1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) 2016 Broadcom
7 * DOC: VC4 DSI0/DSI1 module
9 * BCM2835 contains two DSI modules, DSI0 and DSI1. DSI0 is a
10 * single-lane DSI controller, while DSI1 is a more modern 4-lane DSI
13 * Most Raspberry Pi boards expose DSI1 as their "DISPLAY" connector,
14 * while the compute module brings both DSI0 and DSI1 out.
16 * This driver has been tested for DSI1 video-mode display only
17 * currently, with most of the information necessary for DSI0
21 #include <linux/clk-provider.h>
22 #include <linux/clk.h>
23 #include <linux/completion.h>
24 #include <linux/component.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/dmaengine.h>
27 #include <linux/i2c.h>
29 #include <linux/of_address.h>
30 #include <linux/of_platform.h>
31 #include <linux/pm_runtime.h>
33 #include <drm/drm_atomic_helper.h>
34 #include <drm/drm_bridge.h>
35 #include <drm/drm_edid.h>
36 #include <drm/drm_mipi_dsi.h>
37 #include <drm/drm_of.h>
38 #include <drm/drm_panel.h>
39 #include <drm/drm_probe_helper.h>
40 #include <drm/drm_simple_kms_helper.h>
45 #define DSI_CMD_FIFO_DEPTH 16
46 #define DSI_PIX_FIFO_DEPTH 256
47 #define DSI_PIX_FIFO_WIDTH 4
49 #define DSI0_CTRL 0x00
51 /* Command packet control. */
52 #define DSI0_TXPKT1C 0x04 /* AKA PKTC */
53 #define DSI1_TXPKT1C 0x04
54 # define DSI_TXPKT1C_TRIG_CMD_MASK VC4_MASK(31, 24)
55 # define DSI_TXPKT1C_TRIG_CMD_SHIFT 24
56 # define DSI_TXPKT1C_CMD_REPEAT_MASK VC4_MASK(23, 10)
57 # define DSI_TXPKT1C_CMD_REPEAT_SHIFT 10
59 # define DSI_TXPKT1C_DISPLAY_NO_MASK VC4_MASK(9, 8)
60 # define DSI_TXPKT1C_DISPLAY_NO_SHIFT 8
61 /* Short, trigger, BTA, or a long packet that fits all in CMDFIFO. */
62 # define DSI_TXPKT1C_DISPLAY_NO_SHORT 0
63 /* Primary display where cmdfifo provides part of the payload and
64 * pixelvalve the rest.
66 # define DSI_TXPKT1C_DISPLAY_NO_PRIMARY 1
67 /* Secondary display where cmdfifo provides part of the payload and
70 # define DSI_TXPKT1C_DISPLAY_NO_SECONDARY 2
72 # define DSI_TXPKT1C_CMD_TX_TIME_MASK VC4_MASK(7, 6)
73 # define DSI_TXPKT1C_CMD_TX_TIME_SHIFT 6
75 # define DSI_TXPKT1C_CMD_CTRL_MASK VC4_MASK(5, 4)
76 # define DSI_TXPKT1C_CMD_CTRL_SHIFT 4
77 /* Command only. Uses TXPKT1H and DISPLAY_NO */
78 # define DSI_TXPKT1C_CMD_CTRL_TX 0
79 /* Command with BTA for either ack or read data. */
80 # define DSI_TXPKT1C_CMD_CTRL_RX 1
81 /* Trigger according to TRIG_CMD */
82 # define DSI_TXPKT1C_CMD_CTRL_TRIG 2
83 /* BTA alone for getting error status after a command, or a TE trigger
84 * without a previous command.
86 # define DSI_TXPKT1C_CMD_CTRL_BTA 3
88 # define DSI_TXPKT1C_CMD_MODE_LP BIT(3)
89 # define DSI_TXPKT1C_CMD_TYPE_LONG BIT(2)
90 # define DSI_TXPKT1C_CMD_TE_EN BIT(1)
91 # define DSI_TXPKT1C_CMD_EN BIT(0)
93 /* Command packet header. */
94 #define DSI0_TXPKT1H 0x08 /* AKA PKTH */
95 #define DSI1_TXPKT1H 0x08
96 # define DSI_TXPKT1H_BC_CMDFIFO_MASK VC4_MASK(31, 24)
97 # define DSI_TXPKT1H_BC_CMDFIFO_SHIFT 24
98 # define DSI_TXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8)
99 # define DSI_TXPKT1H_BC_PARAM_SHIFT 8
100 # define DSI_TXPKT1H_BC_DT_MASK VC4_MASK(7, 0)
101 # define DSI_TXPKT1H_BC_DT_SHIFT 0
103 #define DSI0_RXPKT1H 0x0c /* AKA RX1_PKTH */
104 #define DSI1_RXPKT1H 0x14
105 # define DSI_RXPKT1H_CRC_ERR BIT(31)
106 # define DSI_RXPKT1H_DET_ERR BIT(30)
107 # define DSI_RXPKT1H_ECC_ERR BIT(29)
108 # define DSI_RXPKT1H_COR_ERR BIT(28)
109 # define DSI_RXPKT1H_INCOMP_PKT BIT(25)
110 # define DSI_RXPKT1H_PKT_TYPE_LONG BIT(24)
111 /* Byte count if DSI_RXPKT1H_PKT_TYPE_LONG */
112 # define DSI_RXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8)
113 # define DSI_RXPKT1H_BC_PARAM_SHIFT 8
114 /* Short return bytes if !DSI_RXPKT1H_PKT_TYPE_LONG */
115 # define DSI_RXPKT1H_SHORT_1_MASK VC4_MASK(23, 16)
116 # define DSI_RXPKT1H_SHORT_1_SHIFT 16
117 # define DSI_RXPKT1H_SHORT_0_MASK VC4_MASK(15, 8)
118 # define DSI_RXPKT1H_SHORT_0_SHIFT 8
119 # define DSI_RXPKT1H_DT_LP_CMD_MASK VC4_MASK(7, 0)
120 # define DSI_RXPKT1H_DT_LP_CMD_SHIFT 0
122 #define DSI0_RXPKT2H 0x10 /* AKA RX2_PKTH */
123 #define DSI1_RXPKT2H 0x18
124 # define DSI_RXPKT1H_DET_ERR BIT(30)
125 # define DSI_RXPKT1H_ECC_ERR BIT(29)
126 # define DSI_RXPKT1H_COR_ERR BIT(28)
127 # define DSI_RXPKT1H_INCOMP_PKT BIT(25)
128 # define DSI_RXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8)
129 # define DSI_RXPKT1H_BC_PARAM_SHIFT 8
130 # define DSI_RXPKT1H_DT_MASK VC4_MASK(7, 0)
131 # define DSI_RXPKT1H_DT_SHIFT 0
133 #define DSI0_TXPKT_CMD_FIFO 0x14 /* AKA CMD_DATAF */
134 #define DSI1_TXPKT_CMD_FIFO 0x1c
136 #define DSI0_DISP0_CTRL 0x18
137 # define DSI_DISP0_PIX_CLK_DIV_MASK VC4_MASK(21, 13)
138 # define DSI_DISP0_PIX_CLK_DIV_SHIFT 13
139 # define DSI_DISP0_LP_STOP_CTRL_MASK VC4_MASK(12, 11)
140 # define DSI_DISP0_LP_STOP_CTRL_SHIFT 11
141 # define DSI_DISP0_LP_STOP_DISABLE 0
142 # define DSI_DISP0_LP_STOP_PERLINE 1
143 # define DSI_DISP0_LP_STOP_PERFRAME 2
145 /* Transmit RGB pixels and null packets only during HACTIVE, instead
146 * of going to LP-STOP.
148 # define DSI_DISP_HACTIVE_NULL BIT(10)
149 /* Transmit blanking packet only during vblank, instead of allowing LP-STOP. */
150 # define DSI_DISP_VBLP_CTRL BIT(9)
151 /* Transmit blanking packet only during HFP, instead of allowing LP-STOP. */
152 # define DSI_DISP_HFP_CTRL BIT(8)
153 /* Transmit blanking packet only during HBP, instead of allowing LP-STOP. */
154 # define DSI_DISP_HBP_CTRL BIT(7)
155 # define DSI_DISP0_CHANNEL_MASK VC4_MASK(6, 5)
156 # define DSI_DISP0_CHANNEL_SHIFT 5
157 /* Enables end events for HSYNC/VSYNC, not just start events. */
158 # define DSI_DISP0_ST_END BIT(4)
159 # define DSI_DISP0_PFORMAT_MASK VC4_MASK(3, 2)
160 # define DSI_DISP0_PFORMAT_SHIFT 2
161 # define DSI_PFORMAT_RGB565 0
162 # define DSI_PFORMAT_RGB666_PACKED 1
163 # define DSI_PFORMAT_RGB666 2
164 # define DSI_PFORMAT_RGB888 3
165 /* Default is VIDEO mode. */
166 # define DSI_DISP0_COMMAND_MODE BIT(1)
167 # define DSI_DISP0_ENABLE BIT(0)
169 #define DSI0_DISP1_CTRL 0x1c
170 #define DSI1_DISP1_CTRL 0x2c
171 /* Format of the data written to TXPKT_PIX_FIFO. */
172 # define DSI_DISP1_PFORMAT_MASK VC4_MASK(2, 1)
173 # define DSI_DISP1_PFORMAT_SHIFT 1
174 # define DSI_DISP1_PFORMAT_16BIT 0
175 # define DSI_DISP1_PFORMAT_24BIT 1
176 # define DSI_DISP1_PFORMAT_32BIT_LE 2
177 # define DSI_DISP1_PFORMAT_32BIT_BE 3
179 /* DISP1 is always command mode. */
180 # define DSI_DISP1_ENABLE BIT(0)
182 #define DSI0_TXPKT_PIX_FIFO 0x20 /* AKA PIX_FIFO */
184 #define DSI0_INT_STAT 0x24
185 #define DSI0_INT_EN 0x28
186 # define DSI1_INT_PHY_D3_ULPS BIT(30)
187 # define DSI1_INT_PHY_D3_STOP BIT(29)
188 # define DSI1_INT_PHY_D2_ULPS BIT(28)
189 # define DSI1_INT_PHY_D2_STOP BIT(27)
190 # define DSI1_INT_PHY_D1_ULPS BIT(26)
191 # define DSI1_INT_PHY_D1_STOP BIT(25)
192 # define DSI1_INT_PHY_D0_ULPS BIT(24)
193 # define DSI1_INT_PHY_D0_STOP BIT(23)
194 # define DSI1_INT_FIFO_ERR BIT(22)
195 # define DSI1_INT_PHY_DIR_RTF BIT(21)
196 # define DSI1_INT_PHY_RXLPDT BIT(20)
197 # define DSI1_INT_PHY_RXTRIG BIT(19)
198 # define DSI1_INT_PHY_D0_LPDT BIT(18)
199 # define DSI1_INT_PHY_DIR_FTR BIT(17)
201 /* Signaled when the clock lane enters the given state. */
202 # define DSI1_INT_PHY_CLOCK_ULPS BIT(16)
203 # define DSI1_INT_PHY_CLOCK_HS BIT(15)
204 # define DSI1_INT_PHY_CLOCK_STOP BIT(14)
206 /* Signaled on timeouts */
207 # define DSI1_INT_PR_TO BIT(13)
208 # define DSI1_INT_TA_TO BIT(12)
209 # define DSI1_INT_LPRX_TO BIT(11)
210 # define DSI1_INT_HSTX_TO BIT(10)
212 /* Contention on a line when trying to drive the line low */
213 # define DSI1_INT_ERR_CONT_LP1 BIT(9)
214 # define DSI1_INT_ERR_CONT_LP0 BIT(8)
216 /* Control error: incorrect line state sequence on data lane 0. */
217 # define DSI1_INT_ERR_CONTROL BIT(7)
218 /* LPDT synchronization error (bits received not a multiple of 8. */
220 # define DSI1_INT_ERR_SYNC_ESC BIT(6)
221 /* Signaled after receiving an error packet from the display in
222 * response to a read.
