Merge tag 'block-5.11-2021-01-10' of git://git.kernel.dk/linux-block
[linux/fpc-iii.git] / drivers / iio / health / afe4404.c
blob61fe4932d81d02269a7b5f776a037da83724b952
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * AFE4404 Heart Rate Monitors and Low-Cost Pulse Oximeters
5 * Copyright (C) 2015-2016 Texas Instruments Incorporated - https://www.ti.com/
6 * Andrew F. Davis <afd@ti.com>
7 */
9 #include <linux/device.h>
10 #include <linux/err.h>
11 #include <linux/interrupt.h>
12 #include <linux/i2c.h>
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/regmap.h>
16 #include <linux/sysfs.h>
17 #include <linux/regulator/consumer.h>
19 #include <linux/iio/iio.h>
20 #include <linux/iio/sysfs.h>
21 #include <linux/iio/buffer.h>
22 #include <linux/iio/trigger.h>
23 #include <linux/iio/triggered_buffer.h>
24 #include <linux/iio/trigger_consumer.h>
26 #include "afe440x.h"
28 #define AFE4404_DRIVER_NAME "afe4404"
30 /* AFE4404 registers */
31 #define AFE4404_TIA_GAIN_SEP 0x20
32 #define AFE4404_TIA_GAIN 0x21
33 #define AFE4404_PROG_TG_STC 0x34
34 #define AFE4404_PROG_TG_ENDC 0x35
35 #define AFE4404_LED3LEDSTC 0x36
36 #define AFE4404_LED3LEDENDC 0x37
37 #define AFE4404_CLKDIV_PRF 0x39
38 #define AFE4404_OFFDAC 0x3a
39 #define AFE4404_DEC 0x3d
40 #define AFE4404_AVG_LED2_ALED2VAL 0x3f
41 #define AFE4404_AVG_LED1_ALED1VAL 0x40
43 /* AFE4404 CONTROL2 register fields */
44 #define AFE440X_CONTROL2_OSC_ENABLE BIT(9)
46 enum afe4404_fields {
47 /* Gains */
48 F_TIA_GAIN_SEP, F_TIA_CF_SEP,
49 F_TIA_GAIN, TIA_CF,
51 /* LED Current */
52 F_ILED1, F_ILED2, F_ILED3,
54 /* Offset DAC */
55 F_OFFDAC_AMB2, F_OFFDAC_LED1, F_OFFDAC_AMB1, F_OFFDAC_LED2,
57 /* sentinel */
58 F_MAX_FIELDS
61 static const struct reg_field afe4404_reg_fields[] = {
62 /* Gains */
63 [F_TIA_GAIN_SEP] = REG_FIELD(AFE4404_TIA_GAIN_SEP, 0, 2),
64 [F_TIA_CF_SEP] = REG_FIELD(AFE4404_TIA_GAIN_SEP, 3, 5),
65 [F_TIA_GAIN] = REG_FIELD(AFE4404_TIA_GAIN, 0, 2),
66 [TIA_CF] = REG_FIELD(AFE4404_TIA_GAIN, 3, 5),
67 /* LED Current */
68 [F_ILED1] = REG_FIELD(AFE440X_LEDCNTRL, 0, 5),
69 [F_ILED2] = REG_FIELD(AFE440X_LEDCNTRL, 6, 11),
70 [F_ILED3] = REG_FIELD(AFE440X_LEDCNTRL, 12, 17),
71 /* Offset DAC */
72 [F_OFFDAC_AMB2] = REG_FIELD(AFE4404_OFFDAC, 0, 4),
73 [F_OFFDAC_LED1] = REG_FIELD(AFE4404_OFFDAC, 5, 9),
74 [F_OFFDAC_AMB1] = REG_FIELD(AFE4404_OFFDAC, 10, 14),
75 [F_OFFDAC_LED2] = REG_FIELD(AFE4404_OFFDAC, 15, 19),
78 /**
79 * struct afe4404_data - AFE4404 device instance data
80 * @dev: Device structure
81 * @regmap: Register map of the device
82 * @fields: Register fields of the device
83 * @regulator: Pointer to the regulator for the IC
84 * @trig: IIO trigger for this device
85 * @irq: ADC_RDY line interrupt number
86 * @buffer: Used to construct a scan to push to the iio buffer.
