Merge tag 'block-5.11-2021-01-10' of git://git.kernel.dk/linux-block
[linux/fpc-iii.git] / drivers / iio / buffer / industrialio-buffer-dma.c
blobd348af8b97050141bd239a6f714d854713c47d64
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright 2013-2015 Analog Devices Inc.
4 * Author: Lars-Peter Clausen <lars@metafoo.de>
5 */
7 #include <linux/slab.h>
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/device.h>
11 #include <linux/workqueue.h>
12 #include <linux/mutex.h>
13 #include <linux/sched.h>
14 #include <linux/poll.h>
15 #include <linux/iio/buffer_impl.h>
16 #include <linux/iio/buffer-dma.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/sizes.h>
21 * For DMA buffers the storage is sub-divided into so called blocks. Each block
22 * has its own memory buffer. The size of the block is the granularity at which
23 * memory is exchanged between the hardware and the application. Increasing the
24 * basic unit of data exchange from one sample to one block decreases the
25 * management overhead that is associated with each sample. E.g. if we say the
26 * management overhead for one exchange is x and the unit of exchange is one
27 * sample the overhead will be x for each sample. Whereas when using a block
28 * which contains n samples the overhead per sample is reduced to x/n. This
29 * allows to achieve much higher samplerates than what can be sustained with
30 * the one sample approach.
32 * Blocks are exchanged between the DMA controller and the application via the
33 * means of two queues. The incoming queue and the outgoing queue. Blocks on the
34 * incoming queue are waiting for the DMA controller to pick them up and fill
35 * them with data. Block on the outgoing queue have been filled with data and
36 * are waiting for the application to dequeue them and read the data.
38 * A block can be in one of the following states:
39 * * Owned by the application. In this state the application can read data from
40 * the block.
41 * * On the incoming list: Blocks on the incoming list are queued up to be
42 * processed by the DMA controller.
43 * * Owned by the DMA controller: The DMA controller is processing the block
44 * and filling it with data.
45 * * On the outgoing list: Blocks on the outgoing list have been successfully
46 * processed by the DMA controller and contain data. They can be dequeued by
47 * the application.
48 * * Dead: A block that is dead has been marked as to be freed. It might still
49 * be owned by either the application or the DMA controller at the moment.
50 * But once they are done processing it instead of going to either the
51 * incoming or outgoing queue the block will be freed.
53 * In addition to this blocks are reference counted and the memory associated
54 * with both the block structure as well as the storage memory for the block
55 * will be freed when the last reference to the block is dropped. This means a
56 * block must not be accessed without holding a reference.
58 * The iio_dma_buffer implementation provides a generic infrastructure for
59 * managing the blocks.
61 * A driver for a specific piece of hardware that has DMA capabilities need to
62 * implement the submit() callback from the iio_dma_buffer_ops structure. This
63 * callback is supposed to initiate the DMA transfer copying data from the
64 * converter to the memory region of the block. Once the DMA transfer has been
65 * completed the driver must call iio_dma_buffer_block_done() for the completed
66 * block.
68 * Prior to this it must set the bytes_used field of the block contains
69 * the actual number of bytes in the buffer. Typically this will be equal to the
70 * size of the block, but if the DMA hardware has certain alignment requirements
71 * for the transfer length it might choose to use less than the full size. In
72 * either case it is expected that bytes_used is a multiple of the bytes per
73 * datum, i.e. the block must not contain partial samples.
75 * The driver must call iio_dma_buffer_block_done() for each block it has
76 * received through its submit_block() callback, even if it does not actually
77 * perform a DMA transfer for the block, e.g. because the buffer was disabled
78 * before the block transfer was started. In this case it should set bytes_used
79 * to 0.
81 * In addition it is recommended that a driver implements the abort() callback.
82 * It will be called when the buffer is disabled and can be used to cancel
83 * pending and stop active transfers.
85 * The specific driver implementation should use the default callback
86 * implementations provided by this module for the iio_buffer_access_funcs
87 * struct. It may overload some callbacks with custom variants if the hardware
88 * has special requirements that are not handled by the generic functions. If a
89 * driver chooses to overload a callback it has to ensure that the generic
90 * callback is called from within the custom callback.