224 # define DSI1_INT_RXPKT2 BIT(5)
225 /* Signaled after receiving a packet. The header and optional short
226 * response will be in RXPKT1H, and a long response will be in the
229 # define DSI1_INT_RXPKT1 BIT(4)
230 # define DSI1_INT_TXPKT2_DONE BIT(3)
231 # define DSI1_INT_TXPKT2_END BIT(2)
232 /* Signaled after all repeats of TXPKT1 are transferred. */
233 # define DSI1_INT_TXPKT1_DONE BIT(1)
234 /* Signaled after each TXPKT1 repeat is scheduled. */
235 # define DSI1_INT_TXPKT1_END BIT(0)
237 #define DSI1_INTERRUPTS_ALWAYS_ENABLED (DSI1_INT_ERR_SYNC_ESC | \
238 DSI1_INT_ERR_CONTROL | \
239 DSI1_INT_ERR_CONT_LP0 | \
240 DSI1_INT_ERR_CONT_LP1 | \
246 #define DSI0_STAT 0x2c
247 #define DSI0_HSTX_TO_CNT 0x30
248 #define DSI0_LPRX_TO_CNT 0x34
249 #define DSI0_TA_TO_CNT 0x38
250 #define DSI0_PR_TO_CNT 0x3c
251 #define DSI0_PHYC 0x40
252 # define DSI1_PHYC_ESC_CLK_LPDT_MASK VC4_MASK(25, 20)
253 # define DSI1_PHYC_ESC_CLK_LPDT_SHIFT 20
254 # define DSI1_PHYC_HS_CLK_CONTINUOUS BIT(18)
255 # define DSI0_PHYC_ESC_CLK_LPDT_MASK VC4_MASK(17, 12)
256 # define DSI0_PHYC_ESC_CLK_LPDT_SHIFT 12
257 # define DSI1_PHYC_CLANE_ULPS BIT(17)
258 # define DSI1_PHYC_CLANE_ENABLE BIT(16)
259 # define DSI_PHYC_DLANE3_ULPS BIT(13)
260 # define DSI_PHYC_DLANE3_ENABLE BIT(12)
261 # define DSI0_PHYC_HS_CLK_CONTINUOUS BIT(10)
262 # define DSI0_PHYC_CLANE_ULPS BIT(9)
263 # define DSI_PHYC_DLANE2_ULPS BIT(9)
264 # define DSI0_PHYC_CLANE_ENABLE BIT(8)
265 # define DSI_PHYC_DLANE2_ENABLE BIT(8)
266 # define DSI_PHYC_DLANE1_ULPS BIT(5)
267 # define DSI_PHYC_DLANE1_ENABLE BIT(4)
268 # define DSI_PHYC_DLANE0_FORCE_STOP BIT(2)
269 # define DSI_PHYC_DLANE0_ULPS BIT(1)
270 # define DSI_PHYC_DLANE0_ENABLE BIT(0)
272 #define DSI0_HS_CLT0 0x44
273 #define DSI0_HS_CLT1 0x48
274 #define DSI0_HS_CLT2 0x4c
275 #define DSI0_HS_DLT3 0x50
276 #define DSI0_HS_DLT4 0x54
277 #define DSI0_HS_DLT5 0x58
278 #define DSI0_HS_DLT6 0x5c
279 #define DSI0_HS_DLT7 0x60
281 #define DSI0_PHY_AFEC0 0x64
282 # define DSI0_PHY_AFEC0_DDR2CLK_EN BIT(26)
283 # define DSI0_PHY_AFEC0_DDRCLK_EN BIT(25)
284 # define DSI0_PHY_AFEC0_LATCH_ULPS BIT(24)
285 # define DSI1_PHY_AFEC0_IDR_DLANE3_MASK VC4_MASK(31, 29)
286 # define DSI1_PHY_AFEC0_IDR_DLANE3_SHIFT 29
287 # define DSI1_PHY_AFEC0_IDR_DLANE2_MASK VC4_MASK(28, 26)
288 # define DSI1_PHY_AFEC0_IDR_DLANE2_SHIFT 26
289 # define DSI1_PHY_AFEC0_IDR_DLANE1_MASK VC4_MASK(27, 23)
290 # define DSI1_PHY_AFEC0_IDR_DLANE1_SHIFT 23
291 # define DSI1_PHY_AFEC0_IDR_DLANE0_MASK VC4_MASK(22, 20)
292 # define DSI1_PHY_AFEC0_IDR_DLANE0_SHIFT 20
293 # define DSI1_PHY_AFEC0_IDR_CLANE_MASK VC4_MASK(19, 17)
294 # define DSI1_PHY_AFEC0_IDR_CLANE_SHIFT 17
295 # define DSI0_PHY_AFEC0_ACTRL_DLANE1_MASK VC4_MASK(23, 20)
296 # define DSI0_PHY_AFEC0_ACTRL_DLANE1_SHIFT 20
297 # define DSI0_PHY_AFEC0_ACTRL_DLANE0_MASK VC4_MASK(19, 16)
298 # define DSI0_PHY_AFEC0_ACTRL_DLANE0_SHIFT 16
299 # define DSI0_PHY_AFEC0_ACTRL_CLANE_MASK VC4_MASK(15, 12)
300 # define DSI0_PHY_AFEC0_ACTRL_CLANE_SHIFT 12
301 # define DSI1_PHY_AFEC0_DDR2CLK_EN BIT(16)
302 # define DSI1_PHY_AFEC0_DDRCLK_EN BIT(15)
303 # define DSI1_PHY_AFEC0_LATCH_ULPS BIT(14)
304 # define DSI1_PHY_AFEC0_RESET BIT(13)
305 # define DSI1_PHY_AFEC0_PD BIT(12)
306 # define DSI0_PHY_AFEC0_RESET BIT(11)
307 # define DSI1_PHY_AFEC0_PD_BG BIT(11)
308 # define DSI0_PHY_AFEC0_PD BIT(10)
309 # define DSI1_PHY_AFEC0_PD_DLANE3 BIT(10)
310 # define DSI0_PHY_AFEC0_PD_BG BIT(9)
311 # define DSI1_PHY_AFEC0_PD_DLANE2 BIT(9)
312 # define DSI0_PHY_AFEC0_PD_DLANE1 BIT(8)
313 # define DSI1_PHY_AFEC0_PD_DLANE1 BIT(8)
314 # define DSI_PHY_AFEC0_PTATADJ_MASK VC4_MASK(7, 4)
315 # define DSI_PHY_AFEC0_PTATADJ_SHIFT 4
316 # define DSI_PHY_AFEC0_CTATADJ_MASK VC4_MASK(3, 0)
317 # define DSI_PHY_AFEC0_CTATADJ_SHIFT 0
319 #define DSI0_PHY_AFEC1 0x68
320 # define DSI0_PHY_AFEC1_IDR_DLANE1_MASK VC4_MASK(10, 8)
321 # define DSI0_PHY_AFEC1_IDR_DLANE1_SHIFT 8
322 # define DSI0_PHY_AFEC1_IDR_DLANE0_MASK VC4_MASK(6, 4)
323 # define DSI0_PHY_AFEC1_IDR_DLANE0_SHIFT 4
324 # define DSI0_PHY_AFEC1_IDR_CLANE_MASK VC4_MASK(2, 0)
325 # define DSI0_PHY_AFEC1_IDR_CLANE_SHIFT 0
327 #define DSI0_TST_SEL 0x6c
328 #define DSI0_TST_MON 0x70
330 # define DSI_ID_VALUE 0x00647369
332 #define DSI1_CTRL 0x00
333 # define DSI_CTRL_HS_CLKC_MASK VC4_MASK(15, 14)
334 # define DSI_CTRL_HS_CLKC_SHIFT 14
335 # define DSI_CTRL_HS_CLKC_BYTE 0
336 # define DSI_CTRL_HS_CLKC_DDR2 1
337 # define DSI_CTRL_HS_CLKC_DDR 2
339 # define DSI_CTRL_RX_LPDT_EOT_DISABLE BIT(13)
340 # define DSI_CTRL_LPDT_EOT_DISABLE BIT(12)
341 # define DSI_CTRL_HSDT_EOT_DISABLE BIT(11)
342 # define DSI_CTRL_SOFT_RESET_CFG BIT(10)
343 # define DSI_CTRL_CAL_BYTE BIT(9)
344 # define DSI_CTRL_INV_BYTE BIT(8)
345 # define DSI_CTRL_CLR_LDF BIT(7)
346 # define DSI0_CTRL_CLR_PBCF BIT(6)
347 # define DSI1_CTRL_CLR_RXF BIT(6)
348 # define DSI0_CTRL_CLR_CPBCF BIT(5)
349 # define DSI1_CTRL_CLR_PDF BIT(5)
350 # define DSI0_CTRL_CLR_PDF BIT(4)
351 # define DSI1_CTRL_CLR_CDF BIT(4)
352 # define DSI0_CTRL_CLR_CDF BIT(3)
353 # define DSI0_CTRL_CTRL2 BIT(2)
354 # define DSI1_CTRL_DISABLE_DISP_CRCC BIT(2)
355 # define DSI0_CTRL_CTRL1 BIT(1)
356 # define DSI1_CTRL_DISABLE_DISP_ECCC BIT(1)
357 # define DSI0_CTRL_CTRL0 BIT(0)
358 # define DSI1_CTRL_EN BIT(0)
359 # define DSI0_CTRL_RESET_FIFOS (DSI_CTRL_CLR_LDF | \
360 DSI0_CTRL_CLR_PBCF | \
361 DSI0_CTRL_CLR_CPBCF | \
362 DSI0_CTRL_CLR_PDF | \
364 # define DSI1_CTRL_RESET_FIFOS (DSI_CTRL_CLR_LDF | \
365 DSI1_CTRL_CLR_RXF | \
366 DSI1_CTRL_CLR_PDF | \
369 #define DSI1_TXPKT2C 0x0c
370 #define DSI1_TXPKT2H 0x10
371 #define DSI1_TXPKT_PIX_FIFO 0x20
372 #define DSI1_RXPKT_FIFO 0x24
373 #define DSI1_DISP0_CTRL 0x28
374 #define DSI1_INT_STAT 0x30
375 #define DSI1_INT_EN 0x34
376 /* State reporting bits. These mostly behave like INT_STAT, where
377 * writing a 1 clears the bit.
