4 * Basic PIO and command management functionality.
6 * This code was split off from ide.c. See ide.c for history and original
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2, or (at your option) any
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
19 * For the avoidance of doubt the "preferred form" of this code is one which
20 * is in an open non patent encumbered format. Where cryptographic key signing
21 * forms part of the process of creating an executable the information
22 * including keys needed to generate an equivalently functional executable
23 * are deemed to be part of the source code.
27 #include <linux/module.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/kernel.h>
31 #include <linux/timer.h>
33 #include <linux/interrupt.h>
34 #include <linux/major.h>
35 #include <linux/errno.h>
36 #include <linux/genhd.h>
37 #include <linux/blkpg.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/pci.h>
41 #include <linux/delay.h>
42 #include <linux/ide.h>
43 #include <linux/completion.h>
44 #include <linux/reboot.h>
45 #include <linux/cdrom.h>
46 #include <linux/seq_file.h>
47 #include <linux/device.h>
48 #include <linux/kmod.h>
49 #include <linux/scatterlist.h>
50 #include <linux/bitops.h>
52 #include <asm/byteorder.h>
54 #include <linux/uaccess.h>
57 int ide_end_rq(ide_drive_t
*drive
, struct request
*rq
, blk_status_t error
,
58 unsigned int nr_bytes
)
61 * decide whether to reenable DMA -- 3 is a random magic for now,
62 * if we DMA timeout more than 3 times, just stay in PIO
64 if ((drive
->dev_flags
& IDE_DFLAG_DMA_PIO_RETRY
) &&
65 drive
->retry_pio
<= 3) {
66 drive
->dev_flags
&= ~IDE_DFLAG_DMA_PIO_RETRY
;
70 if (!blk_update_request(rq
, error
, nr_bytes
)) {
71 if (rq
== drive
->sense_rq
) {
72 drive
->sense_rq
= NULL
;
73 drive
->sense_rq_active
= false;
76 __blk_mq_end_request(rq
, error
);
82 EXPORT_SYMBOL_GPL(ide_end_rq
);
84 void ide_complete_cmd(ide_drive_t
*drive
, struct ide_cmd
*cmd
, u8 stat
, u8 err
)
86 const struct ide_tp_ops
*tp_ops
= drive
->hwif
->tp_ops
;
87 struct ide_taskfile
*tf
= &cmd
->tf
;
88 struct request
*rq
= cmd
->rq
;
89 u8 tf_cmd
= tf
->command
;
94 if (cmd
->ftf_flags
& IDE_FTFLAG_IN_DATA
) {
97 tp_ops
->input_data(drive
, cmd
, data
, 2);
99 cmd
->tf
.data
= data
[0];
100 cmd
->hob
.data
= data
[1];
103 ide_tf_readback(drive
, cmd
);
105 if ((cmd
->tf_flags
& IDE_TFLAG_CUSTOM_HANDLER
) &&
106 tf_cmd
== ATA_CMD_IDLEIMMEDIATE
) {
107 if (tf
->lbal
!= 0xc4) {
108 printk(KERN_ERR
"%s: head unload failed!\n",
110 ide_tf_dump(drive
->name
, cmd
);
112 drive
->dev_flags
|= IDE_DFLAG_PARKED
;
115 if (rq
&& ata_taskfile_request(rq
)) {
116 struct ide_cmd
*orig_cmd
= ide_req(rq
)->special
;
118 if (cmd
->tf_flags
& IDE_TFLAG_DYN
)
120 else if (cmd
!= orig_cmd
)
121 memcpy(orig_cmd
, cmd
, sizeof(*cmd
));
125 int ide_complete_rq(ide_drive_t
*drive
, blk_status_t error
, unsigned int nr_bytes
)
127 ide_hwif_t
*hwif
= drive
->hwif
;
128 struct request
*rq
= hwif
->rq
;
132 * if failfast is set on a request, override number of sectors
133 * and complete the whole request right now
135 if (blk_noretry_request(rq
) && error
)
136 nr_bytes
= blk_rq_sectors(rq
) << 9;
138 rc
= ide_end_rq(drive
, rq
, error
, nr_bytes
);
144 EXPORT_SYMBOL(ide_complete_rq
);
146 void ide_kill_rq(ide_drive_t
*drive
, struct request
*rq
)
