1 /**************************************************************************
3 * Copyright 2006 Tungsten Graphics, Inc., Bismarck, ND., USA.
4 * Copyright 2016 Intel Corporation
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
22 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
23 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
24 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
25 * USE OR OTHER DEALINGS IN THE SOFTWARE.
28 **************************************************************************/
31 * Generic simple memory manager implementation. Intended to be used as a base
32 * class implementation for more advanced memory managers.
34 * Note that the algorithm used is quite simple and there might be substantial
35 * performance gains if a smarter free list is implemented. Currently it is
36 * just an unordered stack of free regions. This could easily be improved if
37 * an RB-tree is used instead. At least if we expect heavy fragmentation.
39 * Aligned allocations can also see improvement.
42 * Thomas Hellström <thomas-at-tungstengraphics-dot-com>
45 #include <linux/export.h>
46 #include <linux/interval_tree_generic.h>
47 #include <linux/seq_file.h>
48 #include <linux/slab.h>
49 #include <linux/stacktrace.h>
51 #include <drm/drm_mm.h>
56 * drm_mm provides a simple range allocator. The drivers are free to use the
57 * resource allocator from the linux core if it suits them, the upside of drm_mm
58 * is that it's in the DRM core. Which means that it's easier to extend for
59 * some of the crazier special purpose needs of gpus.
61 * The main data struct is &drm_mm, allocations are tracked in &drm_mm_node.
62 * Drivers are free to embed either of them into their own suitable
63 * datastructures. drm_mm itself will not do any memory allocations of its own,
64 * so if drivers choose not to embed nodes they need to still allocate them
67 * The range allocator also supports reservation of preallocated blocks. This is
68 * useful for taking over initial mode setting configurations from the firmware,
69 * where an object needs to be created which exactly matches the firmware's
70 * scanout target. As long as the range is still free it can be inserted anytime
71 * after the allocator is initialized, which helps with avoiding looped
72 * dependencies in the driver load sequence.
74 * drm_mm maintains a stack of most recently freed holes, which of all
75 * simplistic datastructures seems to be a fairly decent approach to clustering
76 * allocations and avoiding too much fragmentation. This means free space
77 * searches are O(num_holes). Given that all the fancy features drm_mm supports
78 * something better would be fairly complex and since gfx thrashing is a fairly
79 * steep cliff not a real concern. Removing a node again is O(1).
81 * drm_mm supports a few features: Alignment and range restrictions can be
82 * supplied. Furthermore every &drm_mm_node has a color value (which is just an
83 * opaque unsigned long) which in conjunction with a driver callback can be used
84 * to implement sophisticated placement restrictions. The i915 DRM driver uses
85 * this to implement guard pages between incompatible caching domains in the
88 * Two behaviors are supported for searching and allocating: bottom-up and
89 * top-down. The default is bottom-up. Top-down allocation can be used if the
90 * memory area has different restrictions, or just to reduce fragmentation.
92 * Finally iteration helpers to walk all nodes and all holes are provided as are
93 * some basic allocator dumpers for debugging.
95 * Note that this range allocator is not thread-safe, drivers need to protect
96 * modifications with their own locking. The idea behind this is that for a full
97 * memory manager additional data needs to be protected anyway, hence internal
98 * locking would be fully redundant.
