1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (c) 2014-2018, The Linux Foundation. All rights reserved.
4 * Copyright (C) 2013 Red Hat
5 * Author: Rob Clark <robdclark@gmail.com>
8 #define pr_fmt(fmt) "[drm:%s:%d] " fmt, __func__, __LINE__
9 #include <linux/debugfs.h>
10 #include <linux/kthread.h>
11 #include <linux/seq_file.h>
13 #include <drm/drm_crtc.h>
14 #include <drm/drm_file.h>
15 #include <drm/drm_probe_helper.h>
20 #include "dpu_hw_catalog.h"
21 #include "dpu_hw_intf.h"
22 #include "dpu_hw_ctl.h"
23 #include "dpu_hw_dspp.h"
24 #include "dpu_formats.h"
25 #include "dpu_encoder_phys.h"
27 #include "dpu_trace.h"
28 #include "dpu_core_irq.h"
30 #define DPU_DEBUG_ENC(e, fmt, ...) DPU_DEBUG("enc%d " fmt,\
31 (e) ? (e)->base.base.id : -1, ##__VA_ARGS__)
33 #define DPU_ERROR_ENC(e, fmt, ...) DPU_ERROR("enc%d " fmt,\
34 (e) ? (e)->base.base.id : -1, ##__VA_ARGS__)
36 #define DPU_DEBUG_PHYS(p, fmt, ...) DPU_DEBUG("enc%d intf%d pp%d " fmt,\
37 (p) ? (p)->parent->base.id : -1, \
38 (p) ? (p)->intf_idx - INTF_0 : -1, \
39 (p) ? ((p)->hw_pp ? (p)->hw_pp->idx - PINGPONG_0 : -1) : -1, \
42 #define DPU_ERROR_PHYS(p, fmt, ...) DPU_ERROR("enc%d intf%d pp%d " fmt,\
43 (p) ? (p)->parent->base.id : -1, \
44 (p) ? (p)->intf_idx - INTF_0 : -1, \
45 (p) ? ((p)->hw_pp ? (p)->hw_pp->idx - PINGPONG_0 : -1) : -1, \
49 * Two to anticipate panels that can do cmd/vid dynamic switching
50 * plan is to create all possible physical encoder types, and switch between
53 #define NUM_PHYS_ENCODER_TYPES 2
55 #define MAX_PHYS_ENCODERS_PER_VIRTUAL \
56 (MAX_H_TILES_PER_DISPLAY * NUM_PHYS_ENCODER_TYPES)
58 #define MAX_CHANNELS_PER_ENC 2
60 #define IDLE_SHORT_TIMEOUT 1
62 #define MAX_HDISPLAY_SPLIT 1080
64 /* timeout in frames waiting for frame done */
65 #define DPU_ENCODER_FRAME_DONE_TIMEOUT_FRAMES 5
68 * enum dpu_enc_rc_events - events for resource control state machine
69 * @DPU_ENC_RC_EVENT_KICKOFF:
70 * This event happens at NORMAL priority.
71 * Event that signals the start of the transfer. When this event is
72 * received, enable MDP/DSI core clocks. Regardless of the previous
73 * state, the resource should be in ON state at the end of this event.
74 * @DPU_ENC_RC_EVENT_FRAME_DONE:
75 * This event happens at INTERRUPT level.
76 * Event signals the end of the data transfer after the PP FRAME_DONE
77 * event. At the end of this event, a delayed work is scheduled to go to
78 * IDLE_PC state after IDLE_TIMEOUT time.
79 * @DPU_ENC_RC_EVENT_PRE_STOP:
80 * This event happens at NORMAL priority.
81 * This event, when received during the ON state, leave the RC STATE
82 * in the PRE_OFF state. It should be followed by the STOP event as
83 * part of encoder disable.
84 * If received during IDLE or OFF states, it will do nothing.
85 * @DPU_ENC_RC_EVENT_STOP:
86 * This event happens at NORMAL priority.
87 * When this event is received, disable all the MDP/DSI core clocks, and
88 * disable IRQs. It should be called from the PRE_OFF or IDLE states.
89 * IDLE is expected when IDLE_PC has run, and PRE_OFF did nothing.
90 * PRE_OFF is expected when PRE_STOP was executed during the ON state.
91 * Resource state should be in OFF at the end of the event.
92 * @DPU_ENC_RC_EVENT_ENTER_IDLE:
93 * This event happens at NORMAL priority from a work item.
94 * Event signals that there were no frame updates for IDLE_TIMEOUT time.
95 * This would disable MDP/DSI core clocks and change the resource state
98 enum dpu_enc_rc_events
{
99 DPU_ENC_RC_EVENT_KICKOFF
= 1,
100 DPU_ENC_RC_EVENT_FRAME_DONE
,
101 DPU_ENC_RC_EVENT_PRE_STOP
,
102 DPU_ENC_RC_EVENT_STOP
,
103 DPU_ENC_RC_EVENT_ENTER_IDLE
107 * enum dpu_enc_rc_states - states that the resource control maintains
108 * @DPU_ENC_RC_STATE_OFF: Resource is in OFF state
109 * @DPU_ENC_RC_STATE_PRE_OFF: Resource is transitioning to OFF state
110 * @DPU_ENC_RC_STATE_ON: Resource is in ON state
111 * @DPU_ENC_RC_STATE_MODESET: Resource is in modeset state
112 * @DPU_ENC_RC_STATE_IDLE: Resource is in IDLE state
114 enum dpu_enc_rc_states
{
115 DPU_ENC_RC_STATE_OFF
,
116 DPU_ENC_RC_STATE_PRE_OFF
,
118 DPU_ENC_RC_STATE_IDLE
122 * struct dpu_encoder_virt - virtual encoder. Container of one or more physical
123 * encoders. Virtual encoder manages one "logical" display. Physical
124 * encoders manage one intf block, tied to a specific panel/sub-panel.
125 * Virtual encoder defers as much as possible to the physical encoders.
126 * Virtual encoder registers itself with the DRM Framework as the encoder.
127 * @base: drm_encoder base class for registration with DRM
128 * @enc_spinlock: Virtual-Encoder-Wide Spin Lock for IRQ purposes
129 * @bus_scaling_client: Client handle to the bus scaling interface
130 * @enabled: True if the encoder is active, protected by enc_lock
131 * @num_phys_encs: Actual number of physical encoders contained.
132 * @phys_encs: Container of physical encoders managed.
133 * @cur_master: Pointer to the current master in this mode. Optimization
134 * Only valid after enable. Cleared as disable.
135 * @cur_slave: As above but for the slave encoder.
136 * @hw_pp: Handle to the pingpong blocks used for the display. No.
137 * pingpong blocks can be different than num_phys_encs.
138 * @intfs_swapped: Whether or not the phys_enc interfaces have been swapped
139 * for partial update right-only cases, such as pingpong
140 * split where virtual pingpong does not generate IRQs
141 * @crtc: Pointer to the currently assigned crtc. Normally you
142 * would use crtc->state->encoder_mask to determine the
143 * link between encoder/crtc. However in this case we need
144 * to track crtc in the disable() hook which is called
145 * _after_ encoder_mask is cleared.
146 * @crtc_kickoff_cb: Callback into CRTC that will flush & start
148 * @crtc_kickoff_cb_data: Opaque user data given to crtc_kickoff_cb
149 * @debugfs_root: Debug file system root file node
150 * @enc_lock: Lock around physical encoder
151 * create/destroy/enable/disable
152 * @frame_busy_mask: Bitmask tracking which phys_enc we are still
153 * busy processing current command.
154 * Bit0 = phys_encs[0] etc.
155 * @crtc_frame_event_cb: callback handler for frame event
156 * @crtc_frame_event_cb_data: callback handler private data
157 * @frame_done_timeout_ms: frame done timeout in ms
158 * @frame_done_timer: watchdog timer for frame done event
159 * @vsync_event_timer: vsync timer
160 * @disp_info: local copy of msm_display_info struct
161 * @idle_pc_supported: indicate if idle power collaps is supported
162 * @rc_lock: resource control mutex lock to protect
163 * virt encoder over various state changes
164 * @rc_state: resource controller state
165 * @delayed_off_work: delayed worker to schedule disabling of
166 * clks and resources after IDLE_TIMEOUT time.
