Merge tag 'block-5.11-2021-01-10' of git://git.kernel.dk/linux-block
[linux/fpc-iii.git] / drivers / iio / gyro / fxas21002c_core.c
blob129eead8febc0ea1a3a5b161296c822d355c7106
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Driver for NXP FXAS21002C Gyroscope - Core
5 * Copyright (C) 2019 Linaro Ltd.
6 */
8 #include <linux/interrupt.h>
9 #include <linux/module.h>
10 #include <linux/of_irq.h>
11 #include <linux/pm.h>
12 #include <linux/pm_runtime.h>
13 #include <linux/regmap.h>
14 #include <linux/regulator/consumer.h>
16 #include <linux/iio/events.h>
17 #include <linux/iio/iio.h>
18 #include <linux/iio/buffer.h>
19 #include <linux/iio/sysfs.h>
20 #include <linux/iio/trigger.h>
21 #include <linux/iio/trigger_consumer.h>
22 #include <linux/iio/triggered_buffer.h>
24 #include "fxas21002c.h"
26 #define FXAS21002C_CHIP_ID_1 0xD6
27 #define FXAS21002C_CHIP_ID_2 0xD7
29 enum fxas21002c_mode_state {
30 FXAS21002C_MODE_STANDBY,
31 FXAS21002C_MODE_READY,
32 FXAS21002C_MODE_ACTIVE,
35 #define FXAS21002C_STANDBY_ACTIVE_TIME_MS 62
36 #define FXAS21002C_READY_ACTIVE_TIME_MS 7
38 #define FXAS21002C_ODR_LIST_MAX 10
40 #define FXAS21002C_SCALE_FRACTIONAL 32
41 #define FXAS21002C_RANGE_LIMIT_DOUBLE 2000
43 #define FXAS21002C_AXIS_TO_REG(axis) (FXAS21002C_REG_OUT_X_MSB + ((axis) * 2))
45 static const struct reg_field fxas21002c_reg_fields[] = {
46 [F_DR_STATUS] = REG_FIELD(FXAS21002C_REG_STATUS, 0, 7),
47 [F_OUT_X_MSB] = REG_FIELD(FXAS21002C_REG_OUT_X_MSB, 0, 7),
48 [F_OUT_X_LSB] = REG_FIELD(FXAS21002C_REG_OUT_X_LSB, 0, 7),
49 [F_OUT_Y_MSB] = REG_FIELD(FXAS21002C_REG_OUT_Y_MSB, 0, 7),
50 [F_OUT_Y_LSB] = REG_FIELD(FXAS21002C_REG_OUT_Y_LSB, 0, 7),
51 [F_OUT_Z_MSB] = REG_FIELD(FXAS21002C_REG_OUT_Z_MSB, 0, 7),
52 [F_OUT_Z_LSB] = REG_FIELD(FXAS21002C_REG_OUT_Z_LSB, 0, 7),
53 [F_ZYX_OW] = REG_FIELD(FXAS21002C_REG_DR_STATUS, 7, 7),
54 [F_Z_OW] = REG_FIELD(FXAS21002C_REG_DR_STATUS, 6, 6),
55 [F_Y_OW] = REG_FIELD(FXAS21002C_REG_DR_STATUS, 5, 5),
56 [F_X_OW] = REG_FIELD(FXAS21002C_REG_DR_STATUS, 4, 4),
57 [F_ZYX_DR] = REG_FIELD(FXAS21002C_REG_DR_STATUS, 3, 3),
58 [F_Z_DR] = REG_FIELD(FXAS21002C_REG_DR_STATUS, 2, 2),
59 [F_Y_DR] = REG_FIELD(FXAS21002C_REG_DR_STATUS, 1, 1),
60 [F_X_DR] = REG_FIELD(FXAS21002C_REG_DR_STATUS, 0, 0),
61 [F_OVF] = REG_FIELD(FXAS21002C_REG_F_STATUS, 7, 7),
62 [F_WMKF] = REG_FIELD(FXAS21002C_REG_F_STATUS, 6, 6),
63 [F_CNT] = REG_FIELD(FXAS21002C_REG_F_STATUS, 0, 5),
64 [F_MODE] = REG_FIELD(FXAS21002C_REG_F_SETUP, 6, 7),
65 [F_WMRK] = REG_FIELD(FXAS21002C_REG_F_SETUP, 0, 5),
66 [F_EVENT] = REG_FIELD(FXAS21002C_REG_F_EVENT, 5, 5),
67 [FE_TIME] = REG_FIELD(FXAS21002C_REG_F_EVENT, 0, 4),
68 [F_BOOTEND] = REG_FIELD(FXAS21002C_REG_INT_SRC_FLAG, 3, 3),
69 [F_SRC_FIFO] = REG_FIELD(FXAS21002C_REG_INT_SRC_FLAG, 2, 2),
70 [F_SRC_RT] = REG_FIELD(FXAS21002C_REG_INT_SRC_FLAG, 1, 1),
71 [F_SRC_DRDY] = REG_FIELD(FXAS21002C_REG_INT_SRC_FLAG, 0, 0),
72 [F_WHO_AM_I] = REG_FIELD(FXAS21002C_REG_WHO_AM_I, 0, 7),
73 [F_BW] = REG_FIELD(FXAS21002C_REG_CTRL0, 6, 7),
74 [F_SPIW] = REG_FIELD(FXAS21002C_REG_CTRL0, 5, 5),
75 [F_SEL] = REG_FIELD(FXAS21002C_REG_CTRL0, 3, 4),
