1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) 2015 Broadcom
9 * In VC4, the Pixel Valve is what most closely corresponds to the
10 * DRM's concept of a CRTC. The PV generates video timings from the
11 * encoder's clock plus its configuration. It pulls scaled pixels from
12 * the HVS at that timing, and feeds it to the encoder.
14 * However, the DRM CRTC also collects the configuration of all the
15 * DRM planes attached to it. As a result, the CRTC is also
16 * responsible for writing the display list for the HVS channel that
19 * The 2835 has 3 different pixel valves. pv0 in the audio power
20 * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI. pv2 in the
21 * image domain can feed either HDMI or the SDTV controller. The
22 * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
23 * SDTV, etc.) according to which output type is chosen in the mux.
25 * For power management, the pixel valve's registers are all clocked
26 * by the AXI clock, while the timings and FIFOs make use of the
27 * output-specific clock. Since the encoders also directly consume
28 * the CPRMAN clocks, and know what timings they need, they are the
29 * ones that set the clock.
32 #include <linux/clk.h>
33 #include <linux/component.h>
34 #include <linux/of_device.h>
36 #include <drm/drm_atomic.h>
37 #include <drm/drm_atomic_helper.h>
38 #include <drm/drm_atomic_uapi.h>
39 #include <drm/drm_fb_cma_helper.h>
40 #include <drm/drm_print.h>
41 #include <drm/drm_probe_helper.h>
42 #include <drm/drm_vblank.h>
47 #define HVS_FIFO_LATENCY_PIX 6
49 #define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
50 #define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
52 static const struct debugfs_reg32 crtc_regs
[] = {
53 VC4_REG32(PV_CONTROL
),
54 VC4_REG32(PV_V_CONTROL
),
55 VC4_REG32(PV_VSYNCD_EVEN
),
60 VC4_REG32(PV_VERTA_EVEN
),
61 VC4_REG32(PV_VERTB_EVEN
),
63 VC4_REG32(PV_INTSTAT
),
65 VC4_REG32(PV_HACT_ACT
),
69 vc4_crtc_get_cob_allocation(struct vc4_dev
*vc4
, unsigned int channel
)
71 u32 dispbase
= HVS_READ(SCALER_DISPBASEX(channel
));
72 /* Top/base are supposed to be 4-pixel aligned, but the
73 * Raspberry Pi firmware fills the low bits (which are
74 * presumably ignored).
76 u32 top
= VC4_GET_FIELD(dispbase
, SCALER_DISPBASEX_TOP
) & ~3;
77 u32 base
= VC4_GET_FIELD(dispbase
, SCALER_DISPBASEX_BASE
) & ~3;
79 return top
- base
+ 4;
82 static bool vc4_crtc_get_scanout_position(struct drm_crtc
*crtc
,
85 ktime_t
*stime
, ktime_t
*etime
,
86 const struct drm_display_mode
*mode
)
88 struct drm_device
*dev
= crtc
->dev
;
89 struct vc4_dev
*vc4
= to_vc4_dev(dev
);
90 struct vc4_crtc
*vc4_crtc
= to_vc4_crtc(crtc
);
91 struct vc4_crtc_state
*vc4_crtc_state
= to_vc4_crtc_state(crtc
->state
);
92 unsigned int cob_size
;
98 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
100 /* Get optional system timestamp before query. */
102 *stime
= ktime_get();
105 * Read vertical scanline which is currently composed for our
106 * pixelvalve by the HVS, and also the scaler status.
108 val
= HVS_READ(SCALER_DISPSTATX(vc4_crtc_state
->assigned_channel
));
110 /* Get optional system timestamp after query. */
112 *etime
= ktime_get();
114 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
116 /* Vertical position of hvs composed scanline. */
117 *vpos
= VC4_GET_FIELD(val
, SCALER_DISPSTATX_LINE
);
120 if (mode
->flags
& DRM_MODE_FLAG_INTERLACE
) {
123 /* Use hpos to correct for field offset in interlaced mode. */
124 if (VC4_GET_FIELD(val
, SCALER_DISPSTATX_FRAME_COUNT
) % 2)
125 *hpos
+= mode
->crtc_htotal
/ 2;
128 cob_size
= vc4_crtc_get_cob_allocation(vc4
, vc4_crtc_state
->assigned_channel
);
129 /* This is the offset we need for translating hvs -> pv scanout pos. */
130 fifo_lines
= cob_size
/ mode
->crtc_hdisplay
;
135 /* HVS more than fifo_lines into frame for compositing? */
136 if (*vpos
> fifo_lines
) {
138 * We are in active scanout and can get some meaningful results
139 * from HVS. The actual PV scanout can not trail behind more
140 * than fifo_lines as that is the fifo's capacity. Assume that
141 * in active scanout the HVS and PV work in lockstep wrt. HVS
142 * refilling the fifo and PV consuming from the fifo, ie.
143 * whenever the PV consumes and frees up a scanline in the
144 * fifo, the HVS will immediately refill it, therefore
145 * incrementing vpos. Therefore we choose HVS read position -
146 * fifo size in scanlines as a estimate of the real scanout
147 * position of the PV.
149 *vpos
-= fifo_lines
+ 1;
155 * Less: This happens when we are in vblank and the HVS, after getting
156 * the VSTART restart signal from the PV, just started refilling its
157 * fifo with new lines from the top-most lines of the new framebuffers.
158 * The PV does not scan out in vblank, so does not remove lines from
159 * the fifo, so the fifo will be full quickly and the HVS has to pause.
160 * We can't get meaningful readings wrt. scanline position of the PV
161 * and need to make things up in a approximative but consistent way.