167 * @vsync_event_work: worker to handle vsync event for autorefresh
168 * @topology: topology of the display
169 * @idle_timeout: idle timeout duration in milliseconds
171 struct dpu_encoder_virt
{
172 struct drm_encoder base
;
173 spinlock_t enc_spinlock
;
174 uint32_t bus_scaling_client
;
178 unsigned int num_phys_encs
;
179 struct dpu_encoder_phys
*phys_encs
[MAX_PHYS_ENCODERS_PER_VIRTUAL
];
180 struct dpu_encoder_phys
*cur_master
;
181 struct dpu_encoder_phys
*cur_slave
;
182 struct dpu_hw_pingpong
*hw_pp
[MAX_CHANNELS_PER_ENC
];
186 struct drm_crtc
*crtc
;
188 struct dentry
*debugfs_root
;
189 struct mutex enc_lock
;
190 DECLARE_BITMAP(frame_busy_mask
, MAX_PHYS_ENCODERS_PER_VIRTUAL
);
191 void (*crtc_frame_event_cb
)(void *, u32 event
);
192 void *crtc_frame_event_cb_data
;
194 atomic_t frame_done_timeout_ms
;
195 struct timer_list frame_done_timer
;
196 struct timer_list vsync_event_timer
;
198 struct msm_display_info disp_info
;
200 bool idle_pc_supported
;
201 struct mutex rc_lock
;
202 enum dpu_enc_rc_states rc_state
;
203 struct delayed_work delayed_off_work
;
204 struct kthread_work vsync_event_work
;
205 struct msm_display_topology topology
;
210 #define to_dpu_encoder_virt(x) container_of(x, struct dpu_encoder_virt, base)
212 static u32 dither_matrix
[DITHER_MATRIX_SZ
] = {
213 15, 7, 13, 5, 3, 11, 1, 9, 12, 4, 14, 6, 0, 8, 2, 10
216 static void _dpu_encoder_setup_dither(struct dpu_hw_pingpong
*hw_pp
, unsigned bpc
)
218 struct dpu_hw_dither_cfg dither_cfg
= { 0 };
220 if (!hw_pp
->ops
.setup_dither
)
225 dither_cfg
.c0_bitdepth
= 6;
226 dither_cfg
.c1_bitdepth
= 6;
227 dither_cfg
.c2_bitdepth
= 6;
228 dither_cfg
.c3_bitdepth
= 6;
229 dither_cfg
.temporal_en
= 0;
232 hw_pp
->ops
.setup_dither(hw_pp
, NULL
);
236 memcpy(&dither_cfg
.matrix
, dither_matrix
,
237 sizeof(u32
) * DITHER_MATRIX_SZ
);
239 hw_pp
->ops
.setup_dither(hw_pp
, &dither_cfg
);
242 void dpu_encoder_helper_report_irq_timeout(struct dpu_encoder_phys
*phys_enc
,
243 enum dpu_intr_idx intr_idx
)
245 DRM_ERROR("irq timeout id=%u, intf=%d, pp=%d, intr=%d\n",
246 DRMID(phys_enc
->parent
), phys_enc
->intf_idx
- INTF_0
,
247 phys_enc
->hw_pp
->idx
- PINGPONG_0
, intr_idx
);
249 if (phys_enc
->parent_ops
->handle_frame_done
)
250 phys_enc
->parent_ops
->handle_frame_done(
251 phys_enc
->parent
, phys_enc
,
252 DPU_ENCODER_FRAME_EVENT_ERROR
);
255 static int dpu_encoder_helper_wait_event_timeout(int32_t drm_id
,
256 int32_t hw_id
, struct dpu_encoder_wait_info
*info
);
258 int dpu_encoder_helper_wait_for_irq(struct dpu_encoder_phys
*phys_enc
,
259 enum dpu_intr_idx intr_idx
,
260 struct dpu_encoder_wait_info
*wait_info
)
262 struct dpu_encoder_irq
*irq
;
266 if (!wait_info
|| intr_idx
>= INTR_IDX_MAX
) {
267 DPU_ERROR("invalid params\n");
270 irq
= &phys_enc
->irq
[intr_idx
];
272 /* note: do master / slave checking outside */
274 /* return EWOULDBLOCK since we know the wait isn't necessary */
275 if (phys_enc
->enable_state
== DPU_ENC_DISABLED
) {
276 DRM_ERROR("encoder is disabled id=%u, intr=%d, hw=%d, irq=%d",
277 DRMID(phys_enc
->parent
), intr_idx
, irq
->hw_idx
,
282 if (irq
->irq_idx
< 0) {
283 DRM_DEBUG_KMS("skip irq wait id=%u, intr=%d, hw=%d, irq=%s",
284 DRMID(phys_enc
->parent
), intr_idx
, irq
->hw_idx
,
289 DRM_DEBUG_KMS("id=%u, intr=%d, hw=%d, irq=%d, pp=%d, pending_cnt=%d",
290 DRMID(phys_enc
->parent
), intr_idx
, irq
->hw_idx
,
291 irq
->irq_idx
, phys_enc
->hw_pp
->idx
- PINGPONG_0
,
292 atomic_read(wait_info
->atomic_cnt
));
294 ret
= dpu_encoder_helper_wait_event_timeout(
295 DRMID(phys_enc
->parent
),
300 irq_status
= dpu_core_irq_read(phys_enc
->dpu_kms
,
305 DRM_DEBUG_KMS("irq not triggered id=%u, intr=%d, "
306 "hw=%d, irq=%d, pp=%d, atomic_cnt=%d",
307 DRMID(phys_enc
->parent
), intr_idx
,
308 irq
->hw_idx
, irq
->irq_idx
,
309 phys_enc
->hw_pp
->idx
- PINGPONG_0
,
310 atomic_read(wait_info
->atomic_cnt
));
311 local_irq_save(flags
);
312 irq
->cb
.func(phys_enc
, irq
->irq_idx
);
313 local_irq_restore(flags
);
317 DRM_DEBUG_KMS("irq timeout id=%u, intr=%d, "
318 "hw=%d, irq=%d, pp=%d, atomic_cnt=%d",
319 DRMID(phys_enc
->parent
), intr_idx
,
320 irq
->hw_idx
, irq
->irq_idx
,
321 phys_enc
->hw_pp
->idx
- PINGPONG_0
,
322 atomic_read(wait_info
->atomic_cnt
));
326 trace_dpu_enc_irq_wait_success(DRMID(phys_enc
->parent
),
327 intr_idx
, irq
->hw_idx
, irq
->irq_idx
,
328 phys_enc
->hw_pp
->idx
- PINGPONG_0
,
329 atomic_read(wait_info
->atomic_cnt
));
335 int dpu_encoder_helper_register_irq(struct dpu_encoder_phys
*phys_enc
,
336 enum dpu_intr_idx intr_idx
)
338 struct dpu_encoder_irq
*irq
;
341 if (intr_idx
>= INTR_IDX_MAX
) {
342 DPU_ERROR("invalid params\n");
345 irq
= &phys_enc
->irq
[intr_idx
];
347 if (irq
->irq_idx
>= 0) {
348 DPU_DEBUG_PHYS(phys_enc
,
349 "skipping already registered irq %s type %d\n",
350 irq
->name
, irq
->intr_type
);
354 irq
->irq_idx
= dpu_core_irq_idx_lookup(phys_enc
->dpu_kms
,
355 irq
->intr_type
, irq
->hw_idx
);
356 if (irq
->irq_idx
< 0) {
357 DPU_ERROR_PHYS(phys_enc
,
358 "failed to lookup IRQ index for %s type:%d\n",
359 irq
->name
, irq
->intr_type
);
363 ret
= dpu_core_irq_register_callback(phys_enc
->dpu_kms
, irq
->irq_idx
,
366 DPU_ERROR_PHYS(phys_enc
,
367 "failed to register IRQ callback for %s\n",
369 irq
->irq_idx
= -EINVAL
;
373 ret
= dpu_core_irq_enable(phys_enc
->dpu_kms
, &irq
->irq_idx
, 1);
375 DRM_ERROR("enable failed id=%u, intr=%d, hw=%d, irq=%d",
376 DRMID(phys_enc
->parent
), intr_idx
, irq
->hw_idx
,
378 dpu_core_irq_unregister_callback(phys_enc
->dpu_kms
,
379 irq
->irq_idx
, &irq
->cb
);
380 irq
->irq_idx
= -EINVAL
;
384 trace_dpu_enc_irq_register_success(DRMID(phys_enc
->parent
), intr_idx
,
385 irq
->hw_idx
, irq
->irq_idx
);
390 int dpu_encoder_helper_unregister_irq(struct dpu_encoder_phys
*phys_enc
,
391 enum dpu_intr_idx intr_idx
)
393 struct dpu_encoder_irq
*irq
;
396 irq
= &phys_enc
->irq
[intr_idx
];
398 /* silently skip irqs that weren't registered */
399 if (irq
->irq_idx
< 0) {
400 DRM_ERROR("duplicate unregister id=%u, intr=%d, hw=%d, irq=%d",
401 DRMID(phys_enc
->parent
), intr_idx
, irq
->hw_idx
,
406 ret
= dpu_core_irq_disable(phys_enc
->dpu_kms
, &irq
->irq_idx
, 1);
408 DRM_ERROR("disable failed id=%u, intr=%d, hw=%d, irq=%d ret=%d",
409 DRMID(phys_enc
->parent
), intr_idx
, irq
->hw_idx
,
413 ret
= dpu_core_irq_unregister_callback(phys_enc
->dpu_kms
, irq
->irq_idx
,
416 DRM_ERROR("unreg cb fail id=%u, intr=%d, hw=%d, irq=%d ret=%d",
417 DRMID(phys_enc
->parent
), intr_idx
, irq
->hw_idx
,
421 trace_dpu_enc_irq_unregister_success(DRMID(phys_enc
->parent
), intr_idx
,
422 irq
->hw_idx
, irq
->irq_idx
);
424 irq
->irq_idx
= -EINVAL
;
429 void dpu_encoder_get_hw_resources(struct drm_encoder
*drm_enc
,
430 struct dpu_encoder_hw_resources
*hw_res
)
432 struct dpu_encoder_virt
*dpu_enc
= NULL
;
435 dpu_enc
= to_dpu_encoder_virt(drm_enc
);
436 DPU_DEBUG_ENC(dpu_enc
, "\n");
438 /* Query resources used by phys encs, expected to be without overlap */
439 memset(hw_res
, 0, sizeof(*hw_res
));
441 for (i
= 0; i
< dpu_enc
->num_phys_encs
; i
++) {
442 struct dpu_encoder_phys
*phys
= dpu_enc
->phys_encs
[i
];
444 if (phys
->ops
.get_hw_resources
)
445 phys
->ops
.get_hw_resources(phys
, hw_res
);
449 static void dpu_encoder_destroy(struct drm_encoder
*drm_enc
)
451 struct dpu_encoder_virt
*dpu_enc
= NULL
;
455 DPU_ERROR("invalid encoder\n");
459 dpu_enc
= to_dpu_encoder_virt(drm_enc
);
460 DPU_DEBUG_ENC(dpu_enc
, "\n");
462 mutex_lock(&dpu_enc
->enc_lock
);
464 for (i
= 0; i
< dpu_enc
->num_phys_encs
; i
++) {
465 struct dpu_encoder_phys
*phys
= dpu_enc
->phys_encs
[i
];
467 if (phys
->ops
.destroy
) {
468 phys
->ops
.destroy(phys
);
469 --dpu_enc
->num_phys_encs
;
470 dpu_enc
->phys_encs
[i
] = NULL
;
474 if (dpu_enc
->num_phys_encs
)
475 DPU_ERROR_ENC(dpu_enc
, "expected 0 num_phys_encs not %d\n",
476 dpu_enc
->num_phys_encs
);
477 dpu_enc
->num_phys_encs
= 0;
478 mutex_unlock(&dpu_enc
->enc_lock
);
480 drm_encoder_cleanup(drm_enc
);
481 mutex_destroy(&dpu_enc
->enc_lock
);
484 void dpu_encoder_helper_split_config(
485 struct dpu_encoder_phys
*phys_enc
,
486 enum dpu_intf interface
)
488 struct dpu_encoder_virt
*dpu_enc
;
489 struct split_pipe_cfg cfg
= { 0 };
490 struct dpu_hw_mdp
*hw_mdptop
;
491 struct msm_display_info
*disp_info
;
493 if (!phys_enc
->hw_mdptop
|| !phys_enc
->parent
) {
494 DPU_ERROR("invalid arg(s), encoder %d\n", phys_enc
!= NULL
);
498 dpu_enc
= to_dpu_encoder_virt(phys_enc
->parent
);
499 hw_mdptop
= phys_enc
->hw_mdptop
;
500 disp_info
= &dpu_enc
->disp_info
;
502 if (disp_info
->intf_type
!= DRM_MODE_ENCODER_DSI
)
506 * disable split modes since encoder will be operating in as the only
507 * encoder, either for the entire use case in the case of, for example,
508 * single DSI, or for this frame in the case of left/right only partial
511 if (phys_enc
->split_role
== ENC_ROLE_SOLO
) {
512 if (hw_mdptop
->ops
.setup_split_pipe
)
513 hw_mdptop
->ops
.setup_split_pipe(hw_mdptop
, &cfg
);
518 cfg
.mode
= phys_enc
->intf_mode
;
519 cfg
.intf
= interface
;
521 if (cfg
.en
&& phys_enc
->ops
.needs_single_flush
&&
522 phys_enc
->ops
.needs_single_flush(phys_enc
))
523 cfg
.split_flush_en
= true;
525 if (phys_enc
->split_role
== ENC_ROLE_MASTER
) {
526 DPU_DEBUG_ENC(dpu_enc
, "enable %d\n", cfg
.en
);
528 if (hw_mdptop
->ops
.setup_split_pipe
)
529 hw_mdptop
->ops
.setup_split_pipe(hw_mdptop
, &cfg
);
533 static struct msm_display_topology
dpu_encoder_get_topology(
534 struct dpu_encoder_virt
*dpu_enc
,
535 struct dpu_kms
*dpu_kms
,
536 struct drm_display_mode
*mode
)
538 struct msm_display_topology topology
= {0};
539 int i
, intf_count
= 0;
541 for (i
= 0; i
< MAX_PHYS_ENCODERS_PER_VIRTUAL
; i
++)
542 if (dpu_enc
->phys_encs
[i
])
545 /* Datapath topology selection
548 * 2 LM, 2 INTF ( Split display using 2 interfaces)
552 * 2 LM, 1 INTF (stream merge to support high resolution interfaces)
554 * Adding color blocks only to primary interface if available in
559 else if (!dpu_kms
->catalog
->caps
->has_3d_merge
)
562 topology
.num_lm
= (mode
->hdisplay
> MAX_HDISPLAY_SPLIT
) ? 2 : 1;
564 if (dpu_enc
->disp_info
.intf_type
== DRM_MODE_ENCODER_DSI
) {
565 if (dpu_kms
->catalog
->dspp
&&
566 (dpu_kms
->catalog
->dspp_count
>= topology
.num_lm
))
567 topology
.num_dspp
= topology
.num_lm
;
570 topology
.num_enc
= 0;
571 topology
.num_intf
= intf_count
;
575 static int dpu_encoder_virt_atomic_check(
576 struct drm_encoder
*drm_enc
,
577 struct drm_crtc_state
*crtc_state
,
578 struct drm_connector_state
*conn_state
)
580 struct dpu_encoder_virt
*dpu_enc
;
581 struct msm_drm_private
*priv
;
582 struct dpu_kms
*dpu_kms
;
583 const struct drm_display_mode
*mode
;
584 struct drm_display_mode
*adj_mode
;
585 struct msm_display_topology topology
;
586 struct dpu_global_state
*global_state
;
590 if (!drm_enc
|| !crtc_state
|| !conn_state
) {
591 DPU_ERROR("invalid arg(s), drm_enc %d, crtc/conn state %d/%d\n",
592 drm_enc
!= NULL
, crtc_state
!= NULL
, conn_state
!= NULL
);
596 dpu_enc
= to_dpu_encoder_virt(drm_enc
);
597 DPU_DEBUG_ENC(dpu_enc
, "\n");
599 priv
= drm_enc
->dev
->dev_private
;
600 dpu_kms
= to_dpu_kms(priv
->kms
);
601 mode
= &crtc_state
->mode
;
602 adj_mode
= &crtc_state
->adjusted_mode
;
603 global_state
= dpu_kms_get_global_state(crtc_state
->state
);
604 if (IS_ERR(global_state
))
605 return PTR_ERR(global_state
);
607 trace_dpu_enc_atomic_check(DRMID(drm_enc
));
609 /* perform atomic check on the first physical encoder (master) */
610 for (i
= 0; i
< dpu_enc
->num_phys_encs
; i
++) {
611 struct dpu_encoder_phys
*phys
= dpu_enc
->phys_encs
[i
];
613 if (phys
->ops
.atomic_check
)
614 ret
= phys
->ops
.atomic_check(phys
, crtc_state
,
616 else if (phys
->ops
.mode_fixup
)
617 if (!phys
->ops
.mode_fixup(phys
, mode
, adj_mode
))
621 DPU_ERROR_ENC(dpu_enc
,
622 "mode unsupported, phys idx %d\n", i
);
627 topology
= dpu_encoder_get_topology(dpu_enc
, dpu_kms
, adj_mode
);
629 /* Reserve dynamic resources now. */
632 * Release and Allocate resources on every modeset
633 * Dont allocate when active is false.
