2 * Copyright 2013 Red Hat Inc.
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
24 #define gk104_clk(p) container_of((p), struct gk104_clk, base)
28 #include <subdev/timer.h>
29 #include <subdev/bios.h>
30 #include <subdev/bios/pll.h>
32 struct gk104_clk_info
{
43 struct gk104_clk_info eng
[16];
46 static u32
read_div(struct gk104_clk
*, int, u32
, u32
);
47 static u32
read_pll(struct gk104_clk
*, u32
);
50 read_vco(struct gk104_clk
*clk
, u32 dsrc
)
52 struct nvkm_device
*device
= clk
->base
.subdev
.device
;
53 u32 ssrc
= nvkm_rd32(device
, dsrc
);
54 if (!(ssrc
& 0x00000100))
55 return read_pll(clk
, 0x00e800);
56 return read_pll(clk
, 0x00e820);
60 read_pll(struct gk104_clk
*clk
, u32 pll
)
62 struct nvkm_device
*device
= clk
->base
.subdev
.device
;
63 u32 ctrl
= nvkm_rd32(device
, pll
+ 0x00);
64 u32 coef
= nvkm_rd32(device
, pll
+ 0x04);
65 u32 P
= (coef
& 0x003f0000) >> 16;
66 u32 N
= (coef
& 0x0000ff00) >> 8;
67 u32 M
= (coef
& 0x000000ff) >> 0;
71 if (!(ctrl
& 0x00000001))
77 sclk
= device
->crystal
;
81 sclk
= read_pll(clk
, 0x132020);
82 P
= (coef
& 0x10000000) ? 2 : 1;
85 sclk
= read_div(clk
, 0, 0x137320, 0x137330);
86 fN
= nvkm_rd32(device
, pll
+ 0x10) >> 16;
92 sclk
= read_div(clk
, (pll
& 0xff) / 0x20, 0x137120, 0x137140);
101 sclk
= (sclk
* N
) + (((u16
)(fN
+ 4096) * sclk
) >> 13);
102 return sclk
/ (M
* P
);
106 read_div(struct gk104_clk
*clk
, int doff
, u32 dsrc
, u32 dctl
)
108 struct nvkm_device
*device
= clk
->base
.subdev
.device
;
109 u32 ssrc
= nvkm_rd32(device
, dsrc
+ (doff
* 4));
110 u32 sctl
= nvkm_rd32(device
, dctl
+ (doff
* 4));
112 switch (ssrc
& 0x00000003) {
114 if ((ssrc
& 0x00030000) != 0x00030000)
115 return device
->crystal
;
120 if (sctl
& 0x80000000) {
121 u32 sclk
= read_vco(clk
, dsrc
+ (doff
* 4));
122 u32 sdiv
= (sctl
& 0x0000003f) + 2;
123 return (sclk
* 2) / sdiv
;
126 return read_vco(clk
, dsrc
+ (doff
* 4));
133 read_mem(struct gk104_clk
*clk
)
135 struct nvkm_device
*device
= clk
->base
.subdev
.device
;
136 switch (nvkm_rd32(device
, 0x1373f4) & 0x0000000f) {
137 case 1: return read_pll(clk
, 0x132020);
138 case 2: return read_pll(clk
, 0x132000);
145 read_clk(struct gk104_clk
*clk
, int idx
)
147 struct nvkm_device
*device
= clk
->base
.subdev
.device
;
148 u32 sctl
= nvkm_rd32(device
, 0x137250 + (idx
* 4));
152 u32 ssel
= nvkm_rd32(device
, 0x137100);
153 if (ssel
& (1 << idx
)) {
154 sclk
= read_pll(clk
, 0x137000 + (idx
* 0x20));
157 sclk
= read_div(clk
, idx
, 0x137160, 0x1371d0);
161 u32 ssrc
= nvkm_rd32(device
, 0x137160 + (idx
* 0x04));
162 if ((ssrc
& 0x00000003) == 0x00000003) {
