Merge tag 'block-5.11-2021-01-10' of git://git.kernel.dk/linux-block
[linux/fpc-iii.git] / drivers / gpu / drm / vmwgfx / vmwgfx_ttm_buffer.c
blob6a04261ce760e4fb191f8fe6026d1969b17c1d43
1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /**************************************************************************
4 * Copyright 2009-2015 VMware, Inc., Palo Alto, CA., USA
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24 * USE OR OTHER DEALINGS IN THE SOFTWARE.
26 **************************************************************************/
28 #include "vmwgfx_drv.h"
29 #include <drm/ttm/ttm_bo_driver.h>
30 #include <drm/ttm/ttm_placement.h>
32 static const struct ttm_place vram_placement_flags = {
33 .fpfn = 0,
34 .lpfn = 0,
35 .mem_type = TTM_PL_VRAM,
36 .flags = 0
39 static const struct ttm_place sys_placement_flags = {
40 .fpfn = 0,
41 .lpfn = 0,
42 .mem_type = TTM_PL_SYSTEM,
43 .flags = 0
46 static const struct ttm_place gmr_placement_flags = {
47 .fpfn = 0,
48 .lpfn = 0,
49 .mem_type = VMW_PL_GMR,
50 .flags = 0
53 static const struct ttm_place mob_placement_flags = {
54 .fpfn = 0,
55 .lpfn = 0,
56 .mem_type = VMW_PL_MOB,
57 .flags = 0
60 struct ttm_placement vmw_vram_placement = {
61 .num_placement = 1,
62 .placement = &vram_placement_flags,
63 .num_busy_placement = 1,
64 .busy_placement = &vram_placement_flags
67 static const struct ttm_place vram_gmr_placement_flags[] = {
69 .fpfn = 0,
70 .lpfn = 0,
71 .mem_type = TTM_PL_VRAM,
72 .flags = 0
73 }, {
74 .fpfn = 0,
75 .lpfn = 0,
76 .mem_type = VMW_PL_GMR,
77 .flags = 0
81 static const struct ttm_place gmr_vram_placement_flags[] = {
83 .fpfn = 0,
84 .lpfn = 0,
85 .mem_type = VMW_PL_GMR,
86 .flags = 0
87 }, {
88 .fpfn = 0,
89 .lpfn = 0,
90 .mem_type = TTM_PL_VRAM,
91 .flags = 0
95 struct ttm_placement vmw_vram_gmr_placement = {
96 .num_placement = 2,
97 .placement = vram_gmr_placement_flags,
98 .num_busy_placement = 1,
99 .busy_placement = &gmr_placement_flags
102 struct ttm_placement vmw_vram_sys_placement = {
103 .num_placement = 1,
104 .placement = &vram_placement_flags,
105 .num_busy_placement = 1,
106 .busy_placement = &sys_placement_flags
109 struct ttm_placement vmw_sys_placement = {
110 .num_placement = 1,
111 .placement = &sys_placement_flags,
112 .num_busy_placement = 1,
113 .busy_placement = &sys_placement_flags
116 static const struct ttm_place evictable_placement_flags[] = {
118 .fpfn = 0,
119 .lpfn = 0,
120 .mem_type = TTM_PL_SYSTEM,
121 .flags = 0
122 }, {
123 .fpfn = 0,
124 .lpfn = 0,
125 .mem_type = TTM_PL_VRAM,
126 .flags = 0
127 }, {
128 .fpfn = 0,
129 .lpfn = 0,
130 .mem_type = VMW_PL_GMR,
131 .flags = 0
132 }, {
133 .fpfn = 0,
134 .lpfn = 0,
135 .mem_type = VMW_PL_MOB,
136 .flags = 0
140 static const struct ttm_place nonfixed_placement_flags[] = {
142 .fpfn = 0,
143 .lpfn = 0,
144 .mem_type = TTM_PL_SYSTEM,
145 .flags = 0
146 }, {
147 .fpfn = 0,
148 .lpfn = 0,
149 .mem_type = VMW_PL_GMR,
150 .flags = 0
151 }, {
152 .fpfn = 0,
153 .lpfn = 0,
154 .mem_type = VMW_PL_MOB,
155 .flags = 0
159 struct ttm_placement vmw_evictable_placement = {
160 .num_placement = 4,
161 .placement = evictable_placement_flags,
162 .num_busy_placement = 1,
163 .busy_placement = &sys_placement_flags
166 struct ttm_placement vmw_srf_placement = {
167 .num_placement = 1,
168 .num_busy_placement = 2,
169 .placement = &gmr_placement_flags,
170 .busy_placement = gmr_vram_placement_flags
173 struct ttm_placement vmw_mob_placement = {
174 .num_placement = 1,
175 .num_busy_placement = 1,
176 .placement = &mob_placement_flags,
177 .busy_placement = &mob_placement_flags
180 struct ttm_placement vmw_nonfixed_placement = {
181 .num_placement = 3,
182 .placement = nonfixed_placement_flags,
183 .num_busy_placement = 1,
184 .busy_placement = &sys_placement_flags
187 struct vmw_ttm_tt {
188 struct ttm_tt dma_ttm;
189 struct vmw_private *dev_priv;
190 int gmr_id;
191 struct vmw_mob *mob;
192 int mem_type;
193 struct sg_table sgt;
194 struct vmw_sg_table vsgt;
195 uint64_t sg_alloc_size;
196 bool mapped;
197 bool bound;
200 const size_t vmw_tt_size = sizeof(struct vmw_ttm_tt);
203 * Helper functions to advance a struct vmw_piter iterator.