635 if (drm_atomic_crtc_needs_modeset(crtc_state
)) {
636 dpu_rm_release(global_state
, drm_enc
);
638 if (!crtc_state
->active_changed
|| crtc_state
->active
)
639 ret
= dpu_rm_reserve(&dpu_kms
->rm
, global_state
,
640 drm_enc
, crtc_state
, topology
);
644 trace_dpu_enc_atomic_check_flags(DRMID(drm_enc
), adj_mode
->flags
);
649 static void _dpu_encoder_update_vsync_source(struct dpu_encoder_virt
*dpu_enc
,
650 struct msm_display_info
*disp_info
)
652 struct dpu_vsync_source_cfg vsync_cfg
= { 0 };
653 struct msm_drm_private
*priv
;
654 struct dpu_kms
*dpu_kms
;
655 struct dpu_hw_mdp
*hw_mdptop
;
656 struct drm_encoder
*drm_enc
;
659 if (!dpu_enc
|| !disp_info
) {
660 DPU_ERROR("invalid param dpu_enc:%d or disp_info:%d\n",
661 dpu_enc
!= NULL
, disp_info
!= NULL
);
663 } else if (dpu_enc
->num_phys_encs
> ARRAY_SIZE(dpu_enc
->hw_pp
)) {
664 DPU_ERROR("invalid num phys enc %d/%d\n",
665 dpu_enc
->num_phys_encs
,
666 (int) ARRAY_SIZE(dpu_enc
->hw_pp
));
670 drm_enc
= &dpu_enc
->base
;
671 /* this pointers are checked in virt_enable_helper */
672 priv
= drm_enc
->dev
->dev_private
;
674 dpu_kms
= to_dpu_kms(priv
->kms
);
675 hw_mdptop
= dpu_kms
->hw_mdp
;
677 DPU_ERROR("invalid mdptop\n");
681 if (hw_mdptop
->ops
.setup_vsync_source
&&
682 disp_info
->capabilities
& MSM_DISPLAY_CAP_CMD_MODE
) {
683 for (i
= 0; i
< dpu_enc
->num_phys_encs
; i
++)
684 vsync_cfg
.ppnumber
[i
] = dpu_enc
->hw_pp
[i
]->idx
;
686 vsync_cfg
.pp_count
= dpu_enc
->num_phys_encs
;
687 if (disp_info
->is_te_using_watchdog_timer
)
688 vsync_cfg
.vsync_source
= DPU_VSYNC_SOURCE_WD_TIMER_0
;
690 vsync_cfg
.vsync_source
= DPU_VSYNC0_SOURCE_GPIO
;
692 hw_mdptop
->ops
.setup_vsync_source(hw_mdptop
, &vsync_cfg
);
696 static void _dpu_encoder_irq_control(struct drm_encoder
*drm_enc
, bool enable
)
698 struct dpu_encoder_virt
*dpu_enc
;
702 DPU_ERROR("invalid encoder\n");
706 dpu_enc
= to_dpu_encoder_virt(drm_enc
);
708 DPU_DEBUG_ENC(dpu_enc
, "enable:%d\n", enable
);
709 for (i
= 0; i
< dpu_enc
->num_phys_encs
; i
++) {
710 struct dpu_encoder_phys
*phys
= dpu_enc
->phys_encs
[i
];
712 if (phys
->ops
.irq_control
)
713 phys
->ops
.irq_control(phys
, enable
);
718 static void _dpu_encoder_resource_control_helper(struct drm_encoder
*drm_enc
,
721 struct msm_drm_private
*priv
;
722 struct dpu_kms
*dpu_kms
;
723 struct dpu_encoder_virt
*dpu_enc
;
725 dpu_enc
= to_dpu_encoder_virt(drm_enc
);
726 priv
= drm_enc
->dev
->dev_private
;
727 dpu_kms
= to_dpu_kms(priv
->kms
);
729 trace_dpu_enc_rc_helper(DRMID(drm_enc
), enable
);
731 if (!dpu_enc
->cur_master
) {
732 DPU_ERROR("encoder master not set\n");
737 /* enable DPU core clks */
738 pm_runtime_get_sync(&dpu_kms
->pdev
->dev
);
740 /* enable all the irq */
741 _dpu_encoder_irq_control(drm_enc
, true);
744 /* disable all the irq */
745 _dpu_encoder_irq_control(drm_enc
, false);
747 /* disable DPU core clks */
748 pm_runtime_put_sync(&dpu_kms
->pdev
->dev
);
753 static int dpu_encoder_resource_control(struct drm_encoder
*drm_enc
,
756 struct dpu_encoder_virt
*dpu_enc
;
757 struct msm_drm_private
*priv
;
758 bool is_vid_mode
= false;
760 if (!drm_enc
|| !drm_enc
->dev
|| !drm_enc
->crtc
) {
761 DPU_ERROR("invalid parameters\n");
764 dpu_enc
= to_dpu_encoder_virt(drm_enc
);
765 priv
= drm_enc
->dev
->dev_private
;
766 is_vid_mode
= dpu_enc
->disp_info
.capabilities
&
767 MSM_DISPLAY_CAP_VID_MODE
;
770 * when idle_pc is not supported, process only KICKOFF, STOP and MODESET
771 * events and return early for other events (ie wb display).