163 sclk
= read_div(clk
, idx
, 0x137160, 0x1371d0);
164 if (ssrc
& 0x00000100) {
165 if (ssrc
& 0x40000000)
166 sclk
= read_pll(clk
, 0x1370e0);
172 sclk
= read_div(clk
, idx
, 0x137160, 0x1371d0);
177 if (sctl
& 0x80000000) {
179 sdiv
= ((sctl
& 0x00003f00) >> 8) + 2;
181 sdiv
= ((sctl
& 0x0000003f) >> 0) + 2;
182 return (sclk
* 2) / sdiv
;
189 gk104_clk_read(struct nvkm_clk
*base
, enum nv_clk_src src
)
191 struct gk104_clk
*clk
= gk104_clk(base
);
192 struct nvkm_subdev
*subdev
= &clk
->base
.subdev
;
193 struct nvkm_device
*device
= subdev
->device
;
196 case nv_clk_src_crystal
:
197 return device
->crystal
;
198 case nv_clk_src_href
:
201 return read_mem(clk
);
203 return read_clk(clk
, 0x00);
205 return read_clk(clk
, 0x01);
206 case nv_clk_src_hubk07
:
207 return read_clk(clk
, 0x02);
208 case nv_clk_src_hubk06
:
209 return read_clk(clk
, 0x07);
210 case nv_clk_src_hubk01
:
211 return read_clk(clk
, 0x08);
213 return read_clk(clk
, 0x0c);
214 case nv_clk_src_vdec
:
215 return read_clk(clk
, 0x0e);
217 nvkm_error(subdev
, "invalid clock source %d\n", src
);
223 calc_div(struct gk104_clk
*clk
, int idx
, u32 ref
, u32 freq
, u32
*ddiv
)
225 u32 div
= min((ref
* 2) / freq
, (u32
)65);
230 return (ref
* 2) / div
;
234 calc_src(struct gk104_clk
*clk
, int idx
, u32 freq
, u32
*dsrc
, u32
*ddiv
)
238 /* use one of the fixed frequencies if possible */
255 /* otherwise, calculate the closest divider */
256 sclk
= read_vco(clk
, 0x137160 + (idx
* 4));
258 sclk
= calc_div(clk
, idx
, sclk
, freq
, ddiv
);
263 calc_pll(struct gk104_clk
*clk
, int idx
, u32 freq
, u32
*coef
)
265 struct nvkm_subdev
*subdev
= &clk
->base
.subdev
;
266 struct nvkm_bios
*bios
= subdev
->device
->bios
;
267 struct nvbios_pll limits
;
270 ret
= nvbios_pll_parse(bios
, 0x137000 + (idx
* 0x20), &limits
);
274 limits
.refclk
= read_div(clk
, idx
, 0x137120, 0x137140);
278 ret
= gt215_pll_calc(subdev
, &limits
, freq
, &N
, NULL
, &M
, &P
);
282 *coef
= (P
<< 16) | (N
<< 8) | M
;
287 calc_clk(struct gk104_clk
*clk
,
288 struct nvkm_cstate
*cstate
, int idx
, int dom
)
290 struct gk104_clk_info
*info
= &clk
->eng
[idx
];
291 u32 freq
= cstate
->domain
[dom
];
292 u32 src0
, div0
, div1D
, div1P
= 0;
295 /* invalid clock domain */
299 /* first possible path, using only dividers */
300 clk0
= calc_src(clk
, idx
, freq
, &src0
, &div0
);
301 clk0
= calc_div(clk
, idx
, clk0
, freq
, &div1D
);
303 /* see if we can get any closer using PLLs */
304 if (clk0
!= freq
&& (0x0000ff87 & (1 << idx
))) {
306 clk1
= calc_pll(clk
, idx
, freq
, &info
->coef
);
308 clk1
= cstate