205 * @viter: Pointer to the iterator.
207 * These functions return false if past the end of the list,
208 * true otherwise. Functions are selected depending on the current
209 * DMA mapping mode.
211 static bool __vmw_piter_non_sg_next(struct vmw_piter *viter)
213 return ++(viter->i) < viter->num_pages;
216 static bool __vmw_piter_sg_next(struct vmw_piter *viter)
218 bool ret = __vmw_piter_non_sg_next(viter);
220 return __sg_page_iter_dma_next(&viter->iter) && ret;
225 * Helper functions to return a pointer to the current page.
227 * @viter: Pointer to the iterator
229 * These functions return a pointer to the page currently
230 * pointed to by @viter. Functions are selected depending on the
231 * current mapping mode.
233 static struct page *__vmw_piter_non_sg_page(struct vmw_piter *viter)
235 return viter->pages[viter->i];
239 * Helper functions to return the DMA address of the current page.
241 * @viter: Pointer to the iterator
243 * These functions return the DMA address of the page currently
244 * pointed to by @viter. Functions are selected depending on the
245 * current mapping mode.
247 static dma_addr_t __vmw_piter_phys_addr(struct vmw_piter *viter)
249 return page_to_phys(viter->pages[viter->i]);
252 static dma_addr_t __vmw_piter_dma_addr(struct vmw_piter *viter)
254 return viter->addrs[viter->i];
257 static dma_addr_t __vmw_piter_sg_addr(struct vmw_piter *viter)
259 return sg_page_iter_dma_address(&viter->iter);
264 * vmw_piter_start - Initialize a struct vmw_piter.
266 * @viter: Pointer to the iterator to initialize
267 * @vsgt: Pointer to a struct vmw_sg_table to initialize from
269 * Note that we're following the convention of __sg_page_iter_start, so that
270 * the iterator doesn't point to a valid page after initialization; it has
271 * to be advanced one step first.
273 void vmw_piter_start(struct vmw_piter *viter, const struct vmw_sg_table *vsgt,
274 unsigned long p_offset)
276 viter->i = p_offset - 1;
277 viter->num_pages = vsgt->num_pages;
278 viter->page = &__vmw_piter_non_sg_page;
279 viter->pages = vsgt->pages;
280 switch (vsgt->mode) {
281 case vmw_dma_phys:
282 viter->next = &__vmw_piter_non_sg_next;
283 viter->dma_address = &__vmw_piter_phys_addr;
284 break;
285 case vmw_dma_alloc_coherent:
286 viter->next = &__vmw_piter_non_sg_next;
287 viter->dma_address = &__vmw_piter_dma_addr;
288 viter->addrs = vsgt->addrs;
289 break;
290 case vmw_dma_map_populate:
291 case vmw_dma_map_bind:
292 viter->next = &__vmw_piter_sg_next;
293 viter->dma_address = &__vmw_piter_sg_addr;
294 __sg_page_iter_start(&viter->iter.base, vsgt->sgt->sgl,
295 vsgt->sgt->orig_nents, p_offset);
296 break;
297 default:
298 BUG();
303 * vmw_ttm_unmap_from_dma - unmap device addresses previsouly mapped for
304 * TTM pages
306 * @vmw_tt: Pointer to a struct vmw_ttm_backend
308 * Used to free dma mappings previously mapped by vmw_ttm_map_for_dma.
