Merge tag 'block-5.11-2021-01-10' of git://git.kernel.dk/linux-block
[linux/fpc-iii.git] / drivers / gpu / drm / i915 / i915_perf.c
blob649c26518d26dd6e811e56a11030051240549d00
1 /*
2 * Copyright © 2015-2016 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
23 * Authors:
24 * Robert Bragg <robert@sixbynine.org>
28 /**
29 * DOC: i915 Perf Overview
31 * Gen graphics supports a large number of performance counters that can help
32 * driver and application developers understand and optimize their use of the
33 * GPU.
35 * This i915 perf interface enables userspace to configure and open a file
36 * descriptor representing a stream of GPU metrics which can then be read() as
37 * a stream of sample records.
39 * The interface is particularly suited to exposing buffered metrics that are
40 * captured by DMA from the GPU, unsynchronized with and unrelated to the CPU.
42 * Streams representing a single context are accessible to applications with a
43 * corresponding drm file descriptor, such that OpenGL can use the interface
44 * without special privileges. Access to system-wide metrics requires root
45 * privileges by default, unless changed via the dev.i915.perf_event_paranoid
46 * sysctl option.
50 /**
51 * DOC: i915 Perf History and Comparison with Core Perf
53 * The interface was initially inspired by the core Perf infrastructure but
54 * some notable differences are:
56 * i915 perf file descriptors represent a "stream" instead of an "event"; where
57 * a perf event primarily corresponds to a single 64bit value, while a stream
58 * might sample sets of tightly-coupled counters, depending on the
59 * configuration. For example the Gen OA unit isn't designed to support
60 * orthogonal configurations of individual counters; it's configured for a set
61 * of related counters. Samples for an i915 perf stream capturing OA metrics
62 * will include a set of counter values packed in a compact HW specific format.
63 * The OA unit supports a number of different packing formats which can be
64 * selected by the user opening the stream. Perf has support for grouping
65 * events, but each event in the group is configured, validated and
66 * authenticated individually with separate system calls.
68 * i915 perf stream configurations are provided as an array of u64 (key,value)
69 * pairs, instead of a fixed struct with multiple miscellaneous config members,
70 * interleaved with event-type specific members.
72 * i915 perf doesn't support exposing metrics via an mmap'd circular buffer.
73 * The supported metrics are being written to memory by the GPU unsynchronized
74 * with the CPU, using HW specific packing formats for counter sets. Sometimes
75 * the constraints on HW configuration require reports to be filtered before it
76 * would be acceptable to expose them to unprivileged applications - to hide
77 * the metrics of other processes/contexts. For these use cases a read() based
78 * interface is a good fit, and provides an opportunity to filter data as it
79 * gets copied from the GPU mapped buffers to userspace buffers.
82 * Issues hit with first prototype based on Core Perf
83 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
85 * The first prototype of this driver was based on the core perf
86 * infrastructure, and while we did make that mostly work, with some changes to
87 * perf, we found we were breaking or working around too many assumptions baked
88 * into perf's currently cpu centric design.
90 * In the end we didn't see a clear benefit to making perf's implementation and
91 * interface more complex by changing design assumptions while we knew we still
92 * wouldn't be able to use any existing perf based userspace tools.
94 * Also considering the Gen specific nature of the Observability hardware and
95 * how userspace will sometimes need to combine i915 perf OA metrics with
96 * side-band OA data captured via MI_REPORT_PERF_COUNT commands; we're
97 * expecting the interface to be used by a platform specific userspace such as
98 * OpenGL or tools. This is to say; we aren't inherently missing out on having
99 * a standard vendor/architecture agnostic interface by not using perf.
102 * For posterity, in case we might re-visit trying to adapt core perf to be
103 * better suited to exposing i915 metrics these were the main pain points we
104 * hit:
106 * - The perf based OA PMU driver broke some significant design assumptions:
108 * Existing perf pmus are used for profiling work on a cpu and we were
109 * introducing the idea of _IS_DEVICE pmus with different security
110 * implications, the need to fake cpu-related data (such as user/kernel
111 * registers) to fit with perf's current design, and adding _DEVICE records
112 * as a way to forward device-specific status records.
114 * The OA unit writes reports of counters into a circular buffer, without
115 * involvement from the CPU, making our PMU driver the first of a kind.
117 * Given the way we were periodically forward data from the GPU-mapped, OA
118 * buffer to perf's buffer, those bursts of sample writes looked to perf like
119 * we were sampling too fast and so we had to subvert its throttling checks.
121 * Perf supports groups of counters and allows those to be read via
122 * transactions internally but transactions currently seem designed to be
123 * explicitly initiated from the cpu (say in response to a userspace read())
124 * and while we could pull a report out of the OA buffer we can't
125 * trigger a report from the cpu on demand.
127 * Related to being report based; the OA counters are configured in HW as a
128 * set while perf generally expects counter configurations to be orthogonal.
129 * Although counters can be associated with a group leader as they are
130 * opened, there's no clear precedent for being able to provide group-wide
131 * configuration attributes (for example we want to let userspace choose the
132 * OA unit report format used to capture all counters in a set, or specify a
133 * GPU context to filter metrics on). We avoided using perf's grouping
134 * feature and forwarded OA reports to userspace via perf's 'raw' sample
135 * field. This suited our userspace well considering how coupled the counters
136 * are when dealing with normalizing. It would be inconvenient to split
137 * counters up into separate events, only to require userspace to recombine
138 * them. For Mesa it's also convenient to be forwarded raw, periodic reports
139 * for combining with the side-band raw reports it captures using
140 * MI_REPORT_PERF_COUNT commands.
142 * - As a side note on perf's grouping feature; there was also some concern
143 * that using PERF_FORMAT_GROUP as a way to pack together counter values
144 * would quite drastically inflate our sample sizes, which would likely
145 * lower the effective sampling resolutions we could use when the available
146 * memory bandwidth is limited.
148 * With the OA unit's report formats, counters are packed together as 32
149 * or 40bit values, with the largest report size being 256 bytes.
151 * PERF_FORMAT_GROUP values are 64bit, but there doesn't appear to be a
152 * documented ordering to the values, implying PERF_FORMAT_ID must also be
153 * used to add a 64bit ID before each value; giving 16 bytes per counter.
155 * Related to counter orthogonality; we can't time share the OA unit, while
156 * event scheduling is a central design idea within perf for allowing
157 * userspace to open + enable more events than can be configured in HW at any
158 * one time. The OA unit is not designed to allow re-configuration while in
159 * use. We can't reconfigure the OA unit without losing internal OA unit
160 * state which we can't access explicitly to save and restore. Reconfiguring
161 * the OA unit is also relatively slow, involving ~100 register writes. From
162 * userspace Mesa also depends on a stable OA configuration when emitting
163 * MI_REPORT_PERF_COUNT commands and importantly the OA unit can't be
164 * disabled while there are outstanding MI_RPC commands lest we hang the
165 * command streamer.
167 * The contents of sample records aren't extensible by device drivers (i.e.
168 * the sample_type bits). As an example; Sourab Gupta had been looking to
169 * attach GPU timestamps to our OA samples. We were shoehorning OA reports
170 * into sample records by using the 'raw' field, but it's tricky to pack more
171 * than one thing into this field because events/core.c currently only lets a
172 * pmu give a single raw data pointer plus len which will be copied into the
173 * ring buffer. To include more than the OA report we'd have to copy the
174 * report into an intermediate larger buffer. I'd been considering allowing a
175 * vector of data+len values to be specified for copying the raw data, but
176 * it felt like a kludge to being using the raw field for this purpose.
178 * - It felt like our perf based PMU was making some technical compromises
179 * just for the sake of using perf:
181 * perf_event_open() requires events to either relate to a pid or a specific
182 * cpu core, while our device pmu related to neither. Events opened with a
183 * pid will be automatically enabled/disabled according to the scheduling of
184 * that process - so not appropriate for us. When an event is related to a
185 * cpu id, perf ensures pmu methods will be invoked via an inter process
186 * interrupt on that core. To avoid invasive changes our userspace opened OA
187 * perf events for a specific cpu. This was workable but it meant the
188 * majority of the OA driver ran in atomic context, including all OA report
189 * forwarding, which wasn't really necessary in our case and seems to make
190 * our locking requirements somewhat complex as we handled the interaction
191 * with the rest of the i915 driver.
194 #include <linux/anon_inodes.h>
195 #include <linux/sizes.h>
196 #include <linux/uuid.h>
198 #include "gem/i915_gem_context.h"
199 #include "gt/intel_engine_pm.h"
200 #include "gt/intel_engine_user.h"
201 #include "gt/intel_gt.h"
202 #include "gt/intel_lrc_reg.h"
203 #include "gt/intel_ring.h"
205 #include "i915_drv.h"
206 #include "i915_perf.h"
208 /* HW requires this to be a power of two, between 128k and 16M, though driver
209 * is currently generally designed assuming the largest 16M size is used such
210 * that the overflow cases are unlikely in normal operation.
212 #define OA_BUFFER_SIZE SZ_16M
214 #define OA_TAKEN(tail, head) ((tail - head) & (OA_BUFFER_SIZE - 1))
217 * DOC: OA Tail Pointer Race
219 * There's a HW race condition between OA unit tail pointer register updates and
220 * writes to memory whereby the tail pointer can sometimes get ahead of what's
221 * been written out to the OA buffer so far (in terms of what's visible to the
222 * CPU).
224 * Although this can be observed explicitly while copying reports to userspace
225 * by checking for a zeroed report-id field in tail reports, we want to account
226 * for this earlier, as part of the oa_buffer_check_unlocked to avoid lots of
227 * redundant read() attempts.
229 * We workaround this issue in oa_buffer_check_unlocked() by reading the reports
230 * in the OA buffer, starting from the tail reported by the HW until we find a
231 * report with its first 2 dwords not 0 meaning its previous report is
232 * completely in memory and ready to be read. Those dwords are also set to 0
233 * once read and the whole buffer is cleared upon OA buffer initialization. The
234 * first dword is the reason for this report while the second is the timestamp,
235 * making the chances of having those 2 fields at 0 fairly unlikely. A more
236 * detailed explanation is available in oa_buffer_check_unlocked().
238 * Most of the implementation details for this workaround are in
239 * oa_buffer_check_unlocked() and _append_oa_reports()
241 * Note for posterity: previously the driver used to define an effective tail
242 * pointer that lagged the real pointer by a 'tail margin' measured in bytes
243 * derived from %OA_TAIL_MARGIN_NSEC and the configured sampling frequency.
244 * This was flawed considering that the OA unit may also automatically generate
245 * non-periodic reports (such as on context switch) or the OA unit may be
246 * enabled without any periodic sampling.
248 #define OA_TAIL_MARGIN_NSEC 100000ULL
249 #define INVALID_TAIL_PTR 0xffffffff
251 /* The default frequency for checking whether the OA unit has written new
252 * reports to the circular OA buffer...
254 #define DEFAULT_POLL_FREQUENCY_HZ 200
255 #define DEFAULT_POLL_PERIOD_NS (NSEC_PER_SEC / DEFAULT_POLL_FREQUENCY_HZ)
257 /* for sysctl proc_dointvec_minmax of dev.i915.perf_stream_paranoid */
258 static u32 i915_perf_stream_paranoid = true;
260 /* The maximum exponent the hardware accepts is 63 (essentially it selects one
261 * of the 64bit timestamp bits to trigger reports from) but there's currently
262 * no known use case for sampling as infrequently as once per 47 thousand years.
264 * Since the timestamps included in OA reports are only 32bits it seems
265 * reasonable to limit the OA exponent where it's still possible to account for
266 * overflow in OA report timestamps.
268 #define OA_EXPONENT_MAX 31
270 #define INVALID_CTX_ID 0xffffffff
272 /* On Gen8+ automatically triggered OA reports include a 'reason' field... */
273 #define OAREPORT_REASON_MASK 0x3f
274 #define OAREPORT_REASON_MASK_EXTENDED 0x7f
275 #define OAREPORT_REASON_SHIFT 19
276 #define OAREPORT_REASON_TIMER (1<<0)
277 #define OAREPORT_REASON_CTX_SWITCH (1<<3)
278 #define OAREPORT_REASON_CLK_RATIO (1<<5)
281 /* For sysctl proc_dointvec_minmax of i915_oa_max_sample_rate
283 * The highest sampling frequency we can theoretically program the OA unit
284 * with is always half the timestamp frequency: E.g. 6.25Mhz for Haswell.
286 * Initialized just before we register the sysctl parameter.
288 static int oa_sample_rate_hard_limit;
290 /* Theoretically we can program the OA unit to sample every 160ns but don't
291 * allow that by default unless root...
293 * The default threshold of 100000Hz is based on perf's similar
294 * kernel.perf_event_max_sample_rate sysctl parameter.
296 static u32 i915_oa_max_sample_rate = 100000;
298 /* XXX: beware if future OA HW adds new report formats that the current
299 * code assumes all reports have a power-of-two size and ~(size - 1) can
300 * be used as a mask to align the OA tail pointer.
302 static const struct i915_oa_format hsw_oa_formats[I915_OA_FORMAT_MAX] = {
303 [I915_OA_FORMAT_A13] = { 0, 64 },
304 [I915_OA_FORMAT_A29] = { 1, 128 },
305 [I915_OA_FORMAT_A13_B8_C8] = { 2, 128 },
306 /* A29_B8_C8 Disallowed as 192 bytes doesn't factor into buffer size */
307 [I915_OA_FORMAT_B4_C8] = { 4, 64 },
308 [I915_OA_FORMAT_A45_B8_C8] = { 5, 256 },
309 [I915_OA_FORMAT_B4_C8_A16] = { 6, 128 },
310 [I915_OA_FORMAT_C4_B8] = { 7, 64 },
313 static const struct i915_oa_format gen8_plus_oa_formats[I915_OA_FORMAT_MAX] = {
314 [I915_OA_FORMAT_A12] = { 0, 64 },
315 [I915_OA_FORMAT_A12_B8_C8] = { 2, 128 },
316 [I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 },
317 [I915_OA_FORMAT_C4_B8] = { 7, 64 },
320 static const struct i915_oa_format gen12_oa_formats[I915_OA_FORMAT_MAX] = {
321 [I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 },
324 #define SAMPLE_OA_REPORT (1<<0)
327 * struct perf_open_properties - for validated properties given to open a stream
328 * @sample_flags: `DRM_I915_PERF_PROP_SAMPLE_*` properties are tracked as flags
329 * @single_context: Whether a single or all gpu contexts should be monitored
330 * @hold_preemption: Whether the preemption is disabled for the filtered
331 * context
332 * @ctx_handle: A gem ctx handle for use with @single_context
333 * @metrics_set: An ID for an OA unit metric set advertised via sysfs
334 * @oa_format: An OA unit HW report format
335 * @oa_periodic: Whether to enable periodic OA unit sampling
336 * @oa_period_exponent: The OA unit sampling period is derived from this
337 * @engine: The engine (typically rcs0) being monitored by the OA unit
338 * @has_sseu: Whether @sseu was specified by userspace
339 * @sseu: internal SSEU configuration computed either from the userspace
340 * specified configuration in the opening parameters or a default value
341 * (see get_default_sseu_config())
342 * @poll_oa_period: The period in nanoseconds at which the CPU will check for OA
343 * data availability
345 * As read_properties_unlocked() enumerates and validates the properties given
346 * to open a stream of metrics the configuration is built up in the structure
347 * which starts out zero initialized.
349 struct perf_open_properties {
350 u32 sample_flags;
352 u64 single_context:1;
353 u64 hold_preemption:1;
354 u64 ctx_handle;
356 /* OA sampling state */
357 int metrics_set;
358 int oa_format;
359 bool oa_periodic;
360 int oa_period_exponent;
362 struct intel_engine_cs *engine;
364 bool has_sseu;
365 struct intel_sseu sseu;
367 u64 poll_oa_period;
370 struct i915_oa_config_bo {
371 struct llist_node node;
373 struct i915_oa_config *oa_config;
374 struct i915_vma *vma;
377 static struct ctl_table_header *sysctl_header;
379 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer);
381 void i915_oa_config_release(struct kref *ref)
383 struct i915_oa_config *oa_config =
384 container_of(ref, typeof(*oa_config), ref);
386 kfree(oa_config->flex_regs);
387 kfree(oa_config->b_counter_regs);
388 kfree(oa_config->mux_regs);
390 kfree_rcu(oa_config, rcu);
393 struct i915_oa_config *
394 i915_perf_get_oa_config(struct i915_perf *perf, int metrics_set)
396 struct i915_oa_config *oa_config;
398 rcu_read_lock();
399 oa_config = idr_find(&perf->metrics_idr, metrics_set);
400 if (oa_config)
401 oa_config = i915_oa_config_get(oa_config);
402 rcu_read_unlock();
404 return oa_config;
407 static void free_oa_config_bo(struct i915_oa_config_bo *oa_bo)
409 i915_oa_config_put(oa_bo->oa_config);
410 i915_vma_put(oa_bo->vma);
411 kfree(oa_bo);
414 static u32 gen12_oa_hw_tail_read(struct i915_perf_stream *stream)
416 struct intel_uncore *uncore = stream->uncore;
418 return intel_uncore_read(uncore, GEN12_OAG_OATAILPTR) &
419 GEN12_OAG_OATAILPTR_MASK;
422 static u32 gen8_oa_hw_tail_read(struct i915_perf_stream *stream)
424 struct intel_uncore *uncore = stream->uncore;
426 return intel_uncore_read(uncore, GEN8_OATAILPTR) & GEN8_OATAILPTR_MASK;
429 static u32 gen7_oa_hw_tail_read(struct i915_perf_stream *stream)
431 struct intel_uncore *uncore = stream->uncore;
432 u32 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
434 return oastatus1 & GEN7_OASTATUS1_TAIL_MASK;
438 * oa_buffer_check_unlocked - check for data and update tail ptr state
439 * @stream: i915 stream instance
441 * This is either called via fops (for blocking reads in user ctx) or the poll
442 * check hrtimer (atomic ctx) to check the OA buffer tail pointer and check
443 * if there is data available for userspace to read.
445 * This function is central to providing a workaround for the OA unit tail
446 * pointer having a race with respect to what data is visible to the CPU.
447 * It is responsible for reading tail pointers from the hardware and giving
448 * the pointers time to 'age' before they are made available for reading.
449 * (See description of OA_TAIL_MARGIN_NSEC above for further details.)
451 * Besides returning true when there is data available to read() this function
452 * also updates the tail, aging_tail and aging_timestamp in the oa_buffer
453 * object.
455 * Note: It's safe to read OA config state here unlocked, assuming that this is
456 * only called while the stream is enabled, while the global OA configuration
457 * can't be modified.
459 * Returns: %true if the OA buffer contains data, else %false
461 static bool oa_buffer_check_unlocked(struct i915_perf_stream *stream)
463 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
464 int report_size = stream->oa_buffer.format_size;
465 unsigned long flags;
466 bool pollin;
467 u32 hw_tail;
468 u64 now;
470 /* We have to consider the (unlikely) possibility that read() errors
471 * could result in an OA buffer reset which might reset the head and
472 * tail state.
474 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
476 hw_tail = stream->perf->ops.oa_hw_tail_read(stream);
478 /* The tail pointer increases in 64 byte increments,
479 * not in report_size steps...
481 hw_tail &= ~(report_size - 1);
483 now = ktime_get_mono_fast_ns();
485 if (hw_tail == stream->oa_buffer.aging_tail &&
486 (now - stream->oa_buffer.aging_timestamp) > OA_TAIL_MARGIN_NSEC) {
487 /* If the HW tail hasn't move since the last check and the HW
488 * tail has been aging for long enough, declare it the new
489 * tail.
