1 // SPDX-License-Identifier: GPL-2.0
3 * This file is part of STM32 ADC driver
5 * Copyright (C) 2016, STMicroelectronics - All Rights Reserved
6 * Author: Fabrice Gasnier <fabrice.gasnier@st.com>.
10 #include <linux/delay.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/dmaengine.h>
13 #include <linux/iio/iio.h>
14 #include <linux/iio/buffer.h>
15 #include <linux/iio/timer/stm32-lptim-trigger.h>
16 #include <linux/iio/timer/stm32-timer-trigger.h>
17 #include <linux/iio/trigger.h>
18 #include <linux/iio/trigger_consumer.h>
19 #include <linux/iio/triggered_buffer.h>
20 #include <linux/interrupt.h>
22 #include <linux/iopoll.h>
23 #include <linux/module.h>
24 #include <linux/platform_device.h>
25 #include <linux/pm_runtime.h>
27 #include <linux/of_device.h>
29 #include "stm32-adc-core.h"
31 /* Number of linear calibration shadow registers / LINCALRDYW control bits */
32 #define STM32H7_LINCALFACT_NUM 6
34 /* BOOST bit must be set on STM32H7 when ADC clock is above 20MHz */
35 #define STM32H7_BOOST_CLKRATE 20000000UL
37 #define STM32_ADC_CH_MAX 20 /* max number of channels */
38 #define STM32_ADC_CH_SZ 10 /* max channel name size */
39 #define STM32_ADC_MAX_SQ 16 /* SQ1..SQ16 */
40 #define STM32_ADC_MAX_SMP 7 /* SMPx range is [0..7] */
41 #define STM32_ADC_TIMEOUT_US 100000
42 #define STM32_ADC_TIMEOUT (msecs_to_jiffies(STM32_ADC_TIMEOUT_US / 1000))
43 #define STM32_ADC_HW_STOP_DELAY_MS 100
45 #define STM32_DMA_BUFFER_SIZE PAGE_SIZE
47 /* External trigger enable */
48 enum stm32_adc_exten
{
50 STM32_EXTEN_HWTRIG_RISING_EDGE
,
51 STM32_EXTEN_HWTRIG_FALLING_EDGE
,
52 STM32_EXTEN_HWTRIG_BOTH_EDGES
,
55 /* extsel - trigger mux selection value */
56 enum stm32_adc_extsel
{
81 * struct stm32_adc_trig_info - ADC trigger info
82 * @name: name of the trigger, corresponding to its source
83 * @extsel: trigger selection
85 struct stm32_adc_trig_info
{
87 enum stm32_adc_extsel extsel
;
91 * struct stm32_adc_calib - optional adc calibration data
92 * @calfact_s: Calibration offset for single ended channels
93 * @calfact_d: Calibration offset in differential
94 * @lincalfact: Linearity calibration factor
95 * @calibrated: Indicates calibration status
97 struct stm32_adc_calib
{
100 u32 lincalfact
[STM32H7_LINCALFACT_NUM
];
105 * struct stm32_adc_regs - stm32 ADC misc registers & bitfield desc
106 * @reg: register offset
107 * @mask: bitfield mask
110 struct stm32_adc_regs
{
117 * struct stm32_adc_regspec - stm32 registers definition
118 * @dr: data register offset
119 * @ier_eoc: interrupt enable register & eocie bitfield
120 * @ier_ovr: interrupt enable register & overrun bitfield
121 * @isr_eoc: interrupt status register & eoc bitfield
122 * @isr_ovr: interrupt status register & overrun bitfield
123 * @sqr: reference to sequence registers array
124 * @exten: trigger control register & bitfield
125 * @extsel: trigger selection register & bitfield
126 * @res: resolution selection register & bitfield
127 * @smpr: smpr1 & smpr2 registers offset array
128 * @smp_bits: smpr1 & smpr2 index and bitfields
130 struct stm32_adc_regspec
{
132 const struct stm32_adc_regs ier_eoc
;
133 const struct stm32_adc_regs ier_ovr
;
134 const struct stm32_adc_regs isr_eoc
;
135 const struct stm32_adc_regs isr_ovr
;
136 const struct stm32_adc_regs
*sqr
;
137 const struct stm32_adc_regs exten
;
138 const struct stm32_adc_regs extsel
;
139 const struct stm32_adc_regs res
;
141 const struct stm32_adc_regs
*smp_bits
;
147 * struct stm32_adc_cfg - stm32 compatible configuration data
148 * @regs: registers descriptions
149 * @adc_info: per instance input channels definitions
150 * @trigs: external trigger sources
151 * @clk_required: clock is required
152 * @has_vregready: vregready status flag presence
153 * @prepare: optional prepare routine (power-up, enable)
154 * @start_conv: routine to start conversions
155 * @stop_conv: routine to stop conversions
156 * @unprepare: optional unprepare routine (disable, power-down)
157 * @irq_clear: routine to clear irqs
158 * @smp_cycles: programmable sampling time (ADC clock cycles)
160 struct stm32_adc_cfg
{
161 const struct stm32_adc_regspec
*regs
;
162 const struct stm32_adc_info
*adc_info
;
163 struct stm32_adc_trig_info
*trigs
;
166 int (*prepare
)(struct iio_dev
*);
167 void (*start_conv
)(struct iio_dev
*, bool dma
);
168 void (*stop_conv
)(struct iio_dev
*);
169 void (*unprepare
)(struct iio_dev
*);
170 void (*irq_clear
)(struct iio_dev
*indio_dev
, u32 msk
);
171 const unsigned int *smp_cycles
;
175 * struct stm32_adc - private data of each ADC IIO instance
176 * @common: reference to ADC block common data
177 * @offset: ADC instance register offset in ADC block
178 * @cfg: compatible configuration data
179 * @completion: end of single conversion completion
180 * @buffer: data buffer
181 * @clk: clock for this adc instance
182 * @irq: interrupt for this adc instance
184 * @bufi: data buffer index
185 * @num_conv: expected number of scan conversions
186 * @res: data resolution (e.g. RES bitfield value)
187 * @trigger_polarity: external trigger polarity (e.g. exten)
188 * @dma_chan: dma channel
189 * @rx_buf: dma rx buffer cpu address
190 * @rx_dma_buf: dma rx buffer bus address
191 * @rx_buf_sz: dma rx buffer size
192 * @difsel: bitmask to set single-ended/differential channel
193 * @pcsel: bitmask to preselect channels on some devices
194 * @smpr_val: sampling time settings (e.g. smpr1 / smpr2)
195 * @cal: optional calibration data on some devices
196 * @chan_name: channel name array
199 struct stm32_adc_common
*common
;
201 const struct stm32_adc_cfg
*cfg
;
202 struct completion completion
;
203 u16 buffer
[STM32_ADC_MAX_SQ
];
206 spinlock_t lock
; /* interrupt lock */
208 unsigned int num_conv
;
210 u32 trigger_polarity
;
211 struct dma_chan
*dma_chan
;
213 dma_addr_t rx_dma_buf
;
214 unsigned int rx_buf_sz
;
218 struct stm32_adc_calib cal
;
219 char chan_name
[STM32_ADC_CH_MAX
][STM32_ADC_CH_SZ
];
222 struct stm32_adc_diff_channel
{
228 * struct stm32_adc_info - stm32 ADC, per instance config data
229 * @max_channels: Number of channels
230 * @resolutions: available resolutions
231 * @num_res: number of available resolutions
233 struct stm32_adc_info
{
235 const unsigned int *resolutions
;
236 const unsigned int num_res
;
239 static const unsigned int stm32f4_adc_resolutions
[] = {
240 /* sorted values so the index matches RES[1:0] in STM32F4_ADC_CR1 */
244 /* stm32f4 can have up to 16 channels */
245 static const struct stm32_adc_info stm32f4_adc_info
= {
247 .resolutions
= stm32f4_adc_resolutions
,
248 .num_res
= ARRAY_SIZE(stm32f4_adc_resolutions
),
251 static const unsigned int stm32h7_adc_resolutions
[] = {
252 /* sorted values so the index matches RES[2:0] in STM32H7_ADC_CFGR */
256 /* stm32h7 can have up to 20 channels */
257 static const struct stm32_adc_info stm32h7_adc_info
= {
258 .max_channels
= STM32_ADC_CH_MAX
,
259 .resolutions
= stm32h7_adc_resolutions
,
260 .num_res
= ARRAY_SIZE(stm32h7_adc_resolutions
),
264 * stm32f4_sq - describe regular sequence registers
265 * - L: sequence len (register & bit field)
266 * - SQ1..SQ16: sequence entries (register & bit field)
268 static const struct stm32_adc_regs stm32f4_sq
[STM32_ADC_MAX_SQ
+ 1] = {
269 /* L: len bit field description to be kept as first element */
270 { STM32F4_ADC_SQR1
, GENMASK(23, 20), 20 },
271 /* SQ1..SQ16 registers & bit fields (reg, mask, shift) */
272 { STM32F4_ADC_SQR3
, GENMASK(4, 0), 0 },
273 { STM32F4_ADC_SQR3
, GENMASK(9, 5), 5 },
274 { STM32F4_ADC_SQR3
, GENMASK(14, 10), 10 },
275 { STM32F4_ADC_SQR3
, GENMASK(19, 15), 15 },
276 { STM32F4_ADC_SQR3
, GENMASK(24, 20), 20 },
277 { STM32F4_ADC_SQR3
, GENMASK(29, 25), 25 },
278 { STM32F4_ADC_SQR2
, GENMASK(4, 0), 0 },
279 { STM32F4_ADC_SQR2
, GENMASK(9, 5), 5 },
280 { STM32F4_ADC_SQR2
, GENMASK(14, 10), 10 },
281 { STM32F4_ADC_SQR2
, GENMASK(19, 15), 15 },
282 { STM32F4_ADC_SQR2
, GENMASK(24, 20), 20 },
283 { STM32F4_ADC_SQR2
, GENMASK(29, 25), 25 },
284 { STM32F4_ADC_SQR1
, GENMASK(4, 0), 0 },
285 { STM32F4_ADC_SQR1
, GENMASK(9, 5), 5 },
286 { STM32F4_ADC_SQR1
, GENMASK(14, 10), 10 },
287 { STM32F4_ADC_SQR1
, GENMASK(19, 15), 15 },
290 /* STM32F4 external trigger sources for all instances */
291 static struct stm32_adc_trig_info stm32f4_adc_trigs
[] = {
292 { TIM1_CH1
, STM32_EXT0
},
293 { TIM1_CH2
, STM32_EXT1
},
294 { TIM1_CH3
, STM32_EXT2
},
295 { TIM2_CH2
, STM32_EXT3
},
296 { TIM2_CH3
, STM32_EXT4
},
297 { TIM2_CH4
, STM32_EXT5
},
298 { TIM2_TRGO
, STM32_EXT6
},
299 { TIM3_CH1
, STM32_EXT7
},
300 { TIM3_TRGO
, STM32_EXT8
},
301 { TIM4_CH4
, STM32_EXT9
},
302 { TIM5_CH1
, STM32_EXT10
},
303 { TIM5_CH2
, STM32_EXT11
},
304 { TIM5_CH3
, STM32_EXT12
},
305 { TIM8_CH1
, STM32_EXT13
},
306 { TIM8_TRGO
, STM32_EXT14
},
311 * stm32f4_smp_bits[] - describe sampling time register index & bit fields
312 * Sorted so it can be indexed by channel number.