163 vblank_lines
= mode
->vtotal
- mode
->vdisplay
;
167 * Assume the irq handler got called close to first
168 * line of vblank, so PV has about a full vblank
169 * scanlines to go, and as a base timestamp use the
170 * one taken at entry into vblank irq handler, so it
171 * is not affected by random delays due to lock
172 * contention on event_lock or vblank_time lock in
175 *vpos
= -vblank_lines
;
178 *stime
= vc4_crtc
->t_vblank
;
180 *etime
= vc4_crtc
->t_vblank
;
183 * If the HVS fifo is not yet full then we know for certain
184 * we are at the very beginning of vblank, as the hvs just
185 * started refilling, and the stime and etime timestamps
186 * truly correspond to start of vblank.
188 * Unfortunately there's no way to report this to upper levels
189 * and make it more useful.
193 * No clue where we are inside vblank. Return a vpos of zero,
194 * which will cause calling code to just return the etime
195 * timestamp uncorrected. At least this is no worse than the
204 void vc4_crtc_destroy(struct drm_crtc
*crtc
)
206 drm_crtc_cleanup(crtc
);
209 static u32
vc4_get_fifo_full_level(struct vc4_crtc
*vc4_crtc
, u32 format
)
211 const struct vc4_crtc_data
*crtc_data
= vc4_crtc_to_vc4_crtc_data(vc4_crtc
);
212 const struct vc4_pv_data
*pv_data
= vc4_crtc_to_vc4_pv_data(vc4_crtc
);
213 u32 fifo_len_bytes
= pv_data
->fifo_depth
;
216 * Pixels are pulled from the HVS if the number of bytes is
217 * lower than the FIFO full level.
219 * The latency of the pixel fetch mechanism is 6 pixels, so we
220 * need to convert those 6 pixels in bytes, depending on the
221 * format, and then subtract that from the length of the FIFO
222 * to make sure we never end up in a situation where the FIFO
226 case PV_CONTROL_FORMAT_DSIV_16
:
227 case PV_CONTROL_FORMAT_DSIC_16
:
228 return fifo_len_bytes
- 2 * HVS_FIFO_LATENCY_PIX
;
229 case PV_CONTROL_FORMAT_DSIV_18
:
230 return fifo_len_bytes
- 14;
231 case PV_CONTROL_FORMAT_24
:
232 case PV_CONTROL_FORMAT_DSIV_24
:
235 * For some reason, the pixelvalve4 doesn't work with
236 * the usual formula and will only work with 32.
238 if (crtc_data
->hvs_output
== 5)
241 return fifo_len_bytes
- 3 * HVS_FIFO_LATENCY_PIX
;
245 static u32
vc4_crtc_get_fifo_full_level_bits(struct vc4_crtc
*vc4_crtc
,
248 u32 level
= vc4_get_fifo_full_level(vc4_crtc
, format
);
251 ret
|= VC4_SET_FIELD((level
>> 6),
252 PV5_CONTROL_FIFO_LEVEL_HIGH
);
254 return ret
| VC4_SET_FIELD(level
& 0x3f,
255 PV_CONTROL_FIFO_LEVEL
);
259 * Returns the encoder attached to the CRTC.
261 * VC4 can only scan out to one encoder at a time, while the DRM core
262 * allows drivers to push pixels to more than one encoder from the
265 static struct drm_encoder
*vc4_get_crtc_encoder(struct drm_crtc
*crtc
)
267 struct drm_connector
*connector
;
268 struct drm_connector_list_iter conn_iter
;
270 drm_connector_list_iter_begin(crtc
->dev
, &conn_iter
);
271 drm_for_each_connector_iter(connector
, &conn_iter
) {
272 if (connector
->state
->crtc
== crtc
) {
273 drm_connector_list_iter_end(&conn_iter
);
274 return connector
->encoder
;
277 drm_connector_list_iter_end(&conn_iter
);
282 static void vc4_crtc_pixelvalve_reset(struct drm_crtc
*crtc
)
284 struct vc4_crtc
*vc4_crtc
= to_vc4_crtc(crtc
);
286 /* The PV needs to be disabled before it can be flushed */
287 CRTC_WRITE(PV_CONTROL
, CRTC_READ(PV_CONTROL
) & ~PV_CONTROL_EN
);
288 CRTC_WRITE(PV_CONTROL
, CRTC_READ(PV_CONTROL
) | PV_CONTROL_FIFO_CLR
);
291 static void vc4_crtc_config_pv(struct drm_crtc
*crtc
)
293 struct drm_device
*dev
= crtc
->dev
;
294 struct vc4_dev
*vc4
= to_vc4_dev(dev
);
295 struct drm_encoder
*encoder
= vc4_get_crtc_encoder(crtc
);
296 struct vc4_encoder
*vc4_encoder
= to_vc4_encoder(encoder
);
297 struct vc4_crtc
*vc4_crtc
= to_vc4_crtc(crtc
);
298 const struct vc4_pv_data
*pv_data
= vc4_crtc_to_vc4_pv_data(vc4_crtc
);
299 struct drm_crtc_state
*state
= crtc
->state
;
300 struct drm_display_mode
*mode
= &state
->adjusted_mode
;
301 bool interlace
= mode
->flags
& DRM_MODE_FLAG_INTERLACE
;
302 u32 pixel_rep
= (mode
->flags
& DRM_MODE_FLAG_DBLCLK
) ? 2 : 1;
303 bool is_dsi
= (vc4_encoder
