Merge tag 'block-5.11-2021-01-10' of git://git.kernel.dk/linux-block
[linux/fpc-iii.git] / drivers / gpu / drm / vc4 / vc4_crtc.c
blobea710beb8e005d7655496df362e09e6a290e8cd1
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2015 Broadcom
4 */
6 /**
7 * DOC: VC4 CRTC module
9 * In VC4, the Pixel Valve is what most closely corresponds to the
10 * DRM's concept of a CRTC. The PV generates video timings from the
11 * encoder's clock plus its configuration. It pulls scaled pixels from
12 * the HVS at that timing, and feeds it to the encoder.
14 * However, the DRM CRTC also collects the configuration of all the
15 * DRM planes attached to it. As a result, the CRTC is also
16 * responsible for writing the display list for the HVS channel that
17 * the CRTC will use.
19 * The 2835 has 3 different pixel valves. pv0 in the audio power
20 * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI. pv2 in the
21 * image domain can feed either HDMI or the SDTV controller. The
22 * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
23 * SDTV, etc.) according to which output type is chosen in the mux.
25 * For power management, the pixel valve's registers are all clocked
26 * by the AXI clock, while the timings and FIFOs make use of the
27 * output-specific clock. Since the encoders also directly consume
28 * the CPRMAN clocks, and know what timings they need, they are the
29 * ones that set the clock.
32 #include <linux/clk.h>
33 #include <linux/component.h>
34 #include <linux/of_device.h>
36 #include <drm/drm_atomic.h>
37 #include <drm/drm_atomic_helper.h>
38 #include <drm/drm_atomic_uapi.h>
39 #include <drm/drm_fb_cma_helper.h>
40 #include <drm/drm_print.h>
41 #include <drm/drm_probe_helper.h>
42 #include <drm/drm_vblank.h>
44 #include "vc4_drv.h"
45 #include "vc4_regs.h"
47 #define HVS_FIFO_LATENCY_PIX 6
49 #define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
50 #define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
52 static const struct debugfs_reg32 crtc_regs[] = {
53 VC4_REG32(PV_CONTROL),
54 VC4_REG32(PV_V_CONTROL),
55 VC4_REG32(PV_VSYNCD_EVEN),
56 VC4_REG32(PV_HORZA),
57 VC4_REG32(PV_HORZB),
58 VC4_REG32(PV_VERTA),
59 VC4_REG32(PV_VERTB),
60 VC4_REG32(PV_VERTA_EVEN),
61 VC4_REG32(PV_VERTB_EVEN),
62 VC4_REG32(PV_INTEN),
63 VC4_REG32(PV_INTSTAT),
64 VC4_REG32(PV_STAT),
65 VC4_REG32(PV_HACT_ACT),
68 static unsigned int
69 vc4_crtc_get_cob_allocation(struct vc4_dev *vc4, unsigned int channel)
71 u32 dispbase = HVS_READ(SCALER_DISPBASEX(channel));
72 /* Top/base are supposed to be 4-pixel aligned, but the
73 * Raspberry Pi firmware fills the low bits (which are
74 * presumably ignored).
76 u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
77 u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;
79 return top - base + 4;
82 static bool vc4_crtc_get_scanout_position(struct drm_crtc *crtc,
83 bool in_vblank_irq,
84 int *vpos, int *hpos,
85 ktime_t *stime, ktime_t *etime,
86 const struct drm_display_mode *mode)
88 struct drm_device *dev = crtc->dev;
89 struct vc4_dev *vc4 = to_vc4_dev(dev);
90 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
91 struct vc4_crtc_state *vc4_crtc_state = to_vc4_crtc_state(crtc->state);
92 unsigned int cob_size;
93 u32 val;
94 int fifo_lines;
95 int vblank_lines;
96 bool ret = false;
98 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
100 /* Get optional system timestamp before query. */
101 if (stime)
102 *stime = ktime_get();
105 * Read vertical scanline which is currently composed for our
106 * pixelvalve by the HVS, and also the scaler status.
108 val = HVS_READ(SCALER_DISPSTATX(vc4_crtc_state->assigned_channel));
110 /* Get optional system timestamp after query. */
111 if (etime)
112 *etime = ktime_get();
114 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
116 /* Vertical position of hvs composed scanline. */
117 *vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
118 *hpos = 0;
120 if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
121 *vpos /= 2;
123 /* Use hpos to correct for field offset in interlaced mode. */
124 if (VC4_GET_FIELD(val, SCALER_DISPSTATX_FRAME_COUNT) % 2)
125 *hpos += mode->crtc_htotal / 2;
128 cob_size = vc4_crtc_get_cob_allocation(vc4, vc4_crtc_state->assigned_channel);
129 /* This is the offset we need for translating hvs -> pv scanout pos. */
130 fifo_lines = cob_size / mode->crtc_hdisplay;
132 if (fifo_lines > 0)
133 ret = true;
135 /* HVS more than fifo_lines into frame for compositing? */
136 if (*vpos > fifo_lines) {
138 * We are in active scanout and can get some meaningful results
139 * from HVS. The actual PV scanout can not trail behind more
140 * than fifo_lines as that is the fifo's capacity. Assume that
141 * in active scanout the HVS and PV work in lockstep wrt. HVS
142 * refilling the fifo and PV consuming from the fifo, ie.