491 stream->oa_buffer.tail = stream->oa_buffer.aging_tail;
492 } else {
493 u32 head, tail, aged_tail;
495 /* NB: The head we observe here might effectively be a little
496 * out of date. If a read() is in progress, the head could be
497 * anywhere between this head and stream->oa_buffer.tail.
499 head = stream->oa_buffer.head - gtt_offset;
500 aged_tail = stream->oa_buffer.tail - gtt_offset;
502 hw_tail -= gtt_offset;
503 tail = hw_tail;
505 /* Walk the stream backward until we find a report with dword 0
506 * & 1 not at 0. Since the circular buffer pointers progress by
507 * increments of 64 bytes and that reports can be up to 256
508 * bytes long, we can't tell whether a report has fully landed
509 * in memory before the first 2 dwords of the following report
510 * have effectively landed.
512 * This is assuming that the writes of the OA unit land in
513 * memory in the order they were written to.
514 * If not : (╯°□°)╯︵ ┻━┻
516 while (OA_TAKEN(tail, aged_tail) >= report_size) {
517 u32 *report32 = (void *)(stream->oa_buffer.vaddr + tail);
519 if (report32[0] != 0 || report32[1] != 0)
520 break;
522 tail = (tail - report_size) & (OA_BUFFER_SIZE - 1);
525 if (OA_TAKEN(hw_tail, tail) > report_size &&
526 __ratelimit(&stream->perf->tail_pointer_race))
527 DRM_NOTE("unlanded report(s) head=0x%x "
528 "tail=0x%x hw_tail=0x%x\n",
529 head, tail, hw_tail);
531 stream->oa_buffer.tail = gtt_offset + tail;
532 stream->oa_buffer.aging_tail = gtt_offset + hw_tail;
533 stream->oa_buffer.aging_timestamp = now;
536 pollin = OA_TAKEN(stream->oa_buffer.tail - gtt_offset,
537 stream->oa_buffer.head - gtt_offset) >= report_size;
539 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
541 return pollin;
545 * append_oa_status - Appends a status record to a userspace read() buffer.
546 * @stream: An i915-perf stream opened for OA metrics
547 * @buf: destination buffer given by userspace
548 * @count: the number of bytes userspace wants to read
549 * @offset: (inout): the current position for writing into @buf
550 * @type: The kind of status to report to userspace
552 * Writes a status record (such as `DRM_I915_PERF_RECORD_OA_REPORT_LOST`)
553 * into the userspace read() buffer.
555 * The @buf @offset will only be updated on success.
557 * Returns: 0 on success, negative error code on failure.
559 static int append_oa_status(struct i915_perf_stream *stream,
560 char __user *buf,
561 size_t count,
562 size_t *offset,
563 enum drm_i915_perf_record_type type)
565 struct drm_i915_perf_record_header header = { type, 0, sizeof(header) };
567 if ((count - *offset) < header.size)
568 return -ENOSPC;
570 if (copy_to_user(buf + *offset, &header, sizeof(header)))
571 return -EFAULT;
573 (*offset) += header.size;
575 return 0;
579 * append_oa_sample - Copies single OA report into userspace read() buffer.
580 * @stream: An i915-perf stream opened for OA metrics
581 * @buf: destination buffer given by userspace
582 * @count: the number of bytes userspace wants to read
583 * @offset: (inout): the current position for writing into @buf
584 * @report: A single OA report to (optionally) include as part of the sample
586 * The contents of a sample are configured through `DRM_I915_PERF_PROP_SAMPLE_*`
587 * properties when opening a stream, tracked as `stream->sample_flags`. This
588 * function copies the requested components of a single sample to the given
589 * read() @buf.
591 * The @buf @offset will only be updated on success.
593 * Returns: 0 on success, negative error code on failure.
595 static int append_oa_sample(struct i915_perf_stream *stream,
596 char __user *buf,
597 size_t count,
598 size_t *offset,
599 const u8 *report)
601 int report_size = stream->oa_buffer.format_size;
602 struct drm_i915_perf_record_header header;
603 u32 sample_flags = stream->sample_flags;
605 header.type = DRM_I915_PERF_RECORD_SAMPLE;
606 header.pad = 0;
607 header.size = stream->sample_size;
609 if ((count - *offset) < header.size)
610 return -ENOSPC;
612 buf += *offset;
613 if (copy_to_user(buf, &header, sizeof(header)))
614 return -EFAULT;
615 buf += sizeof(header);
617 if (sample_flags & SAMPLE_OA_REPORT) {
618 if (copy_to_user(buf, report, report_size))
619 return -EFAULT;
622 (*offset) += header.size;
624 return 0;
628 * gen8_append_oa_reports - Copies all buffered OA reports into
629 * userspace read() buffer.
630 * @stream: An i915-perf stream opened for OA metrics
631 * @buf: destination buffer given by userspace
632 * @count: the number of bytes userspace wants to read
633 * @offset: (inout): the current position for writing into @buf
635 * Notably any error condition resulting in a short read (-%ENOSPC or
636 * -%EFAULT) will be returned even though one or more records may
637 * have been successfully copied. In this case it's up to the caller
638 * to decide if the error should be squashed before returning to
639 * userspace.
641 * Note: reports are consumed from the head, and appended to the
642 * tail, so the tail chases the head?... If you think that's mad
643 * and back-to-front you're not alone, but this follows the
644 * Gen PRM naming convention.
646 * Returns: 0 on success, negative error code on failure.
648 static int gen8_append_oa_reports(struct i915_perf_stream *stream,
649 char __user *buf,
650 size_t count,
651 size_t *offset)
653 struct intel_uncore *uncore = stream->uncore;
654 int report_size = stream->oa_buffer.format_size;
655 u8 *oa_buf_base = stream->oa_buffer.vaddr;
656 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
657 u32 mask = (OA_BUFFER_SIZE - 1);
658 size_t start_offset = *offset;
659 unsigned long flags;
660 u32 head, tail;
661 u32 taken;
662 int ret = 0;
664 if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled))
665 return -EIO;
667 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
669 head = stream->oa_buffer.head;
670 tail = stream->oa_buffer.tail;
672 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
675 * NB: oa_buffer.head/tail include the gtt_offset which we don't want
676 * while indexing relative to oa_buf_base.
678 head -= gtt_offset;
679 tail -= gtt_offset;
682 * An out of bounds or misaligned head or tail pointer implies a driver
683 * bug since we validate + align the tail pointers we read from the
684 * hardware and we are in full control of the head pointer which should
685 * only be incremented by multiples of the report size (notably also
686 * all a power of two).
688 if (drm_WARN_ONCE(&uncore->i915->drm,
689 head > OA_BUFFER_SIZE || head % report_size ||
690 tail > OA_BUFFER_SIZE || tail % report_size,
691 "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
692 head, tail))
693 return -EIO;
696 for (/* none */;
697 (taken = OA_TAKEN(tail, head));
698 head = (head + report_size) & mask) {
699 u8 *report = oa_buf_base + head;
700 u32 *report32 = (void *)report;
701 u32 ctx_id;
702 u32 reason;
705 * All the report sizes factor neatly into the buffer
706 * size so we never expect to see a report split
707 * between the beginning and end of the buffer.
709 * Given the initial alignment check a misalignment
710 * here would imply a driver bug that would result
711 * in an overrun.
713 if (drm_WARN_ON(&uncore->i915->drm,
714 (OA_BUFFER_SIZE - head) < report_size)) {
715 drm_err(&uncore->i915->drm,
716 "Spurious OA head ptr: non-integral report offset\n");
717 break;
721 * The reason field includes flags identifying what
722 * triggered this specific report (mostly timer
723 * triggered or e.g. due to a context switch).
725 * This field is never expected to be zero so we can
726 * check that the report isn't invalid before copying
727 * it to userspace...
729 reason = ((report32[0] >> OAREPORT_REASON_SHIFT) &
730 (IS_GEN(stream->perf->i915, 12) ?
731 OAREPORT_REASON_MASK_EXTENDED :
732 OAREPORT_REASON_MASK));
733 if (reason == 0) {
734 if (__ratelimit(&stream->perf->spurious_report_rs))
735 DRM_NOTE("Skipping spurious, invalid OA report\n");
736 continue;
739 ctx_id = report32[2] & stream->specific_ctx_id_mask;
742 * Squash whatever is in the CTX_ID field if it's marked as
743 * invalid to be sure we avoid false-positive, single-context
744 * filtering below...
746 * Note: that we don't clear the valid_ctx_bit so userspace can
747 * understand that the ID has been squashed by the kernel.
749 if (!(report32[0] & stream->perf->gen8_valid_ctx_bit) &&
750 INTEL_GEN(stream->perf->i915) <= 11)
751 ctx_id = report32[2] = INVALID_CTX_ID;
754 * NB: For Gen 8 the OA unit no longer supports clock gating
755 * off for a specific context and the kernel can't securely
756 * stop the counters from updating as system-wide / global
757 * values.
759 * Automatic reports now include a context ID so reports can be
760 * filtered on the cpu but it's not worth trying to
761 * automatically subtract/hide counter progress for other
762 * contexts while filtering since we can't stop userspace
763 * issuing MI_REPORT_PERF_COUNT commands which would still
764 * provide a side-band view of the real values.
766 * To allow userspace (such as Mesa/GL_INTEL_performance_query)
767 * to normalize counters for a single filtered context then it
768 * needs be forwarded bookend context-switch reports so that it
769 * can track switches in between MI_REPORT_PERF_COUNT commands
770 * and can itself subtract/ignore the progress of counters
771 * associated with other contexts. Note that the hardware
772 * automatically triggers reports when switching to a new
773 * context which are tagged with the ID of the newly active
774 * context. To avoid the complexity (and likely fragility) of
775 * reading ahead while parsing reports to try and minimize
776 * forwarding redundant context switch reports (i.e. between
777 * other, unrelated contexts) we simply elect to forward them
778 * all.
780 * We don't rely solely on the reason field to identify context
781 * switches since it's not-uncommon for periodic samples to
782 * identify a switch before any 'context switch' report.
784 if (!stream->perf->exclusive_stream->ctx ||
785 stream->specific_ctx_id == ctx_id ||
786 stream->oa_buffer.last_ctx_id == stream->specific_ctx_id ||
787 reason & OAREPORT_REASON_CTX_SWITCH) {
790 * While filtering for a single context we avoid
791 * leaking the IDs of other contexts.
793 if (stream->perf->exclusive_stream->ctx &&
794 stream->specific_ctx_id != ctx_id) {
795 report32[2] = INVALID_CTX_ID;
798 ret = append_oa_sample(stream, buf, count, offset,
799 report);
800 if (ret)
801 break;
803 stream->oa_buffer.last_ctx_id = ctx_id;
807 * Clear out the first 2 dword as a mean to detect unlanded
808 * reports.
810 report32[0] = 0;
811 report32[1] = 0;
814 if (start_offset != *offset) {
815 i915_reg_t oaheadptr;
817 oaheadptr = IS_GEN(stream->perf->i915, 12) ?
818 GEN12_OAG_OAHEADPTR : GEN8_OAHEADPTR;
820 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
823 * We removed the gtt_offset for the copy loop above, indexing
824 * relative to oa_buf_base so put back here...
826 head += gtt_offset;
827 intel_uncore_write(uncore, oaheadptr,
828 head & GEN12_OAG_OAHEADPTR_MASK);
829 stream->oa_buffer.head = head;
831 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
834 return ret;
838 * gen8_oa_read - copy status records then buffered OA reports
839 * @stream: An i915-perf stream opened for OA metrics
840 * @buf: destination buffer given by userspace
841 * @count: the number of bytes userspace wants to read
842 * @offset: (inout): the current position for writing into @buf
844 * Checks OA unit status registers and if necessary appends corresponding
845 * status records for userspace (such as for a buffer full condition) and then
846 * initiate appending any buffered OA reports.
848 * Updates @offset according to the number of bytes successfully copied into
849 * the userspace buffer.
851 * NB: some data may be successfully copied to the userspace buffer
852 * even if an error is returned, and this is reflected in the
853 * updated @offset.
855 * Returns: zero on success or a negative error code
857 static int gen8_oa_read(struct i915_perf_stream *stream,
858 char __user *buf,
859 size_t count,
860 size_t *offset)
862 struct intel_uncore *uncore = stream->uncore;
863 u32 oastatus;
864 i915_reg_t oastatus_reg;
865 int ret;
867 if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr))
868 return -EIO;
870 oastatus_reg = IS_GEN(stream->perf->i915, 12) ?
871 GEN12_OAG_OASTATUS : GEN8_OASTATUS;
873 oastatus = intel_uncore_read(uncore, oastatus_reg);
876 * We treat OABUFFER_OVERFLOW as a significant error:
878 * Although theoretically we could handle this more gracefully
879 * sometimes, some Gens don't correctly suppress certain
880 * automatically triggered reports in this condition and so we
881 * have to assume that old reports are now being trampled
882 * over.
884 * Considering how we don't currently give userspace control
885 * over the OA buffer size and always configure a large 16MB
886 * buffer, then a buffer overflow does anyway likely indicate
887 * that something has gone quite badly wrong.
889 if (oastatus & GEN8_OASTATUS_OABUFFER_OVERFLOW) {
890 ret = append_oa_status(stream, buf, count, offset,
891 DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
892 if (ret)
893 return ret;
895 DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n",
896 stream->period_exponent);
898 stream->perf->ops.oa_disable(stream);
899 stream->perf->ops.oa_enable(stream);
902 * Note: .oa_enable() is expected to re-init the oabuffer and
903 * reset GEN8_OASTATUS for us
905 oastatus = intel_uncore_read(uncore, oastatus_reg);
908 if (oastatus & GEN8_OASTATUS_REPORT_LOST) {
909 ret = append_oa_status(stream, buf, count, offset,
910 DRM_I915_PERF_RECORD_OA_REPORT_LOST);
911 if (ret)
912 return ret;
914 intel_uncore_rmw(uncore, oastatus_reg,
915 GEN8_OASTATUS_COUNTER_OVERFLOW |
916 GEN8_OASTATUS_REPORT_LOST,
917 IS_GEN_RANGE(uncore->i915, 8, 11) ?
918 (GEN8_OASTATUS_HEAD_POINTER_WRAP |
919 GEN8_OASTATUS_TAIL_POINTER_WRAP) : 0);
922 return gen8_append_oa_reports(stream, buf, count, offset);
926 * gen7_append_oa_reports - Copies all buffered OA reports into
927 * userspace read() buffer.
928 * @stream: An i915-perf stream opened for OA metrics
929 * @buf: destination buffer given by userspace
930 * @count: the number of bytes userspace wants to read
931 * @offset: (inout): the current position for writing into @buf
933 * Notably any error condition resulting in a short read (-%ENOSPC or
934 * -%EFAULT) will be returned even though one or more records may
935 * have been successfully copied. In this case it's up to the caller
936 * to decide if the error should be squashed before returning to
937 * userspace.
939 * Note: reports are consumed from the head, and appended to the
940 * tail, so the tail chases the head?... If you think that's mad
941 * and back-to-front you're not alone, but this follows the
942 * Gen PRM naming convention.
944 * Returns: 0 on success, negative error code on failure.
946 static int gen7_append_oa_reports(struct i915_perf_stream *stream,
947 char __user *buf,
948 size_t count,
949 size_t *offset)
951 struct intel_uncore *uncore = stream->uncore;
952 int report_size = stream->oa_buffer.format_size;
953 u8 *oa_buf_base = stream->oa_buffer.vaddr;
954 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
955 u32 mask = (OA_BUFFER_SIZE - 1);
956 size_t start_offset = *offset;
957 unsigned long flags;
958 u32 head, tail;
959 u32 taken;
960 int ret = 0;
962 if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled))
963 return -EIO;
965 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
967 head = stream->oa_buffer.head;
968 tail = stream->oa_buffer.tail;
970 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
972 /* NB: oa_buffer.head/tail include the gtt_offset which we don't want
973 * while indexing relative to oa_buf_base.
975 head -= gtt_offset;
976 tail -= gtt_offset;
978 /* An out of bounds or misaligned head or tail pointer implies a driver
979 * bug since we validate + align the tail pointers we read from the
980 * hardware and we are in full control of the head pointer which should
981 * only be incremented by multiples of the report size (notably also
982 * all a power of two).
984 if (drm_WARN_ONCE(&uncore->i915->drm,
985 head > OA_BUFFER_SIZE || head % report_size ||
986 tail > OA_BUFFER_SIZE || tail % report_size,
987 "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
988 head, tail))
989 return -EIO;
992 for (/* none */;
993 (taken = OA_TAKEN(tail, head));
994 head = (head + report_size) & mask) {
995 u8 *report = oa_buf_base + head;
996 u32 *report32 = (void *)report;
998 /* All the report sizes factor neatly into the buffer
999 * size so we never expect to see a report split
1000 * between the beginning and end of the buffer.
1002 * Given the initial alignment check a misalignment
1003 * here would imply a driver bug that would result
1004 * in an overrun.
1006 if (drm_WARN_ON(&uncore->i915->drm,
1007 (OA_BUFFER_SIZE - head) < report_size)) {
1008 drm_err(&uncore->i915->drm,
1009 "Spurious OA head ptr: non-integral report offset\n");
1010 break;
1013 /* The report-ID field for periodic samples includes
1014 * some undocumented flags related to what triggered
1015 * the report and is never expected to be zero so we
1016 * can check that the report isn't invalid before
1017 * copying it to userspace...
1019 if (report32[0] == 0) {
1020 if (__ratelimit(&stream->perf->spurious_report_rs))
1021 DRM_NOTE("Skipping spurious, invalid OA report\n");
1022 continue;
1025 ret = append_oa_sample(stream, buf, count, offset, report);
1026 if (ret)
1027 break;
1029 /* Clear out the first 2 dwords as a mean to detect unlanded
1030 * reports.
1032 report32[0] = 0;
1033 report32[1] = 0;
1036 if (start_offset != *offset) {
1037 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1039 /* We removed the gtt_offset for the copy loop above, indexing
1040 * relative to oa_buf_base so put back here...
1042 head += gtt_offset;
1044 intel_uncore_write(uncore, GEN7_OASTATUS2,
1045 (head & GEN7_OASTATUS2_HEAD_MASK) |
1046 GEN7_OASTATUS2_MEM_SELECT_GGTT);
1047 stream->oa_buffer.head = head;
1049 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1052 return ret;
1056 * gen7_oa_read - copy status records then buffered OA reports
1057 * @stream: An i915-perf stream opened for OA metrics
1058 * @buf: destination buffer given by userspace
1059 * @count: the number of bytes userspace wants to read
1060 * @offset: (inout): the current position for writing into @buf
1062 * Checks Gen 7 specific OA unit status registers and if necessary appends
1063 * corresponding status records for userspace (such as for a buffer full
1064 * condition) and then initiate appending any buffered OA reports.
1066 * Updates @offset according to the number of bytes successfully copied into
1067 * the userspace buffer.
1069 * Returns: zero on success or a negative error code
1071 static int gen7_oa_read(struct i915_perf_stream *stream,
1072 char __user *buf,
1073 size_t count,
1074 size_t *offset)
1076 struct intel_uncore *uncore = stream->uncore;
1077 u32 oastatus1;
1078 int ret;
1080 if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr))
1081 return -EIO;
1083 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
1085 /* XXX: On Haswell we don't have a safe way to clear oastatus1
1086 * bits while the OA unit is enabled (while the tail pointer
1087 * may be updated asynchronously) so we ignore status bits
1088 * that have already been reported to userspace.