148 u8 drv_req
= ata_misc_request(rq
) && rq
->rq_disk
;
149 u8 media
= drive
->media
;
151 drive
->failed_pc
= NULL
;
153 if ((media
== ide_floppy
|| media
== ide_tape
) && drv_req
) {
154 scsi_req(rq
)->result
= 0;
156 if (media
== ide_tape
)
157 scsi_req(rq
)->result
= IDE_DRV_ERROR_GENERAL
;
158 else if (blk_rq_is_passthrough(rq
) && scsi_req(rq
)->result
== 0)
159 scsi_req(rq
)->result
= -EIO
;
162 ide_complete_rq(drive
, BLK_STS_IOERR
, blk_rq_bytes(rq
));
165 static void ide_tf_set_specify_cmd(ide_drive_t
*drive
, struct ide_taskfile
*tf
)
167 tf
->nsect
= drive
->sect
;
168 tf
->lbal
= drive
->sect
;
169 tf
->lbam
= drive
->cyl
;
170 tf
->lbah
= drive
->cyl
>> 8;
171 tf
->device
= (drive
->head
- 1) | drive
->select
;
172 tf
->command
= ATA_CMD_INIT_DEV_PARAMS
;
175 static void ide_tf_set_restore_cmd(ide_drive_t
*drive
, struct ide_taskfile
*tf
)
177 tf
->nsect
= drive
->sect
;
178 tf
->command
= ATA_CMD_RESTORE
;
181 static void ide_tf_set_setmult_cmd(ide_drive_t
*drive
, struct ide_taskfile
*tf
)
183 tf
->nsect
= drive
->mult_req
;
184 tf
->command
= ATA_CMD_SET_MULTI
;
188 * do_special - issue some special commands
189 * @drive: drive the command is for
191 * do_special() is used to issue ATA_CMD_INIT_DEV_PARAMS,
192 * ATA_CMD_RESTORE and ATA_CMD_SET_MULTI commands to a drive.
195 static ide_startstop_t
do_special(ide_drive_t
*drive
)
200 printk(KERN_DEBUG
"%s: %s: 0x%02x\n", drive
->name
, __func__
,
201 drive
->special_flags
);
203 if (drive
->media
!= ide_disk
) {
204 drive
->special_flags
= 0;
209 memset(&cmd
, 0, sizeof(cmd
));
210 cmd
.protocol
= ATA_PROT_NODATA
;
212 if (drive
->special_flags
& IDE_SFLAG_SET_GEOMETRY
) {
213 drive
->special_flags
&= ~IDE_SFLAG_SET_GEOMETRY
;
214 ide_tf_set_specify_cmd(drive
, &cmd
.tf
);
215 } else if (drive
->special_flags
& IDE_SFLAG_RECALIBRATE
) {
216 drive
->special_flags
&= ~IDE_SFLAG_RECALIBRATE
;
217 ide_tf_set_restore_cmd(drive
, &cmd
.tf
);
218 } else if (drive
->special_flags
& IDE_SFLAG_SET_MULTMODE
) {
219 drive
->special_flags
&= ~IDE_SFLAG_SET_MULTMODE
;
220 ide_tf_set_setmult_cmd(drive
, &cmd
.tf
);
224 cmd
.valid
.out
.tf
= IDE_VALID_OUT_TF
| IDE_VALID_DEVICE
;
225 cmd
.valid
.in
.tf
= IDE_VALID_IN_TF
| IDE_VALID_DEVICE
;
226 cmd
.tf_flags
= IDE_TFLAG_CUSTOM_HANDLER
;
228 do_rw_taskfile(drive
, &cmd
);
233 void ide_map_sg(ide_drive_t
*drive
, struct ide_cmd
*cmd
)
235 ide_hwif_t
*hwif
= drive
->hwif
;
236 struct scatterlist
*sg
= hwif
->sg_table
, *last_sg
= NULL
;
237 struct request
*rq
= cmd
->rq
;
239 cmd
->sg_nents
= __blk_rq_map_sg(drive
->queue
, rq
, sg
, &last_sg
);
240 if (blk_rq_bytes(rq
) && (blk_rq_bytes(rq
) & rq
->q
->dma_pad_mask
))
242 (rq
->q
->dma_pad_mask
& ~blk_rq_bytes(rq
)) + 1;
244 EXPORT_SYMBOL_GPL(ide_map_sg
);
246 void ide_init_sg_cmd(struct ide_cmd
*cmd
, unsigned int nr_bytes
)
248 cmd
->nbytes
= cmd
->nleft
= nr_bytes
;
252 EXPORT_SYMBOL_GPL(ide_init_sg_cmd
);
255 * execute_drive_command - issue special drive command
256 * @drive: the drive to issue the command on
257 * @rq: the request structure holding the command
259 * execute_drive_cmd() issues a special drive command, usually
260 * initiated by ioctl() from the external hdparm program. The
261 * command can be a drive command, drive task or taskfile
262 * operation. Weirdly you can call it with NULL to wait for