143 * whenever the PV consumes and frees up a scanline in the
144 * fifo, the HVS will immediately refill it, therefore
145 * incrementing vpos. Therefore we choose HVS read position -
146 * fifo size in scanlines as a estimate of the real scanout
147 * position of the PV.
149 *vpos -= fifo_lines + 1;
151 return ret;
155 * Less: This happens when we are in vblank and the HVS, after getting
156 * the VSTART restart signal from the PV, just started refilling its
157 * fifo with new lines from the top-most lines of the new framebuffers.
158 * The PV does not scan out in vblank, so does not remove lines from
159 * the fifo, so the fifo will be full quickly and the HVS has to pause.
160 * We can't get meaningful readings wrt. scanline position of the PV
161 * and need to make things up in a approximative but consistent way.
163 vblank_lines = mode->vtotal - mode->vdisplay;
165 if (in_vblank_irq) {
167 * Assume the irq handler got called close to first
168 * line of vblank, so PV has about a full vblank
169 * scanlines to go, and as a base timestamp use the
170 * one taken at entry into vblank irq handler, so it
171 * is not affected by random delays due to lock
172 * contention on event_lock or vblank_time lock in
173 * the core.
175 *vpos = -vblank_lines;
177 if (stime)
178 *stime = vc4_crtc->t_vblank;
179 if (etime)
180 *etime = vc4_crtc->t_vblank;
183 * If the HVS fifo is not yet full then we know for certain
184 * we are at the very beginning of vblank, as the hvs just
185 * started refilling, and the stime and etime timestamps
186 * truly correspond to start of vblank.
188 * Unfortunately there's no way to report this to upper levels
189 * and make it more useful.
191 } else {
193 * No clue where we are inside vblank. Return a vpos of zero,
194 * which will cause calling code to just return the etime
195 * timestamp uncorrected. At least this is no worse than the
196 * standard fallback.
198 *vpos = 0;
201 return ret;
204 void vc4_crtc_destroy(struct drm_crtc *crtc)
206 drm_crtc_cleanup(crtc);
209 static u32 vc4_get_fifo_full_level(struct vc4_crtc *vc4_crtc, u32 format)
211 const struct vc4_crtc_data *crtc_data = vc4_crtc_to_vc4_crtc_data(vc4_crtc);
212 const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
213 u32 fifo_len_bytes = pv_data->fifo_depth;
216 * Pixels are pulled from the HVS if the number of bytes is
217 * lower than the FIFO full level.
219 * The latency of the pixel fetch mechanism is 6 pixels, so we
220 * need to convert those 6 pixels in bytes, depending on the
221 * format, and then subtract that from the length of the FIFO
222 * to make sure we never end up in a situation where the FIFO
223 * is full.
225 switch (format) {
226 case PV_CONTROL_FORMAT_DSIV_16:
227 case PV_CONTROL_FORMAT_DSIC_16:
228 return fifo_len_bytes - 2 * HVS_FIFO_LATENCY_PIX;
229 case PV_CONTROL_FORMAT_DSIV_18:
230 return fifo_len_bytes - 14;
231 case PV_CONTROL_FORMAT_24:
232 case PV_CONTROL_FORMAT_DSIV_24:
233 default:
235 * For some reason, the pixelvalve4 doesn't work with
236 * the usual formula and will only work with 32.
238 if (crtc_data->hvs_output == 5)
239 return 32;
241 return fifo_len_bytes - 3 * HVS_FIFO_LATENCY_PIX;
245 static u32 vc4_crtc_get_fifo_full_level_bits(struct vc4_crtc *vc4_crtc,
246 u32 format)
248 u32 level = vc4_get_fifo_full_level(vc4_crtc, format);
249 u32 ret = 0;
251 ret |= VC4_SET_FIELD((level >> 6),
252 PV5_CONTROL_FIFO_LEVEL_HIGH);
254 return ret | VC4_SET_FIELD(level & 0x3f,
255 PV_CONTROL_FIFO_LEVEL);
259 * Returns the encoder attached to the CRTC.
261 * VC4 can only scan out to one encoder at a time, while the DRM core
262 * allows drivers to push pixels to more than one encoder from the
263 * same CRTC.