101 #ifdef CONFIG_DRM_DEBUG_MM
102 #include <linux/stackdepot.h>
104 #define STACKDEPTH 32
107 static noinline
void save_stack(struct drm_mm_node
*node
)
109 unsigned long entries
[STACKDEPTH
];
112 n
= stack_trace_save(entries
, ARRAY_SIZE(entries
), 1);
114 /* May be called under spinlock, so avoid sleeping */
115 node
->stack
= stack_depot_save(entries
, n
, GFP_NOWAIT
);
118 static void show_leaks(struct drm_mm
*mm
)
120 struct drm_mm_node
*node
;
121 unsigned long *entries
;
122 unsigned int nr_entries
;
125 buf
= kmalloc(BUFSZ
, GFP_KERNEL
);
129 list_for_each_entry(node
, drm_mm_nodes(mm
), node_list
) {
131 DRM_ERROR("node [%08llx + %08llx]: unknown owner\n",
132 node
->start
, node
->size
);
136 nr_entries
= stack_depot_fetch(node
->stack
, &entries
);
137 stack_trace_snprint(buf
, BUFSZ
, entries
, nr_entries
, 0);
138 DRM_ERROR("node [%08llx + %08llx]: inserted at\n%s",
139 node
->start
, node
->size
, buf
);
148 static void save_stack(struct drm_mm_node
*node
) { }
149 static void show_leaks(struct drm_mm
*mm
) { }
152 #define START(node) ((node)->start)
153 #define LAST(node) ((node)->start + (node)->size - 1)
155 INTERVAL_TREE_DEFINE(struct drm_mm_node
, rb
,
157 START
, LAST
, static inline, drm_mm_interval_tree
)
160 __drm_mm_interval_first(const struct drm_mm
*mm
, u64 start
, u64 last
)
162 return drm_mm_interval_tree_iter_first((struct rb_root_cached
*)&mm
->interval_tree
,
163 start
, last
) ?: (struct drm_mm_node
*)&mm
->head_node
;
165 EXPORT_SYMBOL(__drm_mm_interval_first
);
167 static void drm_mm_interval_tree_add_node(struct drm_mm_node
*hole_node
,
168 struct drm_mm_node
*node
)
170 struct drm_mm
*mm
= hole_node
->mm
;
171 struct rb_node
**link
, *rb
;
172 struct drm_mm_node
*parent
;
175 node
->__subtree_last
= LAST(node
);
177 if (drm_mm_node_allocated(hole_node
)) {
180 parent
= rb_entry(rb
, struct drm_mm_node
, rb
);
181 if (parent
->__subtree_last
>= node
->__subtree_last
)
184 parent
->__subtree_last
= node
->__subtree_last
;
189 link
= &hole_node
->rb
.rb_right
;
193 link
= &mm
->interval_tree
.rb_root
.rb_node
;
199 parent
= rb_entry(rb
, struct drm_mm_node
, rb
);
200 if (parent
->__subtree_last
< node
->__subtree_last
)
201 parent
->__subtree_last
= node
->__subtree_last
;
202 if (node
->start
< parent
->start
) {
203 link
= &parent
->rb
.rb_left
;
205 link
= &parent
->rb
.rb_right
;
210 rb_link_node(&node
->rb
, rb
, link
);
211 rb_insert_augmented_cached(&node
->rb
, &mm
->interval_tree
, leftmost
,
212 &drm_mm_interval_tree_augment
);
215 #define HOLE_SIZE(NODE) ((NODE)->hole_size)
216 #define HOLE_ADDR(NODE) (__drm_mm_hole_node_start(NODE))
218 static u64
rb_to_hole_size(struct rb_node
*rb
)
220 return rb_entry(rb
, struct drm_mm_node
, rb_hole_size
)->hole_size
;
223 static void insert_hole_size(struct rb_root_cached
*root
,
224 struct drm_mm_node
*node
)
226 struct rb_node
**link
= &root
->rb_root
.rb_node
, *rb
= NULL
;
227 u64 x
= node
->hole_size
;
232 if (x
> rb_to_hole_size(rb
)) {
235 link
= &rb
->rb_right
;
240 rb_link_node(&node
->rb_hole_size
, rb
, link
);
241 rb_insert_color_cached(&node
->rb_hole_size
, root
, first
);
244 RB_DECLARE_CALLBACKS_MAX(static, augment_callbacks
,
245 struct drm_mm_node
, rb_hole_addr
,
246 u64
, subtree_max_hole
, HOLE_SIZE
)
248 static void insert_hole_addr(struct rb_root
*root
, struct drm_mm_node
*node
)
250 struct rb_node
**link
= &root
->rb_node
, *rb_parent
= NULL
