BITFIELD(mce
->status
, 58, 58))
3150 /* Check MISCV bit in STATUS */
3151 if (!GET_BITFIELD(mce
->status
, 59, 59))
3154 /* Check address type in MISC (physical address only) */
3155 if (GET_BITFIELD(mce
->misc
, 6, 8) != 2)
3158 mci
= get_mci_for_node_id(mce
->socketid
, IMC0
);
3162 if (mce
->mcgstatus
& MCG_STATUS_MCIP
)
3167 sbridge_mc_printk(mci
, KERN_DEBUG
, "HANDLING MCE MEMORY ERROR\n");
3169 sbridge_mc_printk(mci
, KERN_DEBUG
, "CPU %d: Machine Check %s: %Lx "
3170 "Bank %d: %016Lx\n", mce
->extcpu
, type
,
3171 mce
->mcgstatus
, mce
->bank
, mce
->status
);
3172 sbridge_mc_printk(mci
, KERN_DEBUG
, "TSC %llx ", mce
->tsc
);
3173 sbridge_mc_printk(mci
, KERN_DEBUG
, "ADDR %llx ", mce
->addr
);
3174 sbridge_mc_printk(mci
, KERN_DEBUG
, "MISC %llx ", mce
->misc
);
3176 sbridge_mc_printk(mci
, KERN_DEBUG
, "PROCESSOR %u:%x TIME %llu SOCKET "
3177 "%u APIC %x\n", mce
->cpuvendor
, mce
->cpuid
,
3178 mce
->time
, mce
->socketid
, mce
->apicid
);
3180 sbridge_mce_output_error(mci
, mce
);
3182 /* Advice mcelog that the error were handled */
3183 mce
->kflags
|= MCE_HANDLED_EDAC
;
3187 static struct notifier_block sbridge_mce_dec
= {
3188 .notifier_call
= sbridge_mce_check_error
,
3189 .priority
= MCE_PRIO_EDAC
,
3192 /****************************************************************************
3193 EDAC register/unregister logic
3194 ****************************************************************************/
3196 static void sbridge_unregister_mci(struct sbridge_dev
*sbridge_dev
)
3198 struct mem_ctl_info
*mci
= sbridge_dev
->mci
;
3200 if (unlikely(!mci
|| !mci
->pvt_info
)) {
3201 edac_dbg(0, "MC: dev = %p\n", &sbridge_dev
->pdev
[0]->dev
);
3203 sbridge_printk(KERN_ERR
, "Couldn't find mci handler\n");
3207 edac_dbg(0, "MC: mci = %p, dev = %p\n",
3208 mci
, &sbridge_dev
->pdev
[0]->dev
);
3210 /* Remove MC sysfs nodes */
3211 edac_mc_del_mc(mci
->pdev
);
3213 edac_dbg(1, "%s: free mci struct\n", mci
->ctl_name
);
3214 kfree(mci
->ctl_name
);
3216 sbridge_dev
->mci
= NULL
;
3219 static int sbridge_register_mci(struct sbridge_dev
*sbridge_dev
, enum type type
)
3221 struct mem_ctl_info
*mci
;
3222 struct edac_mc_layer layers
[2];
3223 struct sbridge_pvt
*pvt
;
3224 struct pci_dev
*pdev
= sbridge_dev
->pdev
[0];
3227 /* allocate a new MC control structure */
3228 layers
[0].type
= EDAC_MC_LAYER_CHANNEL
;
3229 layers
[0].size
= type
== KNIGHTS_LANDING
?
3230 KNL_MAX_CHANNELS
: NUM_CHANNELS
;
3231 layers
[0].is_virt_csrow
= false;
3232 layers
[1].type
= EDAC_MC_LAYER_SLOT
;
3233 layers
[1].size
= type
== KNIGHTS_LANDING
? 1 : MAX_DIMMS
;
3234 layers
[1].is_virt_csrow
= true;
3235 mci
= edac_mc_alloc(sbridge_dev
->mc
, ARRAY_SIZE(layers
), layers
,
3241 edac_dbg(0, "MC: mci = %p, dev = %p\n",
3244 pvt
= mci
->pvt_info
;
3245 memset(pvt
, 0, sizeof(*pvt
));
3247 /* Associate sbridge_dev and mci for future usage */
3248 pvt
->sbridge_dev
= sbridge_dev
;
3249 sbridge_dev
->mci
= mci
;
3251 mci
->mtype_cap
= type
== KNIGHTS_LANDING
?