265 static struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc)
267 struct drm_connector *connector;
268 struct drm_connector_list_iter conn_iter;
270 drm_connector_list_iter_begin(crtc->dev, &conn_iter);
271 drm_for_each_connector_iter(connector, &conn_iter) {
272 if (connector->state->crtc == crtc) {
273 drm_connector_list_iter_end(&conn_iter);
274 return connector->encoder;
277 drm_connector_list_iter_end(&conn_iter);
279 return NULL;
282 static void vc4_crtc_pixelvalve_reset(struct drm_crtc *crtc)
284 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
286 /* The PV needs to be disabled before it can be flushed */
287 CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) & ~PV_CONTROL_EN);
288 CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) | PV_CONTROL_FIFO_CLR);
291 static void vc4_crtc_config_pv(struct drm_crtc *crtc)
293 struct drm_device *dev = crtc->dev;
294 struct vc4_dev *vc4 = to_vc4_dev(dev);
295 struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc);
296 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
297 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
298 const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
299 struct drm_crtc_state *state = crtc->state;
300 struct drm_display_mode *mode = &state->adjusted_mode;
301 bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
302 u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1;
303 bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 ||
304 vc4_encoder->type == VC4_ENCODER_TYPE_DSI1);
305 u32 format = is_dsi ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24;
306 u8 ppc = pv_data->pixels_per_clock;
307 bool debug_dump_regs = false;
309 if (debug_dump_regs) {
310 struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
311 dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs before:\n",
312 drm_crtc_index(crtc));
313 drm_print_regset32(&p, &vc4_crtc->regset);
316 vc4_crtc_pixelvalve_reset(crtc);
318 CRTC_WRITE(PV_HORZA,
319 VC4_SET_FIELD((mode->htotal - mode->hsync_end) * pixel_rep / ppc,
320 PV_HORZA_HBP) |
321 VC4_SET_FIELD((mode->hsync_end - mode->hsync_start) * pixel_rep / ppc,
322 PV_HORZA_HSYNC));
324 CRTC_WRITE(PV_HORZB,
325 VC4_SET_FIELD((mode->hsync_start - mode->hdisplay) * pixel_rep / ppc,
326 PV_HORZB_HFP) |
327 VC4_SET_FIELD(mode->hdisplay * pixel_rep / ppc,
328 PV_HORZB_HACTIVE));
330 CRTC_WRITE(PV_VERTA,
331 VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end,
332 PV_VERTA_VBP) |
333 VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start,
334 PV_VERTA_VSYNC));
335 CRTC_WRITE(PV_VERTB,
336 VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay,
337 PV_VERTB_VFP) |
338 VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
340 if (interlace) {
341 CRTC_WRITE(PV_VERTA_EVEN,
342 VC4_SET_FIELD(mode->crtc_vtotal -
343 mode->crtc_vsync_end - 1,
344 PV_VERTA_VBP) |
345 VC4_SET_FIELD(mode->crtc_vsync_end -
346 mode->crtc_vsync_start,
347 PV_VERTA_VSYNC));
348 CRTC_WRITE(PV_VERTB_EVEN,
349 VC4_SET_FIELD(mode->crtc_vsync_start -
350 mode->crtc_vdisplay,
351 PV_VERTB_VFP) |
352 VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
354 /* We set up first field even mode for HDMI. VEC's
355 * NTSC mode would want first field odd instead, once
356 * we support it (to do so, set ODD_FIRST and put the
357 * delay in VSYNCD_EVEN instead).
359 CRTC_WRITE(PV_V_CONTROL,
360 PV_VCONTROL_CONTINUOUS |
361 (is_dsi ? PV_VCONTROL_DSI : 0) |
362 PV_VCONTROL_INTERLACE |
363 VC4_SET_FIELD(mode->htotal * pixel_rep / 2,
364 PV_VCONTROL_ODD_DELAY));
365 CRTC_WRITE(PV_VSYNCD_EVEN, 0);
366 } else {
367 CRTC_WRITE(PV_V_CONTROL,
368 PV_VCONTROL_CONTINUOUS |
369 (is_dsi ? PV_VCONTROL_DSI : 0));
372 if (is_dsi)
373 CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep);
375 if (vc4->hvs->hvs5)
376 CRTC_WRITE(PV_MUX_CFG,
377 VC4_SET_FIELD(PV_MUX_CFG_RGB_PIXEL_MUX_MODE_NO_SWAP,
378 PV_MUX_CFG_RGB_PIXEL_MUX_MODE));
380 CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR |
381 vc4_crtc_get_fifo_full_level_bits(vc4_crtc, format) |
382 VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
383 VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) |
384 PV_CONTROL_CLR_AT_START |
385 PV_CONTROL_TRIGGER_UNDERFLOW |
386 PV_CONTROL_WAIT_HSTART |
387 VC4_SET_FIELD(vc4_encoder->clock_select,
388 PV_CONTROL_CLK_SELECT));
390 if (debug_dump_regs) {
391 struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
392 dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs after:\n",
393 drm_crtc_index(crtc));
394 drm_print_regset32(&p, &vc4_crtc->regset);
398 static void require_hvs_enabled(struct drm_device *dev)
400 struct vc4_dev *vc4 = to_vc4_dev(dev);
402 WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
403 SCALER_DISPCTRL_ENABLE);
406 static int vc4_crtc_disable(struct drm_crtc *crtc, unsigned int channel)
408 struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc);
409 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
410 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
411 struct drm_device *dev = crtc->dev;
412 int ret;
414 CRTC_WRITE(PV_V_CONTROL,
415 CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
416 ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
417 WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
420 * This delay is needed to avoid to get a pixel stuck in an
421 * unflushable FIFO between the pixelvalve and the HDMI
422 * controllers on the BCM2711.
424 * Timing is fairly sensitive here, so mdelay is the safest
425 * approach.