;
251 u64 start
= HOLE_ADDR(node
), subtree_max_hole
= node
->subtree_max_hole
;
252 struct drm_mm_node
*parent
;
256 parent
= rb_entry(rb_parent
, struct drm_mm_node
, rb_hole_addr
);
257 if (parent
->subtree_max_hole
< subtree_max_hole
)
258 parent
->subtree_max_hole
= subtree_max_hole
;
259 if (start
< HOLE_ADDR(parent
))
260 link
= &parent
->rb_hole_addr
.rb_left
;
262 link
= &parent
->rb_hole_addr
.rb_right
;
265 rb_link_node(&node
->rb_hole_addr
, rb_parent
, link
);
266 rb_insert_augmented(&node
->rb_hole_addr
, root
, &augment_callbacks
);
269 static void add_hole(struct drm_mm_node
*node
)
271 struct drm_mm
*mm
= node
->mm
;
274 __drm_mm_hole_node_end(node
) - __drm_mm_hole_node_start(node
);
275 node
->subtree_max_hole
= node
->hole_size
;
276 DRM_MM_BUG_ON(!drm_mm_hole_follows(node
));
278 insert_hole_size(&mm
->holes_size
, node
);
279 insert_hole_addr(&mm
->holes_addr
, node
);
281 list_add(&node
->hole_stack
, &mm
->hole_stack
);
284 static void rm_hole(struct drm_mm_node
*node
)
286 DRM_MM_BUG_ON(!drm_mm_hole_follows(node
));
288 list_del(&node
->hole_stack
);
289 rb_erase_cached(&node
->rb_hole_size
, &node
->mm
->holes_size
);
290 rb_erase_augmented(&node
->rb_hole_addr
, &node
->mm
->holes_addr
,
293 node
->subtree_max_hole
= 0;
295 DRM_MM_BUG_ON(drm_mm_hole_follows(node
));
298 static inline struct drm_mm_node
*rb_hole_size_to_node(struct rb_node
*rb
)
300 return rb_entry_safe(rb
, struct drm_mm_node
, rb_hole_size
);
303 static inline struct drm_mm_node
*rb_hole_addr_to_node(struct rb_node
*rb
)
305 return rb_entry_safe(rb
, struct drm_mm_node
, rb_hole_addr
);
308 static struct drm_mm_node
*best_hole(struct drm_mm
*mm
, u64 size
)
310 struct rb_node
*rb
= mm
->holes_size
.rb_root
.rb_node
;
311 struct drm_mm_node
*best
= NULL
;
314 struct drm_mm_node
*node
=
315 rb_entry(rb
, struct drm_mm_node
, rb_hole_size
);
317 if (size
<= node
->hole_size
) {
328 static bool usable_hole_addr(struct rb_node
*rb
, u64 size
)
330 return rb
&& rb_hole_addr_to_node(rb
)->subtree_max_hole
>= size
;
333 static struct drm_mm_node
*find_hole_addr(struct drm_mm
*mm
, u64 addr
, u64 size
)
335 struct rb_node
*rb
= mm
->holes_addr
.rb_node
;
336 struct drm_mm_node
*node
= NULL
;
341 if (!usable_hole_addr(rb
, size
))
344 node
= rb_hole_addr_to_node(rb
);
345 hole_start
= __drm_mm_hole_node_start(node
);
347 if (addr
< hole_start
)
348 rb
= node
->rb_hole_addr
.rb_left
;
349 else if (addr
> hole_start
+ node
->hole_size
)
350 rb
= node
->rb_hole_addr
.rb_right
;
358 static struct drm_mm_node
*
359 first_hole(struct drm_mm
*mm
,
360 u64 start
, u64 end
, u64 size
,
361 enum drm_mm_insert_mode mode
)
365 case DRM_MM_INSERT_BEST
:
366 return best_hole(mm
, size
);
368 case DRM_MM_INSERT_LOW
:
369 return find_hole_addr(mm
, start
, size
);
371 case DRM_MM_INSERT_HIGH
:
372 return find_hole_addr(mm
, end
, size
);
374 case DRM_MM_INSERT_EVICT
:
375 return list_first_entry_or_null(&mm
->hole_stack
,
382 * DECLARE_NEXT_HOLE_ADDR - macro to declare next hole functions
383 * @name: name of function to declare
384 * @first: first rb member to traverse (either rb_left or rb_right).
385 * @last: last rb member to traverse (either rb_right or rb_left).
387 * This macro declares a function to return the next hole of the addr rb tree.
388 * While traversing the tree we take the searched size into account and only
389 * visit branches with potential big enough holes.