->type
== VC4_ENCODER_TYPE_DSI0
||
304 vc4_encoder
->type
== VC4_ENCODER_TYPE_DSI1
);
305 u32 format
= is_dsi
? PV_CONTROL_FORMAT_DSIV_24
: PV_CONTROL_FORMAT_24
;
306 u8 ppc
= pv_data
->pixels_per_clock
;
307 bool debug_dump_regs
= false;
309 if (debug_dump_regs
) {
310 struct drm_printer p
= drm_info_printer(&vc4_crtc
->pdev
->dev
);
311 dev_info(&vc4_crtc
->pdev
->dev
, "CRTC %d regs before:\n",
312 drm_crtc_index(crtc
));
313 drm_print_regset32(&p
, &vc4_crtc
->regset
);
316 vc4_crtc_pixelvalve_reset(crtc
);
319 VC4_SET_FIELD((mode
->htotal
- mode
->hsync_end
) * pixel_rep
/ ppc
,
321 VC4_SET_FIELD((mode
->hsync_end
- mode
->hsync_start
) * pixel_rep
/ ppc
,
325 VC4_SET_FIELD((mode
->hsync_start
- mode
->hdisplay
) * pixel_rep
/ ppc
,
327 VC4_SET_FIELD(mode
->hdisplay
* pixel_rep
/ ppc
,
331 VC4_SET_FIELD(mode
->crtc_vtotal
- mode
->crtc_vsync_end
,
333 VC4_SET_FIELD(mode
->crtc_vsync_end
- mode
->crtc_vsync_start
,
336 VC4_SET_FIELD(mode
->crtc_vsync_start
- mode
->crtc_vdisplay
,
338 VC4_SET_FIELD(mode
->crtc_vdisplay
, PV_VERTB_VACTIVE
));
341 CRTC_WRITE(PV_VERTA_EVEN
,
342 VC4_SET_FIELD(mode
->crtc_vtotal
-
343 mode
->crtc_vsync_end
- 1,
345 VC4_SET_FIELD(mode
->crtc_vsync_end
-
346 mode
->crtc_vsync_start
,
348 CRTC_WRITE(PV_VERTB_EVEN
,
349 VC4_SET_FIELD(mode
->crtc_vsync_start
-
352 VC4_SET_FIELD(mode
->crtc_vdisplay
, PV_VERTB_VACTIVE
));
354 /* We set up first field even mode for HDMI. VEC's
355 * NTSC mode would want first field odd instead, once
356 * we support it (to do so, set ODD_FIRST and put the
357 * delay in VSYNCD_EVEN instead).
359 CRTC_WRITE(PV_V_CONTROL
,
360 PV_VCONTROL_CONTINUOUS
|
361 (is_dsi
? PV_VCONTROL_DSI
: 0) |
362 PV_VCONTROL_INTERLACE
|
363 VC4_SET_FIELD(mode
->htotal
* pixel_rep
/ 2,
364 PV_VCONTROL_ODD_DELAY
));
365 CRTC_WRITE(PV_VSYNCD_EVEN
, 0);
367 CRTC_WRITE(PV_V_CONTROL
,
368 PV_VCONTROL_CONTINUOUS
|
369 (is_dsi
? PV_VCONTROL_DSI
: 0));
373 CRTC_WRITE(PV_HACT_ACT
, mode
->hdisplay
* pixel_rep
);
376 CRTC_WRITE(PV_MUX_CFG
,
377 VC4_SET_FIELD(PV_MUX_CFG_RGB_PIXEL_MUX_MODE_NO_SWAP
,
378 PV_MUX_CFG_RGB_PIXEL_MUX_MODE
));
380 CRTC_WRITE(PV_CONTROL
, PV_CONTROL_FIFO_CLR
|
381 vc4_crtc_get_fifo_full_level_bits(vc4_crtc
, format
) |
382 VC4_SET_FIELD(format
, PV_CONTROL_FORMAT
) |
383 VC4_SET_FIELD(pixel_rep
- 1, PV_CONTROL_PIXEL_REP
) |
384 PV_CONTROL_CLR_AT_START
|
385 PV_CONTROL_TRIGGER_UNDERFLOW
|
386 PV_CONTROL_WAIT_HSTART
|
387 VC4_SET_FIELD(vc4_encoder
->clock_select
,
388 PV_CONTROL_CLK_SELECT
));
390 if (debug_dump_regs
) {
391 struct drm_printer p
= drm_info_printer(&vc4_crtc
->pdev
->dev
);
392 dev_info(&vc4_crtc
->pdev
->dev
, "CRTC %d regs after:\n",
393 drm_crtc_index(crtc
));
394 drm_print_regset32(&p
, &vc4_crtc
->regset
);
398 static void require_hvs_enabled(struct drm_device
*dev
)
400 struct vc4_dev
*vc4
= to_vc4_dev(dev
);
402 WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL
) & SCALER_DISPCTRL_ENABLE
) !=
403 SCALER_DISPCTRL_ENABLE
);
406 static int vc4_crtc_disable(struct drm_crtc
*crtc
, unsigned int channel
)
408 struct drm_encoder
*encoder
= vc4_get_crtc_encoder(crtc
);
409 struct vc4_encoder
*vc4_encoder
= to_vc4_encoder(encoder
);
410 struct vc4_crtc
*vc4_crtc
= to_vc4_crtc(crtc
);
411 struct drm_device
*dev
= crtc
->dev
;
414 CRTC_WRITE(PV_V_CONTROL
,
415 CRTC_READ(PV_V_CONTROL
) & ~PV_VCONTROL_VIDEN
);
416 ret
= wait_for(!(CRTC_READ(PV_V_CONTROL
) & PV_VCONTROL_VIDEN
), 1);
417 WARN_ONCE(ret
, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
420 * This delay is needed to avoid to get a pixel stuck in an
421 * unflushable FIFO between the pixelvalve and the HDMI
422 * controllers on the BCM2711.
424 * Timing is fairly sensitive here, so mdelay is the safest
427 * If it was to be reworked, the stuck pixel happens on a
428 * BCM2711 when changing mode with a good probability, so a
429 * script that changes mode on a regular basis should trigger
430 * the bug after less than 10 attempts. It manifests itself with
431 * every pixels being shifted by one to the right, and thus the
432 * last pixel of a line actually being displayed as the first
433 * pixel on the next line.