314 static const struct stm32_adc_regs stm32f4_smp_bits
[] = {
315 /* STM32F4_ADC_SMPR2: smpr[] index, mask, shift for SMP0 to SMP9 */
316 { 1, GENMASK(2, 0), 0 },
317 { 1, GENMASK(5, 3), 3 },
318 { 1, GENMASK(8, 6), 6 },
319 { 1, GENMASK(11, 9), 9 },
320 { 1, GENMASK(14, 12), 12 },
321 { 1, GENMASK(17, 15), 15 },
322 { 1, GENMASK(20, 18), 18 },
323 { 1, GENMASK(23, 21), 21 },
324 { 1, GENMASK(26, 24), 24 },
325 { 1, GENMASK(29, 27), 27 },
326 /* STM32F4_ADC_SMPR1, smpr[] index, mask, shift for SMP10 to SMP18 */
327 { 0, GENMASK(2, 0), 0 },
328 { 0, GENMASK(5, 3), 3 },
329 { 0, GENMASK(8, 6), 6 },
330 { 0, GENMASK(11, 9), 9 },
331 { 0, GENMASK(14, 12), 12 },
332 { 0, GENMASK(17, 15), 15 },
333 { 0, GENMASK(20, 18), 18 },
334 { 0, GENMASK(23, 21), 21 },
335 { 0, GENMASK(26, 24), 24 },
338 /* STM32F4 programmable sampling time (ADC clock cycles) */
339 static const unsigned int stm32f4_adc_smp_cycles
[STM32_ADC_MAX_SMP
+ 1] = {
340 3, 15, 28, 56, 84, 112, 144, 480,
343 static const struct stm32_adc_regspec stm32f4_adc_regspec
= {
344 .dr
= STM32F4_ADC_DR
,
345 .ier_eoc
= { STM32F4_ADC_CR1
, STM32F4_EOCIE
},
346 .ier_ovr
= { STM32F4_ADC_CR1
, STM32F4_OVRIE
},
347 .isr_eoc
= { STM32F4_ADC_SR
, STM32F4_EOC
},
348 .isr_ovr
= { STM32F4_ADC_SR
, STM32F4_OVR
},
350 .exten
= { STM32F4_ADC_CR2
, STM32F4_EXTEN_MASK
, STM32F4_EXTEN_SHIFT
},
351 .extsel
= { STM32F4_ADC_CR2
, STM32F4_EXTSEL_MASK
,
352 STM32F4_EXTSEL_SHIFT
},
353 .res
= { STM32F4_ADC_CR1
, STM32F4_RES_MASK
, STM32F4_RES_SHIFT
},
354 .smpr
= { STM32F4_ADC_SMPR1
, STM32F4_ADC_SMPR2
},
355 .smp_bits
= stm32f4_smp_bits
,
358 static const struct stm32_adc_regs stm32h7_sq
[STM32_ADC_MAX_SQ
+ 1] = {
359 /* L: len bit field description to be kept as first element */
360 { STM32H7_ADC_SQR1
, GENMASK(3, 0), 0 },
361 /* SQ1..SQ16 registers & bit fields (reg, mask, shift) */
362 { STM32H7_ADC_SQR1
, GENMASK(10, 6), 6 },
363 { STM32H7_ADC_SQR1
, GENMASK(16, 12), 12 },
364 { STM32H7_ADC_SQR1
, GENMASK(22, 18), 18 },
365 { STM32H7_ADC_SQR1
, GENMASK(28, 24), 24 },
366 { STM32H7_ADC_SQR2
, GENMASK(4, 0), 0 },
367 { STM32H7_ADC_SQR2
, GENMASK(10, 6), 6 },
368 { STM32H7_ADC_SQR2
, GENMASK(16, 12), 12 },
369 { STM32H7_ADC_SQR2
, GENMASK(22, 18), 18 },
370 { STM32H7_ADC_SQR2
, GENMASK(28, 24), 24 },
371 { STM32H7_ADC_SQR3
, GENMASK(4, 0), 0 },
372 { STM32H7_ADC_SQR3
, GENMASK(10, 6), 6 },
373 { STM32H7_ADC_SQR3
, GENMASK(16, 12), 12 },
374 { STM32H7_ADC_SQR3
, GENMASK(22, 18), 18 },
375 { STM32H7_ADC_SQR3
, GENMASK(28, 24), 24 },
376 { STM32H7_ADC_SQR4
, GENMASK(4, 0), 0 },
377 { STM32H7_ADC_SQR4
, GENMASK(10, 6), 6 },
380 /* STM32H7 external trigger sources for all instances */
381 static struct stm32_adc_trig_info stm32h7_adc_trigs
[] = {
382 { TIM1_CH1
, STM32_EXT0
},
383 { TIM1_CH2
, STM32_EXT1
},
384 { TIM1_CH3
, STM32_EXT2
},
385 { TIM2_CH2
, STM32_EXT3
},
386 { TIM3_TRGO
, STM32_EXT4
},
387 { TIM4_CH4
, STM32_EXT5
},
388 { TIM8_TRGO
, STM32_EXT7
},
389 { TIM8_TRGO2
, STM32_EXT8
},
390 { TIM1_TRGO
, STM32_EXT9
},
391 { TIM1_TRGO2
, STM32_EXT10
},
392 { TIM2_TRGO
, STM32_EXT11
},
393 { TIM4_TRGO
, STM32_EXT12
},
394 { TIM6_TRGO
, STM32_EXT13
},
395 { TIM15_TRGO
, STM32_EXT14
},
396 { TIM3_CH4
, STM32_EXT15
},
397 { LPTIM1_OUT
, STM32_EXT18
},
398 { LPTIM2_OUT
, STM32_EXT19
},
399 { LPTIM3_OUT
, STM32_EXT20
},
404 * stm32h7_smp_bits - describe sampling time register index & bit fields
405 * Sorted so it can be indexed by channel number.
407 static const struct stm32_adc_regs stm32h7_smp_bits
[] = {
408 /* STM32H7_ADC_SMPR1, smpr[] index, mask, shift for SMP0 to SMP9 */
409 { 0, GENMASK(2, 0), 0 },
410 { 0, GENMASK(5, 3), 3 },
411 { 0, GENMASK(8, 6), 6 },
412 { 0, GENMASK(11, 9), 9 },
413 { 0, GENMASK(14, 12), 12 },
414 { 0, GENMASK(17, 15), 15 },
415 { 0, GENMASK(20, 18), 18 },
416 { 0, GENMASK(23, 21), 21 },
417 { 0, GENMASK(26, 24), 24 },
418 { 0, GENMASK(29, 27), 27 },
419 /* STM32H7_ADC_SMPR2, smpr[] index, mask, shift for SMP10 to SMP19 */
420 { 1, GENMASK(2, 0), 0 },
421 { 1, GENMASK(5, 3), 3 },
422 { 1, GENMASK(8, 6), 6 },
423 { 1, GENMASK(11, 9), 9 },
424 { 1, GENMASK(14, 12), 12 },
425 { 1, GENMASK(17, 15), 15 },
426 { 1, GENMASK(20, 18), 18 },
427 { 1, GENMASK(23, 21), 21 },
428 { 1, GENMASK(26, 24), 24 },
429 { 1, GENMASK(29, 27), 27 },
432 /* STM32H7 programmable sampling time (ADC clock cycles, rounded down) */
433 static const unsigned int stm32h7_adc_smp_cycles
[STM32_ADC_MAX_SMP
+ 1] = {
434 1, 2, 8, 16, 32, 64, 387, 810,
437 static const struct stm32_adc_regspec stm32h7_adc_regspec
= {
438 .dr
= STM32H7_ADC_DR
,
439 .ier_eoc
= { STM32H7_ADC_IER
, STM32H7_EOCIE
},
440 .ier_ovr
= { STM32H7_ADC_IER
, STM32H7_OVRIE
},
441 .isr_eoc
= { STM32H7_ADC_ISR
, STM32H7_EOC
},
442 .isr_ovr
= { STM32H7_ADC_ISR
, STM32H7_OVR
},
444 .exten
= { STM32H7_ADC_CFGR
, STM32H7_EXTEN_MASK
, STM32H7_EXTEN_SHIFT
},
445 .extsel
= { STM32H7_ADC_CFGR
, STM32H7_EXTSEL_MASK
,
446 STM32H7_EXTSEL_SHIFT
},
447 .res
= { STM32H7_ADC_CFGR
, STM32H7_RES_MASK
, STM32H7_RES_SHIFT
},
448 .smpr
= { STM32H7_ADC_SMPR1
, STM32H7_ADC_SMPR2
},
449 .smp_bits
= stm32h7_smp_bits
,
453 * STM32 ADC registers access routines
454 * @adc: stm32 adc instance
455 * @reg: reg offset in adc instance
457 * Note: All instances share same base, with 0x0, 0x100 or 0x200 offset resp.
458 * for adc1, adc2 and adc3.