379 #define DSI1_STAT 0x38
380 # define DSI1_STAT_PHY_D3_ULPS BIT(31)
381 # define DSI1_STAT_PHY_D3_STOP BIT(30)
382 # define DSI1_STAT_PHY_D2_ULPS BIT(29)
383 # define DSI1_STAT_PHY_D2_STOP BIT(28)
384 # define DSI1_STAT_PHY_D1_ULPS BIT(27)
385 # define DSI1_STAT_PHY_D1_STOP BIT(26)
386 # define DSI1_STAT_PHY_D0_ULPS BIT(25)
387 # define DSI1_STAT_PHY_D0_STOP BIT(24)
388 # define DSI1_STAT_FIFO_ERR BIT(23)
389 # define DSI1_STAT_PHY_RXLPDT BIT(22)
390 # define DSI1_STAT_PHY_RXTRIG BIT(21)
391 # define DSI1_STAT_PHY_D0_LPDT BIT(20)
392 /* Set when in forward direction */
393 # define DSI1_STAT_PHY_DIR BIT(19)
394 # define DSI1_STAT_PHY_CLOCK_ULPS BIT(18)
395 # define DSI1_STAT_PHY_CLOCK_HS BIT(17)
396 # define DSI1_STAT_PHY_CLOCK_STOP BIT(16)
397 # define DSI1_STAT_PR_TO BIT(15)
398 # define DSI1_STAT_TA_TO BIT(14)
399 # define DSI1_STAT_LPRX_TO BIT(13)
400 # define DSI1_STAT_HSTX_TO BIT(12)
401 # define DSI1_STAT_ERR_CONT_LP1 BIT(11)
402 # define DSI1_STAT_ERR_CONT_LP0 BIT(10)
403 # define DSI1_STAT_ERR_CONTROL BIT(9)
404 # define DSI1_STAT_ERR_SYNC_ESC BIT(8)
405 # define DSI1_STAT_RXPKT2 BIT(7)
406 # define DSI1_STAT_RXPKT1 BIT(6)
407 # define DSI1_STAT_TXPKT2_BUSY BIT(5)
408 # define DSI1_STAT_TXPKT2_DONE BIT(4)
409 # define DSI1_STAT_TXPKT2_END BIT(3)
410 # define DSI1_STAT_TXPKT1_BUSY BIT(2)
411 # define DSI1_STAT_TXPKT1_DONE BIT(1)
412 # define DSI1_STAT_TXPKT1_END BIT(0)
414 #define DSI1_HSTX_TO_CNT 0x3c
415 #define DSI1_LPRX_TO_CNT 0x40
416 #define DSI1_TA_TO_CNT 0x44
417 #define DSI1_PR_TO_CNT 0x48
418 #define DSI1_PHYC 0x4c
420 #define DSI1_HS_CLT0 0x50
421 # define DSI_HS_CLT0_CZERO_MASK VC4_MASK(26, 18)
422 # define DSI_HS_CLT0_CZERO_SHIFT 18
423 # define DSI_HS_CLT0_CPRE_MASK VC4_MASK(17, 9)
424 # define DSI_HS_CLT0_CPRE_SHIFT 9
425 # define DSI_HS_CLT0_CPREP_MASK VC4_MASK(8, 0)
426 # define DSI_HS_CLT0_CPREP_SHIFT 0
428 #define DSI1_HS_CLT1 0x54
429 # define DSI_HS_CLT1_CTRAIL_MASK VC4_MASK(17, 9)
430 # define DSI_HS_CLT1_CTRAIL_SHIFT 9
431 # define DSI_HS_CLT1_CPOST_MASK VC4_MASK(8, 0)
432 # define DSI_HS_CLT1_CPOST_SHIFT 0
434 #define DSI1_HS_CLT2 0x58
435 # define DSI_HS_CLT2_WUP_MASK VC4_MASK(23, 0)
436 # define DSI_HS_CLT2_WUP_SHIFT 0
438 #define DSI1_HS_DLT3 0x5c
439 # define DSI_HS_DLT3_EXIT_MASK VC4_MASK(26, 18)
440 # define DSI_HS_DLT3_EXIT_SHIFT 18
441 # define DSI_HS_DLT3_ZERO_MASK VC4_MASK(17, 9)
442 # define DSI_HS_DLT3_ZERO_SHIFT 9
443 # define DSI_HS_DLT3_PRE_MASK VC4_MASK(8, 0)
444 # define DSI_HS_DLT3_PRE_SHIFT 0
446 #define DSI1_HS_DLT4 0x60
447 # define DSI_HS_DLT4_ANLAT_MASK VC4_MASK(22, 18)
448 # define DSI_HS_DLT4_ANLAT_SHIFT 18
449 # define DSI_HS_DLT4_TRAIL_MASK VC4_MASK(17, 9)
450 # define DSI_HS_DLT4_TRAIL_SHIFT 9
451 # define DSI_HS_DLT4_LPX_MASK VC4_MASK(8, 0)
452 # define DSI_HS_DLT4_LPX_SHIFT 0
454 #define DSI1_HS_DLT5 0x64
455 # define DSI_HS_DLT5_INIT_MASK VC4_MASK(23, 0)
456 # define DSI_HS_DLT5_INIT_SHIFT 0
458 #define DSI1_HS_DLT6 0x68
459 # define DSI_HS_DLT6_TA_GET_MASK VC4_MASK(31, 24)
460 # define DSI_HS_DLT6_TA_GET_SHIFT 24
461 # define DSI_HS_DLT6_TA_SURE_MASK VC4_MASK(23, 16)
462 # define DSI_HS_DLT6_TA_SURE_SHIFT 16
463 # define DSI_HS_DLT6_TA_GO_MASK VC4_MASK(15, 8)
464 # define DSI_HS_DLT6_TA_GO_SHIFT 8
465 # define DSI_HS_DLT6_LP_LPX_MASK VC4_MASK(7, 0)
466 # define DSI_HS_DLT6_LP_LPX_SHIFT 0
468 #define DSI1_HS_DLT7 0x6c
469 # define DSI_HS_DLT7_LP_WUP_MASK VC4_MASK(23, 0)
470 # define DSI_HS_DLT7_LP_WUP_SHIFT 0
472 #define DSI1_PHY_AFEC0 0x70
474 #define DSI1_PHY_AFEC1 0x74
475 # define DSI1_PHY_AFEC1_ACTRL_DLANE3_MASK VC4_MASK(19, 16)
476 # define DSI1_PHY_AFEC1_ACTRL_DLANE3_SHIFT 16
477 # define DSI1_PHY_AFEC1_ACTRL_DLANE2_MASK VC4_MASK(15, 12)
478 # define DSI1_PHY_AFEC1_ACTRL_DLANE2_SHIFT 12
479 # define DSI1_PHY_AFEC1_ACTRL_DLANE1_MASK VC4_MASK(11, 8)
480 # define DSI1_PHY_AFEC1_ACTRL_DLANE1_SHIFT 8
481 # define DSI1_PHY_AFEC1_ACTRL_DLANE0_MASK VC4_MASK(7, 4)
482 # define DSI1_PHY_AFEC1_ACTRL_DLANE0_SHIFT 4
483 # define DSI1_PHY_AFEC1_ACTRL_CLANE_MASK VC4_MASK(3, 0)
484 # define DSI1_PHY_AFEC1_ACTRL_CLANE_SHIFT 0
486 #define DSI1_TST_SEL 0x78
487 #define DSI1_TST_MON 0x7c
488 #define DSI1_PHY_TST1 0x80
489 #define DSI1_PHY_TST2 0x84
490 #define DSI1_PHY_FIFO_STAT 0x88
491 /* Actually, all registers in the range that aren't otherwise claimed
492 * will return the ID.
