Merge tag 'block-5.11-2021-01-10' of git://git.kernel.dk/linux-block
[linux/fpc-iii.git] / drivers / gpu / drm / bridge / ti-sn65dsi86.c
blobf27306c51e4d919dfc8b9a1dba5c10bd4c743009
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2018, The Linux Foundation. All rights reserved.
4 * datasheet: https://www.ti.com/lit/ds/symlink/sn65dsi86.pdf
5 */
7 #include <linux/bits.h>
8 #include <linux/clk.h>
9 #include <linux/debugfs.h>
10 #include <linux/gpio/consumer.h>
11 #include <linux/gpio/driver.h>
12 #include <linux/i2c.h>
13 #include <linux/iopoll.h>
14 #include <linux/module.h>
15 #include <linux/of_graph.h>
16 #include <linux/pm_runtime.h>
17 #include <linux/regmap.h>
18 #include <linux/regulator/consumer.h>
20 #include <asm/unaligned.h>
22 #include <drm/drm_atomic.h>
23 #include <drm/drm_atomic_helper.h>
24 #include <drm/drm_bridge.h>
25 #include <drm/drm_dp_helper.h>
26 #include <drm/drm_mipi_dsi.h>
27 #include <drm/drm_of.h>
28 #include <drm/drm_panel.h>
29 #include <drm/drm_print.h>
30 #include <drm/drm_probe_helper.h>
32 #define SN_DEVICE_REV_REG 0x08
33 #define SN_DPPLL_SRC_REG 0x0A
34 #define DPPLL_CLK_SRC_DSICLK BIT(0)
35 #define REFCLK_FREQ_MASK GENMASK(3, 1)
36 #define REFCLK_FREQ(x) ((x) << 1)
37 #define DPPLL_SRC_DP_PLL_LOCK BIT(7)
38 #define SN_PLL_ENABLE_REG 0x0D
39 #define SN_DSI_LANES_REG 0x10
40 #define CHA_DSI_LANES_MASK GENMASK(4, 3)
41 #define CHA_DSI_LANES(x) ((x) << 3)
42 #define SN_DSIA_CLK_FREQ_REG 0x12
43 #define SN_CHA_ACTIVE_LINE_LENGTH_LOW_REG 0x20
44 #define SN_CHA_VERTICAL_DISPLAY_SIZE_LOW_REG 0x24
45 #define SN_CHA_HSYNC_PULSE_WIDTH_LOW_REG 0x2C
46 #define SN_CHA_HSYNC_PULSE_WIDTH_HIGH_REG 0x2D
47 #define CHA_HSYNC_POLARITY BIT(7)
48 #define SN_CHA_VSYNC_PULSE_WIDTH_LOW_REG 0x30
49 #define SN_CHA_VSYNC_PULSE_WIDTH_HIGH_REG 0x31
50 #define CHA_VSYNC_POLARITY BIT(7)
51 #define SN_CHA_HORIZONTAL_BACK_PORCH_REG 0x34
52 #define SN_CHA_VERTICAL_BACK_PORCH_REG 0x36
53 #define SN_CHA_HORIZONTAL_FRONT_PORCH_REG 0x38
54 #define SN_CHA_VERTICAL_FRONT_PORCH_REG 0x3A
55 #define SN_LN_ASSIGN_REG 0x59
56 #define LN_ASSIGN_WIDTH 2
57 #define SN_ENH_FRAME_REG 0x5A
58 #define VSTREAM_ENABLE BIT(3)
59 #define LN_POLRS_OFFSET 4
60 #define LN_POLRS_MASK 0xf0
61 #define SN_DATA_FORMAT_REG 0x5B
62 #define BPP_18_RGB BIT(0)
63 #define SN_HPD_DISABLE_REG 0x5C
64 #define HPD_DISABLE BIT(0)
65 #define SN_GPIO_IO_REG 0x5E
66 #define SN_GPIO_INPUT_SHIFT 4
67 #define SN_GPIO_OUTPUT_SHIFT 0
68 #define SN_GPIO_CTRL_REG 0x5F
69 #define SN_GPIO_MUX_INPUT 0
70 #define SN_GPIO_MUX_OUTPUT 1
71 #define SN_GPIO_MUX_SPECIAL 2
72 #define SN_GPIO_MUX_MASK 0x3
73 #define SN_AUX_WDATA_REG(x) (0x64 + (x))
74 #define SN_AUX_ADDR_19_16_REG 0x74
75 #define SN_AUX_ADDR_15_8_REG 0x75
76 #define SN_AUX_ADDR_7_0_REG 0x76
77 #define SN_AUX_ADDR_MASK GENMASK(19, 0)
78 #define SN_AUX_LENGTH_REG 0x77
79 #define SN_AUX_CMD_REG 0x78
80 #define AUX_CMD_SEND BIT(0)
81 #define AUX_CMD_REQ(x) ((x) << 4)
82 #define SN_AUX_RDATA_REG(x) (0x79 + (x))
83 #define SN_SSC_CONFIG_REG 0x93
84 #define DP_NUM_LANES_MASK GENMASK(5, 4)
85 #define DP_NUM_LANES(x) ((x) << 4)
86 #define SN_DATARATE_CONFIG_REG 0x94
87 #define DP_DATARATE_MASK GENMASK(7, 5)
88 #define DP_DATARATE(x) ((x) << 5)
89 #define SN_ML_TX_MODE_REG 0x96
90 #define ML_TX_MAIN_LINK_OFF 0
91 #define ML_TX_NORMAL_MODE BIT(0)
92 #define SN_AUX_CMD_STATUS_REG 0xF4
93 #define AUX_IRQ_STATUS_AUX_RPLY_TOUT BIT(3)
94 #define AUX_IRQ_STATUS_AUX_SHORT BIT(5)
95 #define AUX_IRQ_STATUS_NAT_I2C_FAIL BIT(6)
97 #define MIN_DSI_CLK_FREQ_MHZ 40
99 /* fudge factor required to account for 8b/10b encoding */
100 #define DP_CLK_FUDGE_NUM 10
101 #define DP_CLK_FUDGE_DEN 8
103 /* Matches DP_AUX_MAX_PAYLOAD_BYTES (for now) */
104 #define SN_AUX_MAX_PAYLOAD_BYTES 16
106 #define SN_REGULATOR_SUPPLY_NUM 4
108 #define SN_MAX_DP_LANES 4
109 #define SN_NUM_GPIOS 4
110 #define SN_GPIO_PHYSICAL_OFFSET 1
112 #define SN_LINK_TRAINING_TRIES 10
115 * struct ti_sn_bridge - Platform data for ti-sn65dsi86 driver.
116 * @dev: Pointer to our device.
117 * @regmap: Regmap for accessing i2c.
118 * @aux: Our aux channel.
119 * @bridge: Our bridge.
120 * @connector: Our connector.
121 * @debugfs: Used for managing our debugfs.