93 static void iio_buffer_block_release(struct kref *kref)
95 struct iio_dma_buffer_block *block = container_of(kref,
96 struct iio_dma_buffer_block, kref);
98 WARN_ON(block->state != IIO_BLOCK_STATE_DEAD);
100 dma_free_coherent(block->queue->dev, PAGE_ALIGN(block->size),
101 block->vaddr, block->phys_addr);
103 iio_buffer_put(&block->queue->buffer);
104 kfree(block);
107 static void iio_buffer_block_get(struct iio_dma_buffer_block *block)
109 kref_get(&block->kref);
112 static void iio_buffer_block_put(struct iio_dma_buffer_block *block)
114 kref_put(&block->kref, iio_buffer_block_release);
118 * dma_free_coherent can sleep, hence we need to take some special care to be
119 * able to drop a reference from an atomic context.
121 static LIST_HEAD(iio_dma_buffer_dead_blocks);
122 static DEFINE_SPINLOCK(iio_dma_buffer_dead_blocks_lock);
124 static void iio_dma_buffer_cleanup_worker(struct work_struct *work)
126 struct iio_dma_buffer_block *block, *_block;
127 LIST_HEAD(block_list);
129 spin_lock_irq(&iio_dma_buffer_dead_blocks_lock);
130 list_splice_tail_init(&iio_dma_buffer_dead_blocks, &block_list);
131 spin_unlock_irq(&iio_dma_buffer_dead_blocks_lock);
133 list_for_each_entry_safe(block, _block, &block_list, head)
134 iio_buffer_block_release(&block->kref);
136 static DECLARE_WORK(iio_dma_buffer_cleanup_work, iio_dma_buffer_cleanup_worker);
138 static void iio_buffer_block_release_atomic(struct kref *kref)
140 struct iio_dma_buffer_block *block;
141 unsigned long flags;
143 block = container_of(kref, struct iio_dma_buffer_block, kref);
145 spin_lock_irqsave(&iio_dma_buffer_dead_blocks_lock, flags);
146 list_add_tail(&block->head, &iio_dma_buffer_dead_blocks);
147 spin_unlock_irqrestore(&iio_dma_buffer_dead_blocks_lock, flags);
149 schedule_work(&iio_dma_buffer_cleanup_work);
153 * Version of iio_buffer_block_put() that can be called from atomic context
155 static void iio_buffer_block_put_atomic(struct iio_dma_buffer_block *block)
157 kref_put(&block->kref, iio_buffer_block_release_atomic);
160 static struct iio_dma_buffer_queue *iio_buffer_to_queue(struct iio_buffer *buf)
162 return container_of(buf, struct iio_dma_buffer_queue, buffer);
165 static struct iio_dma_buffer_block *iio_dma_buffer_alloc_block(
166 struct iio_dma_buffer_queue *queue, size_t size)
168 struct iio_dma_buffer_block *block;
170 block = kzalloc(sizeof(*block), GFP_KERNEL);
171 if (!block)
172 return NULL;
174 block->vaddr = dma_alloc_coherent(queue->dev, PAGE_ALIGN(size),
175 &block->phys_addr, GFP_KERNEL);
176 if (!block->vaddr) {
177 kfree(block);
178 return NULL;
181 block->size = size;
182 block->state = IIO_BLOCK_STATE_DEQUEUED;
183 block->queue = queue;
184 INIT_LIST_HEAD(&block->head);
185 kref_init(&block->kref);
187 iio_buffer_get(&queue->buffer);
189 return block;
192 static void _iio_dma_buffer_block_done(struct iio_dma_buffer_block *block)
194 struct iio_dma_buffer_queue *queue = block->queue;
197 * The buffer has already been freed by the application, just drop the
198 * reference.
200 if (block->state != IIO_BLOCK_STATE_DEAD) {
201 block->state = IIO_BLOCK_STATE_DONE;
202 list_add_tail(&block->head, &queue->outgoing);
207 * iio_dma_buffer_block_done() - Indicate that a block has been completed
208 * @block: The completed block
210 * Should be called when the DMA controller has finished handling the block to
211 * pass back ownership of the block to the queue.