460 static u32
stm32_adc_readl(struct stm32_adc
*adc
, u32 reg
)
462 return readl_relaxed(adc
->common
->base
+ adc
->offset
+ reg
);
465 #define stm32_adc_readl_addr(addr) stm32_adc_readl(adc, addr)
467 #define stm32_adc_readl_poll_timeout(reg, val, cond, sleep_us, timeout_us) \
468 readx_poll_timeout(stm32_adc_readl_addr, reg, val, \
469 cond, sleep_us, timeout_us)
471 static u16
stm32_adc_readw(struct stm32_adc
*adc
, u32 reg
)
473 return readw_relaxed(adc
->common
->base
+ adc
->offset
+ reg
);
476 static void stm32_adc_writel(struct stm32_adc
*adc
, u32 reg
, u32 val
)
478 writel_relaxed(val
, adc
->common
->base
+ adc
->offset
+ reg
);
481 static void stm32_adc_set_bits(struct stm32_adc
*adc
, u32 reg
, u32 bits
)
485 spin_lock_irqsave(&adc
->lock
, flags
);
486 stm32_adc_writel(adc
, reg
, stm32_adc_readl(adc
, reg
) | bits
);
487 spin_unlock_irqrestore(&adc
->lock
, flags
);
490 static void stm32_adc_clr_bits(struct stm32_adc
*adc
, u32 reg
, u32 bits
)
494 spin_lock_irqsave(&adc
->lock
, flags
);
495 stm32_adc_writel(adc
, reg
, stm32_adc_readl(adc
, reg
) & ~bits
);
496 spin_unlock_irqrestore(&adc
->lock
, flags
);
500 * stm32_adc_conv_irq_enable() - Enable end of conversion interrupt
501 * @adc: stm32 adc instance
503 static void stm32_adc_conv_irq_enable(struct stm32_adc
*adc
)
505 stm32_adc_set_bits(adc
, adc
->cfg
->regs
->ier_eoc
.reg
,
506 adc
->cfg
->regs
->ier_eoc
.mask
);
510 * stm32_adc_conv_irq_disable() - Disable end of conversion interrupt
511 * @adc: stm32 adc instance
513 static void stm32_adc_conv_irq_disable(struct stm32_adc
*adc
)
515 stm32_adc_clr_bits(adc
, adc
->cfg
->regs
->ier_eoc
.reg
,
516 adc
->cfg
->regs
->ier_eoc
.mask
);
519 static void stm32_adc_ovr_irq_enable(struct stm32_adc
*adc
)
521 stm32_adc_set_bits(adc
, adc
->cfg
->regs
->ier_ovr
.reg
,
522 adc
->cfg
->regs
->ier_ovr
.mask
);
525 static void stm32_adc_ovr_irq_disable(struct stm32_adc
*adc
)
527 stm32_adc_clr_bits(adc
, adc
->cfg
->regs
->ier_ovr
.reg
,
528 adc
->cfg
->regs
->ier_ovr
.mask
);
531 static void stm32_adc_set_res(struct stm32_adc
*adc
)
533 const struct stm32_adc_regs
*res
= &adc
->cfg
->regs
->res
;
536 val
= stm32_adc_readl(adc
, res
->reg
);
537 val
= (val
& ~res
->mask
) | (adc
->res
<< res
->shift
);
538 stm32_adc_writel(adc
, res
->reg
, val
);
541 static int stm32_adc_hw_stop(struct device
*dev
)
543 struct iio_dev
*indio_dev
= dev_get_drvdata(dev
);
544 struct stm32_adc
*adc
= iio_priv(indio_dev
);
546 if (adc
->cfg
->unprepare
)
547 adc
->cfg
->unprepare(indio_dev
);
550 clk_disable_unprepare(adc
->clk
);
555 static int stm32_adc_hw_start(struct device
*dev
)
557 struct iio_dev
*indio_dev
= dev_get_drvdata(dev
);
558 struct stm32_adc
*adc
= iio_priv(indio_dev
);
562 ret
= clk_prepare_enable(adc
->clk
);
567 stm32_adc_set_res(adc
);
569 if (adc
->cfg
->prepare
) {
570 ret
= adc
->cfg
->prepare(indio_dev
);
579 clk_disable_unprepare(adc
->clk
);
585 * stm32f4_adc_start_conv() - Start conversions for regular channels.
586 * @indio_dev: IIO device instance
587 * @dma: use dma to transfer conversion result
589 * Start conversions for regular channels.
590 * Also take care of normal or DMA mode. Circular DMA may be used for regular
591 * conversions, in IIO buffer modes. Otherwise, use ADC interrupt with direct
592 * DR read instead (e.g. read_raw, or triggered buffer mode without DMA).
594 static void stm32f4_adc_start_conv(struct iio_dev
*indio_dev
, bool dma
)
596 struct stm32_adc
*adc
= iio_priv(indio_dev
);
598 stm32_adc_set_bits(adc
, STM32F4_ADC_CR1
, STM32F4_SCAN
);
601 stm32_adc_set_bits(adc
, STM32F4_ADC_CR2
,
602 STM32F4_DMA
| STM32F4_DDS
);
604 stm32_adc_set_bits(adc
, STM32F4_ADC_CR2
, STM32F4_EOCS
| STM32F4_ADON
);
606 /* Wait for Power-up time (tSTAB from datasheet) */
609 /* Software start ? (e.g. trigger detection disabled ?) */
610 if (!(stm32_adc_readl(adc
, STM32F4_ADC_CR2
) & STM32F4_EXTEN_MASK
))
611 stm32_adc_set_bits(adc
, STM32F4_ADC_CR2
, STM32F4_SWSTART
);
614 static void stm32f4_adc_stop_conv(struct iio_dev
*indio_dev
)
616 struct stm32_adc
*adc
= iio_priv(indio_dev
);
618 stm32_adc_clr_bits(adc
, STM32F4_ADC_CR2
, STM32F4_EXTEN_MASK
);
619 stm32_adc_clr_bits(adc
, STM32F4_ADC_SR
, STM32F4_STRT
);
621 stm32_adc_clr_bits(adc
, STM32F4_ADC_CR1
, STM32F4_SCAN
);
622 stm32_adc_clr_bits(adc
, STM32F4_ADC_CR2
,
623 STM32F4_ADON
| STM32F4_DMA
| STM32F4_DDS
);
626 static void stm32f4_adc_irq_clear(struct iio_dev
*indio_dev
, u32 msk
)
628 struct stm32_adc
*adc
= iio_priv(indio_dev
);
630 stm32_adc_clr_bits(adc
, adc
->cfg
->regs
->isr_eoc
.reg
, msk
);
633 static void stm32h7_adc_start_conv(struct iio_dev
*indio_dev
, bool dma
)
635 struct stm32_adc
*adc
= iio_priv(indio_dev
);
636 enum stm32h7_adc_dmngt dmngt
;
641 dmngt
= STM32H7_DMNGT_DMA_CIRC
;
643 dmngt
= STM32H7_DMNGT_DR_ONLY
;
645 spin_lock_irqsave(&adc
->lock
, flags
);
646 val
= stm32_adc_readl(adc
, STM32H7_ADC_CFGR
);
647 val
= (val
& ~STM32H7_DMNGT_MASK
) | (dmngt
<< STM32H7_DMNGT_SHIFT
);
648 stm32_adc_writel(adc
, STM32H7_ADC_CFGR
, val
);
649 spin_unlock_irqrestore(&adc
->lock
, flags
);
651 stm32_adc_set_bits(adc
, STM32H7_ADC_CR
, STM32H7_ADSTART
);
654 static void stm32h7_adc_stop_conv(struct iio_dev
*indio_dev
)
656 struct stm32_adc
*adc
= iio_priv(indio_dev
);
660 stm32_adc_set_bits(adc
, STM32H7_ADC_CR
, STM32H7_ADSTP
);
662 ret
= stm32_adc_readl_poll_timeout(STM32H7_ADC_CR
, val
,
663 !(val
& (STM32H7_ADSTART
)),
664 100, STM32_ADC_TIMEOUT_US
);
666 dev_warn(&indio_dev
->dev
, "stop failed\n");
668 stm32_adc_clr_bits(adc
, STM32H7_ADC_CFGR
, STM32H7_DMNGT_MASK
);
671 static void stm32h7_adc_irq_clear(struct iio_dev
*indio_dev
, u32 msk
)
673 struct stm32_adc
*adc
= iio_priv(indio_dev
);
674 /* On STM32H7 IRQs are cleared by writing 1 into ISR register */
675 stm32_adc_set_bits(adc
, adc
->cfg
->regs
->isr_eoc
.reg
, msk
);
678 static int stm32h7_adc_exit_pwr_down(struct iio_dev
*indio_dev
)
680 struct stm32_adc
*adc
= iio_priv(indio_dev
);
684 /* Exit deep power down, then enable ADC voltage regulator */
685 stm32_adc_clr_bits(adc
, STM32H7_ADC_CR
, STM32H7_DEEPPWD
);
686 stm32_adc_set_bits(adc
, STM32H7_ADC_CR
, STM32H7_ADVREGEN
);
688 if (adc
->common
->rate
> STM32H7_BOOST_CLKRATE
)
689 stm32_adc_set_bits(adc
, STM32H7_ADC_CR
, STM32H7_BOOST
);
691 /* Wait for startup time */
692 if (!adc
->cfg
->has_vregready
) {
693 usleep_range(10, 20);
697 ret
= stm32_adc_readl_poll_timeout(STM32H7_ADC_ISR
, val
,
698 val
& STM32MP1_VREGREADY
, 100,
699 STM32_ADC_TIMEOUT_US
);
701 stm32_adc_set_bits(adc
, STM32H7_ADC_CR
, STM32H7_DEEPPWD
);
702 dev_err(&indio_dev
->dev
, "Failed to exit power down\n");
708 static void stm32h7_adc_enter_pwr_down(struct stm32_adc
*adc
)
710 stm32_adc_clr_bits(adc
, STM32H7_ADC_CR
, STM32H7_BOOST
);
712 /* Setting DEEPPWD disables ADC vreg and clears ADVREGEN */
713 stm32_adc_set_bits(adc
, STM32H7_ADC_CR
, STM32H7_DEEPPWD
);
716 static int stm32h7_adc_enable(struct iio_dev
*indio_dev
)
718 struct stm32_adc
*adc
= iio_priv(indio_dev
);
722 stm32_adc_set_bits(adc
, STM32H7_ADC_CR
, STM32H7_ADEN
);
724 /* Poll for ADRDY to be set (after adc startup time) */
725 ret
= stm32_adc_readl_poll_timeout(STM32H7_ADC_ISR
, val
,
727 100, STM32_ADC_TIMEOUT_US
);
729 stm32_adc_set_bits(adc
, STM32H7_ADC_CR
, STM32H7_ADDIS