122 * @host_node: Remote DSI node.
123 * @dsi: Our MIPI DSI source.
124 * @edid: Detected EDID of eDP panel.
125 * @refclk: Our reference clock.
126 * @panel: Our panel.
127 * @enable_gpio: The GPIO we toggle to enable the bridge.
128 * @supplies: Data for bulk enabling/disabling our regulators.
129 * @dp_lanes: Count of dp_lanes we're using.
130 * @ln_assign: Value to program to the LN_ASSIGN register.
131 * @ln_polrs: Value for the 4-bit LN_POLRS field of SN_ENH_FRAME_REG.
133 * @gchip: If we expose our GPIOs, this is used.
134 * @gchip_output: A cache of whether we've set GPIOs to output. This
135 * serves double-duty of keeping track of the direction and
136 * also keeping track of whether we've incremented the
137 * pm_runtime reference count for this pin, which we do
138 * whenever a pin is configured as an output. This is a
139 * bitmap so we can do atomic ops on it without an extra
140 * lock so concurrent users of our 4 GPIOs don't stomp on
141 * each other's read-modify-write.
143 struct ti_sn_bridge {
144 struct device *dev;
145 struct regmap *regmap;
146 struct drm_dp_aux aux;
147 struct drm_bridge bridge;
148 struct drm_connector connector;
149 struct dentry *debugfs;
150 struct edid *edid;
151 struct device_node *host_node;
152 struct mipi_dsi_device *dsi;
153 struct clk *refclk;
154 struct drm_panel *panel;
155 struct gpio_desc *enable_gpio;
156 struct regulator_bulk_data supplies[SN_REGULATOR_SUPPLY_NUM];
157 int dp_lanes;
158 u8 ln_assign;
159 u8 ln_polrs;
161 #if defined(CONFIG_OF_GPIO)
162 struct gpio_chip gchip;
163 DECLARE_BITMAP(gchip_output, SN_NUM_GPIOS);
164 #endif
167 static const struct regmap_range ti_sn_bridge_volatile_ranges[] = {
168 { .range_min = 0, .range_max = 0xFF },
171 static const struct regmap_access_table ti_sn_bridge_volatile_table = {
172 .yes_ranges = ti_sn_bridge_volatile_ranges,
173 .n_yes_ranges = ARRAY_SIZE(ti_sn_bridge_volatile_ranges),
176 static const struct regmap_config ti_sn_bridge_regmap_config = {
177 .reg_bits = 8,
178 .val_bits = 8,
179 .volatile_table = &ti_sn_bridge_volatile_table,
180 .cache_type = REGCACHE_NONE,
183 static void ti_sn_bridge_write_u16(struct ti_sn_bridge *pdata,
184 unsigned int reg, u16 val)
186 regmap_write(pdata->regmap, reg, val & 0xFF);
187 regmap_write(pdata->regmap, reg + 1, val >> 8);
190 static int __maybe_unused ti_sn_bridge_resume(struct device *dev)
192 struct ti_sn_bridge *pdata = dev_get_drvdata(dev);
193 int ret;
195 ret = regulator_bulk_enable(SN_REGULATOR_SUPPLY_NUM, pdata->supplies);
196 if (ret) {
197 DRM_ERROR("failed to enable supplies %d\n", ret);
198 return ret;
201 gpiod_set_value(pdata->enable_gpio, 1);
203 return ret;
206 static int __maybe_unused ti_sn_bridge_suspend(struct device *dev)
208 struct ti_sn_bridge *pdata = dev_get_drvdata(dev);
209 int ret;
211 gpiod_set_value(pdata->enable_gpio, 0);
213 ret = regulator_bulk_disable(SN_REGULATOR_SUPPLY_NUM, pdata->supplies);
214 if (ret)
215 DRM_ERROR("failed to disable supplies %d\n", ret);
217 return ret;
220 static const struct dev_pm_ops ti_sn_bridge_pm_ops = {
221 SET_RUNTIME_PM_OPS(ti_sn_bridge_suspend, ti_sn_bridge_resume, NULL)
222 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
223 pm_runtime_force_resume)
226 static int status_show(struct seq_file *s, void *data)
228 struct ti_sn_bridge *pdata = s->private;
229 unsigned int reg, val;
231 seq_puts(s, "STATUS REGISTERS:\n");
233 pm_runtime_get_sync(pdata->dev);
235 /* IRQ Status Registers, see Table 31 in datasheet */
236 for (reg = 0xf0; reg <= 0xf8; reg++) {
237 regmap_read(pdata->regmap, reg, &val);
238 seq_printf(s, "[0x%02x] = 0x%08x\n", reg, val);
241 pm_runtime_put(pdata->dev);
243 return 0;
246 DEFINE_SHOW_ATTRIBUTE(status);
248 static void ti_sn_debugfs_init(struct ti_sn_bridge *pdata)
250 pdata->debugfs = debugfs_create_dir(dev_name(pdata->dev), NULL);
252 debugfs_create_file("status", 0600, pdata->debugfs, pdata,
253 &status_fops);
256 static void ti_sn_debugfs_remove(struct ti_sn_bridge *pdata)
258 debugfs_remove_recursive(pdata->debugfs);
259 pdata->debugfs = NULL;
262 /* Connector funcs */
263 static struct ti_sn_bridge *
264 connector_to_ti_sn_bridge(struct drm_connector *connector)
266 return container_of(connector, struct ti_sn_bridge, connector);
269 static int ti_sn_bridge_connector_get_modes(struct drm_connector *connector)
271 struct ti_sn_bridge *pdata = connector_to_ti_sn_bridge(connector);
272 struct edid *edid = pdata->edid;
273 int num, ret;
275 if (!edid) {
276 pm_runtime_get_sync(pdata->dev);
277 edid = pdata->edid = drm_get_edid(connector, &pdata->aux.ddc);
278 pm_runtime_put(pdata->dev);
281 if (edid && drm_edid_is_valid(edid)) {
282 ret = drm_connector_update_edid_property(connector, edid);
283 if (!ret) {
284 num = drm_add_edid_modes(connector, edid);
285 if (num)
286 return num;
290 return drm_panel_get_modes(pdata->panel, connector);
293 static enum drm_mode_status
294 ti_sn_bridge_connector_mode_valid(struct drm_connector *connector,
295 struct drm_display_mode *mode)
297 /* maximum supported resolution is 4K at 60 fps */
298 if (mode->clock > 594000)
299 return MODE_CLOCK_HIGH;
301 return MODE_OK;
304 static struct drm_connector_helper_funcs ti_sn_bridge_connector_helper_funcs = {
305 .get_modes = ti_sn_bridge_connector_get_modes,
306 .mode_valid = ti_sn_bridge_connector_mode_valid,
309 static enum drm_connector_status
310 ti_sn_bridge_connector_detect(struct drm_connector *connector, bool force)
313 * TODO: Currently if drm_panel is present, then always
314 * return the status as connected. Need to add support to detect
315 * device state for hot pluggable scenarios.
