1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (c) 2014-2015 The Linux Foundation. All rights reserved.
10 * CTL - MDP Control Pool Manager
12 * Controls are shared between all display interfaces.
14 * They are intended to be used for data path configuration.
15 * The top level register programming describes the complete data path for
16 * a specific data path ID - REG_MDP5_CTL_*(<id>, ...)
18 * Hardware capabilities determine the number of concurrent data paths
20 * In certain use cases (high-resolution dual pipe), one single CTL can be
21 * shared across multiple CRTCs.
24 #define CTL_STAT_BUSY 0x1
25 #define CTL_STAT_BOOKED 0x2
28 struct mdp5_ctl_manager
*ctlm
;
32 /* CTL status bitmask */
37 /* pending flush_mask bits */
40 /* REG_MDP5_CTL_*(<id>) registers access info + lock: */
44 /* when do CTL registers need to be flushed? (mask of trigger bits) */
45 u32 pending_ctl_trigger
;
49 /* True if the current CTL has FLUSH bits pending for single FLUSH. */
52 struct mdp5_ctl
*pair
; /* Paired CTL to be flushed together */
55 struct mdp5_ctl_manager
{
56 struct drm_device
*dev
;
58 /* number of CTL / Layer Mixers in this hw config: */
62 /* to filter out non-present bits in the current hardware config */
65 /* status for single FLUSH */
66 bool single_flush_supported
;
67 u32 single_flush_pending_mask
;
69 /* pool of CTLs + lock to protect resource allocation (ctls[i].busy) */
71 struct mdp5_ctl ctls
[MAX_CTL
];
75 struct mdp5_kms
*get_kms(struct mdp5_ctl_manager
*ctl_mgr
)
77 struct msm_drm_private
*priv
= ctl_mgr
->dev
->dev_private
;
79 return to_mdp5_kms(to_mdp_kms(priv
->kms
));
83 void ctl_write(struct mdp5_ctl
*ctl
, u32 reg
, u32 data
)
85 struct mdp5_kms
*mdp5_kms
= get_kms(ctl
->ctlm
);
87 (void)ctl
->reg_offset
; /* TODO use this instead of mdp5_write */
88 mdp5_write(mdp5_kms
, reg
, data
);
92 u32
ctl_read(struct mdp5_ctl
*ctl
, u32 reg
)
94 struct mdp5_kms
*mdp5_kms
= get_kms(ctl
->ctlm
);
96 (void)ctl
->reg_offset
; /* TODO use this instead of mdp5_write */
97 return mdp5_read(mdp5_kms
, reg
);
100 static void set_display_intf(struct mdp5_kms
*mdp5_kms
,
101 struct mdp5_interface
*intf
)
106 spin_lock_irqsave(&mdp5_kms
->resource_lock
, flags
);
107 intf_sel
= mdp5_read(mdp5_kms
, REG_MDP5_DISP_INTF_SEL
);
111 intf_sel
&= ~MDP5_DISP_INTF_SEL_INTF0__MASK
;
112 intf_sel
|= MDP5_DISP_INTF_SEL_INTF0(intf
->type
);
115 intf_sel
&= ~MDP5_DISP_INTF_SEL_INTF1__MASK
;
116 intf_sel
|= MDP5_DISP_INTF_SEL_INTF1(intf
->type
);
119 intf_sel
&= ~MDP5_DISP_INTF_SEL_INTF2__MASK
;
120 intf_sel
|= MDP5_DISP_INTF_SEL_INTF2(intf
->type
);
123 intf_sel
&= ~MDP5_DISP_INTF_SEL_INTF3__MASK
;
124 intf_sel
|= MDP5_DISP_INTF_SEL_INTF3(intf
->type
);
131 mdp5_write(mdp5_kms