213 void iio_dma_buffer_block_done(struct iio_dma_buffer_block *block)
215 struct iio_dma_buffer_queue *queue = block->queue;
216 unsigned long flags;
218 spin_lock_irqsave(&queue->list_lock, flags);
219 _iio_dma_buffer_block_done(block);
220 spin_unlock_irqrestore(&queue->list_lock, flags);
222 iio_buffer_block_put_atomic(block);
223 wake_up_interruptible_poll(&queue->buffer.pollq, EPOLLIN | EPOLLRDNORM);
225 EXPORT_SYMBOL_GPL(iio_dma_buffer_block_done);
228 * iio_dma_buffer_block_list_abort() - Indicate that a list block has been
229 * aborted
230 * @queue: Queue for which to complete blocks.
231 * @list: List of aborted blocks. All blocks in this list must be from @queue.
233 * Typically called from the abort() callback after the DMA controller has been
234 * stopped. This will set bytes_used to 0 for each block in the list and then
235 * hand the blocks back to the queue.
237 void iio_dma_buffer_block_list_abort(struct iio_dma_buffer_queue *queue,
238 struct list_head *list)
240 struct iio_dma_buffer_block *block, *_block;
241 unsigned long flags;
243 spin_lock_irqsave(&queue->list_lock, flags);
244 list_for_each_entry_safe(block, _block, list, head) {
245 list_del(&block->head);
246 block->bytes_used = 0;
247 _iio_dma_buffer_block_done(block);
248 iio_buffer_block_put_atomic(block);
250 spin_unlock_irqrestore(&queue->list_lock, flags);
252 wake_up_interruptible_poll(&queue->buffer.pollq, EPOLLIN | EPOLLRDNORM);
254 EXPORT_SYMBOL_GPL(iio_dma_buffer_block_list_abort);
256 static bool iio_dma_block_reusable(struct iio_dma_buffer_block *block)
259 * If the core owns the block it can be re-used. This should be the
260 * default case when enabling the buffer, unless the DMA controller does
261 * not support abort and has not given back the block yet.
263 switch (block->state) {
264 case IIO_BLOCK_STATE_DEQUEUED:
265 case IIO_BLOCK_STATE_QUEUED:
266 case IIO_BLOCK_STATE_DONE:
267 return true;
268 default:
269 return false;
274 * iio_dma_buffer_request_update() - DMA buffer request_update callback
275 * @buffer: The buffer which to request an update
277 * Should be used as the iio_dma_buffer_request_update() callback for
278 * iio_buffer_access_ops struct for DMA buffers.
280 int iio_dma_buffer_request_update(struct iio_buffer *buffer)
282 struct iio_dma_buffer_queue *queue = iio_buffer_to_queue(buffer);
283 struct iio_dma_buffer_block *block;
284 bool try_reuse = false;
285 size_t size;
286 int ret = 0;
287 int i;
290 * Split the buffer into two even parts. This is used as a double
291 * buffering scheme with usually one block at a time being used by the
292 * DMA and the other one by the application.
294 size = DIV_ROUND_UP(queue->buffer.bytes_per_datum *
295 queue->buffer.length, 2);
297 mutex_lock(&queue->lock);
299 /* Allocations are page aligned */
300 if (PAGE_ALIGN(queue->fileio.block_size) == PAGE_ALIGN(size))
301 try_reuse = true;
303 queue->fileio.block_size = size;
304 queue->fileio.active_block = NULL;
306 spin_lock_irq(&queue->list_lock);
307 for (i = 0; i < ARRAY_SIZE(queue->fileio.blocks); i++) {
308 block = queue->fileio.blocks[i];
310 /* If we can't re-use it free it */
311 if (block && (!iio_dma_block_reusable(block) || !try_reuse))
312 block->state = IIO_BLOCK_STATE_DEAD;
316 * At this point all blocks are either owned by the core or marked as
317 * dead. This means we can reset the lists without having to fear
318 * corrution.