437 if (vc4_encoder
&& vc4_encoder
->post_crtc_disable
)
438 vc4_encoder
->post_crtc_disable(encoder
);
440 vc4_crtc_pixelvalve_reset(crtc
);
441 vc4_hvs_stop_channel(dev
, channel
);
443 if (vc4_encoder
&& vc4_encoder
->post_crtc_powerdown
)
444 vc4_encoder
->post_crtc_powerdown(encoder
);
449 int vc4_crtc_disable_at_boot(struct drm_crtc
*crtc
)
451 struct drm_device
*drm
= crtc
->dev
;
452 struct vc4_crtc
*vc4_crtc
= to_vc4_crtc(crtc
);
455 if (!(of_device_is_compatible(vc4_crtc
->pdev
->dev
.of_node
,
456 "brcm,bcm2711-pixelvalve2") ||
457 of_device_is_compatible(vc4_crtc
->pdev
->dev
.of_node
,
458 "brcm,bcm2711-pixelvalve4")))
461 if (!(CRTC_READ(PV_CONTROL
) & PV_CONTROL_EN
))
464 if (!(CRTC_READ(PV_V_CONTROL
) & PV_VCONTROL_VIDEN
))
467 channel
= vc4_hvs_get_fifo_from_output(drm
, vc4_crtc
->data
->hvs_output
);
471 return vc4_crtc_disable(crtc
, channel
);
474 static void vc4_crtc_atomic_disable(struct drm_crtc
*crtc
,
475 struct drm_atomic_state
*state
)
477 struct drm_crtc_state
*old_state
= drm_atomic_get_old_crtc_state(state
,
479 struct vc4_crtc_state
*old_vc4_state
= to_vc4_crtc_state(old_state
);
480 struct drm_device
*dev
= crtc
->dev
;
482 require_hvs_enabled(dev
);
484 /* Disable vblank irq handling before crtc is disabled. */
485 drm_crtc_vblank_off(crtc
);
487 vc4_crtc_disable(crtc
, old_vc4_state
->assigned_channel
);
490 * Make sure we issue a vblank event after disabling the CRTC if
491 * someone was waiting it.
493 if (crtc
->state
->event
) {
496 spin_lock_irqsave(&dev
->event_lock
, flags
);
497 drm_crtc_send_vblank_event(crtc
, crtc
->state
->event
);
498 crtc
->state
->event
= NULL
;
499 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
503 static void vc4_crtc_atomic_enable(struct drm_crtc
*crtc
,
504 struct drm_atomic_state
*state
)
506 struct drm_crtc_state
*old_state
= drm_atomic_get_old_crtc_state(state
,
508 struct drm_device
*dev
= crtc
->dev
;
509 struct vc4_crtc
*vc4_crtc
= to_vc4_crtc(crtc
);
510 struct drm_encoder
*encoder
= vc4_get_crtc_encoder(crtc
);
511 struct vc4_encoder
*vc4_encoder
= to_vc4_encoder(encoder
);
513 require_hvs_enabled(dev
);
515 /* Enable vblank irq handling before crtc is started otherwise
516 * drm_crtc_get_vblank() fails in vc4_crtc_update_dlist().
518 drm_crtc_vblank_on(crtc
);
520 vc4_hvs_atomic_enable(crtc
, old_state
);
522 if (vc4_encoder
->pre_crtc_configure
)
523 vc4_encoder
->pre_crtc_configure(encoder
);
525 vc4_crtc_config_pv(crtc
);
527 CRTC_WRITE(PV_CONTROL
, CRTC_READ(PV_CONTROL
) | PV_CONTROL_EN
);
529 if (vc4_encoder
->pre_crtc_enable
)
530 vc4_encoder
->pre_crtc_enable(encoder
);
532 /* When feeding the transposer block the pixelvalve is unneeded and
533 * should not be enabled.
535 CRTC_WRITE(PV_V_CONTROL
,
536 CRTC_READ(PV_V_CONTROL
) | PV_VCONTROL_VIDEN
);
538 if (vc4_encoder
->post_crtc_enable
)
539 vc4_encoder
->post_crtc_enable(encoder
);
542 static enum drm_mode_status
vc4_crtc_mode_valid(struct drm_crtc
*crtc
,
543 const struct drm_display_mode
*mode
)
545 /* Do not allow doublescan modes from user space */
546 if (mode
->flags
& DRM_MODE_FLAG_DBLSCAN
) {
547 DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
549 return MODE_NO_DBLESCAN
;
555 void vc4_crtc_get_margins(struct drm_crtc_state
*state
,
556 unsigned int *left
, unsigned int *right
,
557 unsigned int *top
, unsigned int *bottom
)
559 struct vc4_crtc_state
*vc4_state
= to_vc4_crtc_state(state
);
560 struct drm_connector_state
*conn_state
;
561 struct drm_connector
*conn
;
564 *left
= vc4_state
->margins
.left
;
565 *right
= vc4_state
->margins
.right
;
566 *top
= vc4_state
->margins
.top
;
567 *bottom
= vc4_state
->margins
.bottom
;
569 /* We have to interate over all new connector states because
570 * vc4_crtc_get_margins() might be called before
571 * vc4_crtc_atomic_check() which means margins info in vc4_crtc_state
574 for_each_new_connector_in_state(state
->state
, conn
, conn_state
, i
) {
575 if (conn_state
->crtc
!= state
->crtc
)
578 *left
= conn_state
->tv
.margins
.left
;
579 *right
= conn_state
->tv
.margins
.right
;
580 *top
= conn_state
->tv
.margins
.top
;
581 *bottom
= conn_state
->tv
.margins
.bottom
;