, REG_MDP5_DISP_INTF_SEL
, intf_sel
);
132 spin_unlock_irqrestore(&mdp5_kms
->resource_lock
, flags
);
135 static void set_ctl_op(struct mdp5_ctl
*ctl
, struct mdp5_pipeline
*pipeline
)
138 struct mdp5_interface
*intf
= pipeline
->intf
;
141 if (!mdp5_cfg_intf_is_virtual(intf
->type
))
142 ctl_op
|= MDP5_CTL_OP_INTF_NUM(INTF0
+ intf
->num
);
144 switch (intf
->type
) {
146 if (intf
->mode
== MDP5_INTF_DSI_MODE_COMMAND
)
147 ctl_op
|= MDP5_CTL_OP_CMD_MODE
;
151 if (intf
->mode
== MDP5_INTF_WB_MODE_LINE
)
152 ctl_op
|= MDP5_CTL_OP_MODE(MODE_WB_2_LINE
);
159 if (pipeline
->r_mixer
)
160 ctl_op
|= MDP5_CTL_OP_PACK_3D_ENABLE
|
161 MDP5_CTL_OP_PACK_3D(1);
163 spin_lock_irqsave(&ctl
->hw_lock
, flags
);
164 ctl_write(ctl
, REG_MDP5_CTL_OP(ctl
->id
), ctl_op
);
165 spin_unlock_irqrestore(&ctl
->hw_lock
, flags
);
168 int mdp5_ctl_set_pipeline(struct mdp5_ctl
*ctl
, struct mdp5_pipeline
*pipeline
)
170 struct mdp5_kms
*mdp5_kms
= get_kms(ctl
->ctlm
);
171 struct mdp5_interface
*intf
= pipeline
->intf
;
173 /* Virtual interfaces need not set a display intf (e.g.: Writeback) */
174 if (!mdp5_cfg_intf_is_virtual(intf
->type
))
175 set_display_intf(mdp5_kms
, intf
);
177 set_ctl_op(ctl
, pipeline
);
182 static bool start_signal_needed(struct mdp5_ctl
*ctl
,
183 struct mdp5_pipeline
*pipeline
)
185 struct mdp5_interface
*intf
= pipeline
->intf
;
187 if (!ctl
->encoder_enabled
)
190 switch (intf
->type
) {
194 return intf
->mode
== MDP5_INTF_DSI_MODE_COMMAND
;
201 * send_start_signal() - Overlay Processor Start Signal
203 * For a given control operation (display pipeline), a START signal needs to be
204 * executed in order to kick off operation and activate all layers.
205 * e.g.: DSI command mode, Writeback
207 static void send_start_signal(struct mdp5_ctl
*ctl
)
211 spin_lock_irqsave(&ctl
->hw_lock
, flags
);
212 ctl_write(ctl
, REG_MDP5_CTL_START(ctl
->id
), 1);
213 spin_unlock_irqrestore(&ctl
->hw_lock
, flags
);
217 * mdp5_ctl_set_encoder_state() - set the encoder state
219 * @ctl: the CTL instance
220 * @pipeline: the encoder's INTF + MIXER configuration
221 * @enabled: true, when encoder is ready for data streaming; false, otherwise.
224 * This encoder state is needed to trigger START signal (data path kickoff).
226 int mdp5_ctl_set_encoder_state(struct mdp5_ctl
*ctl
,
227 struct mdp5_pipeline
*pipeline
,
230 struct mdp5_interface
*intf
= pipeline
->intf
;
235 ctl
->encoder_enabled
= enabled
;
236 DBG("intf_%d: %s", intf
->num
, enabled
? "on" : "off");
238 if (start_signal_needed(ctl
, pipeline
)) {
239 send_start_signal(ctl
);
247 * CTL registers need to be flushed after calling this function
248 * (call mdp5_ctl_commit() with mdp_ctl_flush_mask_ctl() mask)
250 int mdp5_ctl_set_cursor(struct mdp5_ctl