1090 oastatus1 &= ~stream->perf->gen7_latched_oastatus1;
1092 /* We treat OABUFFER_OVERFLOW as a significant error:
1094 * - The status can be interpreted to mean that the buffer is
1095 * currently full (with a higher precedence than OA_TAKEN()
1096 * which will start to report a near-empty buffer after an
1097 * overflow) but it's awkward that we can't clear the status
1098 * on Haswell, so without a reset we won't be able to catch
1099 * the state again.
1101 * - Since it also implies the HW has started overwriting old
1102 * reports it may also affect our sanity checks for invalid
1103 * reports when copying to userspace that assume new reports
1104 * are being written to cleared memory.
1106 * - In the future we may want to introduce a flight recorder
1107 * mode where the driver will automatically maintain a safe
1108 * guard band between head/tail, avoiding this overflow
1109 * condition, but we avoid the added driver complexity for
1110 * now.
1112 if (unlikely(oastatus1 & GEN7_OASTATUS1_OABUFFER_OVERFLOW)) {
1113 ret = append_oa_status(stream, buf, count, offset,
1114 DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
1115 if (ret)
1116 return ret;
1118 DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n",
1119 stream->period_exponent);
1121 stream->perf->ops.oa_disable(stream);
1122 stream->perf->ops.oa_enable(stream);
1124 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
1127 if (unlikely(oastatus1 & GEN7_OASTATUS1_REPORT_LOST)) {
1128 ret = append_oa_status(stream, buf, count, offset,
1129 DRM_I915_PERF_RECORD_OA_REPORT_LOST);
1130 if (ret)
1131 return ret;
1132 stream->perf->gen7_latched_oastatus1 |=
1133 GEN7_OASTATUS1_REPORT_LOST;
1136 return gen7_append_oa_reports(stream, buf, count, offset);
1140 * i915_oa_wait_unlocked - handles blocking IO until OA data available
1141 * @stream: An i915-perf stream opened for OA metrics
1143 * Called when userspace tries to read() from a blocking stream FD opened
1144 * for OA metrics. It waits until the hrtimer callback finds a non-empty
1145 * OA buffer and wakes us.
1147 * Note: it's acceptable to have this return with some false positives
1148 * since any subsequent read handling will return -EAGAIN if there isn't
1149 * really data ready for userspace yet.
1151 * Returns: zero on success or a negative error code
1153 static int i915_oa_wait_unlocked(struct i915_perf_stream *stream)
1155 /* We would wait indefinitely if periodic sampling is not enabled */
1156 if (!stream->periodic)
1157 return -EIO;
1159 return wait_event_interruptible(stream->poll_wq,
1160 oa_buffer_check_unlocked(stream));
1164 * i915_oa_poll_wait - call poll_wait() for an OA stream poll()
1165 * @stream: An i915-perf stream opened for OA metrics
1166 * @file: An i915 perf stream file
1167 * @wait: poll() state table
1169 * For handling userspace polling on an i915 perf stream opened for OA metrics,
1170 * this starts a poll_wait with the wait queue that our hrtimer callback wakes
1171 * when it sees data ready to read in the circular OA buffer.
1173 static void i915_oa_poll_wait(struct i915_perf_stream *stream,
1174 struct file *file,
1175 poll_table *wait)
1177 poll_wait(file, &stream->poll_wq, wait);
1181 * i915_oa_read - just calls through to &i915_oa_ops->read
1182 * @stream: An i915-perf stream opened for OA metrics
1183 * @buf: destination buffer given by userspace
1184 * @count: the number of bytes userspace wants to read
1185 * @offset: (inout): the current position for writing into @buf
1187 * Updates @offset according to the number of bytes successfully copied into
1188 * the userspace buffer.
1190 * Returns: zero on success or a negative error code
1192 static int i915_oa_read(struct i915_perf_stream *stream,
1193 char __user *buf,
1194 size_t count,
1195 size_t *offset)
1197 return stream->perf->ops.read(stream, buf, count, offset);
1200 static struct intel_context *oa_pin_context(struct i915_perf_stream *stream)
1202 struct i915_gem_engines_iter it;
1203 struct i915_gem_context *ctx = stream->ctx;
1204 struct intel_context *ce;
1205 struct i915_gem_ww_ctx ww;
1206 int err = -ENODEV;
1208 for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) {
1209 if (ce->engine != stream->engine) /* first match! */
1210 continue;
1212 err = 0;
1213 break;
1215 i915_gem_context_unlock_engines(ctx);
1217 if (err)
1218 return ERR_PTR(err);
1220 i915_gem_ww_ctx_init(&ww, true);
1221 retry:
1223 * As the ID is the gtt offset of the context's vma we
1224 * pin the vma to ensure the ID remains fixed.
1226 err = intel_context_pin_ww(ce, &ww);
1227 if (err == -EDEADLK) {
1228 err = i915_gem_ww_ctx_backoff(&ww);
1229 if (!err)
1230 goto retry;
1232 i915_gem_ww_ctx_fini(&ww);
1234 if (err)
1235 return ERR_PTR(err);
1237 stream->pinned_ctx = ce;
1238 return stream->pinned_ctx;
1242 * oa_get_render_ctx_id - determine and hold ctx hw id
1243 * @stream: An i915-perf stream opened for OA metrics
1245 * Determine the render context hw id, and ensure it remains fixed for the
1246 * lifetime of the stream. This ensures that we don't have to worry about
1247 * updating the context ID in OACONTROL on the fly.
1249 * Returns: zero on success or a negative error code
1251 static int oa_get_render_ctx_id(struct i915_perf_stream *stream)
1253 struct intel_context *ce;
1255 ce = oa_pin_context(stream);
1256 if (IS_ERR(ce))
1257 return PTR_ERR(ce);
1259 switch (INTEL_GEN(ce->engine->i915)) {
1260 case 7: {
1262 * On Haswell we don't do any post processing of the reports
1263 * and don't need to use the mask.
1265 stream->specific_ctx_id = i915_ggtt_offset(ce->state);
1266 stream->specific_ctx_id_mask = 0;
1267 break;
1270 case 8:
1271 case 9:
1272 case 10:
1273 if (intel_engine_in_execlists_submission_mode(ce->engine)) {
1274 stream->specific_ctx_id_mask =
1275 (1U << GEN8_CTX_ID_WIDTH) - 1;
1276 stream->specific_ctx_id = stream->specific_ctx_id_mask;
1277 } else {
1279 * When using GuC, the context descriptor we write in
1280 * i915 is read by GuC and rewritten before it's
1281 * actually written into the hardware. The LRCA is
1282 * what is put into the context id field of the
1283 * context descriptor by GuC. Because it's aligned to
1284 * a page, the lower 12bits are always at 0 and
1285 * dropped by GuC. They won't be part of the context
1286 * ID in the OA reports, so squash those lower bits.
1288 stream->specific_ctx_id = ce->lrc.lrca >> 12;
1291 * GuC uses the top bit to signal proxy submission, so
1292 * ignore that bit.
1294 stream->specific_ctx_id_mask =
1295 (1U << (GEN8_CTX_ID_WIDTH - 1)) - 1;
1297 break;
1299 case 11:
1300 case 12: {
1301 stream->specific_ctx_id_mask =
1302 ((1U << GEN11_SW_CTX_ID_WIDTH) - 1) << (GEN11_SW_CTX_ID_SHIFT - 32);
1304 * Pick an unused context id
1305 * 0 - BITS_PER_LONG are used by other contexts
1306 * GEN12_MAX_CONTEXT_HW_ID (0x7ff) is used by idle context
1308 stream->specific_ctx_id = (GEN12_MAX_CONTEXT_HW_ID - 1) << (GEN11_SW_CTX_ID_SHIFT - 32);
1309 break;
1312 default:
1313 MISSING_CASE(INTEL_GEN(ce->engine->i915));
1316 ce->tag = stream->specific_ctx_id;
1318 drm_dbg(&stream->perf->i915->drm,
1319 "filtering on ctx_id=0x%x ctx_id_mask=0x%x\n",
1320 stream->specific_ctx_id,
1321 stream->specific_ctx_id_mask);
1323 return 0;
1327 * oa_put_render_ctx_id - counterpart to oa_get_render_ctx_id releases hold
1328 * @stream: An i915-perf stream opened for OA metrics
1330 * In case anything needed doing to ensure the context HW ID would remain valid
1331 * for the lifetime of the stream, then that can be undone here.
1333 static void oa_put_render_ctx_id(struct i915_perf_stream *stream)
1335 struct intel_context *ce;
1337 ce = fetch_and_zero(&stream->pinned_ctx);
1338 if (ce) {
1339 ce->tag = 0; /* recomputed on next submission after parking */
1340 intel_context_unpin(ce);
1343 stream->specific_ctx_id = INVALID_CTX_ID;
1344 stream->specific_ctx_id_mask = 0;
1347 static void
1348 free_oa_buffer(struct i915_perf_stream *stream)
1350 i915_vma_unpin_and_release(&stream->oa_buffer.vma,
1351 I915_VMA_RELEASE_MAP);
1353 stream->oa_buffer.vaddr = NULL;
1356 static void
1357 free_oa_configs(struct i915_perf_stream *stream)
1359 struct i915_oa_config_bo *oa_bo, *tmp;
1361 i915_oa_config_put(stream->oa_config);
1362 llist_for_each_entry_safe(oa_bo, tmp, stream->oa_config_bos.first, node)
1363 free_oa_config_bo(oa_bo);
1366 static void
1367 free_noa_wait(struct i915_perf_stream *stream)
1369 i915_vma_unpin_and_release(&stream->noa_wait, 0);
1372 static void i915_oa_stream_destroy(struct i915_perf_stream *stream)
1374 struct i915_perf *perf = stream->perf;
1376 BUG_ON(stream != perf->exclusive_stream);
1379 * Unset exclusive_stream first, it will be checked while disabling
1380 * the metric set on gen8+.
1382 * See i915_oa_init_reg_state() and lrc_configure_all_contexts()
1384 WRITE_ONCE(perf->exclusive_stream, NULL);
1385 perf->ops.disable_metric_set(stream);
1387 free_oa_buffer(stream);
1389 intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL);
1390 intel_engine_pm_put(stream->engine);
1392 if (stream->ctx)
1393 oa_put_render_ctx_id(stream);
1395 free_oa_configs(stream);
1396 free_noa_wait(stream);
1398 if (perf->spurious_report_rs.missed) {
1399 DRM_NOTE("%d spurious OA report notices suppressed due to ratelimiting\n",
1400 perf->spurious_report_rs.missed);
1404 static void gen7_init_oa_buffer(struct i915_perf_stream *stream)
1406 struct intel_uncore *uncore = stream->uncore;
1407 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1408 unsigned long flags;
1410 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1412 /* Pre-DevBDW: OABUFFER must be set with counters off,
1413 * before OASTATUS1, but after OASTATUS2
1415 intel_uncore_write(uncore, GEN7_OASTATUS2, /* head */
1416 gtt_offset | GEN7_OASTATUS2_MEM_SELECT_GGTT);
1417 stream->oa_buffer.head = gtt_offset;
1419 intel_uncore_write(uncore, GEN7_OABUFFER, gtt_offset);
1421 intel_uncore_write(uncore, GEN7_OASTATUS1, /* tail */
1422 gtt_offset | OABUFFER_SIZE_16M);
1424 /* Mark that we need updated tail pointers to read from... */
1425 stream->oa_buffer.aging_tail = INVALID_TAIL_PTR;
1426 stream->oa_buffer.tail = gtt_offset;
1428 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1430 /* On Haswell we have to track which OASTATUS1 flags we've
1431 * already seen since they can't be cleared while periodic
1432 * sampling is enabled.
1434 stream->perf->gen7_latched_oastatus1 = 0;
1436 /* NB: although the OA buffer will initially be allocated
1437 * zeroed via shmfs (and so this memset is redundant when
1438 * first allocating), we may re-init the OA buffer, either
1439 * when re-enabling a stream or in error/reset paths.
1441 * The reason we clear the buffer for each re-init is for the
1442 * sanity check in gen7_append_oa_reports() that looks at the
1443 * report-id field to make sure it's non-zero which relies on
1444 * the assumption that new reports are being written to zeroed
1445 * memory...
1447 memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1450 static void gen8_init_oa_buffer(struct i915_perf_stream *stream)
1452 struct intel_uncore *uncore = stream->uncore;
1453 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1454 unsigned long flags;
1456 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1458 intel_uncore_write(uncore, GEN8_OASTATUS, 0);
1459 intel_uncore_write(uncore, GEN8_OAHEADPTR, gtt_offset);
1460 stream->oa_buffer.head = gtt_offset;
1462 intel_uncore_write(uncore, GEN8_OABUFFER_UDW, 0);
1465 * PRM says:
1467 * "This MMIO must be set before the OATAILPTR
1468 * register and after the OAHEADPTR register. This is
1469 * to enable proper functionality of the overflow
1470 * bit."
1472 intel_uncore_write(uncore, GEN8_OABUFFER, gtt_offset |
1473 OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT);
1474 intel_uncore_write(uncore, GEN8_OATAILPTR, gtt_offset & GEN8_OATAILPTR_MASK);
1476 /* Mark that we need updated tail pointers to read from... */
1477 stream->oa_buffer.aging_tail = INVALID_TAIL_PTR;
1478 stream->oa_buffer.tail = gtt_offset;
1481 * Reset state used to recognise context switches, affecting which
1482 * reports we will forward to userspace while filtering for a single
1483 * context.
1485 stream->oa_buffer.last_ctx_id = INVALID_CTX_ID;
1487 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1490 * NB: although the OA buffer will initially be allocated
1491 * zeroed via shmfs (and so this memset is redundant when
1492 * first allocating), we may re-init the OA buffer, either
1493 * when re-enabling a stream or in error/reset paths.
1495 * The reason we clear the buffer for each re-init is for the
1496 * sanity check in gen8_append_oa_reports() that looks at the
1497 * reason field to make sure it's non-zero which relies on
1498 * the assumption that new reports are being written to zeroed
1499 * memory...
1501 memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1504 static void gen12_init_oa_buffer(struct i915_perf_stream *stream)
1506 struct intel_uncore *uncore = stream->uncore;
1507 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1508 unsigned long flags;
1510 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1512 intel_uncore_write(uncore, GEN12_OAG_OASTATUS, 0);
1513 intel_uncore_write(uncore, GEN12_OAG_OAHEADPTR,
1514 gtt_offset & GEN12_OAG_OAHEADPTR_MASK);
1515 stream->oa_buffer.head = gtt_offset;
1518 * PRM says:
1520 * "This MMIO must be set before the OATAILPTR
1521 * register and after the OAHEADPTR register. This is
1522 * to enable proper functionality of the overflow
1523 * bit."
1525 intel_uncore_write(uncore, GEN12_OAG_OABUFFER, gtt_offset |
1526 OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT);
1527 intel_uncore_write(uncore, GEN12_OAG_OATAILPTR,
1528 gtt_offset & GEN12_OAG_OATAILPTR_MASK);
1530 /* Mark that we need updated tail pointers to read from... */
1531 stream->oa_buffer.aging_tail = INVALID_TAIL_PTR;
1532 stream->oa_buffer.tail = gtt_offset;
1535 * Reset state used to recognise context switches, affecting which
1536 * reports we will forward to userspace while filtering for a single
1537 * context.
1539 stream->oa_buffer.last_ctx_id = INVALID_CTX_ID;
1541 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1544 * NB: although the OA buffer will initially be allocated
1545 * zeroed via shmfs (and so this memset is redundant when
1546 * first allocating), we may re-init the OA buffer, either
1547 * when re-enabling a stream or in error/reset paths.
1549 * The reason we clear the buffer for each re-init is for the
1550 * sanity check in gen8_append_oa_reports() that looks at the
1551 * reason field to make sure it's non-zero which relies on
1552 * the assumption that new reports are being written to zeroed
1553 * memory...
1555 memset(stream->oa_buffer.vaddr, 0,
1556 stream->oa_buffer.vma->size);
1559 static int alloc_oa_buffer(struct i915_perf_stream *stream)
1561 struct drm_i915_private *i915 = stream->perf->i915;
1562 struct drm_i915_gem_object *bo;
1563 struct i915_vma *vma;
1564 int ret;
1566 if (drm_WARN_ON(&i915->drm, stream->oa_buffer.vma))
1567 return -ENODEV;
1569 BUILD_BUG_ON_NOT_POWER_OF_2(OA_BUFFER_SIZE);
1570 BUILD_BUG_ON(OA_BUFFER_SIZE < SZ_128K || OA_BUFFER_SIZE > SZ_16M);
1572 bo = i915_gem_object_create_shmem(stream->perf->i915, OA_BUFFER_SIZE);
1573 if (IS_ERR(bo)) {
1574 drm_err(&i915->drm, "Failed to allocate OA buffer\n");
1575 return PTR_ERR(bo);
1578 i915_gem_object_set_cache_coherency(bo, I915_CACHE_LLC);
1580 /* PreHSW required 512K alignment, HSW requires 16M */
1581 vma = i915_gem_object_ggtt_pin(bo, NULL, 0, SZ_16M, 0);
1582 if (IS_ERR(vma)) {
1583 ret = PTR_ERR(vma);
1584 goto err_unref;
1586 stream->oa_buffer.vma = vma;
1588 stream->oa_buffer.vaddr =
1589 i915_gem_object_pin_map(bo, I915_MAP_WB);
1590 if (IS_ERR(stream->oa_buffer.vaddr)) {
1591 ret = PTR_ERR(stream->oa_buffer.vaddr);
1592 goto err_unpin;
1595 return 0;
1597 err_unpin:
1598 __i915_vma_unpin(vma);
1600 err_unref:
1601 i915_gem_object_put(bo);
1603 stream->oa_buffer.vaddr = NULL;
1604 stream->oa_buffer.vma = NULL;
1606 return ret;
1609 static u32 *save_restore_register(struct i915_perf_stream *stream, u32 *cs,
1610 bool save, i915_reg_t reg, u32 offset,
1611 u32 dword_count)
1613 u32 cmd;
1614 u32 d;
1616 cmd = save ? MI_STORE_REGISTER_MEM : MI_LOAD_REGISTER_MEM;
1617 cmd |= MI_SRM_LRM_GLOBAL_GTT;
1618 if (INTEL_GEN(stream->perf->i915) >= 8)
1619 cmd++;
1621 for (d = 0; d < dword_count; d++) {
1622 *cs++ = cmd;
1623 *cs++ = i915_mmio_reg_offset(reg) + 4 * d;
1624 *cs++ = intel_gt_scratch_offset(stream->engine->gt,
1625 offset) + 4 * d;
1626 *cs++ = 0;
1629 return cs;
1632 static int alloc_noa_wait(struct i915_perf_stream *stream)
1634 struct drm_i915_private *i915 = stream->perf->i915;
1635 struct drm_i915_gem_object *bo;
1636 struct i915_vma *vma;
1637 const u64 delay_ticks = 0xffffffffffffffff -
1638 i915_cs_timestamp_ns_to_ticks(i915, atomic64_read(&stream->perf->noa_programming_delay));
1639 const u32 base = stream->engine->mmio_base;
1640 #define CS_GPR(x) GEN8_RING_CS_GPR(base, x)
1641 u32 *batch, *ts0, *cs, *jump;
1642 int ret, i;
1643 enum {
1644 START_TS,
1645 NOW_TS,
1646 DELTA_TS,
1647 JUMP_PREDICATE,
1648 DELTA_TARGET,
1649 N_CS_GPR
1652 bo = i915_gem_object_create_internal(i915, 4096);
1653 if (IS_ERR(bo)) {
1654 drm_err(&i915->drm,
1655 "Failed to allocate NOA wait batchbuffer\n");
1656 return PTR_ERR(bo);
1660 * We pin in GGTT because we jump into this buffer now because
1661 * multiple OA config BOs will have a jump to this address and it
1662 * needs to be fixed during the lifetime of the i915/perf stream.