3252 MEM_FLAG_DDR4
: MEM_FLAG_DDR3
;
3253 mci
->edac_ctl_cap
= EDAC_FLAG_NONE
;
3254 mci
->edac_cap
= EDAC_FLAG_NONE
;
3255 mci
->mod_name
= EDAC_MOD_STR
;
3256 mci
->dev_name
= pci_name(pdev
);
3257 mci
->ctl_page_to_phys
= NULL
;
3259 pvt
->info
.type
= type
;
3262 pvt
->info
.rankcfgr
= IB_RANK_CFG_A
;
3263 pvt
->info
.get_tolm
= ibridge_get_tolm
;
3264 pvt
->info
.get_tohm
= ibridge_get_tohm
;
3265 pvt
->info
.dram_rule
= ibridge_dram_rule
;
3266 pvt
->info
.get_memory_type
= get_memory_type
;
3267 pvt
->info
.get_node_id
= get_node_id
;
3268 pvt
->info
.get_ha
= ibridge_get_ha
;
3269 pvt
->info
.rir_limit
= rir_limit
;
3270 pvt
->info
.sad_limit
= sad_limit
;
3271 pvt
->info
.interleave_mode
= interleave_mode
;
3272 pvt
->info
.dram_attr
= dram_attr
;
3273 pvt
->info
.max_sad
= ARRAY_SIZE(ibridge_dram_rule
);
3274 pvt
->info
.interleave_list
= ibridge_interleave_list
;
3275 pvt
->info
.interleave_pkg
= ibridge_interleave_pkg
;
3276 pvt
->info
.get_width
= ibridge_get_width
;
3278 /* Store pci devices at mci for faster access */
3279 rc
= ibridge_mci_bind_devs(mci
, sbridge_dev
);
3280 if (unlikely(rc
< 0))
3283 mci
->ctl_name
= kasprintf(GFP_KERNEL
, "Ivy Bridge SrcID#%d_Ha#%d",
3284 pvt
->sbridge_dev
->source_id
, pvt
->sbridge_dev
->dom
);
3287 pvt
->info
.rankcfgr
= SB_RANK_CFG_A
;
3288 pvt
->info
.get_tolm
= sbridge_get_tolm
;
3289 pvt
->info
.get_tohm
= sbridge_get_tohm
;
3290 pvt
->info
.dram_rule
= sbridge_dram_rule
;
3291 pvt
->info
.get_memory_type
= get_memory_type
;
3292 pvt
->info
.get_node_id
= get_node_id
;
3293 pvt
->info
.get_ha
= sbridge_get_ha
;
3294 pvt
->info
.rir_limit
= rir_limit
;
3295 pvt
->info
.sad_limit
= sad_limit
;
3296 pvt
->info
.interleave_mode
= interleave_mode
;
3297 pvt
->info
.dram_attr
= dram_attr
;
3298 pvt
->info
.max_sad
= ARRAY_SIZE(sbridge_dram_rule
);
3299 pvt
->info
.interleave_list
= sbridge_interleave_list
;
3300 pvt
->info
.interleave_pkg
= sbridge_interleave_pkg
;
3301 pvt
->info
.get_width
= sbridge_get_width
;
3303 /* Store pci devices at mci for faster access */
3304 rc
= sbridge_mci_bind_devs(mci
, sbridge_dev
);
3305 if (unlikely(rc
< 0))
3308 mci
->ctl_name
= kasprintf(GFP_KERNEL
, "Sandy Bridge SrcID#%d_Ha#%d",
3309 pvt
->sbridge_dev
->source_id
, pvt
->sbridge_dev
->dom
);
3312 /* rankcfgr isn't used */
3313 pvt
->info
.get_tolm
= haswell_get_tolm
;
3314 pvt
->info
.get_tohm
= haswell_get_tohm
;
3315 pvt
->info
.dram_rule
= ibridge_dram_rule
;
3316 pvt
->info
.get_memory_type
= haswell_get_memory_type
;
3317 pvt
->info
.get_node_id
= haswell_get_node_id
;
3318 pvt
->info
.get_ha
= ibridge_get_ha
;
3319 pvt
->info
.rir_limit
= haswell_rir_limit
;
3320 pvt
->info
.sad_limit
= sad_limit
;
3321 pvt
->info
.interleave_mode
= interleave_mode
;
3322 pvt
->info
.dram_attr
= dram_attr
;
3323 pvt
->info
.max_sad
= ARRAY_SIZE(ibridge_dram_rule
);
3324 pvt
->info
.interleave_list
= ibridge_interleave_list
;
3325 pvt
->info
.interleave_pkg
= ibridge_interleave_pkg