392 #define DECLARE_NEXT_HOLE_ADDR(name, first, last) \
393 static struct drm_mm_node *name(struct drm_mm_node *entry, u64 size) \
395 struct rb_node *parent, *node = &entry->rb_hole_addr; \
397 if (!entry || RB_EMPTY_NODE(node)) \
400 if (usable_hole_addr(node->first, size)) { \
401 node = node->first; \
402 while (usable_hole_addr(node->last, size)) \
404 return rb_hole_addr_to_node(node); \
407 while ((parent = rb_parent(node)) && node == parent->first) \
410 return rb_hole_addr_to_node(parent); \
413 DECLARE_NEXT_HOLE_ADDR(next_hole_high_addr
, rb_left
, rb_right
)
414 DECLARE_NEXT_HOLE_ADDR(next_hole_low_addr
, rb_right
, rb_left
)
416 static struct drm_mm_node
*
417 next_hole(struct drm_mm
*mm
,
418 struct drm_mm_node
*node
,
420 enum drm_mm_insert_mode mode
)
424 case DRM_MM_INSERT_BEST
:
425 return rb_hole_size_to_node(rb_prev(&node
->rb_hole_size
));
427 case DRM_MM_INSERT_LOW
:
428 return next_hole_low_addr(node
, size
);
430 case DRM_MM_INSERT_HIGH
:
431 return next_hole_high_addr(node
, size
);
433 case DRM_MM_INSERT_EVICT
:
434 node
= list_next_entry(node
, hole_stack
);
435 return &node
->hole_stack
== &mm
->hole_stack
? NULL
: node
;
440 * drm_mm_reserve_node - insert an pre-initialized node
441 * @mm: drm_mm allocator to insert @node into
442 * @node: drm_mm_node to insert
444 * This functions inserts an already set-up &drm_mm_node into the allocator,
445 * meaning that start, size and color must be set by the caller. All other
446 * fields must be cleared to 0. This is useful to initialize the allocator with
447 * preallocated objects which must be set-up before the range allocator can be
448 * set-up, e.g. when taking over a firmware framebuffer.
451 * 0 on success, -ENOSPC if there's no hole where @node is.
453 int drm_mm_reserve_node(struct drm_mm
*mm
, struct drm_mm_node
*node
)
455 struct drm_mm_node
*hole
;
456 u64 hole_start
, hole_end
;
457 u64 adj_start
, adj_end
;
460 end
= node
->start
+ node
->size
;
461 if (unlikely(end
<= node
->start
))
464 /* Find the relevant hole to add our node to */
465 hole
= find_hole_addr(mm
, node
->start
, 0);
469 adj_start
= hole_start
= __drm_mm_hole_node_start(hole
);
470 adj_end
= hole_end
= hole_start
+ hole
->hole_size
;
472 if (mm
->color_adjust
)
473 mm
->color_adjust(hole
, node
->color
, &adj_start
, &adj_end
);
475 if (adj_start
> node
->start
|| adj_end
< end
)
480 __set_bit(DRM_MM_NODE_ALLOCATED_BIT
, &node
->flags
);
481 list_add(&node
->node_list
, &hole
->node_list
);
482 drm_mm_interval_tree_add_node(hole
, node
);
486 if (node
->start
> hole_start
)
494 EXPORT_SYMBOL(drm_mm_reserve_node
);
496 static u64
rb_to_hole_size_or_zero(struct rb_node
*rb
)
498 return rb
? rb_to_hole_size(rb
) : 0;
502 * drm_mm_insert_node_in_range - ranged search for space and insert @node
503 * @mm: drm_mm to allocate from
504 * @node: preallocate node to insert
505 * @size: size of the allocation
506 * @alignment: alignment of the allocation
507 * @color: opaque tag value to use for this node
508 * @range_start: start of the allowed range for this node
509 * @range_end: end of the allowed range for this node
510 * @mode: fine-tune the allocation search and placement
512 * The preallocated @node must be cleared to 0.
515 * 0 on success, -ENOSPC if there's no suitable hole.