310 static void vmw_ttm_unmap_from_dma(struct vmw_ttm_tt *vmw_tt)
312 struct device *dev = vmw_tt->dev_priv->dev->dev;
314 dma_unmap_sgtable(dev, &vmw_tt->sgt, DMA_BIDIRECTIONAL, 0);
315 vmw_tt->sgt.nents = vmw_tt->sgt.orig_nents;
319 * vmw_ttm_map_for_dma - map TTM pages to get device addresses
321 * @vmw_tt: Pointer to a struct vmw_ttm_backend
323 * This function is used to get device addresses from the kernel DMA layer.
324 * However, it's violating the DMA API in that when this operation has been
325 * performed, it's illegal for the CPU to write to the pages without first
326 * unmapping the DMA mappings, or calling dma_sync_sg_for_cpu(). It is
327 * therefore only legal to call this function if we know that the function
328 * dma_sync_sg_for_cpu() is a NOP, and dma_sync_sg_for_device() is at most
329 * a CPU write buffer flush.
331 static int vmw_ttm_map_for_dma(struct vmw_ttm_tt *vmw_tt)
333 struct device *dev = vmw_tt->dev_priv->dev->dev;
335 return dma_map_sgtable(dev, &vmw_tt->sgt, DMA_BIDIRECTIONAL, 0);
339 * vmw_ttm_map_dma - Make sure TTM pages are visible to the device
341 * @vmw_tt: Pointer to a struct vmw_ttm_tt
343 * Select the correct function for and make sure the TTM pages are
344 * visible to the device. Allocate storage for the device mappings.
345 * If a mapping has already been performed, indicated by the storage
346 * pointer being non NULL, the function returns success.
348 static int vmw_ttm_map_dma(struct vmw_ttm_tt *vmw_tt)
350 struct vmw_private *dev_priv = vmw_tt->dev_priv;
351 struct ttm_mem_global *glob = vmw_mem_glob(dev_priv);
352 struct vmw_sg_table *vsgt = &vmw_tt->vsgt;
353 struct ttm_operation_ctx ctx = {
354 .interruptible = true,
355 .no_wait_gpu = false
357 struct vmw_piter iter;
358 dma_addr_t old;
359 int ret = 0;
360 static size_t sgl_size;
361 static size_t sgt_size;
362 struct scatterlist *sg;
364 if (vmw_tt->mapped)
365 return 0;
367 vsgt->mode = dev_priv->map_mode;
368 vsgt->pages = vmw_tt->dma_ttm.pages;
369 vsgt->num_pages = vmw_tt->dma_ttm.num_pages;
370 vsgt->addrs = vmw_tt->dma_ttm.dma_address;
371 vsgt->sgt = &vmw_tt->sgt;
373 switch (dev_priv->map_mode) {
374 case vmw_dma_map_bind:
375 case vmw_dma_map_populate:
376 if (unlikely(!sgl_size)) {
377 sgl_size = ttm_round_pot(sizeof(struct scatterlist));
378 sgt_size = ttm_round_pot(sizeof(struct sg_table));
380 vmw_tt->sg_alloc_size = sgt_size + sgl_size * vsgt->num_pages;
381 ret = ttm_mem_global_alloc(glob, vmw_tt->sg_alloc_size, &ctx);
382 if (unlikely(ret != 0))
383 return ret;
385 sg = __sg_alloc_table_from_pages(&vmw_tt->sgt, vsgt->pages,
386 vsgt->num_pages, 0,
387 (unsigned long) vsgt->num_pages << PAGE_SHIFT,
388 dma_get_max_seg_size(dev_priv->dev->dev),
389 NULL, 0, GFP_KERNEL);
390 if (IS_ERR(sg)) {
391 ret = PTR_ERR(sg);
392 goto out_sg_alloc_fail;
395 if (vsgt->num_pages > vmw_tt->sgt.orig_nents) {
396 uint64_t over_alloc =
397 sgl_size * (vsgt->num_pages -
398 vmw_tt->sgt.orig_nents);
400 ttm_mem_global_free(glob, over_alloc);
401 vmw_tt->sg_alloc_size -= over_alloc;
404 ret = vmw_ttm_map_for_dma(vmw_tt);
405 if (unlikely(ret != 0))
406 goto out_map_fail;
408 break;
409 default:
410 break;
413 old = ~((dma_addr_t) 0);
414 vmw_tt->vsgt.num_regions = 0;
415 for (vmw_piter_start(&iter, vsgt, 0); vmw_piter_next(&iter);) {
416 dma_addr_t cur = vmw_piter_dma_addr(&iter);
418 if (cur != old + PAGE_SIZE)
419 vmw_tt->vsgt.num_regions++;
420 old = cur;
423 vmw_tt->mapped = true;
424 return 0;
426 out_map_fail:
427 sg_free_table(vmw_tt->vsgt.sgt);
428 vmw_tt->vsgt.sgt = NULL;
429 out_sg_alloc_fail:
430 ttm_mem_global_free(glob, vmw_tt->sg_alloc_size);
431 return ret;
435 * vmw_ttm_unmap_dma - Tear down any TTM page device mappings
437 * @vmw_tt: Pointer to a struct vmw_ttm_tt
439 * Tear down any previously set up device DMA mappings and free
440 * any storage space allocated for them. If there are no mappings set up,
441 * this function is a NOP.