263 * all commands to finish. Don't do this as that is due to change
266 static ide_startstop_t
execute_drive_cmd (ide_drive_t
*drive
,
269 struct ide_cmd
*cmd
= ide_req(rq
)->special
;
272 if (cmd
->protocol
== ATA_PROT_PIO
) {
273 ide_init_sg_cmd(cmd
, blk_rq_sectors(rq
) << 9);
274 ide_map_sg(drive
, cmd
);
277 return do_rw_taskfile(drive
, cmd
);
281 * NULL is actually a valid way of waiting for
282 * all current requests to be flushed from the queue.
285 printk("%s: DRIVE_CMD (null)\n", drive
->name
);
287 scsi_req(rq
)->result
= 0;
288 ide_complete_rq(drive
, BLK_STS_OK
, blk_rq_bytes(rq
));
293 static ide_startstop_t
ide_special_rq(ide_drive_t
*drive
, struct request
*rq
)
295 u8 cmd
= scsi_req(rq
)->cmd
[0];
299 case REQ_UNPARK_HEADS
:
300 return ide_do_park_unpark(drive
, rq
);
301 case REQ_DEVSET_EXEC
:
302 return ide_do_devset(drive
, rq
);
303 case REQ_DRIVE_RESET
:
304 return ide_do_reset(drive
);
311 * start_request - start of I/O and command issuing for IDE
313 * start_request() initiates handling of a new I/O request. It
314 * accepts commands and I/O (read/write) requests.
316 * FIXME: this function needs a rename
319 static ide_startstop_t
start_request (ide_drive_t
*drive
, struct request
*rq
)
321 ide_startstop_t startstop
;
324 printk("%s: start_request: current=0x%08lx\n",
325 drive
->hwif
->name
, (unsigned long) rq
);
328 /* bail early if we've exceeded max_failures */
329 if (drive
->max_failures
&& (drive
->failures
> drive
->max_failures
)) {
330 rq
->rq_flags
|= RQF_FAILED
;
334 if (drive
->prep_rq
&& !drive
->prep_rq(drive
, rq
))
337 if (ata_pm_request(rq
))
338 ide_check_pm_state(drive
, rq
);
340 drive
->hwif
->tp_ops
->dev_select(drive
);
341 if (ide_wait_stat(&startstop
, drive
, drive
->ready_stat
,
342 ATA_BUSY
| ATA_DRQ
, WAIT_READY
)) {
343 printk(KERN_ERR
"%s: drive not ready for command\n", drive
->name
);
347 if (drive
->special_flags
== 0) {
348 struct ide_driver
*drv
;
351 * We reset the drive so we need to issue a SETFEATURES.
352 * Do it _after_ do_special() restored device parameters.
354 if (drive
->current_speed
== 0xff)
355 ide_config_drive_speed(drive
, drive
->desired_speed
);
357 if (ata_taskfile_request(rq
))
358 return execute_drive_cmd(drive
, rq
);
359 else if (ata_pm_request(rq
)) {
360 struct ide_pm_state
*pm
= ide_req(rq
)->special
;
362 printk("%s: start_power_step(step: %d)\n",
363 drive
->name
, pm
->pm_step
);
365 startstop
= ide_start_power_step(drive
, rq
);
366 if (startstop
== ide_stopped
&&
367 pm
->pm_step
== IDE_PM_COMPLETED
)
368 ide_complete_pm_rq(drive
, rq
);
370 } else if (!rq
->rq_disk
&& ata_misc_request(rq
))
372 * TODO: Once all ULDs have been modified to
373 * check for specific op codes rather than
374 * blindly accepting any special request, the
375 * check for ->rq_disk above may be replaced
376 * by a more suitable mechanism or even
379 return ide_special_rq(drive
, rq
);
381 drv
= *(struct ide_driver
**)rq
->rq_disk
->private_data
;
383 return drv
->do_request(drive
, rq
, blk_rq_pos(rq
));
385 return do_special(drive
);
387 ide_kill_rq(drive
, rq
);
392 * ide_stall_queue - pause an IDE device
393 * @drive: drive to stall
394 * @timeout: time to stall for (jiffies)
396 * ide_stall_queue() can be used by a drive to give excess bandwidth back
397 * to the port by sleeping for timeout jiffies.