1664 vma = i915_gem_object_ggtt_pin(bo, NULL, 0, 0, PIN_HIGH);
1665 if (IS_ERR(vma)) {
1666 ret = PTR_ERR(vma);
1667 goto err_unref;
1670 batch = cs = i915_gem_object_pin_map(bo, I915_MAP_WB);
1671 if (IS_ERR(batch)) {
1672 ret = PTR_ERR(batch);
1673 goto err_unpin;
1676 /* Save registers. */
1677 for (i = 0; i < N_CS_GPR; i++)
1678 cs = save_restore_register(
1679 stream, cs, true /* save */, CS_GPR(i),
1680 INTEL_GT_SCRATCH_FIELD_PERF_CS_GPR + 8 * i, 2);
1681 cs = save_restore_register(
1682 stream, cs, true /* save */, MI_PREDICATE_RESULT_1,
1683 INTEL_GT_SCRATCH_FIELD_PERF_PREDICATE_RESULT_1, 1);
1685 /* First timestamp snapshot location. */
1686 ts0 = cs;
1689 * Initial snapshot of the timestamp register to implement the wait.
1690 * We work with 32b values, so clear out the top 32b bits of the
1691 * register because the ALU works 64bits.
1693 *cs++ = MI_LOAD_REGISTER_IMM(1);
1694 *cs++ = i915_mmio_reg_offset(CS_GPR(START_TS)) + 4;
1695 *cs++ = 0;
1696 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
1697 *cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base));
1698 *cs++ = i915_mmio_reg_offset(CS_GPR(START_TS));
1701 * This is the location we're going to jump back into until the
1702 * required amount of time has passed.
1704 jump = cs;
1707 * Take another snapshot of the timestamp register. Take care to clear
1708 * up the top 32bits of CS_GPR(1) as we're using it for other
1709 * operations below.
1711 *cs++ = MI_LOAD_REGISTER_IMM(1);
1712 *cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS)) + 4;
1713 *cs++ = 0;
1714 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
1715 *cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base));
1716 *cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS));
1719 * Do a diff between the 2 timestamps and store the result back into
1720 * CS_GPR(1).
1722 *cs++ = MI_MATH(5);
1723 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(NOW_TS));
1724 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(START_TS));
1725 *cs++ = MI_MATH_SUB;
1726 *cs++ = MI_MATH_STORE(MI_MATH_REG(DELTA_TS), MI_MATH_REG_ACCU);
1727 *cs++ = MI_MATH_STORE(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF);
1730 * Transfer the carry flag (set to 1 if ts1 < ts0, meaning the
1731 * timestamp have rolled over the 32bits) into the predicate register
1732 * to be used for the predicated jump.
1734 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
1735 *cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE));
1736 *cs++ = i915_mmio_reg_offset(MI_PREDICATE_RESULT_1);
1738 /* Restart from the beginning if we had timestamps roll over. */
1739 *cs++ = (INTEL_GEN(i915) < 8 ?
1740 MI_BATCH_BUFFER_START :
1741 MI_BATCH_BUFFER_START_GEN8) |
1742 MI_BATCH_PREDICATE;
1743 *cs++ = i915_ggtt_offset(vma) + (ts0 - batch) * 4;
1744 *cs++ = 0;
1747 * Now add the diff between to previous timestamps and add it to :
1748 * (((1 * << 64) - 1) - delay_ns)
1750 * When the Carry Flag contains 1 this means the elapsed time is
1751 * longer than the expected delay, and we can exit the wait loop.
1753 *cs++ = MI_LOAD_REGISTER_IMM(2);
1754 *cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET));
1755 *cs++ = lower_32_bits(delay_ticks);
1756 *cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET)) + 4;
1757 *cs++ = upper_32_bits(delay_ticks);
1759 *cs++ = MI_MATH(4);
1760 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(DELTA_TS));
1761 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(DELTA_TARGET));
1762 *cs++ = MI_MATH_ADD;
1763 *cs++ = MI_MATH_STOREINV(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF);
1765 *cs++ = MI_ARB_CHECK;
1768 * Transfer the result into the predicate register to be used for the
1769 * predicated jump.
1771 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
1772 *cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE));
1773 *cs++ = i915_mmio_reg_offset(MI_PREDICATE_RESULT_1);
1775 /* Predicate the jump. */
1776 *cs++ = (INTEL_GEN(i915) < 8 ?
1777 MI_BATCH_BUFFER_START :
1778 MI_BATCH_BUFFER_START_GEN8) |
1779 MI_BATCH_PREDICATE;
1780 *cs++ = i915_ggtt_offset(vma) + (jump - batch) * 4;
1781 *cs++ = 0;
1783 /* Restore registers. */
1784 for (i = 0; i < N_CS_GPR; i++)
1785 cs = save_restore_register(
1786 stream, cs, false /* restore */, CS_GPR(i),
1787 INTEL_GT_SCRATCH_FIELD_PERF_CS_GPR + 8 * i, 2);
1788 cs = save_restore_register(
1789 stream, cs, false /* restore */, MI_PREDICATE_RESULT_1,
1790 INTEL_GT_SCRATCH_FIELD_PERF_PREDICATE_RESULT_1, 1);
1792 /* And return to the ring. */
1793 *cs++ = MI_BATCH_BUFFER_END;
1795 GEM_BUG_ON(cs - batch > PAGE_SIZE / sizeof(*batch));
1797 i915_gem_object_flush_map(bo);
1798 __i915_gem_object_release_map(bo);
1800 stream->noa_wait = vma;
1801 return 0;
1803 err_unpin:
1804 i915_vma_unpin_and_release(&vma, 0);
1805 err_unref:
1806 i915_gem_object_put(bo);
1807 return ret;
1810 static u32 *write_cs_mi_lri(u32 *cs,
1811 const struct i915_oa_reg *reg_data,
1812 u32 n_regs)
1814 u32 i;
1816 for (i = 0; i < n_regs; i++) {
1817 if ((i % MI_LOAD_REGISTER_IMM_MAX_REGS) == 0) {
1818 u32 n_lri = min_t(u32,
1819 n_regs - i,
1820 MI_LOAD_REGISTER_IMM_MAX_REGS);
1822 *cs++ = MI_LOAD_REGISTER_IMM(n_lri);
1824 *cs++ = i915_mmio_reg_offset(reg_data[i].addr);
1825 *cs++ = reg_data[i].value;
1828 return cs;
1831 static int num_lri_dwords(int num_regs)
1833 int count = 0;
1835 if (num_regs > 0) {
1836 count += DIV_ROUND_UP(num_regs, MI_LOAD_REGISTER_IMM_MAX_REGS);
1837 count += num_regs * 2;
1840 return count;
1843 static struct i915_oa_config_bo *
1844 alloc_oa_config_buffer(struct i915_perf_stream *stream,
1845 struct i915_oa_config *oa_config)
1847 struct drm_i915_gem_object *obj;
1848 struct i915_oa_config_bo *oa_bo;
1849 size_t config_length = 0;
1850 u32 *cs;
1851 int err;
1853 oa_bo = kzalloc(sizeof(*oa_bo), GFP_KERNEL);
1854 if (!oa_bo)
1855 return ERR_PTR(-ENOMEM);
1857 config_length += num_lri_dwords(oa_config->mux_regs_len);
1858 config_length += num_lri_dwords(oa_config->b_counter_regs_len);
1859 config_length += num_lri_dwords(oa_config->flex_regs_len);
1860 config_length += 3; /* MI_BATCH_BUFFER_START */
1861 config_length = ALIGN(sizeof(u32) * config_length, I915_GTT_PAGE_SIZE);
1863 obj = i915_gem_object_create_shmem(stream->perf->i915, config_length);
1864 if (IS_ERR(obj)) {
1865 err = PTR_ERR(obj);
1866 goto err_free;
1869 cs = i915_gem_object_pin_map(obj, I915_MAP_WB);
1870 if (IS_ERR(cs)) {
1871 err = PTR_ERR(cs);
1872 goto err_oa_bo;
1875 cs = write_cs_mi_lri(cs,
1876 oa_config->mux_regs,
1877 oa_config->mux_regs_len);
1878 cs = write_cs_mi_lri(cs,
1879 oa_config->b_counter_regs,
1880 oa_config->b_counter_regs_len);
1881 cs = write_cs_mi_lri(cs,
1882 oa_config->flex_regs,
1883 oa_config->flex_regs_len);
1885 /* Jump into the active wait. */
1886 *cs++ = (INTEL_GEN(stream->perf->i915) < 8 ?
1887 MI_BATCH_BUFFER_START :
1888 MI_BATCH_BUFFER_START_GEN8);
1889 *cs++ = i915_ggtt_offset(stream->noa_wait);
1890 *cs++ = 0;
1892 i915_gem_object_flush_map(obj);
1893 __i915_gem_object_release_map(obj);
1895 oa_bo->vma = i915_vma_instance(obj,
1896 &stream->engine->gt->ggtt->vm,
1897 NULL);
1898 if (IS_ERR(oa_bo->vma)) {
1899 err = PTR_ERR(oa_bo->vma);
1900 goto err_oa_bo;
1903 oa_bo->oa_config = i915_oa_config_get(oa_config);
1904 llist_add(&oa_bo->node, &stream->oa_config_bos);
1906 return oa_bo;
1908 err_oa_bo:
1909 i915_gem_object_put(obj);
1910 err_free:
1911 kfree(oa_bo);
1912 return ERR_PTR(err);
1915 static struct i915_vma *
1916 get_oa_vma(struct i915_perf_stream *stream, struct i915_oa_config *oa_config)
1918 struct i915_oa_config_bo *oa_bo;
1921 * Look for the buffer in the already allocated BOs attached
1922 * to the stream.
1924 llist_for_each_entry(oa_bo, stream->oa_config_bos.first, node) {
1925 if (oa_bo->oa_config == oa_config &&
1926 memcmp(oa_bo->oa_config->uuid,
1927 oa_config->uuid,
1928 sizeof(oa_config->uuid)) == 0)
1929 goto out;
1932 oa_bo = alloc_oa_config_buffer(stream, oa_config);
1933 if (IS_ERR(oa_bo))
1934 return ERR_CAST(oa_bo);
1936 out:
1937 return i915_vma_get(oa_bo->vma);
1940 static int
1941 emit_oa_config(struct i915_perf_stream *stream,
1942 struct i915_oa_config *oa_config,
1943 struct intel_context *ce,
1944 struct i915_active *active)
1946 struct i915_request *rq;
1947 struct i915_vma *vma;
1948 struct i915_gem_ww_ctx ww;
1949 int err;
1951 vma = get_oa_vma(stream, oa_config);
1952 if (IS_ERR(vma))
1953 return PTR_ERR(vma);
1955 i915_gem_ww_ctx_init(&ww, true);
1956 retry:
1957 err = i915_gem_object_lock(vma->obj, &ww);
1958 if (err)
1959 goto err;
1961 err = i915_vma_pin_ww(vma, &ww, 0, 0, PIN_GLOBAL | PIN_HIGH);
1962 if (err)
1963 goto err;
1965 intel_engine_pm_get(ce->engine);
1966 rq = i915_request_create(ce);
1967 intel_engine_pm_put(ce->engine);
1968 if (IS_ERR(rq)) {
1969 err = PTR_ERR(rq);
1970 goto err_vma_unpin;
1973 if (!IS_ERR_OR_NULL(active)) {
1974 /* After all individual context modifications */
1975 err = i915_request_await_active(rq, active,
1976 I915_ACTIVE_AWAIT_ACTIVE);
1977 if (err)
1978 goto err_add_request;
1980 err = i915_active_add_request(active, rq);
1981 if (err)
1982 goto err_add_request;
1985 err = i915_request_await_object(rq, vma->obj, 0);
1986 if (!err)
1987 err = i915_vma_move_to_active(vma, rq, 0);
1988 if (err)
1989 goto err_add_request;
1991 err = rq->engine->emit_bb_start(rq,
1992 vma->node.start, 0,
1993 I915_DISPATCH_SECURE);
1994 if (err)
1995 goto err_add_request;
1997 err_add_request:
1998 i915_request_add(rq);
1999 err_vma_unpin:
2000 i915_vma_unpin(vma);
2001 err:
2002 if (err == -EDEADLK) {
2003 err = i915_gem_ww_ctx_backoff(&ww);
2004 if (!err)
2005 goto retry;
2008 i915_gem_ww_ctx_fini(&ww);
2009 i915_vma_put(vma);
2010 return err;
2013 static struct intel_context *oa_context(struct i915_perf_stream *stream)
2015 return stream->pinned_ctx ?: stream->engine->kernel_context;
2018 static int
2019 hsw_enable_metric_set(struct i915_perf_stream *stream,
2020 struct i915_active *active)
2022 struct intel_uncore *uncore = stream->uncore;
2025 * PRM:
2027 * OA unit is using “crclk” for its functionality. When trunk
2028 * level clock gating takes place, OA clock would be gated,
2029 * unable to count the events from non-render clock domain.
2030 * Render clock gating must be disabled when OA is enabled to
2031 * count the events from non-render domain. Unit level clock
2032 * gating for RCS should also be disabled.
2034 intel_uncore_rmw(uncore, GEN7_MISCCPCTL,
2035 GEN7_DOP_CLOCK_GATE_ENABLE, 0);
2036 intel_uncore_rmw(uncore, GEN6_UCGCTL1,
2037 0, GEN6_CSUNIT_CLOCK_GATE_DISABLE);
2039 return emit_oa_config(stream,
2040 stream->oa_config, oa_context(stream),
2041 active);
2044 static void hsw_disable_metric_set(struct i915_perf_stream *stream)
2046 struct intel_uncore *uncore = stream->uncore;
2048 intel_uncore_rmw(uncore, GEN6_UCGCTL1,
2049 GEN6_CSUNIT_CLOCK_GATE_DISABLE, 0);
2050 intel_uncore_rmw(uncore, GEN7_MISCCPCTL,
2051 0, GEN7_DOP_CLOCK_GATE_ENABLE);
2053 intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0);
2056 static u32 oa_config_flex_reg(const struct i915_oa_config *oa_config,
2057 i915_reg_t reg)
2059 u32 mmio = i915_mmio_reg_offset(reg);
2060 int i;
2063 * This arbitrary default will select the 'EU FPU0 Pipeline
2064 * Active' event. In the future it's anticipated that there
2065 * will be an explicit 'No Event' we can select, but not yet...
2067 if (!oa_config)
2068 return 0;
2070 for (i = 0; i < oa_config->flex_regs_len; i++) {
2071 if (i915_mmio_reg_offset(oa_config->flex_regs[i].addr) == mmio)
2072 return oa_config->flex_regs[i].value;
2075 return 0;
2078 * NB: It must always remain pointer safe to run this even if the OA unit
2079 * has been disabled.
2081 * It's fine to put out-of-date values into these per-context registers
2082 * in the case that the OA unit has been disabled.
2084 static void
2085 gen8_update_reg_state_unlocked(const struct intel_context *ce,
2086 const struct i915_perf_stream *stream)
2088 u32 ctx_oactxctrl = stream->perf->ctx_oactxctrl_offset;
2089 u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset;
2090 /* The MMIO offsets for Flex EU registers aren't contiguous */
2091 i915_reg_t flex_regs[] = {
2092 EU_PERF_CNTL0,
2093 EU_PERF_CNTL1,
2094 EU_PERF_CNTL2,
2095 EU_PERF_CNTL3,
2096 EU_PERF_CNTL4,
2097 EU_PERF_CNTL5,
2098 EU_PERF_CNTL6,
2100 u32 *reg_state = ce->lrc_reg_state;
2101 int i;
2103 reg_state[ctx_oactxctrl + 1] =
2104 (stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) |
2105 (stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) |
2106 GEN8_OA_COUNTER_RESUME;
2108 for (i = 0; i < ARRAY_SIZE(flex_regs); i++)
2109 reg_state[ctx_flexeu0 + i * 2 + 1] =
2110 oa_config_flex_reg(stream->oa_config, flex_regs[i]);
2113 struct flex {
2114 i915_reg_t reg;
2115 u32 offset;
2116 u32 value;
2119 static int
2120 gen8_store_flex(struct i915_request *rq,
2121 struct intel_context *ce,
2122 const struct flex *flex, unsigned int count)
2124 u32 offset;
2125 u32 *cs;
2127 cs = intel_ring_begin(rq, 4 * count);
2128 if (IS_ERR(cs))
2129 return PTR_ERR(cs);
2131 offset = i915_ggtt_offset(ce->state) + LRC_STATE_OFFSET;
2132 do {
2133 *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
2134 *cs++ = offset + flex->offset * sizeof(u32);
2135 *cs++ = 0;
2136 *cs++ = flex->value;
2137 } while (flex++, --count);
2139 intel_ring_advance(rq, cs);
2141 return 0;
2144 static int
2145 gen8_load_flex(struct i915_request *rq,
2146 struct intel_context *ce,
2147 const struct flex *flex, unsigned int count)
2149 u32 *cs;
2151 GEM_BUG_ON(!count || count > 63);
2153 cs = intel_ring_begin(rq, 2 * count + 2);
2154 if (IS_ERR(cs))
2155 return PTR_ERR(cs);
2157 *cs++ = MI_LOAD_REGISTER_IMM(count);
2158 do {
2159 *cs++ = i915_mmio_reg_offset(flex->reg);
2160 *cs++ = flex->value;
2161 } while (flex++, --count);
2162 *cs++ = MI_NOOP;
2164 intel_ring_advance(rq, cs);
2166 return 0;
2169 static int gen8_modify_context(struct intel_context *ce,
2170 const struct flex *flex, unsigned int count)
2172 struct i915_request *rq;
2173 int err;
2175 rq = intel_engine_create_kernel_request(ce->engine);
2176 if (IS_ERR(rq))
2177 return PTR_ERR(rq);
2179 /* Serialise with the remote context */
2180 err = intel_context_prepare_remote_request(ce, rq);
2181 if (err == 0)
2182 err = gen8_store_flex(rq, ce, flex, count);
2184 i915_request_add(rq);
2185 return err;
2188 static int
2189 gen8_modify_self(struct intel_context *ce,
2190 const struct flex *flex, unsigned int count,
2191 struct i915_active *active)
2193 struct i915_request *rq;
2194 int err;
2196 intel_engine_pm_get(ce->engine);
2197 rq = i915_request_create(ce);
2198 intel_engine_pm_put(ce->engine);
2199 if (IS_ERR(rq))
2200 return PTR_ERR(rq);
2202 if (!IS_ERR_OR_NULL(active)) {
2203 err = i915_active_add_request(active, rq);
2204 if (err)
2205 goto err_add_request;
2208 err = gen8_load_flex(rq, ce, flex, count);
2209 if (err)
2210 goto err_add_request;
2212 err_add_request:
2213 i915_request_add(rq);
2214 return err;
2217 static int gen8_configure_context(struct i915_gem_context *ctx,
2218 struct flex *flex, unsigned int count)
2220 struct i915_gem_engines_iter it;
2221 struct intel_context *ce;
2222 int err = 0;
2224 for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) {
2225 GEM_BUG_ON(ce == ce->engine->kernel_context);
2227 if (ce->engine->class != RENDER_CLASS)
2228 continue;
2230 /* Otherwise OA settings will be set upon first use */
2231 if (!intel_context_pin_if_active(ce))
2232 continue;
2234 flex->value = intel_sseu_make_rpcs(ce->engine->gt, &ce->sseu);
2235 err = gen8_modify_context(ce, flex, count);
2237 intel_context_unpin(ce);
2238 if (err)
2239 break;
2241 i915_gem_context_unlock_engines(ctx);
2243 return err;
2246 static int gen12_configure_oar_context(struct i915_perf_stream *stream,
2247 struct i915_active *active)
2249 int err;
2250 struct intel_context *ce = stream->pinned_ctx;
2251 u32 format = stream->oa_buffer.format;
2252 struct flex regs_context[] = {
2254 GEN8_OACTXCONTROL,
2255 stream->perf->ctx_oactxctrl_offset + 1,
2256 active ? GEN8_OA_COUNTER_RESUME : 0,
2259 /* Offsets in regs_lri are not used since this configuration is only
2260 * applied using LRI. Initialize the correct offsets for posterity.