586 static int vc4_crtc_atomic_check(struct drm_crtc
*crtc
,
587 struct drm_atomic_state
*state
)
589 struct drm_crtc_state
*crtc_state
= drm_atomic_get_new_crtc_state(state
,
591 struct vc4_crtc_state
*vc4_state
= to_vc4_crtc_state(crtc_state
);
592 struct drm_connector
*conn
;
593 struct drm_connector_state
*conn_state
;
596 ret
= vc4_hvs_atomic_check(crtc
, crtc_state
);
600 for_each_new_connector_in_state(state
, conn
, conn_state
,
602 if (conn_state
->crtc
!= crtc
)
605 vc4_state
->margins
.left
= conn_state
->tv
.margins
.left
;
606 vc4_state
->margins
.right
= conn_state
->tv
.margins
.right
;
607 vc4_state
->margins
.top
= conn_state
->tv
.margins
.top
;
608 vc4_state
->margins
.bottom
= conn_state
->tv
.margins
.bottom
;
615 static int vc4_enable_vblank(struct drm_crtc
*crtc
)
617 struct vc4_crtc
*vc4_crtc
= to_vc4_crtc(crtc
);
619 CRTC_WRITE(PV_INTEN
, PV_INT_VFP_START
);
624 static void vc4_disable_vblank(struct drm_crtc
*crtc
)
626 struct vc4_crtc
*vc4_crtc
= to_vc4_crtc(crtc
);
628 CRTC_WRITE(PV_INTEN
, 0);
631 static void vc4_crtc_handle_page_flip(struct vc4_crtc
*vc4_crtc
)
633 struct drm_crtc
*crtc
= &vc4_crtc
->base
;
634 struct drm_device
*dev
= crtc
->dev
;
635 struct vc4_dev
*vc4
= to_vc4_dev(dev
);
636 struct vc4_crtc_state
*vc4_state
= to_vc4_crtc_state(crtc
->state
);
637 u32 chan
= vc4_state
->assigned_channel
;
640 spin_lock_irqsave(&dev
->event_lock
, flags
);
641 if (vc4_crtc
->event
&&
642 (vc4_state
->mm
.start
== HVS_READ(SCALER_DISPLACTX(chan
)) ||
643 vc4_state
->feed_txp
)) {
644 drm_crtc_send_vblank_event(crtc
, vc4_crtc
->event
);
645 vc4_crtc
->event
= NULL
;
646 drm_crtc_vblank_put(crtc
);
648 /* Wait for the page flip to unmask the underrun to ensure that
649 * the display list was updated by the hardware. Before that
650 * happens, the HVS will be using the previous display list with
651 * the CRTC and encoder already reconfigured, leading to
652 * underruns. This can be seen when reconfiguring the CRTC.
654 vc4_hvs_unmask_underrun(dev
, chan
);
656 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
659 void vc4_crtc_handle_vblank(struct vc4_crtc
*crtc
)
661 crtc
->t_vblank
= ktime_get();
662 drm_crtc_handle_vblank(&crtc
->base
);
663 vc4_crtc_handle_page_flip(crtc
);
666 static irqreturn_t
vc4_crtc_irq_handler(int irq
, void *data
)
668 struct vc4_crtc
*vc4_crtc
= data
;
669 u32 stat
= CRTC_READ(PV_INTSTAT
);
670 irqreturn_t ret
= IRQ_NONE
;
672 if (stat
& PV_INT_VFP_START
) {
673 CRTC_WRITE(PV_INTSTAT
, PV_INT_VFP_START
);
674 vc4_crtc_handle_vblank(vc4_crtc
);
681 struct vc4_async_flip_state
{
682 struct drm_crtc
*crtc
;
683 struct drm_framebuffer
*fb
;
684 struct drm_framebuffer
*old_fb
;
685 struct drm_pending_vblank_event
*event
;
687 struct vc4_seqno_cb cb
;
690 /* Called when the V3D execution for the BO being flipped to is done, so that
691 * we can actually update the plane's address to point to it.
694 vc4_async_page_flip_complete(struct vc4_seqno_cb
*cb
)
696 struct vc4_async_flip_state
*flip_state
=
697 container_of(cb
, struct vc4_async_flip_state
, cb
);
698 struct drm_crtc
*crtc
= flip_state
->crtc
;
699 struct drm_device
*dev
= crtc
->dev
;
700 struct vc4_dev
*vc4
= to_vc4_dev(dev
);
701 struct drm_plane
*plane
= crtc
->primary
;
703 vc4_plane_async_set_fb(plane
, flip_state
->fb
);
704 if (flip_state
->event
) {
707 spin_lock_irqsave(&dev
->event_lock
, flags
);
708 drm_crtc_send_vblank_event(crtc
, flip_state
->event
);
709 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
712 drm_crtc_vblank_put(crtc
);
713 drm_framebuffer_put(flip_state
->fb
);
715 /* Decrement the BO usecnt in order to keep the inc/dec calls balanced
716 * when the planes are updated through the async update path.
717 * FIXME: we should move to generic async-page-flip when it's
718 * available, so that we can get rid of this hand-made cleanup_fb()
721 if (flip_state
->old_fb
) {
722 struct drm_gem_cma_object
*cma_bo
;
725 cma_bo
= drm_fb_cma_get_gem_obj(flip_state
->old_fb
, 0);
726 bo
= to_vc4_bo(&cma_bo
->base
);
727 vc4_bo_dec_usecnt(bo
);
728 drm_framebuffer_put(flip_state
->old_fb
);
733 up(&vc4
->async_modeset
);
736 /* Implements async (non-vblank-synced) page flips.