320 INIT_LIST_HEAD(&queue->outgoing);
321 spin_unlock_irq(&queue->list_lock);
323 INIT_LIST_HEAD(&queue->incoming);
325 for (i = 0; i < ARRAY_SIZE(queue->fileio.blocks); i++) {
326 if (queue->fileio.blocks[i]) {
327 block = queue->fileio.blocks[i];
328 if (block->state == IIO_BLOCK_STATE_DEAD) {
329 /* Could not reuse it */
330 iio_buffer_block_put(block);
331 block = NULL;
332 } else {
333 block->size = size;
335 } else {
336 block = NULL;
339 if (!block) {
340 block = iio_dma_buffer_alloc_block(queue, size);
341 if (!block) {
342 ret = -ENOMEM;
343 goto out_unlock;
345 queue->fileio.blocks[i] = block;
348 block->state = IIO_BLOCK_STATE_QUEUED;
349 list_add_tail(&block->head, &queue->incoming);
352 out_unlock:
353 mutex_unlock(&queue->lock);
355 return ret;
357 EXPORT_SYMBOL_GPL(iio_dma_buffer_request_update);
359 static void iio_dma_buffer_submit_block(struct iio_dma_buffer_queue *queue,
360 struct iio_dma_buffer_block *block)
362 int ret;
365 * If the hardware has already been removed we put the block into
366 * limbo. It will neither be on the incoming nor outgoing list, nor will
367 * it ever complete. It will just wait to be freed eventually.
369 if (!queue->ops)
370 return;
372 block->state = IIO_BLOCK_STATE_ACTIVE;
373 iio_buffer_block_get(block);
374 ret = queue->ops->submit(queue, block);
375 if (ret) {
377 * This is a bit of a problem and there is not much we can do
378 * other then wait for the buffer to be disabled and re-enabled
379 * and try again. But it should not really happen unless we run
380 * out of memory or something similar.
382 * TODO: Implement support in the IIO core to allow buffers to
383 * notify consumers that something went wrong and the buffer
384 * should be disabled.
386 iio_buffer_block_put(block);
391 * iio_dma_buffer_enable() - Enable DMA buffer
392 * @buffer: IIO buffer to enable
393 * @indio_dev: IIO device the buffer is attached to
395 * Needs to be called when the device that the buffer is attached to starts
396 * sampling. Typically should be the iio_buffer_access_ops enable callback.
398 * This will allocate the DMA buffers and start the DMA transfers.
400 int iio_dma_buffer_enable(struct iio_buffer *buffer,
401 struct iio_dev *indio_dev)
403 struct iio_dma_buffer_queue *queue = iio_buffer_to_queue(buffer);
404 struct iio_dma_buffer_block *block, *_block;
406 mutex_lock(&queue->lock);
407 queue->active = true;
408 list_for_each_entry_safe(block, _block, &queue->incoming, head) {
409 list_del(&block->head);
410 iio_dma_buffer_submit_block(queue, block);
412 mutex_unlock(&queue->lock);
414 return 0;
416 EXPORT_SYMBOL_GPL(iio_dma_buffer_enable);
419 * iio_dma_buffer_disable() - Disable DMA buffer
420 * @buffer: IIO DMA buffer to disable
421 * @indio_dev: IIO device the buffer is attached to
423 * Needs to be called when the device that the buffer is attached to stops
424 * sampling. Typically should be the iio_buffer_access_ops disable callback.