76 [F_HPF_EN] = REG_FIELD(FXAS21002C_REG_CTRL0, 2, 2),
77 [F_FS] = REG_FIELD(FXAS21002C_REG_CTRL0, 0, 1),
78 [F_ELE] = REG_FIELD(FXAS21002C_REG_RT_CFG, 3, 3),
79 [F_ZTEFE] = REG_FIELD(FXAS21002C_REG_RT_CFG, 2, 2),
80 [F_YTEFE] = REG_FIELD(FXAS21002C_REG_RT_CFG, 1, 1),
81 [F_XTEFE] = REG_FIELD(FXAS21002C_REG_RT_CFG, 0, 0),
82 [F_EA] = REG_FIELD(FXAS21002C_REG_RT_SRC, 6, 6),
83 [F_ZRT] = REG_FIELD(FXAS21002C_REG_RT_SRC, 5, 5),
84 [F_ZRT_POL] = REG_FIELD(FXAS21002C_REG_RT_SRC, 4, 4),
85 [F_YRT] = REG_FIELD(FXAS21002C_REG_RT_SRC, 3, 3),
86 [F_YRT_POL] = REG_FIELD(FXAS21002C_REG_RT_SRC, 2, 2),
87 [F_XRT] = REG_FIELD(FXAS21002C_REG_RT_SRC, 1, 1),
88 [F_XRT_POL] = REG_FIELD(FXAS21002C_REG_RT_SRC, 0, 0),
89 [F_DBCNTM] = REG_FIELD(FXAS21002C_REG_RT_THS, 7, 7),
90 [F_THS] = REG_FIELD(FXAS21002C_REG_RT_SRC, 0, 6),
91 [F_RT_COUNT] = REG_FIELD(FXAS21002C_REG_RT_COUNT, 0, 7),
92 [F_TEMP] = REG_FIELD(FXAS21002C_REG_TEMP, 0, 7),
93 [F_RST] = REG_FIELD(FXAS21002C_REG_CTRL1, 6, 6),
94 [F_ST] = REG_FIELD(FXAS21002C_REG_CTRL1, 5, 5),
95 [F_DR] = REG_FIELD(FXAS21002C_REG_CTRL1, 2, 4),
96 [F_ACTIVE] = REG_FIELD(FXAS21002C_REG_CTRL1, 1, 1),
97 [F_READY] = REG_FIELD(FXAS21002C_REG_CTRL1, 0, 0),
98 [F_INT_CFG_FIFO] = REG_FIELD(FXAS21002C_REG_CTRL2, 7, 7),
99 [F_INT_EN_FIFO] = REG_FIELD(FXAS21002C_REG_CTRL2, 6, 6),
100 [F_INT_CFG_RT] = REG_FIELD(FXAS21002C_REG_CTRL2, 5, 5),
101 [F_INT_EN_RT] = REG_FIELD(FXAS21002C_REG_CTRL2, 4, 4),
102 [F_INT_CFG_DRDY] = REG_FIELD(FXAS21002C_REG_CTRL2, 3, 3),
103 [F_INT_EN_DRDY] = REG_FIELD(FXAS21002C_REG_CTRL2, 2, 2),
104 [F_IPOL] = REG_FIELD(FXAS21002C_REG_CTRL2, 1, 1),
105 [F_PP_OD] = REG_FIELD(FXAS21002C_REG_CTRL2, 0, 0),
106 [F_WRAPTOONE] = REG_FIELD(FXAS21002C_REG_CTRL3, 3, 3),
107 [F_EXTCTRLEN] = REG_FIELD(FXAS21002C_REG_CTRL3, 2, 2),
108 [F_FS_DOUBLE] = REG_FIELD(FXAS21002C_REG_CTRL3, 0, 0),
111 static const int fxas21002c_odr_values[] = {
112 800, 400, 200, 100, 50, 25, 12, 12
116 * These values are taken from the low-pass filter cutoff frequency calculated
117 * ODR * 0.lpf_values. So, for ODR = 800Hz with a lpf value = 0.32
118 * => LPF cutoff frequency = 800 * 0.32 = 256 Hz
120 static const int fxas21002c_lpf_values[] = {
121 32, 16, 8
125 * These values are taken from the high-pass filter cutoff frequency calculated
126 * ODR * 0.0hpf_values. So, for ODR = 800Hz with a hpf value = 0.018750
127 * => HPF cutoff frequency = 800 * 0.018750 = 15 Hz
129 static const int fxas21002c_hpf_values[] = {
130 18750, 9625, 4875, 2475
133 static const int fxas21002c_range_values[] = {
134 4000, 2000, 1000, 500, 250
137 struct fxas21002c_data {
138 u8 chip_id;
139 enum fxas21002c_mode_state mode;
140 enum fxas21002c_mode_state prev_mode;
142 struct mutex lock; /* serialize data access */
143 struct regmap *regmap;
144 struct regmap_field *regmap_fields[F_MAX_FIELDS];
145 struct iio_trigger *dready_trig;
146 s64 timestamp;
147 int irq;
149 struct regulator *vdd;
150 struct regulator *vddio;
153 * DMA (thus cache coherency maintenance) requires the
154 * transfer buffers to live in their own cache lines.
