1 // SPDX-License-Identifier: MIT
3 * Copyright © 2010 Daniel Vetter
4 * Copyright © 2020 Intel Corporation
7 #include <linux/slab.h> /* fault-inject.h is not standalone! */
9 #include <linux/fault-inject.h>
10 #include <linux/log2.h>
11 #include <linux/random.h>
12 #include <linux/seq_file.h>
13 #include <linux/stop_machine.h>
15 #include <asm/set_memory.h>
18 #include "display/intel_frontbuffer.h"
19 #include "gt/intel_gt.h"
20 #include "gt/intel_gt_requests.h"
23 #include "i915_scatterlist.h"
24 #include "i915_trace.h"
25 #include "i915_vgpu.h"
27 int i915_gem_gtt_prepare_pages(struct drm_i915_gem_object
*obj
,
28 struct sg_table
*pages
)
31 if (dma_map_sg_attrs(&obj
->base
.dev
->pdev
->dev
,
32 pages
->sgl
, pages
->nents
,
33 PCI_DMA_BIDIRECTIONAL
,
34 DMA_ATTR_SKIP_CPU_SYNC
|
35 DMA_ATTR_NO_KERNEL_MAPPING
|
40 * If the DMA remap fails, one cause can be that we have
41 * too many objects pinned in a small remapping table,
42 * such as swiotlb. Incrementally purge all other objects and
43 * try again - if there are no more pages to remove from
44 * the DMA remapper, i915_gem_shrink will return 0.
46 GEM_BUG_ON(obj
->mm
.pages
== pages
);
47 } while (i915_gem_shrink(to_i915(obj
->base
.dev
),
48 obj
->base
.size
>> PAGE_SHIFT
, NULL
,
50 I915_SHRINK_UNBOUND
));
55 void i915_gem_gtt_finish_pages(struct drm_i915_gem_object
*obj
,
56 struct sg_table
*pages
)
58 struct drm_i915_private
*dev_priv
= to_i915(obj
->base
.dev
);
59 struct device
*kdev
= &dev_priv
->drm
.pdev
->dev
;
60 struct i915_ggtt
*ggtt
= &dev_priv
->ggtt
;
62 if (unlikely(ggtt
->do_idle_maps
)) {
63 /* XXX This does not prevent more requests being submitted! */
64 if (intel_gt_retire_requests_timeout(ggtt
->vm
.gt
,
65 -MAX_SCHEDULE_TIMEOUT
)) {
66 drm_err(&dev_priv
->drm
,
67 "Failed to wait for idle; VT'd may hang.\n");
68 /* Wait a bit, in hopes it avoids the hang */
73 dma_unmap_sg(kdev
, pages
->sgl
, pages
->nents
, PCI_DMA_BIDIRECTIONAL
);
77 * i915_gem_gtt_reserve - reserve a node in an address_space (GTT)
78 * @vm: the &struct i915_address_space
79 * @node: the &struct drm_mm_node (typically i915_vma.mode)
80 * @size: how much space to allocate inside the GTT,
81 * must be #I915_GTT_PAGE_SIZE aligned
82 * @offset: where to insert inside the GTT,
83 * must be #I915_GTT_MIN_ALIGNMENT aligned, and the node
84 * (@offset + @size) must fit within the address space
85 * @color: color to apply to node, if this node is not from a VMA,
86 * color must be #I915_COLOR_UNEVICTABLE
87 * @flags: control search and eviction behaviour
89 * i915_gem_gtt_reserve() tries to insert the @node at the exact @offset inside
90 * the address space (using @size and @color). If the @node does not fit, it
91 * tries to evict any overlapping nodes from the GTT, including any
92 * neighbouring nodes if the colors do not match (to ensure guard pages between
93 * differing domains). See i915_gem_evict_for_node() for the gory details
94 * on the eviction algorithm. #PIN_NONBLOCK may used to prevent waiting on
95 * evicting active overlapping objects, and any overlapping node that is pinned
96 * or marked as unevictable will also result in failure.