738 * The page flip ioctl needs to return immediately, so we grab the
739 * modeset semaphore on the pipe, and queue the address update for
740 * when V3D is done with the BO being flipped to.
742 static int vc4_async_page_flip(struct drm_crtc
*crtc
,
743 struct drm_framebuffer
*fb
,
744 struct drm_pending_vblank_event
*event
,
747 struct drm_device
*dev
= crtc
->dev
;
748 struct vc4_dev
*vc4
= to_vc4_dev(dev
);
749 struct drm_plane
*plane
= crtc
->primary
;
751 struct vc4_async_flip_state
*flip_state
;
752 struct drm_gem_cma_object
*cma_bo
= drm_fb_cma_get_gem_obj(fb
, 0);
753 struct vc4_bo
*bo
= to_vc4_bo(&cma_bo
->base
);
755 /* Increment the BO usecnt here, so that we never end up with an
756 * unbalanced number of vc4_bo_{dec,inc}_usecnt() calls when the
757 * plane is later updated through the non-async path.
758 * FIXME: we should move to generic async-page-flip when it's
759 * available, so that we can get rid of this hand-made prepare_fb()
762 ret
= vc4_bo_inc_usecnt(bo
);
766 flip_state
= kzalloc(sizeof(*flip_state
), GFP_KERNEL
);
768 vc4_bo_dec_usecnt(bo
);
772 drm_framebuffer_get(fb
);
774 flip_state
->crtc
= crtc
;
775 flip_state
->event
= event
;
777 /* Make sure all other async modesetes have landed. */
778 ret
= down_interruptible(&vc4
->async_modeset
);
780 drm_framebuffer_put(fb
);
781 vc4_bo_dec_usecnt(bo
);
786 /* Save the current FB before it's replaced by the new one in
787 * drm_atomic_set_fb_for_plane(). We'll need the old FB in
788 * vc4_async_page_flip_complete() to decrement the BO usecnt and keep
790 * FIXME: we should move to generic async-page-flip when it's
791 * available, so that we can get rid of this hand-made cleanup_fb()
794 flip_state
->old_fb
= plane
->state
->fb
;
795 if (flip_state
->old_fb
)
796 drm_framebuffer_get(flip_state
->old_fb
);
798 WARN_ON(drm_crtc_vblank_get(crtc
) != 0);
800 /* Immediately update the plane's legacy fb pointer, so that later
801 * modeset prep sees the state that will be present when the semaphore
804 drm_atomic_set_fb_for_plane(plane
->state
, fb
);
806 vc4_queue_seqno_cb(dev
, &flip_state
->cb
, bo
->seqno
,
807 vc4_async_page_flip_complete
);
809 /* Driver takes ownership of state on successful async commit. */
813 int vc4_page_flip(struct drm_crtc
*crtc
,
814 struct drm_framebuffer
*fb
,
815 struct drm_pending_vblank_event
*event
,
817 struct drm_modeset_acquire_ctx
*ctx
)
819 if (flags
& DRM_MODE_PAGE_FLIP_ASYNC
)
820 return vc4_async_page_flip(crtc
, fb
, event
, flags
);
822 return drm_atomic_helper_page_flip(crtc
, fb
, event
, flags
, ctx
);
825 struct drm_crtc_state
*vc4_crtc_duplicate_state(struct drm_crtc
*crtc
)
827 struct vc4_crtc_state
*vc4_state
, *old_vc4_state
;
829 vc4_state
= kzalloc(sizeof(*vc4_state
), GFP_KERNEL
);
833 old_vc4_state
= to_vc4_crtc_state(crtc
->state
);
834 vc4_state
->feed_txp
= old_vc4_state
->feed_txp
;
835 vc4_state
->margins
= old_vc4_state
->margins
;
836 vc4_state
->assigned_channel
= old_vc4_state
->assigned_channel
;
838 __drm_atomic_helper_crtc_duplicate_state(crtc
, &vc4_state
->base
);
839 return &vc4_state
->base
;
842 void vc4_crtc_destroy_state(struct drm_crtc
*crtc
,
843 struct drm_crtc_state
*state
)
845 struct vc4_dev
*vc4
= to_vc4_dev(crtc
->dev
);
846 struct vc4_crtc_state
*vc4_state
= to_vc4_crtc_state(state
);
848 if (drm_mm_node_allocated(&vc4_state
->mm
)) {
851 spin_lock_irqsave(&vc4
->hvs
->mm_lock
, flags
);
852 drm_mm_remove_node(&vc4_state
->mm
);
853 spin_unlock_irqrestore(&vc4
->hvs
->mm_lock
, flags
);
857 drm_atomic_helper_crtc_destroy_state(crtc
, state
);
860 void vc4_crtc_reset(struct drm_crtc
*crtc
)
862 struct vc4_crtc_state
*vc4_crtc_state
;
865 vc4_crtc_destroy_state(crtc
, crtc
->state
);
867 vc4_crtc_state
= kzalloc(sizeof(*vc4_crtc_state
), GFP_KERNEL
);
868 if (!vc4_crtc_state
) {
873 vc4_crtc_state
->assigned_channel
= VC4_HVS_CHANNEL_DISABLED
;
874 __drm_atomic_helper_crtc_reset(crtc
, &vc4_crtc_state
->base
);
877 static const struct drm_crtc_funcs vc4_crtc_funcs
= {
878 .set_config
= drm_atomic_helper_set_config
,
879 .destroy
= vc4_crtc_destroy
,
880 .page_flip
= vc4_page_flip
,
881 .set_property
= NULL
,
882 .cursor_set
= NULL
, /* handled by drm_mode_cursor_universal */
883 .cursor_move
= NULL
, /* handled by drm_mode_cursor_universal */
884 .reset
= vc4_crtc_reset
,
885 .atomic_duplicate_state
= vc4_crtc_duplicate_state
,
886 .atomic_destroy_state
= vc4_crtc_destroy_state
,
887 .gamma_set
= drm_atomic_helper_legacy_gamma_set