156 s16 buffer[8] ____cacheline_aligned;
159 enum fxas21002c_channel_index {
160 CHANNEL_SCAN_INDEX_X,
161 CHANNEL_SCAN_INDEX_Y,
162 CHANNEL_SCAN_INDEX_Z,
163 CHANNEL_SCAN_MAX,
166 static int fxas21002c_odr_hz_from_value(struct fxas21002c_data *data, u8 value)
168 int odr_value_max = ARRAY_SIZE(fxas21002c_odr_values) - 1;
170 value = min_t(u8, value, odr_value_max);
172 return fxas21002c_odr_values[value];
175 static int fxas21002c_odr_value_from_hz(struct fxas21002c_data *data,
176 unsigned int hz)
178 int odr_table_size = ARRAY_SIZE(fxas21002c_odr_values);
179 int i;
181 for (i = 0; i < odr_table_size; i++)
182 if (fxas21002c_odr_values[i] == hz)
183 return i;
185 return -EINVAL;
188 static int fxas21002c_lpf_bw_from_value(struct fxas21002c_data *data, u8 value)
190 int lpf_value_max = ARRAY_SIZE(fxas21002c_lpf_values) - 1;
192 value = min_t(u8, value, lpf_value_max);
194 return fxas21002c_lpf_values[value];
197 static int fxas21002c_lpf_value_from_bw(struct fxas21002c_data *data,
198 unsigned int hz)
200 int lpf_table_size = ARRAY_SIZE(fxas21002c_lpf_values);
201 int i;
203 for (i = 0; i < lpf_table_size; i++)
204 if (fxas21002c_lpf_values[i] == hz)
205 return i;
207 return -EINVAL;
210 static int fxas21002c_hpf_sel_from_value(struct fxas21002c_data *data, u8 value)
212 int hpf_value_max = ARRAY_SIZE(fxas21002c_hpf_values) - 1;
214 value = min_t(u8, value, hpf_value_max);
216 return fxas21002c_hpf_values[value];
219 static int fxas21002c_hpf_value_from_sel(struct fxas21002c_data *data,
220 unsigned int hz)
222 int hpf_table_size = ARRAY_SIZE(fxas21002c_hpf_values);
223 int i;
225 for (i = 0; i < hpf_table_size; i++)
226 if (fxas21002c_hpf_values[i] == hz)
227 return i;
229 return -EINVAL;
232 static int fxas21002c_range_fs_from_value(struct fxas21002c_data *data,
233 u8 value)
235 int range_value_max = ARRAY_SIZE(fxas21002c_range_values) - 1;
236 unsigned int fs_double;
237 int ret;
239 /* We need to check if FS_DOUBLE is enabled to offset the value */
240 ret = regmap_field_read(data->regmap_fields[F_FS_DOUBLE], &fs_double);
241 if (ret < 0)
242 return ret;
244 if (!fs_double)
245 value += 1;
247 value = min_t(u8, value, range_value_max);
249 return fxas21002c_range_values[value];
252 static int fxas21002c_range_value_from_fs(struct fxas21002c_data *data,
253 unsigned int range)
255 int range_table_size = ARRAY_SIZE(fxas21002c_range_values);
256 bool found = false;
257 int fs_double = 0;
258 int ret;
259 int i;
261 for (i = 0; i < range_table_size; i++)
262 if (fxas21002c_range_values[i] == range) {
263 found = true;
264 break;
267 if (!found)
268 return -EINVAL;
270 if (range > FXAS21002C_RANGE_LIMIT_DOUBLE)
271 fs_double = 1;
273 ret = regmap_field_write(data->regmap_fields[F_FS_DOUBLE], fs_double);
274 if (ret < 0)
275 return ret;
277 return i;
280 static int fxas21002c_mode_get(struct fxas21002c_data *data)
282 unsigned int active;
283 unsigned int ready;
284 int ret;
286 ret = regmap_field_read(data->regmap_fields[F_ACTIVE], &active);
287 if (ret < 0)
288 return ret;
289 if (active)
290 return FXAS21002C_MODE_ACTIVE;
292 ret = regmap_field_read(data->regmap_fields[F_READY], &ready);
293 if (ret < 0)
294 return ret;
295 if (ready)
296 return FXAS21002C_MODE_READY;
298 return FXAS21002C_MODE_STANDBY;
301 static int fxas21002c_mode_set(struct fxas21002c_data *data,
302 enum fxas21002c_mode_state mode)
304 int ret;
306 if (mode == data->mode)
307 return 0;
309 if (mode == FXAS21002C_MODE_READY)
310 ret = regmap_field_write(data->regmap_fields[F_READY], 1);
311 else
312 ret = regmap_field_write(data->regmap_fields[F_READY], 0);
313 if (ret < 0)
314 return ret;