2262 #define GEN12_OAR_OACONTROL_OFFSET 0x5B0
2263 struct flex regs_lri[] = {
2265 GEN12_OAR_OACONTROL,
2266 GEN12_OAR_OACONTROL_OFFSET + 1,
2267 (format << GEN12_OAR_OACONTROL_COUNTER_FORMAT_SHIFT) |
2268 (active ? GEN12_OAR_OACONTROL_COUNTER_ENABLE : 0)
2271 RING_CONTEXT_CONTROL(ce->engine->mmio_base),
2272 CTX_CONTEXT_CONTROL,
2273 _MASKED_FIELD(GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE,
2274 active ?
2275 GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE :
2280 /* Modify the context image of pinned context with regs_context*/
2281 err = intel_context_lock_pinned(ce);
2282 if (err)
2283 return err;
2285 err = gen8_modify_context(ce, regs_context, ARRAY_SIZE(regs_context));
2286 intel_context_unlock_pinned(ce);
2287 if (err)
2288 return err;
2290 /* Apply regs_lri using LRI with pinned context */
2291 return gen8_modify_self(ce, regs_lri, ARRAY_SIZE(regs_lri), active);
2295 * Manages updating the per-context aspects of the OA stream
2296 * configuration across all contexts.
2298 * The awkward consideration here is that OACTXCONTROL controls the
2299 * exponent for periodic sampling which is primarily used for system
2300 * wide profiling where we'd like a consistent sampling period even in
2301 * the face of context switches.
2303 * Our approach of updating the register state context (as opposed to
2304 * say using a workaround batch buffer) ensures that the hardware
2305 * won't automatically reload an out-of-date timer exponent even
2306 * transiently before a WA BB could be parsed.
2308 * This function needs to:
2309 * - Ensure the currently running context's per-context OA state is
2310 * updated
2311 * - Ensure that all existing contexts will have the correct per-context
2312 * OA state if they are scheduled for use.
2313 * - Ensure any new contexts will be initialized with the correct
2314 * per-context OA state.
2316 * Note: it's only the RCS/Render context that has any OA state.
2317 * Note: the first flex register passed must always be R_PWR_CLK_STATE
2319 static int
2320 oa_configure_all_contexts(struct i915_perf_stream *stream,
2321 struct flex *regs,
2322 size_t num_regs,
2323 struct i915_active *active)
2325 struct drm_i915_private *i915 = stream->perf->i915;
2326 struct intel_engine_cs *engine;
2327 struct i915_gem_context *ctx, *cn;
2328 int err;
2330 lockdep_assert_held(&stream->perf->lock);
2333 * The OA register config is setup through the context image. This image
2334 * might be written to by the GPU on context switch (in particular on
2335 * lite-restore). This means we can't safely update a context's image,
2336 * if this context is scheduled/submitted to run on the GPU.
2338 * We could emit the OA register config through the batch buffer but
2339 * this might leave small interval of time where the OA unit is
2340 * configured at an invalid sampling period.
2342 * Note that since we emit all requests from a single ring, there
2343 * is still an implicit global barrier here that may cause a high
2344 * priority context to wait for an otherwise independent low priority
2345 * context. Contexts idle at the time of reconfiguration are not
2346 * trapped behind the barrier.
2348 spin_lock(&i915->gem.contexts.lock);
2349 list_for_each_entry_safe(ctx, cn, &i915->gem.contexts.list, link) {
2350 if (!kref_get_unless_zero(&ctx->ref))
2351 continue;
2353 spin_unlock(&i915->gem.contexts.lock);
2355 err = gen8_configure_context(ctx, regs, num_regs);
2356 if (err) {
2357 i915_gem_context_put(ctx);
2358 return err;
2361 spin_lock(&i915->gem.contexts.lock);
2362 list_safe_reset_next(ctx, cn, link);
2363 i915_gem_context_put(ctx);
2365 spin_unlock(&i915->gem.contexts.lock);
2368 * After updating all other contexts, we need to modify ourselves.
2369 * If we don't modify the kernel_context, we do not get events while
2370 * idle.
2372 for_each_uabi_engine(engine, i915) {
2373 struct intel_context *ce = engine->kernel_context;
2375 if (engine->class != RENDER_CLASS)
2376 continue;
2378 regs[0].value = intel_sseu_make_rpcs(engine->gt, &ce->sseu);
2380 err = gen8_modify_self(ce, regs, num_regs, active);
2381 if (err)
2382 return err;
2385 return 0;
2388 static int
2389 gen12_configure_all_contexts(struct i915_perf_stream *stream,
2390 const struct i915_oa_config *oa_config,
2391 struct i915_active *active)
2393 struct flex regs[] = {
2395 GEN8_R_PWR_CLK_STATE,
2396 CTX_R_PWR_CLK_STATE,
2400 return oa_configure_all_contexts(stream,
2401 regs, ARRAY_SIZE(regs),
2402 active);
2405 static int
2406 lrc_configure_all_contexts(struct i915_perf_stream *stream,
2407 const struct i915_oa_config *oa_config,
2408 struct i915_active *active)
2410 /* The MMIO offsets for Flex EU registers aren't contiguous */
2411 const u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset;
2412 #define ctx_flexeuN(N) (ctx_flexeu0 + 2 * (N) + 1)
2413 struct flex regs[] = {
2415 GEN8_R_PWR_CLK_STATE,
2416 CTX_R_PWR_CLK_STATE,
2419 GEN8_OACTXCONTROL,
2420 stream->perf->ctx_oactxctrl_offset + 1,
2422 { EU_PERF_CNTL0, ctx_flexeuN(0) },
2423 { EU_PERF_CNTL1, ctx_flexeuN(1) },
2424 { EU_PERF_CNTL2, ctx_flexeuN(2) },
2425 { EU_PERF_CNTL3, ctx_flexeuN(3) },
2426 { EU_PERF_CNTL4, ctx_flexeuN(4) },
2427 { EU_PERF_CNTL5, ctx_flexeuN(5) },
2428 { EU_PERF_CNTL6, ctx_flexeuN(6) },
2430 #undef ctx_flexeuN
2431 int i;
2433 regs[1].value =
2434 (stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) |
2435 (stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) |
2436 GEN8_OA_COUNTER_RESUME;
2438 for (i = 2; i < ARRAY_SIZE(regs); i++)
2439 regs[i].value = oa_config_flex_reg(oa_config, regs[i].reg);
2441 return oa_configure_all_contexts(stream,
2442 regs, ARRAY_SIZE(regs),
2443 active);
2446 static int
2447 gen8_enable_metric_set(struct i915_perf_stream *stream,
2448 struct i915_active *active)
2450 struct intel_uncore *uncore = stream->uncore;
2451 struct i915_oa_config *oa_config = stream->oa_config;
2452 int ret;
2455 * We disable slice/unslice clock ratio change reports on SKL since
2456 * they are too noisy. The HW generates a lot of redundant reports
2457 * where the ratio hasn't really changed causing a lot of redundant
2458 * work to processes and increasing the chances we'll hit buffer
2459 * overruns.
2461 * Although we don't currently use the 'disable overrun' OABUFFER
2462 * feature it's worth noting that clock ratio reports have to be
2463 * disabled before considering to use that feature since the HW doesn't
2464 * correctly block these reports.
2466 * Currently none of the high-level metrics we have depend on knowing
2467 * this ratio to normalize.
2469 * Note: This register is not power context saved and restored, but
2470 * that's OK considering that we disable RC6 while the OA unit is
2471 * enabled.
2473 * The _INCLUDE_CLK_RATIO bit allows the slice/unslice frequency to
2474 * be read back from automatically triggered reports, as part of the
2475 * RPT_ID field.
2477 if (IS_GEN_RANGE(stream->perf->i915, 9, 11)) {
2478 intel_uncore_write(uncore, GEN8_OA_DEBUG,
2479 _MASKED_BIT_ENABLE(GEN9_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS |
2480 GEN9_OA_DEBUG_INCLUDE_CLK_RATIO));
2484 * Update all contexts prior writing the mux configurations as we need
2485 * to make sure all slices/subslices are ON before writing to NOA
2486 * registers.
2488 ret = lrc_configure_all_contexts(stream, oa_config, active);
2489 if (ret)
2490 return ret;
2492 return emit_oa_config(stream,
2493 stream->oa_config, oa_context(stream),
2494 active);
2497 static u32 oag_report_ctx_switches(const struct i915_perf_stream *stream)
2499 return _MASKED_FIELD(GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS,
2500 (stream->sample_flags & SAMPLE_OA_REPORT) ?
2501 0 : GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS);
2504 static int
2505 gen12_enable_metric_set(struct i915_perf_stream *stream,
2506 struct i915_active *active)
2508 struct intel_uncore *uncore = stream->uncore;
2509 struct i915_oa_config *oa_config = stream->oa_config;
2510 bool periodic = stream->periodic;
2511 u32 period_exponent = stream->period_exponent;
2512 int ret;
2514 intel_uncore_write(uncore, GEN12_OAG_OA_DEBUG,
2515 /* Disable clk ratio reports, like previous Gens. */
2516 _MASKED_BIT_ENABLE(GEN12_OAG_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS |
2517 GEN12_OAG_OA_DEBUG_INCLUDE_CLK_RATIO) |
2519 * If the user didn't require OA reports, instruct
2520 * the hardware not to emit ctx switch reports.
2522 oag_report_ctx_switches(stream));
2524 intel_uncore_write(uncore, GEN12_OAG_OAGLBCTXCTRL, periodic ?
2525 (GEN12_OAG_OAGLBCTXCTRL_COUNTER_RESUME |
2526 GEN12_OAG_OAGLBCTXCTRL_TIMER_ENABLE |
2527 (period_exponent << GEN12_OAG_OAGLBCTXCTRL_TIMER_PERIOD_SHIFT))
2528 : 0);
2531 * Update all contexts prior writing the mux configurations as we need
2532 * to make sure all slices/subslices are ON before writing to NOA
2533 * registers.
2535 ret = gen12_configure_all_contexts(stream, oa_config, active);
2536 if (ret)
2537 return ret;
2540 * For Gen12, performance counters are context
2541 * saved/restored. Only enable it for the context that
2542 * requested this.
2544 if (stream->ctx) {
2545 ret = gen12_configure_oar_context(stream, active);
2546 if (ret)
2547 return ret;
2550 return emit_oa_config(stream,
2551 stream->oa_config, oa_context(stream),
2552 active);
2555 static void gen8_disable_metric_set(struct i915_perf_stream *stream)
2557 struct intel_uncore *uncore = stream->uncore;
2559 /* Reset all contexts' slices/subslices configurations. */
2560 lrc_configure_all_contexts(stream, NULL, NULL);
2562 intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0);
2565 static void gen10_disable_metric_set(struct i915_perf_stream *stream)
2567 struct intel_uncore *uncore = stream->uncore;
2569 /* Reset all contexts' slices/subslices configurations. */
2570 lrc_configure_all_contexts(stream, NULL, NULL);
2572 /* Make sure we disable noa to save power. */
2573 intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0);
2576 static void gen12_disable_metric_set(struct i915_perf_stream *stream)
2578 struct intel_uncore *uncore = stream->uncore;
2580 /* Reset all contexts' slices/subslices configurations. */
2581 gen12_configure_all_contexts(stream, NULL, NULL);
2583 /* disable the context save/restore or OAR counters */
2584 if (stream->ctx)
2585 gen12_configure_oar_context(stream, NULL);
2587 /* Make sure we disable noa to save power. */
2588 intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0);
2591 static void gen7_oa_enable(struct i915_perf_stream *stream)
2593 struct intel_uncore *uncore = stream->uncore;
2594 struct i915_gem_context *ctx = stream->ctx;
2595 u32 ctx_id = stream->specific_ctx_id;
2596 bool periodic = stream->periodic;
2597 u32 period_exponent = stream->period_exponent;
2598 u32 report_format = stream->oa_buffer.format;
2601 * Reset buf pointers so we don't forward reports from before now.
2603 * Think carefully if considering trying to avoid this, since it
2604 * also ensures status flags and the buffer itself are cleared
2605 * in error paths, and we have checks for invalid reports based
2606 * on the assumption that certain fields are written to zeroed
2607 * memory which this helps maintains.
2609 gen7_init_oa_buffer(stream);
2611 intel_uncore_write(uncore, GEN7_OACONTROL,
2612 (ctx_id & GEN7_OACONTROL_CTX_MASK) |
2613 (period_exponent <<
2614 GEN7_OACONTROL_TIMER_PERIOD_SHIFT) |
2615 (periodic ? GEN7_OACONTROL_TIMER_ENABLE : 0) |
2616 (report_format << GEN7_OACONTROL_FORMAT_SHIFT) |
2617 (ctx ? GEN7_OACONTROL_PER_CTX_ENABLE : 0) |
2618 GEN7_OACONTROL_ENABLE);
2621 static void gen8_oa_enable(struct i915_perf_stream *stream)
2623 struct intel_uncore *uncore = stream->uncore;
2624 u32 report_format = stream->oa_buffer.format;
2627 * Reset buf pointers so we don't forward reports from before now.
2629 * Think carefully if considering trying to avoid this, since it
2630 * also ensures status flags and the buffer itself are cleared
2631 * in error paths, and we have checks for invalid reports based
2632 * on the assumption that certain fields are written to zeroed
2633 * memory which this helps maintains.
2635 gen8_init_oa_buffer(stream);
2638 * Note: we don't rely on the hardware to perform single context
2639 * filtering and instead filter on the cpu based on the context-id
2640 * field of reports
2642 intel_uncore_write(uncore, GEN8_OACONTROL,
2643 (report_format << GEN8_OA_REPORT_FORMAT_SHIFT) |
2644 GEN8_OA_COUNTER_ENABLE);
2647 static void gen12_oa_enable(struct i915_perf_stream *stream)
2649 struct intel_uncore *uncore = stream->uncore;
2650 u32 report_format = stream->oa_buffer.format;
2653 * If we don't want OA reports from the OA buffer, then we don't even
2654 * need to program the OAG unit.
2656 if (!(stream->sample_flags & SAMPLE_OA_REPORT))
2657 return;
2659 gen12_init_oa_buffer(stream);
2661 intel_uncore_write(uncore, GEN12_OAG_OACONTROL,
2662 (report_format << GEN12_OAG_OACONTROL_OA_COUNTER_FORMAT_SHIFT) |
2663 GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE);
2667 * i915_oa_stream_enable - handle `I915_PERF_IOCTL_ENABLE` for OA stream
2668 * @stream: An i915 perf stream opened for OA metrics
2670 * [Re]enables hardware periodic sampling according to the period configured
2671 * when opening the stream. This also starts a hrtimer that will periodically
2672 * check for data in the circular OA buffer for notifying userspace (e.g.
2673 * during a read() or poll()).
2675 static void i915_oa_stream_enable(struct i915_perf_stream *stream)
2677 stream->pollin = false;
2679 stream->perf->ops.oa_enable(stream);
2681 if (stream->periodic)
2682 hrtimer_start(&stream->poll_check_timer,
2683 ns_to_ktime(stream->poll_oa_period),
2684 HRTIMER_MODE_REL_PINNED);
2687 static void gen7_oa_disable(struct i915_perf_stream *stream)
2689 struct intel_uncore *uncore = stream->uncore;
2691 intel_uncore_write(uncore, GEN7_OACONTROL, 0);
2692 if (intel_wait_for_register(uncore,
2693 GEN7_OACONTROL, GEN7_OACONTROL_ENABLE, 0,
2694 50))
2695 drm_err(&stream->perf->i915->drm,
2696 "wait for OA to be disabled timed out\n");
2699 static void gen8_oa_disable(struct i915_perf_stream *stream)
2701 struct intel_uncore *uncore = stream->uncore;
2703 intel_uncore_write(uncore, GEN8_OACONTROL, 0);
2704 if (intel_wait_for_register(uncore,
2705 GEN8_OACONTROL, GEN8_OA_COUNTER_ENABLE, 0,
2706 50))
2707 drm_err(&stream->perf->i915->drm,
2708 "wait for OA to be disabled timed out\n");
2711 static void gen12_oa_disable(struct i915_perf_stream *stream)
2713 struct intel_uncore *uncore = stream->uncore;
2715 intel_uncore_write(uncore, GEN12_OAG_OACONTROL, 0);
2716 if (intel_wait_for_register(uncore,
2717 GEN12_OAG_OACONTROL,
2718 GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE, 0,
2719 50))
2720 drm_err(&stream->perf->i915->drm,
2721 "wait for OA to be disabled timed out\n");
2723 intel_uncore_write(uncore, GEN12_OA_TLB_INV_CR, 1);
2724 if (intel_wait_for_register(uncore,
2725 GEN12_OA_TLB_INV_CR,
2726 1, 0,
2727 50))
2728 drm_err(&stream->perf->i915->drm,
2729 "wait for OA tlb invalidate timed out\n");
2733 * i915_oa_stream_disable - handle `I915_PERF_IOCTL_DISABLE` for OA stream
2734 * @stream: An i915 perf stream opened for OA metrics
2736 * Stops the OA unit from periodically writing counter reports into the
2737 * circular OA buffer. This also stops the hrtimer that periodically checks for
2738 * data in the circular OA buffer, for notifying userspace.
2740 static void i915_oa_stream_disable(struct i915_perf_stream *stream)
2742 stream->perf->ops.oa_disable(stream);
2744 if (stream->periodic)
2745 hrtimer_cancel(&stream->poll_check_timer);
2748 static const struct i915_perf_stream_ops i915_oa_stream_ops = {
2749 .destroy = i915_oa_stream_destroy,
2750 .enable = i915_oa_stream_enable,
2751 .disable = i915_oa_stream_disable,
2752 .wait_unlocked = i915_oa_wait_unlocked,
2753 .poll_wait = i915_oa_poll_wait,
2754 .read = i915_oa_read,
2757 static int i915_perf_stream_enable_sync(struct i915_perf_stream *stream)
2759 struct i915_active *active;
2760 int err;
2762 active = i915_active_create();
2763 if (!active)
2764 return -ENOMEM;
2766 err = stream->perf->ops.enable_metric_set(stream, active);
2767 if (err == 0)
2768 __i915_active_wait(active, TASK_UNINTERRUPTIBLE);
2770 i915_active_put(active);
2771 return err;
2774 static void
2775 get_default_sseu_config(struct intel_sseu *out_sseu,
2776 struct intel_engine_cs *engine)
2778 const struct sseu_dev_info *devinfo_sseu = &engine->gt->info.sseu;
2780 *out_sseu = intel_sseu_from_device_info(devinfo_sseu);
2782 if (IS_GEN(engine->i915, 11)) {
2784 * We only need subslice count so it doesn't matter which ones
2785 * we select - just turn off low bits in the amount of half of
2786 * all available subslices per slice.