98 * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
99 * asked to wait for eviction and interrupted.
101 int i915_gem_gtt_reserve(struct i915_address_space
*vm
,
102 struct drm_mm_node
*node
,
103 u64 size
, u64 offset
, unsigned long color
,
109 GEM_BUG_ON(!IS_ALIGNED(size
, I915_GTT_PAGE_SIZE
));
110 GEM_BUG_ON(!IS_ALIGNED(offset
, I915_GTT_MIN_ALIGNMENT
));
111 GEM_BUG_ON(range_overflows(offset
, size
, vm
->total
));
112 GEM_BUG_ON(vm
== &vm
->i915
->ggtt
.alias
->vm
);
113 GEM_BUG_ON(drm_mm_node_allocated(node
));
116 node
->start
= offset
;
119 err
= drm_mm_reserve_node(&vm
->mm
, node
);
123 if (flags
& PIN_NOEVICT
)
126 err
= i915_gem_evict_for_node(vm
, node
, flags
);
128 err
= drm_mm_reserve_node(&vm
->mm
, node
);
133 static u64
random_offset(u64 start
, u64 end
, u64 len
, u64 align
)
137 GEM_BUG_ON(range_overflows(start
, len
, end
));
138 GEM_BUG_ON(round_up(start
, align
) > round_down(end
- len
, align
));
140 range
= round_down(end
- len
, align
) - round_up(start
, align
);
142 if (sizeof(unsigned long) == sizeof(u64
)) {
143 addr
= get_random_long();
145 addr
= get_random_int();
146 if (range
> U32_MAX
) {
148 addr
|= get_random_int();
151 div64_u64_rem(addr
, range
, &addr
);
155 return round_up(start
, align
);
159 * i915_gem_gtt_insert - insert a node into an address_space (GTT)
160 * @vm: the &struct i915_address_space
161 * @node: the &struct drm_mm_node (typically i915_vma.node)
162 * @size: how much space to allocate inside the GTT,
163 * must be #I915_GTT_PAGE_SIZE aligned
164 * @alignment: required alignment of starting offset, may be 0 but
165 * if specified, this must be a power-of-two and at least
166 * #I915_GTT_MIN_ALIGNMENT
167 * @color: color to apply to node
168 * @start: start of any range restriction inside GTT (0 for all),
169 * must be #I915_GTT_PAGE_SIZE aligned
170 * @end: end of any range restriction inside GTT (U64_MAX for all),
171 * must be #I915_GTT_PAGE_SIZE aligned if not U64_MAX
172 * @flags: control search and eviction behaviour
174 * i915_gem_gtt_insert() first searches for an available hole into which
175 * is can insert the node. The hole address is aligned to @alignment and
176 * its @size must then fit entirely within the [@start, @end] bounds. The
177 * nodes on either side of the hole must match @color, or else a guard page
178 * will be inserted between the two nodes (or the node evicted). If no
179 * suitable hole is found, first a victim is randomly selected and tested
180 * for eviction, otherwise then the LRU list of objects within the GTT
181 * is scanned to find the first set of replacement nodes to create the hole.
182 * Those old overlapping nodes are evicted from the GTT (and so must be
183 * rebound before any future use). Any node that is currently pinned cannot
184 * be evicted (see i915_vma_pin()). Similar if the node's VMA is currently
185 * active and #PIN_NONBLOCK is specified, that node is also skipped when
186 * searching for an eviction candidate. See i915_gem_evict_something() for
187 * the gory details on the eviction algorithm.
189 * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
190 * asked to wait for eviction and interrupted.