427 * If it was to be reworked, the stuck pixel happens on a
428 * BCM2711 when changing mode with a good probability, so a
429 * script that changes mode on a regular basis should trigger
430 * the bug after less than 10 attempts. It manifests itself with
431 * every pixels being shifted by one to the right, and thus the
432 * last pixel of a line actually being displayed as the first
433 * pixel on the next line.
435 mdelay(20);
437 if (vc4_encoder && vc4_encoder->post_crtc_disable)
438 vc4_encoder->post_crtc_disable(encoder);
440 vc4_crtc_pixelvalve_reset(crtc);
441 vc4_hvs_stop_channel(dev, channel);
443 if (vc4_encoder && vc4_encoder->post_crtc_powerdown)
444 vc4_encoder->post_crtc_powerdown(encoder);
446 return 0;
449 int vc4_crtc_disable_at_boot(struct drm_crtc *crtc)
451 struct drm_device *drm = crtc->dev;
452 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
453 int channel;
455 if (!(of_device_is_compatible(vc4_crtc->pdev->dev.of_node,
456 "brcm,bcm2711-pixelvalve2") ||
457 of_device_is_compatible(vc4_crtc->pdev->dev.of_node,
458 "brcm,bcm2711-pixelvalve4")))
459 return 0;
461 if (!(CRTC_READ(PV_CONTROL) & PV_CONTROL_EN))
462 return 0;
464 if (!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN))
465 return 0;
467 channel = vc4_hvs_get_fifo_from_output(drm, vc4_crtc->data->hvs_output);
468 if (channel < 0)
469 return 0;
471 return vc4_crtc_disable(crtc, channel);
474 static void vc4_crtc_atomic_disable(struct drm_crtc *crtc,
475 struct drm_atomic_state *state)
477 struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state,
478 crtc);
479 struct vc4_crtc_state *old_vc4_state = to_vc4_crtc_state(old_state);
480 struct drm_device *dev = crtc->dev;
482 require_hvs_enabled(dev);
484 /* Disable vblank irq handling before crtc is disabled. */
485 drm_crtc_vblank_off(crtc);
487 vc4_crtc_disable(crtc, old_vc4_state->assigned_channel);
490 * Make sure we issue a vblank event after disabling the CRTC if
491 * someone was waiting it.
493 if (crtc->state->event) {
494 unsigned long flags;
496 spin_lock_irqsave(&dev->event_lock, flags);
497 drm_crtc_send_vblank_event(crtc, crtc->state->event);
498 crtc->state->event = NULL;
499 spin_unlock_irqrestore(&dev->event_lock, flags);
503 static void vc4_crtc_atomic_enable(struct drm_crtc *crtc,
504 struct drm_atomic_state *state)
506 struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state,
507 crtc);
508 struct drm_device *dev = crtc->dev;
509 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
510 struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc);
511 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
513 require_hvs_enabled(dev);
515 /* Enable vblank irq handling before crtc is started otherwise
516 * drm_crtc_get_vblank() fails in vc4_crtc_update_dlist().
518 drm_crtc_vblank_on(crtc);
520 vc4_hvs_atomic_enable(crtc, old_state);
522 if (vc4_encoder->pre_crtc_configure)
523 vc4_encoder->pre_crtc_configure(encoder);
525 vc4_crtc_config_pv(crtc);
527 CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) | PV_CONTROL_EN);
529 if (vc4_encoder->pre_crtc_enable)
530 vc4_encoder->pre_crtc_enable(encoder);
532 /* When feeding the transposer block the pixelvalve is unneeded and
533 * should not be enabled.
535 CRTC_WRITE(PV_V_CONTROL,
536 CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
538 if (vc4_encoder->post_crtc_enable)
539 vc4_encoder->post_crtc_enable(encoder);
542 static enum drm_mode_status vc4_crtc_mode_valid(struct drm_crtc *crtc,
543 const struct drm_display_mode *mode)
545 /* Do not allow doublescan modes from user space */
546 if (mode->flags & DRM_MODE_FLAG_DBLSCAN) {
547 DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
548 crtc->base.id);
549 return MODE_NO_DBLESCAN;
552 return MODE_OK;
555 void vc4_crtc_get_margins(struct drm_crtc_state *state,
556 unsigned int *left, unsigned int *right,
557 unsigned int *top, unsigned int *bottom)
559 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
560 struct drm_connector_state *conn_state;
561 struct drm_connector *conn;
562 int i;
564 *left = vc4_state->margins.left;
565 *right = vc4_state->margins.right;
566 *top = vc4_state->margins.top;
567 *bottom = vc4_state->margins.bottom;
569 /* We have to interate over all new connector states because
570 * vc4_crtc_get_margins() might be called before
571 * vc4_crtc_atomic_check() which means margins info in vc4_crtc_state
572 * might be outdated.