426 int iio_dma_buffer_disable(struct iio_buffer *buffer,
427 struct iio_dev *indio_dev)
429 struct iio_dma_buffer_queue *queue = iio_buffer_to_queue(buffer);
431 mutex_lock(&queue->lock);
432 queue->active = false;
434 if (queue->ops && queue->ops->abort)
435 queue->ops->abort(queue);
436 mutex_unlock(&queue->lock);
438 return 0;
440 EXPORT_SYMBOL_GPL(iio_dma_buffer_disable);
442 static void iio_dma_buffer_enqueue(struct iio_dma_buffer_queue *queue,
443 struct iio_dma_buffer_block *block)
445 if (block->state == IIO_BLOCK_STATE_DEAD) {
446 iio_buffer_block_put(block);
447 } else if (queue->active) {
448 iio_dma_buffer_submit_block(queue, block);
449 } else {
450 block->state = IIO_BLOCK_STATE_QUEUED;
451 list_add_tail(&block->head, &queue->incoming);
455 static struct iio_dma_buffer_block *iio_dma_buffer_dequeue(
456 struct iio_dma_buffer_queue *queue)
458 struct iio_dma_buffer_block *block;
460 spin_lock_irq(&queue->list_lock);
461 block = list_first_entry_or_null(&queue->outgoing, struct
462 iio_dma_buffer_block, head);
463 if (block != NULL) {
464 list_del(&block->head);
465 block->state = IIO_BLOCK_STATE_DEQUEUED;
467 spin_unlock_irq(&queue->list_lock);
469 return block;
473 * iio_dma_buffer_read() - DMA buffer read callback
474 * @buffer: Buffer to read form
475 * @n: Number of bytes to read
476 * @user_buffer: Userspace buffer to copy the data to
478 * Should be used as the read callback for iio_buffer_access_ops
479 * struct for DMA buffers.
481 int iio_dma_buffer_read(struct iio_buffer *buffer, size_t n,
482 char __user *user_buffer)
484 struct iio_dma_buffer_queue *queue = iio_buffer_to_queue(buffer);
485 struct iio_dma_buffer_block *block;
486 int ret;
488 if (n < buffer->bytes_per_datum)
489 return -EINVAL;
491 mutex_lock(&queue->lock);
493 if (!queue->fileio.active_block) {
494 block = iio_dma_buffer_dequeue(queue);
495 if (block == NULL) {
496 ret = 0;
497 goto out_unlock;
499 queue->fileio.pos = 0;
500 queue->fileio.active_block = block;
501 } else {
502 block = queue->fileio.active_block;
505 n = rounddown(n, buffer->bytes_per_datum);
506 if (n > block->bytes_used - queue->fileio.pos)
507 n = block->bytes_used - queue->fileio.pos;
509 if (copy_to_user(user_buffer, block->vaddr + queue->fileio.pos, n)) {
510 ret = -EFAULT;
511 goto out_unlock;
514 queue->fileio.pos += n;
516 if (queue->fileio.pos == block->bytes_used) {
517 queue->fileio.active_block = NULL;
518 iio_dma_buffer_enqueue(queue, block);
521 ret = n;
523 out_unlock:
524 mutex_unlock(&queue->lock);
526 return ret;
528 EXPORT_SYMBOL_GPL(iio_dma_buffer_read);
531 * iio_dma_buffer_data_available() - DMA buffer data_available callback
532 * @buf: Buffer to check for data availability
534 * Should be used as the data_available callback for iio_buffer_access_ops
535 * struct for DMA buffers.
537 size_t iio_dma_buffer_data_available(struct iio_buffer *buf)
539 struct iio_dma_buffer_queue *queue = iio_buffer_to_queue(buf);
540 struct iio_dma_buffer_block *block;
541 size_t data_available = 0;
544 * For counting the available bytes we'll use the size of the block not
545 * the number of actual bytes available in the block. Otherwise it is
546 * possible that we end up with a value that is lower than the watermark
547 * but won't increase since all blocks are in use.
550 mutex_lock(&queue->lock);
551 if (queue->fileio.active_block)
552 data_available += queue->fileio.active_block->size;
554 spin_lock_irq(&queue->list_lock);
555 list_for_each_entry(block, &queue->outgoing, head)
556 data_available += block->size;
557 spin_unlock_irq(&queue->list_lock);
558 mutex_unlock(&queue->lock);
560 return data_available;
562 EXPORT_SYMBOL_GPL(iio_dma_buffer_data_available);
565 * iio_dma_buffer_set_bytes_per_datum() - DMA buffer set_bytes_per_datum callback
566 * @buffer: Buffer to set the bytes-per-datum for
567 * @bpd: The new bytes-per-datum value
569 * Should be used as the set_bytes_per_datum callback for iio_buffer_access_ops
570 * struct for DMA buffers.