2788 out_sseu->subslice_mask =
2789 ~(~0 << (hweight8(out_sseu->subslice_mask) / 2));
2790 out_sseu->slice_mask = 0x1;
2794 static int
2795 get_sseu_config(struct intel_sseu *out_sseu,
2796 struct intel_engine_cs *engine,
2797 const struct drm_i915_gem_context_param_sseu *drm_sseu)
2799 if (drm_sseu->engine.engine_class != engine->uabi_class ||
2800 drm_sseu->engine.engine_instance != engine->uabi_instance)
2801 return -EINVAL;
2803 return i915_gem_user_to_context_sseu(engine->gt, drm_sseu, out_sseu);
2807 * i915_oa_stream_init - validate combined props for OA stream and init
2808 * @stream: An i915 perf stream
2809 * @param: The open parameters passed to `DRM_I915_PERF_OPEN`
2810 * @props: The property state that configures stream (individually validated)
2812 * While read_properties_unlocked() validates properties in isolation it
2813 * doesn't ensure that the combination necessarily makes sense.
2815 * At this point it has been determined that userspace wants a stream of
2816 * OA metrics, but still we need to further validate the combined
2817 * properties are OK.
2819 * If the configuration makes sense then we can allocate memory for
2820 * a circular OA buffer and apply the requested metric set configuration.
2822 * Returns: zero on success or a negative error code.
2824 static int i915_oa_stream_init(struct i915_perf_stream *stream,
2825 struct drm_i915_perf_open_param *param,
2826 struct perf_open_properties *props)
2828 struct drm_i915_private *i915 = stream->perf->i915;
2829 struct i915_perf *perf = stream->perf;
2830 int format_size;
2831 int ret;
2833 if (!props->engine) {
2834 DRM_DEBUG("OA engine not specified\n");
2835 return -EINVAL;
2839 * If the sysfs metrics/ directory wasn't registered for some
2840 * reason then don't let userspace try their luck with config
2841 * IDs
2843 if (!perf->metrics_kobj) {
2844 DRM_DEBUG("OA metrics weren't advertised via sysfs\n");
2845 return -EINVAL;
2848 if (!(props->sample_flags & SAMPLE_OA_REPORT) &&
2849 (INTEL_GEN(perf->i915) < 12 || !stream->ctx)) {
2850 DRM_DEBUG("Only OA report sampling supported\n");
2851 return -EINVAL;
2854 if (!perf->ops.enable_metric_set) {
2855 DRM_DEBUG("OA unit not supported\n");
2856 return -ENODEV;
2860 * To avoid the complexity of having to accurately filter
2861 * counter reports and marshal to the appropriate client
2862 * we currently only allow exclusive access
2864 if (perf->exclusive_stream) {
2865 DRM_DEBUG("OA unit already in use\n");
2866 return -EBUSY;
2869 if (!props->oa_format) {
2870 DRM_DEBUG("OA report format not specified\n");
2871 return -EINVAL;
2874 stream->engine = props->engine;
2875 stream->uncore = stream->engine->gt->uncore;
2877 stream->sample_size = sizeof(struct drm_i915_perf_record_header);
2879 format_size = perf->oa_formats[props->oa_format].size;
2881 stream->sample_flags = props->sample_flags;
2882 stream->sample_size += format_size;
2884 stream->oa_buffer.format_size = format_size;
2885 if (drm_WARN_ON(&i915->drm, stream->oa_buffer.format_size == 0))
2886 return -EINVAL;
2888 stream->hold_preemption = props->hold_preemption;
2890 stream->oa_buffer.format =
2891 perf->oa_formats[props->oa_format].format;
2893 stream->periodic = props->oa_periodic;
2894 if (stream->periodic)
2895 stream->period_exponent = props->oa_period_exponent;
2897 if (stream->ctx) {
2898 ret = oa_get_render_ctx_id(stream);
2899 if (ret) {
2900 DRM_DEBUG("Invalid context id to filter with\n");
2901 return ret;
2905 ret = alloc_noa_wait(stream);
2906 if (ret) {
2907 DRM_DEBUG("Unable to allocate NOA wait batch buffer\n");
2908 goto err_noa_wait_alloc;
2911 stream->oa_config = i915_perf_get_oa_config(perf, props->metrics_set);
2912 if (!stream->oa_config) {
2913 DRM_DEBUG("Invalid OA config id=%i\n", props->metrics_set);
2914 ret = -EINVAL;
2915 goto err_config;
2918 /* PRM - observability performance counters:
2920 * OACONTROL, performance counter enable, note:
2922 * "When this bit is set, in order to have coherent counts,
2923 * RC6 power state and trunk clock gating must be disabled.
2924 * This can be achieved by programming MMIO registers as
2925 * 0xA094=0 and 0xA090[31]=1"
2927 * In our case we are expecting that taking pm + FORCEWAKE
2928 * references will effectively disable RC6.
2930 intel_engine_pm_get(stream->engine);
2931 intel_uncore_forcewake_get(stream->uncore, FORCEWAKE_ALL);
2933 ret = alloc_oa_buffer(stream);
2934 if (ret)
2935 goto err_oa_buf_alloc;
2937 stream->ops = &i915_oa_stream_ops;
2939 perf->sseu = props->sseu;
2940 WRITE_ONCE(perf->exclusive_stream, stream);
2942 ret = i915_perf_stream_enable_sync(stream);
2943 if (ret) {
2944 DRM_DEBUG("Unable to enable metric set\n");
2945 goto err_enable;
2948 DRM_DEBUG("opening stream oa config uuid=%s\n",
2949 stream->oa_config->uuid);
2951 hrtimer_init(&stream->poll_check_timer,
2952 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2953 stream->poll_check_timer.function = oa_poll_check_timer_cb;
2954 init_waitqueue_head(&stream->poll_wq);
2955 spin_lock_init(&stream->oa_buffer.ptr_lock);
2957 return 0;
2959 err_enable:
2960 WRITE_ONCE(perf->exclusive_stream, NULL);
2961 perf->ops.disable_metric_set(stream);
2963 free_oa_buffer(stream);
2965 err_oa_buf_alloc:
2966 free_oa_configs(stream);
2968 intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL);
2969 intel_engine_pm_put(stream->engine);
2971 err_config:
2972 free_noa_wait(stream);
2974 err_noa_wait_alloc:
2975 if (stream->ctx)
2976 oa_put_render_ctx_id(stream);
2978 return ret;
2981 void i915_oa_init_reg_state(const struct intel_context *ce,
2982 const struct intel_engine_cs *engine)
2984 struct i915_perf_stream *stream;
2986 if (engine->class != RENDER_CLASS)
2987 return;
2989 /* perf.exclusive_stream serialised by lrc_configure_all_contexts() */
2990 stream = READ_ONCE(engine->i915->perf.exclusive_stream);
2991 if (stream && INTEL_GEN(stream->perf->i915) < 12)
2992 gen8_update_reg_state_unlocked(ce, stream);
2996 * i915_perf_read - handles read() FOP for i915 perf stream FDs
2997 * @file: An i915 perf stream file
2998 * @buf: destination buffer given by userspace
2999 * @count: the number of bytes userspace wants to read
3000 * @ppos: (inout) file seek position (unused)
3002 * The entry point for handling a read() on a stream file descriptor from
3003 * userspace. Most of the work is left to the i915_perf_read_locked() and
3004 * &i915_perf_stream_ops->read but to save having stream implementations (of
3005 * which we might have multiple later) we handle blocking read here.
3007 * We can also consistently treat trying to read from a disabled stream
3008 * as an IO error so implementations can assume the stream is enabled
3009 * while reading.
3011 * Returns: The number of bytes copied or a negative error code on failure.
3013 static ssize_t i915_perf_read(struct file *file,
3014 char __user *buf,
3015 size_t count,
3016 loff_t *ppos)
3018 struct i915_perf_stream *stream = file->private_data;
3019 struct i915_perf *perf = stream->perf;
3020 size_t offset = 0;
3021 int ret;
3023 /* To ensure it's handled consistently we simply treat all reads of a
3024 * disabled stream as an error. In particular it might otherwise lead
3025 * to a deadlock for blocking file descriptors...
3027 if (!stream->enabled)
3028 return -EIO;
3030 if (!(file->f_flags & O_NONBLOCK)) {
3031 /* There's the small chance of false positives from
3032 * stream->ops->wait_unlocked.
3034 * E.g. with single context filtering since we only wait until
3035 * oabuffer has >= 1 report we don't immediately know whether
3036 * any reports really belong to the current context
3038 do {
3039 ret = stream->ops->wait_unlocked(stream);
3040 if (ret)
3041 return ret;
3043 mutex_lock(&perf->lock);
3044 ret = stream->ops->read(stream, buf, count, &offset);
3045 mutex_unlock(&perf->lock);
3046 } while (!offset && !ret);
3047 } else {
3048 mutex_lock(&perf->lock);
3049 ret = stream->ops->read(stream, buf, count, &offset);
3050 mutex_unlock(&perf->lock);
3053 /* We allow the poll checking to sometimes report false positive EPOLLIN
3054 * events where we might actually report EAGAIN on read() if there's
3055 * not really any data available. In this situation though we don't
3056 * want to enter a busy loop between poll() reporting a EPOLLIN event
3057 * and read() returning -EAGAIN. Clearing the oa.pollin state here
3058 * effectively ensures we back off until the next hrtimer callback
3059 * before reporting another EPOLLIN event.
3060 * The exception to this is if ops->read() returned -ENOSPC which means
3061 * that more OA data is available than could fit in the user provided
3062 * buffer. In this case we want the next poll() call to not block.
3064 if (ret != -ENOSPC)
3065 stream->pollin = false;
3067 /* Possible values for ret are 0, -EFAULT, -ENOSPC, -EIO, ... */
3068 return offset ?: (ret ?: -EAGAIN);
3071 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer)
3073 struct i915_perf_stream *stream =
3074 container_of(hrtimer, typeof(*stream), poll_check_timer);
3076 if (oa_buffer_check_unlocked(stream)) {
3077 stream->pollin = true;
3078 wake_up(&stream->poll_wq);
3081 hrtimer_forward_now(hrtimer,
3082 ns_to_ktime(stream->poll_oa_period));
3084 return HRTIMER_RESTART;
3088 * i915_perf_poll_locked - poll_wait() with a suitable wait queue for stream
3089 * @stream: An i915 perf stream
3090 * @file: An i915 perf stream file
3091 * @wait: poll() state table
3093 * For handling userspace polling on an i915 perf stream, this calls through to
3094 * &i915_perf_stream_ops->poll_wait to call poll_wait() with a wait queue that
3095 * will be woken for new stream data.
3097 * Note: The &perf->lock mutex has been taken to serialize
3098 * with any non-file-operation driver hooks.
3100 * Returns: any poll events that are ready without sleeping
3102 static __poll_t i915_perf_poll_locked(struct i915_perf_stream *stream,
3103 struct file *file,
3104 poll_table *wait)
3106 __poll_t events = 0;
3108 stream->ops->poll_wait(stream, file, wait);
3110 /* Note: we don't explicitly check whether there's something to read
3111 * here since this path may be very hot depending on what else
3112 * userspace is polling, or on the timeout in use. We rely solely on
3113 * the hrtimer/oa_poll_check_timer_cb to notify us when there are
3114 * samples to read.
3116 if (stream->pollin)
3117 events |= EPOLLIN;
3119 return events;
3123 * i915_perf_poll - call poll_wait() with a suitable wait queue for stream
3124 * @file: An i915 perf stream file
3125 * @wait: poll() state table
3127 * For handling userspace polling on an i915 perf stream, this ensures
3128 * poll_wait() gets called with a wait queue that will be woken for new stream
3129 * data.
3131 * Note: Implementation deferred to i915_perf_poll_locked()
3133 * Returns: any poll events that are ready without sleeping
3135 static __poll_t i915_perf_poll(struct file *file, poll_table *wait)
3137 struct i915_perf_stream *stream = file->private_data;
3138 struct i915_perf *perf = stream->perf;
3139 __poll_t ret;
3141 mutex_lock(&perf->lock);
3142 ret = i915_perf_poll_locked(stream, file, wait);
3143 mutex_unlock(&perf->lock);
3145 return ret;
3149 * i915_perf_enable_locked - handle `I915_PERF_IOCTL_ENABLE` ioctl
3150 * @stream: A disabled i915 perf stream
3152 * [Re]enables the associated capture of data for this stream.
3154 * If a stream was previously enabled then there's currently no intention
3155 * to provide userspace any guarantee about the preservation of previously
3156 * buffered data.
3158 static void i915_perf_enable_locked(struct i915_perf_stream *stream)
3160 if (stream->enabled)
3161 return;
3163 /* Allow stream->ops->enable() to refer to this */
3164 stream->enabled = true;
3166 if (stream->ops->enable)
3167 stream->ops->enable(stream);
3169 if (stream->hold_preemption)
3170 intel_context_set_nopreempt(stream->pinned_ctx);
3174 * i915_perf_disable_locked - handle `I915_PERF_IOCTL_DISABLE` ioctl
3175 * @stream: An enabled i915 perf stream
3177 * Disables the associated capture of data for this stream.
3179 * The intention is that disabling an re-enabling a stream will ideally be
3180 * cheaper than destroying and re-opening a stream with the same configuration,
3181 * though there are no formal guarantees about what state or buffered data
3182 * must be retained between disabling and re-enabling a stream.
3184 * Note: while a stream is disabled it's considered an error for userspace
3185 * to attempt to read from the stream (-EIO).
3187 static void i915_perf_disable_locked(struct i915_perf_stream *stream)
3189 if (!stream->enabled)
3190 return;
3192 /* Allow stream->ops->disable() to refer to this */
3193 stream->enabled = false;
3195 if (stream->hold_preemption)
3196 intel_context_clear_nopreempt(stream->pinned_ctx);
3198 if (stream->ops->disable)
3199 stream->ops->disable(stream);
3202 static long i915_perf_config_locked(struct i915_perf_stream *stream,
3203 unsigned long metrics_set)
3205 struct i915_oa_config *config;
3206 long ret = stream->oa_config->id;
3208 config = i915_perf_get_oa_config(stream->perf, metrics_set);
3209 if (!config)
3210 return -EINVAL;
3212 if (config != stream->oa_config) {
3213 int err;
3216 * If OA is bound to a specific context, emit the
3217 * reconfiguration inline from that context. The update
3218 * will then be ordered with respect to submission on that
3219 * context.
3221 * When set globally, we use a low priority kernel context,
3222 * so it will effectively take effect when idle.
3224 err = emit_oa_config(stream, config, oa_context(stream), NULL);
3225 if (!err)
3226 config = xchg(&stream->oa_config, config);
3227 else
3228 ret = err;
3231 i915_oa_config_put(config);
3233 return ret;
3237 * i915_perf_ioctl_locked - support ioctl() usage with i915 perf stream FDs
3238 * @stream: An i915 perf stream
3239 * @cmd: the ioctl request
3240 * @arg: the ioctl data
3242 * Note: The &perf->lock mutex has been taken to serialize
3243 * with any non-file-operation driver hooks.
3245 * Returns: zero on success or a negative error code. Returns -EINVAL for
3246 * an unknown ioctl request.
3248 static long i915_perf_ioctl_locked(struct i915_perf_stream *stream,
3249 unsigned int cmd,
3250 unsigned long arg)
3252 switch (cmd) {
3253 case I915_PERF_IOCTL_ENABLE:
3254 i915_perf_enable_locked(stream);
3255 return 0;
3256 case I915_PERF_IOCTL_DISABLE:
3257 i915_perf_disable_locked(stream);
3258 return 0;
3259 case I915_PERF_IOCTL_CONFIG:
3260 return i915_perf_config_locked(stream, arg);
3263 return -EINVAL;
3267 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs
3268 * @file: An i915 perf stream file
3269 * @cmd: the ioctl request
3270 * @arg: the ioctl data
3272 * Implementation deferred to i915_perf_ioctl_locked().
3274 * Returns: zero on success or a negative error code. Returns -EINVAL for
3275 * an unknown ioctl request.
3277 static long i915_perf_ioctl(struct file *file,
3278 unsigned int cmd,
3279 unsigned long arg)
3281 struct i915_perf_stream *stream = file->private_data;
3282 struct i915_perf *perf = stream->perf;
3283 long ret;
3285 mutex_lock(&perf->lock);
3286 ret = i915_perf_ioctl_locked(stream, cmd, arg);
3287 mutex_unlock(&perf->lock);
3289 return ret;
3293 * i915_perf_destroy_locked - destroy an i915 perf stream
3294 * @stream: An i915 perf stream
3296 * Frees all resources associated with the given i915 perf @stream, disabling
3297 * any associated data capture in the process.
3299 * Note: The &perf->lock mutex has been taken to serialize
3300 * with any non-file-operation driver hooks.
3302 static void i915_perf_destroy_locked(struct i915_perf_stream *stream)
3304 if (stream->enabled)
3305 i915_perf_disable_locked(stream);
3307 if (stream->ops->destroy)
3308 stream->ops->destroy(stream);
3310 if (stream->ctx)
3311 i915_gem_context_put(stream->ctx);
3313 kfree(stream);
3317 * i915_perf_release - handles userspace close() of a stream file
3318 * @inode: anonymous inode associated with file
3319 * @file: An i915 perf stream file
3321 * Cleans up any resources associated with an open i915 perf stream file.
3323 * NB: close() can't really fail from the userspace point of view.
3325 * Returns: zero on success or a negative error code.
3327 static int i915_perf_release(struct inode *inode, struct file *file)
3329 struct i915_perf_stream *stream = file->private_data;
3330 struct i915_perf *perf = stream->perf;
3332 mutex_lock(&perf->lock);
3333 i915_perf_destroy_locked(stream);
3334 mutex_unlock(&perf->lock);
3336 /* Release the reference the perf stream kept on the driver. */
3337 drm_dev_put(&perf->i915->drm);
3339 return 0;
3343 static const struct file_operations fops = {
3344 .owner = THIS_MODULE,
3345 .llseek = no_llseek,
3346 .release = i915_perf_release,
3347 .poll = i915_perf_poll,
3348 .read = i915_perf_read,
3349 .unlocked_ioctl = i915_perf_ioctl,
3350 /* Our ioctl have no arguments, so it's safe to use the same function
3351 * to handle 32bits compatibility.
3353 .compat_ioctl = i915_perf_ioctl,
3358 * i915_perf_open_ioctl_locked - DRM ioctl() for userspace to open a stream FD
3359 * @perf: i915 perf instance
3360 * @param: The open parameters passed to 'DRM_I915_PERF_OPEN`
3361 * @props: individually validated u64 property value pairs
3362 * @file: drm file
3364 * See i915_perf_ioctl_open() for interface details.
3366 * Implements further stream config validation and stream initialization on
3367 * behalf of i915_perf_open_ioctl() with the &perf->lock mutex
3368 * taken to serialize with any non-file-operation driver hooks.
3370 * Note: at this point the @props have only been validated in isolation and
3371 * it's still necessary to validate that the combination of properties makes
3372 * sense.
3374 * In the case where userspace is interested in OA unit metrics then further
3375 * config validation and stream initialization details will be handled by
3376 * i915_oa_stream_init(). The code here should only validate config state that
3377 * will be relevant to all stream types / backends.
3379 * Returns: zero on success or a negative error code.