400 void ide_stall_queue (ide_drive_t
*drive
, unsigned long timeout
)
402 if (timeout
> WAIT_WORSTCASE
)
403 timeout
= WAIT_WORSTCASE
;
404 drive
->sleep
= timeout
+ jiffies
;
405 drive
->dev_flags
|= IDE_DFLAG_SLEEPING
;
407 EXPORT_SYMBOL(ide_stall_queue
);
409 static inline int ide_lock_port(ide_hwif_t
*hwif
)
419 static inline void ide_unlock_port(ide_hwif_t
*hwif
)
424 static inline int ide_lock_host(struct ide_host
*host
, ide_hwif_t
*hwif
)
428 if (host
->host_flags
& IDE_HFLAG_SERIALIZE
) {
429 rc
= test_and_set_bit_lock(IDE_HOST_BUSY
, &host
->host_busy
);
432 host
->get_lock(ide_intr
, hwif
);
438 static inline void ide_unlock_host(struct ide_host
*host
)
440 if (host
->host_flags
& IDE_HFLAG_SERIALIZE
) {
441 if (host
->release_lock
)
442 host
->release_lock();
443 clear_bit_unlock(IDE_HOST_BUSY
, &host
->host_busy
);
447 void ide_requeue_and_plug(ide_drive_t
*drive
, struct request
*rq
)
449 struct request_queue
*q
= drive
->queue
;
451 /* Use 3ms as that was the old plug delay */
453 blk_mq_requeue_request(rq
, false);
454 blk_mq_delay_kick_requeue_list(q
, 3);
456 blk_mq_delay_run_hw_queue(q
->queue_hw_ctx
[0], 3);
459 blk_status_t
ide_issue_rq(ide_drive_t
*drive
, struct request
*rq
,
462 ide_hwif_t
*hwif
= drive
->hwif
;
463 struct ide_host
*host
= hwif
->host
;
464 ide_startstop_t startstop
;
466 if (!blk_rq_is_passthrough(rq
) && !(rq
->rq_flags
& RQF_DONTPREP
)) {
467 rq
->rq_flags
|= RQF_DONTPREP
;
468 ide_req(rq
)->special
= NULL
;
471 /* HLD do_request() callback might sleep, make sure it's okay */
474 if (ide_lock_host(host
, hwif
))
475 return BLK_STS_DEV_RESOURCE
;
477 spin_lock_irq(&hwif
->lock
);
479 if (!ide_lock_port(hwif
)) {
480 ide_hwif_t
*prev_port
;
482 WARN_ON_ONCE(hwif
->rq
);
484 prev_port
= hwif
->host
->cur_port
;
485 if (drive
->dev_flags
& IDE_DFLAG_SLEEPING
&&
486 time_after(drive
->sleep
, jiffies
)) {
487 ide_unlock_port(hwif
);
491 if ((hwif
->host
->host_flags
& IDE_HFLAG_SERIALIZE
) &&
493 ide_drive_t
*cur_dev
=
494 prev_port
? prev_port
->cur_dev
: NULL
;
497 * set nIEN for previous port, drives in the
498 * quirk list may not like intr setups/cleanups
501 (cur_dev
->dev_flags
& IDE_DFLAG_NIEN_QUIRK
) == 0)
502 prev_port
->tp_ops
->write_devctl(prev_port
,
506 hwif
->host
->cur_port
= hwif
;
508 hwif
->cur_dev
= drive
;
509 drive
->dev_flags
&= ~(IDE_DFLAG_SLEEPING
| IDE_DFLAG_PARKED
);
512 * Sanity: don't accept a request that isn't a PM request
513 * if we are currently power managed. This is very important as
514 * blk_stop_queue() doesn't prevent the blk_fetch_request()
515 * above to return us whatever is in the queue. Since we call
516 * ide_do_request() ourselves, we end up taking requests while
517 * the queue is blocked...