773 if (!dpu_enc
->idle_pc_supported
&&
774 (sw_event
!= DPU_ENC_RC_EVENT_KICKOFF
&&
775 sw_event
!= DPU_ENC_RC_EVENT_STOP
&&
776 sw_event
!= DPU_ENC_RC_EVENT_PRE_STOP
))
779 trace_dpu_enc_rc(DRMID(drm_enc
), sw_event
, dpu_enc
->idle_pc_supported
,
780 dpu_enc
->rc_state
, "begin");
783 case DPU_ENC_RC_EVENT_KICKOFF
:
784 /* cancel delayed off work, if any */
785 if (cancel_delayed_work_sync(&dpu_enc
->delayed_off_work
))
786 DPU_DEBUG_ENC(dpu_enc
, "sw_event:%d, work cancelled\n",
789 mutex_lock(&dpu_enc
->rc_lock
);
791 /* return if the resource control is already in ON state */
792 if (dpu_enc
->rc_state
== DPU_ENC_RC_STATE_ON
) {
793 DRM_DEBUG_KMS("id;%u, sw_event:%d, rc in ON state\n",
794 DRMID(drm_enc
), sw_event
);
795 mutex_unlock(&dpu_enc
->rc_lock
);
797 } else if (dpu_enc
->rc_state
!= DPU_ENC_RC_STATE_OFF
&&
798 dpu_enc
->rc_state
!= DPU_ENC_RC_STATE_IDLE
) {
799 DRM_DEBUG_KMS("id;%u, sw_event:%d, rc in state %d\n",
800 DRMID(drm_enc
), sw_event
,
802 mutex_unlock(&dpu_enc
->rc_lock
);
806 if (is_vid_mode
&& dpu_enc
->rc_state
== DPU_ENC_RC_STATE_IDLE
)
807 _dpu_encoder_irq_control(drm_enc
, true);
809 _dpu_encoder_resource_control_helper(drm_enc
, true);
811 dpu_enc
->rc_state
= DPU_ENC_RC_STATE_ON
;
813 trace_dpu_enc_rc(DRMID(drm_enc
), sw_event
,
814 dpu_enc
->idle_pc_supported
, dpu_enc
->rc_state
,
817 mutex_unlock(&dpu_enc
->rc_lock
);
820 case DPU_ENC_RC_EVENT_FRAME_DONE
:
822 * mutex lock is not used as this event happens at interrupt
823 * context. And locking is not required as, the other events
824 * like KICKOFF and STOP does a wait-for-idle before executing
825 * the resource_control
827 if (dpu_enc
->rc_state
!= DPU_ENC_RC_STATE_ON
) {
828 DRM_DEBUG_KMS("id:%d, sw_event:%d,rc:%d-unexpected\n",
829 DRMID(drm_enc
), sw_event
,
835 * schedule off work item only when there are no
838 if (dpu_crtc_frame_pending(drm_enc
->crtc
) > 1) {
839 DRM_DEBUG_KMS("id:%d skip schedule work\n",
844 queue_delayed_work(priv
->wq
, &dpu_enc
->delayed_off_work
,
845 msecs_to_jiffies(dpu_enc
->idle_timeout
));
847 trace_dpu_enc_rc(DRMID(drm_enc
), sw_event
,
848 dpu_enc
->idle_pc_supported
, dpu_enc
->rc_state
,
852 case DPU_ENC_RC_EVENT_PRE_STOP
:
853 /* cancel delayed off work, if any */
854 if (cancel_delayed_work_sync(&dpu_enc
->delayed_off_work
))
855 DPU_DEBUG_ENC(dpu_enc
, "sw_event:%d, work cancelled\n",
858 mutex_lock(&dpu_enc
->rc_lock
);
861 dpu_enc
->rc_state
== DPU_ENC_RC_STATE_IDLE
) {
862 _dpu_encoder_irq_control(drm_enc
, true);
864 /* skip if is already OFF or IDLE, resources are off already */
865 else if (dpu_enc
->rc_state
== DPU_ENC_RC_STATE_OFF
||
866 dpu_enc
->rc_state
== DPU_ENC_RC_STATE_IDLE
) {
867 DRM_DEBUG_KMS("id:%u, sw_event:%d, rc in %d state\n",
868 DRMID(drm_enc
), sw_event
,
870 mutex_unlock(&dpu_enc
->rc_lock
);
874 dpu_enc
->rc_state
= DPU_ENC_RC_STATE_PRE_OFF
;
876 trace_dpu_enc_rc(DRMID(drm_enc
), sw_event
,
877 dpu_enc
->idle_pc_supported
, dpu_enc
->rc_state
,
880 mutex_unlock(&dpu_enc
->rc_lock
);
883 case DPU_ENC_RC_EVENT_STOP
:
884 mutex_lock(&dpu_enc
->rc_lock
);
886 /* return if the resource control is already in OFF state */
887 if (dpu_enc
->rc_state
== DPU_ENC_RC_STATE_OFF
) {
888 DRM_DEBUG_KMS("id: %u, sw_event:%d, rc in OFF state\n",
889 DRMID(drm_enc
), sw_event
);
890 mutex_unlock(&dpu_enc
->rc_lock
);
892 } else if (dpu_enc
->rc_state
== DPU_ENC_RC_STATE_ON
) {
893 DRM_ERROR("id: %u, sw_event:%d, rc in state %d\n",
894 DRMID(drm_enc
), sw_event
, dpu_enc
->rc_state
);
895 mutex_unlock(&dpu_enc
->rc_lock
);
900 * expect to arrive here only if in either idle state or pre-off
901 * and in IDLE state the resources are already disabled
903 if (dpu_enc
->rc_state
== DPU_ENC_RC_STATE_PRE_OFF
)
904 _dpu_encoder_resource_control_helper(drm_enc
, false);
906 dpu_enc
->rc_state
= DPU_ENC_RC_STATE_OFF
;
908 trace_dpu_enc_rc(DRMID(drm_enc
), sw_event
,
909 dpu_enc
->idle_pc_supported
, dpu_enc
->rc_state
,
912 mutex_unlock(&dpu_enc
->rc_lock
);
915 case DPU_ENC_RC_EVENT_ENTER_IDLE
:
916 mutex_lock(&dpu_enc
->rc_lock
);
918 if (dpu_enc
->rc_state
!= DPU_ENC_RC_STATE_ON
) {
919 DRM_ERROR("id: %u, sw_event:%d, rc:%d !ON state\n",
920 DRMID(drm_enc
), sw_event
, dpu_enc
->rc_state
);
921 mutex_unlock(&dpu_enc
->rc_lock
);
926 * if we are in ON but a frame was just kicked off,
927 * ignore the IDLE event, it's probably a stale timer event
929 if (dpu_enc
->frame_busy_mask
[0]) {
930 DRM_ERROR("id:%u, sw_event:%d, rc:%d frame pending\n",
931 DRMID(drm_enc
), sw_event
, dpu_enc
->rc_state
);
932 mutex_unlock(&dpu_enc
->rc_lock
);
937 _dpu_encoder_irq_control(drm_enc
, false);
939 _dpu_encoder_resource_control_helper(drm_enc
, false);
941 dpu_enc
->rc_state
= DPU_ENC_RC_STATE_IDLE
;
943 trace_dpu_enc_rc(DRMID(drm_enc
), sw_event
,
944 dpu_enc
->idle_pc_supported
, dpu_enc
->rc_state
,
947 mutex_unlock(&dpu_enc
->rc_lock
);
951 DRM_ERROR("id:%u, unexpected sw_event: %d\n", DRMID(drm_enc
),
953 trace_dpu_enc_rc(DRMID(drm_enc
), sw_event
,
954 dpu_enc
->idle_pc_supported
, dpu_enc
->rc_state
,
959 trace_dpu_enc_rc(DRMID(drm_enc
), sw_event
,
960 dpu_enc
->idle_pc_supported
, dpu_enc
->rc_state
,
965 static void dpu_encoder_virt_mode_set(struct drm_encoder
*drm_enc
,
966 struct drm_display_mode
*mode
,
967 struct drm_display_mode
*adj_mode
)
969 struct dpu_encoder_virt
*dpu_enc
;
970 struct msm_drm_private
*priv
;
971 struct dpu_kms
*dpu_kms
;
972 struct list_head
*connector_list
;
973 struct drm_connector
*conn
= NULL
, *conn_iter
;
974 struct drm_crtc
*drm_crtc
;
975 struct dpu_crtc_state
*cstate
;
976 struct dpu_global_state
*global_state
;
977 struct dpu_hw_blk
*hw_pp
[MAX_CHANNELS_PER_ENC
];
978 struct dpu_hw_blk
*hw_ctl
[MAX_CHANNELS_PER_ENC
];
979 struct dpu_hw_blk
*hw_lm
[MAX_CHANNELS_PER_ENC
];
980 struct dpu_hw_blk
*hw_dspp
[MAX_CHANNELS_PER_ENC
] = { NULL
};
981 int num_lm
, num_ctl
, num_pp
;
985 DPU_ERROR("invalid encoder\n");
989 dpu_enc
= to_dpu_encoder_virt(drm_enc
);
990 DPU_DEBUG_ENC(dpu_enc
, "\n");
992 priv
= drm_enc
->dev
->dev_private
;
993 dpu_kms
= to_dpu_kms(priv
->kms
);
994 connector_list
= &dpu_kms
->dev
->mode_config
.connector_list
;
996 global_state
= dpu_kms_get_existing_global_state(dpu_kms
);
997 if (IS_ERR_OR_NULL(global_state
)) {
998 DPU_ERROR("Failed to get global state");
1002 trace_dpu_enc_mode_set(DRMID(drm_enc
));
1004 if (drm_enc
->encoder_type
== DRM_MODE_ENCODER_TMDS
&& priv
->dp
)
1005 msm_dp_display_mode_set(priv
->dp
, drm_enc
, mode
, adj_mode
);
1007 list_for_each_entry(conn_iter
, connector_list
, head
)
1008 if (conn_iter
->encoder
== drm_enc
)
1012 DPU_ERROR_ENC(dpu_enc
, "failed to find attached connector\n");
1014 } else if (!conn
->state
) {
1015 DPU_ERROR_ENC(dpu_enc
, "invalid connector state\n");
1019 drm_for_each_crtc(drm_crtc
, drm_enc
->dev
)
1020 if (drm_crtc
->state
->encoder_mask
& drm_encoder_mask(drm_enc
))
1023 /* Query resource that have been reserved in atomic check step. */
1024 num_pp
= dpu_rm_get_assigned_resources(&dpu_kms
->rm
, global_state
,
1025 drm_enc
->base
.id
, DPU_HW_BLK_PINGPONG
, hw_pp
,
1027 num_ctl
= dpu_rm_get_assigned_resources(&dpu_kms
->rm
, global_state
,
1028 drm_enc
->base
.id
, DPU_HW_BLK_CTL
, hw_ctl
, ARRAY_SIZE(hw_ctl
));
1029 num_lm
= dpu_rm_get_assigned_resources(&dpu_kms
->rm
, global_state
,
1030 drm_enc
->base
.id
, DPU_HW_BLK_LM
, hw_lm
, ARRAY_SIZE(hw_lm
));
1031 dpu_rm_get_assigned_resources(&dpu_kms
->rm
, global_state
,
1032 drm_enc
->base
.id
, DPU_HW_BLK_DSPP
, hw_dspp
,
1033 ARRAY_SIZE(hw_dspp
));
1035 for (i
= 0; i
< MAX_CHANNELS_PER_ENC
; i
++)
1036 dpu_enc
->hw_pp
[i
] = i
< num_pp
? to_dpu_hw_pingpong(hw_pp
[i
])
1039 cstate
= to_dpu_crtc_state(drm_crtc
->state
);
1041 for (i
= 0; i
< num_lm
; i
++) {
1042 int ctl_idx
= (i
< num_ctl
) ? i
: (num_ctl
-1);
1044 cstate
->mixers
[i
].hw_lm
= to_dpu_hw_mixer(hw_lm
[i
]);
1045 cstate
->mixers
[i
].lm_ctl
= to_dpu_hw_ctl(hw_ctl
[ctl_idx
]);
1046 cstate
->mixers
[i
].hw_dspp
= to_dpu_hw_dspp(hw_dspp
[i
]);
1049 cstate
->num_mixers
= num_lm
;
1051 for (i
= 0; i
< dpu_enc
->num_phys_encs
; i
++) {
1053 struct dpu_hw_blk
*hw_blk
[MAX_CHANNELS_PER_ENC
];
1054 struct dpu_encoder_phys
*phys
= dpu_enc
->phys_encs
[i
];
1056 if (!dpu_enc
->hw_pp
[i
]) {