443 static void vmw_ttm_unmap_dma(struct vmw_ttm_tt *vmw_tt)
445 struct vmw_private *dev_priv = vmw_tt->dev_priv;
447 if (!vmw_tt->vsgt.sgt)
448 return;
450 switch (dev_priv->map_mode) {
451 case vmw_dma_map_bind:
452 case vmw_dma_map_populate:
453 vmw_ttm_unmap_from_dma(vmw_tt);
454 sg_free_table(vmw_tt->vsgt.sgt);
455 vmw_tt->vsgt.sgt = NULL;
456 ttm_mem_global_free(vmw_mem_glob(dev_priv),
457 vmw_tt->sg_alloc_size);
458 break;
459 default:
460 break;
462 vmw_tt->mapped = false;
466 * vmw_bo_sg_table - Return a struct vmw_sg_table object for a
467 * TTM buffer object
469 * @bo: Pointer to a struct ttm_buffer_object
471 * Returns a pointer to a struct vmw_sg_table object. The object should
472 * not be freed after use.
473 * Note that for the device addresses to be valid, the buffer object must
474 * either be reserved or pinned.
476 const struct vmw_sg_table *vmw_bo_sg_table(struct ttm_buffer_object *bo)
478 struct vmw_ttm_tt *vmw_tt =
479 container_of(bo->ttm, struct vmw_ttm_tt, dma_ttm);
481 return &vmw_tt->vsgt;
485 static int vmw_ttm_bind(struct ttm_bo_device *bdev,
486 struct ttm_tt *ttm, struct ttm_resource *bo_mem)
488 struct vmw_ttm_tt *vmw_be =
489 container_of(ttm, struct vmw_ttm_tt, dma_ttm);
490 int ret = 0;
492 if (!bo_mem)
493 return -EINVAL;
495 if (vmw_be->bound)
496 return 0;
498 ret = vmw_ttm_map_dma(vmw_be);
499 if (unlikely(ret != 0))
500 return ret;
502 vmw_be->gmr_id = bo_mem->start;
503 vmw_be->mem_type = bo_mem->mem_type;
505 switch (bo_mem->mem_type) {
506 case VMW_PL_GMR:
507 ret = vmw_gmr_bind(vmw_be->dev_priv, &vmw_be->vsgt,
508 ttm->num_pages, vmw_be->gmr_id);
509 break;
510 case VMW_PL_MOB:
511 if (unlikely(vmw_be->mob == NULL)) {
512 vmw_be->mob =
513 vmw_mob_create(ttm->num_pages);
514 if (unlikely(vmw_be->mob == NULL))
515 return -ENOMEM;
518 ret = vmw_mob_bind(vmw_be->dev_priv, vmw_be->mob,
519 &vmw_be->vsgt, ttm->num_pages,
520 vmw_be->gmr_id);
521 break;
522 default:
523 BUG();
525 vmw_be->bound = true;
526 return ret;
529 static void vmw_ttm_unbind(struct ttm_bo_device *bdev,
530 struct ttm_tt *ttm)
532 struct vmw_ttm_tt *vmw_be =
533 container_of(ttm, struct vmw_ttm_tt, dma_ttm);
535 if (!vmw_be->bound)
536 return;
538 switch (vmw_be->mem_type) {
539 case VMW_PL_GMR:
540 vmw_gmr_unbind(vmw_be->dev_priv, vmw_be->gmr_id);
541 break;
542 case VMW_PL_MOB:
543 vmw_mob_unbind(vmw_be->dev_priv, vmw_be->mob);
544 break;
545 default:
546 BUG();
549 if (vmw_be->dev_priv->map_mode == vmw_dma_map_bind)
550 vmw_ttm_unmap_dma(vmw_be);
551 vmw_be->bound = false;
555 static void vmw_ttm_destroy(struct ttm_bo_device *bdev, struct ttm_tt *ttm)