316 if (mode == FXAS21002C_MODE_ACTIVE)
317 ret = regmap_field_write(data->regmap_fields[F_ACTIVE], 1);
318 else
319 ret = regmap_field_write(data->regmap_fields[F_ACTIVE], 0);
320 if (ret < 0)
321 return ret;
323 /* if going to active wait the setup times */
324 if (mode == FXAS21002C_MODE_ACTIVE &&
325 data->mode == FXAS21002C_MODE_STANDBY)
326 msleep_interruptible(FXAS21002C_STANDBY_ACTIVE_TIME_MS);
328 if (data->mode == FXAS21002C_MODE_READY)
329 msleep_interruptible(FXAS21002C_READY_ACTIVE_TIME_MS);
331 data->prev_mode = data->mode;
332 data->mode = mode;
334 return ret;
337 static int fxas21002c_write(struct fxas21002c_data *data,
338 enum fxas21002c_fields field, int bits)
340 int actual_mode;
341 int ret;
343 mutex_lock(&data->lock);
345 actual_mode = fxas21002c_mode_get(data);
346 if (actual_mode < 0) {
347 ret = actual_mode;
348 goto out_unlock;
351 ret = fxas21002c_mode_set(data, FXAS21002C_MODE_READY);
352 if (ret < 0)
353 goto out_unlock;
355 ret = regmap_field_write(data->regmap_fields[field], bits);
356 if (ret < 0)
357 goto out_unlock;
359 ret = fxas21002c_mode_set(data, data->prev_mode);
361 out_unlock:
362 mutex_unlock(&data->lock);
364 return ret;
367 static int fxas21002c_pm_get(struct fxas21002c_data *data)
369 struct device *dev = regmap_get_device(data->regmap);
370 int ret;
372 ret = pm_runtime_get_sync(dev);
373 if (ret < 0)
374 pm_runtime_put_noidle(dev);
376 return ret;
379 static int fxas21002c_pm_put(struct fxas21002c_data *data)
381 struct device *dev = regmap_get_device(data->regmap);
383 pm_runtime_mark_last_busy(dev);
385 return pm_runtime_put_autosuspend(dev);
388 static int fxas21002c_temp_get(struct fxas21002c_data *data, int *val)
390 struct device *dev = regmap_get_device(data->regmap);
391 unsigned int temp;
392 int ret;
394 mutex_lock(&data->lock);
395 ret = fxas21002c_pm_get(data);
396 if (ret < 0)
397 goto data_unlock;
399 ret = regmap_field_read(data->regmap_fields[F_TEMP], &temp);
400 if (ret < 0) {
401 dev_err(dev, "failed to read temp: %d\n", ret);
402 goto data_unlock;
405 *val = sign_extend32(temp, 7);
407 ret = fxas21002c_pm_put(data);
408 if (ret < 0)
409 goto data_unlock;
411 ret = IIO_VAL_INT;
413 data_unlock:
414 mutex_unlock(&data->lock);
416 return ret;
419 static int fxas21002c_axis_get(struct fxas21002c_data *data,
420 int index, int *val)
422 struct device *dev = regmap_get_device(data->regmap);
423 __be16 axis_be;
424 int ret;
426 mutex_lock(&data->lock);
427 ret = fxas21002c_pm_get(data);
428 if (ret < 0)
429 goto data_unlock;
431 ret = regmap_bulk_read(data->regmap, FXAS21002C_AXIS_TO_REG(index),
432 &axis_be, sizeof(axis_be));
433 if (ret < 0) {
434 dev_err(dev, "failed to read axis: %d: %d\n", index, ret);
435 goto data_unlock;
438 *val = sign_extend32(be16_to_cpu(axis_be), 15);
440 ret = fxas21002c_pm_put(data);
441 if (ret < 0)
442 goto data_unlock;
444 ret = IIO_VAL_INT;
446 data_unlock:
447 mutex_unlock(&data->lock);
449 return ret;
452 static int fxas21002c_odr_get(struct fxas21002c_data *data, int *odr)
454 unsigned int odr_bits;
455 int ret;
457 mutex_lock(&data->lock);
458 ret = regmap_field_read(data->regmap_fields[F_DR], &odr_bits);
459 if (ret < 0)
460 goto data_unlock;
462 *odr = fxas21002c_odr_hz_from_value(data, odr_bits);
464 ret = IIO_VAL_INT;
466 data_unlock:
467 mutex_unlock(&data->lock);
469 return ret;
472 static int fxas21002c_odr_set(struct fxas21002c_data *data, int odr)
474 int odr_bits;
476 odr_bits = fxas21002c_odr_value_from_hz(data, odr);
477 if (odr_bits < 0)
478 return odr_bits;
480 return fxas21002c_write(data, F_DR, odr_bits);
483 static int fxas21002c_lpf_get(struct fxas21002c_data *data, int *val2)