572 int iio_dma_buffer_set_bytes_per_datum(struct iio_buffer *buffer, size_t bpd)
574 buffer->bytes_per_datum = bpd;
576 return 0;
578 EXPORT_SYMBOL_GPL(iio_dma_buffer_set_bytes_per_datum);
581 * iio_dma_buffer_set_length - DMA buffer set_length callback
582 * @buffer: Buffer to set the length for
583 * @length: The new buffer length
585 * Should be used as the set_length callback for iio_buffer_access_ops
586 * struct for DMA buffers.
588 int iio_dma_buffer_set_length(struct iio_buffer *buffer, unsigned int length)
590 /* Avoid an invalid state */
591 if (length < 2)
592 length = 2;
593 buffer->length = length;
594 buffer->watermark = length / 2;
596 return 0;
598 EXPORT_SYMBOL_GPL(iio_dma_buffer_set_length);
601 * iio_dma_buffer_init() - Initialize DMA buffer queue
602 * @queue: Buffer to initialize
603 * @dev: DMA device
604 * @ops: DMA buffer queue callback operations
606 * The DMA device will be used by the queue to do DMA memory allocations. So it
607 * should refer to the device that will perform the DMA to ensure that
608 * allocations are done from a memory region that can be accessed by the device.
610 int iio_dma_buffer_init(struct iio_dma_buffer_queue *queue,
611 struct device *dev, const struct iio_dma_buffer_ops *ops)
613 iio_buffer_init(&queue->buffer);
614 queue->buffer.length = PAGE_SIZE;
615 queue->buffer.watermark = queue->buffer.length / 2;
616 queue->dev = dev;
617 queue->ops = ops;
619 INIT_LIST_HEAD(&queue->incoming);
620 INIT_LIST_HEAD(&queue->outgoing);
622 mutex_init(&queue->lock);
623 spin_lock_init(&queue->list_lock);
625 return 0;
627 EXPORT_SYMBOL_GPL(iio_dma_buffer_init);
630 * iio_dma_buffer_exit() - Cleanup DMA buffer queue
631 * @queue: Buffer to cleanup
633 * After this function has completed it is safe to free any resources that are
634 * associated with the buffer and are accessed inside the callback operations.
636 void iio_dma_buffer_exit(struct iio_dma_buffer_queue *queue)
638 unsigned int i;
640 mutex_lock(&queue->lock);
642 spin_lock_irq(&queue->list_lock);
643 for (i = 0; i < ARRAY_SIZE(queue->fileio.blocks); i++) {
644 if (!queue->fileio.blocks[i])
645 continue;
646 queue->fileio.blocks[i]->state = IIO_BLOCK_STATE_DEAD;
648 INIT_LIST_HEAD(&queue->outgoing);
649 spin_unlock_irq(&queue->list_lock);
651 INIT_LIST_HEAD(&queue->incoming);
653 for (i = 0; i < ARRAY_SIZE(queue->fileio.blocks); i++) {
654 if (!queue->fileio.blocks[i])
655 continue;
656 iio_buffer_block_put(queue->fileio.blocks[i]);
657 queue->fileio.blocks[i] = NULL;
659 queue->fileio.active_block = NULL;
660 queue->ops = NULL;
662 mutex_unlock(&queue->lock);
664 EXPORT_SYMBOL_GPL(iio_dma_buffer_exit);
667 * iio_dma_buffer_release() - Release final buffer resources
668 * @queue: Buffer to release
670 * Frees resources that can't yet be freed in iio_dma_buffer_exit(). Should be
671 * called in the buffers release callback implementation right before freeing
672 * the memory associated with the buffer.
674 void iio_dma_buffer_release(struct iio_dma_buffer_queue *queue)
676 mutex_destroy(&queue->lock);
678 EXPORT_SYMBOL_GPL(iio_dma_buffer_release);
680 MODULE_AUTHOR("Lars-Peter Clausen <lars@metafoo.de>");
681 MODULE_DESCRIPTION("DMA buffer for the IIO framework");
682 MODULE_LICENSE("GPL v2");