317 return connector_status_connected;
320 static const struct drm_connector_funcs ti_sn_bridge_connector_funcs = {
321 .fill_modes = drm_helper_probe_single_connector_modes,
322 .detect = ti_sn_bridge_connector_detect,
323 .destroy = drm_connector_cleanup,
324 .reset = drm_atomic_helper_connector_reset,
325 .atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
326 .atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
329 static struct ti_sn_bridge *bridge_to_ti_sn_bridge(struct drm_bridge *bridge)
331 return container_of(bridge, struct ti_sn_bridge, bridge);
334 static int ti_sn_bridge_parse_regulators(struct ti_sn_bridge *pdata)
336 unsigned int i;
337 const char * const ti_sn_bridge_supply_names[] = {
338 "vcca", "vcc", "vccio", "vpll",
341 for (i = 0; i < SN_REGULATOR_SUPPLY_NUM; i++)
342 pdata->supplies[i].supply = ti_sn_bridge_supply_names[i];
344 return devm_regulator_bulk_get(pdata->dev, SN_REGULATOR_SUPPLY_NUM,
345 pdata->supplies);
348 static int ti_sn_bridge_attach(struct drm_bridge *bridge,
349 enum drm_bridge_attach_flags flags)
351 int ret, val;
352 struct ti_sn_bridge *pdata = bridge_to_ti_sn_bridge(bridge);
353 struct mipi_dsi_host *host;
354 struct mipi_dsi_device *dsi;
355 const struct mipi_dsi_device_info info = { .type = "ti_sn_bridge",
356 .channel = 0,
357 .node = NULL,
360 if (flags & DRM_BRIDGE_ATTACH_NO_CONNECTOR) {
361 DRM_ERROR("Fix bridge driver to make connector optional!");
362 return -EINVAL;
365 ret = drm_connector_init(bridge->dev, &pdata->connector,
366 &ti_sn_bridge_connector_funcs,
367 DRM_MODE_CONNECTOR_eDP);
368 if (ret) {
369 DRM_ERROR("Failed to initialize connector with drm\n");
370 return ret;
373 drm_connector_helper_add(&pdata->connector,
374 &ti_sn_bridge_connector_helper_funcs);
375 drm_connector_attach_encoder(&pdata->connector, bridge->encoder);
378 * TODO: ideally finding host resource and dsi dev registration needs
379 * to be done in bridge probe. But some existing DSI host drivers will
380 * wait for any of the drm_bridge/drm_panel to get added to the global
381 * bridge/panel list, before completing their probe. So if we do the
382 * dsi dev registration part in bridge probe, before populating in
383 * the global bridge list, then it will cause deadlock as dsi host probe
384 * will never complete, neither our bridge probe. So keeping it here
385 * will satisfy most of the existing host drivers. Once the host driver
386 * is fixed we can move the below code to bridge probe safely.
388 host = of_find_mipi_dsi_host_by_node(pdata->host_node);
389 if (!host) {
390 DRM_ERROR("failed to find dsi host\n");
391 ret = -ENODEV;
392 goto err_dsi_host;
395 dsi = mipi_dsi_device_register_full(host, &info);
396 if (IS_ERR(dsi)) {
397 DRM_ERROR("failed to create dsi device\n");
398 ret = PTR_ERR(dsi);
399 goto err_dsi_host;
402 /* TODO: setting to 4 MIPI lanes always for now */
403 dsi->lanes = 4;
404 dsi->format = MIPI_DSI_FMT_RGB888;
405 dsi->mode_flags = MIPI_DSI_MODE_VIDEO;
407 /* check if continuous dsi clock is required or not */
408 pm_runtime_get_sync(pdata->dev);
409 regmap_read(pdata->regmap, SN_DPPLL_SRC_REG, &val);
410 pm_runtime_put(pdata->dev);
411 if (!(val & DPPLL_CLK_SRC_DSICLK))
412 dsi->mode_flags |= MIPI_DSI_CLOCK_NON_CONTINUOUS;
414 ret = mipi_dsi_attach(dsi);
415 if (ret < 0) {
416 DRM_ERROR("failed to attach dsi to host\n");
417 goto err_dsi_attach;
419 pdata->dsi = dsi;
421 return 0;
423 err_dsi_attach:
424 mipi_dsi_device_unregister(dsi);
425 err_dsi_host:
426 drm_connector_cleanup(&pdata->connector);
427 return ret;
430 static void ti_sn_bridge_disable(struct drm_bridge *bridge)
432 struct ti_sn_bridge *pdata = bridge_to_ti_sn_bridge(bridge);
434 drm_panel_disable(pdata->panel);
436 /* disable video stream */
437 regmap_update_bits(pdata->regmap, SN_ENH_FRAME_REG, VSTREAM_ENABLE, 0);
438 /* semi auto link training mode OFF */
439 regmap_write(pdata->regmap, SN_ML_TX_MODE_REG, 0);
440 /* disable DP PLL */
441 regmap_write(pdata->regmap, SN_PLL_ENABLE_REG, 0);
443 drm_panel_unprepare(pdata->panel);
446 static u32 ti_sn_bridge_get_dsi_freq(struct ti_sn_bridge *pdata)
448 u32 bit_rate_khz, clk_freq_khz;
449 struct drm_display_mode *mode =
450 &pdata->bridge.encoder->crtc->state->adjusted_mode;
452 bit_rate_khz = mode->clock *
453 mipi_dsi_pixel_format_to_bpp(pdata->dsi->format);
454 clk_freq_khz = bit_rate_khz / (pdata->dsi->lanes * 2);
456 return clk_freq_khz;
459 /* clk frequencies supported by bridge in Hz in case derived from REFCLK pin */
460 static const u32 ti_sn_bridge_refclk_lut[] = {
461 12000000,
462 19200000,
463 26000000,
464 27000000,
465 38400000,
468 /* clk frequencies supported by bridge in Hz in case derived from DACP/N pin */
469 static const u32 ti_sn_bridge_dsiclk_lut[] = {
470 468000000,
471 384000000,
472 416000000,
473 486000000,
474 460800000,
477 static void ti_sn_bridge_set_refclk_freq(struct ti_sn_bridge *pdata)
479 int i;
480 u32 refclk_rate;
481 const u32 *refclk_lut;
482 size_t refclk_lut_size;
484 if (pdata->refclk) {
485 refclk_rate = clk_get_rate(pdata->refclk);
486 refclk_lut = ti_sn_bridge_refclk_lut;
487 refclk_lut_size = ARRAY_SIZE(ti_sn_bridge_refclk_lut);
488 clk_prepare_enable(pdata->refclk);
489 } else {
490 refclk_rate = ti_sn_bridge_get_dsi_freq(pdata) * 1000;
491 refclk_lut = ti_sn_bridge_dsiclk_lut;
492 refclk_lut_size = ARRAY_SIZE(ti_sn_bridge_dsiclk_lut);
495 /* for i equals to refclk_lut_size means default frequency */
496 for (i = 0; i < refclk_lut_size; i++)
497 if (refclk_lut[i] == refclk_rate)
498 break;
500 regmap_update_bits(pdata->regmap, SN_DPPLL_SRC_REG, REFCLK_FREQ_MASK,
501 REFCLK_FREQ(i));
504 static void ti_sn_bridge_set_dsi_rate(struct ti_sn_bridge *pdata)
506 unsigned int bit_rate_mhz, clk_freq_mhz;
507 unsigned int val;
508 struct drm_display_mode *mode =
509 &pdata->bridge.encoder->crtc->state->adjusted_mode;
511 /* set DSIA clk frequency */
512 bit_rate_mhz = (mode->clock / 1000) *
513 mipi_dsi_pixel_format_to_bpp(pdata->dsi->format);
514 clk_freq_mhz = bit_rate_mhz / (pdata->dsi->lanes * 2);
516 /* for each increment in val, frequency increases by 5MHz */
517 val = (MIN_DSI_CLK_FREQ_MHZ / 5) +
518 (((clk_freq_mhz - MIN_DSI_CLK_FREQ_MHZ) / 5) & 0xFF);
519 regmap_write(pdata->regmap, SN_DSIA_CLK_FREQ_REG, val);
522 static unsigned int ti_sn_bridge_get_bpp(struct ti_sn_bridge *pdata)
524 if (pdata->connector.display_info.bpc <= 6)
525 return 18;
526 else
527 return 24;
531 * LUT index corresponds to register value and
532 * LUT values corresponds to dp data rate supported
533 * by the bridge in Mbps unit.