517 int drm_mm_insert_node_in_range(struct drm_mm
* const mm
,
518 struct drm_mm_node
* const node
,
519 u64 size
, u64 alignment
,
521 u64 range_start
, u64 range_end
,
522 enum drm_mm_insert_mode mode
)
524 struct drm_mm_node
*hole
;
528 DRM_MM_BUG_ON(range_start
> range_end
);
530 if (unlikely(size
== 0 || range_end
- range_start
< size
))
533 if (rb_to_hole_size_or_zero(rb_first_cached(&mm
->holes_size
)) < size
)
539 once
= mode
& DRM_MM_INSERT_ONCE
;
540 mode
&= ~DRM_MM_INSERT_ONCE
;
542 remainder_mask
= is_power_of_2(alignment
) ? alignment
- 1 : 0;
543 for (hole
= first_hole(mm
, range_start
, range_end
, size
, mode
);
545 hole
= once
? NULL
: next_hole(mm
, hole
, size
, mode
)) {
546 u64 hole_start
= __drm_mm_hole_node_start(hole
);
547 u64 hole_end
= hole_start
+ hole
->hole_size
;
548 u64 adj_start
, adj_end
;
549 u64 col_start
, col_end
;
551 if (mode
== DRM_MM_INSERT_LOW
&& hole_start
>= range_end
)
554 if (mode
== DRM_MM_INSERT_HIGH
&& hole_end
<= range_start
)
557 col_start
= hole_start
;
559 if (mm
->color_adjust
)
560 mm
->color_adjust(hole
, color
, &col_start
, &col_end
);
562 adj_start
= max(col_start
, range_start
);
563 adj_end
= min(col_end
, range_end
);
565 if (adj_end
<= adj_start
|| adj_end
- adj_start
< size
)
568 if (mode
== DRM_MM_INSERT_HIGH
)
569 adj_start
= adj_end
- size
;
574 if (likely(remainder_mask
))
575 rem
= adj_start
& remainder_mask
;
577 div64_u64_rem(adj_start
, alignment
, &rem
);
580 if (mode
!= DRM_MM_INSERT_HIGH
)
581 adj_start
+= alignment
;
583 if (adj_start
< max(col_start
, range_start
) ||
584 min(col_end
, range_end
) - adj_start
< size
)
587 if (adj_end
<= adj_start
||
588 adj_end
- adj_start
< size
)
595 node
->start
= adj_start
;
599 __set_bit(DRM_MM_NODE_ALLOCATED_BIT
, &node
->flags
);
600 list_add(&node
->node_list
, &hole
->node_list
);
601 drm_mm_interval_tree_add_node(hole
, node
);
604 if (adj_start
> hole_start
)
606 if (adj_start
+ size
< hole_end
)
615 EXPORT_SYMBOL(drm_mm_insert_node_in_range
);
617 static inline bool drm_mm_node_scanned_block(const struct drm_mm_node
*node
)
619 return test_bit(DRM_MM_NODE_SCANNED_BIT
, &node
->flags
);
623 * drm_mm_remove_node - Remove a memory node from the allocator.
624 * @node: drm_mm_node to remove
626 * This just removes a node from its drm_mm allocator. The node does not need to
627 * be cleared again before it can be re-inserted into this or any other drm_mm
628 * allocator. It is a bug to call this function on a unallocated node.
630 void drm_mm_remove_node(struct drm_mm_node
*node
)
632 struct drm_mm
*mm
= node
->mm
;
633 struct drm_mm_node
*prev_node
;
635 DRM_MM_BUG_ON(!drm_mm_node_allocated(node
));
636 DRM_MM_BUG_ON(drm_mm_node_scanned_block(node
));
638 prev_node
= list_prev_entry(node
, node_list
);
640 if (drm_mm_hole_follows(node
))
643 drm_mm_interval_tree_remove(node
, &mm
->interval_tree
);
644 list_del(&node
->node_list
);
646 if (drm_mm_hole_follows(prev_node
))
650 clear_bit_unlock(DRM_MM_NODE_ALLOCATED_BIT
, &node
->flags
);
652 EXPORT_SYMBOL(drm_mm_remove_node
);
655 * drm_mm_replace_node - move an allocation from @old to @new
656 * @old: drm_mm_node to remove from the allocator
657 * @new: drm_mm_node which should inherit @old's allocation
659 * This is useful for when drivers embed the drm_mm_node structure and hence
660 * can't move allocations by reassigning pointers. It's a combination of remove
661 * and insert with the guarantee that the allocation start will match.
663 void drm_mm_replace_node(struct drm_mm_node
*old
, struct drm_mm_node
*new)
665 struct drm_mm
*mm
= old
->mm
;
667 DRM_MM_BUG_ON(!drm_mm_node_allocated(old
));
671 __set_bit(DRM_MM_NODE_ALLOCATED_BIT
, &new->flags
);
672 list_replace(&old
->node_list
, &new->node_list
);
673 rb_replace_node_cached(&old
->rb
, &new->rb
, &mm
->interval_tree
);
675 if (drm_mm_hole_follows(old
)) {
676 list_replace(&old
->hole_stack
, &new->hole_stack
);
677 rb_replace_node_cached(&old
->rb_hole_size
,
680 rb_replace_node(&old
->rb_hole_addr
,
685 clear_bit_unlock(DRM_MM_NODE_ALLOCATED_BIT
, &old
->flags
);
687 EXPORT_SYMBOL(drm_mm_replace_node
);
690 * DOC: lru scan roster
692 * Very often GPUs need to have continuous allocations for a given object. When
693 * evicting objects to make space for a new one it is therefore not most
694 * efficient when we simply start to select all objects from the tail of an LRU
695 * until there's a suitable hole: Especially for big objects or nodes that
696 * otherwise have special allocation constraints there's a good chance we evict
697 * lots of (smaller) objects unnecessarily.