*ctl
, struct mdp5_pipeline
*pipeline
,
251 int cursor_id
, bool enable
)
253 struct mdp5_ctl_manager
*ctl_mgr
= ctl
->ctlm
;
256 struct mdp5_hw_mixer
*mixer
= pipeline
->mixer
;
258 if (WARN_ON(!mixer
)) {
259 DRM_DEV_ERROR(ctl_mgr
->dev
->dev
, "CTL %d cannot find LM",
264 if (pipeline
->r_mixer
) {
265 DRM_DEV_ERROR(ctl_mgr
->dev
->dev
, "unsupported configuration");
269 spin_lock_irqsave(&ctl
->hw_lock
, flags
);
271 blend_cfg
= ctl_read(ctl
, REG_MDP5_CTL_LAYER_REG(ctl
->id
, mixer
->lm
));
274 blend_cfg
|= MDP5_CTL_LAYER_REG_CURSOR_OUT
;
276 blend_cfg
&= ~MDP5_CTL_LAYER_REG_CURSOR_OUT
;
278 ctl_write(ctl
, REG_MDP5_CTL_LAYER_REG(ctl
->id
, mixer
->lm
), blend_cfg
);
279 ctl
->cursor_on
= enable
;
281 spin_unlock_irqrestore(&ctl
->hw_lock
, flags
);
283 ctl
->pending_ctl_trigger
= mdp_ctl_flush_mask_cursor(cursor_id
);
288 static u32
mdp_ctl_blend_mask(enum mdp5_pipe pipe
,
289 enum mdp_mixer_stage_id stage
)
292 case SSPP_VIG0
: return MDP5_CTL_LAYER_REG_VIG0(stage
);
293 case SSPP_VIG1
: return MDP5_CTL_LAYER_REG_VIG1(stage
);
294 case SSPP_VIG2
: return MDP5_CTL_LAYER_REG_VIG2(stage
);
295 case SSPP_RGB0
: return MDP5_CTL_LAYER_REG_RGB0(stage
);
296 case SSPP_RGB1
: return MDP5_CTL_LAYER_REG_RGB1(stage
);
297 case SSPP_RGB2
: return MDP5_CTL_LAYER_REG_RGB2(stage
);
298 case SSPP_DMA0
: return MDP5_CTL_LAYER_REG_DMA0(stage
);
299 case SSPP_DMA1
: return MDP5_CTL_LAYER_REG_DMA1(stage
);
300 case SSPP_VIG3
: return MDP5_CTL_LAYER_REG_VIG3(stage
);
301 case SSPP_RGB3
: return MDP5_CTL_LAYER_REG_RGB3(stage
);
308 static u32
mdp_ctl_blend_ext_mask(enum mdp5_pipe pipe
,
309 enum mdp_mixer_stage_id stage
)
311 if (stage
< STAGE6
&& (pipe
!= SSPP_CURSOR0
&& pipe
!= SSPP_CURSOR1
))
315 case SSPP_VIG0
: return MDP5_CTL_LAYER_EXT_REG_VIG0_BIT3
;
316 case SSPP_VIG1
: return MDP5_CTL_LAYER_EXT_REG_VIG1_BIT3
;
317 case SSPP_VIG2
: return MDP5_CTL_LAYER_EXT_REG_VIG2_BIT3
;
318 case SSPP_RGB0
: return MDP5_CTL_LAYER_EXT_REG_RGB0_BIT3
;
319 case SSPP_RGB1
: return MDP5_CTL_LAYER_EXT_REG_RGB1_BIT3
;
320 case SSPP_RGB2
: return MDP5_CTL_LAYER_EXT_REG_RGB2_BIT3
;
321 case SSPP_DMA0
: return MDP5_CTL_LAYER_EXT_REG_DMA0_BIT3
;
322 case SSPP_DMA1
: return MDP5_CTL_LAYER_EXT_REG_DMA1_BIT3
;
323 case SSPP_VIG3
: return MDP5_CTL_LAYER_EXT_REG_VIG3_BIT3
;
324 case SSPP_RGB3
: return MDP5_CTL_LAYER_EXT_REG_RGB3_BIT3
;
325 case SSPP_CURSOR0
: return MDP5_CTL_LAYER_EXT_REG_CURSOR0(stage
);
326 case SSPP_CURSOR1
: return MDP5_CTL_LAYER_EXT_REG_CURSOR1(stage
);
331 static void mdp5_ctl_reset_blend_regs(struct mdp5_ctl
*ctl
)
334 struct mdp5_ctl_manager
*ctl_mgr
= ctl
->ctlm
;
337 spin_lock_irqsave(&ctl
->hw_lock
, flags
);
339 for (i
= 0; i
< ctl_mgr
->nlm
; i
++) {
340 ctl_write(ctl