496 /* General DSI hardware state. */
498 struct platform_device
*pdev
;
500 struct mipi_dsi_host dsi_host
;
501 struct drm_encoder
*encoder
;
502 struct drm_bridge
*bridge
;
503 struct list_head bridge_chain
;
507 struct dma_chan
*reg_dma_chan
;
508 dma_addr_t reg_dma_paddr
;
510 dma_addr_t reg_paddr
;
512 /* Whether we're on bcm2835's DSI0 or DSI1. */
515 /* DSI channel for the panel we're connected to. */
522 /* Input clock from CPRMAN to the digital PHY, for the DSI
525 struct clk
*escape_clock
;
527 /* Input clock to the analog PHY, used to generate the DSI bit
530 struct clk
*pll_phy_clock
;
532 /* HS Clocks generated within the DSI analog PHY. */
533 struct clk_fixed_factor phy_clocks
[3];
535 struct clk_hw_onecell_data
*clk_onecell
;
537 /* Pixel clock output to the pixelvalve, generated from the HS
540 struct clk
*pixel_clock
;
542 struct completion xfer_completion
;
545 struct debugfs_regset32 regset
;
548 #define host_to_dsi(host) container_of(host, struct vc4_dsi, dsi_host)
551 dsi_dma_workaround_write(struct vc4_dsi
*dsi
, u32 offset
, u32 val
)
553 struct dma_chan
*chan
= dsi
->reg_dma_chan
;
554 struct dma_async_tx_descriptor
*tx
;
558 /* DSI0 should be able to write normally. */
560 writel(val
, dsi
->regs
+ offset
);
564 *dsi
->reg_dma_mem
= val
;
566 tx
= chan
->device
->device_prep_dma_memcpy(chan
,
567 dsi
->reg_paddr
+ offset
,
571 DRM_ERROR("Failed to set up DMA register write\n");
575 cookie
= tx
->tx_submit(tx
);
576 ret
= dma_submit_error(cookie
);
578 DRM_ERROR("Failed to submit DMA: %d\n", ret
);
581 ret
= dma_sync_wait(chan
, cookie
);
583 DRM_ERROR("Failed to wait for DMA: %d\n", ret
);
586 #define DSI_READ(offset) readl(dsi->regs + (offset))
587 #define DSI_WRITE(offset, val) dsi_dma_workaround_write(dsi, offset, val)
588 #define DSI_PORT_READ(offset) \
589 DSI_READ(dsi->port ? DSI1_##offset : DSI0_##offset)
590 #define DSI_PORT_WRITE(offset, val) \
591 DSI_WRITE(dsi->port ? DSI1_##offset : DSI0_##offset, val)
592 #define DSI_PORT_BIT(bit) (dsi->port ? DSI1_##bit : DSI0_##bit)
594 /* VC4 DSI encoder KMS struct */
595 struct vc4_dsi_encoder
{
596 struct vc4_encoder base
;
600 static inline struct vc4_dsi_encoder
*
601 to_vc4_dsi_encoder(struct drm_encoder
*encoder
)
603 return container_of(encoder
, struct vc4_dsi_encoder
, base
.base
);
606 static const struct debugfs_reg32 dsi0_regs
[] = {
607 VC4_REG32(DSI0_CTRL
),
608 VC4_REG32(DSI0_STAT
),
609 VC4_REG32(DSI0_HSTX_TO_CNT
),
610 VC4_REG32(DSI0_LPRX_TO_CNT
),
611 VC4_REG32(DSI0_TA_TO_CNT
),
612 VC4_REG32(DSI0_PR_TO_CNT
),
613 VC4_REG32(DSI0_DISP0_CTRL
),
614 VC4_REG32(DSI0_DISP1_CTRL
),
615 VC4_REG32(DSI0_INT_STAT
),
616 VC4_REG32(DSI0_INT_EN
),
617 VC4_REG32(DSI0_PHYC
),
618 VC4_REG32(DSI0_HS_CLT0
),
619 VC4_REG32(DSI0_HS_CLT1
),
620 VC4_REG32(DSI0_HS_CLT2
),
621 VC4_REG32(DSI0_HS_DLT3
),
622 VC4_REG32(DSI0_HS_DLT4
),
623 VC4_REG32(DSI0_HS_DLT5
),
624 VC4_REG32(DSI0_HS_DLT6
),
625 VC4_REG32(DSI0_HS_DLT7
),
626 VC4_REG32(DSI0_PHY_AFEC0
),
627 VC4_REG32(DSI0_PHY_AFEC1
),
631 static const struct debugfs_reg32 dsi1_regs
[] = {
632 VC4_REG32(DSI1_CTRL
),
633 VC4_REG32(DSI1_STAT
),
634 VC4_REG32(DSI1_HSTX_TO_CNT
),
635 VC4_REG32(DSI1_LPRX_TO_CNT
),
636 VC4_REG32(DSI1_TA_TO_CNT
),
637 VC4_REG32(DSI1_PR_TO_CNT
),
638 VC4_REG32(DSI1_DISP0_CTRL
),
639 VC4_REG32(DSI1_DISP1_CTRL
),
640 VC4_REG32(DSI1_INT_STAT
),
641 VC4_REG32(DSI1_INT_EN
),
642 VC4_REG32(DSI1_PHYC
),
643 VC4_REG32(DSI1_HS_CLT0
),
644 VC4_REG32(DSI1_HS_CLT1
),
645 VC4_REG32(DSI1_HS_CLT2
),
646 VC4_REG32(DSI1_HS_DLT3
),
647 VC4_REG32(DSI1_HS_DLT4
),
648 VC4_REG32(DSI1_HS_DLT5
),
649 VC4_REG32(DSI1_HS_DLT6
),
650 VC4_REG32(DSI1_HS_DLT7
),
651 VC4_REG32(DSI1_PHY_AFEC0
),
652 VC4_REG32(DSI1_PHY_AFEC1
),
656 static void vc4_dsi_latch_ulps(struct vc4_dsi
*dsi
, bool latch
)
658 u32 afec0
= DSI_PORT_READ(PHY_AFEC0
);
661 afec0
|= DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS
);
663 afec0
&= ~DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS
);
665 DSI_PORT_WRITE(PHY_AFEC0
, afec0
);
668 /* Enters or exits Ultra Low Power State. */
669 static void vc4_dsi_ulps(struct vc4_dsi
*dsi
, bool ulps
)
671 bool non_continuous
= dsi
->mode_flags
& MIPI_DSI_CLOCK_NON_CONTINUOUS
;
672 u32 phyc_ulps
= ((non_continuous
? DSI_PORT_BIT(PHYC_CLANE_ULPS
) : 0) |
673 DSI_PHYC_DLANE0_ULPS
|
674 (dsi
->lanes
> 1 ? DSI_PHYC_DLANE1_ULPS
: 0) |
675 (dsi
->lanes
> 2 ? DSI_PHYC_DLANE2_ULPS
: 0) |
676 (dsi
->lanes
> 3 ? DSI_PHYC_DLANE3_ULPS
: 0));
677 u32 stat_ulps
= ((non_continuous
? DSI1_STAT_PHY_CLOCK_ULPS
: 0) |
678 DSI1_STAT_PHY_D0_ULPS
|
679 (dsi
->lanes
> 1 ? DSI1_STAT_PHY_D1_ULPS
: 0) |
680 (dsi
->lanes
> 2 ? DSI1_STAT_PHY_D2_ULPS
: 0) |
681 (dsi
->lanes
> 3 ? DSI1_STAT_PHY_D3_ULPS
: 0));
682 u32 stat_stop
= ((non_continuous
? DSI1_STAT_PHY_CLOCK_STOP
: 0) |
683 DSI1_STAT_PHY_D0_STOP
|
684 (dsi
->lanes
> 1 ? DSI1_STAT_PHY_D1_STOP
: 0) |
685 (dsi
->lanes
> 2 ? DSI1_STAT_PHY_D2_STOP
: 0) |
686 (dsi
->lanes
> 3 ? DSI1_STAT_PHY_D3_STOP
: 0));
688 bool ulps_currently_enabled
= (DSI_PORT_READ(PHY_AFEC0
) &
689 DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS
));
691 if (ulps
== ulps_currently_enabled
)
694 DSI_PORT_WRITE(STAT
, stat_ulps
);
695 DSI_PORT_WRITE(PHYC
, DSI_PORT_READ(PHYC
) | phyc_ulps
);
696 ret
= wait_for((DSI_PORT_READ(STAT
) & stat_ulps
) == stat_ulps
, 200);
698 dev_warn(&dsi
->pdev
->dev
,
699 "Timeout waiting for DSI ULPS entry: STAT 0x%08x",
700 DSI_PORT_READ(STAT
));
701 DSI_PORT_WRITE(PHYC
, DSI_PORT_READ(PHYC
) & ~phyc_ulps
);
702 vc4_dsi_latch_ulps(dsi
, false);
706 /* The DSI module can't be disabled while the module is
707 * generating ULPS state. So, to be able to disable the
708 * module, we have the AFE latch the ULPS state and continue
709 * on to having the module enter STOP.
711 vc4_dsi_latch_ulps(dsi
, ulps
);
713 DSI_PORT_WRITE(STAT
, stat_stop
);
714 DSI_PORT_WRITE(PHYC
, DSI_PORT_READ(PHYC
) & ~phyc_ulps
);
715 ret
= wait_for((DSI_PORT_READ(STAT
) & stat_stop
) == stat_stop
, 200);
717 dev_warn(&dsi
->pdev
->dev
,
718 "Timeout waiting for DSI STOP entry: STAT 0x%08x",
719 DSI_PORT_READ(STAT
));
720 DSI_PORT_WRITE(PHYC
, DSI_PORT_READ(PHYC
) & ~phyc_ulps
);
726 dsi_hs_timing(u32 ui_ns
, u32 ns
, u32 ui
)
728 /* The HS timings have to be rounded up to a multiple of 8
729 * because we're using the byte clock.