574 for_each_new_connector_in_state(state->state, conn, conn_state, i) {
575 if (conn_state->crtc != state->crtc)
576 continue;
578 *left = conn_state->tv.margins.left;
579 *right = conn_state->tv.margins.right;
580 *top = conn_state->tv.margins.top;
581 *bottom = conn_state->tv.margins.bottom;
582 break;
586 static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
587 struct drm_atomic_state *state)
589 struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
590 crtc);
591 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state);
592 struct drm_connector *conn;
593 struct drm_connector_state *conn_state;
594 int ret, i;
596 ret = vc4_hvs_atomic_check(crtc, crtc_state);
597 if (ret)
598 return ret;
600 for_each_new_connector_in_state(state, conn, conn_state,
601 i) {
602 if (conn_state->crtc != crtc)
603 continue;
605 vc4_state->margins.left = conn_state->tv.margins.left;
606 vc4_state->margins.right = conn_state->tv.margins.right;
607 vc4_state->margins.top = conn_state->tv.margins.top;
608 vc4_state->margins.bottom = conn_state->tv.margins.bottom;
609 break;
612 return 0;
615 static int vc4_enable_vblank(struct drm_crtc *crtc)
617 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
619 CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
621 return 0;
624 static void vc4_disable_vblank(struct drm_crtc *crtc)
626 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
628 CRTC_WRITE(PV_INTEN, 0);
631 static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
633 struct drm_crtc *crtc = &vc4_crtc->base;
634 struct drm_device *dev = crtc->dev;
635 struct vc4_dev *vc4 = to_vc4_dev(dev);
636 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
637 u32 chan = vc4_state->assigned_channel;
638 unsigned long flags;
640 spin_lock_irqsave(&dev->event_lock, flags);
641 if (vc4_crtc->event &&
642 (vc4_state->mm.start == HVS_READ(SCALER_DISPLACTX(chan)) ||
643 vc4_state->feed_txp)) {
644 drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
645 vc4_crtc->event = NULL;
646 drm_crtc_vblank_put(crtc);
648 /* Wait for the page flip to unmask the underrun to ensure that
649 * the display list was updated by the hardware. Before that
650 * happens, the HVS will be using the previous display list with
651 * the CRTC and encoder already reconfigured, leading to
652 * underruns. This can be seen when reconfiguring the CRTC.
654 vc4_hvs_unmask_underrun(dev, chan);
656 spin_unlock_irqrestore(&dev->event_lock, flags);
659 void vc4_crtc_handle_vblank(struct vc4_crtc *crtc)
661 crtc->t_vblank = ktime_get();
662 drm_crtc_handle_vblank(&crtc->base);
663 vc4_crtc_handle_page_flip(crtc);
666 static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
668 struct vc4_crtc *vc4_crtc = data;
669 u32 stat = CRTC_READ(PV_INTSTAT);
670 irqreturn_t ret = IRQ_NONE;
672 if (stat & PV_INT_VFP_START) {
673 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
674 vc4_crtc_handle_vblank(vc4_crtc);
675 ret = IRQ_HANDLED;
678 return ret;
681 struct vc4_async_flip_state {
682 struct drm_crtc *crtc;
683 struct drm_framebuffer *fb;
684 struct drm_framebuffer *old_fb;
685 struct drm_pending_vblank_event *event;
687 struct vc4_seqno_cb cb;
690 /* Called when the V3D execution for the BO being flipped to is done, so that
691 * we can actually update the plane's address to point to it.
693 static void
694 vc4_async_page_flip_complete(struct vc4_seqno_cb *cb)
696 struct vc4_async_flip_state *flip_state =
697 container_of(cb, struct vc4_async_flip_state, cb);
698 struct drm_crtc *crtc = flip_state->crtc;
699 struct drm_device *dev = crtc->dev;
700 struct vc4_dev *vc4 = to_vc4_dev(dev);
701 struct drm_plane *plane = crtc->primary;
703 vc4_plane_async_set_fb(plane, flip_state->fb);
704 if (flip_state->event) {
705 unsigned long flags;
707 spin_lock_irqsave(&dev->event_lock, flags);
708 drm_crtc_send_vblank_event(crtc, flip_state->event);
709 spin_unlock_irqrestore(&dev->event_lock, flags);
712 drm_crtc_vblank_put(crtc);
713 drm_framebuffer_put(flip_state->fb);
715 /* Decrement the BO usecnt in order to keep the inc/dec calls balanced
716 * when the planes are updated through the async update path.
717 * FIXME: we should move to generic async-page-flip when it's
718 * available, so that we can get rid of this hand-made cleanup_fb()
719 * logic.
721 if (flip_state->old_fb) {
722 struct drm_gem_cma_object *cma_bo;
723 struct vc4_bo *bo;
725 cma_bo = drm_fb_cma_get_gem_obj(flip_state->old_fb, 0);
726 bo = to_vc4_bo(&cma_bo->base);
727 vc4_bo_dec_usecnt(bo);
728 drm_framebuffer_put(flip_state->old_fb);
731 kfree(flip_state);
733 up(&vc4->async_modeset);
736 /* Implements async (non-vblank-synced) page flips.
738 * The page flip ioctl needs to return immediately, so we grab the
739 * modeset semaphore on the pipe, and queue the address update for
740 * when V3D is done with the BO being flipped to.