1057 DPU_ERROR_ENC(dpu_enc
,
1058 "no pp block assigned at idx: %d\n", i
);
1063 DPU_ERROR_ENC(dpu_enc
,
1064 "no ctl block assigned at idx: %d\n", i
);
1068 phys
->hw_pp
= dpu_enc
->hw_pp
[i
];
1069 phys
->hw_ctl
= to_dpu_hw_ctl(hw_ctl
[i
]);
1071 num_blk
= dpu_rm_get_assigned_resources(&dpu_kms
->rm
,
1072 global_state
, drm_enc
->base
.id
, DPU_HW_BLK_INTF
,
1073 hw_blk
, ARRAY_SIZE(hw_blk
));
1074 for (j
= 0; j
< num_blk
; j
++) {
1075 struct dpu_hw_intf
*hw_intf
;
1077 hw_intf
= to_dpu_hw_intf(hw_blk
[i
]);
1078 if (hw_intf
->idx
== phys
->intf_idx
)
1079 phys
->hw_intf
= hw_intf
;
1082 if (!phys
->hw_intf
) {
1083 DPU_ERROR_ENC(dpu_enc
,
1084 "no intf block assigned at idx: %d\n", i
);
1088 phys
->connector
= conn
->state
->connector
;
1089 if (phys
->ops
.mode_set
)
1090 phys
->ops
.mode_set(phys
, mode
, adj_mode
);
1094 static void _dpu_encoder_virt_enable_helper(struct drm_encoder
*drm_enc
)
1096 struct dpu_encoder_virt
*dpu_enc
= NULL
;
1099 if (!drm_enc
|| !drm_enc
->dev
) {
1100 DPU_ERROR("invalid parameters\n");
1104 dpu_enc
= to_dpu_encoder_virt(drm_enc
);
1105 if (!dpu_enc
|| !dpu_enc
->cur_master
) {
1106 DPU_ERROR("invalid dpu encoder/master\n");
1111 if (dpu_enc
->disp_info
.intf_type
== DRM_MODE_CONNECTOR_DisplayPort
&&
1112 dpu_enc
->cur_master
->hw_mdptop
&&
1113 dpu_enc
->cur_master
->hw_mdptop
->ops
.intf_audio_select
)
1114 dpu_enc
->cur_master
->hw_mdptop
->ops
.intf_audio_select(
1115 dpu_enc
->cur_master
->hw_mdptop
);
1117 _dpu_encoder_update_vsync_source(dpu_enc
, &dpu_enc
->disp_info
);
1119 if (dpu_enc
->disp_info
.intf_type
== DRM_MODE_ENCODER_DSI
&&
1120 !WARN_ON(dpu_enc
->num_phys_encs
== 0)) {
1121 unsigned bpc
= dpu_enc
->phys_encs
[0]->connector
->display_info
.bpc
;
1122 for (i
= 0; i
< MAX_CHANNELS_PER_ENC
; i
++) {
1123 if (!dpu_enc
->hw_pp
[i
])
1125 _dpu_encoder_setup_dither(dpu_enc
->hw_pp
[i
], bpc
);
1130 void dpu_encoder_virt_runtime_resume(struct drm_encoder
*drm_enc
)
1132 struct dpu_encoder_virt
*dpu_enc
= to_dpu_encoder_virt(drm_enc
);
1134 mutex_lock(&dpu_enc
->enc_lock
);
1136 if (!dpu_enc
->enabled
)
1139 if (dpu_enc
->cur_slave
&& dpu_enc
->cur_slave
->ops
.restore
)
1140 dpu_enc
->cur_slave
->ops
.restore(dpu_enc
->cur_slave
);
1141 if (dpu_enc
->cur_master
&& dpu_enc
->cur_master
->ops
.restore
)
1142 dpu_enc
->cur_master
->ops
.restore(dpu_enc
->cur_master
);
1144 _dpu_encoder_virt_enable_helper(drm_enc
);
1147 mutex_unlock(&dpu_enc
->enc_lock
);
1150 static void dpu_encoder_virt_enable(struct drm_encoder
*drm_enc
)
1152 struct dpu_encoder_virt
*dpu_enc
= NULL
;
1154 struct msm_drm_private
*priv
;
1155 struct drm_display_mode
*cur_mode
= NULL
;
1158 DPU_ERROR("invalid encoder\n");
1161 dpu_enc
= to_dpu_encoder_virt(drm_enc
);
1163 mutex_lock(&dpu_enc
->enc_lock
);
1164 cur_mode
= &dpu_enc
->base
.crtc
->state
->adjusted_mode
;
1165 priv
= drm_enc
->dev
->dev_private
;
1167 trace_dpu_enc_enable(DRMID(drm_enc
), cur_mode
->hdisplay
,
1168 cur_mode
->vdisplay
);
1170 /* always enable slave encoder before master */
1171 if (dpu_enc
->cur_slave
&& dpu_enc
->cur_slave
->ops
.enable
)
1172 dpu_enc
->cur_slave
->ops
.enable(dpu_enc
->cur_slave
);
1174 if (dpu_enc
->cur_master
&& dpu_enc
->cur_master
->ops
.enable
)
1175 dpu_enc
->cur_master
->ops
.enable(dpu_enc
->cur_master
);
1177 ret
= dpu_encoder_resource_control(drm_enc
, DPU_ENC_RC_EVENT_KICKOFF
);
1179 DPU_ERROR_ENC(dpu_enc
, "dpu resource control failed: %d\n",
1184 _dpu_encoder_virt_enable_helper(drm_enc
);
1186 if (drm_enc
->encoder_type
== DRM_MODE_ENCODER_TMDS
&& priv
->dp
) {
1187 ret
= msm_dp_display_enable(priv
->dp
,
1190 DPU_ERROR_ENC(dpu_enc
, "dp display enable failed: %d\n",
1195 dpu_enc
->enabled
= true;
1198 mutex_unlock(&dpu_enc
->enc_lock
);
1201 static void dpu_encoder_virt_disable(struct drm_encoder
*drm_enc
)
1203 struct dpu_encoder_virt
*dpu_enc
= NULL
;
1204 struct msm_drm_private
*priv
;
1208 DPU_ERROR("invalid encoder\n");
1210 } else if (!drm_enc
->dev
) {
1211 DPU_ERROR("invalid dev\n");
1215 dpu_enc
= to_dpu_encoder_virt(drm_enc
);
1216 DPU_DEBUG_ENC(dpu_enc
, "\n");
1218 mutex_lock(&dpu_enc
->enc_lock
);
1219 dpu_enc
->enabled
= false;
1221 priv
= drm_enc
->dev
->dev_private
;
1223 trace_dpu_enc_disable(DRMID(drm_enc
));
1226 dpu_encoder_wait_for_event(drm_enc
, MSM_ENC_TX_COMPLETE
);
1228 if (drm_enc
->encoder_type
== DRM_MODE_ENCODER_TMDS
&& priv
->dp
) {
1229 if (msm_dp_display_pre_disable(priv
->dp
, drm_enc
))
1230 DPU_ERROR_ENC(dpu_enc
, "dp display push idle failed\n");
1233 dpu_encoder_resource_control(drm_enc
, DPU_ENC_RC_EVENT_PRE_STOP
);
1235 for (i
= 0; i
< dpu_enc
->num_phys_encs
; i
++) {
1236 struct dpu_encoder_phys
*phys
= dpu_enc
->phys_encs
[i
];
1238 if (phys
->ops
.disable
)
1239 phys
->ops
.disable(phys
);
1243 /* after phys waits for frame-done, should be no more frames pending */
1244 if (atomic_xchg(&dpu_enc
->frame_done_timeout_ms
, 0)) {
1245 DPU_ERROR("enc%d timeout pending\n", drm_enc
->base
.id
);
1246 del_timer_sync(&dpu_enc
->frame_done_timer
);
1249 dpu_encoder_resource_control(drm_enc
, DPU_ENC_RC_EVENT_STOP
);
1251 for (i
= 0; i
< dpu_enc
->num_phys_encs
; i
++) {
1252 dpu_enc
->phys_encs
[i
]->connector
= NULL
;
1255 DPU_DEBUG_ENC(dpu_enc
, "encoder disabled\n");
1257 if (drm_enc
->encoder_type
== DRM_MODE_ENCODER_TMDS
&& priv
->dp
) {
1258 if (msm_dp_display_disable(priv
->dp
, drm_enc
))
1259 DPU_ERROR_ENC(dpu_enc
, "dp display disable failed\n");
1262 mutex_unlock(&dpu_enc
->enc_lock
);
1265 static enum dpu_intf
dpu_encoder_get_intf(struct dpu_mdss_cfg
*catalog
,
1266 enum dpu_intf_type type
, u32 controller_id
)
1270 for (i
= 0; i
< catalog
->intf_count
; i
++) {
1271 if (catalog
->intf
[i
].type
== type
1272 && catalog
->intf
[i
].controller_id
== controller_id
) {
1273 return catalog
->intf
[i
].id
;
1280 static void dpu_encoder_vblank_callback(struct drm_encoder
*drm_enc
,
1281 struct dpu_encoder_phys
*phy_enc
)
1283 struct dpu_encoder_virt
*dpu_enc
= NULL
;
1284 unsigned long lock_flags
;
1286 if (!drm_enc
|| !phy_enc
)
1289 DPU_ATRACE_BEGIN("encoder_vblank_callback");
1290 dpu_enc
= to_dpu_encoder_virt(drm_enc
);
1292 spin_lock_irqsave(&dpu_enc
->enc_spinlock
, lock_flags
);
1294 dpu_crtc_vblank_callback(dpu_enc
->crtc
);
1295 spin_unlock_irqrestore(&dpu_enc
->enc_spinlock
, lock_flags
);
1297 atomic_inc(&phy_enc
->vsync_cnt
);
1298 DPU_ATRACE_END("encoder_vblank_callback");
1301 static void dpu_encoder_underrun_callback(struct drm_encoder
*drm_enc
,
1302 struct dpu_encoder_phys
*phy_enc
)
1307 DPU_ATRACE_BEGIN("encoder_underrun_callback");
1308 atomic_inc(&phy_enc
->underrun_cnt
);
1309 trace_dpu_enc_underrun_cb(DRMID(drm_enc
),
1310 atomic_read(&phy_enc
->underrun_cnt
));
1311 DPU_ATRACE_END("encoder_underrun_callback");
1314 void dpu_encoder_assign_crtc(struct drm_encoder
*drm_enc
, struct drm_crtc
*crtc
)
1316 struct dpu_encoder_virt
*dpu_enc
= to_dpu_encoder_virt(drm_enc
);
1317 unsigned long lock_flags
;
1319 spin_lock_irqsave(&dpu_enc
->enc_spinlock
, lock_flags
);
1320 /* crtc should always be cleared before re-assigning */
1321 WARN_ON(crtc
&& dpu_enc
->crtc
);
1322 dpu_enc
->crtc
= crtc
;
1323 spin_unlock_irqrestore(&dpu_enc
->enc_spinlock
, lock_flags
);
1326 void dpu_encoder_toggle_vblank_for_crtc(struct drm_encoder
*drm_enc
,
1327 struct drm_crtc
*crtc
, bool enable
)
1329 struct dpu_encoder_virt
*dpu_enc
= to_dpu_encoder_virt(drm_enc
);
1330 unsigned long lock_flags
;
1333 trace_dpu_enc_vblank_cb(DRMID(drm_enc
), enable
);
1335 spin_lock_irqsave(&dpu_enc
->enc_spinlock
, lock_flags
);
1336 if (dpu_enc
->crtc
!= crtc
) {
1337 spin_unlock_irqrestore(&dpu_enc
->enc_spinlock
, lock_flags
);
1340 spin_unlock_irqrestore(&dpu_enc
->enc_spinlock
, lock_flags
);
1342 for (i
= 0; i
< dpu_enc
->num_phys_encs
; i
++) {
1343 struct dpu_encoder_phys
*phys
= dpu_enc
->phys_encs
[i
];
1345 if (phys
->ops
.control_vblank_irq
)
1346 phys
->ops
.control_vblank_irq(phys
, enable
);
1350 void dpu_encoder_register_frame_event_callback(struct drm_encoder
*drm_enc
,
1351 void (*frame_event_cb
)(void *, u32 event
),
1352 void *frame_event_cb_data
)
1354 struct dpu_encoder_virt
*dpu_enc
= to_dpu_encoder_virt(drm_enc
);
1355 unsigned long lock_flags
;
1358 enable
= frame_event_cb
? true : false;