731 return roundup(ui
+ DIV_ROUND_UP(ns
, ui_ns
), 8);
734 /* ESC always runs at 100Mhz. */
735 #define ESC_TIME_NS 10
738 dsi_esc_timing(u32 ns
)
740 return DIV_ROUND_UP(ns
, ESC_TIME_NS
);
743 static void vc4_dsi_encoder_disable(struct drm_encoder
*encoder
)
745 struct vc4_dsi_encoder
*vc4_encoder
= to_vc4_dsi_encoder(encoder
);
746 struct vc4_dsi
*dsi
= vc4_encoder
->dsi
;
747 struct device
*dev
= &dsi
->pdev
->dev
;
748 struct drm_bridge
*iter
;
750 list_for_each_entry_reverse(iter
, &dsi
->bridge_chain
, chain_node
) {
751 if (iter
->funcs
->disable
)
752 iter
->funcs
->disable(iter
);
755 vc4_dsi_ulps(dsi
, true);
757 list_for_each_entry_from(iter
, &dsi
->bridge_chain
, chain_node
) {
758 if (iter
->funcs
->post_disable
)
759 iter
->funcs
->post_disable(iter
);
762 clk_disable_unprepare(dsi
->pll_phy_clock
);
763 clk_disable_unprepare(dsi
->escape_clock
);
764 clk_disable_unprepare(dsi
->pixel_clock
);
769 /* Extends the mode's blank intervals to handle BCM2835's integer-only
772 * On 2835, PLLD is set to 2Ghz, and may not be changed by the display
773 * driver since most peripherals are hanging off of the PLLD_PER
774 * divider. PLLD_DSI1, which drives our DSI bit clock (and therefore
775 * the pixel clock), only has an integer divider off of DSI.
777 * To get our panel mode to refresh at the expected 60Hz, we need to
778 * extend the horizontal blank time. This means we drive a
779 * higher-than-expected clock rate to the panel, but that's what the
782 static bool vc4_dsi_encoder_mode_fixup(struct drm_encoder
*encoder
,
783 const struct drm_display_mode
*mode
,
784 struct drm_display_mode
*adjusted_mode
)
786 struct vc4_dsi_encoder
*vc4_encoder
= to_vc4_dsi_encoder(encoder
);
787 struct vc4_dsi
*dsi
= vc4_encoder
->dsi
;
788 struct clk
*phy_parent
= clk_get_parent(dsi
->pll_phy_clock
);
789 unsigned long parent_rate
= clk_get_rate(phy_parent
);
790 unsigned long pixel_clock_hz
= mode
->clock
* 1000;
791 unsigned long pll_clock
= pixel_clock_hz
* dsi
->divider
;
794 /* Find what divider gets us a faster clock than the requested
797 for (divider
= 1; divider
< 8; divider
++) {
798 if (parent_rate
/ divider
< pll_clock
) {
804 /* Now that we've picked a PLL divider, calculate back to its
807 pll_clock
= parent_rate
/ divider
;
808 pixel_clock_hz
= pll_clock
/ dsi
->divider
;
810 adjusted_mode
->clock
= pixel_clock_hz
/ 1000;
812 /* Given the new pixel clock, adjust HFP to keep vrefresh the same. */
813 adjusted_mode
->htotal
= adjusted_mode
->clock
* mode
->htotal
/
815 adjusted_mode
->hsync_end
+= adjusted_mode
->htotal
- mode
->htotal
;
816 adjusted_mode
->hsync_start
+= adjusted_mode
->htotal
- mode
->htotal
;
821 static void vc4_dsi_encoder_enable(struct drm_encoder
*encoder
)
823 struct drm_display_mode
*mode
= &encoder
->crtc
->state
->adjusted_mode
;
824 struct vc4_dsi_encoder
*vc4_encoder
= to_vc4_dsi_encoder(encoder
);
825 struct vc4_dsi
*dsi
= vc4_encoder
->dsi
;
826 struct device
*dev
= &dsi
->pdev
->dev
;
827 bool debug_dump_regs
= false;
828 struct drm_bridge
*iter
;
829 unsigned long hs_clock
;
831 /* Minimum LP state duration in escape clock cycles. */
832 u32 lpx
= dsi_esc_timing(60);
833 unsigned long pixel_clock_hz
= mode
->clock
* 1000;
834 unsigned long dsip_clock
;
835 unsigned long phy_clock
;
838 ret
= pm_runtime_get_sync(dev
);
840 DRM_ERROR("Failed to runtime PM enable on DSI%d\n", dsi
->port
);
844 if (debug_dump_regs
) {
845 struct drm_printer p
= drm_info_printer(&dsi
->pdev
->dev
);
846 dev_info(&dsi
->pdev
->dev
, "DSI regs before:\n");
847 drm_print_regset32(&p
, &dsi
->regset
);
850 /* Round up the clk_set_rate() request slightly, since
851 * PLLD_DSI1 is an integer divider and its rate selection will
854 phy_clock
= (pixel_clock_hz
+ 1000) * dsi
->divider
;
855 ret
= clk_set_rate(dsi
->pll_phy_clock
, phy_clock
);
857 dev_err(&dsi
->pdev
->dev
,
858 "Failed to set phy clock to %ld: %d\n", phy_clock
, ret
);
861 /* Reset the DSI and all its fifos. */
863 DSI_CTRL_SOFT_RESET_CFG
|
864 DSI_PORT_BIT(CTRL_RESET_FIFOS
));
867 DSI_CTRL_HSDT_EOT_DISABLE
|
868 DSI_CTRL_RX_LPDT_EOT_DISABLE
);
870 /* Clear all stat bits so we see what has happened during enable. */
871 DSI_PORT_WRITE(STAT
, DSI_PORT_READ(STAT
));
873 /* Set AFE CTR00/CTR1 to release powerdown of analog. */
874 if (dsi
->port
== 0) {
875 u32 afec0
= (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ
) |
876 VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ
));
879 afec0
|= DSI0_PHY_AFEC0_PD_DLANE1
;
881 if (!(dsi
->mode_flags
& MIPI_DSI_MODE_VIDEO
))
882 afec0
|= DSI0_PHY_AFEC0_RESET
;
884 DSI_PORT_WRITE(PHY_AFEC0
, afec0
);
886 DSI_PORT_WRITE(PHY_AFEC1
,
887 VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_DLANE1
) |
888 VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_DLANE0
) |
889 VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_CLANE
));
891 u32 afec0
= (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ
) |
892 VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ
) |
893 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_CLANE
) |
894 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE0
) |
895 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE1
) |
896 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE2
) |
897 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE3
));
900 afec0
|= DSI1_PHY_AFEC0_PD_DLANE3
;
902 afec0
|= DSI1_PHY_AFEC0_PD_DLANE2
;
904 afec0
|= DSI1_PHY_AFEC0_PD_DLANE1
;
906 afec0
|= DSI1_PHY_AFEC0_RESET
;
908 DSI_PORT_WRITE(PHY_AFEC0
, afec0
);
910 DSI_PORT_WRITE(PHY_AFEC1
, 0);
912 /* AFEC reset hold time */
916 ret
= clk_prepare_enable(dsi
->escape_clock
);
918 DRM_ERROR("Failed to turn on DSI escape clock: %d\n", ret
);
922 ret
= clk_prepare_enable(dsi
->pll_phy_clock
);
924 DRM_ERROR("Failed to turn on DSI PLL: %d\n", ret
);
928 hs_clock
= clk_get_rate(dsi
->pll_phy_clock
);
930 /* Yes, we set the DSI0P/DSI1P pixel clock to the byte rate,
931 * not the pixel clock rate. DSIxP take from the APHY's byte,
932 * DDR2, or DDR4 clock (we use byte) and feed into the PV at
933 * that rate. Separately, a value derived from PIX_CLK_DIV
934 * and HS_CLKC is fed into the PV to divide down to the actual
935 * pixel clock for pushing pixels into DSI.
937 dsip_clock
= phy_clock
/ 8;
938 ret
= clk_set_rate(dsi
->pixel_clock
, dsip_clock
);
940 dev_err(dev
, "Failed to set pixel clock to %ldHz: %d\n",
944 ret
= clk_prepare_enable(dsi
->pixel_clock
);
946 DRM_ERROR("Failed to turn on DSI pixel clock: %d\n", ret
);
950 /* How many ns one DSI unit interval is. Note that the clock
951 * is DDR, so there's an extra divide by 2.
953 ui_ns
= DIV_ROUND_UP(500000000, hs_clock
);
955 DSI_PORT_WRITE(HS_CLT0
,
956 VC4_SET_FIELD(dsi_hs_timing(ui_ns
, 262, 0),
958 VC4_SET_FIELD(dsi_hs_timing(ui_ns
, 0, 8),
960 VC4_SET_FIELD(dsi_hs_timing(ui_ns
, 38, 0),
963 DSI_PORT_WRITE(HS_CLT1
,
964 VC4_SET_FIELD(dsi_hs_timing(ui_ns
, 60, 0),
965 DSI_HS_CLT1_CTRAIL
) |
966 VC4_SET_FIELD(dsi_hs_timing(ui_ns
, 60, 52),
969 DSI_PORT_WRITE(HS_CLT2
,
970 VC4_SET_FIELD(dsi_hs_timing(ui_ns
, 1000000, 0),
973 DSI_PORT_WRITE(HS_DLT3
,
974 VC4_SET_FIELD(dsi_hs_timing(ui_ns
, 100, 0),
976 VC4_SET_FIELD(dsi_hs_timing(ui_ns
, 105, 6),
978 VC4_SET_FIELD(dsi_hs_timing(ui_ns
, 40, 4),
981 DSI_PORT_WRITE(HS_DLT4
,
982 VC4_SET_FIELD(dsi_hs_timing(ui_ns
, lpx
* ESC_TIME_NS
, 0),
984 VC4_SET_FIELD(max(dsi_hs_timing(ui_ns
, 0, 8),
985 dsi_hs_timing(ui_ns
, 60, 4)),
987 VC4_SET_FIELD(0, DSI_HS_DLT4_ANLAT
));
989 /* T_INIT is how long STOP is driven after power-up to
990 * indicate to the slave (also coming out of power-up) that
991 * master init is complete, and should be greater than the
992 * maximum of two value: T_INIT,MASTER and T_INIT,SLAVE. The
993 * D-PHY spec gives a minimum 100us for T_INIT,MASTER and
994 * T_INIT,SLAVE, while allowing protocols on top of it to give
995 * greater minimums. The vc4 firmware uses an extremely
996 * conservative 5ms, and we maintain that here.