535 static const unsigned int ti_sn_bridge_dp_rate_lut[] = {
536 0, 1620, 2160, 2430, 2700, 3240, 4320, 5400
539 static int ti_sn_bridge_calc_min_dp_rate_idx(struct ti_sn_bridge *pdata)
541 unsigned int bit_rate_khz, dp_rate_mhz;
542 unsigned int i;
543 struct drm_display_mode *mode =
544 &pdata->bridge.encoder->crtc->state->adjusted_mode;
546 /* Calculate minimum bit rate based on our pixel clock. */
547 bit_rate_khz = mode->clock * ti_sn_bridge_get_bpp(pdata);
549 /* Calculate minimum DP data rate, taking 80% as per DP spec */
550 dp_rate_mhz = DIV_ROUND_UP(bit_rate_khz * DP_CLK_FUDGE_NUM,
551 1000 * pdata->dp_lanes * DP_CLK_FUDGE_DEN);
553 for (i = 1; i < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut) - 1; i++)
554 if (ti_sn_bridge_dp_rate_lut[i] >= dp_rate_mhz)
555 break;
557 return i;
560 static void ti_sn_bridge_read_valid_rates(struct ti_sn_bridge *pdata,
561 bool rate_valid[])
563 unsigned int rate_per_200khz;
564 unsigned int rate_mhz;
565 u8 dpcd_val;
566 int ret;
567 int i, j;
569 ret = drm_dp_dpcd_readb(&pdata->aux, DP_EDP_DPCD_REV, &dpcd_val);
570 if (ret != 1) {
571 DRM_DEV_ERROR(pdata->dev,
572 "Can't read eDP rev (%d), assuming 1.1\n", ret);
573 dpcd_val = DP_EDP_11;
576 if (dpcd_val >= DP_EDP_14) {
577 /* eDP 1.4 devices must provide a custom table */
578 __le16 sink_rates[DP_MAX_SUPPORTED_RATES];
580 ret = drm_dp_dpcd_read(&pdata->aux, DP_SUPPORTED_LINK_RATES,
581 sink_rates, sizeof(sink_rates));
583 if (ret != sizeof(sink_rates)) {
584 DRM_DEV_ERROR(pdata->dev,
585 "Can't read supported rate table (%d)\n", ret);
587 /* By zeroing we'll fall back to DP_MAX_LINK_RATE. */
588 memset(sink_rates, 0, sizeof(sink_rates));
591 for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
592 rate_per_200khz = le16_to_cpu(sink_rates[i]);
594 if (!rate_per_200khz)
595 break;
597 rate_mhz = rate_per_200khz * 200 / 1000;
598 for (j = 0;
599 j < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut);
600 j++) {
601 if (ti_sn_bridge_dp_rate_lut[j] == rate_mhz)
602 rate_valid[j] = true;
606 for (i = 0; i < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut); i++) {
607 if (rate_valid[i])
608 return;
610 DRM_DEV_ERROR(pdata->dev,
611 "No matching eDP rates in table; falling back\n");
614 /* On older versions best we can do is use DP_MAX_LINK_RATE */
615 ret = drm_dp_dpcd_readb(&pdata->aux, DP_MAX_LINK_RATE, &dpcd_val);
616 if (ret != 1) {
617 DRM_DEV_ERROR(pdata->dev,
618 "Can't read max rate (%d); assuming 5.4 GHz\n",
619 ret);
620 dpcd_val = DP_LINK_BW_5_4;
623 switch (dpcd_val) {
624 default:
625 DRM_DEV_ERROR(pdata->dev,
626 "Unexpected max rate (%#x); assuming 5.4 GHz\n",
627 (int)dpcd_val);
628 fallthrough;
629 case DP_LINK_BW_5_4:
630 rate_valid[7] = 1;
631 fallthrough;
632 case DP_LINK_BW_2_7:
633 rate_valid[4] = 1;
634 fallthrough;
635 case DP_LINK_BW_1_62:
636 rate_valid[1] = 1;
637 break;
641 static void ti_sn_bridge_set_video_timings(struct ti_sn_bridge *pdata)
643 struct drm_display_mode *mode =
644 &pdata->bridge.encoder->crtc->state->adjusted_mode;
645 u8 hsync_polarity = 0, vsync_polarity = 0;
647 if (mode->flags & DRM_MODE_FLAG_PHSYNC)
648 hsync_polarity = CHA_HSYNC_POLARITY;
649 if (mode->flags & DRM_MODE_FLAG_PVSYNC)
650 vsync_polarity = CHA_VSYNC_POLARITY;
652 ti_sn_bridge_write_u16(pdata, SN_CHA_ACTIVE_LINE_LENGTH_LOW_REG,
653 mode->hdisplay);
654 ti_sn_bridge_write_u16(pdata, SN_CHA_VERTICAL_DISPLAY_SIZE_LOW_REG,
655 mode->vdisplay);
656 regmap_write(pdata->regmap, SN_CHA_HSYNC_PULSE_WIDTH_LOW_REG,
657 (mode->hsync_end - mode->hsync_start) & 0xFF);
658 regmap_write(pdata->regmap, SN_CHA_HSYNC_PULSE_WIDTH_HIGH_REG,
659 (((mode->hsync_end - mode->hsync_start) >> 8) & 0x7F) |
660 hsync_polarity);
661 regmap_write(pdata->regmap, SN_CHA_VSYNC_PULSE_WIDTH_LOW_REG,
662 (mode->vsync_end - mode->vsync_start) & 0xFF);