485 unsigned int bw_bits;
486 int ret;
488 mutex_lock(&data->lock);
489 ret = regmap_field_read(data->regmap_fields[F_BW], &bw_bits);
490 if (ret < 0)
491 goto data_unlock;
493 *val2 = fxas21002c_lpf_bw_from_value(data, bw_bits) * 10000;
495 ret = IIO_VAL_INT_PLUS_MICRO;
497 data_unlock:
498 mutex_unlock(&data->lock);
500 return ret;
503 static int fxas21002c_lpf_set(struct fxas21002c_data *data, int bw)
505 int bw_bits;
506 int odr;
507 int ret;
509 bw_bits = fxas21002c_lpf_value_from_bw(data, bw);
510 if (bw_bits < 0)
511 return bw_bits;
514 * From table 33 of the device spec, for ODR = 25Hz and 12.5 value 0.08
515 * is not allowed and for ODR = 12.5 value 0.16 is also not allowed
517 ret = fxas21002c_odr_get(data, &odr);
518 if (ret < 0)
519 return -EINVAL;
521 if ((odr == 25 && bw_bits > 0x01) || (odr == 12 && bw_bits > 0))
522 return -EINVAL;
524 return fxas21002c_write(data, F_BW, bw_bits);
527 static int fxas21002c_hpf_get(struct fxas21002c_data *data, int *val2)
529 unsigned int sel_bits;
530 int ret;
532 mutex_lock(&data->lock);
533 ret = regmap_field_read(data->regmap_fields[F_SEL], &sel_bits);
534 if (ret < 0)
535 goto data_unlock;
537 *val2 = fxas21002c_hpf_sel_from_value(data, sel_bits);
539 ret = IIO_VAL_INT_PLUS_MICRO;
541 data_unlock:
542 mutex_unlock(&data->lock);
544 return ret;
547 static int fxas21002c_hpf_set(struct fxas21002c_data *data, int sel)
549 int sel_bits;
551 sel_bits = fxas21002c_hpf_value_from_sel(data, sel);
552 if (sel_bits < 0)
553 return sel_bits;
555 return fxas21002c_write(data, F_SEL, sel_bits);
558 static int fxas21002c_scale_get(struct fxas21002c_data *data, int *val)
560 int fs_bits;
561 int scale;
562 int ret;
564 mutex_lock(&data->lock);
565 ret = regmap_field_read(data->regmap_fields[F_FS], &fs_bits);
566 if (ret < 0)
567 goto data_unlock;
569 scale = fxas21002c_range_fs_from_value(data, fs_bits);
570 if (scale < 0) {
571 ret = scale;
572 goto data_unlock;
575 *val = scale;
577 data_unlock:
578 mutex_unlock(&data->lock);
580 return ret;
583 static int fxas21002c_scale_set(struct fxas21002c_data *data, int range)
585 int fs_bits;
587 fs_bits = fxas21002c_range_value_from_fs(data, range);
588 if (fs_bits < 0)
589 return fs_bits;
591 return fxas21002c_write(data, F_FS, fs_bits);
594 static int fxas21002c_read_raw(struct iio_dev *indio_dev,
595 struct iio_chan_spec const *chan, int *val,
596 int *val2, long mask)
598 struct fxas21002c_data *data = iio_priv(indio_dev);
599 int ret;
601 switch (mask) {
602 case IIO_CHAN_INFO_RAW:
603 switch (chan->type) {
604 case IIO_TEMP:
605 return fxas21002c_temp_get(data, val);
606 case IIO_ANGL_VEL:
607 return fxas21002c_axis_get(data, chan->scan_index, val);
608 default:
609 return -EINVAL;
611 case IIO_CHAN_INFO_SCALE:
612 switch (chan->type) {
613 case IIO_ANGL_VEL:
614 *val2 = FXAS21002C_SCALE_FRACTIONAL;
615 ret = fxas21002c_scale_get(data, val);
616 if (ret < 0)
617 return ret;
619 return IIO_VAL_FRACTIONAL;
620 default:
621 return -EINVAL;
623 case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
624 *val = 0;
625 return fxas21002c_lpf_get(data, val2);
626 case IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY:
627 *val = 0;
628 return fxas21002c_hpf_get(data, val2);
629 case IIO_CHAN_INFO_SAMP_FREQ:
630 *val2 = 0;
631 return fxas21002c_odr_get(data, val);
632 default:
633 return -EINVAL;
637 static int fxas21002c_write_raw(struct iio_dev *indio_dev,
638 struct iio_chan_spec const *chan, int val,
639 int val2, long mask)
641 struct fxas21002c_data *data = iio_priv(indio_dev);
642 int range;
644 switch (mask) {
645 case IIO_CHAN_INFO_SAMP_FREQ:
646 if (val2)
647 return -EINVAL;
649 return fxas21002c_odr_set(data, val);
650 case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
651 if (val)
652 return -EINVAL;
654 val2 = val2 / 10000;
655 return fxas21002c_lpf_set(data, val2);
656 case IIO_CHAN_INFO_SCALE:
657 switch (chan->type) {
658 case IIO_ANGL_VEL:
659 range = (((val * 1000 + val2 / 1000) *
660 FXAS21002C_SCALE_FRACTIONAL) / 1000);
661 return fxas21002c_scale_set(data, range);
662 default:
663 return -EINVAL;
665 case IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY:
666 return fxas21002c_hpf_set(data, val2);
667 default:
668 return -EINVAL;
672 static IIO_CONST_ATTR_SAMP_FREQ_AVAIL("12.5 25 50 100 200 400 800");
674 static IIO_CONST_ATTR(in_anglvel_filter_low_pass_3db_frequency_available,
675 "0.32 0.16 0.08");
677 static IIO_CONST_ATTR(in_anglvel_filter_high_pass_3db_frequency_available,
678 "0.018750 0.009625 0.004875 0.002475");
680 static IIO_CONST_ATTR(in_anglvel_scale_available,
681 "125.0 62.5 31.25 15.625 7.8125");
683 static struct attribute *fxas21002c_attributes[] = {
684 &iio_const_attr_sampling_frequency_available.dev_attr.attr,
685 &iio_const_attr_in_anglvel_filter_low_pass_3db_frequency_available.dev_attr.attr,
686 &iio_const_attr_in_anglvel_filter_high_pass_3db_frequency_available.dev_attr.attr,
687 &iio_const_attr_in_anglvel_scale_available.dev_attr.attr,
688 NULL,
691 static const struct attribute_group fxas21002c_attrs_group = {
692 .attrs = fxas21002c_attributes,
695 #define FXAS21002C_CHANNEL(_axis) { \
696 .type = IIO_ANGL_VEL, \
697 .modified = 1, \
698 .channel2 = IIO_MOD_##_axis, \
699 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
700 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \
701 BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY) | \
702 BIT(IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY) | \
703 BIT(IIO_CHAN_INFO_SAMP_FREQ), \
704 .scan_index = CHANNEL_SCAN_INDEX_##_axis, \
705 .scan_type = { \
706 .sign = 's', \
707 .realbits = 16, \
708 .storagebits = 16, \
709 .endianness = IIO_BE, \
710 }, \
713 static const struct iio_chan_spec fxas21002c_channels[] = {
715 .type = IIO_TEMP,
716 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
717 .scan_index = -1,
719 FXAS21002C_CHANNEL(X),
720 FXAS21002C_CHANNEL(Y),
721 FXAS21002C_CHANNEL(Z),
724 static const struct iio_info fxas21002c_info = {
725 .attrs = &fxas21002c_attrs_group,
726 .read_raw = &fxas21002c_read_raw,
727 .write_raw = &fxas21002c_write_raw,
730 static irqreturn_t fxas21002c_trigger_handler(int irq, void *p)
732 struct iio_poll_func *pf = p;
733 struct iio_dev *indio_dev = pf->indio_dev;
734 struct fxas21002c_data *data = iio_priv(indio_dev);
735 int ret;
737 mutex_lock(&data->lock);
738 ret = regmap_bulk_read(data->regmap, FXAS21002C_REG_OUT_X_MSB,
739 data->buffer, CHANNEL_SCAN_MAX * sizeof(s16));
740 if (ret < 0)
741 goto out_unlock;
743 iio_push_to_buffers_with_timestamp(indio_dev, data->buffer,
744 data->timestamp);
746 out_unlock:
747 mutex_unlock(&data->lock);
749 iio_trigger_notify_done(indio_dev->trig);
751 return IRQ_HANDLED;
754 static int fxas21002c_chip_init(struct fxas21002c_data *data)
756 struct device *dev = regmap_get_device(data->regmap);
757 unsigned int chip_id;
758 int ret;
760 ret = regmap_field_read(data->regmap_fields[F_WHO_AM_I], &chip_id);
761 if (ret < 0)
762 return ret;
764 if (chip_id != FXAS21002C_CHIP_ID_1 &&
765 chip_id != FXAS21002C_CHIP_ID_2) {
766 dev_err(dev, "chip id 0x%02x is not supported\n", chip_id);
767 return -EINVAL;
770 data->chip_id = chip_id;
772 ret = fxas21002c_mode_set(data, FXAS21002C_MODE_STANDBY);