998 DSI_PORT_WRITE(HS_DLT5
, VC4_SET_FIELD(dsi_hs_timing(ui_ns
,
1002 DSI_PORT_WRITE(HS_DLT6
,
1003 VC4_SET_FIELD(lpx
* 5, DSI_HS_DLT6_TA_GET
) |
1004 VC4_SET_FIELD(lpx
, DSI_HS_DLT6_TA_SURE
) |
1005 VC4_SET_FIELD(lpx
* 4, DSI_HS_DLT6_TA_GO
) |
1006 VC4_SET_FIELD(lpx
, DSI_HS_DLT6_LP_LPX
));
1008 DSI_PORT_WRITE(HS_DLT7
,
1009 VC4_SET_FIELD(dsi_esc_timing(1000000),
1010 DSI_HS_DLT7_LP_WUP
));
1012 DSI_PORT_WRITE(PHYC
,
1013 DSI_PHYC_DLANE0_ENABLE
|
1014 (dsi
->lanes
>= 2 ? DSI_PHYC_DLANE1_ENABLE
: 0) |
1015 (dsi
->lanes
>= 3 ? DSI_PHYC_DLANE2_ENABLE
: 0) |
1016 (dsi
->lanes
>= 4 ? DSI_PHYC_DLANE3_ENABLE
: 0) |
1017 DSI_PORT_BIT(PHYC_CLANE_ENABLE
) |
1018 ((dsi
->mode_flags
& MIPI_DSI_CLOCK_NON_CONTINUOUS
) ?
1019 0 : DSI_PORT_BIT(PHYC_HS_CLK_CONTINUOUS
)) |
1021 VC4_SET_FIELD(lpx
- 1, DSI0_PHYC_ESC_CLK_LPDT
) :
1022 VC4_SET_FIELD(lpx
- 1, DSI1_PHYC_ESC_CLK_LPDT
)));
1024 DSI_PORT_WRITE(CTRL
,
1025 DSI_PORT_READ(CTRL
) |
1028 /* HS timeout in HS clock cycles: disabled. */
1029 DSI_PORT_WRITE(HSTX_TO_CNT
, 0);
1030 /* LP receive timeout in HS clocks. */
1031 DSI_PORT_WRITE(LPRX_TO_CNT
, 0xffffff);
1032 /* Bus turnaround timeout */
1033 DSI_PORT_WRITE(TA_TO_CNT
, 100000);
1034 /* Display reset sequence timeout */
1035 DSI_PORT_WRITE(PR_TO_CNT
, 100000);
1037 /* Set up DISP1 for transferring long command payloads through
1040 DSI_PORT_WRITE(DISP1_CTRL
,
1041 VC4_SET_FIELD(DSI_DISP1_PFORMAT_32BIT_LE
,
1042 DSI_DISP1_PFORMAT
) |
1045 /* Ungate the block. */
1047 DSI_PORT_WRITE(CTRL
, DSI_PORT_READ(CTRL
) | DSI0_CTRL_CTRL0
);
1049 DSI_PORT_WRITE(CTRL
, DSI_PORT_READ(CTRL
) | DSI1_CTRL_EN
);
1051 /* Bring AFE out of reset. */
1052 if (dsi
->port
== 0) {
1054 DSI_PORT_WRITE(PHY_AFEC0
,
1055 DSI_PORT_READ(PHY_AFEC0
) &
1056 ~DSI1_PHY_AFEC0_RESET
);
1059 vc4_dsi_ulps(dsi
, false);
1061 list_for_each_entry_reverse(iter
, &dsi
->bridge_chain
, chain_node
) {
1062 if (iter
->funcs
->pre_enable
)
1063 iter
->funcs
->pre_enable(iter
);
1066 if (dsi
->mode_flags
& MIPI_DSI_MODE_VIDEO
) {
1067 DSI_PORT_WRITE(DISP0_CTRL
,
1068 VC4_SET_FIELD(dsi
->divider
,
1069 DSI_DISP0_PIX_CLK_DIV
) |
1070 VC4_SET_FIELD(dsi
->format
, DSI_DISP0_PFORMAT
) |
1071 VC4_SET_FIELD(DSI_DISP0_LP_STOP_PERFRAME
,
1072 DSI_DISP0_LP_STOP_CTRL
) |
1076 DSI_PORT_WRITE(DISP0_CTRL
,
1077 DSI_DISP0_COMMAND_MODE
|
1081 list_for_each_entry(iter
, &dsi
->bridge_chain
, chain_node
) {
1082 if (iter
->funcs
->enable
)
1083 iter
->funcs
->enable(iter
);
1086 if (debug_dump_regs
) {
1087 struct drm_printer p
= drm_info_printer(&dsi
->pdev
->dev
);
1088 dev_info(&dsi
->pdev
->dev
, "DSI regs after:\n");
1089 drm_print_regset32(&p
, &dsi
->regset
);
1093 static ssize_t
vc4_dsi_host_transfer(struct mipi_dsi_host
*host
,
1094 const struct mipi_dsi_msg
*msg
)
1096 struct vc4_dsi
*dsi
= host_to_dsi(host
);
1097 struct mipi_dsi_packet packet
;
1098 u32 pkth
= 0, pktc
= 0;
1100 bool is_long
= mipi_dsi_packet_format_is_long(msg
->type
);
1101 u32 cmd_fifo_len
= 0, pix_fifo_len
= 0;
1103 mipi_dsi_create_packet(&packet
, msg
);
1105 pkth
|= VC4_SET_FIELD(packet
.header
[0], DSI_TXPKT1H_BC_DT
);
1106 pkth
|= VC4_SET_FIELD(packet
.header
[1] |
1107 (packet
.header
[2] << 8),
1108 DSI_TXPKT1H_BC_PARAM
);
1110 /* Divide data across the various FIFOs we have available.
1111 * The command FIFO takes byte-oriented data, but is of
1112 * limited size. The pixel FIFO (never actually used for
1113 * pixel data in reality) is word oriented, and substantially
1114 * larger. So, we use the pixel FIFO for most of the data,
1115 * sending the residual bytes in the command FIFO at the start.
1117 * With this arrangement, the command FIFO will never get full.
1119 if (packet
.payload_length
<= 16) {
1120 cmd_fifo_len
= packet
.payload_length
;
1123 cmd_fifo_len
= (packet
.payload_length
%
1124 DSI_PIX_FIFO_WIDTH
);
1125 pix_fifo_len
= ((packet
.payload_length
- cmd_fifo_len
) /
1126 DSI_PIX_FIFO_WIDTH
);
1129 WARN_ON_ONCE(pix_fifo_len
>= DSI_PIX_FIFO_DEPTH
);
1131 pkth
|= VC4_SET_FIELD(cmd_fifo_len
, DSI_TXPKT1H_BC_CMDFIFO
);
1135 pktc
|= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_RX
,
1136 DSI_TXPKT1C_CMD_CTRL
);
1138 pktc
|= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_TX
,
1139 DSI_TXPKT1C_CMD_CTRL
);
1142 for (i
= 0; i
< cmd_fifo_len
; i
++)
1143 DSI_PORT_WRITE(TXPKT_CMD_FIFO
, packet
.payload
[i
]);
1144 for (i
= 0; i
< pix_fifo_len
; i
++) {
1145 const u8
*pix
= packet
.payload
+ cmd_fifo_len
+ i
* 4;
1147 DSI_PORT_WRITE(TXPKT_PIX_FIFO
,
1154 if (msg
->flags
& MIPI_DSI_MSG_USE_LPM
)
1155 pktc
|= DSI_TXPKT1C_CMD_MODE_LP
;
1157 pktc
|= DSI_TXPKT1C_CMD_TYPE_LONG
;
1159 /* Send one copy of the packet. Larger repeats are used for pixel
1160 * data in command mode.