663 regmap_write(pdata->regmap, SN_CHA_VSYNC_PULSE_WIDTH_HIGH_REG,
664 (((mode->vsync_end - mode->vsync_start) >> 8) & 0x7F) |
665 vsync_polarity);
667 regmap_write(pdata->regmap, SN_CHA_HORIZONTAL_BACK_PORCH_REG,
668 (mode->htotal - mode->hsync_end) & 0xFF);
669 regmap_write(pdata->regmap, SN_CHA_VERTICAL_BACK_PORCH_REG,
670 (mode->vtotal - mode->vsync_end) & 0xFF);
672 regmap_write(pdata->regmap, SN_CHA_HORIZONTAL_FRONT_PORCH_REG,
673 (mode->hsync_start - mode->hdisplay) & 0xFF);
674 regmap_write(pdata->regmap, SN_CHA_VERTICAL_FRONT_PORCH_REG,
675 (mode->vsync_start - mode->vdisplay) & 0xFF);
677 usleep_range(10000, 10500); /* 10ms delay recommended by spec */
680 static unsigned int ti_sn_get_max_lanes(struct ti_sn_bridge *pdata)
682 u8 data;
683 int ret;
685 ret = drm_dp_dpcd_readb(&pdata->aux, DP_MAX_LANE_COUNT, &data);
686 if (ret != 1) {
687 DRM_DEV_ERROR(pdata->dev,
688 "Can't read lane count (%d); assuming 4\n", ret);
689 return 4;
692 return data & DP_LANE_COUNT_MASK;
695 static int ti_sn_link_training(struct ti_sn_bridge *pdata, int dp_rate_idx,
696 const char **last_err_str)
698 unsigned int val;
699 int ret;
700 int i;
702 /* set dp clk frequency value */
703 regmap_update_bits(pdata->regmap, SN_DATARATE_CONFIG_REG,
704 DP_DATARATE_MASK, DP_DATARATE(dp_rate_idx));
706 /* enable DP PLL */
707 regmap_write(pdata->regmap, SN_PLL_ENABLE_REG, 1);
709 ret = regmap_read_poll_timeout(pdata->regmap, SN_DPPLL_SRC_REG, val,
710 val & DPPLL_SRC_DP_PLL_LOCK, 1000,
711 50 * 1000);
712 if (ret) {
713 *last_err_str = "DP_PLL_LOCK polling failed";
714 goto exit;
718 * We'll try to link train several times. As part of link training
719 * the bridge chip will write DP_SET_POWER_D0 to DP_SET_POWER. If
720 * the panel isn't ready quite it might respond NAK here which means
721 * we need to try again.
723 for (i = 0; i < SN_LINK_TRAINING_TRIES; i++) {
724 /* Semi auto link training mode */
725 regmap_write(pdata->regmap, SN_ML_TX_MODE_REG, 0x0A);
726 ret = regmap_read_poll_timeout(pdata->regmap, SN_ML_TX_MODE_REG, val,
727 val == ML_TX_MAIN_LINK_OFF ||
728 val == ML_TX_NORMAL_MODE, 1000,
729 500 * 1000);
730 if (ret) {
731 *last_err_str = "Training complete polling failed";
732 } else if (val == ML_TX_MAIN_LINK_OFF) {
733 *last_err_str = "Link training failed, link is off";
734 ret = -EIO;
735 continue;
738 break;
741 /* If we saw quite a few retries, add a note about it */
742 if (!ret && i > SN_LINK_TRAINING_TRIES / 2)
743 DRM_DEV_INFO(pdata->dev, "Link training needed %d retries\n", i);
745 exit:
746 /* Disable the PLL if we failed */
747 if (ret)
748 regmap_write(pdata->regmap, SN_PLL_ENABLE_REG, 0);
750 return ret;
753 static void ti_sn_bridge_enable(struct drm_bridge *bridge)
755 struct ti_sn_bridge *pdata = bridge_to_ti_sn_bridge(bridge);
756 bool rate_valid[ARRAY_SIZE(ti_sn_bridge_dp_rate_lut)] = { };
757 const char *last_err_str = "No supported DP rate";
758 int dp_rate_idx;
759 unsigned int val;
760 int ret = -EINVAL;
761 int max_dp_lanes;
763 max_dp_lanes = ti_sn_get_max_lanes(pdata);
764 pdata->dp_lanes = min(pdata->dp_lanes, max_dp_lanes);
766 /* DSI_A lane config */
767 val = CHA_DSI_LANES(SN_MAX_DP_LANES - pdata->dsi->lanes);
768 regmap_update_bits(pdata->regmap, SN_DSI_LANES_REG,
769 CHA_DSI_LANES_MASK, val);
771 regmap_write(pdata->regmap, SN_LN_ASSIGN_REG, pdata->ln_assign);
772 regmap_update_bits(pdata->regmap, SN_ENH_FRAME_REG, LN_POLRS_MASK,
773 pdata->ln_polrs << LN_POLRS_OFFSET);
775 /* set dsi clk frequency value */
776 ti_sn_bridge_set_dsi_rate(pdata);
779 * The SN65DSI86 only supports ASSR Display Authentication method and
780 * this method is enabled by default. An eDP panel must support this
781 * authentication method. We need to enable this method in the eDP panel
782 * at DisplayPort address 0x0010A prior to link training.