557 struct vmw_ttm_tt *vmw_be =
558 container_of(ttm, struct vmw_ttm_tt, dma_ttm);
560 vmw_ttm_unbind(bdev, ttm);
561 ttm_tt_destroy_common(bdev, ttm);
562 vmw_ttm_unmap_dma(vmw_be);
563 if (vmw_be->dev_priv->map_mode == vmw_dma_alloc_coherent)
564 ttm_tt_fini(&vmw_be->dma_ttm);
565 else
566 ttm_tt_fini(ttm);
568 if (vmw_be->mob)
569 vmw_mob_destroy(vmw_be->mob);
571 kfree(vmw_be);
575 static int vmw_ttm_populate(struct ttm_bo_device *bdev,
576 struct ttm_tt *ttm, struct ttm_operation_ctx *ctx)
578 /* TODO: maybe completely drop this ? */
579 if (ttm_tt_is_populated(ttm))
580 return 0;
582 return ttm_pool_alloc(&bdev->pool, ttm, ctx);
585 static void vmw_ttm_unpopulate(struct ttm_bo_device *bdev,
586 struct ttm_tt *ttm)
588 struct vmw_ttm_tt *vmw_tt = container_of(ttm, struct vmw_ttm_tt,
589 dma_ttm);
591 if (vmw_tt->mob) {
592 vmw_mob_destroy(vmw_tt->mob);
593 vmw_tt->mob = NULL;
596 vmw_ttm_unmap_dma(vmw_tt);
597 ttm_pool_free(&bdev->pool, ttm);
600 static struct ttm_tt *vmw_ttm_tt_create(struct ttm_buffer_object *bo,
601 uint32_t page_flags)
603 struct vmw_ttm_tt *vmw_be;
604 int ret;
606 vmw_be = kzalloc(sizeof(*vmw_be), GFP_KERNEL);
607 if (!vmw_be)
608 return NULL;
610 vmw_be->dev_priv = container_of(bo->bdev, struct vmw_private, bdev);
611 vmw_be->mob = NULL;
613 if (vmw_be->dev_priv->map_mode == vmw_dma_alloc_coherent)
614 ret = ttm_dma_tt_init(&vmw_be->dma_ttm, bo, page_flags,
615 ttm_cached);
616 else
617 ret = ttm_tt_init(&vmw_be->dma_ttm, bo, page_flags,
618 ttm_cached);
619 if (unlikely(ret != 0))
620 goto out_no_init;
622 return &vmw_be->dma_ttm;
623 out_no_init:
624 kfree(vmw_be);
625 return NULL;
628 static void vmw_evict_flags(struct ttm_buffer_object *bo,
629 struct ttm_placement *placement)
631 *placement = vmw_sys_placement;
634 static int vmw_verify_access(struct ttm_buffer_object *bo, struct file *filp)
636 struct ttm_object_file *tfile =
637 vmw_fpriv((struct drm_file *)filp->private_data)->tfile;
639 return vmw_user_bo_verify_access(bo, tfile);
642 static int vmw_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_resource *mem)
644 struct vmw_private *dev_priv = container_of(bdev, struct vmw_private, bdev);
646 switch (mem->mem_type) {
647 case TTM_PL_SYSTEM:
648 case VMW_PL_GMR:
649 case VMW_PL_MOB:
650 return 0;
651 case TTM_PL_VRAM:
652 mem->bus.offset = (mem->start << PAGE_SHIFT) +
653 dev_priv->vram_start;
654 mem->bus.is_iomem = true;
655 mem->bus.caching = ttm_cached;
656 break;
657 default:
658 return -EINVAL;
660 return 0;
664 * vmw_move_notify - TTM move_notify_callback
666 * @bo: The TTM buffer object about to move.