1361 DPU_ERROR("invalid encoder\n");
1364 trace_dpu_enc_frame_event_cb(DRMID(drm_enc
), enable
);
1366 spin_lock_irqsave(&dpu_enc
->enc_spinlock
, lock_flags
);
1367 dpu_enc
->crtc_frame_event_cb
= frame_event_cb
;
1368 dpu_enc
->crtc_frame_event_cb_data
= frame_event_cb_data
;
1369 spin_unlock_irqrestore(&dpu_enc
->enc_spinlock
, lock_flags
);
1372 static void dpu_encoder_frame_done_callback(
1373 struct drm_encoder
*drm_enc
,
1374 struct dpu_encoder_phys
*ready_phys
, u32 event
)
1376 struct dpu_encoder_virt
*dpu_enc
= to_dpu_encoder_virt(drm_enc
);
1379 if (event
& (DPU_ENCODER_FRAME_EVENT_DONE
1380 | DPU_ENCODER_FRAME_EVENT_ERROR
1381 | DPU_ENCODER_FRAME_EVENT_PANEL_DEAD
)) {
1383 if (!dpu_enc
->frame_busy_mask
[0]) {
1385 * suppress frame_done without waiter,
1386 * likely autorefresh
1388 trace_dpu_enc_frame_done_cb_not_busy(DRMID(drm_enc
),
1389 event
, ready_phys
->intf_idx
);
1393 /* One of the physical encoders has become idle */
1394 for (i
= 0; i
< dpu_enc
->num_phys_encs
; i
++) {
1395 if (dpu_enc
->phys_encs
[i
] == ready_phys
) {
1396 trace_dpu_enc_frame_done_cb(DRMID(drm_enc
), i
,
1397 dpu_enc
->frame_busy_mask
[0]);
1398 clear_bit(i
, dpu_enc
->frame_busy_mask
);
1402 if (!dpu_enc
->frame_busy_mask
[0]) {
1403 atomic_set(&dpu_enc
->frame_done_timeout_ms
, 0);
1404 del_timer(&dpu_enc
->frame_done_timer
);
1406 dpu_encoder_resource_control(drm_enc
,
1407 DPU_ENC_RC_EVENT_FRAME_DONE
);
1409 if (dpu_enc
->crtc_frame_event_cb
)
1410 dpu_enc
->crtc_frame_event_cb(
1411 dpu_enc
->crtc_frame_event_cb_data
,
1415 if (dpu_enc
->crtc_frame_event_cb
)
1416 dpu_enc
->crtc_frame_event_cb(
1417 dpu_enc
->crtc_frame_event_cb_data
, event
);
1421 static void dpu_encoder_off_work(struct work_struct
*work
)
1423 struct dpu_encoder_virt
*dpu_enc
= container_of(work
,
1424 struct dpu_encoder_virt
, delayed_off_work
.work
);
1427 DPU_ERROR("invalid dpu encoder\n");
1431 dpu_encoder_resource_control(&dpu_enc
->base
,
1432 DPU_ENC_RC_EVENT_ENTER_IDLE
);
1434 dpu_encoder_frame_done_callback(&dpu_enc
->base
, NULL
,
1435 DPU_ENCODER_FRAME_EVENT_IDLE
);
1439 * _dpu_encoder_trigger_flush - trigger flush for a physical encoder
1440 * @drm_enc: Pointer to drm encoder structure
1441 * @phys: Pointer to physical encoder structure
1442 * @extra_flush_bits: Additional bit mask to include in flush trigger
1444 static void _dpu_encoder_trigger_flush(struct drm_encoder
*drm_enc
,
1445 struct dpu_encoder_phys
*phys
, uint32_t extra_flush_bits
)
1447 struct dpu_hw_ctl
*ctl
;
1448 int pending_kickoff_cnt
;
1452 DPU_ERROR("invalid pingpong hw\n");
1457 if (!ctl
->ops
.trigger_flush
) {
1458 DPU_ERROR("missing trigger cb\n");
1462 pending_kickoff_cnt
= dpu_encoder_phys_inc_pending(phys
);
1464 if (extra_flush_bits
&& ctl
->ops
.update_pending_flush
)
1465 ctl
->ops
.update_pending_flush(ctl
, extra_flush_bits
);
1467 ctl
->ops
.trigger_flush(ctl
);
1469 if (ctl
->ops
.get_pending_flush
)
1470 ret
= ctl
->ops
.get_pending_flush(ctl
);
1472 trace_dpu_enc_trigger_flush(DRMID(drm_enc
), phys
->intf_idx
,
1473 pending_kickoff_cnt
, ctl
->idx
,
1474 extra_flush_bits
, ret
);
1478 * _dpu_encoder_trigger_start - trigger start for a physical encoder
1479 * @phys: Pointer to physical encoder structure
1481 static void _dpu_encoder_trigger_start(struct dpu_encoder_phys
*phys
)
1484 DPU_ERROR("invalid argument(s)\n");
1489 DPU_ERROR("invalid pingpong hw\n");
1493 if (phys
->ops
.trigger_start
&& phys
->enable_state
!= DPU_ENC_DISABLED
)
1494 phys
->ops
.trigger_start(phys
);
1497 void dpu_encoder_helper_trigger_start(struct dpu_encoder_phys
*phys_enc
)
1499 struct dpu_hw_ctl
*ctl
;
1501 ctl
= phys_enc
->hw_ctl
;
1502 if (ctl
->ops
.trigger_start
) {
1503 ctl
->ops
.trigger_start(ctl
);
1504 trace_dpu_enc_trigger_start(DRMID(phys_enc
->parent
), ctl
->idx
);
1508 static int dpu_encoder_helper_wait_event_timeout(
1511 struct dpu_encoder_wait_info
*info
)
1514 s64 expected_time
= ktime_to_ms(ktime_get()) + info
->timeout_ms
;
1515 s64 jiffies
= msecs_to_jiffies(info
->timeout_ms
);
1519 rc
= wait_event_timeout(*(info
->wq
),
1520 atomic_read(info
->atomic_cnt
) == 0, jiffies
);
1521 time
= ktime_to_ms(ktime_get());
1523 trace_dpu_enc_wait_event_timeout(drm_id
, hw_id
, rc
, time
,
1525 atomic_read(info
->atomic_cnt
));
1526 /* If we timed out, counter is valid and time is less, wait again */
1527 } while (atomic_read(info
->atomic_cnt
) && (rc
== 0) &&
1528 (time
< expected_time
));
1533 static void dpu_encoder_helper_hw_reset(struct dpu_encoder_phys
*phys_enc
)
1535 struct dpu_encoder_virt
*dpu_enc
;
1536 struct dpu_hw_ctl
*ctl
;
1539 dpu_enc
= to_dpu_encoder_virt(phys_enc
->parent
);
1540 ctl
= phys_enc
->hw_ctl
;
1542 if (!ctl
->ops
.reset
)
1545 DRM_DEBUG_KMS("id:%u ctl %d reset\n", DRMID(phys_enc
->parent
),
1548 rc
= ctl
->ops
.reset(ctl
);
1550 DPU_ERROR_ENC(dpu_enc
, "ctl %d reset failure\n", ctl
->idx
);
1552 phys_enc
->enable_state
= DPU_ENC_ENABLED
;
1556 * _dpu_encoder_kickoff_phys - handle physical encoder kickoff
1557 * Iterate through the physical encoders and perform consolidated flush
1558 * and/or control start triggering as needed. This is done in the virtual
1559 * encoder rather than the individual physical ones in order to handle
1560 * use cases that require visibility into multiple physical encoders at
1562 * @dpu_enc: Pointer to virtual encoder structure
1564 static void _dpu_encoder_kickoff_phys(struct dpu_encoder_virt
*dpu_enc
)
1566 struct dpu_hw_ctl
*ctl
;
1567 uint32_t i
, pending_flush
;
1568 unsigned long lock_flags
;
1570 pending_flush
= 0x0;
1572 /* update pending counts and trigger kickoff ctl flush atomically */
1573 spin_lock_irqsave(&dpu_enc
->enc_spinlock
, lock_flags
);
1575 /* don't perform flush/start operations for slave encoders */
1576 for (i
= 0; i
< dpu_enc
->num_phys_encs
; i
++) {
1577 struct dpu_encoder_phys
*phys
= dpu_enc
->phys_encs
[i
];
1579 if (phys
->enable_state
== DPU_ENC_DISABLED
)
1585 * This is cleared in frame_done worker, which isn't invoked
1586 * for async commits. So don't set this for async, since it'll
1587 * roll over to the next commit.
1589 if (phys
->split_role
!= ENC_ROLE_SLAVE
)
1590 set_bit(i
, dpu_enc
->frame_busy_mask
);
1592 if (!phys
->ops
.needs_single_flush
||
1593 !phys
->ops
.needs_single_flush(phys
))
1594 _dpu_encoder_trigger_flush(&dpu_enc
->base
, phys
, 0x0);
1595 else if (ctl
->ops
.get_pending_flush
)
1596 pending_flush
|= ctl
->ops
.get_pending_flush(ctl
);
1599 /* for split flush, combine pending flush masks and send to master */
1600 if (pending_flush
&& dpu_enc
->cur_master
) {
1601 _dpu_encoder_trigger_flush(
1603 dpu_enc
->cur_master
,
1607 _dpu_encoder_trigger_start(dpu_enc
->cur_master
);
1609 spin_unlock_irqrestore(&dpu_enc
->enc_spinlock
, lock_flags
);
1612 void dpu_encoder_trigger_kickoff_pending(struct drm_encoder
*drm_enc
)
1614 struct dpu_encoder_virt
*dpu_enc
;
1615 struct dpu_encoder_phys
*phys
;
1617 struct dpu_hw_ctl
*ctl
;
1618 struct msm_display_info
*disp_info
;
1621 DPU_ERROR("invalid encoder\n");
1624 dpu_enc
= to_dpu_encoder_virt(drm_enc
);
1625 disp_info
= &dpu_enc
->disp_info
;
1627 for (i
= 0; i
< dpu_enc
->num_phys_encs
; i
++) {
1628 phys
= dpu_enc
->phys_encs
[i
];
1631 if (ctl
->ops
.clear_pending_flush
)
1632 ctl
->ops
.clear_pending_flush(ctl
);
1634 /* update only for command mode primary ctl */
1635 if ((phys
== dpu_enc
->cur_master
) &&
1636 (disp_info
->capabilities
& MSM_DISPLAY_CAP_CMD_MODE
)
1637 && ctl
->ops
.trigger_pending
)
1638 ctl
->ops
.trigger_pending(ctl
);
1642 static u32
_dpu_encoder_calculate_linetime(struct dpu_encoder_virt
*dpu_enc
,
1643 struct drm_display_mode
*mode
)
1650 * For linetime calculation, only operate on master encoder.
1652 if (!dpu_enc
->cur_master
)
1655 if (!dpu_enc
->cur_master
->ops
.get_line_count
) {
1656 DPU_ERROR("get_line_count function not defined\n");
1660 pclk_rate
= mode
->clock
; /* pixel clock in kHz */
1661 if (pclk_rate
== 0) {
1662 DPU_ERROR("pclk is 0, cannot calculate line time\n");
1666 pclk_period
= DIV_ROUND_UP_ULL(1000000000ull, pclk_rate
);
1667 if (pclk_period
== 0) {
1668 DPU_ERROR("pclk period is 0\n");
1673 * Line time calculation based on Pixel clock and HTOTAL.
1674 * Final unit is in ns.