699 * The DRM range allocator supports this use-case through the scanning
700 * interfaces. First a scan operation needs to be initialized with
701 * drm_mm_scan_init() or drm_mm_scan_init_with_range(). The driver adds
702 * objects to the roster, probably by walking an LRU list, but this can be
703 * freely implemented. Eviction candiates are added using
704 * drm_mm_scan_add_block() until a suitable hole is found or there are no
705 * further evictable objects. Eviction roster metadata is tracked in &struct
708 * The driver must walk through all objects again in exactly the reverse
709 * order to restore the allocator state. Note that while the allocator is used
710 * in the scan mode no other operation is allowed.
712 * Finally the driver evicts all objects selected (drm_mm_scan_remove_block()
713 * reported true) in the scan, and any overlapping nodes after color adjustment
714 * (drm_mm_scan_color_evict()). Adding and removing an object is O(1), and
715 * since freeing a node is also O(1) the overall complexity is
716 * O(scanned_objects). So like the free stack which needs to be walked before a
717 * scan operation even begins this is linear in the number of objects. It
718 * doesn't seem to hurt too badly.
722 * drm_mm_scan_init_with_range - initialize range-restricted lru scanning
724 * @mm: drm_mm to scan
725 * @size: size of the allocation
726 * @alignment: alignment of the allocation
727 * @color: opaque tag value to use for the allocation
728 * @start: start of the allowed range for the allocation
729 * @end: end of the allowed range for the allocation
730 * @mode: fine-tune the allocation search and placement
732 * This simply sets up the scanning routines with the parameters for the desired
736 * As long as the scan list is non-empty, no other operations than
737 * adding/removing nodes to/from the scan list are allowed.
739 void drm_mm_scan_init_with_range(struct drm_mm_scan
*scan
,
746 enum drm_mm_insert_mode mode
)
748 DRM_MM_BUG_ON(start
>= end
);
749 DRM_MM_BUG_ON(!size
|| size
> end
- start
);
750 DRM_MM_BUG_ON(mm
->scan_active
);
758 scan
->alignment
= alignment
;
759 scan
->remainder_mask
= is_power_of_2(alignment
) ? alignment
- 1 : 0;
763 DRM_MM_BUG_ON(end
<= start
);
764 scan
->range_start
= start
;
765 scan
->range_end
= end
;
767 scan
->hit_start
= U64_MAX
;
770 EXPORT_SYMBOL(drm_mm_scan_init_with_range
);
773 * drm_mm_scan_add_block - add a node to the scan list
774 * @scan: the active drm_mm scanner
775 * @node: drm_mm_node to add
777 * Add a node to the scan list that might be freed to make space for the desired
781 * True if a hole has been found, false otherwise.
783 bool drm_mm_scan_add_block(struct drm_mm_scan
*scan
,
784 struct drm_mm_node
*node
)
786 struct drm_mm
*mm
= scan
->mm
;
787 struct drm_mm_node
*hole
;
788 u64 hole_start
, hole_end
;
789 u64 col_start
, col_end
;
790 u64 adj_start
, adj_end
;
792 DRM_MM_BUG_ON(node
->mm
!= mm
);
793 DRM_MM_BUG_ON(!drm_mm_node_allocated(node
));
794 DRM_MM_BUG_ON(drm_mm_node_scanned_block(node
));
795 __set_bit(DRM_MM_NODE_SCANNED_BIT
, &node
->flags
);
798 /* Remove this block from the node_list so that we enlarge the hole
799 * (distance between the end of our previous node and the start of
800 * or next), without poisoning the link so that we can restore it
801 * later in drm_mm_scan_remove_block().