1162 pktc
|= VC4_SET_FIELD(1, DSI_TXPKT1C_CMD_REPEAT
);
1164 pktc
|= DSI_TXPKT1C_CMD_EN
;
1166 pktc
|= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SECONDARY
,
1167 DSI_TXPKT1C_DISPLAY_NO
);
1169 pktc
|= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SHORT
,
1170 DSI_TXPKT1C_DISPLAY_NO
);
1173 /* Enable the appropriate interrupt for the transfer completion. */
1174 dsi
->xfer_result
= 0;
1175 reinit_completion(&dsi
->xfer_completion
);
1176 DSI_PORT_WRITE(INT_STAT
, DSI1_INT_TXPKT1_DONE
| DSI1_INT_PHY_DIR_RTF
);
1178 DSI_PORT_WRITE(INT_EN
, (DSI1_INTERRUPTS_ALWAYS_ENABLED
|
1179 DSI1_INT_PHY_DIR_RTF
));
1181 DSI_PORT_WRITE(INT_EN
, (DSI1_INTERRUPTS_ALWAYS_ENABLED
|
1182 DSI1_INT_TXPKT1_DONE
));
1185 /* Send the packet. */
1186 DSI_PORT_WRITE(TXPKT1H
, pkth
);
1187 DSI_PORT_WRITE(TXPKT1C
, pktc
);
1189 if (!wait_for_completion_timeout(&dsi
->xfer_completion
,
1190 msecs_to_jiffies(1000))) {
1191 dev_err(&dsi
->pdev
->dev
, "transfer interrupt wait timeout");
1192 dev_err(&dsi
->pdev
->dev
, "instat: 0x%08x\n",
1193 DSI_PORT_READ(INT_STAT
));
1196 ret
= dsi
->xfer_result
;
1199 DSI_PORT_WRITE(INT_EN
, DSI1_INTERRUPTS_ALWAYS_ENABLED
);
1202 goto reset_fifo_and_return
;
1204 if (ret
== 0 && msg
->rx_len
) {
1205 u32 rxpkt1h
= DSI_PORT_READ(RXPKT1H
);
1206 u8
*msg_rx
= msg
->rx_buf
;
1208 if (rxpkt1h
& DSI_RXPKT1H_PKT_TYPE_LONG
) {
1209 u32 rxlen
= VC4_GET_FIELD(rxpkt1h
,
1210 DSI_RXPKT1H_BC_PARAM
);
1212 if (rxlen
!= msg
->rx_len
) {
1213 DRM_ERROR("DSI returned %db, expecting %db\n",
1214 rxlen
, (int)msg
->rx_len
);
1216 goto reset_fifo_and_return
;
1219 for (i
= 0; i
< msg
->rx_len
; i
++)
1220 msg_rx
[i
] = DSI_READ(DSI1_RXPKT_FIFO
);
1222 /* FINISHME: Handle AWER */
1224 msg_rx
[0] = VC4_GET_FIELD(rxpkt1h
,
1225 DSI_RXPKT1H_SHORT_0
);
1226 if (msg
->rx_len
> 1) {
1227 msg_rx
[1] = VC4_GET_FIELD(rxpkt1h
,
1228 DSI_RXPKT1H_SHORT_1
);
1235 reset_fifo_and_return
:
1236 DRM_ERROR("DSI transfer failed, resetting: %d\n", ret
);
1238 DSI_PORT_WRITE(TXPKT1C
, DSI_PORT_READ(TXPKT1C
) & ~DSI_TXPKT1C_CMD_EN
);
1240 DSI_PORT_WRITE(CTRL
,
1241 DSI_PORT_READ(CTRL
) |
1242 DSI_PORT_BIT(CTRL_RESET_FIFOS
));
1244 DSI_PORT_WRITE(TXPKT1C
, 0);
1245 DSI_PORT_WRITE(INT_EN
, DSI1_INTERRUPTS_ALWAYS_ENABLED
);
1249 static const struct component_ops vc4_dsi_ops
;
1250 static int vc4_dsi_host_attach(struct mipi_dsi_host
*host
,
1251 struct mipi_dsi_device
*device
)
1253 struct vc4_dsi
*dsi
= host_to_dsi(host
);
1256 dsi
->lanes
= device
->lanes
;
1257 dsi
->channel
= device
->channel
;
1258 dsi
->mode_flags
= device
->mode_flags
;
1260 switch (device
->format
) {
1261 case MIPI_DSI_FMT_RGB888
:
1262 dsi
->format
= DSI_PFORMAT_RGB888
;
1263 dsi
->divider
= 24 / dsi
->lanes
;
1265 case MIPI_DSI_FMT_RGB666
:
1266 dsi
->format
= DSI_PFORMAT_RGB666
;
1267 dsi
->divider
= 24 / dsi
->lanes
;
1269 case MIPI_DSI_FMT_RGB666_PACKED
:
1270 dsi
->format
= DSI_PFORMAT_RGB666_PACKED
;
1271 dsi
->divider
= 18 / dsi
->lanes
;
1273 case MIPI_DSI_FMT_RGB565
:
1274 dsi
->format
= DSI_PFORMAT_RGB565
;
1275 dsi
->divider
= 16 / dsi
->lanes
;
1278 dev_err(&dsi
->pdev
->dev
, "Unknown DSI format: %d.\n",
1283 if (!(dsi
->mode_flags
& MIPI_DSI_MODE_VIDEO
)) {
1284 dev_err(&dsi
->pdev
->dev
,
1285 "Only VIDEO mode panels supported currently.\n");
1289 ret
= component_add(&dsi
->pdev
->dev
, &vc4_dsi_ops
);
1291 mipi_dsi_host_unregister(&dsi
->dsi_host
);
1298 static int vc4_dsi_host_detach(struct mipi_dsi_host
*host
,
1299 struct mipi_dsi_device
*device
)
1304 static const struct mipi_dsi_host_ops vc4_dsi_host_ops
= {
1305 .attach
= vc4_dsi_host_attach
,
1306 .detach
= vc4_dsi_host_detach
,
1307 .transfer
= vc4_dsi_host_transfer
,
1310 static const struct drm_encoder_helper_funcs vc4_dsi_encoder_helper_funcs
= {
1311 .disable
= vc4_dsi_encoder_disable
,
1312 .enable
= vc4_dsi_encoder_enable
,
1313 .mode_fixup
= vc4_dsi_encoder_mode_fixup
,
1316 static const struct of_device_id vc4_dsi_dt_match
[] = {
1317 { .compatible
= "brcm,bcm2835-dsi1", (void *)(uintptr_t)1 },
1321 static void dsi_handle_error(struct vc4_dsi
*dsi
,
1322 irqreturn_t
*ret
, u32 stat
, u32 bit
,
1328 DRM_ERROR("DSI%d: %s error\n", dsi
->port
, type
);
1333 * Initial handler for port 1 where we need the reg_dma workaround.
1334 * The register DMA writes sleep, so we can't do it in the top half.
1335 * Instead we use IRQF_ONESHOT so that the IRQ gets disabled in the
1336 * parent interrupt contrller until our interrupt thread is done.
1338 static irqreturn_t
vc4_dsi_irq_defer_to_thread_handler(int irq
, void *data
)
1340 struct vc4_dsi
*dsi
= data
;
1341 u32 stat
= DSI_PORT_READ(INT_STAT
);
1346 return IRQ_WAKE_THREAD
;
1350 * Normal IRQ handler for port 0, or the threaded IRQ handler for port
1351 * 1 where we need the reg_dma workaround.
1353 static irqreturn_t
vc4_dsi_irq_handler(int irq
, void *data
)
1355 struct vc4_dsi
*dsi
= data
;
1356 u32 stat
= DSI_PORT_READ(INT_STAT
);
1357 irqreturn_t ret
= IRQ_NONE
;
1359 DSI_PORT_WRITE(INT_STAT
, stat
);
1361 dsi_handle_error(dsi
, &ret
, stat
,
1362 DSI1_INT_ERR_SYNC_ESC
, "LPDT sync");
1363 dsi_handle_error(dsi
, &ret
, stat
,
1364 DSI1_INT_ERR_CONTROL
, "data lane 0 sequence");
1365 dsi_handle_error(dsi
, &ret
, stat
,
1366 DSI1_INT_ERR_CONT_LP0
, "LP0 contention");
1367 dsi_handle_error(dsi
, &ret
, stat
,
1368 DSI1_INT_ERR_CONT_LP1
, "LP1 contention");
1369 dsi_handle_error(dsi
, &ret
, stat
,
1370 DSI1_INT_HSTX_TO
, "HSTX timeout");
1371 dsi_handle_error(dsi
, &ret
, stat
,
1372 DSI1_INT_LPRX_TO
, "LPRX timeout");
1373 dsi_handle_error(dsi
, &ret
, stat
,
1374 DSI1_INT_TA_TO
, "turnaround timeout");
1375 dsi_handle_error(dsi
, &ret
, stat
,
1376 DSI1_INT_PR_TO
, "peripheral reset timeout");
1378 if (stat
& (DSI1_INT_TXPKT1_DONE
| DSI1_INT_PHY_DIR_RTF
)) {
1379 complete(&dsi
->xfer_completion
);
1381 } else if (stat
& DSI1_INT_HSTX_TO
) {
1382 complete(&dsi
->xfer_completion
);
1383 dsi
->xfer_result
= -ETIMEDOUT
;
1391 * vc4_dsi_init_phy_clocks - Exposes clocks generated by the analog
1392 * PHY that are consumed by CPRMAN (clk-bcm2835.c).
1396 vc4_dsi_init_phy_clocks(struct vc4_dsi
*dsi
)
1398 struct device
*dev
= &dsi
->pdev
->dev
;
1399 const char *parent_name
= __clk_get_name(dsi
->pll_phy_clock
);
1400 static const struct {
1401 const char *dsi0_name
, *dsi1_name
;
1404 { "dsi0_byte", "dsi1_byte", 8 },
1405 { "dsi0_ddr2", "dsi1_ddr2", 4 },
1406 { "dsi0_ddr", "dsi1_ddr", 2 },
1410 dsi
->clk_onecell
= devm_kzalloc(dev
,
1411 sizeof(*dsi
->clk_onecell
) +
1412 ARRAY_SIZE(phy_clocks
) *
1413 sizeof(struct clk_hw
*),
1415 if (!dsi
->clk_onecell
)
1417 dsi
->clk_onecell
->num
= ARRAY_SIZE(phy_clocks
);
1419 for (i
= 0; i
< ARRAY_SIZE(phy_clocks
); i
++) {
1420 struct clk_fixed_factor
*fix
= &dsi
->phy_clocks
[i
];
1421 struct clk_init_data init
;
1424 /* We just use core fixed factor clock ops for the PHY
1425 * clocks. The clocks are actually gated by the
1426 * PHY_AFEC0_DDRCLK_EN bits, which we should be
1427 * setting if we use the DDR/DDR2 clocks. However,
1428 * vc4_dsi_encoder_enable() is setting up both AFEC0,
1429 * setting both our parent DSI PLL's rate and this
1430 * clock's rate, so it knows if DDR/DDR2 are going to
1431 * be used and could enable the gates itself.