, REG_MDP5_CTL_LAYER_REG(ctl
->id
, i
), 0x0);
341 ctl_write(ctl
, REG_MDP5_CTL_LAYER_EXT_REG(ctl
->id
, i
), 0x0);
344 spin_unlock_irqrestore(&ctl
->hw_lock
, flags
);
349 int mdp5_ctl_blend(struct mdp5_ctl
*ctl
, struct mdp5_pipeline
*pipeline
,
350 enum mdp5_pipe stage
[][MAX_PIPE_STAGE
],
351 enum mdp5_pipe r_stage
[][MAX_PIPE_STAGE
],
352 u32 stage_cnt
, u32 ctl_blend_op_flags
)
354 struct mdp5_hw_mixer
*mixer
= pipeline
->mixer
;
355 struct mdp5_hw_mixer
*r_mixer
= pipeline
->r_mixer
;
357 u32 blend_cfg
= 0, blend_ext_cfg
= 0;
358 u32 r_blend_cfg
= 0, r_blend_ext_cfg
= 0;
361 mdp5_ctl_reset_blend_regs(ctl
);
363 if (ctl_blend_op_flags
& MDP5_CTL_BLEND_OP_FLAG_BORDER_OUT
) {
364 start_stage
= STAGE0
;
365 blend_cfg
|= MDP5_CTL_LAYER_REG_BORDER_COLOR
;
367 r_blend_cfg
|= MDP5_CTL_LAYER_REG_BORDER_COLOR
;
369 start_stage
= STAGE_BASE
;
372 for (i
= start_stage
; stage_cnt
&& i
<= STAGE_MAX
; i
++) {
374 mdp_ctl_blend_mask(stage
[i
][PIPE_LEFT
], i
) |
375 mdp_ctl_blend_mask(stage
[i
][PIPE_RIGHT
], i
);
377 mdp_ctl_blend_ext_mask(stage
[i
][PIPE_LEFT
], i
) |
378 mdp_ctl_blend_ext_mask(stage
[i
][PIPE_RIGHT
], i
);
381 mdp_ctl_blend_mask(r_stage
[i
][PIPE_LEFT
], i
) |
382 mdp_ctl_blend_mask(r_stage
[i
][PIPE_RIGHT
], i
);
384 mdp_ctl_blend_ext_mask(r_stage
[i
][PIPE_LEFT
], i
) |
385 mdp_ctl_blend_ext_mask(r_stage
[i
][PIPE_RIGHT
], i
);
389 spin_lock_irqsave(&ctl
->hw_lock
, flags
);
391 blend_cfg
|= MDP5_CTL_LAYER_REG_CURSOR_OUT
;
393 ctl_write(ctl
, REG_MDP5_CTL_LAYER_REG(ctl
->id
, mixer
->lm
), blend_cfg
);
394 ctl_write(ctl
, REG_MDP5_CTL_LAYER_EXT_REG(ctl
->id
, mixer
->lm
),
397 ctl_write(ctl
, REG_MDP5_CTL_LAYER_REG(ctl
->id
, r_mixer
->lm
),
399 ctl_write(ctl
, REG_MDP5_CTL_LAYER_EXT_REG(ctl
->id
, r_mixer
->lm
),
402 spin_unlock_irqrestore(&ctl
->hw_lock
, flags
);
404 ctl
->pending_ctl_trigger
= mdp_ctl_flush_mask_lm(mixer
->lm
);
406 ctl
->pending_ctl_trigger
|= mdp_ctl_flush_mask_lm(r_mixer
->lm
);
408 DBG("lm%d: blend config = 0x%08x. ext_cfg = 0x%08x", mixer
->lm
,
409 blend_cfg
, blend_ext_cfg
);
411 DBG("lm%d: blend config = 0x%08x. ext_cfg = 0x%08x",
412 r_mixer
->lm
, r_blend_cfg
, r_blend_ext_cfg
);
417 u32
mdp_ctl_flush_mask_encoder(struct mdp5_interface
*intf
)
419 if (intf
->type
== INTF_WB
)
420 return MDP5_CTL_FLUSH_WB
;
423 case 0: return MDP5_CTL_FLUSH_TIMING_0
;
424 case 1: return MDP5_CTL_FLUSH_TIMING_1
;
425 case 2: return MDP5_CTL_FLUSH_TIMING_2
;
426 case 3: return MDP5_CTL_FLUSH_TIMING_3
;
431 u32
mdp_ctl_flush_mask_cursor(int cursor_id
)
434 case 0: return MDP5_CTL_FLUSH_CURSOR_0
;
435 case 1: return MDP5_CTL_FLUSH_CURSOR_1
;
440 u32
mdp_ctl_flush_mask_pipe(enum mdp5_pipe pipe
)
443 case SSPP_VIG0
: return MDP5_CTL_FLUSH_VIG0
;