);
730 dev_err(&indio_dev
->dev
, "Failed to enable ADC\n");
732 /* Clear ADRDY by writing one */
733 stm32_adc_set_bits(adc
, STM32H7_ADC_ISR
, STM32H7_ADRDY
);
739 static void stm32h7_adc_disable(struct iio_dev
*indio_dev
)
741 struct stm32_adc
*adc
= iio_priv(indio_dev
);
745 /* Disable ADC and wait until it's effectively disabled */
746 stm32_adc_set_bits(adc
, STM32H7_ADC_CR
, STM32H7_ADDIS
);
747 ret
= stm32_adc_readl_poll_timeout(STM32H7_ADC_CR
, val
,
748 !(val
& STM32H7_ADEN
), 100,
749 STM32_ADC_TIMEOUT_US
);
751 dev_warn(&indio_dev
->dev
, "Failed to disable\n");
755 * stm32h7_adc_read_selfcalib() - read calibration shadow regs, save result
756 * @indio_dev: IIO device instance
757 * Note: Must be called once ADC is enabled, so LINCALRDYW[1..6] are writable
759 static int stm32h7_adc_read_selfcalib(struct iio_dev
*indio_dev
)
761 struct stm32_adc
*adc
= iio_priv(indio_dev
);
763 u32 lincalrdyw_mask
, val
;
765 /* Read linearity calibration */
766 lincalrdyw_mask
= STM32H7_LINCALRDYW6
;
767 for (i
= STM32H7_LINCALFACT_NUM
- 1; i
>= 0; i
--) {
768 /* Clear STM32H7_LINCALRDYW[6..1]: transfer calib to CALFACT2 */
769 stm32_adc_clr_bits(adc
, STM32H7_ADC_CR
, lincalrdyw_mask
);
771 /* Poll: wait calib data to be ready in CALFACT2 register */
772 ret
= stm32_adc_readl_poll_timeout(STM32H7_ADC_CR
, val
,
773 !(val
& lincalrdyw_mask
),
774 100, STM32_ADC_TIMEOUT_US
);
776 dev_err(&indio_dev
->dev
, "Failed to read calfact\n");
780 val
= stm32_adc_readl(adc
, STM32H7_ADC_CALFACT2
);
781 adc
->cal
.lincalfact
[i
] = (val
& STM32H7_LINCALFACT_MASK
);
782 adc
->cal
.lincalfact
[i
] >>= STM32H7_LINCALFACT_SHIFT
;
784 lincalrdyw_mask
>>= 1;
787 /* Read offset calibration */
788 val
= stm32_adc_readl(adc
, STM32H7_ADC_CALFACT
);
789 adc
->cal
.calfact_s
= (val
& STM32H7_CALFACT_S_MASK
);
790 adc
->cal
.calfact_s
>>= STM32H7_CALFACT_S_SHIFT
;
791 adc
->cal
.calfact_d
= (val
& STM32H7_CALFACT_D_MASK
);
792 adc
->cal
.calfact_d
>>= STM32H7_CALFACT_D_SHIFT
;
793 adc
->cal
.calibrated
= true;
799 * stm32h7_adc_restore_selfcalib() - Restore saved self-calibration result
800 * @indio_dev: IIO device instance
801 * Note: ADC must be enabled, with no on-going conversions.
803 static int stm32h7_adc_restore_selfcalib(struct iio_dev
*indio_dev
)
805 struct stm32_adc
*adc
= iio_priv(indio_dev
);
807 u32 lincalrdyw_mask
, val
;
809 val
= (adc
->cal
.calfact_s
<< STM32H7_CALFACT_S_SHIFT
) |
810 (adc
->cal
.calfact_d
<< STM32H7_CALFACT_D_SHIFT
);
811 stm32_adc_writel(adc
, STM32H7_ADC_CALFACT
, val
);
813 lincalrdyw_mask
= STM32H7_LINCALRDYW6
;
814 for (i
= STM32H7_LINCALFACT_NUM
- 1; i
>= 0; i
--) {
816 * Write saved calibration data to shadow registers:
817 * Write CALFACT2, and set LINCALRDYW[6..1] bit to trigger
818 * data write. Then poll to wait for complete transfer.
820 val
= adc
->cal
.lincalfact
[i
] << STM32H7_LINCALFACT_SHIFT
;
821 stm32_adc_writel(adc
, STM32H7_ADC_CALFACT2
, val
);
822 stm32_adc_set_bits(adc
, STM32H7_ADC_CR
, lincalrdyw_mask
);
823 ret
= stm32_adc_readl_poll_timeout(STM32H7_ADC_CR
, val
,
824 val
& lincalrdyw_mask
,
825 100, STM32_ADC_TIMEOUT_US
);
827 dev_err(&indio_dev
->dev
, "Failed to write calfact\n");
832 * Read back calibration data, has two effects:
833 * - It ensures bits LINCALRDYW[6..1] are kept cleared
834 * for next time calibration needs to be restored.
835 * - BTW, bit clear triggers a read, then check data has been
838 stm32_adc_clr_bits(adc
, STM32H7_ADC_CR
, lincalrdyw_mask
);
839 ret
= stm32_adc_readl_poll_timeout(STM32H7_ADC_CR
, val
,
840 !(val
& lincalrdyw_mask
),
841 100, STM32_ADC_TIMEOUT_US
);
843 dev_err(&indio_dev
->dev
, "Failed to read calfact\n");
846 val
= stm32_adc_readl(adc
, STM32H7_ADC_CALFACT2
);
847 if (val
!= adc
->cal
.lincalfact
[i
] << STM32H7_LINCALFACT_SHIFT
) {
848 dev_err(&indio_dev
->dev
, "calfact not consistent\n");
852 lincalrdyw_mask
>>= 1;
859 * Fixed timeout value for ADC calibration.
861 * - low clock frequency
862 * - maximum prescalers
863 * Calibration requires:
864 * - 131,072 ADC clock cycle for the linear calibration
865 * - 20 ADC clock cycle for the offset calibration
867 * Set to 100ms for now
869 #define STM32H7_ADC_CALIB_TIMEOUT_US 100000
872 * stm32h7_adc_selfcalib() - Procedure to calibrate ADC
873 * @indio_dev: IIO device instance
874 * Note: Must be called once ADC is out of power down.
876 static int stm32h7_adc_selfcalib(struct iio_dev
*indio_dev
)
878 struct stm32_adc
*adc
= iio_priv(indio_dev
);
882 if (adc
->cal
.calibrated
)
886 * Select calibration mode:
887 * - Offset calibration for single ended inputs
888 * - No linearity calibration (do it later, before reading it)
890 stm32_adc_clr_bits(adc
, STM32H7_ADC_CR
, STM32H7_ADCALDIF
);
891 stm32_adc_clr_bits(adc
, STM32H7_ADC_CR
, STM32H7_ADCALLIN
);
893 /* Start calibration, then wait for completion */
894 stm32_adc_set_bits(adc
, STM32H7_ADC_CR
, STM32H7_ADCAL
);
895 ret
= stm32_adc_readl_poll_timeout(STM32H7_ADC_CR
, val
,
896 !(val
& STM32H7_ADCAL
), 100,
897 STM32H7_ADC_CALIB_TIMEOUT_US
);
899 dev_err(&indio_dev
->dev
, "calibration failed\n");
904 * Select calibration mode, then start calibration:
905 * - Offset calibration for differential input
906 * - Linearity calibration (needs to be done only once for single/diff)
907 * will run simultaneously with offset calibration.
909 stm32_adc_set_bits(adc
, STM32H7_ADC_CR
,
910 STM32H7_ADCALDIF
| STM32H7_ADCALLIN
);
911 stm32_adc_set_bits(adc
, STM32H7_ADC_CR
, STM32H7_ADCAL
);
912 ret
= stm32_adc_readl_poll_timeout(STM32H7_ADC_CR
, val
,
913 !(val
& STM32H7_ADCAL
), 100,
914 STM32H7_ADC_CALIB_TIMEOUT_US
);
916 dev_err(&indio_dev
->dev
, "calibration failed\n");
921 stm32_adc_clr_bits(adc
, STM32H7_ADC_CR
,
922 STM32H7_ADCALDIF
| STM32H7_ADCALLIN
);
928 * stm32h7_adc_prepare() - Leave power down mode to enable ADC.
929 * @indio_dev: IIO device instance
930 * Leave power down mode.
931 * Configure channels as single ended or differential before enabling ADC.
933 * Restore calibration data.
934 * Pre-select channels that may be used in PCSEL (required by input MUX / IO):
935 * - Only one input is selected for single ended (e.g. 'vinp')
936 * - Two inputs are selected for differential channels (e.g. 'vinp' & 'vinn')
938 static int stm32h7_adc_prepare(struct iio_dev
*indio_dev
)
940 struct stm32_adc
*adc
= iio_priv(indio_dev
);
943 ret
= stm32h7_adc_exit_pwr_down(indio_dev
);
947 ret
= stm32h7_adc_selfcalib(indio_dev
);
952 stm32_adc_writel(adc
, STM32H7_ADC_DIFSEL
, adc
->difsel
);
954 ret
= stm32h7_adc_enable(indio_dev
);
958 /* Either restore or read calibration result for future reference */
960 ret
= stm32h7_adc_restore_selfcalib(indio_dev
);
962 ret
= stm32h7_adc_read_selfcalib(indio_dev
);
966 stm32_adc_writel(adc
, STM32H7_ADC_PCSEL
, adc
->pcsel
);
971 stm32h7_adc_disable(indio_dev
);
973 stm32h7_adc_enter_pwr_down(adc
);
978 static void stm32h7_adc_unprepare(struct iio_dev
*indio_dev
)
980 struct stm32_adc
*adc
= iio_priv(indio_dev
);
982 stm32h7_adc_disable(indio_dev
);
983 stm32h7_adc_enter_pwr_down(adc
);
987 * stm32_adc_conf_scan_seq() - Build regular channels scan sequence
988 * @indio_dev: IIO device
989 * @scan_mask: channels to be converted
991 * Conversion sequence :
992 * Apply sampling time settings for all channels.