773 if (ret < 0)
774 return ret;
776 /* Set ODR to 200HZ as default */
777 ret = fxas21002c_odr_set(data, 200);
778 if (ret < 0)
779 dev_err(dev, "failed to set ODR: %d\n", ret);
781 return ret;
784 static int fxas21002c_data_rdy_trigger_set_state(struct iio_trigger *trig,
785 bool state)
787 struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
788 struct fxas21002c_data *data = iio_priv(indio_dev);
790 return regmap_field_write(data->regmap_fields[F_INT_EN_DRDY], state);
793 static const struct iio_trigger_ops fxas21002c_trigger_ops = {
794 .set_trigger_state = &fxas21002c_data_rdy_trigger_set_state,
797 static irqreturn_t fxas21002c_data_rdy_handler(int irq, void *private)
799 struct iio_dev *indio_dev = private;
800 struct fxas21002c_data *data = iio_priv(indio_dev);
802 data->timestamp = iio_get_time_ns(indio_dev);
804 return IRQ_WAKE_THREAD;
807 static irqreturn_t fxas21002c_data_rdy_thread(int irq, void *private)
809 struct iio_dev *indio_dev = private;
810 struct fxas21002c_data *data = iio_priv(indio_dev);
811 unsigned int data_ready;
812 int ret;
814 ret = regmap_field_read(data->regmap_fields[F_SRC_DRDY], &data_ready);
815 if (ret < 0)
816 return IRQ_NONE;
818 if (!data_ready)
819 return IRQ_NONE;
821 iio_trigger_poll_chained(data->dready_trig);
823 return IRQ_HANDLED;
826 static int fxas21002c_trigger_probe(struct fxas21002c_data *data)
828 struct device *dev = regmap_get_device(data->regmap);
829 struct iio_dev *indio_dev = dev_get_drvdata(dev);
830 struct device_node *np = indio_dev->dev.of_node;
831 unsigned long irq_trig;
832 bool irq_open_drain;
833 int irq1;
834 int ret;
836 if (!data->irq)
837 return 0;
839 irq1 = of_irq_get_byname(np, "INT1");
841 if (irq1 == data->irq) {
842 dev_info(dev, "using interrupt line INT1\n");
843 ret = regmap_field_write(data->regmap_fields[F_INT_CFG_DRDY],
845 if (ret < 0)
846 return ret;
849 dev_info(dev, "using interrupt line INT2\n");
851 irq_open_drain = of_property_read_bool(np, "drive-open-drain");
853 data->dready_trig = devm_iio_trigger_alloc(dev, "%s-dev%d",
854 indio_dev->name,
855 indio_dev->id);
856 if (!data->dready_trig)
857 return -ENOMEM;
859 irq_trig = irqd_get_trigger_type(irq_get_irq_data(data->irq));
861 if (irq_trig == IRQF_TRIGGER_RISING) {
862 ret = regmap_field_write(data->regmap_fields[F_IPOL], 1);
863 if (ret < 0)
864 return ret;
867 if (irq_open_drain)
868 irq_trig |= IRQF_SHARED;
870 ret = devm_request_threaded_irq(dev, data->irq,
871 fxas21002c_data_rdy_handler,
872 fxas21002c_data_rdy_thread,
873 irq_trig, "fxas21002c_data_ready",
874 indio_dev);
875 if (ret < 0)
876 return ret;
878 data->dready_trig->dev.parent = dev;
879 data->dready_trig->ops = &fxas21002c_trigger_ops;
880 iio_trigger_set_drvdata(data->dready_trig, indio_dev);
882 return devm_iio_trigger_register(dev, data->dready_trig);
885 static int fxas21002c_power_enable(struct fxas21002c_data *data)
887 int ret;
889 ret = regulator_enable(data->vdd);
890 if (ret < 0)
891 return ret;
893 ret = regulator_enable(data->vddio);
894 if (ret < 0) {
895 regulator_disable(data->vdd);
896 return ret;
899 return 0;
902 static void fxas21002c_power_disable(struct fxas21002c_data *data)
904 regulator_disable(data->vdd);
905 regulator_disable(data->vddio);
908 static void fxas21002c_power_disable_action(void *_data)
910 struct fxas21002c_data *data = _data;
912 fxas21002c_power_disable(data);
915 static int fxas21002c_regulators_get(struct fxas21002c_data *data)
917 struct device *dev = regmap_get_device(data->regmap);
919 data->vdd = devm_regulator_get(dev->parent, "vdd");
920 if (IS_ERR(data->vdd))
921 return PTR_ERR(data->vdd);