519 if ((drive
->dev_flags
& IDE_DFLAG_BLOCKED
) &&
520 ata_pm_request(rq
) == 0 &&
521 (rq
->rq_flags
& RQF_PM
) == 0) {
522 /* there should be no pending command at this point */
523 ide_unlock_port(hwif
);
527 scsi_req(rq
)->resid_len
= blk_rq_bytes(rq
);
530 spin_unlock_irq(&hwif
->lock
);
531 startstop
= start_request(drive
, rq
);
532 spin_lock_irq(&hwif
->lock
);
534 if (startstop
== ide_stopped
) {
539 ide_unlock_port(hwif
);
545 list_add(&rq
->queuelist
, &drive
->rq_list
);
546 spin_unlock_irq(&hwif
->lock
);
547 ide_unlock_host(host
);
549 ide_requeue_and_plug(drive
, rq
);
554 spin_unlock_irq(&hwif
->lock
);
556 ide_unlock_host(host
);
561 * Issue a new request to a device.
563 blk_status_t
ide_queue_rq(struct blk_mq_hw_ctx
*hctx
,
564 const struct blk_mq_queue_data
*bd
)
566 ide_drive_t
*drive
= hctx
->queue
->queuedata
;
567 ide_hwif_t
*hwif
= drive
->hwif
;
569 spin_lock_irq(&hwif
->lock
);
570 if (drive
->sense_rq_active
) {
571 spin_unlock_irq(&hwif
->lock
);
572 return BLK_STS_DEV_RESOURCE
;
574 spin_unlock_irq(&hwif
->lock
);
576 blk_mq_start_request(bd
->rq
);
577 return ide_issue_rq(drive
, bd
->rq
, false);
580 static int drive_is_ready(ide_drive_t
*drive
)
582 ide_hwif_t
*hwif
= drive
->hwif
;
585 if (drive
->waiting_for_dma
)
586 return hwif
->dma_ops
->dma_test_irq(drive
);
588 if (hwif
->io_ports
.ctl_addr
&&
589 (hwif
->host_flags
& IDE_HFLAG_BROKEN_ALTSTATUS
) == 0)
590 stat
= hwif
->tp_ops
->read_altstatus(hwif
);
592 /* Note: this may clear a pending IRQ!! */
593 stat
= hwif
->tp_ops
->read_status(hwif
);
596 /* drive busy: definitely not interrupting */
599 /* drive ready: *might* be interrupting */
604 * ide_timer_expiry - handle lack of an IDE interrupt
605 * @data: timer callback magic (hwif)
607 * An IDE command has timed out before the expected drive return
608 * occurred. At this point we attempt to clean up the current
609 * mess. If the current handler includes an expiry handler then
610 * we invoke the expiry handler, and providing it is happy the
611 * work is done. If that fails we apply generic recovery rules
612 * invoking the handler and checking the drive DMA status. We
613 * have an excessively incestuous relationship with the DMA
614 * logic that wants cleaning up.
617 void ide_timer_expiry (struct timer_list
*t
)
619 ide_hwif_t
*hwif
= from_timer(hwif
, t
, timer
);
621 ide_handler_t
*handler
;
625 struct request
*rq_in_flight
;
627 spin_lock_irqsave(&hwif
->lock
, flags
);
629 handler
= hwif
->handler
;
631 if (handler
== NULL
|| hwif
->req_gen
!= hwif
->req_gen_timer
) {
633 * Either a marginal timeout occurred
634 * (got the interrupt just as timer expired),
635 * or we were "sleeping" to give other devices a chance.
636 * Either way, we don't really want to complain about anything.