993 * Configure ADC scan sequence based on selected channels in scan_mask.
994 * Add channels to SQR registers, from scan_mask LSB to MSB, then
995 * program sequence len.
997 static int stm32_adc_conf_scan_seq(struct iio_dev
*indio_dev
,
998 const unsigned long *scan_mask
)
1000 struct stm32_adc
*adc
= iio_priv(indio_dev
);
1001 const struct stm32_adc_regs
*sqr
= adc
->cfg
->regs
->sqr
;
1002 const struct iio_chan_spec
*chan
;
1006 /* Apply sampling time settings */
1007 stm32_adc_writel(adc
, adc
->cfg
->regs
->smpr
[0], adc
->smpr_val
[0]);
1008 stm32_adc_writel(adc
, adc
->cfg
->regs
->smpr
[1], adc
->smpr_val
[1]);
1010 for_each_set_bit(bit
, scan_mask
, indio_dev
->masklength
) {
1011 chan
= indio_dev
->channels
+ bit
;
1013 * Assign one channel per SQ entry in regular
1014 * sequence, starting with SQ1.
1017 if (i
> STM32_ADC_MAX_SQ
)
1020 dev_dbg(&indio_dev
->dev
, "%s chan %d to SQ%d\n",
1021 __func__
, chan
->channel
, i
);
1023 val
= stm32_adc_readl(adc
, sqr
[i
].reg
);
1024 val
&= ~sqr
[i
].mask
;
1025 val
|= chan
->channel
<< sqr
[i
].shift
;
1026 stm32_adc_writel(adc
, sqr
[i
].reg
, val
);
1033 val
= stm32_adc_readl(adc
, sqr
[0].reg
);
1034 val
&= ~sqr
[0].mask
;
1035 val
|= ((i
- 1) << sqr
[0].shift
);
1036 stm32_adc_writel(adc
, sqr
[0].reg
, val
);
1042 * stm32_adc_get_trig_extsel() - Get external trigger selection
1043 * @indio_dev: IIO device structure
1046 * Returns trigger extsel value, if trig matches, -EINVAL otherwise.
1048 static int stm32_adc_get_trig_extsel(struct iio_dev
*indio_dev
,
1049 struct iio_trigger
*trig
)
1051 struct stm32_adc
*adc
= iio_priv(indio_dev
);
1054 /* lookup triggers registered by stm32 timer trigger driver */
1055 for (i
= 0; adc
->cfg
->trigs
[i
].name
; i
++) {
1057 * Checking both stm32 timer trigger type and trig name
1058 * should be safe against arbitrary trigger names.
1060 if ((is_stm32_timer_trigger(trig
) ||
1061 is_stm32_lptim_trigger(trig
)) &&
1062 !strcmp(adc
->cfg
->trigs
[i
].name
, trig
->name
)) {
1063 return adc
->cfg
->trigs
[i
].extsel
;
1071 * stm32_adc_set_trig() - Set a regular trigger
1072 * @indio_dev: IIO device
1073 * @trig: IIO trigger
1075 * Set trigger source/polarity (e.g. SW, or HW with polarity) :
1076 * - if HW trigger disabled (e.g. trig == NULL, conversion launched by sw)
1077 * - if HW trigger enabled, set source & polarity
1079 static int stm32_adc_set_trig(struct iio_dev
*indio_dev
,
1080 struct iio_trigger
*trig
)
1082 struct stm32_adc
*adc
= iio_priv(indio_dev
);
1083 u32 val
, extsel
= 0, exten
= STM32_EXTEN_SWTRIG
;
1084 unsigned long flags
;
1088 ret
= stm32_adc_get_trig_extsel(indio_dev
, trig
);
1092 /* set trigger source and polarity (default to rising edge) */
1094 exten
= adc
->trigger_polarity
+ STM32_EXTEN_HWTRIG_RISING_EDGE
;
1097 spin_lock_irqsave(&adc
->lock
, flags
);
1098 val
= stm32_adc_readl(adc
, adc
->cfg
->regs
->exten
.reg
);
1099 val
&= ~(adc
->cfg
->regs
->exten
.mask
| adc
->cfg
->regs
->extsel
.mask
);
1100 val
|= exten
<< adc
->cfg
->regs
->exten
.shift
;
1101 val
|= extsel
<< adc
->cfg
->regs
->extsel
.shift
;
1102 stm32_adc_writel(adc
, adc
->cfg
->regs
->exten
.reg
, val
);
1103 spin_unlock_irqrestore(&adc
->lock
, flags
);
1108 static int stm32_adc_set_trig_pol(struct iio_dev
*indio_dev
,
1109 const struct iio_chan_spec
*chan
,
1112 struct stm32_adc
*adc
= iio_priv(indio_dev
);
1114 adc
->trigger_polarity
= type
;
1119 static int stm32_adc_get_trig_pol(struct iio_dev
*indio_dev
,
1120 const struct iio_chan_spec
*chan
)
1122 struct stm32_adc
*adc
= iio_priv(indio_dev
);
1124 return adc
->trigger_polarity
;
1127 static const char * const stm32_trig_pol_items
[] = {
1128 "rising-edge", "falling-edge", "both-edges",
1131 static const struct iio_enum stm32_adc_trig_pol
= {
1132 .items
= stm32_trig_pol_items
,
1133 .num_items
= ARRAY_SIZE(stm32_trig_pol_items
),
1134 .get
= stm32_adc_get_trig_pol
,
1135 .set
= stm32_adc_set_trig_pol
,
1139 * stm32_adc_single_conv() - Performs a single conversion
1140 * @indio_dev: IIO device
1141 * @chan: IIO channel
1142 * @res: conversion result
1144 * The function performs a single conversion on a given channel:
1145 * - Apply sampling time settings
1146 * - Program sequencer with one channel (e.g. in SQ1 with len = 1)
1148 * - Start conversion, then wait for interrupt completion.
1150 static int stm32_adc_single_conv(struct iio_dev
*indio_dev
,
1151 const struct iio_chan_spec
*chan
,
1154 struct stm32_adc
*adc
= iio_priv(indio_dev
);
1155 struct device
*dev
= indio_dev
->dev
.parent
;
1156 const struct stm32_adc_regspec
*regs
= adc
->cfg
->regs
;
1161 reinit_completion(&adc
->completion
);
1165 ret
= pm_runtime_get_sync(dev
);
1167 pm_runtime_put_noidle(dev
);
1171 /* Apply sampling time settings */
1172 stm32_adc_writel(adc
, regs
->smpr
[0], adc
->smpr_val
[0]);
1173 stm32_adc_writel(adc
, regs
->smpr
[1], adc
->smpr_val
[1]);
1175 /* Program chan number in regular sequence (SQ1) */
1176 val
= stm32_adc_readl(adc
, regs
->sqr
[1].reg
);
1177 val
&= ~regs
->sqr
[1].mask
;
1178 val
|= chan
->channel
<< regs
->sqr
[1].shift
;
1179 stm32_adc_writel(adc
, regs
->sqr
[1].reg
, val
);
1181 /* Set regular sequence len (0 for 1 conversion) */
1182 stm32_adc_clr_bits(adc
, regs
->sqr
[0].reg
, regs
->sqr
[0].mask
);
1184 /* Trigger detection disabled (conversion can be launched in SW) */
1185 stm32_adc_clr_bits(adc
, regs
->exten
.reg
, regs
->exten
.mask
);
1187 stm32_adc_conv_irq_enable(adc
);
1189 adc
->cfg
->start_conv(indio_dev
, false);
1191 timeout
= wait_for_completion_interruptible_timeout(
1192 &adc
->completion
, STM32_ADC_TIMEOUT
);
1195 } else if (timeout
< 0) {
1198 *res
= adc
->buffer
[0];
1202 adc
->cfg
->stop_conv(indio_dev
);
1204 stm32_adc_conv_irq_disable(adc
);
1206 pm_runtime_mark_last_busy(dev
);
1207 pm_runtime_put_autosuspend(dev
);
1212 static int stm32_adc_read_raw(struct iio_dev
*indio_dev
,
1213 struct iio_chan_spec
const *chan
,
1214 int *val
, int *val2
, long mask
)
1216 struct stm32_adc
*adc
= iio_priv(indio_dev
);
1220 case IIO_CHAN_INFO_RAW
:
1221 ret
= iio_device_claim_direct_mode(indio_dev
);
1224 if (chan
->type
== IIO_VOLTAGE
)
1225 ret
= stm32_adc_single_conv(indio_dev
, chan
, val
);
1228 iio_device_release_direct_mode(indio_dev
);
1231 case IIO_CHAN_INFO_SCALE
:
1232 if (chan
->differential
) {
1233 *val
= adc
->common
->vref_mv
* 2;
1234 *val2
= chan
->scan_type
.realbits
;
1236 *val
= adc
->common
->vref_mv
;
1237 *val2
= chan
->scan_type
.realbits
;
1239 return IIO_VAL_FRACTIONAL_LOG2
;
1241 case IIO_CHAN_INFO_OFFSET
:
1242 if (chan
->differential
)
1243 /* ADC_full_scale / 2 */
1244 *val
= -((1 << chan
->scan_type
.realbits
) / 2);
1254 static void stm32_adc_irq_clear(struct iio_dev
*indio_dev
, u32 msk
)
1256 struct stm32_adc
*adc
= iio_priv(indio_dev
);
1258 adc
->cfg
->irq_clear(indio_dev
, msk
);
1261 static irqreturn_t
stm32_adc_threaded_isr(int irq
, void *data
)
1263 struct iio_dev
*indio_dev
= data
;
1264 struct stm32_adc
*adc
= iio_priv(indio_dev
);
1265 const struct stm32_adc_regspec
*regs
= adc
->cfg
->regs
;
1266 u32 status
= stm32_adc_readl(adc
, regs
->isr_eoc
.reg
);
1267 u32 mask
= stm32_adc_readl(adc
, regs
->ier_eoc
.reg
);
1269 /* Check ovr status right now, as ovr mask should be already disabled */
1270 if (status
& regs
->isr_ovr
.mask
) {
1272 * Clear ovr bit to avoid subsequent calls to IRQ handler.
1273 * This requires to stop ADC first. OVR bit state in ISR,
1274 * is propaged to CSR register by hardware.