1676 line_time
= (pclk_period
* mode
->htotal
) / 1000;
1677 if (line_time
== 0) {
1678 DPU_ERROR("line time calculation is 0\n");
1682 DPU_DEBUG_ENC(dpu_enc
,
1683 "clk_rate=%lldkHz, clk_period=%d, linetime=%dns\n",
1684 pclk_rate
, pclk_period
, line_time
);
1689 int dpu_encoder_vsync_time(struct drm_encoder
*drm_enc
, ktime_t
*wakeup_time
)
1691 struct drm_display_mode
*mode
;
1692 struct dpu_encoder_virt
*dpu_enc
;
1695 u32 vtotal
, time_to_vsync
;
1698 dpu_enc
= to_dpu_encoder_virt(drm_enc
);
1700 if (!drm_enc
->crtc
|| !drm_enc
->crtc
->state
) {
1701 DPU_ERROR("crtc/crtc state object is NULL\n");
1704 mode
= &drm_enc
->crtc
->state
->adjusted_mode
;
1706 line_time
= _dpu_encoder_calculate_linetime(dpu_enc
, mode
);
1710 cur_line
= dpu_enc
->cur_master
->ops
.get_line_count(dpu_enc
->cur_master
);
1712 vtotal
= mode
->vtotal
;
1713 if (cur_line
>= vtotal
)
1714 time_to_vsync
= line_time
* vtotal
;
1716 time_to_vsync
= line_time
* (vtotal
- cur_line
);
1718 if (time_to_vsync
== 0) {
1719 DPU_ERROR("time to vsync should not be zero, vtotal=%d\n",
1724 cur_time
= ktime_get();
1725 *wakeup_time
= ktime_add_ns(cur_time
, time_to_vsync
);
1727 DPU_DEBUG_ENC(dpu_enc
,
1728 "cur_line=%u vtotal=%u time_to_vsync=%u, cur_time=%lld, wakeup_time=%lld\n",
1729 cur_line
, vtotal
, time_to_vsync
,
1730 ktime_to_ms(cur_time
),
1731 ktime_to_ms(*wakeup_time
));
1735 static void dpu_encoder_vsync_event_handler(struct timer_list
*t
)
1737 struct dpu_encoder_virt
*dpu_enc
= from_timer(dpu_enc
, t
,
1739 struct drm_encoder
*drm_enc
= &dpu_enc
->base
;
1740 struct msm_drm_private
*priv
;
1741 struct msm_drm_thread
*event_thread
;
1743 if (!drm_enc
->dev
|| !drm_enc
->crtc
) {
1744 DPU_ERROR("invalid parameters\n");
1748 priv
= drm_enc
->dev
->dev_private
;
1750 if (drm_enc
->crtc
->index
>= ARRAY_SIZE(priv
->event_thread
)) {
1751 DPU_ERROR("invalid crtc index\n");
1754 event_thread
= &priv
->event_thread
[drm_enc
->crtc
->index
];
1755 if (!event_thread
) {
1756 DPU_ERROR("event_thread not found for crtc:%d\n",
1757 drm_enc
->crtc
->index
);
1761 del_timer(&dpu_enc
->vsync_event_timer
);
1764 static void dpu_encoder_vsync_event_work_handler(struct kthread_work
*work
)
1766 struct dpu_encoder_virt
*dpu_enc
= container_of(work
,
1767 struct dpu_encoder_virt
, vsync_event_work
);
1768 ktime_t wakeup_time
;
1771 DPU_ERROR("invalid dpu encoder\n");
1775 if (dpu_encoder_vsync_time(&dpu_enc
->base
, &wakeup_time
))
1778 trace_dpu_enc_vsync_event_work(DRMID(&dpu_enc
->base
), wakeup_time
);
1779 mod_timer(&dpu_enc
->vsync_event_timer
,
1780 nsecs_to_jiffies(ktime_to_ns(wakeup_time
)));
1783 void dpu_encoder_prepare_for_kickoff(struct drm_encoder
*drm_enc
)
1785 struct dpu_encoder_virt
*dpu_enc
;
1786 struct dpu_encoder_phys
*phys
;
1787 bool needs_hw_reset
= false;
1790 dpu_enc
= to_dpu_encoder_virt(drm_enc
);
1792 trace_dpu_enc_prepare_kickoff(DRMID(drm_enc
));
1794 /* prepare for next kickoff, may include waiting on previous kickoff */
1795 DPU_ATRACE_BEGIN("enc_prepare_for_kickoff");
1796 for (i
= 0; i
< dpu_enc
->num_phys_encs
; i
++) {
1797 phys
= dpu_enc
->phys_encs
[i
];
1798 if (phys
->ops
.prepare_for_kickoff
)
1799 phys
->ops
.prepare_for_kickoff(phys
);
1800 if (phys
->enable_state
== DPU_ENC_ERR_NEEDS_HW_RESET
)
1801 needs_hw_reset
= true;
1803 DPU_ATRACE_END("enc_prepare_for_kickoff");
1805 dpu_encoder_resource_control(drm_enc
, DPU_ENC_RC_EVENT_KICKOFF
);
1807 /* if any phys needs reset, reset all phys, in-order */
1808 if (needs_hw_reset
) {
1809 trace_dpu_enc_prepare_kickoff_reset(DRMID(drm_enc
));
1810 for (i
= 0; i
< dpu_enc
->num_phys_encs
; i
++) {
1811 dpu_encoder_helper_hw_reset(dpu_enc
->phys_encs
[i
]);
1816 void dpu_encoder_kickoff(struct drm_encoder
*drm_enc
)
1818 struct dpu_encoder_virt
*dpu_enc
;
1819 struct dpu_encoder_phys
*phys
;
1820 ktime_t wakeup_time
;
1821 unsigned long timeout_ms
;
1824 DPU_ATRACE_BEGIN("encoder_kickoff");
1825 dpu_enc
= to_dpu_encoder_virt(drm_enc
);
1827 trace_dpu_enc_kickoff(DRMID(drm_enc
));
1829 timeout_ms
= DPU_ENCODER_FRAME_DONE_TIMEOUT_FRAMES
* 1000 /
1830 drm_mode_vrefresh(&drm_enc
->crtc
->state
->adjusted_mode
);
1832 atomic_set(&dpu_enc
->frame_done_timeout_ms
, timeout_ms
);
1833 mod_timer(&dpu_enc
->frame_done_timer
,
1834 jiffies
+ msecs_to_jiffies(timeout_ms
));
1836 /* All phys encs are ready to go, trigger the kickoff */
1837 _dpu_encoder_kickoff_phys(dpu_enc
);
1839 /* allow phys encs to handle any post-kickoff business */
1840 for (i
= 0; i
< dpu_enc
->num_phys_encs
; i
++) {
1841 phys
= dpu_enc
->phys_encs
[i
];
1842 if (phys
->ops
.handle_post_kickoff
)
1843 phys
->ops
.handle_post_kickoff(phys
);
1846 if (dpu_enc
->disp_info
.intf_type
== DRM_MODE_ENCODER_DSI
&&
1847 !dpu_encoder_vsync_time(drm_enc
, &wakeup_time
)) {
1848 trace_dpu_enc_early_kickoff(DRMID(drm_enc
),
1849 ktime_to_ms(wakeup_time
));
1850 mod_timer(&dpu_enc
->vsync_event_timer
,
1851 nsecs_to_jiffies(ktime_to_ns(wakeup_time
)));
1854 DPU_ATRACE_END("encoder_kickoff");
1857 void dpu_encoder_prepare_commit(struct drm_encoder
*drm_enc
)
1859 struct dpu_encoder_virt
*dpu_enc
;
1860 struct dpu_encoder_phys
*phys
;
1864 DPU_ERROR("invalid encoder\n");
1867 dpu_enc
= to_dpu_encoder_virt(drm_enc
);
1869 for (i
= 0; i
< dpu_enc
->num_phys_encs
; i
++) {
1870 phys
= dpu_enc
->phys_encs
[i
];
1871 if (phys
->ops
.prepare_commit
)
1872 phys
->ops
.prepare_commit(phys
);
1876 #ifdef CONFIG_DEBUG_FS
1877 static int _dpu_encoder_status_show(struct seq_file
*s
, void *data
)
1879 struct dpu_encoder_virt
*dpu_enc
= s
->private;
1882 mutex_lock(&dpu_enc
->enc_lock
);
1883 for (i
= 0; i
< dpu_enc
->num_phys_encs
; i
++) {
1884 struct dpu_encoder_phys
*phys
= dpu_enc
->phys_encs
[i
];
1886 seq_printf(s
, "intf:%d vsync:%8d underrun:%8d ",
1887 phys
->intf_idx
- INTF_0
,
1888 atomic_read(&phys
->vsync_cnt
),
1889 atomic_read(&phys
->underrun_cnt
));
1891 switch (phys
->intf_mode
) {
1892 case INTF_MODE_VIDEO
:
1893 seq_puts(s
, "mode: video\n");
1896 seq_puts(s
, "mode: command\n");
1899 seq_puts(s
, "mode: ???\n");
1903 mutex_unlock(&dpu_enc
->enc_lock
);
1908 DEFINE_SHOW_ATTRIBUTE(_dpu_encoder_status
);
1910 static int _dpu_encoder_init_debugfs(struct drm_encoder
*drm_enc
)
1912 struct dpu_encoder_virt
*dpu_enc
= to_dpu_encoder_virt(drm_enc
);
1915 char name
[DPU_NAME_SIZE
];
1917 if (!drm_enc
->dev
) {
1918 DPU_ERROR("invalid encoder or kms\n");
1922 snprintf(name
, DPU_NAME_SIZE
, "encoder%u", drm_enc
->base
.id
);
1924 /* create overall sub-directory for the encoder */
1925 dpu_enc
->debugfs_root
= debugfs_create_dir(name
,
1926 drm_enc
->dev
->primary
->debugfs_root
);
1928 /* don't error check these */
1929 debugfs_create_file("status", 0600,
1930 dpu_enc
->debugfs_root
, dpu_enc
, &_dpu_encoder_status_fops
);
1932 for (i
= 0; i
< dpu_enc
->num_phys_encs
; i
++)
1933 if (dpu_enc
->phys_encs
[i
]->ops
.late_register
)
1934 dpu_enc
->phys_encs
[i
]->ops
.late_register(
1935 dpu_enc
->phys_encs
[i
],
1936 dpu_enc
->debugfs_root
);
1941 static int _dpu_encoder_init_debugfs(struct drm_encoder
*drm_enc
)
1947 static int dpu_encoder_late_register(struct drm_encoder
*encoder
)
1949 return _dpu_encoder_init_debugfs(encoder
);
1952 static void dpu_encoder_early_unregister(struct drm_encoder
*encoder
)
1954 struct dpu_encoder_virt
*dpu_enc
= to_dpu_encoder_virt(encoder
);
1956 debugfs_remove_recursive(dpu_enc
->debugfs_root
);
1959 static int dpu_encoder_virt_add_phys_encs(
1961 struct dpu_encoder_virt
*dpu_enc
,
1962 struct dpu_enc_phys_init_params
*params
)
1964 struct dpu_encoder_phys
*enc
= NULL
;
1966 DPU_DEBUG_ENC(dpu_enc
, "\n");
1969 * We may create up to NUM_PHYS_ENCODER_TYPES physical encoder types
1970 * in this function, check up-front.