192 int i915_gem_gtt_insert(struct i915_address_space
*vm
,
193 struct drm_mm_node
*node
,
194 u64 size
, u64 alignment
, unsigned long color
,
195 u64 start
, u64 end
, unsigned int flags
)
197 enum drm_mm_insert_mode mode
;
201 lockdep_assert_held(&vm
->mutex
);
204 GEM_BUG_ON(!IS_ALIGNED(size
, I915_GTT_PAGE_SIZE
));
205 GEM_BUG_ON(alignment
&& !is_power_of_2(alignment
));
206 GEM_BUG_ON(alignment
&& !IS_ALIGNED(alignment
, I915_GTT_MIN_ALIGNMENT
));
207 GEM_BUG_ON(start
>= end
);
208 GEM_BUG_ON(start
> 0 && !IS_ALIGNED(start
, I915_GTT_PAGE_SIZE
));
209 GEM_BUG_ON(end
< U64_MAX
&& !IS_ALIGNED(end
, I915_GTT_PAGE_SIZE
));
210 GEM_BUG_ON(vm
== &vm
->i915
->ggtt
.alias
->vm
);
211 GEM_BUG_ON(drm_mm_node_allocated(node
));
213 if (unlikely(range_overflows(start
, size
, end
)))
216 if (unlikely(round_up(start
, alignment
) > round_down(end
- size
, alignment
)))
219 mode
= DRM_MM_INSERT_BEST
;
220 if (flags
& PIN_HIGH
)
221 mode
= DRM_MM_INSERT_HIGHEST
;
222 if (flags
& PIN_MAPPABLE
)
223 mode
= DRM_MM_INSERT_LOW
;
225 /* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
226 * so we know that we always have a minimum alignment of 4096.
227 * The drm_mm range manager is optimised to return results
228 * with zero alignment, so where possible use the optimal
231 BUILD_BUG_ON(I915_GTT_MIN_ALIGNMENT
> I915_GTT_PAGE_SIZE
);
232 if (alignment
<= I915_GTT_MIN_ALIGNMENT
)
235 err
= drm_mm_insert_node_in_range(&vm
->mm
, node
,
236 size
, alignment
, color
,
241 if (mode
& DRM_MM_INSERT_ONCE
) {
242 err
= drm_mm_insert_node_in_range(&vm
->mm
, node
,
243 size
, alignment
, color
,
250 if (flags
& PIN_NOEVICT
)
254 * No free space, pick a slot at random.
256 * There is a pathological case here using a GTT shared between
257 * mmap and GPU (i.e. ggtt/aliasing_ppgtt but not full-ppgtt):
259 * |<-- 256 MiB aperture -->||<-- 1792 MiB unmappable -->|
260 * (64k objects) (448k objects)
262 * Now imagine that the eviction LRU is ordered top-down (just because
263 * pathology meets real life), and that we need to evict an object to
264 * make room inside the aperture. The eviction scan then has to walk
265 * the 448k list before it finds one within range. And now imagine that
266 * it has to search for a new hole between every byte inside the memcpy,
267 * for several simultaneous clients.
269 * On a full-ppgtt system, if we have run out of available space, there
270 * will be lots and lots of objects in the eviction list! Again,
271 * searching that LRU list may be slow if we are also applying any
272 * range restrictions (e.g. restriction to low 4GiB) and so, for
273 * simplicity and similarilty between different GTT, try the single
274 * random replacement first.
276 offset
= random_offset(start
, end
,
277 size
, alignment
?: I915_GTT_MIN_ALIGNMENT
);
278 err
= i915_gem_gtt_reserve(vm
, node
, size
, offset
, color
, flags
);
282 if (flags
& PIN_NOSEARCH
)
285 /* Randomly selected placement is pinned, do a search */
286 err
= i915_gem_evict_something(vm
, size
, alignment
, color
,
291 return drm_mm_insert_node_in_range(&vm
->mm
, node
,
292 size
, alignment
, color
,
293 start
, end
, DRM_MM_INSERT_EVICT
);
296 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
297 #include "selftests/i915_gem_gtt.c"