784 drm_dp_dpcd_writeb(&pdata->aux, DP_EDP_CONFIGURATION_SET,
785 DP_ALTERNATE_SCRAMBLER_RESET_ENABLE);
787 /* Set the DP output format (18 bpp or 24 bpp) */
788 val = (ti_sn_bridge_get_bpp(pdata) == 18) ? BPP_18_RGB : 0;
789 regmap_update_bits(pdata->regmap, SN_DATA_FORMAT_REG, BPP_18_RGB, val);
791 /* DP lane config */
792 val = DP_NUM_LANES(min(pdata->dp_lanes, 3));
793 regmap_update_bits(pdata->regmap, SN_SSC_CONFIG_REG, DP_NUM_LANES_MASK,
794 val);
796 ti_sn_bridge_read_valid_rates(pdata, rate_valid);
798 /* Train until we run out of rates */
799 for (dp_rate_idx = ti_sn_bridge_calc_min_dp_rate_idx(pdata);
800 dp_rate_idx < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut);
801 dp_rate_idx++) {
802 if (!rate_valid[dp_rate_idx])
803 continue;
805 ret = ti_sn_link_training(pdata, dp_rate_idx, &last_err_str);
806 if (!ret)
807 break;
809 if (ret) {
810 DRM_DEV_ERROR(pdata->dev, "%s (%d)\n", last_err_str, ret);
811 return;
814 /* config video parameters */
815 ti_sn_bridge_set_video_timings(pdata);
817 /* enable video stream */
818 regmap_update_bits(pdata->regmap, SN_ENH_FRAME_REG, VSTREAM_ENABLE,
819 VSTREAM_ENABLE);
821 drm_panel_enable(pdata->panel);
824 static void ti_sn_bridge_pre_enable(struct drm_bridge *bridge)
826 struct ti_sn_bridge *pdata = bridge_to_ti_sn_bridge(bridge);
828 pm_runtime_get_sync(pdata->dev);
830 /* configure bridge ref_clk */
831 ti_sn_bridge_set_refclk_freq(pdata);
834 * HPD on this bridge chip is a bit useless. This is an eDP bridge
835 * so the HPD is an internal signal that's only there to signal that
836 * the panel is done powering up. ...but the bridge chip debounces
837 * this signal by between 100 ms and 400 ms (depending on process,
838 * voltage, and temperate--I measured it at about 200 ms). One
839 * particular panel asserted HPD 84 ms after it was powered on meaning
840 * that we saw HPD 284 ms after power on. ...but the same panel said
841 * that instead of looking at HPD you could just hardcode a delay of
842 * 200 ms. We'll assume that the panel driver will have the hardcoded
843 * delay in its prepare and always disable HPD.
845 * If HPD somehow makes sense on some future panel we'll have to
846 * change this to be conditional on someone specifying that HPD should
847 * be used.
849 regmap_update_bits(pdata->regmap, SN_HPD_DISABLE_REG, HPD_DISABLE,
850 HPD_DISABLE);
852 drm_panel_prepare(pdata->panel);
855 static void ti_sn_bridge_post_disable(struct drm_bridge *bridge)
857 struct ti_sn_bridge *pdata = bridge_to_ti_sn_bridge(bridge);
859 clk_disable_unprepare(pdata->refclk);
861 pm_runtime_put_sync(pdata->dev);
864 static const struct drm_bridge_funcs ti_sn_bridge_funcs = {
865 .attach = ti_sn_bridge_attach,
866 .pre_enable = ti_sn_bridge_pre_enable,
867 .enable = ti_sn_bridge_enable,
868 .disable = ti_sn_bridge_disable,
869 .post_disable = ti_sn_bridge_post_disable,
872 static struct ti_sn_bridge *aux_to_ti_sn_bridge(struct drm_dp_aux *aux)
874 return container_of(aux, struct ti_sn_bridge, aux);
877 static ssize_t ti_sn_aux_transfer(struct drm_dp_aux *aux,
878 struct drm_dp_aux_msg *msg)
880 struct ti_sn_bridge *pdata = aux_to_ti_sn_bridge(aux);
881 u32 request = msg->request & ~(DP_AUX_I2C_MOT | DP_AUX_I2C_WRITE_STATUS_UPDATE);
882 u32 request_val = AUX_CMD_REQ(msg->request);
883 u8 *buf = msg->buffer;
884 unsigned int len = msg->size;
885 unsigned int val;
886 int ret;
887 u8 addr_len[SN_AUX_LENGTH_REG + 1 - SN_AUX_ADDR_19_16_REG];
889 if (len > SN_AUX_MAX_PAYLOAD_BYTES)
890 return -EINVAL;
892 switch (request) {
893 case DP_AUX_NATIVE_WRITE:
894 case DP_AUX_I2C_WRITE:
895 case DP_AUX_NATIVE_READ:
896 case DP_AUX_I2C_READ:
897 regmap_write(pdata->regmap, SN_AUX_CMD_REG, request_val);
898 /* Assume it's good */
899 msg->reply = 0;
900 break;
901 default:
902 return -EINVAL;
905 BUILD_BUG_ON(sizeof(addr_len) != sizeof(__be32));
906 put_unaligned_be32((msg->address & SN_AUX_ADDR_MASK) << 8 | len,
907 addr_len);
908 regmap_bulk_write(pdata->regmap, SN_AUX_ADDR_19_16_REG, addr_len,
909 ARRAY_SIZE(addr_len));
911 if (request == DP_AUX_NATIVE_WRITE || request == DP_AUX_I2C_WRITE)
912 regmap_bulk_write(pdata->regmap, SN_AUX_WDATA_REG(0), buf, len);
914 /* Clear old status bits before start so we don't get confused */
915 regmap_write(pdata->regmap, SN_AUX_CMD_STATUS_REG,
916 AUX_IRQ_STATUS_NAT_I2C_FAIL |
917 AUX_IRQ_STATUS_AUX_RPLY_TOUT |
918 AUX_IRQ_STATUS_AUX_SHORT);
920 regmap_write(pdata->regmap, SN_AUX_CMD_REG, request_val | AUX_CMD_SEND);
922 /* Zero delay loop because i2c transactions are slow already */
923 ret = regmap_read_poll_timeout(pdata->regmap, SN_AUX_CMD_REG, val,
924 !(val & AUX_CMD_SEND), 0, 50 * 1000);
925 if (ret)
926 return ret;
928 ret = regmap_read(pdata->regmap, SN_AUX_CMD_STATUS_REG, &val);
929 if (ret)
930 return ret;
932 if (val & AUX_IRQ_STATUS_AUX_RPLY_TOUT) {
934 * The hardware tried the message seven times per the DP spec
935 * but it hit a timeout. We ignore defers here because they're
936 * handled in hardware.
938 return -ETIMEDOUT;
941 if (val & AUX_IRQ_STATUS_AUX_SHORT) {
942 ret = regmap_read(pdata->regmap, SN_AUX_LENGTH_REG, &len);
943 if (ret)
944 return ret;
945 } else if (val & AUX_IRQ_STATUS_NAT_I2C_FAIL) {
946 switch (request) {
947 case DP_AUX_I2C_WRITE:
948 case DP_AUX_I2C_READ:
949 msg->reply |= DP_AUX_I2C_REPLY_NACK;
950 break;
951 case DP_AUX_NATIVE_READ:
952 case DP_AUX_NATIVE_WRITE:
953 msg->reply |= DP_AUX_NATIVE_REPLY_NACK;
954 break;
956 return 0;
959 if (request == DP_AUX_NATIVE_WRITE || request == DP_AUX_I2C_WRITE ||
960 len == 0)
961 return len;
963 ret = regmap_bulk_read(pdata->regmap, SN_AUX_RDATA_REG(0), buf, len);
964 if (ret)
965 return ret;
967 return len;
970 static int ti_sn_bridge_parse_dsi_host(struct ti_sn_bridge *pdata)
972 struct device_node *np = pdata->dev->of_node;
974 pdata->host_node = of_graph_get_remote_node(np, 0, 0);
976 if (!pdata->host_node) {
977 DRM_ERROR("remote dsi host node not found\n");
978 return -ENODEV;
981 return 0;
984 #if defined(CONFIG_OF_GPIO)
986 static int tn_sn_bridge_of_xlate(struct gpio_chip *chip,
987 const struct of_phandle_args *gpiospec,
988 u32 *flags)
990 if (WARN_ON(gpiospec->args_count < chip->of_gpio_n_cells))
991 return -EINVAL;
993 if (gpiospec->args[0] > chip->ngpio || gpiospec->args[0] < 1)
994 return -EINVAL;
996 if (flags)
997 *flags = gpiospec->args[1];
999 return gpiospec->args[0] - SN_GPIO_PHYSICAL_OFFSET;
1002 static int ti_sn_bridge_gpio_get_direction(struct gpio_chip *chip,
1003 unsigned int offset)
1005 struct ti_sn_bridge *pdata = gpiochip_get_data(chip);
1008 * We already have to keep track of the direction because we use
1009 * that to figure out whether we've powered the device. We can
1010 * just return that rather than (maybe) powering up the device
1011 * to ask its direction.