803 hole
= list_prev_entry(node
, node_list
);
804 DRM_MM_BUG_ON(list_next_entry(hole
, node_list
) != node
);
805 __list_del_entry(&node
->node_list
);
807 hole_start
= __drm_mm_hole_node_start(hole
);
808 hole_end
= __drm_mm_hole_node_end(hole
);
810 col_start
= hole_start
;
812 if (mm
->color_adjust
)
813 mm
->color_adjust(hole
, scan
->color
, &col_start
, &col_end
);
815 adj_start
= max(col_start
, scan
->range_start
);
816 adj_end
= min(col_end
, scan
->range_end
);
817 if (adj_end
<= adj_start
|| adj_end
- adj_start
< scan
->size
)
820 if (scan
->mode
== DRM_MM_INSERT_HIGH
)
821 adj_start
= adj_end
- scan
->size
;
823 if (scan
->alignment
) {
826 if (likely(scan
->remainder_mask
))
827 rem
= adj_start
& scan
->remainder_mask
;
829 div64_u64_rem(adj_start
, scan
->alignment
, &rem
);
832 if (scan
->mode
!= DRM_MM_INSERT_HIGH
)
833 adj_start
+= scan
->alignment
;
834 if (adj_start
< max(col_start
, scan
->range_start
) ||
835 min(col_end
, scan
->range_end
) - adj_start
< scan
->size
)
838 if (adj_end
<= adj_start
||
839 adj_end
- adj_start
< scan
->size
)
844 scan
->hit_start
= adj_start
;
845 scan
->hit_end
= adj_start
+ scan
->size
;
847 DRM_MM_BUG_ON(scan
->hit_start
>= scan
->hit_end
);
848 DRM_MM_BUG_ON(scan
->hit_start
< hole_start
);
849 DRM_MM_BUG_ON(scan
->hit_end
> hole_end
);
853 EXPORT_SYMBOL(drm_mm_scan_add_block
);
856 * drm_mm_scan_remove_block - remove a node from the scan list
857 * @scan: the active drm_mm scanner
858 * @node: drm_mm_node to remove
860 * Nodes **must** be removed in exactly the reverse order from the scan list as
861 * they have been added (e.g. using list_add() as they are added and then
862 * list_for_each() over that eviction list to remove), otherwise the internal
863 * state of the memory manager will be corrupted.
865 * When the scan list is empty, the selected memory nodes can be freed. An
866 * immediately following drm_mm_insert_node_in_range_generic() or one of the
867 * simpler versions of that function with !DRM_MM_SEARCH_BEST will then return
868 * the just freed block (because it's at the top of the free_stack list).
871 * True if this block should be evicted, false otherwise. Will always
872 * return false when no hole has been found.
874 bool drm_mm_scan_remove_block(struct drm_mm_scan
*scan
,
875 struct drm_mm_node
*node
)
877 struct drm_mm_node
*prev_node
;
879 DRM_MM_BUG_ON(node
->mm
!= scan
->mm
);
880 DRM_MM_BUG_ON(!drm_mm_node_scanned_block(node
));
881 __clear_bit(DRM_MM_NODE_SCANNED_BIT
, &node
->flags
);
883 DRM_MM_BUG_ON(!node
->mm
->scan_active
);
884 node
->mm
->scan_active
--;
886 /* During drm_mm_scan_add_block() we decoupled this node leaving
887 * its pointers intact. Now that the caller is walking back along
888 * the eviction list we can restore this block into its rightful
889 * place on the full node_list. To confirm that the caller is walking
890 * backwards correctly we check that prev_node->next == node->next,
891 * i.e. both believe the same node should be on the other side of the
894 prev_node
= list_prev_entry(node
, node_list
);
895 DRM_MM_BUG_ON(list_next_entry(prev_node
, node_list
) !=
896 list_next_entry(node
, node_list
));
897 list_add(&node
->node_list
, &prev_node
->node_list
);
899 return (node
->start
+ node
->size
> scan
->hit_start
&&
900 node
->start
< scan
->hit_end
);
902 EXPORT_SYMBOL(drm_mm_scan_remove_block
);
905 * drm_mm_scan_color_evict - evict overlapping nodes on either side of hole
906 * @scan: drm_mm scan with target hole
908 * After completing an eviction scan and removing the selected nodes, we may
909 * need to remove a few more nodes from either side of the target hole if
910 * mm.color_adjust is being used.
913 * A node to evict, or NULL if there are no overlapping nodes.