667 * @mem: The struct ttm_resource indicating to what memory
668 * region the move is taking place.
670 * Calls move_notify for all subsystems needing it.
671 * (currently only resources).
673 static void vmw_move_notify(struct ttm_buffer_object *bo,
674 bool evict,
675 struct ttm_resource *mem)
677 if (!mem)
678 return;
679 vmw_bo_move_notify(bo, mem);
680 vmw_query_move_notify(bo, mem);
685 * vmw_swap_notify - TTM move_notify_callback
687 * @bo: The TTM buffer object about to be swapped out.
689 static void vmw_swap_notify(struct ttm_buffer_object *bo)
691 vmw_bo_swap_notify(bo);
692 (void) ttm_bo_wait(bo, false, false);
695 static int vmw_move(struct ttm_buffer_object *bo,
696 bool evict,
697 struct ttm_operation_ctx *ctx,
698 struct ttm_resource *new_mem,
699 struct ttm_place *hop)
701 struct ttm_resource_manager *old_man = ttm_manager_type(bo->bdev, bo->mem.mem_type);
702 struct ttm_resource_manager *new_man = ttm_manager_type(bo->bdev, new_mem->mem_type);
703 int ret;
705 if (new_man->use_tt && new_mem->mem_type != TTM_PL_SYSTEM) {
706 ret = vmw_ttm_bind(bo->bdev, bo->ttm, new_mem);
707 if (ret)
708 return ret;
711 vmw_move_notify(bo, evict, new_mem);
713 if (old_man->use_tt && new_man->use_tt) {
714 if (bo->mem.mem_type == TTM_PL_SYSTEM) {
715 ttm_bo_assign_mem(bo, new_mem);
716 return 0;
718 ret = ttm_bo_wait_ctx(bo, ctx);
719 if (ret)
720 goto fail;
722 vmw_ttm_unbind(bo->bdev, bo->ttm);
723 ttm_resource_free(bo, &bo->mem);
724 ttm_bo_assign_mem(bo, new_mem);
725 return 0;
726 } else {
727 ret = ttm_bo_move_memcpy(bo, ctx, new_mem);
728 if (ret)
729 goto fail;
731 return 0;
732 fail:
733 swap(*new_mem, bo->mem);
734 vmw_move_notify(bo, false, new_mem);
735 swap(*new_mem, bo->mem);
736 return ret;
739 static void
740 vmw_delete_mem_notify(struct ttm_buffer_object *bo)
742 vmw_move_notify(bo, false, NULL);
745 struct ttm_bo_driver vmw_bo_driver = {
746 .ttm_tt_create = &vmw_ttm_tt_create,
747 .ttm_tt_populate = &vmw_ttm_populate,
748 .ttm_tt_unpopulate = &vmw_ttm_unpopulate,
749 .ttm_tt_destroy = &vmw_ttm_destroy,
750 .eviction_valuable = ttm_bo_eviction_valuable,
751 .evict_flags = vmw_evict_flags,
752 .move = vmw_move,
753 .verify_access = vmw_verify_access,
754 .delete_mem_notify = vmw_delete_mem_notify,
755 .swap_notify = vmw_swap_notify,
756 .io_mem_reserve = &vmw_ttm_io_mem_reserve,
759 int vmw_bo_create_and_populate(struct vmw_private *dev_priv,
760 unsigned long bo_size,
761 struct ttm_buffer_object **bo_p)
763 struct ttm_operation_ctx ctx = {
764 .interruptible = false,
765 .no_wait_gpu = false
767 struct ttm_buffer_object *bo;
768 int ret;
770 ret = vmw_bo_create_kernel(dev_priv, bo_size,
771 &vmw_sys_placement,
772 &bo);
773 if (unlikely(ret != 0))
774 return ret;
776 ret = ttm_bo_reserve(bo, false, true, NULL);
777 BUG_ON(ret != 0);
778 ret = vmw_ttm_populate(bo->bdev, bo->ttm, &ctx);
779 if (likely(ret == 0)) {
780 struct vmw_ttm_tt *vmw_tt =
781 container_of(bo->ttm, struct vmw_ttm_tt, dma_ttm);
782 ret = vmw_ttm_map_dma(vmw_tt);
785 ttm_bo_unreserve(bo);
787 if (likely(ret == 0))
788 *bo_p = bo;
789 return ret;