444 case SSPP_VIG1
: return MDP5_CTL_FLUSH_VIG1
;
445 case SSPP_VIG2
: return MDP5_CTL_FLUSH_VIG2
;
446 case SSPP_RGB0
: return MDP5_CTL_FLUSH_RGB0
;
447 case SSPP_RGB1
: return MDP5_CTL_FLUSH_RGB1
;
448 case SSPP_RGB2
: return MDP5_CTL_FLUSH_RGB2
;
449 case SSPP_DMA0
: return MDP5_CTL_FLUSH_DMA0
;
450 case SSPP_DMA1
: return MDP5_CTL_FLUSH_DMA1
;
451 case SSPP_VIG3
: return MDP5_CTL_FLUSH_VIG3
;
452 case SSPP_RGB3
: return MDP5_CTL_FLUSH_RGB3
;
453 case SSPP_CURSOR0
: return MDP5_CTL_FLUSH_CURSOR_0
;
454 case SSPP_CURSOR1
: return MDP5_CTL_FLUSH_CURSOR_1
;
459 u32
mdp_ctl_flush_mask_lm(int lm
)
462 case 0: return MDP5_CTL_FLUSH_LM0
;
463 case 1: return MDP5_CTL_FLUSH_LM1
;
464 case 2: return MDP5_CTL_FLUSH_LM2
;
465 case 3: return MDP5_CTL_FLUSH_LM3
;
466 case 4: return MDP5_CTL_FLUSH_LM4
;
467 case 5: return MDP5_CTL_FLUSH_LM5
;
472 static u32
fix_sw_flush(struct mdp5_ctl
*ctl
, struct mdp5_pipeline
*pipeline
,
475 struct mdp5_ctl_manager
*ctl_mgr
= ctl
->ctlm
;
477 #define BIT_NEEDS_SW_FIX(bit) \
478 (!(ctl_mgr->flush_hw_mask & bit) && (flush_mask & bit))
480 /* for some targets, cursor bit is the same as LM bit */
481 if (BIT_NEEDS_SW_FIX(MDP5_CTL_FLUSH_CURSOR_0
))
482 sw_mask
|= mdp_ctl_flush_mask_lm(pipeline
->mixer
->lm
);
487 static void fix_for_single_flush(struct mdp5_ctl
*ctl
, u32
*flush_mask
,
490 struct mdp5_ctl_manager
*ctl_mgr
= ctl
->ctlm
;
493 DBG("CTL %d FLUSH pending mask %x", ctl
->id
, *flush_mask
);
494 ctl
->flush_pending
= true;
495 ctl_mgr
->single_flush_pending_mask
|= (*flush_mask
);
498 if (ctl
->pair
->flush_pending
) {
499 *flush_id
= min_t(u32
, ctl
->id
, ctl
->pair
->id
);
500 *flush_mask
= ctl_mgr
->single_flush_pending_mask
;
502 ctl
->flush_pending
= false;
503 ctl
->pair
->flush_pending
= false;
504 ctl_mgr
->single_flush_pending_mask
= 0;
506 DBG("Single FLUSH mask %x,ID %d", *flush_mask
,
513 * mdp5_ctl_commit() - Register Flush
515 * @ctl: the CTL instance
516 * @pipeline: the encoder's INTF + MIXER configuration
517 * @flush_mask: bitmask of display controller hw blocks to flush
518 * @start: if true, immediately update flush registers and set START
519 * bit, otherwise accumulate flush_mask bits until we are
522 * The flush register is used to indicate several registers are all
523 * programmed, and are safe to update to the back copy of the double
524 * buffered registers.
526 * Some registers FLUSH bits are shared when the hardware does not have
527 * dedicated bits for them; handling these is the job of fix_sw_flush().
529 * CTL registers need to be flushed in some circumstances; if that is the
530 * case, some trigger bits will be present in both flush mask and
531 * ctl->pending_ctl_trigger.
533 * Return H/W flushed bit mask.