1972 if (dpu_enc
->num_phys_encs
+ NUM_PHYS_ENCODER_TYPES
>=
1973 ARRAY_SIZE(dpu_enc
->phys_encs
)) {
1974 DPU_ERROR_ENC(dpu_enc
, "too many physical encoders %d\n",
1975 dpu_enc
->num_phys_encs
);
1979 if (display_caps
& MSM_DISPLAY_CAP_VID_MODE
) {
1980 enc
= dpu_encoder_phys_vid_init(params
);
1982 if (IS_ERR_OR_NULL(enc
)) {
1983 DPU_ERROR_ENC(dpu_enc
, "failed to init vid enc: %ld\n",
1985 return enc
== NULL
? -EINVAL
: PTR_ERR(enc
);
1988 dpu_enc
->phys_encs
[dpu_enc
->num_phys_encs
] = enc
;
1989 ++dpu_enc
->num_phys_encs
;
1992 if (display_caps
& MSM_DISPLAY_CAP_CMD_MODE
) {
1993 enc
= dpu_encoder_phys_cmd_init(params
);
1995 if (IS_ERR_OR_NULL(enc
)) {
1996 DPU_ERROR_ENC(dpu_enc
, "failed to init cmd enc: %ld\n",
1998 return enc
== NULL
? -EINVAL
: PTR_ERR(enc
);
2001 dpu_enc
->phys_encs
[dpu_enc
->num_phys_encs
] = enc
;
2002 ++dpu_enc
->num_phys_encs
;
2005 if (params
->split_role
== ENC_ROLE_SLAVE
)
2006 dpu_enc
->cur_slave
= enc
;
2008 dpu_enc
->cur_master
= enc
;
2013 static const struct dpu_encoder_virt_ops dpu_encoder_parent_ops
= {
2014 .handle_vblank_virt
= dpu_encoder_vblank_callback
,
2015 .handle_underrun_virt
= dpu_encoder_underrun_callback
,
2016 .handle_frame_done
= dpu_encoder_frame_done_callback
,
2019 static int dpu_encoder_setup_display(struct dpu_encoder_virt
*dpu_enc
,
2020 struct dpu_kms
*dpu_kms
,
2021 struct msm_display_info
*disp_info
)
2025 enum dpu_intf_type intf_type
= INTF_NONE
;
2026 struct dpu_enc_phys_init_params phys_params
;
2029 DPU_ERROR("invalid arg(s), enc %d\n", dpu_enc
!= NULL
);
2033 dpu_enc
->cur_master
= NULL
;
2035 memset(&phys_params
, 0, sizeof(phys_params
));
2036 phys_params
.dpu_kms
= dpu_kms
;
2037 phys_params
.parent
= &dpu_enc
->base
;
2038 phys_params
.parent_ops
= &dpu_encoder_parent_ops
;
2039 phys_params
.enc_spinlock
= &dpu_enc
->enc_spinlock
;
2043 switch (disp_info
->intf_type
) {
2044 case DRM_MODE_ENCODER_DSI
:
2045 intf_type
= INTF_DSI
;
2047 case DRM_MODE_ENCODER_TMDS
:
2048 intf_type
= INTF_DP
;
2052 WARN_ON(disp_info
->num_of_h_tiles
< 1);
2054 DPU_DEBUG("dsi_info->num_of_h_tiles %d\n", disp_info
->num_of_h_tiles
);
2056 if ((disp_info
->capabilities
& MSM_DISPLAY_CAP_CMD_MODE
) ||
2057 (disp_info
->capabilities
& MSM_DISPLAY_CAP_VID_MODE
))
2058 dpu_enc
->idle_pc_supported
=
2059 dpu_kms
->catalog
->caps
->has_idle_pc
;
2061 mutex_lock(&dpu_enc
->enc_lock
);
2062 for (i
= 0; i
< disp_info
->num_of_h_tiles
&& !ret
; i
++) {
2064 * Left-most tile is at index 0, content is controller id
2065 * h_tile_instance_ids[2] = {0, 1}; DSI0 = left, DSI1 = right
2066 * h_tile_instance_ids[2] = {1, 0}; DSI1 = left, DSI0 = right
2068 u32 controller_id
= disp_info
->h_tile_instance
[i
];
2070 if (disp_info
->num_of_h_tiles
> 1) {
2072 phys_params
.split_role
= ENC_ROLE_MASTER
;
2074 phys_params
.split_role
= ENC_ROLE_SLAVE
;
2076 phys_params
.split_role
= ENC_ROLE_SOLO
;
2079 DPU_DEBUG("h_tile_instance %d = %d, split_role %d\n",
2080 i
, controller_id
, phys_params
.split_role
);
2082 phys_params
.intf_idx
= dpu_encoder_get_intf(dpu_kms
->catalog
,
2085 if (phys_params
.intf_idx
== INTF_MAX
) {
2086 DPU_ERROR_ENC(dpu_enc
, "could not get intf: type %d, id %d\n",
2087 intf_type
, controller_id
);
2092 ret
= dpu_encoder_virt_add_phys_encs(disp_info
->capabilities
,
2096 DPU_ERROR_ENC(dpu_enc
, "failed to add phys encs\n");
2100 for (i
= 0; i
< dpu_enc
->num_phys_encs
; i
++) {
2101 struct dpu_encoder_phys
*phys
= dpu_enc
->phys_encs
[i
];
2102 atomic_set(&phys
->vsync_cnt
, 0);
2103 atomic_set(&phys
->underrun_cnt
, 0);
2105 mutex_unlock(&dpu_enc
->enc_lock
);
2110 static void dpu_encoder_frame_done_timeout(struct timer_list
*t
)
2112 struct dpu_encoder_virt
*dpu_enc
= from_timer(dpu_enc
, t
,
2114 struct drm_encoder
*drm_enc
= &dpu_enc
->base
;
2117 if (!drm_enc
->dev
) {
2118 DPU_ERROR("invalid parameters\n");
2122 if (!dpu_enc
->frame_busy_mask
[0] || !dpu_enc
->crtc_frame_event_cb
) {
2123 DRM_DEBUG_KMS("id:%u invalid timeout frame_busy_mask=%lu\n",
2124 DRMID(drm_enc
), dpu_enc
->frame_busy_mask
[0]);
2126 } else if (!atomic_xchg(&dpu_enc
->frame_done_timeout_ms
, 0)) {
2127 DRM_DEBUG_KMS("id:%u invalid timeout\n", DRMID(drm_enc
));
2131 DPU_ERROR_ENC(dpu_enc
, "frame done timeout\n");
2133 event
= DPU_ENCODER_FRAME_EVENT_ERROR
;
2134 trace_dpu_enc_frame_done_timeout(DRMID(drm_enc
), event
);
2135 dpu_enc
->crtc_frame_event_cb(dpu_enc
->crtc_frame_event_cb_data
, event
);
2138 static const struct drm_encoder_helper_funcs dpu_encoder_helper_funcs
= {
2139 .mode_set
= dpu_encoder_virt_mode_set
,
2140 .disable
= dpu_encoder_virt_disable
,
2141 .enable
= dpu_kms_encoder_enable
,
2142 .atomic_check
= dpu_encoder_virt_atomic_check
,
2144 /* This is called by dpu_kms_encoder_enable */
2145 .commit
= dpu_encoder_virt_enable
,
2148 static const struct drm_encoder_funcs dpu_encoder_funcs
= {
2149 .destroy
= dpu_encoder_destroy
,
2150 .late_register
= dpu_encoder_late_register
,
2151 .early_unregister
= dpu_encoder_early_unregister
,
2154 int dpu_encoder_setup(struct drm_device
*dev
, struct drm_encoder
*enc
,
2155 struct msm_display_info
*disp_info
)
2157 struct msm_drm_private
*priv
= dev
->dev_private
;
2158 struct dpu_kms
*dpu_kms
= to_dpu_kms(priv
->kms
);
2159 struct drm_encoder
*drm_enc
= NULL
;
2160 struct dpu_encoder_virt
*dpu_enc
= NULL
;
2163 dpu_enc
= to_dpu_encoder_virt(enc
);
2165 ret
= dpu_encoder_setup_display(dpu_enc
, dpu_kms
, disp_info
);
2169 atomic_set(&dpu_enc
->frame_done_timeout_ms
, 0);
2170 timer_setup(&dpu_enc
->frame_done_timer
,
2171 dpu_encoder_frame_done_timeout
, 0);
2173 if (disp_info
->intf_type
== DRM_MODE_ENCODER_DSI
)
2174 timer_setup(&dpu_enc
->vsync_event_timer
,
2175 dpu_encoder_vsync_event_handler
,
2179 INIT_DELAYED_WORK(&dpu_enc
->delayed_off_work
,
2180 dpu_encoder_off_work
);
2181 dpu_enc
->idle_timeout
= IDLE_TIMEOUT
;
2183 kthread_init_work(&dpu_enc
->vsync_event_work
,
2184 dpu_encoder_vsync_event_work_handler
);
2186 memcpy(&dpu_enc
->disp_info
, disp_info
, sizeof(*disp_info
));
2188 DPU_DEBUG_ENC(dpu_enc
, "created\n");
2193 DPU_ERROR("failed to create encoder\n");
2195 dpu_encoder_destroy(drm_enc
);
2202 struct drm_encoder
*dpu_encoder_init(struct drm_device
*dev
,
2205 struct dpu_encoder_virt
*dpu_enc
= NULL
;
2208 dpu_enc
= devm_kzalloc(dev
->dev
, sizeof(*dpu_enc
), GFP_KERNEL
);
2210 return ERR_PTR(-ENOMEM
);
2212 rc
= drm_encoder_init(dev
, &dpu_enc
->base
, &dpu_encoder_funcs
,
2213 drm_enc_mode
, NULL
);
2215 devm_kfree(dev
->dev
, dpu_enc
);
2219 drm_encoder_helper_add(&dpu_enc
->base
, &dpu_encoder_helper_funcs
);
2221 spin_lock_init(&dpu_enc
->enc_spinlock
);
2222 dpu_enc
->enabled
= false;
2223 mutex_init(&dpu_enc
->enc_lock
);
2224 mutex_init(&dpu_enc
->rc_lock
);
2226 return &dpu_enc
->base
;
2229 int dpu_encoder_wait_for_event(struct drm_encoder
*drm_enc
,
2230 enum msm_event_wait event
)
2232 int (*fn_wait
)(struct dpu_encoder_phys
*phys_enc
) = NULL
;
2233 struct dpu_encoder_virt
*dpu_enc
= NULL
;
2237 DPU_ERROR("invalid encoder\n");
2240 dpu_enc
= to_dpu_encoder_virt(drm_enc
);
2241 DPU_DEBUG_ENC(dpu_enc
, "\n");
2243 for (i
= 0; i
< dpu_enc
->num_phys_encs
; i
++) {
2244 struct dpu_encoder_phys
*phys
= dpu_enc
->phys_encs
[i
];
2247 case MSM_ENC_COMMIT_DONE
:
2248 fn_wait
= phys
->ops
.wait_for_commit_done
;
2250 case MSM_ENC_TX_COMPLETE
:
2251 fn_wait
= phys
->ops
.wait_for_tx_complete
;
2253 case MSM_ENC_VBLANK
:
2254 fn_wait
= phys
->ops
.wait_for_vblank
;
2257 DPU_ERROR_ENC(dpu_enc
, "unknown wait event %d\n",
2263 DPU_ATRACE_BEGIN("wait_for_completion_event");
2264 ret
= fn_wait(phys
);
2265 DPU_ATRACE_END("wait_for_completion_event");
2274 enum dpu_intf_mode
dpu_encoder_get_intf_mode(struct drm_encoder
*encoder
)
2276 struct dpu_encoder_virt
*dpu_enc
= NULL
;
2279 DPU_ERROR("invalid encoder\n");
2280 return INTF_MODE_NONE
;
2282 dpu_enc
= to_dpu_encoder_virt(encoder
);
2284 if (dpu_enc
->cur_master
)
2285 return dpu_enc
->cur_master
->intf_mode
;
2287 if (dpu_enc
->num_phys_encs
)
2288 return dpu_enc
->phys_encs
[0]->intf_mode
;
2290 return INTF_MODE_NONE
;