1276 adc
->cfg
->stop_conv(indio_dev
);
1277 stm32_adc_irq_clear(indio_dev
, regs
->isr_ovr
.mask
);
1278 dev_err(&indio_dev
->dev
, "Overrun, stopping: restart needed\n");
1282 if (!(status
& mask
))
1283 dev_err_ratelimited(&indio_dev
->dev
,
1284 "Unexpected IRQ: IER=0x%08x, ISR=0x%08x\n",
1290 static irqreturn_t
stm32_adc_isr(int irq
, void *data
)
1292 struct iio_dev
*indio_dev
= data
;
1293 struct stm32_adc
*adc
= iio_priv(indio_dev
);
1294 const struct stm32_adc_regspec
*regs
= adc
->cfg
->regs
;
1295 u32 status
= stm32_adc_readl(adc
, regs
->isr_eoc
.reg
);
1296 u32 mask
= stm32_adc_readl(adc
, regs
->ier_eoc
.reg
);
1298 if (!(status
& mask
))
1299 return IRQ_WAKE_THREAD
;
1301 if (status
& regs
->isr_ovr
.mask
) {
1303 * Overrun occurred on regular conversions: data for wrong
1304 * channel may be read. Unconditionally disable interrupts
1305 * to stop processing data and print error message.
1306 * Restarting the capture can be done by disabling, then
1307 * re-enabling it (e.g. write 0, then 1 to buffer/enable).
1309 stm32_adc_ovr_irq_disable(adc
);
1310 stm32_adc_conv_irq_disable(adc
);
1311 return IRQ_WAKE_THREAD
;
1314 if (status
& regs
->isr_eoc
.mask
) {
1315 /* Reading DR also clears EOC status flag */
1316 adc
->buffer
[adc
->bufi
] = stm32_adc_readw(adc
, regs
->dr
);
1317 if (iio_buffer_enabled(indio_dev
)) {
1319 if (adc
->bufi
>= adc
->num_conv
) {
1320 stm32_adc_conv_irq_disable(adc
);
1321 iio_trigger_poll(indio_dev
->trig
);
1324 complete(&adc
->completion
);
1333 * stm32_adc_validate_trigger() - validate trigger for stm32 adc
1334 * @indio_dev: IIO device
1335 * @trig: new trigger
1337 * Returns: 0 if trig matches one of the triggers registered by stm32 adc
1338 * driver, -EINVAL otherwise.
1340 static int stm32_adc_validate_trigger(struct iio_dev
*indio_dev
,
1341 struct iio_trigger
*trig
)
1343 return stm32_adc_get_trig_extsel(indio_dev
, trig
) < 0 ? -EINVAL
: 0;
1346 static int stm32_adc_set_watermark(struct iio_dev
*indio_dev
, unsigned int val
)
1348 struct stm32_adc
*adc
= iio_priv(indio_dev
);
1349 unsigned int watermark
= STM32_DMA_BUFFER_SIZE
/ 2;
1350 unsigned int rx_buf_sz
= STM32_DMA_BUFFER_SIZE
;
1353 * dma cyclic transfers are used, buffer is split into two periods.
1355 * - always one buffer (period) dma is working on
1356 * - one buffer (period) driver can push data.
1358 watermark
= min(watermark
, val
* (unsigned)(sizeof(u16
)));
1359 adc
->rx_buf_sz
= min(rx_buf_sz
, watermark
* 2 * adc
->num_conv
);
1364 static int stm32_adc_update_scan_mode(struct iio_dev
*indio_dev
,
1365 const unsigned long *scan_mask
)
1367 struct stm32_adc
*adc
= iio_priv(indio_dev
);
1368 struct device
*dev
= indio_dev
->dev
.parent
;
1371 ret
= pm_runtime_get_sync(dev
);
1373 pm_runtime_put_noidle(dev
);
1377 adc
->num_conv
= bitmap_weight(scan_mask
, indio_dev
->masklength
);
1379 ret
= stm32_adc_conf_scan_seq(indio_dev
, scan_mask
);
1380 pm_runtime_mark_last_busy(dev
);
1381 pm_runtime_put_autosuspend(dev
);
1386 static int stm32_adc_of_xlate(struct iio_dev
*indio_dev
,
1387 const struct of_phandle_args
*iiospec
)
1391 for (i
= 0; i
< indio_dev
->num_channels
; i
++)
1392 if (indio_dev
->channels
[i
].channel
== iiospec
->args
[0])
1399 * stm32_adc_debugfs_reg_access - read or write register value
1400 * @indio_dev: IIO device structure
1401 * @reg: register offset
1402 * @writeval: value to write
1403 * @readval: value to read
1405 * To read a value from an ADC register:
1406 * echo [ADC reg offset] > direct_reg_access
1407 * cat direct_reg_access
1409 * To write a value in a ADC register:
1410 * echo [ADC_reg_offset] [value] > direct_reg_access
1412 static int stm32_adc_debugfs_reg_access(struct iio_dev
*indio_dev
,
1413 unsigned reg
, unsigned writeval
,
1416 struct stm32_adc
*adc
= iio_priv(indio_dev
);
1417 struct device
*dev
= indio_dev
->dev
.parent
;
1420 ret
= pm_runtime_get_sync(dev
);
1422 pm_runtime_put_noidle(dev
);
1427 stm32_adc_writel(adc
, reg
, writeval
);
1429 *readval
= stm32_adc_readl(adc
, reg
);
1431 pm_runtime_mark_last_busy(dev
);
1432 pm_runtime_put_autosuspend(dev
);
1437 static const struct iio_info stm32_adc_iio_info
= {
1438 .read_raw
= stm32_adc_read_raw
,
1439 .validate_trigger
= stm32_adc_validate_trigger
,
1440 .hwfifo_set_watermark
= stm32_adc_set_watermark
,
1441 .update_scan_mode
= stm32_adc_update_scan_mode
,
1442 .debugfs_reg_access
= stm32_adc_debugfs_reg_access
,
1443 .of_xlate
= stm32_adc_of_xlate
,
1446 static unsigned int stm32_adc_dma_residue(struct stm32_adc
*adc
)
1448 struct dma_tx_state state
;
1449 enum dma_status status
;
1451 status
= dmaengine_tx_status(adc
->dma_chan
,
1452 adc
->dma_chan
->cookie
,
1454 if (status
== DMA_IN_PROGRESS
) {
1455 /* Residue is size in bytes from end of buffer */
1456 unsigned int i
= adc
->rx_buf_sz
- state
.residue
;
1459 /* Return available bytes */
1461 size
= i
- adc
->bufi
;
1463 size
= adc
->rx_buf_sz
+ i
- adc
->bufi
;
1471 static void stm32_adc_dma_buffer_done(void *data
)
1473 struct iio_dev
*indio_dev
= data
;
1474 struct stm32_adc
*adc
= iio_priv(indio_dev
);
1475 int residue
= stm32_adc_dma_residue(adc
);
1478 * In DMA mode the trigger services of IIO are not used
1479 * (e.g. no call to iio_trigger_poll).
1480 * Calling irq handler associated to the hardware trigger is not
1481 * relevant as the conversions have already been done. Data
1482 * transfers are performed directly in DMA callback instead.
1483 * This implementation avoids to call trigger irq handler that
1484 * may sleep, in an atomic context (DMA irq handler context).