639 ide_expiry_t
*expiry
= hwif
->expiry
;
640 ide_startstop_t startstop
= ide_stopped
;
642 drive
= hwif
->cur_dev
;
645 wait
= expiry(drive
);
646 if (wait
> 0) { /* continue */
648 hwif
->timer
.expires
= jiffies
+ wait
;
649 hwif
->req_gen_timer
= hwif
->req_gen
;
650 add_timer(&hwif
->timer
);
651 spin_unlock_irqrestore(&hwif
->lock
, flags
);
655 hwif
->handler
= NULL
;
658 * We need to simulate a real interrupt when invoking
659 * the handler() function, which means we need to
660 * globally mask the specific IRQ:
662 spin_unlock(&hwif
->lock
);
663 /* disable_irq_nosync ?? */
664 disable_irq(hwif
->irq
);
667 startstop
= handler(drive
);
668 } else if (drive_is_ready(drive
)) {
669 if (drive
->waiting_for_dma
)
670 hwif
->dma_ops
->dma_lost_irq(drive
);
671 if (hwif
->port_ops
&& hwif
->port_ops
->clear_irq
)
672 hwif
->port_ops
->clear_irq(drive
);
674 printk(KERN_WARNING
"%s: lost interrupt\n",
676 startstop
= handler(drive
);
678 if (drive
->waiting_for_dma
)
679 startstop
= ide_dma_timeout_retry(drive
, wait
);
681 startstop
= ide_error(drive
, "irq timeout",
682 hwif
->tp_ops
->read_status(hwif
));
684 /* Disable interrupts again, `handler' might have enabled it */
685 spin_lock_irq(&hwif
->lock
);
686 enable_irq(hwif
->irq
);
687 if (startstop
== ide_stopped
&& hwif
->polling
== 0) {
688 rq_in_flight
= hwif
->rq
;
690 ide_unlock_port(hwif
);
694 spin_unlock_irqrestore(&hwif
->lock
, flags
);
697 ide_unlock_host(hwif
->host
);
698 ide_requeue_and_plug(drive
, rq_in_flight
);
703 * unexpected_intr - handle an unexpected IDE interrupt
704 * @irq: interrupt line
705 * @hwif: port being processed
707 * There's nothing really useful we can do with an unexpected interrupt,
708 * other than reading the status register (to clear it), and logging it.
709 * There should be no way that an irq can happen before we're ready for it,
710 * so we needn't worry much about losing an "important" interrupt here.
712 * On laptops (and "green" PCs), an unexpected interrupt occurs whenever
713 * the drive enters "idle", "standby", or "sleep" mode, so if the status
714 * looks "good", we just ignore the interrupt completely.
716 * This routine assumes __cli() is in effect when called.
718 * If an unexpected interrupt happens on irq15 while we are handling irq14
719 * and if the two interfaces are "serialized" (CMD640), then it looks like
720 * we could screw up by interfering with a new request being set up for
723 * In reality, this is a non-issue. The new command is not sent unless
724 * the drive is ready to accept one, in which case we know the drive is
725 * not trying to interrupt us. And ide_set_handler() is always invoked
726 * before completing the issuance of any new drive command, so we will not
727 * be accidentally invoked as a result of any valid command completion
731 static void unexpected_intr(int irq
, ide_hwif_t
*hwif
)
733 u8 stat
= hwif
->tp_ops
->read_status(hwif
);
735 if (!OK_STAT(stat
, ATA_DRDY
, BAD_STAT
)) {
736 /* Try to not flood the console with msgs */
737 static unsigned long last_msgtime
, count
;
740 if (time_after(jiffies
, last_msgtime
+ HZ
)) {
741 last_msgtime
= jiffies
;
742 printk(KERN_ERR
"%s: unexpected interrupt, "
743 "status=0x%02x, count=%ld\n",
744 hwif
->name
, stat
, count
);
750 * ide_intr - default IDE interrupt handler
751 * @irq: interrupt number
753 * @regs: unused weirdness from the kernel irq layer
755 * This is the default IRQ handler for the IDE layer. You should
756 * not need to override it. If you do be aware it is subtle in
759 * hwif is the interface in the group currently performing
760 * a command. hwif->cur_dev is the drive and hwif->handler is
761 * the IRQ handler to call. As we issue a command the handlers
762 * step through multiple states, reassigning the handler to the
763 * next step in the process. Unlike a smart SCSI controller IDE
764 * expects the main processor to sequence the various transfer
765 * stages. We also manage a poll timer to catch up with most
766 * timeout situations. There are still a few where the handlers
767 * don't ever decide to give up.