1013 return test_bit(offset, pdata->gchip_output) ?
1014 GPIO_LINE_DIRECTION_OUT : GPIO_LINE_DIRECTION_IN;
1017 static int ti_sn_bridge_gpio_get(struct gpio_chip *chip, unsigned int offset)
1019 struct ti_sn_bridge *pdata = gpiochip_get_data(chip);
1020 unsigned int val;
1021 int ret;
1024 * When the pin is an input we don't forcibly keep the bridge
1025 * powered--we just power it on to read the pin. NOTE: part of
1026 * the reason this works is that the bridge defaults (when
1027 * powered back on) to all 4 GPIOs being configured as GPIO input.
1028 * Also note that if something else is keeping the chip powered the
1029 * pm_runtime functions are lightweight increments of a refcount.
1031 pm_runtime_get_sync(pdata->dev);
1032 ret = regmap_read(pdata->regmap, SN_GPIO_IO_REG, &val);
1033 pm_runtime_put(pdata->dev);
1035 if (ret)
1036 return ret;
1038 return !!(val & BIT(SN_GPIO_INPUT_SHIFT + offset));
1041 static void ti_sn_bridge_gpio_set(struct gpio_chip *chip, unsigned int offset,
1042 int val)
1044 struct ti_sn_bridge *pdata = gpiochip_get_data(chip);
1045 int ret;
1047 if (!test_bit(offset, pdata->gchip_output)) {
1048 dev_err(pdata->dev, "Ignoring GPIO set while input\n");
1049 return;
1052 val &= 1;
1053 ret = regmap_update_bits(pdata->regmap, SN_GPIO_IO_REG,
1054 BIT(SN_GPIO_OUTPUT_SHIFT + offset),
1055 val << (SN_GPIO_OUTPUT_SHIFT + offset));
1056 if (ret)
1057 dev_warn(pdata->dev,
1058 "Failed to set bridge GPIO %u: %d\n", offset, ret);
1061 static int ti_sn_bridge_gpio_direction_input(struct gpio_chip *chip,
1062 unsigned int offset)
1064 struct ti_sn_bridge *pdata = gpiochip_get_data(chip);
1065 int shift = offset * 2;
1066 int ret;
1068 if (!test_and_clear_bit(offset, pdata->gchip_output))
1069 return 0;
1071 ret = regmap_update_bits(pdata->regmap, SN_GPIO_CTRL_REG,
1072 SN_GPIO_MUX_MASK << shift,
1073 SN_GPIO_MUX_INPUT << shift);
1074 if (ret) {
1075 set_bit(offset, pdata->gchip_output);
1076 return ret;
1080 * NOTE: if nobody else is powering the device this may fully power
1081 * it off and when it comes back it will have lost all state, but
1082 * that's OK because the default is input and we're now an input.
1084 pm_runtime_put(pdata->dev);
1086 return 0;
1089 static int ti_sn_bridge_gpio_direction_output(struct gpio_chip *chip,
1090 unsigned int offset, int val)
1092 struct ti_sn_bridge *pdata = gpiochip_get_data(chip);
1093 int shift = offset * 2;
1094 int ret;
1096 if (test_and_set_bit(offset, pdata->gchip_output))
1097 return 0;
1099 pm_runtime_get_sync(pdata->dev);
1101 /* Set value first to avoid glitching */
1102 ti_sn_bridge_gpio_set(chip, offset, val);
1104 /* Set direction */
1105 ret = regmap_update_bits(pdata->regmap, SN_GPIO_CTRL_REG,
1106 SN_GPIO_MUX_MASK << shift,
1107 SN_GPIO_MUX_OUTPUT << shift);
1108 if (ret) {
1109 clear_bit(offset, pdata->gchip_output);
1110 pm_runtime_put(pdata->dev);
1113 return ret;
1116 static void ti_sn_bridge_gpio_free(struct gpio_chip *chip, unsigned int offset)
1118 /* We won't keep pm_runtime if we're input, so switch there on free */
1119 ti_sn_bridge_gpio_direction_input(chip, offset);
1122 static const char * const ti_sn_bridge_gpio_names[SN_NUM_GPIOS] = {
1123 "GPIO1", "GPIO2", "GPIO3", "GPIO4"
1126 static int ti_sn_setup_gpio_controller(struct ti_sn_bridge *pdata)
1128 int ret;
1130 /* Only init if someone is going to use us as a GPIO controller */
1131 if (!of_property_read_bool(pdata->dev->of_node, "gpio-controller"))
1132 return 0;
1134 pdata->gchip.label = dev_name(pdata->dev);
1135 pdata->gchip.parent = pdata->dev;
1136 pdata->gchip.owner = THIS_MODULE;
1137 pdata->gchip.of_xlate = tn_sn_bridge_of_xlate;
1138 pdata->gchip.of_gpio_n_cells = 2;
1139 pdata->gchip.free = ti_sn_bridge_gpio_free;
1140 pdata->gchip.get_direction = ti_sn_bridge_gpio_get_direction;
1141 pdata->gchip.direction_input = ti_sn_bridge_gpio_direction_input;
1142 pdata->gchip.direction_output = ti_sn_bridge_gpio_direction_output;
1143 pdata->gchip.get = ti_sn_bridge_gpio_get;
1144 pdata->gchip.set = ti_sn_bridge_gpio_set;
1145 pdata->gchip.can_sleep = true;
1146 pdata->gchip.names = ti_sn_bridge_gpio_names;
1147 pdata->gchip.ngpio = SN_NUM_GPIOS;
1148 pdata->gchip.base = -1;
1149 ret = devm_gpiochip_add_data(pdata->dev, &pdata->gchip, pdata);
1150 if (ret)
1151 dev_err(pdata->dev, "can't add gpio chip\n");
1153 return ret;
1156 #else
1158 static inline int ti_sn_setup_gpio_controller(struct ti_sn_bridge *pdata)
1160 return 0;
1163 #endif
1165 static void ti_sn_bridge_parse_lanes(struct ti_sn_bridge *pdata,
1166 struct device_node *np)
1168 u32 lane_assignments[SN_MAX_DP_LANES] = { 0, 1, 2, 3 };
1169 u32 lane_polarities[SN_MAX_DP_LANES] = { };
1170 struct device_node *endpoint;
1171 u8 ln_assign = 0;
1172 u8 ln_polrs = 0;
1173 int dp_lanes;
1174 int i;
1177 * Read config from the device tree about lane remapping and lane
1178 * polarities. These are optional and we assume identity map and
1179 * normal polarity if nothing is specified. It's OK to specify just
1180 * data-lanes but not lane-polarities but not vice versa.