3381 static int
3382 i915_perf_open_ioctl_locked(struct i915_perf *perf,
3383 struct drm_i915_perf_open_param *param,
3384 struct perf_open_properties *props,
3385 struct drm_file *file)
3387 struct i915_gem_context *specific_ctx = NULL;
3388 struct i915_perf_stream *stream = NULL;
3389 unsigned long f_flags = 0;
3390 bool privileged_op = true;
3391 int stream_fd;
3392 int ret;
3394 if (props->single_context) {
3395 u32 ctx_handle = props->ctx_handle;
3396 struct drm_i915_file_private *file_priv = file->driver_priv;
3398 specific_ctx = i915_gem_context_lookup(file_priv, ctx_handle);
3399 if (!specific_ctx) {
3400 DRM_DEBUG("Failed to look up context with ID %u for opening perf stream\n",
3401 ctx_handle);
3402 ret = -ENOENT;
3403 goto err;
3408 * On Haswell the OA unit supports clock gating off for a specific
3409 * context and in this mode there's no visibility of metrics for the
3410 * rest of the system, which we consider acceptable for a
3411 * non-privileged client.
3413 * For Gen8->11 the OA unit no longer supports clock gating off for a
3414 * specific context and the kernel can't securely stop the counters
3415 * from updating as system-wide / global values. Even though we can
3416 * filter reports based on the included context ID we can't block
3417 * clients from seeing the raw / global counter values via
3418 * MI_REPORT_PERF_COUNT commands and so consider it a privileged op to
3419 * enable the OA unit by default.
3421 * For Gen12+ we gain a new OAR unit that only monitors the RCS on a
3422 * per context basis. So we can relax requirements there if the user
3423 * doesn't request global stream access (i.e. query based sampling
3424 * using MI_RECORD_PERF_COUNT.
3426 if (IS_HASWELL(perf->i915) && specific_ctx)
3427 privileged_op = false;
3428 else if (IS_GEN(perf->i915, 12) && specific_ctx &&
3429 (props->sample_flags & SAMPLE_OA_REPORT) == 0)
3430 privileged_op = false;
3432 if (props->hold_preemption) {
3433 if (!props->single_context) {
3434 DRM_DEBUG("preemption disable with no context\n");
3435 ret = -EINVAL;
3436 goto err;
3438 privileged_op = true;
3442 * Asking for SSEU configuration is a priviliged operation.
3444 if (props->has_sseu)
3445 privileged_op = true;
3446 else
3447 get_default_sseu_config(&props->sseu, props->engine);
3449 /* Similar to perf's kernel.perf_paranoid_cpu sysctl option
3450 * we check a dev.i915.perf_stream_paranoid sysctl option
3451 * to determine if it's ok to access system wide OA counters
3452 * without CAP_PERFMON or CAP_SYS_ADMIN privileges.
3454 if (privileged_op &&
3455 i915_perf_stream_paranoid && !perfmon_capable()) {
3456 DRM_DEBUG("Insufficient privileges to open i915 perf stream\n");
3457 ret = -EACCES;
3458 goto err_ctx;
3461 stream = kzalloc(sizeof(*stream), GFP_KERNEL);
3462 if (!stream) {
3463 ret = -ENOMEM;
3464 goto err_ctx;
3467 stream->perf = perf;
3468 stream->ctx = specific_ctx;
3469 stream->poll_oa_period = props->poll_oa_period;
3471 ret = i915_oa_stream_init(stream, param, props);
3472 if (ret)
3473 goto err_alloc;
3475 /* we avoid simply assigning stream->sample_flags = props->sample_flags
3476 * to have _stream_init check the combination of sample flags more
3477 * thoroughly, but still this is the expected result at this point.
3479 if (WARN_ON(stream->sample_flags != props->sample_flags)) {
3480 ret = -ENODEV;
3481 goto err_flags;
3484 if (param->flags & I915_PERF_FLAG_FD_CLOEXEC)
3485 f_flags |= O_CLOEXEC;
3486 if (param->flags & I915_PERF_FLAG_FD_NONBLOCK)
3487 f_flags |= O_NONBLOCK;
3489 stream_fd = anon_inode_getfd("[i915_perf]", &fops, stream, f_flags);
3490 if (stream_fd < 0) {
3491 ret = stream_fd;
3492 goto err_flags;
3495 if (!(param->flags & I915_PERF_FLAG_DISABLED))
3496 i915_perf_enable_locked(stream);
3498 /* Take a reference on the driver that will be kept with stream_fd
3499 * until its release.
3501 drm_dev_get(&perf->i915->drm);
3503 return stream_fd;
3505 err_flags:
3506 if (stream->ops->destroy)
3507 stream->ops->destroy(stream);
3508 err_alloc:
3509 kfree(stream);
3510 err_ctx:
3511 if (specific_ctx)
3512 i915_gem_context_put(specific_ctx);
3513 err:
3514 return ret;
3517 static u64 oa_exponent_to_ns(struct i915_perf *perf, int exponent)
3519 return i915_cs_timestamp_ticks_to_ns(perf->i915, 2ULL << exponent);
3523 * read_properties_unlocked - validate + copy userspace stream open properties
3524 * @perf: i915 perf instance
3525 * @uprops: The array of u64 key value pairs given by userspace
3526 * @n_props: The number of key value pairs expected in @uprops
3527 * @props: The stream configuration built up while validating properties
3529 * Note this function only validates properties in isolation it doesn't
3530 * validate that the combination of properties makes sense or that all
3531 * properties necessary for a particular kind of stream have been set.
3533 * Note that there currently aren't any ordering requirements for properties so
3534 * we shouldn't validate or assume anything about ordering here. This doesn't
3535 * rule out defining new properties with ordering requirements in the future.
3537 static int read_properties_unlocked(struct i915_perf *perf,
3538 u64 __user *uprops,
3539 u32 n_props,
3540 struct perf_open_properties *props)
3542 u64 __user *uprop = uprops;
3543 u32 i;
3544 int ret;
3546 memset(props, 0, sizeof(struct perf_open_properties));
3547 props->poll_oa_period = DEFAULT_POLL_PERIOD_NS;
3549 if (!n_props) {
3550 DRM_DEBUG("No i915 perf properties given\n");
3551 return -EINVAL;
3554 /* At the moment we only support using i915-perf on the RCS. */
3555 props->engine = intel_engine_lookup_user(perf->i915,
3556 I915_ENGINE_CLASS_RENDER,
3558 if (!props->engine) {
3559 DRM_DEBUG("No RENDER-capable engines\n");
3560 return -EINVAL;
3563 /* Considering that ID = 0 is reserved and assuming that we don't
3564 * (currently) expect any configurations to ever specify duplicate
3565 * values for a particular property ID then the last _PROP_MAX value is
3566 * one greater than the maximum number of properties we expect to get
3567 * from userspace.
3569 if (n_props >= DRM_I915_PERF_PROP_MAX) {
3570 DRM_DEBUG("More i915 perf properties specified than exist\n");
3571 return -EINVAL;
3574 for (i = 0; i < n_props; i++) {
3575 u64 oa_period, oa_freq_hz;
3576 u64 id, value;
3578 ret = get_user(id, uprop);
3579 if (ret)
3580 return ret;
3582 ret = get_user(value, uprop + 1);
3583 if (ret)
3584 return ret;
3586 if (id == 0 || id >= DRM_I915_PERF_PROP_MAX) {
3587 DRM_DEBUG("Unknown i915 perf property ID\n");
3588 return -EINVAL;
3591 switch ((enum drm_i915_perf_property_id)id) {
3592 case DRM_I915_PERF_PROP_CTX_HANDLE:
3593 props->single_context = 1;
3594 props->ctx_handle = value;
3595 break;
3596 case DRM_I915_PERF_PROP_SAMPLE_OA:
3597 if (value)
3598 props->sample_flags |= SAMPLE_OA_REPORT;
3599 break;
3600 case DRM_I915_PERF_PROP_OA_METRICS_SET:
3601 if (value == 0) {
3602 DRM_DEBUG("Unknown OA metric set ID\n");
3603 return -EINVAL;
3605 props->metrics_set = value;
3606 break;
3607 case DRM_I915_PERF_PROP_OA_FORMAT:
3608 if (value == 0 || value >= I915_OA_FORMAT_MAX) {
3609 DRM_DEBUG("Out-of-range OA report format %llu\n",
3610 value);
3611 return -EINVAL;
3613 if (!perf->oa_formats[value].size) {
3614 DRM_DEBUG("Unsupported OA report format %llu\n",
3615 value);
3616 return -EINVAL;
3618 props->oa_format = value;
3619 break;
3620 case DRM_I915_PERF_PROP_OA_EXPONENT:
3621 if (value > OA_EXPONENT_MAX) {
3622 DRM_DEBUG("OA timer exponent too high (> %u)\n",
3623 OA_EXPONENT_MAX);
3624 return -EINVAL;
3627 /* Theoretically we can program the OA unit to sample
3628 * e.g. every 160ns for HSW, 167ns for BDW/SKL or 104ns
3629 * for BXT. We don't allow such high sampling
3630 * frequencies by default unless root.
3633 BUILD_BUG_ON(sizeof(oa_period) != 8);
3634 oa_period = oa_exponent_to_ns(perf, value);
3636 /* This check is primarily to ensure that oa_period <=
3637 * UINT32_MAX (before passing to do_div which only
3638 * accepts a u32 denominator), but we can also skip
3639 * checking anything < 1Hz which implicitly can't be
3640 * limited via an integer oa_max_sample_rate.
3642 if (oa_period <= NSEC_PER_SEC) {
3643 u64 tmp = NSEC_PER_SEC;
3644 do_div(tmp, oa_period);
3645 oa_freq_hz = tmp;
3646 } else
3647 oa_freq_hz = 0;
3649 if (oa_freq_hz > i915_oa_max_sample_rate && !perfmon_capable()) {
3650 DRM_DEBUG("OA exponent would exceed the max sampling frequency (sysctl dev.i915.oa_max_sample_rate) %uHz without CAP_PERFMON or CAP_SYS_ADMIN privileges\n",
3651 i915_oa_max_sample_rate);
3652 return -EACCES;
3655 props->oa_periodic = true;
3656 props->oa_period_exponent = value;
3657 break;
3658 case DRM_I915_PERF_PROP_HOLD_PREEMPTION:
3659 props->hold_preemption = !!value;
3660 break;
3661 case DRM_I915_PERF_PROP_GLOBAL_SSEU: {
3662 struct drm_i915_gem_context_param_sseu user_sseu;
3664 if (copy_from_user(&user_sseu,
3665 u64_to_user_ptr(value),
3666 sizeof(user_sseu))) {
3667 DRM_DEBUG("Unable to copy global sseu parameter\n");
3668 return -EFAULT;
3671 ret = get_sseu_config(&props->sseu, props->engine, &user_sseu);
3672 if (ret) {
3673 DRM_DEBUG("Invalid SSEU configuration\n");
3674 return ret;
3676 props->has_sseu = true;
3677 break;
3679 case DRM_I915_PERF_PROP_POLL_OA_PERIOD:
3680 if (value < 100000 /* 100us */) {
3681 DRM_DEBUG("OA availability timer too small (%lluns < 100us)\n",
3682 value);
3683 return -EINVAL;
3685 props->poll_oa_period = value;
3686 break;
3687 case DRM_I915_PERF_PROP_MAX:
3688 MISSING_CASE(id);
3689 return -EINVAL;
3692 uprop += 2;
3695 return 0;
3699 * i915_perf_open_ioctl - DRM ioctl() for userspace to open a stream FD
3700 * @dev: drm device
3701 * @data: ioctl data copied from userspace (unvalidated)
3702 * @file: drm file
3704 * Validates the stream open parameters given by userspace including flags
3705 * and an array of u64 key, value pair properties.
3707 * Very little is assumed up front about the nature of the stream being
3708 * opened (for instance we don't assume it's for periodic OA unit metrics). An
3709 * i915-perf stream is expected to be a suitable interface for other forms of
3710 * buffered data written by the GPU besides periodic OA metrics.
3712 * Note we copy the properties from userspace outside of the i915 perf
3713 * mutex to avoid an awkward lockdep with mmap_lock.
3715 * Most of the implementation details are handled by
3716 * i915_perf_open_ioctl_locked() after taking the &perf->lock
3717 * mutex for serializing with any non-file-operation driver hooks.
3719 * Return: A newly opened i915 Perf stream file descriptor or negative
3720 * error code on failure.
3722 int i915_perf_open_ioctl(struct drm_device *dev, void *data,
3723 struct drm_file *file)
3725 struct i915_perf *perf = &to_i915(dev)->perf;
3726 struct drm_i915_perf_open_param *param = data;
3727 struct perf_open_properties props;
3728 u32 known_open_flags;
3729 int ret;
3731 if (!perf->i915) {
3732 DRM_DEBUG("i915 perf interface not available for this system\n");
3733 return -ENOTSUPP;
3736 known_open_flags = I915_PERF_FLAG_FD_CLOEXEC |
3737 I915_PERF_FLAG_FD_NONBLOCK |
3738 I915_PERF_FLAG_DISABLED;
3739 if (param->flags & ~known_open_flags) {
3740 DRM_DEBUG("Unknown drm_i915_perf_open_param flag\n");
3741 return -EINVAL;
3744 ret = read_properties_unlocked(perf,
3745 u64_to_user_ptr(param->properties_ptr),
3746 param->num_properties,
3747 &props);
3748 if (ret)
3749 return ret;
3751 mutex_lock(&perf->lock);
3752 ret = i915_perf_open_ioctl_locked(perf, param, &props, file);
3753 mutex_unlock(&perf->lock);
3755 return ret;
3759 * i915_perf_register - exposes i915-perf to userspace
3760 * @i915: i915 device instance
3762 * In particular OA metric sets are advertised under a sysfs metrics/
3763 * directory allowing userspace to enumerate valid IDs that can be
3764 * used to open an i915-perf stream.
3766 void i915_perf_register(struct drm_i915_private *i915)
3768 struct i915_perf *perf = &i915->perf;
3770 if (!perf->i915)
3771 return;
3773 /* To be sure we're synchronized with an attempted
3774 * i915_perf_open_ioctl(); considering that we register after
3775 * being exposed to userspace.
3777 mutex_lock(&perf->lock);
3779 perf->metrics_kobj =
3780 kobject_create_and_add("metrics",
3781 &i915->drm.primary->kdev->kobj);
3783 mutex_unlock(&perf->lock);
3787 * i915_perf_unregister - hide i915-perf from userspace
3788 * @i915: i915 device instance
3790 * i915-perf state cleanup is split up into an 'unregister' and
3791 * 'deinit' phase where the interface is first hidden from
3792 * userspace by i915_perf_unregister() before cleaning up
3793 * remaining state in i915_perf_fini().
3795 void i915_perf_unregister(struct drm_i915_private *i915)
3797 struct i915_perf *perf = &i915->perf;
3799 if (!perf->metrics_kobj)
3800 return;
3802 kobject_put(perf->metrics_kobj);
3803 perf->metrics_kobj = NULL;
3806 static bool gen8_is_valid_flex_addr(struct i915_perf *perf, u32 addr)
3808 static const i915_reg_t flex_eu_regs[] = {
3809 EU_PERF_CNTL0,
3810 EU_PERF_CNTL1,
3811 EU_PERF_CNTL2,
3812 EU_PERF_CNTL3,
3813 EU_PERF_CNTL4,
3814 EU_PERF_CNTL5,
3815 EU_PERF_CNTL6,
3817 int i;
3819 for (i = 0; i < ARRAY_SIZE(flex_eu_regs); i++) {
3820 if (i915_mmio_reg_offset(flex_eu_regs[i]) == addr)
3821 return true;
3823 return false;
3826 #define ADDR_IN_RANGE(addr, start, end) \
3827 ((addr) >= (start) && \
3828 (addr) <= (end))
3830 #define REG_IN_RANGE(addr, start, end) \
3831 ((addr) >= i915_mmio_reg_offset(start) && \
3832 (addr) <= i915_mmio_reg_offset(end))
3834 #define REG_EQUAL(addr, mmio) \
3835 ((addr) == i915_mmio_reg_offset(mmio))
3837 static bool gen7_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr)
3839 return REG_IN_RANGE(addr, OASTARTTRIG1, OASTARTTRIG8) ||
3840 REG_IN_RANGE(addr, OAREPORTTRIG1, OAREPORTTRIG8) ||
3841 REG_IN_RANGE(addr, OACEC0_0, OACEC7_1);
3844 static bool gen7_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3846 return REG_EQUAL(addr, HALF_SLICE_CHICKEN2) ||
3847 REG_IN_RANGE(addr, MICRO_BP0_0, NOA_WRITE) ||
3848 REG_IN_RANGE(addr, OA_PERFCNT1_LO, OA_PERFCNT2_HI) ||
3849 REG_IN_RANGE(addr, OA_PERFMATRIX_LO, OA_PERFMATRIX_HI);
3852 static bool gen8_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3854 return gen7_is_valid_mux_addr(perf, addr) ||
3855 REG_EQUAL(addr, WAIT_FOR_RC6_EXIT) ||
3856 REG_IN_RANGE(addr, RPM_CONFIG0, NOA_CONFIG(8));
3859 static bool gen10_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3861 return gen8_is_valid_mux_addr(perf, addr) ||
3862 REG_EQUAL(addr, GEN10_NOA_WRITE_HIGH) ||
3863 REG_IN_RANGE(addr, OA_PERFCNT3_LO, OA_PERFCNT4_HI);
3866 static bool hsw_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3868 return gen7_is_valid_mux_addr(perf, addr) ||
3869 ADDR_IN_RANGE(addr, 0x25100, 0x2FF90) ||
3870 REG_IN_RANGE(addr, HSW_MBVID2_NOA0, HSW_MBVID2_NOA9) ||
3871 REG_EQUAL(addr, HSW_MBVID2_MISR0);
3874 static bool chv_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3876 return gen7_is_valid_mux_addr(perf, addr) ||
3877 ADDR_IN_RANGE(addr, 0x182300, 0x1823A4);
3880 static bool gen12_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr)
3882 return REG_IN_RANGE(addr, GEN12_OAG_OASTARTTRIG1, GEN12_OAG_OASTARTTRIG8) ||
3883 REG_IN_RANGE(addr, GEN12_OAG_OAREPORTTRIG1, GEN12_OAG_OAREPORTTRIG8) ||
3884 REG_IN_RANGE(addr, GEN12_OAG_CEC0_0, GEN12_OAG_CEC7_1) ||
3885 REG_IN_RANGE(addr, GEN12_OAG_SCEC0_0, GEN12_OAG_SCEC7_1) ||
3886 REG_EQUAL(addr, GEN12_OAA_DBG_REG) ||
3887 REG_EQUAL(addr, GEN12_OAG_OA_PESS) ||
3888 REG_EQUAL(addr, GEN12_OAG_SPCTR_CNF);
3891 static bool gen12_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3893 return REG_EQUAL(addr, NOA_WRITE) ||
3894 REG_EQUAL(addr, GEN10_NOA_WRITE_HIGH) ||
3895 REG_EQUAL(addr, GDT_CHICKEN_BITS) ||
3896 REG_EQUAL(addr, WAIT_FOR_RC6_EXIT) ||
3897 REG_EQUAL(addr, RPM_CONFIG0) ||
3898 REG_EQUAL(addr, RPM_CONFIG1) ||
3899 REG_IN_RANGE(addr, NOA_CONFIG(0), NOA_CONFIG(8));
3902 static u32 mask_reg_value(u32 reg, u32 val)
3904 /* HALF_SLICE_CHICKEN2 is programmed with a the
3905 * WaDisableSTUnitPowerOptimization workaround. Make sure the value
3906 * programmed by userspace doesn't change this.
3908 if (REG_EQUAL(reg, HALF_SLICE_CHICKEN2))
3909 val = val & ~_MASKED_BIT_ENABLE(GEN8_ST_PO_DISABLE);
3911 /* WAIT_FOR_RC6_EXIT has only one bit fullfilling the function
3912 * indicated by its name and a bunch of selection fields used by OA
3913 * configs.