1434 fix
->div
= phy_clocks
[i
].div
;
1435 fix
->hw
.init
= &init
;
1437 memset(&init
, 0, sizeof(init
));
1438 init
.parent_names
= &parent_name
;
1439 init
.num_parents
= 1;
1441 init
.name
= phy_clocks
[i
].dsi1_name
;
1443 init
.name
= phy_clocks
[i
].dsi0_name
;
1444 init
.ops
= &clk_fixed_factor_ops
;
1446 ret
= devm_clk_hw_register(dev
, &fix
->hw
);
1450 dsi
->clk_onecell
->hws
[i
] = &fix
->hw
;
1453 return of_clk_add_hw_provider(dev
->of_node
,
1454 of_clk_hw_onecell_get
,
1458 static int vc4_dsi_bind(struct device
*dev
, struct device
*master
, void *data
)
1460 struct platform_device
*pdev
= to_platform_device(dev
);
1461 struct drm_device
*drm
= dev_get_drvdata(master
);
1462 struct vc4_dev
*vc4
= to_vc4_dev(drm
);
1463 struct vc4_dsi
*dsi
= dev_get_drvdata(dev
);
1464 struct vc4_dsi_encoder
*vc4_dsi_encoder
;
1465 struct drm_panel
*panel
;
1466 const struct of_device_id
*match
;
1467 dma_cap_mask_t dma_mask
;
1470 match
= of_match_device(vc4_dsi_dt_match
, dev
);
1474 dsi
->port
= (uintptr_t)match
->data
;
1476 vc4_dsi_encoder
= devm_kzalloc(dev
, sizeof(*vc4_dsi_encoder
),
1478 if (!vc4_dsi_encoder
)
1481 INIT_LIST_HEAD(&dsi
->bridge_chain
);
1482 vc4_dsi_encoder
->base
.type
= VC4_ENCODER_TYPE_DSI1
;
1483 vc4_dsi_encoder
->dsi
= dsi
;
1484 dsi
->encoder
= &vc4_dsi_encoder
->base
.base
;
1486 dsi
->regs
= vc4_ioremap_regs(pdev
, 0);
1487 if (IS_ERR(dsi
->regs
))
1488 return PTR_ERR(dsi
->regs
);
1490 dsi
->regset
.base
= dsi
->regs
;
1491 if (dsi
->port
== 0) {
1492 dsi
->regset
.regs
= dsi0_regs
;
1493 dsi
->regset
.nregs
= ARRAY_SIZE(dsi0_regs
);
1495 dsi
->regset
.regs
= dsi1_regs
;
1496 dsi
->regset
.nregs
= ARRAY_SIZE(dsi1_regs
);
1499 if (DSI_PORT_READ(ID
) != DSI_ID_VALUE
) {
1500 dev_err(dev
, "Port returned 0x%08x for ID instead of 0x%08x\n",
1501 DSI_PORT_READ(ID
), DSI_ID_VALUE
);
1505 /* DSI1 has a broken AXI slave that doesn't respond to writes
1506 * from the ARM. It does handle writes from the DMA engine,
1507 * so set up a channel for talking to it.
1509 if (dsi
->port
== 1) {
1510 dsi
->reg_dma_mem
= dma_alloc_coherent(dev
, 4,
1511 &dsi
->reg_dma_paddr
,
1513 if (!dsi
->reg_dma_mem
) {
1514 DRM_ERROR("Failed to get DMA memory\n");
1518 dma_cap_zero(dma_mask
);
1519 dma_cap_set(DMA_MEMCPY
, dma_mask
);
1520 dsi
->reg_dma_chan
= dma_request_chan_by_mask(&dma_mask
);
1521 if (IS_ERR(dsi
->reg_dma_chan
)) {
1522 ret
= PTR_ERR(dsi
->reg_dma_chan
);
1523 if (ret
!= -EPROBE_DEFER
)
1524 DRM_ERROR("Failed to get DMA channel: %d\n",
1529 /* Get the physical address of the device's registers. The
1530 * struct resource for the regs gives us the bus address
1533 dsi
->reg_paddr
= be32_to_cpup(of_get_address(dev
->of_node
,
1537 init_completion(&dsi
->xfer_completion
);
1538 /* At startup enable error-reporting interrupts and nothing else. */
1539 DSI_PORT_WRITE(INT_EN
, DSI1_INTERRUPTS_ALWAYS_ENABLED
);
1540 /* Clear any existing interrupt state. */
1541 DSI_PORT_WRITE(INT_STAT
, DSI_PORT_READ(INT_STAT
));
1543 if (dsi
->reg_dma_mem
)
1544 ret
= devm_request_threaded_irq(dev
, platform_get_irq(pdev
, 0),
1545 vc4_dsi_irq_defer_to_thread_handler
,
1546 vc4_dsi_irq_handler
,
1550 ret
= devm_request_irq(dev
, platform_get_irq(pdev
, 0),
1551 vc4_dsi_irq_handler
, 0, "vc4 dsi", dsi
);
1553 if (ret
!= -EPROBE_DEFER
)
1554 dev_err(dev
, "Failed to get interrupt: %d\n", ret
);
1558 dsi
->escape_clock
= devm_clk_get(dev
, "escape");
1559 if (IS_ERR(dsi
->escape_clock
)) {
1560 ret
= PTR_ERR(dsi
->escape_clock
);
1561 if (ret
!= -EPROBE_DEFER
)
1562 dev_err(dev
, "Failed to get escape clock: %d\n", ret
);
1566 dsi
->pll_phy_clock
= devm_clk_get(dev
, "phy");
1567 if (IS_ERR(dsi
->pll_phy_clock
)) {
1568 ret
= PTR_ERR(dsi
->pll_phy_clock
);
1569 if (ret
!= -EPROBE_DEFER
)
1570 dev_err(dev
, "Failed to get phy clock: %d\n", ret
);
1574 dsi
->pixel_clock
= devm_clk_get(dev
, "pixel");
1575 if (IS_ERR(dsi
->pixel_clock
)) {
1576 ret
= PTR_ERR(dsi
->pixel_clock
);
1577 if (ret
!= -EPROBE_DEFER
)
1578 dev_err(dev
, "Failed to get pixel clock: %d\n", ret
);
1582 ret
= drm_of_find_panel_or_bridge(dev
->of_node
, 0, 0,
1583 &panel
, &dsi
->bridge
);
1585 /* If the bridge or panel pointed by dev->of_node is not
1586 * enabled, just return 0 here so that we don't prevent the DRM
1587 * dev from being registered. Of course that means the DSI
1588 * encoder won't be exposed, but that's not a problem since
1589 * nothing is connected to it.
1598 dsi
->bridge
= devm_drm_panel_bridge_add_typed(dev
, panel
,
1599 DRM_MODE_CONNECTOR_DSI
);
1600 if (IS_ERR(dsi
->bridge
))
1601 return PTR_ERR(dsi
->bridge
);
1604 /* The esc clock rate is supposed to always be 100Mhz. */
1605 ret
= clk_set_rate(dsi
->escape_clock
, 100 * 1000000);
1607 dev_err(dev
, "Failed to set esc clock: %d\n", ret
);
1611 ret
= vc4_dsi_init_phy_clocks(dsi
);
1618 drm_simple_encoder_init(drm
, dsi
->encoder
, DRM_MODE_ENCODER_DSI
);
1619 drm_encoder_helper_add(dsi
->encoder
, &vc4_dsi_encoder_helper_funcs
);
1621 ret
= drm_bridge_attach(dsi
->encoder
, dsi
->bridge
, NULL
, 0);
1623 dev_err(dev
, "bridge attach failed: %d\n", ret
);
1626 /* Disable the atomic helper calls into the bridge. We
1627 * manually call the bridge pre_enable / enable / etc. calls
1628 * from our driver, since we need to sequence them within the
1629 * encoder's enable/disable paths.
1631 list_splice_init(&dsi
->encoder
->bridge_chain
, &dsi
->bridge_chain
);
1634 vc4_debugfs_add_regset32(drm
, "dsi0_regs", &dsi
->regset
);
1636 vc4_debugfs_add_regset32(drm
, "dsi1_regs", &dsi
->regset
);
1638 pm_runtime_enable(dev
);
1643 static void vc4_dsi_unbind(struct device
*dev
, struct device
*master
,
1646 struct drm_device
*drm
= dev_get_drvdata(master
);
1647 struct vc4_dev
*vc4
= to_vc4_dev(drm
);
1648 struct vc4_dsi
*dsi
= dev_get_drvdata(dev
);
1651 pm_runtime_disable(dev
);
1654 * Restore the bridge_chain so the bridge detach procedure can happen
1657 list_splice_init(&dsi
->bridge_chain
, &dsi
->encoder
->bridge_chain
);
1658 drm_encoder_cleanup(dsi
->encoder
);
1664 static const struct component_ops vc4_dsi_ops
= {
1665 .bind
= vc4_dsi_bind
,
1666 .unbind
= vc4_dsi_unbind
,
1669 static int vc4_dsi_dev_probe(struct platform_device
*pdev
)
1671 struct device
*dev
= &pdev
->dev
;
1672 struct vc4_dsi
*dsi
;
1674 dsi
= devm_kzalloc(dev
, sizeof(*dsi
), GFP_KERNEL
);
1677 dev_set_drvdata(dev
, dsi
);
1680 dsi
->dsi_host
.ops
= &vc4_dsi_host_ops
;
1681 dsi
->dsi_host
.dev
= dev
;
1682 mipi_dsi_host_register(&dsi
->dsi_host
);
1687 static int vc4_dsi_dev_remove(struct platform_device
*pdev
)
1689 struct device
*dev
= &pdev
->dev
;
1690 struct vc4_dsi
*dsi
= dev_get_drvdata(dev
);
1692 component_del(&pdev
->dev
, &vc4_dsi_ops
);
1693 mipi_dsi_host_unregister(&dsi
->dsi_host
);
1698 struct platform_driver vc4_dsi_driver
= {
1699 .probe
= vc4_dsi_dev_probe
,
1700 .remove
= vc4_dsi_dev_remove
,
1703 .of_match_table
= vc4_dsi_dt_match
,