->domain
[nv_clk_src_hubk06
];
309 clk1
= calc_div(clk
, idx
, clk1
, freq
, &div1P
);
312 /* select the method which gets closest to target freq */
313 if (abs((int)freq
- clk0
) <= abs((int)freq
- clk1
)) {
316 info
->ddiv
|= 0x80000000;
320 info
->mdiv
|= 0x80000000;
327 info
->mdiv
|= 0x80000000;
328 info
->mdiv
|= div1P
<< 8;
330 info
->ssel
= (1 << idx
);
331 info
->dsrc
= 0x40000100;
339 gk104_clk_calc(struct nvkm_clk
*base
, struct nvkm_cstate
*cstate
)
341 struct gk104_clk
*clk
= gk104_clk(base
);
344 if ((ret
= calc_clk(clk
, cstate
, 0x00, nv_clk_src_gpc
)) ||
345 (ret
= calc_clk(clk
, cstate
, 0x01, nv_clk_src_rop
)) ||
346 (ret
= calc_clk(clk
, cstate
, 0x02, nv_clk_src_hubk07
)) ||
347 (ret
= calc_clk(clk
, cstate
, 0x07, nv_clk_src_hubk06
)) ||
348 (ret
= calc_clk(clk
, cstate
, 0x08, nv_clk_src_hubk01
)) ||
349 (ret
= calc_clk(clk
, cstate
, 0x0c, nv_clk_src_pmu
)) ||
350 (ret
= calc_clk(clk
, cstate
, 0x0e, nv_clk_src_vdec
)))
357 gk104_clk_prog_0(struct gk104_clk
*clk
, int idx
)
359 struct gk104_clk_info
*info
= &clk
->eng
[idx
];
360 struct nvkm_device
*device
= clk
->base
.subdev
.device
;
362 nvkm_mask(device
, 0x1371d0 + (idx
* 0x04), 0x8000003f, info
->ddiv
);
363 nvkm_wr32(device
, 0x137160 + (idx
* 0x04), info
->dsrc
);
368 gk104_clk_prog_1_0(struct gk104_clk
*clk
, int idx
)
370 struct nvkm_device
*device
= clk
->base
.subdev
.device
;
371 nvkm_mask(device
, 0x137100, (1 << idx
), 0x00000000);
372 nvkm_msec(device
, 2000,
373 if (!(nvkm_rd32(device
, 0x137100) & (1 << idx
)))
379 gk104_clk_prog_1_1(struct gk104_clk
*clk
, int idx
)
381 struct nvkm_device
*device
= clk
->base
.subdev
.device
;
382 nvkm_mask(device
, 0x137160 + (idx
* 0x04), 0x00000100, 0x00000000);
386 gk104_clk_prog_2(struct gk104_clk
*clk
, int idx
)
388 struct gk104_clk_info
*info
= &clk
->eng
[idx
];
389 struct nvkm_device
*device
= clk
->base
.subdev
.device
;
390 const u32 addr
= 0x137000 + (idx
* 0x20);
391 nvkm_mask(device
, addr
+ 0x00, 0x00000004, 0x00000000);
392 nvkm_mask(device
, addr
+ 0x00, 0x00000001, 0x00000000);
394 nvkm_wr32(device
, addr
+ 0x04, info
->coef
);
395 nvkm_mask(device
, addr
+ 0x00, 0x00000001, 0x00000001);
398 nvkm_mask(device
, addr
+ 0x00, 0x00000010, 0x00000000);
399 nvkm_msec(device
, 2000,
400 if (nvkm_rd32(device
, addr
+ 0x00) & 0x00020000)
403 nvkm_mask(device
, addr
+ 0x00, 0x00000010, 0x00000010);
405 /* Enable sync mode */
406 nvkm_mask(device
, addr
+ 0x00, 0x00000004, 0x00000004);
411 gk104_clk_prog_3(struct gk104_clk
*clk
, int idx
)
413 struct gk104_clk_info
*info
= &clk
->eng
[idx
];