3915 if (REG_EQUAL(reg, WAIT_FOR_RC6_EXIT))
3916 val = val & ~_MASKED_BIT_ENABLE(HSW_WAIT_FOR_RC6_EXIT_ENABLE);
3918 return val;
3921 static struct i915_oa_reg *alloc_oa_regs(struct i915_perf *perf,
3922 bool (*is_valid)(struct i915_perf *perf, u32 addr),
3923 u32 __user *regs,
3924 u32 n_regs)
3926 struct i915_oa_reg *oa_regs;
3927 int err;
3928 u32 i;
3930 if (!n_regs)
3931 return NULL;
3933 /* No is_valid function means we're not allowing any register to be programmed. */
3934 GEM_BUG_ON(!is_valid);
3935 if (!is_valid)
3936 return ERR_PTR(-EINVAL);
3938 oa_regs = kmalloc_array(n_regs, sizeof(*oa_regs), GFP_KERNEL);
3939 if (!oa_regs)
3940 return ERR_PTR(-ENOMEM);
3942 for (i = 0; i < n_regs; i++) {
3943 u32 addr, value;
3945 err = get_user(addr, regs);
3946 if (err)
3947 goto addr_err;
3949 if (!is_valid(perf, addr)) {
3950 DRM_DEBUG("Invalid oa_reg address: %X\n", addr);
3951 err = -EINVAL;
3952 goto addr_err;
3955 err = get_user(value, regs + 1);
3956 if (err)
3957 goto addr_err;
3959 oa_regs[i].addr = _MMIO(addr);
3960 oa_regs[i].value = mask_reg_value(addr, value);
3962 regs += 2;
3965 return oa_regs;
3967 addr_err:
3968 kfree(oa_regs);
3969 return ERR_PTR(err);
3972 static ssize_t show_dynamic_id(struct device *dev,
3973 struct device_attribute *attr,
3974 char *buf)
3976 struct i915_oa_config *oa_config =
3977 container_of(attr, typeof(*oa_config), sysfs_metric_id);
3979 return sprintf(buf, "%d\n", oa_config->id);
3982 static int create_dynamic_oa_sysfs_entry(struct i915_perf *perf,
3983 struct i915_oa_config *oa_config)
3985 sysfs_attr_init(&oa_config->sysfs_metric_id.attr);
3986 oa_config->sysfs_metric_id.attr.name = "id";
3987 oa_config->sysfs_metric_id.attr.mode = S_IRUGO;
3988 oa_config->sysfs_metric_id.show = show_dynamic_id;
3989 oa_config->sysfs_metric_id.store = NULL;
3991 oa_config->attrs[0] = &oa_config->sysfs_metric_id.attr;
3992 oa_config->attrs[1] = NULL;
3994 oa_config->sysfs_metric.name = oa_config->uuid;
3995 oa_config->sysfs_metric.attrs = oa_config->attrs;
3997 return sysfs_create_group(perf->metrics_kobj,
3998 &oa_config->sysfs_metric);
4002 * i915_perf_add_config_ioctl - DRM ioctl() for userspace to add a new OA config
4003 * @dev: drm device
4004 * @data: ioctl data (pointer to struct drm_i915_perf_oa_config) copied from
4005 * userspace (unvalidated)
4006 * @file: drm file
4008 * Validates the submitted OA register to be saved into a new OA config that
4009 * can then be used for programming the OA unit and its NOA network.
4011 * Returns: A new allocated config number to be used with the perf open ioctl
4012 * or a negative error code on failure.
4014 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data,
4015 struct drm_file *file)
4017 struct i915_perf *perf = &to_i915(dev)->perf;
4018 struct drm_i915_perf_oa_config *args = data;
4019 struct i915_oa_config *oa_config, *tmp;
4020 struct i915_oa_reg *regs;
4021 int err, id;
4023 if (!perf->i915) {
4024 DRM_DEBUG("i915 perf interface not available for this system\n");
4025 return -ENOTSUPP;
4028 if (!perf->metrics_kobj) {
4029 DRM_DEBUG("OA metrics weren't advertised via sysfs\n");
4030 return -EINVAL;
4033 if (i915_perf_stream_paranoid && !perfmon_capable()) {
4034 DRM_DEBUG("Insufficient privileges to add i915 OA config\n");
4035 return -EACCES;
4038 if ((!args->mux_regs_ptr || !args->n_mux_regs) &&
4039 (!args->boolean_regs_ptr || !args->n_boolean_regs) &&
4040 (!args->flex_regs_ptr || !args->n_flex_regs)) {
4041 DRM_DEBUG("No OA registers given\n");
4042 return -EINVAL;
4045 oa_config = kzalloc(sizeof(*oa_config), GFP_KERNEL);
4046 if (!oa_config) {
4047 DRM_DEBUG("Failed to allocate memory for the OA config\n");
4048 return -ENOMEM;
4051 oa_config->perf = perf;
4052 kref_init(&oa_config->ref);
4054 if (!uuid_is_valid(args->uuid)) {
4055 DRM_DEBUG("Invalid uuid format for OA config\n");
4056 err = -EINVAL;
4057 goto reg_err;
4060 /* Last character in oa_config->uuid will be 0 because oa_config is
4061 * kzalloc.
4063 memcpy(oa_config->uuid, args->uuid, sizeof(args->uuid));
4065 oa_config->mux_regs_len = args->n_mux_regs;
4066 regs = alloc_oa_regs(perf,
4067 perf->ops.is_valid_mux_reg,
4068 u64_to_user_ptr(args->mux_regs_ptr),
4069 args->n_mux_regs);
4071 if (IS_ERR(regs)) {
4072 DRM_DEBUG("Failed to create OA config for mux_regs\n");
4073 err = PTR_ERR(regs);
4074 goto reg_err;
4076 oa_config->mux_regs = regs;
4078 oa_config->b_counter_regs_len = args->n_boolean_regs;
4079 regs = alloc_oa_regs(perf,
4080 perf->ops.is_valid_b_counter_reg,
4081 u64_to_user_ptr(args->boolean_regs_ptr),
4082 args->n_boolean_regs);
4084 if (IS_ERR(regs)) {
4085 DRM_DEBUG("Failed to create OA config for b_counter_regs\n");
4086 err = PTR_ERR(regs);
4087 goto reg_err;
4089 oa_config->b_counter_regs = regs;
4091 if (INTEL_GEN(perf->i915) < 8) {
4092 if (args->n_flex_regs != 0) {
4093 err = -EINVAL;
4094 goto reg_err;
4096 } else {
4097 oa_config->flex_regs_len = args->n_flex_regs;
4098 regs = alloc_oa_regs(perf,
4099 perf->ops.is_valid_flex_reg,
4100 u64_to_user_ptr(args->flex_regs_ptr),
4101 args->n_flex_regs);
4103 if (IS_ERR(regs)) {
4104 DRM_DEBUG("Failed to create OA config for flex_regs\n");
4105 err = PTR_ERR(regs);
4106 goto reg_err;
4108 oa_config->flex_regs = regs;
4111 err = mutex_lock_interruptible(&perf->metrics_lock);
4112 if (err)
4113 goto reg_err;
4115 /* We shouldn't have too many configs, so this iteration shouldn't be
4116 * too costly.
4118 idr_for_each_entry(&perf->metrics_idr, tmp, id) {
4119 if (!strcmp(tmp->uuid, oa_config->uuid)) {
4120 DRM_DEBUG("OA config already exists with this uuid\n");
4121 err = -EADDRINUSE;
4122 goto sysfs_err;
4126 err = create_dynamic_oa_sysfs_entry(perf, oa_config);
4127 if (err) {
4128 DRM_DEBUG("Failed to create sysfs entry for OA config\n");
4129 goto sysfs_err;
4132 /* Config id 0 is invalid, id 1 for kernel stored test config. */
4133 oa_config->id = idr_alloc(&perf->metrics_idr,
4134 oa_config, 2,
4135 0, GFP_KERNEL);
4136 if (oa_config->id < 0) {
4137 DRM_DEBUG("Failed to create sysfs entry for OA config\n");
4138 err = oa_config->id;
4139 goto sysfs_err;
4142 mutex_unlock(&perf->metrics_lock);
4144 DRM_DEBUG("Added config %s id=%i\n", oa_config->uuid, oa_config->id);
4146 return oa_config->id;
4148 sysfs_err:
4149 mutex_unlock(&perf->metrics_lock);
4150 reg_err:
4151 i915_oa_config_put(oa_config);
4152 DRM_DEBUG("Failed to add new OA config\n");
4153 return err;
4157 * i915_perf_remove_config_ioctl - DRM ioctl() for userspace to remove an OA config
4158 * @dev: drm device
4159 * @data: ioctl data (pointer to u64 integer) copied from userspace
4160 * @file: drm file
4162 * Configs can be removed while being used, the will stop appearing in sysfs
4163 * and their content will be freed when the stream using the config is closed.
4165 * Returns: 0 on success or a negative error code on failure.
4167 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data,
4168 struct drm_file *file)
4170 struct i915_perf *perf = &to_i915(dev)->perf;
4171 u64 *arg = data;
4172 struct i915_oa_config *oa_config;
4173 int ret;
4175 if (!perf->i915) {
4176 DRM_DEBUG("i915 perf interface not available for this system\n");
4177 return -ENOTSUPP;
4180 if (i915_perf_stream_paranoid && !perfmon_capable()) {
4181 DRM_DEBUG("Insufficient privileges to remove i915 OA config\n");
4182 return -EACCES;
4185 ret = mutex_lock_interruptible(&perf->metrics_lock);
4186 if (ret)
4187 return ret;
4189 oa_config = idr_find(&perf->metrics_idr, *arg);
4190 if (!oa_config) {
4191 DRM_DEBUG("Failed to remove unknown OA config\n");
4192 ret = -ENOENT;
4193 goto err_unlock;
4196 GEM_BUG_ON(*arg != oa_config->id);
4198 sysfs_remove_group(perf->metrics_kobj, &oa_config->sysfs_metric);
4200 idr_remove(&perf->metrics_idr, *arg);
4202 mutex_unlock(&perf->metrics_lock);
4204 DRM_DEBUG("Removed config %s id=%i\n", oa_config->uuid, oa_config->id);
4206 i915_oa_config_put(oa_config);
4208 return 0;
4210 err_unlock:
4211 mutex_unlock(&perf->metrics_lock);
4212 return ret;
4215 static struct ctl_table oa_table[] = {
4217 .procname = "perf_stream_paranoid",
4218 .data = &i915_perf_stream_paranoid,
4219 .maxlen = sizeof(i915_perf_stream_paranoid),
4220 .mode = 0644,
4221 .proc_handler = proc_dointvec_minmax,
4222 .extra1 = SYSCTL_ZERO,
4223 .extra2 = SYSCTL_ONE,
4226 .procname = "oa_max_sample_rate",
4227 .data = &i915_oa_max_sample_rate,
4228 .maxlen = sizeof(i915_oa_max_sample_rate),
4229 .mode = 0644,
4230 .proc_handler = proc_dointvec_minmax,
4231 .extra1 = SYSCTL_ZERO,
4232 .extra2 = &oa_sample_rate_hard_limit,
4237 static struct ctl_table i915_root[] = {
4239 .procname = "i915",
4240 .maxlen = 0,
4241 .mode = 0555,
4242 .child = oa_table,
4247 static struct ctl_table dev_root[] = {
4249 .procname = "dev",
4250 .maxlen = 0,
4251 .mode = 0555,
4252 .child = i915_root,
4258 * i915_perf_init - initialize i915-perf state on module bind
4259 * @i915: i915 device instance
4261 * Initializes i915-perf state without exposing anything to userspace.
4263 * Note: i915-perf initialization is split into an 'init' and 'register'
4264 * phase with the i915_perf_register() exposing state to userspace.
4266 void i915_perf_init(struct drm_i915_private *i915)
4268 struct i915_perf *perf = &i915->perf;
4270 /* XXX const struct i915_perf_ops! */
4272 if (IS_HASWELL(i915)) {
4273 perf->ops.is_valid_b_counter_reg = gen7_is_valid_b_counter_addr;
4274 perf->ops.is_valid_mux_reg = hsw_is_valid_mux_addr;
4275 perf->ops.is_valid_flex_reg = NULL;
4276 perf->ops.enable_metric_set = hsw_enable_metric_set;
4277 perf->ops.disable_metric_set = hsw_disable_metric_set;
4278 perf->ops.oa_enable = gen7_oa_enable;
4279 perf->ops.oa_disable = gen7_oa_disable;
4280 perf->ops.read = gen7_oa_read;
4281 perf->ops.oa_hw_tail_read = gen7_oa_hw_tail_read;
4283 perf->oa_formats = hsw_oa_formats;
4284 } else if (HAS_LOGICAL_RING_CONTEXTS(i915)) {
4285 /* Note: that although we could theoretically also support the
4286 * legacy ringbuffer mode on BDW (and earlier iterations of
4287 * this driver, before upstreaming did this) it didn't seem
4288 * worth the complexity to maintain now that BDW+ enable
4289 * execlist mode by default.
4291 perf->ops.read = gen8_oa_read;
4293 if (IS_GEN_RANGE(i915, 8, 9)) {
4294 perf->oa_formats = gen8_plus_oa_formats;
4296 perf->ops.is_valid_b_counter_reg =
4297 gen7_is_valid_b_counter_addr;
4298 perf->ops.is_valid_mux_reg =
4299 gen8_is_valid_mux_addr;
4300 perf->ops.is_valid_flex_reg =
4301 gen8_is_valid_flex_addr;
4303 if (IS_CHERRYVIEW(i915)) {
4304 perf->ops.is_valid_mux_reg =
4305 chv_is_valid_mux_addr;
4308 perf->ops.oa_enable = gen8_oa_enable;
4309 perf->ops.oa_disable = gen8_oa_disable;
4310 perf->ops.enable_metric_set = gen8_enable_metric_set;
4311 perf->ops.disable_metric_set = gen8_disable_metric_set;
4312 perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read;
4314 if (IS_GEN(i915, 8)) {
4315 perf->ctx_oactxctrl_offset = 0x120;
4316 perf->ctx_flexeu0_offset = 0x2ce;
4318 perf->gen8_valid_ctx_bit = BIT(25);
4319 } else {
4320 perf->ctx_oactxctrl_offset = 0x128;
4321 perf->ctx_flexeu0_offset = 0x3de;
4323 perf->gen8_valid_ctx_bit = BIT(16);
4325 } else if (IS_GEN_RANGE(i915, 10, 11)) {
4326 perf->oa_formats = gen8_plus_oa_formats;
4328 perf->ops.is_valid_b_counter_reg =
4329 gen7_is_valid_b_counter_addr;
4330 perf->ops.is_valid_mux_reg =
4331 gen10_is_valid_mux_addr;
4332 perf->ops.is_valid_flex_reg =
4333 gen8_is_valid_flex_addr;
4335 perf->ops.oa_enable = gen8_oa_enable;
4336 perf->ops.oa_disable = gen8_oa_disable;
4337 perf->ops.enable_metric_set = gen8_enable_metric_set;
4338 perf->ops.disable_metric_set = gen10_disable_metric_set;
4339 perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read;
4341 if (IS_GEN(i915, 10)) {
4342 perf->ctx_oactxctrl_offset = 0x128;
4343 perf->ctx_flexeu0_offset = 0x3de;
4344 } else {
4345 perf->ctx_oactxctrl_offset = 0x124;
4346 perf->ctx_flexeu0_offset = 0x78e;
4348 perf->gen8_valid_ctx_bit = BIT(16);
4349 } else if (IS_GEN(i915, 12)) {
4350 perf->oa_formats = gen12_oa_formats;
4352 perf->ops.is_valid_b_counter_reg =
4353 gen12_is_valid_b_counter_addr;
4354 perf->ops.is_valid_mux_reg =
4355 gen12_is_valid_mux_addr;
4356 perf->ops.is_valid_flex_reg =
4357 gen8_is_valid_flex_addr;
4359 perf->ops.oa_enable = gen12_oa_enable;
4360 perf->ops.oa_disable = gen12_oa_disable;
4361 perf->ops.enable_metric_set = gen12_enable_metric_set;
4362 perf->ops.disable_metric_set = gen12_disable_metric_set;
4363 perf->ops.oa_hw_tail_read = gen12_oa_hw_tail_read;
4365 perf->ctx_flexeu0_offset = 0;
4366 perf->ctx_oactxctrl_offset = 0x144;
4370 if (perf->ops.enable_metric_set) {
4371 mutex_init(&perf->lock);
4373 oa_sample_rate_hard_limit =
4374 RUNTIME_INFO(i915)->cs_timestamp_frequency_hz / 2;
4376 mutex_init(&perf->metrics_lock);
4377 idr_init(&perf->metrics_idr);
4379 /* We set up some ratelimit state to potentially throttle any
4380 * _NOTES about spurious, invalid OA reports which we don't
4381 * forward to userspace.
4383 * We print a _NOTE about any throttling when closing the
4384 * stream instead of waiting until driver _fini which no one
4385 * would ever see.
4387 * Using the same limiting factors as printk_ratelimit()
4389 ratelimit_state_init(&perf->spurious_report_rs, 5 * HZ, 10);
4390 /* Since we use a DRM_NOTE for spurious reports it would be
4391 * inconsistent to let __ratelimit() automatically print a
4392 * warning for throttling.
4394 ratelimit_set_flags(&perf->spurious_report_rs,
4395 RATELIMIT_MSG_ON_RELEASE);
4397 ratelimit_state_init(&perf->tail_pointer_race,
4398 5 * HZ, 10);
4399 ratelimit_set_flags(&perf->tail_pointer_race,
4400 RATELIMIT_MSG_ON_RELEASE);
4402 atomic64_set(&perf->noa_programming_delay,
4403 500 * 1000 /* 500us */);
4405 perf->i915 = i915;
4409 static int destroy_config(int id, void *p, void *data)
4411 i915_oa_config_put(p);
4412 return 0;
4415 void i915_perf_sysctl_register(void)
4417 sysctl_header = register_sysctl_table(dev_root);
4420 void i915_perf_sysctl_unregister(void)
4422 unregister_sysctl_table(sysctl_header);
4426 * i915_perf_fini - Counter part to i915_perf_init()
4427 * @i915: i915 device instance
4429 void i915_perf_fini(struct drm_i915_private *i915)
4431 struct i915_perf *perf = &i915->perf;
4433 if (!perf->i915)
4434 return;
4436 idr_for_each(&perf->metrics_idr, destroy_config, perf);
4437 idr_destroy(&perf->metrics_idr);
4439 memset(&perf->ops, 0, sizeof(perf->ops));
4440 perf->i915 = NULL;
4444 * i915_perf_ioctl_version - Version of the i915-perf subsystem
4446 * This version number is used by userspace to detect available features.
4448 int i915_perf_ioctl_version(void)
4451 * 1: Initial version
4452 * I915_PERF_IOCTL_ENABLE
4453 * I915_PERF_IOCTL_DISABLE
4455 * 2: Added runtime modification of OA config.
4456 * I915_PERF_IOCTL_CONFIG
4458 * 3: Add DRM_I915_PERF_PROP_HOLD_PREEMPTION parameter to hold
4459 * preemption on a particular context so that performance data is
4460 * accessible from a delta of MI_RPC reports without looking at the
4461 * OA buffer.
4463 * 4: Add DRM_I915_PERF_PROP_ALLOWED_SSEU to limit what contexts can
4464 * be run for the duration of the performance recording based on
4465 * their SSEU configuration.
4467 * 5: Add DRM_I915_PERF_PROP_POLL_OA_PERIOD parameter that controls the
4468 * interval for the hrtimer used to check for OA data.
4470 return 5;
4473 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
4474 #include "selftests/i915_perf.c"
4475 #endif