742 static int vc4_async_page_flip(struct drm_crtc *crtc,
743 struct drm_framebuffer *fb,
744 struct drm_pending_vblank_event *event,
745 uint32_t flags)
747 struct drm_device *dev = crtc->dev;
748 struct vc4_dev *vc4 = to_vc4_dev(dev);
749 struct drm_plane *plane = crtc->primary;
750 int ret = 0;
751 struct vc4_async_flip_state *flip_state;
752 struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
753 struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
755 /* Increment the BO usecnt here, so that we never end up with an
756 * unbalanced number of vc4_bo_{dec,inc}_usecnt() calls when the
757 * plane is later updated through the non-async path.
758 * FIXME: we should move to generic async-page-flip when it's
759 * available, so that we can get rid of this hand-made prepare_fb()
760 * logic.
762 ret = vc4_bo_inc_usecnt(bo);
763 if (ret)
764 return ret;
766 flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
767 if (!flip_state) {
768 vc4_bo_dec_usecnt(bo);
769 return -ENOMEM;
772 drm_framebuffer_get(fb);
773 flip_state->fb = fb;
774 flip_state->crtc = crtc;
775 flip_state->event = event;
777 /* Make sure all other async modesetes have landed. */
778 ret = down_interruptible(&vc4->async_modeset);
779 if (ret) {
780 drm_framebuffer_put(fb);
781 vc4_bo_dec_usecnt(bo);
782 kfree(flip_state);
783 return ret;
786 /* Save the current FB before it's replaced by the new one in
787 * drm_atomic_set_fb_for_plane(). We'll need the old FB in
788 * vc4_async_page_flip_complete() to decrement the BO usecnt and keep
789 * it consistent.
790 * FIXME: we should move to generic async-page-flip when it's
791 * available, so that we can get rid of this hand-made cleanup_fb()
792 * logic.
794 flip_state->old_fb = plane->state->fb;
795 if (flip_state->old_fb)
796 drm_framebuffer_get(flip_state->old_fb);
798 WARN_ON(drm_crtc_vblank_get(crtc) != 0);
800 /* Immediately update the plane's legacy fb pointer, so that later
801 * modeset prep sees the state that will be present when the semaphore
802 * is released.
804 drm_atomic_set_fb_for_plane(plane->state, fb);
806 vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno,
807 vc4_async_page_flip_complete);
809 /* Driver takes ownership of state on successful async commit. */
810 return 0;
813 int vc4_page_flip(struct drm_crtc *crtc,
814 struct drm_framebuffer *fb,
815 struct drm_pending_vblank_event *event,
816 uint32_t flags,
817 struct drm_modeset_acquire_ctx *ctx)
819 if (flags & DRM_MODE_PAGE_FLIP_ASYNC)
820 return vc4_async_page_flip(crtc, fb, event, flags);
821 else
822 return drm_atomic_helper_page_flip(crtc, fb, event, flags, ctx);
825 struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
827 struct vc4_crtc_state *vc4_state, *old_vc4_state;
829 vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
830 if (!vc4_state)
831 return NULL;
833 old_vc4_state = to_vc4_crtc_state(crtc->state);
834 vc4_state->feed_txp = old_vc4_state->feed_txp;
835 vc4_state->margins = old_vc4_state->margins;
836 vc4_state->assigned_channel = old_vc4_state->assigned_channel;
838 __drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
839 return &vc4_state->base;
842 void vc4_crtc_destroy_state(struct drm_crtc *crtc,
843 struct drm_crtc_state *state)
845 struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
846 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
848 if (drm_mm_node_allocated(&vc4_state->mm)) {
849 unsigned long flags;
851 spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
852 drm_mm_remove_node(&vc4_state->mm);
853 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
857 drm_atomic_helper_crtc_destroy_state(crtc, state);
860 void vc4_crtc_reset(struct drm_crtc *crtc)
862 struct vc4_crtc_state *vc4_crtc_state;
864 if (crtc->state)
865 vc4_crtc_destroy_state(crtc, crtc->state);
867 vc4_crtc_state = kzalloc(sizeof(*vc4_crtc_state), GFP_KERNEL);
868 if (!vc4_crtc_state) {
869 crtc->state = NULL;
870 return;
873 vc4_crtc_state->assigned_channel = VC4_HVS_CHANNEL_DISABLED;
874 __drm_atomic_helper_crtc_reset(crtc, &vc4_crtc_state->base);
877 static const struct drm_crtc_funcs vc4_crtc_funcs = {
878 .set_config = drm_atomic_helper_set_config,
879 .destroy = vc4_crtc_destroy,
880 .page_flip = vc4_page_flip,
881 .set_property = NULL,
882 .cursor_set = NULL, /* handled by drm_mode_cursor_universal */
883 .cursor_move = NULL, /* handled by drm_mode_cursor_universal */
884 .reset = vc4_crtc_reset,
885 .atomic_duplicate_state = vc4_crtc_duplicate_state,
886 .atomic_destroy_state = vc4_crtc_destroy_state,
887 .gamma_set = drm_atomic_helper_legacy_gamma_set,
888 .enable_vblank = vc4_enable_vblank,
889 .disable_vblank = vc4_disable_vblank,
890 .get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp,
893 static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