535 u32
mdp5_ctl_commit(struct mdp5_ctl
*ctl
,
536 struct mdp5_pipeline
*pipeline
,
537 u32 flush_mask
, bool start
)
539 struct mdp5_ctl_manager
*ctl_mgr
= ctl
->ctlm
;
541 u32 flush_id
= ctl
->id
;
542 u32 curr_ctl_flush_mask
;
544 VERB("flush_mask=%x, trigger=%x", flush_mask
, ctl
->pending_ctl_trigger
);
546 if (ctl
->pending_ctl_trigger
& flush_mask
) {
547 flush_mask
|= MDP5_CTL_FLUSH_CTL
;
548 ctl
->pending_ctl_trigger
= 0;
551 flush_mask
|= fix_sw_flush(ctl
, pipeline
, flush_mask
);
553 flush_mask
&= ctl_mgr
->flush_hw_mask
;
555 curr_ctl_flush_mask
= flush_mask
;
557 fix_for_single_flush(ctl
, &flush_mask
, &flush_id
);
560 ctl
->flush_mask
|= flush_mask
;
561 return curr_ctl_flush_mask
;
563 flush_mask
|= ctl
->flush_mask
;
568 spin_lock_irqsave(&ctl
->hw_lock
, flags
);
569 ctl_write(ctl
, REG_MDP5_CTL_FLUSH(flush_id
), flush_mask
);
570 spin_unlock_irqrestore(&ctl
->hw_lock
, flags
);
573 if (start_signal_needed(ctl
, pipeline
)) {
574 send_start_signal(ctl
);
577 return curr_ctl_flush_mask
;
580 u32
mdp5_ctl_get_commit_status(struct mdp5_ctl
*ctl
)
582 return ctl_read(ctl
, REG_MDP5_CTL_FLUSH(ctl
->id
));
585 int mdp5_ctl_get_ctl_id(struct mdp5_ctl
*ctl
)
587 return WARN_ON(!ctl
) ? -EINVAL
: ctl
->id
;
591 * mdp5_ctl_pair() - Associate 2 booked CTLs for single FLUSH
593 int mdp5_ctl_pair(struct mdp5_ctl
*ctlx
, struct mdp5_ctl
*ctly
, bool enable
)
595 struct mdp5_ctl_manager
*ctl_mgr
= ctlx
->ctlm
;
596 struct mdp5_kms
*mdp5_kms
= get_kms(ctl_mgr
);
598 /* do nothing silently if hw doesn't support */
599 if (!ctl_mgr
->single_flush_supported
)
605 mdp5_write(mdp5_kms
, REG_MDP5_SPARE_0
, 0);
607 } else if ((ctlx
->pair
!= NULL
) || (ctly
->pair
!= NULL
)) {
608 DRM_DEV_ERROR(ctl_mgr
->dev
->dev
, "CTLs already paired\n");
610 } else if (!(ctlx
->status
& ctly
->status
& CTL_STAT_BOOKED
)) {
611 DRM_DEV_ERROR(ctl_mgr
->dev
->dev
, "Only pair booked CTLs\n");
618 mdp5_write(mdp5_kms
, REG_MDP5_SPARE_0
,
619 MDP5_SPARE_0_SPLIT_DPL_SINGLE_FLUSH_EN
);
625 * mdp5_ctl_request() - CTL allocation
627 * Try to return booked CTL for @intf_num is 1 or 2, unbooked for other INTFs.
628 * If no CTL is available in preferred category, allocate from the other one.
630 * @return fail if no CTL is available.