923 data->vddio = devm_regulator_get(dev->parent, "vddio");
925 return PTR_ERR_OR_ZERO(data->vddio);
928 int fxas21002c_core_probe(struct device *dev, struct regmap *regmap, int irq,
929 const char *name)
931 struct fxas21002c_data *data;
932 struct iio_dev *indio_dev;
933 struct regmap_field *f;
934 int i;
935 int ret;
937 indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
938 if (!indio_dev)
939 return -ENOMEM;
941 data = iio_priv(indio_dev);
942 dev_set_drvdata(dev, indio_dev);
943 data->irq = irq;
944 data->regmap = regmap;
946 for (i = 0; i < F_MAX_FIELDS; i++) {
947 f = devm_regmap_field_alloc(dev, data->regmap,
948 fxas21002c_reg_fields[i]);
949 if (IS_ERR(f))
950 return PTR_ERR(f);
952 data->regmap_fields[i] = f;
955 mutex_init(&data->lock);
957 ret = fxas21002c_regulators_get(data);
958 if (ret < 0)
959 return ret;
961 ret = fxas21002c_power_enable(data);
962 if (ret < 0)
963 return ret;
965 ret = devm_add_action_or_reset(dev, fxas21002c_power_disable_action,
966 data);
967 if (ret < 0)
968 return ret;
970 ret = fxas21002c_chip_init(data);
971 if (ret < 0)
972 return ret;
974 indio_dev->channels = fxas21002c_channels;
975 indio_dev->num_channels = ARRAY_SIZE(fxas21002c_channels);
976 indio_dev->name = name;
977 indio_dev->modes = INDIO_DIRECT_MODE;
978 indio_dev->info = &fxas21002c_info;
980 ret = fxas21002c_trigger_probe(data);
981 if (ret < 0)
982 return ret;
984 ret = devm_iio_triggered_buffer_setup(dev, indio_dev, NULL,
985 fxas21002c_trigger_handler, NULL);
986 if (ret < 0)
987 return ret;
989 ret = pm_runtime_set_active(dev);
990 if (ret)
991 return ret;
993 pm_runtime_enable(dev);
994 pm_runtime_set_autosuspend_delay(dev, 2000);
995 pm_runtime_use_autosuspend(dev);
997 ret = iio_device_register(indio_dev);
998 if (ret < 0)
999 goto pm_disable;
1001 return 0;
1003 pm_disable:
1004 pm_runtime_disable(dev);
1005 pm_runtime_set_suspended(dev);
1006 pm_runtime_put_noidle(dev);
1008 return ret;
1010 EXPORT_SYMBOL_GPL(fxas21002c_core_probe);
1012 void fxas21002c_core_remove(struct device *dev)
1014 struct iio_dev *indio_dev = dev_get_drvdata(dev);
1016 iio_device_unregister(indio_dev);
1018 pm_runtime_disable(dev);
1019 pm_runtime_set_suspended(dev);
1020 pm_runtime_put_noidle(dev);
1022 EXPORT_SYMBOL_GPL(fxas21002c_core_remove);
1024 static int __maybe_unused fxas21002c_suspend(struct device *dev)
1026 struct fxas21002c_data *data = iio_priv(dev_get_drvdata(dev));
1028 fxas21002c_mode_set(data, FXAS21002C_MODE_STANDBY);
1029 fxas21002c_power_disable(data);
1031 return 0;
1034 static int __maybe_unused fxas21002c_resume(struct device *dev)
1036 struct fxas21002c_data *data = iio_priv(dev_get_drvdata(dev));
1037 int ret;
1039 ret = fxas21002c_power_enable(data);
1040 if (ret < 0)
1041 return ret;
1043 return fxas21002c_mode_set(data, data->prev_mode);
1046 static int __maybe_unused fxas21002c_runtime_suspend(struct device *dev)
1048 struct fxas21002c_data *data = iio_priv(dev_get_drvdata(dev));
1050 return fxas21002c_mode_set(data, FXAS21002C_MODE_READY);
1053 static int __maybe_unused fxas21002c_runtime_resume(struct device *dev)
1055 struct fxas21002c_data *data = iio_priv(dev_get_drvdata(dev));
1057 return fxas21002c_mode_set(data, FXAS21002C_MODE_ACTIVE);
1060 const struct dev_pm_ops fxas21002c_pm_ops = {
1061 SET_SYSTEM_SLEEP_PM_OPS(fxas21002c_suspend, fxas21002c_resume)
1062 SET_RUNTIME_PM_OPS(fxas21002c_runtime_suspend,
1063 fxas21002c_runtime_resume, NULL)
1065 EXPORT_SYMBOL_GPL(fxas21002c_pm_ops);
1067 MODULE_AUTHOR("Rui Miguel Silva <rui.silva@linaro.org>");
1068 MODULE_LICENSE("GPL v2");
1069 MODULE_DESCRIPTION("FXAS21002C Gyro driver");