,
888 .enable_vblank
= vc4_enable_vblank
,
889 .disable_vblank
= vc4_disable_vblank
,
890 .get_vblank_timestamp
= drm_crtc_vblank_helper_get_vblank_timestamp
,
893 static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs
= {
894 .mode_valid
= vc4_crtc_mode_valid
,
895 .atomic_check
= vc4_crtc_atomic_check
,
896 .atomic_flush
= vc4_hvs_atomic_flush
,
897 .atomic_enable
= vc4_crtc_atomic_enable
,
898 .atomic_disable
= vc4_crtc_atomic_disable
,
899 .get_scanout_position
= vc4_crtc_get_scanout_position
,
902 static const struct vc4_pv_data bcm2835_pv0_data
= {
904 .hvs_available_channels
= BIT(0),
907 .debugfs_name
= "crtc0_regs",
909 .pixels_per_clock
= 1,
911 [PV_CONTROL_CLK_SELECT_DSI
] = VC4_ENCODER_TYPE_DSI0
,
912 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI
] = VC4_ENCODER_TYPE_DPI
,
916 static const struct vc4_pv_data bcm2835_pv1_data
= {
918 .hvs_available_channels
= BIT(2),
921 .debugfs_name
= "crtc1_regs",
923 .pixels_per_clock
= 1,
925 [PV_CONTROL_CLK_SELECT_DSI
] = VC4_ENCODER_TYPE_DSI1
,
926 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI
] = VC4_ENCODER_TYPE_SMI
,
930 static const struct vc4_pv_data bcm2835_pv2_data
= {
932 .hvs_available_channels
= BIT(1),
935 .debugfs_name
= "crtc2_regs",
937 .pixels_per_clock
= 1,
939 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI
] = VC4_ENCODER_TYPE_HDMI0
,
940 [PV_CONTROL_CLK_SELECT_VEC
] = VC4_ENCODER_TYPE_VEC
,
944 static const struct vc4_pv_data bcm2711_pv0_data
= {
946 .hvs_available_channels
= BIT(0),
949 .debugfs_name
= "crtc0_regs",
951 .pixels_per_clock
= 1,
953 [0] = VC4_ENCODER_TYPE_DSI0
,
954 [1] = VC4_ENCODER_TYPE_DPI
,
958 static const struct vc4_pv_data bcm2711_pv1_data
= {
960 .hvs_available_channels
= BIT(0) | BIT(1) | BIT(2),
963 .debugfs_name
= "crtc1_regs",
965 .pixels_per_clock
= 1,
967 [0] = VC4_ENCODER_TYPE_DSI1
,
968 [1] = VC4_ENCODER_TYPE_SMI
,
972 static const struct vc4_pv_data bcm2711_pv2_data
= {
974 .hvs_available_channels
= BIT(0) | BIT(1) | BIT(2),
977 .debugfs_name
= "crtc2_regs",
979 .pixels_per_clock
= 2,
981 [0] = VC4_ENCODER_TYPE_HDMI0
,
985 static const struct vc4_pv_data bcm2711_pv3_data
= {
987 .hvs_available_channels
= BIT(1),
990 .debugfs_name
= "crtc3_regs",
992 .pixels_per_clock
= 1,
994 [0] = VC4_ENCODER_TYPE_VEC
,
998 static const struct vc4_pv_data bcm2711_pv4_data
= {
1000 .hvs_available_channels
= BIT(0) | BIT(1) | BIT(2),
1003 .debugfs_name
= "crtc4_regs",
1005 .pixels_per_clock
= 2,
1007 [0] = VC4_ENCODER_TYPE_HDMI1
,
1011 static const struct of_device_id vc4_crtc_dt_match
[] = {
1012 { .compatible
= "brcm,bcm2835-pixelvalve0", .data
= &bcm2835_pv0_data
},
1013 { .compatible
= "brcm,bcm2835-pixelvalve1", .data
= &bcm2835_pv1_data
},
1014 { .compatible
= "brcm,bcm2835-pixelvalve2", .data
= &bcm2835_pv2_data
},
1015 { .compatible
= "brcm,bcm2711-pixelvalve0", .data
= &bcm2711_pv0_data
},
1016 { .compatible
= "brcm,bcm2711-pixelvalve1", .data
= &bcm2711_pv1_data
},
1017 { .compatible
= "brcm,bcm2711-pixelvalve2", .data
= &bcm2711_pv2_data
},
1018 { .compatible
= "brcm,bcm2711-pixelvalve3", .data
= &bcm2711_pv3_data
},
1019 { .compatible
= "brcm,bcm2711-pixelvalve4", .data
= &bcm2711_pv4_data
},
1023 static void vc4_set_crtc_possible_masks(struct drm_device
*drm
,
1024 struct drm_crtc
*crtc
)
1026 struct vc4_crtc
*vc4_crtc
= to_vc4_crtc(crtc
);
1027 const struct vc4_pv_data
*pv_data
= vc4_crtc_to_vc4_pv_data(vc4_crtc
);
1028 const enum vc4_encoder_type
*encoder_types
= pv_data
->encoder_types
;
1029 struct drm_encoder
*encoder
;
1031 drm_for_each_encoder(encoder
, drm
) {
1032 struct vc4_encoder
*vc4_encoder
;
1035 vc4_encoder
= to_vc4_encoder(encoder
);
1036 for (i
= 0; i
< ARRAY_SIZE(pv_data
->encoder_types
); i
++) {
1037 if (vc4_encoder
->type
== encoder_types
[i
]) {
1038 vc4_encoder
->clock_select
= i
;
1039 encoder
->possible_crtcs
|= drm_crtc_mask(crtc
);
1046 int vc4_crtc_init(struct drm_device
*drm
, struct vc4_crtc
*vc4_crtc
,
1047 const struct drm_crtc_funcs
*crtc_funcs
,
1048 const struct drm_crtc_helper_funcs
*crtc_helper_funcs
)
1050 struct vc4_dev
*vc4
= to_vc4_dev(drm
);
1051 struct drm_crtc
*crtc
= &vc4_crtc
->base
;
1052 struct drm_plane
*primary_plane
;
1055 /* For now, we create just the primary and the legacy cursor
1056 * planes. We should be able to stack more planes on easily,
1057 * but to do that we would need to compute the bandwidth
1058 * requirement of the plane configuration, and reject ones
1059 * that will take too much.