1486 dev_dbg(&indio_dev
->dev
, "%s bufi=%d\n", __func__
, adc
->bufi
);
1488 while (residue
>= indio_dev
->scan_bytes
) {
1489 u16
*buffer
= (u16
*)&adc
->rx_buf
[adc
->bufi
];
1491 iio_push_to_buffers(indio_dev
, buffer
);
1493 residue
-= indio_dev
->scan_bytes
;
1494 adc
->bufi
+= indio_dev
->scan_bytes
;
1495 if (adc
->bufi
>= adc
->rx_buf_sz
)
1500 static int stm32_adc_dma_start(struct iio_dev
*indio_dev
)
1502 struct stm32_adc
*adc
= iio_priv(indio_dev
);
1503 struct dma_async_tx_descriptor
*desc
;
1504 dma_cookie_t cookie
;
1510 dev_dbg(&indio_dev
->dev
, "%s size=%d watermark=%d\n", __func__
,
1511 adc
->rx_buf_sz
, adc
->rx_buf_sz
/ 2);
1513 /* Prepare a DMA cyclic transaction */
1514 desc
= dmaengine_prep_dma_cyclic(adc
->dma_chan
,
1516 adc
->rx_buf_sz
, adc
->rx_buf_sz
/ 2,
1518 DMA_PREP_INTERRUPT
);
1522 desc
->callback
= stm32_adc_dma_buffer_done
;
1523 desc
->callback_param
= indio_dev
;
1525 cookie
= dmaengine_submit(desc
);
1526 ret
= dma_submit_error(cookie
);
1528 dmaengine_terminate_sync(adc
->dma_chan
);
1532 /* Issue pending DMA requests */
1533 dma_async_issue_pending(adc
->dma_chan
);
1538 static int stm32_adc_buffer_postenable(struct iio_dev
*indio_dev
)
1540 struct stm32_adc
*adc
= iio_priv(indio_dev
);
1541 struct device
*dev
= indio_dev
->dev
.parent
;
1544 ret
= pm_runtime_get_sync(dev
);
1546 pm_runtime_put_noidle(dev
);
1550 ret
= stm32_adc_set_trig(indio_dev
, indio_dev
->trig
);
1552 dev_err(&indio_dev
->dev
, "Can't set trigger\n");
1556 ret
= stm32_adc_dma_start(indio_dev
);
1558 dev_err(&indio_dev
->dev
, "Can't start dma\n");
1562 /* Reset adc buffer index */
1565 stm32_adc_ovr_irq_enable(adc
);
1568 stm32_adc_conv_irq_enable(adc
);
1570 adc
->cfg
->start_conv(indio_dev
, !!adc
->dma_chan
);
1575 stm32_adc_set_trig(indio_dev
, NULL
);
1577 pm_runtime_mark_last_busy(dev
);
1578 pm_runtime_put_autosuspend(dev
);
1583 static int stm32_adc_buffer_predisable(struct iio_dev
*indio_dev
)
1585 struct stm32_adc
*adc
= iio_priv(indio_dev
);
1586 struct device
*dev
= indio_dev
->dev
.parent
;
1588 adc
->cfg
->stop_conv(indio_dev
);
1590 stm32_adc_conv_irq_disable(adc
);
1592 stm32_adc_ovr_irq_disable(adc
);
1595 dmaengine_terminate_sync(adc
->dma_chan
);
1597 if (stm32_adc_set_trig(indio_dev
, NULL
))
1598 dev_err(&indio_dev
->dev
, "Can't clear trigger\n");
1600 pm_runtime_mark_last_busy(dev
);
1601 pm_runtime_put_autosuspend(dev
);
1606 static const struct iio_buffer_setup_ops stm32_adc_buffer_setup_ops
= {
1607 .postenable
= &stm32_adc_buffer_postenable
,
1608 .predisable
= &stm32_adc_buffer_predisable
,
1611 static irqreturn_t
stm32_adc_trigger_handler(int irq
, void *p
)
1613 struct iio_poll_func
*pf
= p
;
1614 struct iio_dev
*indio_dev
= pf
->indio_dev
;
1615 struct stm32_adc
*adc
= iio_priv(indio_dev
);
1617 dev_dbg(&indio_dev
->dev
, "%s bufi=%d\n", __func__
, adc
->bufi
);
1619 /* reset buffer index */
1621 iio_push_to_buffers_with_timestamp(indio_dev
, adc
->buffer
,
1623 iio_trigger_notify_done(indio_dev
->trig
);
1625 /* re-enable eoc irq */
1626 stm32_adc_conv_irq_enable(adc
);
1631 static const struct iio_chan_spec_ext_info stm32_adc_ext_info
[] = {
1632 IIO_ENUM("trigger_polarity", IIO_SHARED_BY_ALL
, &stm32_adc_trig_pol
),
1634 .name
= "trigger_polarity_available",
1635 .shared
= IIO_SHARED_BY_ALL
,
1636 .read
= iio_enum_available_read
,
1637 .private = (uintptr_t)&stm32_adc_trig_pol
,
1642 static int stm32_adc_of_get_resolution(struct iio_dev
*indio_dev
)
1644 struct device_node
*node
= indio_dev
->dev
.of_node
;
1645 struct stm32_adc
*adc
= iio_priv(indio_dev
);
1649 if (of_property_read_u32(node
, "assigned-resolution-bits", &res
))
1650 res
= adc
->cfg
->adc_info
->resolutions
[0];
1652 for (i
= 0; i
< adc
->cfg
->adc_info
->num_res
; i
++)
1653 if (res
== adc
->cfg
->adc_info
->resolutions
[i
])
1655 if (i
>= adc
->cfg
->adc_info
->num_res
) {
1656 dev_err(&indio_dev
->dev
, "Bad resolution: %u bits\n", res
);
1660 dev_dbg(&indio_dev
->dev
, "Using %u bits resolution\n", res
);
1666 static void stm32_adc_smpr_init(struct stm32_adc
*adc
, int channel
, u32 smp_ns
)
1668 const struct stm32_adc_regs
*smpr
= &adc
->cfg
->regs
->smp_bits
[channel
];
1669 u32 period_ns
, shift
= smpr
->shift
, mask
= smpr
->mask
;
1670 unsigned int smp
, r
= smpr
->reg
;
1672 /* Determine sampling time (ADC clock cycles) */
1673 period_ns
= NSEC_PER_SEC
/ adc
->common
->rate
;
1674 for (smp
= 0; smp
<= STM32_ADC_MAX_SMP
; smp
++)
1675 if ((period_ns
* adc
->cfg
->smp_cycles
[smp
]) >= smp_ns
)
1677 if (smp
> STM32_ADC_MAX_SMP
)
1678 smp
= STM32_ADC_MAX_SMP
;
1680 /* pre-build sampling time registers (e.g. smpr1, smpr2) */
1681 adc
->smpr_val
[r
] = (adc
->smpr_val
[r
] & ~mask
) | (smp
<< shift
);
1684 static void stm32_adc_chan_init_one(struct iio_dev
*indio_dev
,
1685 struct iio_chan_spec
*chan
, u32 vinp
,
1686 u32 vinn
, int scan_index
, bool differential
)
1688 struct stm32_adc
*adc
= iio_priv(indio_dev
);
1689 char *name
= adc
->chan_name
[vinp
];
1691 chan
->type
= IIO_VOLTAGE
;
1692 chan
->channel
= vinp
;
1694 chan
->differential
= 1;
1695 chan
->channel2
= vinn
;
1696 snprintf(name
, STM32_ADC_CH_SZ
, "in%d-in%d", vinp
, vinn
);
1698 snprintf(name
, STM32_ADC_CH_SZ
, "in%d", vinp
);
1700 chan
->datasheet_name
= name
;
1701 chan
->scan_index
= scan_index
;
1703 chan
->info_mask_separate
= BIT(IIO_CHAN_INFO_RAW
);
1704 chan
->info_mask_shared_by_type
= BIT(IIO_CHAN_INFO_SCALE
) |
1705 BIT(IIO_CHAN_INFO_OFFSET
);
1706 chan
->scan_type
.sign
= 'u';
1707 chan
->scan_type
.realbits
= adc
->cfg
->adc_info
->resolutions
[adc
->res
];
1708 chan
->scan_type
.storagebits
= 16;
1709 chan
->ext_info
= stm32_adc_ext_info
;
1711 /* pre-build selected channels mask */
1712 adc
->pcsel
|= BIT(chan
->channel
);
1714 /* pre-build diff channels mask */
1715 adc
->difsel
|= BIT(chan
->channel
);
1716 /* Also add negative input to pre-selected channels */
1717 adc
->pcsel
|= BIT(chan
->channel2
);
1721 static int stm32_adc_chan_of_init(struct iio_dev
*indio_dev
)
1723 struct device_node
*node
= indio_dev
->dev
.of_node
;
1724 struct stm32_adc
*adc
= iio_priv(indio_dev
);
1725 const struct stm32_adc_info
*adc_info
= adc
->cfg
->adc_info
;
1726 struct stm32_adc_diff_channel diff
[STM32_ADC_CH_MAX
];
1727 struct property
*prop
;
1729 struct iio_chan_spec
*channels
;
1730 int scan_index
= 0, num_channels
= 0, num_diff
= 0, ret
, i
;
1733 ret
= of_property_count_u32_elems(node
, "st,adc-channels");
1734 if (ret
> adc_info
->max_channels
) {
1735 dev_err(&indio_dev
->dev
, "Bad st,adc-channels?\n");
1737 } else if (ret
> 0) {
1738 num_channels
+= ret
;
1741 ret
= of_property_count_elems_of_size(node
, "st,adc-diff-channels",
1743 if (ret
> adc_info
->max_channels
) {
1744 dev_err(&indio_dev
->dev
, "Bad st,adc-diff-channels?\n");
1746 } else if (ret
> 0) {
1747 int size
= ret
* sizeof(*diff
) / sizeof(u32
);
1750 num_channels
+= ret
;
1751 ret
= of_property_read_u32_array(node
, "st,adc-diff-channels",
1757 if (!num_channels
) {
1758 dev_err(&indio_dev
->dev
, "No channels configured\n");
1762 /* Optional sample time is provided either for each, or all channels */
1763 ret
= of_property_count_u32_elems(node
, "st,min-sample-time-nsecs");
1764 if (ret
> 1 && ret
!= num_channels
) {
1765 dev_err(&indio_dev
->dev
, "Invalid st,min-sample-time-nsecs\n");
1769 channels
= devm_kcalloc(&indio_dev
->dev
, num_channels
,
1770 sizeof(struct iio_chan_spec
), GFP_KERNEL
);
1774 of_property_for_each_u32(node
, "st,adc-channels", prop
, cur
, val
) {
1775 if (val
>= adc_info
->max_channels
) {
1776 dev_err(&indio_dev
->dev
, "Invalid channel %d\n", val
);
1780 /* Channel can't be configured both as single-ended & diff */
1781 for (i
= 0; i
< num_diff
; i
++) {
1782 if (val
== diff
[i
].vinp
) {
1783 dev_err(&indio_dev
->dev
,
1784 "channel %d miss-configured\n", val
);
1788 stm32_adc_chan_init_one(indio_dev
, &channels
[scan_index
], val
,
1789 0, scan_index
, false);
1793 for (i
= 0; i
< num_diff
; i
++) {
1794 if (diff
[i
].vinp
>= adc_info
->max_channels
||
1795 diff
[i
].vinn
>= adc_info
->max_channels
) {
1796 dev_err(&indio_dev
->dev
, "Invalid channel in%d-in%d\n",
1797 diff
[i
].vinp
, diff
[i
].vinn
);
1800 stm32_adc_chan_init_one(indio_dev
, &channels
[scan_index
],
1801 diff
[i
].vinp
, diff
[i
].vinn
, scan_index
,
1806 for (i
= 0; i
< scan_index
; i
++) {
1808 * Using of_property_read_u32_index(), smp value will only be
1809 * modified if valid u32 value can be decoded. This allows to
1810 * get either no value, 1 shared value for all indexes, or one
1811 * value per channel.