769 * The handler eventually returns ide_stopped to indicate the
770 * request completed. At this point we issue the next request
771 * on the port and the process begins again.
774 irqreturn_t
ide_intr (int irq
, void *dev_id
)
776 ide_hwif_t
*hwif
= (ide_hwif_t
*)dev_id
;
777 struct ide_host
*host
= hwif
->host
;
779 ide_handler_t
*handler
;
781 ide_startstop_t startstop
;
782 irqreturn_t irq_ret
= IRQ_NONE
;
784 struct request
*rq_in_flight
;
786 if (host
->host_flags
& IDE_HFLAG_SERIALIZE
) {
787 if (hwif
!= host
->cur_port
)
791 spin_lock_irqsave(&hwif
->lock
, flags
);
793 if (hwif
->port_ops
&& hwif
->port_ops
->test_irq
&&
794 hwif
->port_ops
->test_irq(hwif
) == 0)
797 handler
= hwif
->handler
;
799 if (handler
== NULL
|| hwif
->polling
) {
801 * Not expecting an interrupt from this drive.
802 * That means this could be:
803 * (1) an interrupt from another PCI device
804 * sharing the same PCI INT# as us.
805 * or (2) a drive just entered sleep or standby mode,
806 * and is interrupting to let us know.
807 * or (3) a spurious interrupt of unknown origin.
809 * For PCI, we cannot tell the difference,
810 * so in that case we just ignore it and hope it goes away.
812 if ((host
->irq_flags
& IRQF_SHARED
) == 0) {
814 * Probably not a shared PCI interrupt,
815 * so we can safely try to do something about it:
817 unexpected_intr(irq
, hwif
);
820 * Whack the status register, just in case
821 * we have a leftover pending IRQ.
823 (void)hwif
->tp_ops
->read_status(hwif
);
828 drive
= hwif
->cur_dev
;
830 if (!drive_is_ready(drive
))
832 * This happens regularly when we share a PCI IRQ with
833 * another device. Unfortunately, it can also happen
834 * with some buggy drives that trigger the IRQ before
835 * their status register is up to date. Hopefully we have
836 * enough advance overhead that the latter isn't a problem.
840 hwif
->handler
= NULL
;
843 del_timer(&hwif
->timer
);
844 spin_unlock(&hwif
->lock
);
846 if (hwif
->port_ops
&& hwif
->port_ops
->clear_irq
)
847 hwif
->port_ops
->clear_irq(drive
);
849 if (drive
->dev_flags
& IDE_DFLAG_UNMASK
)
850 local_irq_enable_in_hardirq();
852 /* service this interrupt, may set handler for next interrupt */
853 startstop
= handler(drive
);
855 spin_lock_irq(&hwif
->lock
);
857 * Note that handler() may have set things up for another
858 * interrupt to occur soon, but it cannot happen until
859 * we exit from this routine, because it will be the
860 * same irq as is currently being serviced here, and Linux
861 * won't allow another of the same (on any CPU) until we return.
863 if (startstop
== ide_stopped
&& hwif
->polling
== 0) {
864 BUG_ON(hwif
->handler
);
865 rq_in_flight
= hwif
->rq
;
867 ide_unlock_port(hwif
);
870 irq_ret
= IRQ_HANDLED
;
872 spin_unlock_irqrestore(&hwif
->lock
, flags
);
875 ide_unlock_host(hwif
->host
);
876 ide_requeue_and_plug(drive
, rq_in_flight
);
881 EXPORT_SYMBOL_GPL(ide_intr
);
883 void ide_pad_transfer(ide_drive_t
*drive
, int write
, int len
)
885 ide_hwif_t
*hwif
= drive
->hwif
;
890 hwif
->tp_ops
->output_data(drive
, NULL
, buf
, min(4, len
));
892 hwif
->tp_ops
->input_data(drive
, NULL
, buf
, min(4, len
));
896 EXPORT_SYMBOL_GPL(ide_pad_transfer
);
898 void ide_insert_request_head(ide_drive_t
*drive
, struct request
*rq
)
900 drive
->sense_rq_active
= true;
901 list_add_tail(&rq
->queuelist
, &drive
->rq_list
);
902 kblockd_schedule_work(&drive
->rq_work
);
904 EXPORT_SYMBOL_GPL(ide_insert_request_head
);