1061 primary_plane
= vc4_plane_init(drm
, DRM_PLANE_TYPE_PRIMARY
);
1062 if (IS_ERR(primary_plane
)) {
1063 dev_err(drm
->dev
, "failed to construct primary plane\n");
1064 return PTR_ERR(primary_plane
);
1067 drm_crtc_init_with_planes(drm
, crtc
, primary_plane
, NULL
,
1069 drm_crtc_helper_add(crtc
, crtc_helper_funcs
);
1071 if (!vc4
->hvs
->hvs5
) {
1072 drm_mode_crtc_set_gamma_size(crtc
, ARRAY_SIZE(vc4_crtc
->lut_r
));
1074 drm_crtc_enable_color_mgmt(crtc
, 0, false, crtc
->gamma_size
);
1076 /* We support CTM, but only for one CRTC at a time. It's therefore
1077 * implemented as private driver state in vc4_kms, not here.
1079 drm_crtc_enable_color_mgmt(crtc
, 0, true, crtc
->gamma_size
);
1082 for (i
= 0; i
< crtc
->gamma_size
; i
++) {
1083 vc4_crtc
->lut_r
[i
] = i
;
1084 vc4_crtc
->lut_g
[i
] = i
;
1085 vc4_crtc
->lut_b
[i
] = i
;
1091 static int vc4_crtc_bind(struct device
*dev
, struct device
*master
, void *data
)
1093 struct platform_device
*pdev
= to_platform_device(dev
);
1094 struct drm_device
*drm
= dev_get_drvdata(master
);
1095 const struct vc4_pv_data
*pv_data
;
1096 struct vc4_crtc
*vc4_crtc
;
1097 struct drm_crtc
*crtc
;
1098 struct drm_plane
*destroy_plane
, *temp
;
1101 vc4_crtc
= devm_kzalloc(dev
, sizeof(*vc4_crtc
), GFP_KERNEL
);
1104 crtc
= &vc4_crtc
->base
;
1106 pv_data
= of_device_get_match_data(dev
);
1109 vc4_crtc
->data
= &pv_data
->base
;
1110 vc4_crtc
->pdev
= pdev
;
1112 vc4_crtc
->regs
= vc4_ioremap_regs(pdev
, 0);
1113 if (IS_ERR(vc4_crtc
->regs
))
1114 return PTR_ERR(vc4_crtc
->regs
);
1116 vc4_crtc
->regset
.base
= vc4_crtc
->regs
;
1117 vc4_crtc
->regset
.regs
= crtc_regs
;
1118 vc4_crtc
->regset
.nregs
= ARRAY_SIZE(crtc_regs
);
1120 ret
= vc4_crtc_init(drm
, vc4_crtc
,
1121 &vc4_crtc_funcs
, &vc4_crtc_helper_funcs
);
1124 vc4_set_crtc_possible_masks(drm
, crtc
);
1126 CRTC_WRITE(PV_INTEN
, 0);
1127 CRTC_WRITE(PV_INTSTAT
, PV_INT_VFP_START
);
1128 ret
= devm_request_irq(dev
, platform_get_irq(pdev
, 0),
1129 vc4_crtc_irq_handler
,
1131 "vc4 crtc", vc4_crtc
);
1133 goto err_destroy_planes
;
1135 platform_set_drvdata(pdev
, vc4_crtc
);
1137 vc4_debugfs_add_regset32(drm
, pv_data
->debugfs_name
,
1143 list_for_each_entry_safe(destroy_plane
, temp
,
1144 &drm
->mode_config
.plane_list
, head
) {
1145 if (destroy_plane
->possible_crtcs
== drm_crtc_mask(crtc
))
1146 destroy_plane
->funcs
->destroy(destroy_plane
);
1152 static void vc4_crtc_unbind(struct device
*dev
, struct device
*master
,
1155 struct platform_device
*pdev
= to_platform_device(dev
);
1156 struct vc4_crtc
*vc4_crtc
= dev_get_drvdata(dev
);
1158 vc4_crtc_destroy(&vc4_crtc
->base
);
1160 CRTC_WRITE(PV_INTEN
, 0);
1162 platform_set_drvdata(pdev
, NULL
);
1165 static const struct component_ops vc4_crtc_ops
= {
1166 .bind
= vc4_crtc_bind
,
1167 .unbind
= vc4_crtc_unbind
,
1170 static int vc4_crtc_dev_probe(struct platform_device
*pdev
)
1172 return component_add(&pdev
->dev
, &vc4_crtc_ops
);
1175 static int vc4_crtc_dev_remove(struct platform_device
*pdev
)
1177 component_del(&pdev
->dev
, &vc4_crtc_ops
);
1181 struct platform_driver vc4_crtc_driver
= {
1182 .probe
= vc4_crtc_dev_probe
,
1183 .remove
= vc4_crtc_dev_remove
,
1186 .of_match_table
= vc4_crtc_dt_match
,