1813 of_property_read_u32_index(node
, "st,min-sample-time-nsecs",
1815 /* Prepare sampling time settings */
1816 stm32_adc_smpr_init(adc
, channels
[i
].channel
, smp
);
1819 indio_dev
->num_channels
= scan_index
;
1820 indio_dev
->channels
= channels
;
1825 static int stm32_adc_dma_request(struct device
*dev
, struct iio_dev
*indio_dev
)
1827 struct stm32_adc
*adc
= iio_priv(indio_dev
);
1828 struct dma_slave_config config
;
1831 adc
->dma_chan
= dma_request_chan(dev
, "rx");
1832 if (IS_ERR(adc
->dma_chan
)) {
1833 ret
= PTR_ERR(adc
->dma_chan
);
1835 return dev_err_probe(dev
, ret
,
1836 "DMA channel request failed with\n");
1838 /* DMA is optional: fall back to IRQ mode */
1839 adc
->dma_chan
= NULL
;
1843 adc
->rx_buf
= dma_alloc_coherent(adc
->dma_chan
->device
->dev
,
1844 STM32_DMA_BUFFER_SIZE
,
1845 &adc
->rx_dma_buf
, GFP_KERNEL
);
1851 /* Configure DMA channel to read data register */
1852 memset(&config
, 0, sizeof(config
));
1853 config
.src_addr
= (dma_addr_t
)adc
->common
->phys_base
;
1854 config
.src_addr
+= adc
->offset
+ adc
->cfg
->regs
->dr
;
1855 config
.src_addr_width
= DMA_SLAVE_BUSWIDTH_2_BYTES
;
1857 ret
= dmaengine_slave_config(adc
->dma_chan
, &config
);
1864 dma_free_coherent(adc
->dma_chan
->device
->dev
, STM32_DMA_BUFFER_SIZE
,
1865 adc
->rx_buf
, adc
->rx_dma_buf
);
1867 dma_release_channel(adc
->dma_chan
);
1872 static int stm32_adc_probe(struct platform_device
*pdev
)
1874 struct iio_dev
*indio_dev
;
1875 struct device
*dev
= &pdev
->dev
;
1876 irqreturn_t (*handler
)(int irq
, void *p
) = NULL
;
1877 struct stm32_adc
*adc
;
1880 if (!pdev
->dev
.of_node
)
1883 indio_dev
= devm_iio_device_alloc(&pdev
->dev
, sizeof(*adc
));
1887 adc
= iio_priv(indio_dev
);
1888 adc
->common
= dev_get_drvdata(pdev
->dev
.parent
);
1889 spin_lock_init(&adc
->lock
);
1890 init_completion(&adc
->completion
);
1891 adc
->cfg
= (const struct stm32_adc_cfg
*)
1892 of_match_device(dev
->driver
->of_match_table
, dev
)->data
;
1894 indio_dev
->name
= dev_name(&pdev
->dev
);
1895 indio_dev
->dev
.of_node
= pdev
->dev
.of_node
;
1896 indio_dev
->info
= &stm32_adc_iio_info
;
1897 indio_dev
->modes
= INDIO_DIRECT_MODE
| INDIO_HARDWARE_TRIGGERED
;
1899 platform_set_drvdata(pdev
, indio_dev
);
1901 ret
= of_property_read_u32(pdev
->dev
.of_node
, "reg", &adc
->offset
);
1903 dev_err(&pdev
->dev
, "missing reg property\n");
1907 adc
->irq
= platform_get_irq(pdev
, 0);
1911 ret
= devm_request_threaded_irq(&pdev
->dev
, adc
->irq
, stm32_adc_isr
,
1912 stm32_adc_threaded_isr
,
1913 0, pdev
->name
, indio_dev
);
1915 dev_err(&pdev
->dev
, "failed to request IRQ\n");
1919 adc
->clk
= devm_clk_get(&pdev
->dev
, NULL
);
1920 if (IS_ERR(adc
->clk
)) {
1921 ret
= PTR_ERR(adc
->clk
);
1922 if (ret
== -ENOENT
&& !adc
->cfg
->clk_required
) {
1925 dev_err(&pdev
->dev
, "Can't get clock\n");
1930 ret
= stm32_adc_of_get_resolution(indio_dev
);
1934 ret
= stm32_adc_chan_of_init(indio_dev
);
1938 ret
= stm32_adc_dma_request(dev
, indio_dev
);
1943 handler
= &stm32_adc_trigger_handler
;
1945 ret
= iio_triggered_buffer_setup(indio_dev
,
1946 &iio_pollfunc_store_time
, handler
,
1947 &stm32_adc_buffer_setup_ops
);
1949 dev_err(&pdev
->dev
, "buffer setup failed\n");
1950 goto err_dma_disable
;
1953 /* Get stm32-adc-core PM online */
1954 pm_runtime_get_noresume(dev
);
1955 pm_runtime_set_active(dev
);
1956 pm_runtime_set_autosuspend_delay(dev
, STM32_ADC_HW_STOP_DELAY_MS
);
1957 pm_runtime_use_autosuspend(dev
);
1958 pm_runtime_enable(dev
);
1960 ret
= stm32_adc_hw_start(dev
);
1962 goto err_buffer_cleanup
;
1964 ret
= iio_device_register(indio_dev
);
1966 dev_err(&pdev
->dev
, "iio dev register failed\n");
1970 pm_runtime_mark_last_busy(dev
);
1971 pm_runtime_put_autosuspend(dev
);
1976 stm32_adc_hw_stop(dev
);
1979 pm_runtime_disable(dev
);
1980 pm_runtime_set_suspended(dev
);
1981 pm_runtime_put_noidle(dev
);
1982 iio_triggered_buffer_cleanup(indio_dev
);
1985 if (adc
->dma_chan
) {
1986 dma_free_coherent(adc
->dma_chan
->device
->dev
,
1987 STM32_DMA_BUFFER_SIZE
,
1988 adc
->rx_buf
, adc
->rx_dma_buf
);
1989 dma_release_channel(adc
->dma_chan
);
1995 static int stm32_adc_remove(struct platform_device
*pdev
)
1997 struct iio_dev
*indio_dev
= platform_get_drvdata(pdev
);
1998 struct stm32_adc
*adc
= iio_priv(indio_dev
);
2000 pm_runtime_get_sync(&pdev
->dev
);
2001 iio_device_unregister(indio_dev
);
2002 stm32_adc_hw_stop(&pdev
->dev
);
2003 pm_runtime_disable(&pdev
->dev
);
2004 pm_runtime_set_suspended(&pdev
->dev
);
2005 pm_runtime_put_noidle(&pdev
->dev
);
2006 iio_triggered_buffer_cleanup(indio_dev
);
2007 if (adc
->dma_chan
) {
2008 dma_free_coherent(adc
->dma_chan
->device
->dev
,
2009 STM32_DMA_BUFFER_SIZE
,
2010 adc
->rx_buf
, adc
->rx_dma_buf
);
2011 dma_release_channel(adc
->dma_chan
);
2017 #if defined(CONFIG_PM_SLEEP)
2018 static int stm32_adc_suspend(struct device
*dev
)
2020 struct iio_dev
*indio_dev
= dev_get_drvdata(dev
);
2022 if (iio_buffer_enabled(indio_dev
))
2023 stm32_adc_buffer_predisable(indio_dev
);
2025 return pm_runtime_force_suspend(dev
);
2028 static int stm32_adc_resume(struct device
*dev
)
2030 struct iio_dev
*indio_dev
= dev_get_drvdata(dev
);
2033 ret
= pm_runtime_force_resume(dev
);
2037 if (!iio_buffer_enabled(indio_dev
))
2040 ret
= stm32_adc_update_scan_mode(indio_dev
,
2041 indio_dev
->active_scan_mask
);
2045 return stm32_adc_buffer_postenable(indio_dev
);
2049 #if defined(CONFIG_PM)
2050 static int stm32_adc_runtime_suspend(struct device
*dev
)
2052 return stm32_adc_hw_stop(dev
);
2055 static int stm32_adc_runtime_resume(struct device
*dev
)
2057 return stm32_adc_hw_start(dev
);
2061 static const struct dev_pm_ops stm32_adc_pm_ops
= {
2062 SET_SYSTEM_SLEEP_PM_OPS(stm32_adc_suspend
, stm32_adc_resume
)
2063 SET_RUNTIME_PM_OPS(stm32_adc_runtime_suspend
, stm32_adc_runtime_resume
,
2067 static const struct stm32_adc_cfg stm32f4_adc_cfg
= {
2068 .regs
= &stm32f4_adc_regspec
,
2069 .adc_info
= &stm32f4_adc_info
,
2070 .trigs
= stm32f4_adc_trigs
,
2071 .clk_required
= true,
2072 .start_conv
= stm32f4_adc_start_conv
,
2073 .stop_conv
= stm32f4_adc_stop_conv
,
2074 .smp_cycles
= stm32f4_adc_smp_cycles
,
2075 .irq_clear
= stm32f4_adc_irq_clear
,
2078 static const struct stm32_adc_cfg stm32h7_adc_cfg
= {
2079 .regs
= &stm32h7_adc_regspec
,
2080 .adc_info
= &stm32h7_adc_info
,
2081 .trigs
= stm32h7_adc_trigs
,
2082 .start_conv
= stm32h7_adc_start_conv
,
2083 .stop_conv
= stm32h7_adc_stop_conv
,
2084 .prepare
= stm32h7_adc_prepare
,
2085 .unprepare
= stm32h7_adc_unprepare
,
2086 .smp_cycles
= stm32h7_adc_smp_cycles
,
2087 .irq_clear
= stm32h7_adc_irq_clear
,
2090 static const struct stm32_adc_cfg stm32mp1_adc_cfg
= {
2091 .regs
= &stm32h7_adc_regspec
,
2092 .adc_info
= &stm32h7_adc_info
,
2093 .trigs
= stm32h7_adc_trigs
,
2094 .has_vregready
= true,
2095 .start_conv
= stm32h7_adc_start_conv
,
2096 .stop_conv
= stm32h7_adc_stop_conv
,
2097 .prepare
= stm32h7_adc_prepare
,
2098 .unprepare
= stm32h7_adc_unprepare
,
2099 .smp_cycles
= stm32h7_adc_smp_cycles
,
2100 .irq_clear
= stm32h7_adc_irq_clear
,
2103 static const struct of_device_id stm32_adc_of_match
[] = {
2104 { .compatible
= "st,stm32f4-adc", .data
= (void *)&stm32f4_adc_cfg
},
2105 { .compatible
= "st,stm32h7-adc", .data
= (void *)&stm32h7_adc_cfg
},
2106 { .compatible
= "st,stm32mp1-adc", .data
= (void *)&stm32mp1_adc_cfg
},
2109 MODULE_DEVICE_TABLE(of
, stm32_adc_of_match
);
2111 static struct platform_driver stm32_adc_driver
= {
2112 .probe
= stm32_adc_probe
,
2113 .remove
= stm32_adc_remove
,
2115 .name
= "stm32-adc",
2116 .of_match_table
= stm32_adc_of_match
,
2117 .pm
= &stm32_adc_pm_ops
,
2120 module_platform_driver(stm32_adc_driver
);
2122 MODULE_AUTHOR("Fabrice Gasnier <fabrice.gasnier@st.com>");
2123 MODULE_DESCRIPTION("STMicroelectronics STM32 ADC IIO driver");
2124 MODULE_LICENSE("GPL v2");
2125 MODULE_ALIAS("platform:stm32-adc");