632 struct mdp5_ctl
*mdp5_ctlm_request(struct mdp5_ctl_manager
*ctl_mgr
,
635 struct mdp5_ctl
*ctl
= NULL
;
636 const u32 checkm
= CTL_STAT_BUSY
| CTL_STAT_BOOKED
;
637 u32 match
= ((intf_num
== 1) || (intf_num
== 2)) ? CTL_STAT_BOOKED
: 0;
641 spin_lock_irqsave(&ctl_mgr
->pool_lock
, flags
);
643 /* search the preferred */
644 for (c
= 0; c
< ctl_mgr
->nctl
; c
++)
645 if ((ctl_mgr
->ctls
[c
].status
& checkm
) == match
)
648 dev_warn(ctl_mgr
->dev
->dev
,
649 "fall back to the other CTL category for INTF %d!\n", intf_num
);
651 match
^= CTL_STAT_BOOKED
;
652 for (c
= 0; c
< ctl_mgr
->nctl
; c
++)
653 if ((ctl_mgr
->ctls
[c
].status
& checkm
) == match
)
656 DRM_DEV_ERROR(ctl_mgr
->dev
->dev
, "No more CTL available!");
660 ctl
= &ctl_mgr
->ctls
[c
];
661 ctl
->status
|= CTL_STAT_BUSY
;
662 ctl
->pending_ctl_trigger
= 0;
663 DBG("CTL %d allocated", ctl
->id
);
666 spin_unlock_irqrestore(&ctl_mgr
->pool_lock
, flags
);
670 void mdp5_ctlm_hw_reset(struct mdp5_ctl_manager
*ctl_mgr
)
675 for (c
= 0; c
< ctl_mgr
->nctl
; c
++) {
676 struct mdp5_ctl
*ctl
= &ctl_mgr
->ctls
[c
];
678 spin_lock_irqsave(&ctl
->hw_lock
, flags
);
679 ctl_write(ctl
, REG_MDP5_CTL_OP(ctl
->id
), 0);
680 spin_unlock_irqrestore(&ctl
->hw_lock
, flags
);
684 void mdp5_ctlm_destroy(struct mdp5_ctl_manager
*ctl_mgr
)
689 struct mdp5_ctl_manager
*mdp5_ctlm_init(struct drm_device
*dev
,
690 void __iomem
*mmio_base
, struct mdp5_cfg_handler
*cfg_hnd
)
692 struct mdp5_ctl_manager
*ctl_mgr
;
693 const struct mdp5_cfg_hw
*hw_cfg
= mdp5_cfg_get_hw_config(cfg_hnd
);
694 int rev
= mdp5_cfg_get_hw_rev(cfg_hnd
);
695 unsigned dsi_cnt
= 0;
696 const struct mdp5_ctl_block
*ctl_cfg
= &hw_cfg
->ctl
;
700 ctl_mgr
= kzalloc(sizeof(*ctl_mgr
), GFP_KERNEL
);
702 DRM_DEV_ERROR(dev
->dev
, "failed to allocate CTL manager\n");
707 if (WARN_ON(ctl_cfg
->count
> MAX_CTL
)) {
708 DRM_DEV_ERROR(dev
->dev
, "Increase static pool size to at least %d\n",
714 /* initialize the CTL manager: */
716 ctl_mgr
->nlm
= hw_cfg
->lm
.count
;
717 ctl_mgr
->nctl
= ctl_cfg
->count
;
718 ctl_mgr
->flush_hw_mask
= ctl_cfg
->flush_hw_mask
;
719 spin_lock_init(&ctl_mgr
->pool_lock
);
721 /* initialize each CTL of the pool: */
722 spin_lock_irqsave(&ctl_mgr
->pool_lock
, flags
);
723 for (c
= 0; c
< ctl_mgr
->nctl
; c
++) {
724 struct mdp5_ctl
*ctl
= &ctl_mgr
->ctls
[c
];
726 if (WARN_ON(!ctl_cfg
->base
[c
])) {
727 DRM_DEV_ERROR(dev
->dev
, "CTL_%d: base is null!\n", c
);
729 spin_unlock_irqrestore(&ctl_mgr
->pool_lock
, flags
);
734 ctl
->reg_offset
= ctl_cfg
->base
[c
];
736 spin_lock_init(&ctl
->hw_lock
);
740 * In Dual DSI case, CTL0 and CTL1 are always assigned to two DSI
741 * interfaces to support single FLUSH feature (Flush CTL0 and CTL1 when
742 * only write into CTL0's FLUSH register) to keep two DSI pipes in sync.
743 * Single FLUSH is supported from hw rev v3.0.
745 for (c
= 0; c
< ARRAY_SIZE(hw_cfg
->intf
.connect
); c
++)
746 if (hw_cfg
->intf
.connect
[c
] == INTF_DSI
)
748 if ((rev
>= 3) && (dsi_cnt
> 1)) {
749 ctl_mgr
->single_flush_supported
= true;
750 /* Reserve CTL0/1 for INTF1/2 */
751 ctl_mgr
->ctls
[0].status
|= CTL_STAT_BOOKED
;
752 ctl_mgr
->ctls
[1].status
|= CTL_STAT_BOOKED
;
754 spin_unlock_irqrestore(&ctl_mgr
->pool_lock
, flags
);
755 DBG("Pool of %d CTLs created.", ctl_mgr
->nctl
);
761 mdp5_ctlm_destroy(ctl_mgr
);