915 struct drm_mm_node
*drm_mm_scan_color_evict(struct drm_mm_scan
*scan
)
917 struct drm_mm
*mm
= scan
->mm
;
918 struct drm_mm_node
*hole
;
919 u64 hole_start
, hole_end
;
921 DRM_MM_BUG_ON(list_empty(&mm
->hole_stack
));
923 if (!mm
->color_adjust
)
927 * The hole found during scanning should ideally be the first element
928 * in the hole_stack list, but due to side-effects in the driver it
931 list_for_each_entry(hole
, &mm
->hole_stack
, hole_stack
) {
932 hole_start
= __drm_mm_hole_node_start(hole
);
933 hole_end
= hole_start
+ hole
->hole_size
;
935 if (hole_start
<= scan
->hit_start
&&
936 hole_end
>= scan
->hit_end
)
940 /* We should only be called after we found the hole previously */
941 DRM_MM_BUG_ON(&hole
->hole_stack
== &mm
->hole_stack
);
942 if (unlikely(&hole
->hole_stack
== &mm
->hole_stack
))
945 DRM_MM_BUG_ON(hole_start
> scan
->hit_start
);
946 DRM_MM_BUG_ON(hole_end
< scan
->hit_end
);
948 mm
->color_adjust(hole
, scan
->color
, &hole_start
, &hole_end
);
949 if (hole_start
> scan
->hit_start
)
951 if (hole_end
< scan
->hit_end
)
952 return list_next_entry(hole
, node_list
);
956 EXPORT_SYMBOL(drm_mm_scan_color_evict
);
959 * drm_mm_init - initialize a drm-mm allocator
960 * @mm: the drm_mm structure to initialize
961 * @start: start of the range managed by @mm
962 * @size: end of the range managed by @mm
964 * Note that @mm must be cleared to 0 before calling this function.
966 void drm_mm_init(struct drm_mm
*mm
, u64 start
, u64 size
)
968 DRM_MM_BUG_ON(start
+ size
<= start
);
970 mm
->color_adjust
= NULL
;
972 INIT_LIST_HEAD(&mm
->hole_stack
);
973 mm
->interval_tree
= RB_ROOT_CACHED
;
974 mm
->holes_size
= RB_ROOT_CACHED
;
975 mm
->holes_addr
= RB_ROOT
;
977 /* Clever trick to avoid a special case in the free hole tracking. */
978 INIT_LIST_HEAD(&mm
->head_node
.node_list
);
979 mm
->head_node
.flags
= 0;
980 mm
->head_node
.mm
= mm
;
981 mm
->head_node
.start
= start
+ size
;
982 mm
->head_node
.size
= -size
;
983 add_hole(&mm
->head_node
);
987 EXPORT_SYMBOL(drm_mm_init
);
990 * drm_mm_takedown - clean up a drm_mm allocator
991 * @mm: drm_mm allocator to clean up
993 * Note that it is a bug to call this function on an allocator which is not
996 void drm_mm_takedown(struct drm_mm
*mm
)
998 if (WARN(!drm_mm_clean(mm
),
999 "Memory manager not clean during takedown.\n"))
1002 EXPORT_SYMBOL(drm_mm_takedown
);
1004 static u64
drm_mm_dump_hole(struct drm_printer
*p
, const struct drm_mm_node
*entry
)
1008 size
= entry
->hole_size
;
1010 start
= drm_mm_hole_node_start(entry
);
1011 drm_printf(p
, "%#018llx-%#018llx: %llu: free\n",
1012 start
, start
+ size
, size
);
1018 * drm_mm_print - print allocator state
1019 * @mm: drm_mm allocator to print
1020 * @p: DRM printer to use
1022 void drm_mm_print(const struct drm_mm
*mm
, struct drm_printer
*p
)
1024 const struct drm_mm_node
*entry
;
1025 u64 total_used
= 0, total_free
= 0, total
= 0;
1027 total_free
+= drm_mm_dump_hole(p
, &mm
->head_node
);
1029 drm_mm_for_each_node(entry
, mm
) {
1030 drm_printf(p
, "%#018llx-%#018llx: %llu: used\n", entry
->start
,
1031 entry
->start
+ entry
->size
, entry
->size
);
1032 total_used
+= entry
->size
;
1033 total_free
+= drm_mm_dump_hole(p
, entry
);
1035 total
= total_free
+ total_used
;
1037 drm_printf(p
, "total: %llu, used %llu free %llu\n", total
,
1038 total_used
, total_free
);
1040 EXPORT_SYMBOL(drm_mm_print
);