894 .mode_valid = vc4_crtc_mode_valid,
895 .atomic_check = vc4_crtc_atomic_check,
896 .atomic_flush = vc4_hvs_atomic_flush,
897 .atomic_enable = vc4_crtc_atomic_enable,
898 .atomic_disable = vc4_crtc_atomic_disable,
899 .get_scanout_position = vc4_crtc_get_scanout_position,
902 static const struct vc4_pv_data bcm2835_pv0_data = {
903 .base = {
904 .hvs_available_channels = BIT(0),
905 .hvs_output = 0,
907 .debugfs_name = "crtc0_regs",
908 .fifo_depth = 64,
909 .pixels_per_clock = 1,
910 .encoder_types = {
911 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0,
912 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI,
916 static const struct vc4_pv_data bcm2835_pv1_data = {
917 .base = {
918 .hvs_available_channels = BIT(2),
919 .hvs_output = 2,
921 .debugfs_name = "crtc1_regs",
922 .fifo_depth = 64,
923 .pixels_per_clock = 1,
924 .encoder_types = {
925 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1,
926 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI,
930 static const struct vc4_pv_data bcm2835_pv2_data = {
931 .base = {
932 .hvs_available_channels = BIT(1),
933 .hvs_output = 1,
935 .debugfs_name = "crtc2_regs",
936 .fifo_depth = 64,
937 .pixels_per_clock = 1,
938 .encoder_types = {
939 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI0,
940 [PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
944 static const struct vc4_pv_data bcm2711_pv0_data = {
945 .base = {
946 .hvs_available_channels = BIT(0),
947 .hvs_output = 0,
949 .debugfs_name = "crtc0_regs",
950 .fifo_depth = 64,
951 .pixels_per_clock = 1,
952 .encoder_types = {
953 [0] = VC4_ENCODER_TYPE_DSI0,
954 [1] = VC4_ENCODER_TYPE_DPI,
958 static const struct vc4_pv_data bcm2711_pv1_data = {
959 .base = {
960 .hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
961 .hvs_output = 3,
963 .debugfs_name = "crtc1_regs",
964 .fifo_depth = 64,
965 .pixels_per_clock = 1,
966 .encoder_types = {
967 [0] = VC4_ENCODER_TYPE_DSI1,
968 [1] = VC4_ENCODER_TYPE_SMI,
972 static const struct vc4_pv_data bcm2711_pv2_data = {
973 .base = {
974 .hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
975 .hvs_output = 4,
977 .debugfs_name = "crtc2_regs",
978 .fifo_depth = 256,
979 .pixels_per_clock = 2,
980 .encoder_types = {
981 [0] = VC4_ENCODER_TYPE_HDMI0,
985 static const struct vc4_pv_data bcm2711_pv3_data = {
986 .base = {
987 .hvs_available_channels = BIT(1),
988 .hvs_output = 1,
990 .debugfs_name = "crtc3_regs",
991 .fifo_depth = 64,
992 .pixels_per_clock = 1,
993 .encoder_types = {
994 [0] = VC4_ENCODER_TYPE_VEC,
998 static const struct vc4_pv_data bcm2711_pv4_data = {
999 .base = {
1000 .hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
1001 .hvs_output = 5,
1003 .debugfs_name = "crtc4_regs",
1004 .fifo_depth = 64,
1005 .pixels_per_clock = 2,
1006 .encoder_types = {
1007 [0] = VC4_ENCODER_TYPE_HDMI1,
1011 static const struct of_device_id vc4_crtc_dt_match[] = {
1012 { .compatible = "brcm,bcm2835-pixelvalve0", .data = &bcm2835_pv0_data },
1013 { .compatible = "brcm,bcm2835-pixelvalve1", .data = &bcm2835_pv1_data },
1014 { .compatible = "brcm,bcm2835-pixelvalve2", .data = &bcm2835_pv2_data },
1015 { .compatible = "brcm,bcm2711-pixelvalve0", .data = &bcm2711_pv0_data },
1016 { .compatible = "brcm,bcm2711-pixelvalve1", .data = &bcm2711_pv1_data },
1017 { .compatible = "brcm,bcm2711-pixelvalve2", .data = &bcm2711_pv2_data },
1018 { .compatible = "brcm,bcm2711-pixelvalve3", .data = &bcm2711_pv3_data },
1019 { .compatible = "brcm,bcm2711-pixelvalve4", .data = &bcm2711_pv4_data },
1023 static void vc4_set_crtc_possible_masks(struct drm_device *drm,
1024 struct drm_crtc *crtc)
1026 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
1027 const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
1028 const enum vc4_encoder_type *encoder_types = pv_data->encoder_types;
1029 struct drm_encoder *encoder;
1031 drm_for_each_encoder(encoder, drm) {
1032 struct vc4_encoder *vc4_encoder;
1033 int i;
1035 vc4_encoder = to_vc4_encoder(encoder);
1036 for (i = 0; i < ARRAY_SIZE(pv_data->encoder_types); i++) {
1037 if (vc4_encoder->type == encoder_types[i]) {
1038 vc4_encoder->clock_select = i;
1039 encoder->possible_crtcs |= drm_crtc_mask(crtc);
1040 break;
1046 int vc4_crtc_init(struct drm_device *drm, struct vc4_crtc *vc4_crtc,
1047 const struct drm_crtc_funcs *crtc_funcs,
1048 const struct drm_crtc_helper_funcs *crtc_helper_funcs)
1050 struct vc4_dev *vc4 = to_vc4_dev(drm);
1051 struct drm_crtc *crtc = &vc4_crtc->base;
1052 struct drm_plane *primary_plane;
1053 unsigned int i;
1055 /* For now, we create just the primary and the legacy cursor
1056 * planes. We should be able to stack more planes on easily,
1057 * but to do that we would need to compute the bandwidth
1058 * requirement of the plane configuration, and reject ones
1059 * that will take too much.