414 struct nvkm_device
*device
= clk
->base
.subdev
.device
;
416 nvkm_mask(device
, 0x137250 + (idx
* 0x04), 0x00003f00, info
->mdiv
);
418 nvkm_mask(device
, 0x137250 + (idx
* 0x04), 0x0000003f, info
->mdiv
);
422 gk104_clk_prog_4_0(struct gk104_clk
*clk
, int idx
)
424 struct gk104_clk_info
*info
= &clk
->eng
[idx
];
425 struct nvkm_device
*device
= clk
->base
.subdev
.device
;
427 nvkm_mask(device
, 0x137100, (1 << idx
), info
->ssel
);
428 nvkm_msec(device
, 2000,
429 u32 tmp
= nvkm_rd32(device
, 0x137100) & (1 << idx
);
430 if (tmp
== info
->ssel
)
437 gk104_clk_prog_4_1(struct gk104_clk
*clk
, int idx
)
439 struct gk104_clk_info
*info
= &clk
->eng
[idx
];
440 struct nvkm_device
*device
= clk
->base
.subdev
.device
;
442 nvkm_mask(device
, 0x137160 + (idx
* 0x04), 0x40000000, 0x40000000);
443 nvkm_mask(device
, 0x137160 + (idx
* 0x04), 0x00000100, 0x00000100);
448 gk104_clk_prog(struct nvkm_clk
*base
)
450 struct gk104_clk
*clk
= gk104_clk(base
);
453 void (*exec
)(struct gk104_clk
*, int);
455 { 0x007f, gk104_clk_prog_0
}, /* div programming */
456 { 0x007f, gk104_clk_prog_1_0
}, /* select div mode */
457 { 0xff80, gk104_clk_prog_1_1
},
458 { 0x00ff, gk104_clk_prog_2
}, /* (maybe) program pll */
459 { 0xff80, gk104_clk_prog_3
}, /* final divider */
460 { 0x007f, gk104_clk_prog_4_0
}, /* (maybe) select pll mode */
461 { 0xff80, gk104_clk_prog_4_1
},
465 for (i
= 0; i
< ARRAY_SIZE(stage
); i
++) {
466 for (j
= 0; j
< ARRAY_SIZE(clk
->eng
); j
++) {
467 if (!(stage
[i
].mask
& (1 << j
)))
469 if (!clk
->eng
[j
].freq
)
471 stage
[i
].exec(clk
, j
);
479 gk104_clk_tidy(struct nvkm_clk
*base
)
481 struct gk104_clk
*clk
= gk104_clk(base
);
482 memset(clk
->eng
, 0x00, sizeof(clk
->eng
));
485 static const struct nvkm_clk_func
487 .read
= gk104_clk_read
,
488 .calc
= gk104_clk_calc
,
489 .prog
= gk104_clk_prog
,
490 .tidy
= gk104_clk_tidy
,
492 { nv_clk_src_crystal
, 0xff },
493 { nv_clk_src_href
, 0xff },
494 { nv_clk_src_gpc
, 0x00, NVKM_CLK_DOM_FLAG_CORE
| NVKM_CLK_DOM_FLAG_VPSTATE
, "core", 2000 },
495 { nv_clk_src_hubk07
, 0x01, NVKM_CLK_DOM_FLAG_CORE
},
496 { nv_clk_src_rop
, 0x02, NVKM_CLK_DOM_FLAG_CORE
},
497 { nv_clk_src_mem
, 0x03, 0, "memory", 500 },
498 { nv_clk_src_hubk06
, 0x04, NVKM_CLK_DOM_FLAG_CORE
},
499 { nv_clk_src_hubk01
, 0x05 },
500 { nv_clk_src_vdec
, 0x06 },
501 { nv_clk_src_pmu
, 0x07 },
507 gk104_clk_new(struct nvkm_device
*device
, int index
, struct nvkm_clk
**pclk
)
509 struct gk104_clk
*clk
;
511 if (!(clk
= kzalloc(sizeof(*clk
), GFP_KERNEL
)))
515 return nvkm_clk_ctor(&gk104_clk
, device
, index
, true, &clk
->base
);