;
3326 pvt
->info
.get_width
= ibridge_get_width
;
3328 /* Store pci devices at mci for faster access */
3329 rc
= haswell_mci_bind_devs(mci
, sbridge_dev
);
3330 if (unlikely(rc
< 0))
3333 mci
->ctl_name
= kasprintf(GFP_KERNEL
, "Haswell SrcID#%d_Ha#%d",
3334 pvt
->sbridge_dev
->source_id
, pvt
->sbridge_dev
->dom
);
3337 /* rankcfgr isn't used */
3338 pvt
->info
.get_tolm
= haswell_get_tolm
;
3339 pvt
->info
.get_tohm
= haswell_get_tohm
;
3340 pvt
->info
.dram_rule
= ibridge_dram_rule
;
3341 pvt
->info
.get_memory_type
= haswell_get_memory_type
;
3342 pvt
->info
.get_node_id
= haswell_get_node_id
;
3343 pvt
->info
.get_ha
= ibridge_get_ha
;
3344 pvt
->info
.rir_limit
= haswell_rir_limit
;
3345 pvt
->info
.sad_limit
= sad_limit
;
3346 pvt
->info
.interleave_mode
= interleave_mode
;
3347 pvt
->info
.dram_attr
= dram_attr
;
3348 pvt
->info
.max_sad
= ARRAY_SIZE(ibridge_dram_rule
);
3349 pvt
->info
.interleave_list
= ibridge_interleave_list
;
3350 pvt
->info
.interleave_pkg
= ibridge_interleave_pkg
;
3351 pvt
->info
.get_width
= broadwell_get_width
;
3353 /* Store pci devices at mci for faster access */
3354 rc
= broadwell_mci_bind_devs(mci
, sbridge_dev
);
3355 if (unlikely(rc
< 0))
3358 mci
->ctl_name
= kasprintf(GFP_KERNEL
, "Broadwell SrcID#%d_Ha#%d",
3359 pvt
->sbridge_dev
->source_id
, pvt
->sbridge_dev
->dom
);
3361 case KNIGHTS_LANDING
:
3362 /* pvt->info.rankcfgr == ??? */
3363 pvt
->info
.get_tolm
= knl_get_tolm
;
3364 pvt
->info
.get_tohm
= knl_get_tohm
;
3365 pvt
->info
.dram_rule
= knl_dram_rule
;
3366 pvt
->info
.get_memory_type
= knl_get_memory_type
;
3367 pvt
->info
.get_node_id
= knl_get_node_id
;
3368 pvt
->info
.get_ha
= knl_get_ha
;
3369 pvt
->info
.rir_limit
= NULL
;
3370 pvt
->info
.sad_limit
= knl_sad_limit
;
3371 pvt
->info
.interleave_mode
= knl_interleave_mode
;
3372 pvt
->info
.dram_attr
= dram_attr_knl
;
3373 pvt
->info
.max_sad
= ARRAY_SIZE(knl_dram_rule
);
3374 pvt
->info
.interleave_list
= knl_interleave_list
;
3375 pvt
->info
.interleave_pkg
= ibridge_interleave_pkg
;
3376 pvt
->info
.get_width
= knl_get_width
;
3378 rc
= knl_mci_bind_devs(mci
, sbridge_dev
);
3379 if (unlikely(rc
< 0))
3382 mci
->ctl_name
= kasprintf(GFP_KERNEL
, "Knights Landing SrcID#%d_Ha#%d",
3383 pvt
->sbridge_dev
->source_id
, pvt
->sbridge_dev
->dom
);
3387 if (!mci
->ctl_name
) {
3392 /* Get dimm basic config and the memory layout */
3393 rc
= get_dimm_config(mci
);
3395 edac_dbg(0, "MC: failed to get_dimm_config()\n");
3398 get_memory_layout(mci
);
3400 /* record ptr to the generic device */
3401 mci
->pdev
= &pdev
->dev
;
3403 /* add this new MC control structure to EDAC's list of MCs */
3404 if (unlikely(edac_mc_add_mc(mci
))) {
3405 edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
3413 kfree(mci
->ctl_name
);
3416 sbridge_dev
->mci
= NULL
;
3420 static const struct x86_cpu_id sbridge_cpuids
[] = {
3421 X86_MATCH_INTEL_FAM6_MODEL(SANDYBRIDGE_X
, &pci_dev_descr_sbridge_table
),