1061 primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
1062 if (IS_ERR(primary_plane)) {
1063 dev_err(drm->dev, "failed to construct primary plane\n");
1064 return PTR_ERR(primary_plane);
1067 drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
1068 crtc_funcs, NULL);
1069 drm_crtc_helper_add(crtc, crtc_helper_funcs);
1071 if (!vc4->hvs->hvs5) {
1072 drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
1074 drm_crtc_enable_color_mgmt(crtc, 0, false, crtc->gamma_size);
1076 /* We support CTM, but only for one CRTC at a time. It's therefore
1077 * implemented as private driver state in vc4_kms, not here.
1079 drm_crtc_enable_color_mgmt(crtc, 0, true, crtc->gamma_size);
1082 for (i = 0; i < crtc->gamma_size; i++) {
1083 vc4_crtc->lut_r[i] = i;
1084 vc4_crtc->lut_g[i] = i;
1085 vc4_crtc->lut_b[i] = i;
1088 return 0;
1091 static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
1093 struct platform_device *pdev = to_platform_device(dev);
1094 struct drm_device *drm = dev_get_drvdata(master);
1095 const struct vc4_pv_data *pv_data;
1096 struct vc4_crtc *vc4_crtc;
1097 struct drm_crtc *crtc;
1098 struct drm_plane *destroy_plane, *temp;
1099 int ret;
1101 vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
1102 if (!vc4_crtc)
1103 return -ENOMEM;
1104 crtc = &vc4_crtc->base;
1106 pv_data = of_device_get_match_data(dev);
1107 if (!pv_data)
1108 return -ENODEV;
1109 vc4_crtc->data = &pv_data->base;
1110 vc4_crtc->pdev = pdev;
1112 vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
1113 if (IS_ERR(vc4_crtc->regs))
1114 return PTR_ERR(vc4_crtc->regs);
1116 vc4_crtc->regset.base = vc4_crtc->regs;
1117 vc4_crtc->regset.regs = crtc_regs;
1118 vc4_crtc->regset.nregs = ARRAY_SIZE(crtc_regs);
1120 ret = vc4_crtc_init(drm, vc4_crtc,
1121 &vc4_crtc_funcs, &vc4_crtc_helper_funcs);
1122 if (ret)
1123 return ret;
1124 vc4_set_crtc_possible_masks(drm, crtc);
1126 CRTC_WRITE(PV_INTEN, 0);
1127 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
1128 ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1129 vc4_crtc_irq_handler,
1130 IRQF_SHARED,
1131 "vc4 crtc", vc4_crtc);
1132 if (ret)
1133 goto err_destroy_planes;
1135 platform_set_drvdata(pdev, vc4_crtc);
1137 vc4_debugfs_add_regset32(drm, pv_data->debugfs_name,
1138 &vc4_crtc->regset);
1140 return 0;
1142 err_destroy_planes:
1143 list_for_each_entry_safe(destroy_plane, temp,
1144 &drm->mode_config.plane_list, head) {
1145 if (destroy_plane->possible_crtcs == drm_crtc_mask(crtc))
1146 destroy_plane->funcs->destroy(destroy_plane);
1149 return ret;
1152 static void vc4_crtc_unbind(struct device *dev, struct device *master,
1153 void *data)
1155 struct platform_device *pdev = to_platform_device(dev);
1156 struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
1158 vc4_crtc_destroy(&vc4_crtc->base);
1160 CRTC_WRITE(PV_INTEN, 0);
1162 platform_set_drvdata(pdev, NULL);
1165 static const struct component_ops vc4_crtc_ops = {
1166 .bind = vc4_crtc_bind,
1167 .unbind = vc4_crtc_unbind,
1170 static int vc4_crtc_dev_probe(struct platform_device *pdev)
1172 return component_add(&pdev->dev, &vc4_crtc_ops);
1175 static int vc4_crtc_dev_remove(struct platform_device *pdev)
1177 component_del(&pdev->dev, &vc4_crtc_ops);
1178 return 0;
1181 struct platform_driver vc4_crtc_driver = {
1182 .probe = vc4_crtc_dev_probe,
1183 .remove = vc4_crtc_dev_remove,
1184 .driver = {
1185 .name = "vc4_crtc",
1186 .of_match_table = vc4_crtc_dt_match,