1182 * Error checking is light (we just make sure we don't crash or
1183 * buffer overrun) and we assume dts is well formed and specifying
1184 * mappings that the hardware supports.
1186 endpoint = of_graph_get_endpoint_by_regs(np, 1, -1);
1187 dp_lanes = of_property_count_u32_elems(endpoint, "data-lanes");
1188 if (dp_lanes > 0 && dp_lanes <= SN_MAX_DP_LANES) {
1189 of_property_read_u32_array(endpoint, "data-lanes",
1190 lane_assignments, dp_lanes);
1191 of_property_read_u32_array(endpoint, "lane-polarities",
1192 lane_polarities, dp_lanes);
1193 } else {
1194 dp_lanes = SN_MAX_DP_LANES;
1196 of_node_put(endpoint);
1199 * Convert into register format. Loop over all lanes even if
1200 * data-lanes had fewer elements so that we nicely initialize
1201 * the LN_ASSIGN register.
1203 for (i = SN_MAX_DP_LANES - 1; i >= 0; i--) {
1204 ln_assign = ln_assign << LN_ASSIGN_WIDTH | lane_assignments[i];
1205 ln_polrs = ln_polrs << 1 | lane_polarities[i];
1208 /* Stash in our struct for when we power on */
1209 pdata->dp_lanes = dp_lanes;
1210 pdata->ln_assign = ln_assign;
1211 pdata->ln_polrs = ln_polrs;
1214 static int ti_sn_bridge_probe(struct i2c_client *client,
1215 const struct i2c_device_id *id)
1217 struct ti_sn_bridge *pdata;
1218 int ret;
1220 if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
1221 DRM_ERROR("device doesn't support I2C\n");
1222 return -ENODEV;
1225 pdata = devm_kzalloc(&client->dev, sizeof(struct ti_sn_bridge),
1226 GFP_KERNEL);
1227 if (!pdata)
1228 return -ENOMEM;
1230 pdata->regmap = devm_regmap_init_i2c(client,
1231 &ti_sn_bridge_regmap_config);
1232 if (IS_ERR(pdata->regmap)) {
1233 DRM_ERROR("regmap i2c init failed\n");
1234 return PTR_ERR(pdata->regmap);
1237 pdata->dev = &client->dev;
1239 ret = drm_of_find_panel_or_bridge(pdata->dev->of_node, 1, 0,
1240 &pdata->panel, NULL);
1241 if (ret) {
1242 DRM_ERROR("could not find any panel node\n");
1243 return ret;
1246 dev_set_drvdata(&client->dev, pdata);
1248 pdata->enable_gpio = devm_gpiod_get(pdata->dev, "enable",
1249 GPIOD_OUT_LOW);
1250 if (IS_ERR(pdata->enable_gpio)) {
1251 DRM_ERROR("failed to get enable gpio from DT\n");
1252 ret = PTR_ERR(pdata->enable_gpio);
1253 return ret;
1256 ti_sn_bridge_parse_lanes(pdata, client->dev.of_node);
1258 ret = ti_sn_bridge_parse_regulators(pdata);
1259 if (ret) {
1260 DRM_ERROR("failed to parse regulators\n");
1261 return ret;
1264 pdata->refclk = devm_clk_get(pdata->dev, "refclk");
1265 if (IS_ERR(pdata->refclk)) {
1266 ret = PTR_ERR(pdata->refclk);
1267 if (ret == -EPROBE_DEFER)
1268 return ret;
1269 DRM_DEBUG_KMS("refclk not found\n");
1270 pdata->refclk = NULL;
1273 ret = ti_sn_bridge_parse_dsi_host(pdata);
1274 if (ret)
1275 return ret;
1277 pm_runtime_enable(pdata->dev);
1279 ret = ti_sn_setup_gpio_controller(pdata);
1280 if (ret) {
1281 pm_runtime_disable(pdata->dev);
1282 return ret;
1285 i2c_set_clientdata(client, pdata);
1287 pdata->aux.name = "ti-sn65dsi86-aux";
1288 pdata->aux.dev = pdata->dev;
1289 pdata->aux.transfer = ti_sn_aux_transfer;
1290 drm_dp_aux_register(&pdata->aux);
1292 pdata->bridge.funcs = &ti_sn_bridge_funcs;
1293 pdata->bridge.of_node = client->dev.of_node;
1295 drm_bridge_add(&pdata->bridge);
1297 ti_sn_debugfs_init(pdata);
1299 return 0;
1302 static int ti_sn_bridge_remove(struct i2c_client *client)
1304 struct ti_sn_bridge *pdata = i2c_get_clientdata(client);
1306 if (!pdata)
1307 return -EINVAL;
1309 kfree(pdata->edid);
1310 ti_sn_debugfs_remove(pdata);
1312 of_node_put(pdata->host_node);
1314 pm_runtime_disable(pdata->dev);
1316 if (pdata->dsi) {
1317 mipi_dsi_detach(pdata->dsi);
1318 mipi_dsi_device_unregister(pdata->dsi);
1321 drm_bridge_remove(&pdata->bridge);
1323 return 0;
1326 static struct i2c_device_id ti_sn_bridge_id[] = {
1327 { "ti,sn65dsi86", 0},
1330 MODULE_DEVICE_TABLE(i2c, ti_sn_bridge_id);
1332 static const struct of_device_id ti_sn_bridge_match_table[] = {
1333 {.compatible = "ti,sn65dsi86"},
1336 MODULE_DEVICE_TABLE(of, ti_sn_bridge_match_table);
1338 static struct i2c_driver ti_sn_bridge_driver = {
1339 .driver = {
1340 .name = "ti_sn65dsi86",
1341 .of_match_table = ti_sn_bridge_match_table,
1342 .pm = &ti_sn_bridge_pm_ops,
1344 .probe = ti_sn_bridge_probe,
1345 .remove = ti_sn_bridge_remove,
1346 .id_table = ti_sn_bridge_id,
1348 module_i2c_driver(ti_sn_bridge_driver);
1350 MODULE_AUTHOR("Sandeep Panda <spanda@codeaurora.org>");
1351 MODULE_DESCRIPTION("sn65dsi86 DSI to eDP bridge driver");
1352 MODULE_LICENSE("GPL v2");