3422 X86_MATCH_INTEL_FAM6_MODEL(IVYBRIDGE_X
, &pci_dev_descr_ibridge_table
),
3423 X86_MATCH_INTEL_FAM6_MODEL(HASWELL_X
, &pci_dev_descr_haswell_table
),
3424 X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_X
, &pci_dev_descr_broadwell_table
),
3425 X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_D
, &pci_dev_descr_broadwell_table
),
3426 X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNL
, &pci_dev_descr_knl_table
),
3427 X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNM
, &pci_dev_descr_knl_table
),
3430 MODULE_DEVICE_TABLE(x86cpu
, sbridge_cpuids
);
3433 * sbridge_probe Get all devices and register memory controllers
3436 * 0 for FOUND a device
3437 * < 0 for error code
3440 static int sbridge_probe(const struct x86_cpu_id
*id
)
3444 struct sbridge_dev
*sbridge_dev
;
3445 struct pci_id_table
*ptable
= (struct pci_id_table
*)id
->driver_data
;
3447 /* get the pci devices we want to reserve for our use */
3448 rc
= sbridge_get_all_devices(&num_mc
, ptable
);
3450 if (unlikely(rc
< 0)) {
3451 edac_dbg(0, "couldn't get all devices\n");
3457 list_for_each_entry(sbridge_dev
, &sbridge_edac_list
, list
) {
3458 edac_dbg(0, "Registering MC#%d (%d of %d)\n",
3459 mc
, mc
+ 1, num_mc
);
3461 sbridge_dev
->mc
= mc
++;
3462 rc
= sbridge_register_mci(sbridge_dev
, ptable
->type
);
3463 if (unlikely(rc
< 0))
3467 sbridge_printk(KERN_INFO
, "%s\n", SBRIDGE_REVISION
);
3472 list_for_each_entry(sbridge_dev
, &sbridge_edac_list
, list
)
3473 sbridge_unregister_mci(sbridge_dev
);
3475 sbridge_put_all_devices();
3481 * sbridge_remove cleanup
3484 static void sbridge_remove(void)
3486 struct sbridge_dev
*sbridge_dev
;
3490 list_for_each_entry(sbridge_dev
, &sbridge_edac_list
, list
)
3491 sbridge_unregister_mci(sbridge_dev
);
3493 /* Release PCI resources */
3494 sbridge_put_all_devices();
3498 * sbridge_init Module entry function
3499 * Try to initialize this module for its devices
3501 static int __init
sbridge_init(void)
3503 const struct x86_cpu_id
*id
;
3509 owner
= edac_get_owner();
3510 if (owner
&& strncmp(owner
, EDAC_MOD_STR
, sizeof(EDAC_MOD_STR
)))
3513 id
= x86_match_cpu(sbridge_cpuids
);
3517 /* Ensure that the OPSTATE is set correctly for POLL or NMI */
3520 rc
= sbridge_probe(id
);
3523 mce_register_decode_chain(&sbridge_mce_dec
);
3527 sbridge_printk(KERN_ERR
, "Failed to register device with error %d.\n",
3534 * sbridge_exit() Module exit function
3535 * Unregister the driver
3537 static void __exit
sbridge_exit(void)
3541 mce_unregister_decode_chain(&sbridge_mce_dec
);
3544 module_init(sbridge_init
);
3545 module_exit(sbridge_exit
);
3547 module_param(edac_op_state
, int, 0444);
3548 MODULE_PARM_DESC(edac_op_state
, "EDAC Error Reporting state: 0=Poll,1=NMI");
3550 MODULE_LICENSE("GPL");
3551 MODULE_AUTHOR("Mauro Carvalho Chehab");
3552 MODULE_AUTHOR("Red Hat Inc. (https://www.redhat.com)");
3553 MODULE_DESCRIPTION("MC Driver for Intel Sandy Bridge and Ivy Bridge memory controllers - "