88 struct afe4404_data {
89 struct device *dev;
90 struct regmap *regmap;
91 struct regmap_field *fields[F_MAX_FIELDS];
92 struct regulator *regulator;
93 struct iio_trigger *trig;
94 int irq;
95 s32 buffer[10] __aligned(8);
98 enum afe4404_chan_id {
99 LED2 = 1,
100 ALED2,
101 LED1,
102 ALED1,
103 LED2_ALED2,
104 LED1_ALED1,
107 static const unsigned int afe4404_channel_values[] = {
108 [LED2] = AFE440X_LED2VAL,
109 [ALED2] = AFE440X_ALED2VAL,
110 [LED1] = AFE440X_LED1VAL,
111 [ALED1] = AFE440X_ALED1VAL,
112 [LED2_ALED2] = AFE440X_LED2_ALED2VAL,
113 [LED1_ALED1] = AFE440X_LED1_ALED1VAL,
116 static const unsigned int afe4404_channel_leds[] = {
117 [LED2] = F_ILED2,
118 [ALED2] = F_ILED3,
119 [LED1] = F_ILED1,
122 static const unsigned int afe4404_channel_offdacs[] = {
123 [LED2] = F_OFFDAC_LED2,
124 [ALED2] = F_OFFDAC_AMB2,
125 [LED1] = F_OFFDAC_LED1,
126 [ALED1] = F_OFFDAC_AMB1,
129 static const struct iio_chan_spec afe4404_channels[] = {
130 /* ADC values */
131 AFE440X_INTENSITY_CHAN(LED2, BIT(IIO_CHAN_INFO_OFFSET)),
132 AFE440X_INTENSITY_CHAN(ALED2, BIT(IIO_CHAN_INFO_OFFSET)),
133 AFE440X_INTENSITY_CHAN(LED1, BIT(IIO_CHAN_INFO_OFFSET)),
134 AFE440X_INTENSITY_CHAN(ALED1, BIT(IIO_CHAN_INFO_OFFSET)),
135 AFE440X_INTENSITY_CHAN(LED2_ALED2, 0),
136 AFE440X_INTENSITY_CHAN(LED1_ALED1, 0),
137 /* LED current */
138 AFE440X_CURRENT_CHAN(LED2),
139 AFE440X_CURRENT_CHAN(ALED2),
140 AFE440X_CURRENT_CHAN(LED1),
143 static const struct afe440x_val_table afe4404_res_table[] = {
144 { .integer = 500000, .fract = 0 },
145 { .integer = 250000, .fract = 0 },
146 { .integer = 100000, .fract = 0 },
147 { .integer = 50000, .fract = 0 },
148 { .integer = 25000, .fract = 0 },
149 { .integer = 10000, .fract = 0 },
150 { .integer = 1000000, .fract = 0 },
151 { .integer = 2000000, .fract = 0 },
153 AFE440X_TABLE_ATTR(in_intensity_resistance_available, afe4404_res_table);
155 static const struct afe440x_val_table afe4404_cap_table[] = {
156 { .integer = 0, .fract = 5000 },
157 { .integer = 0, .fract = 2500 },
158 { .integer = 0, .fract = 10000 },
159 { .integer = 0, .fract = 7500 },
160 { .integer = 0, .fract = 20000 },
161 { .integer = 0, .fract = 17500 },
162 { .integer = 0, .fract = 25000 },
163 { .integer = 0, .fract = 22500 },
165 AFE440X_TABLE_ATTR(in_intensity_capacitance_available, afe4404_cap_table);
167 static ssize_t afe440x_show_register(struct device *dev,
168 struct device_attribute *attr,
169 char *buf)
171 struct iio_dev *indio_dev = dev_to_iio_dev(dev);
172 struct afe4404_data *afe = iio_priv(indio_dev);
173 struct afe440x_attr *afe440x_attr = to_afe440x_attr(attr);
174 unsigned int reg_val;
175 int vals[2];
176 int ret;
178 ret = regmap_field_read(afe->fields[afe440x_attr->field], &reg_val);
179 if (ret)
180 return ret;
182 if (reg_val >= afe440x_attr->table_size)
183 return -EINVAL;
185 vals[0] = afe440x_attr->val_table[reg_val].integer;
186 vals[1] = afe440x_attr->val_table[reg_val].fract;
188 return iio_format_value(buf, IIO_VAL_INT_PLUS_MICRO, 2, vals);
191 static ssize_t afe440x_store_register(struct device *dev,
192 struct device_attribute *attr,
193 const char *buf, size_t count)
195 struct iio_dev *indio_dev = dev_to_iio_dev(dev);
196 struct afe4404_data *afe = iio_priv(indio_dev);
197 struct afe440x_attr *afe440x_attr = to_afe440x_attr(attr);
198 int val, integer, fract, ret;
200 ret = iio_str_to_fixpoint(buf, 100000, &integer, &fract);
201 if (ret)
202 return ret;
204 for (val = 0; val < afe440x_attr->table_size; val++)
205 if (afe440x_attr->val_table[val].integer == integer &&
206 afe440x_attr->val_table[val].fract == fract)
207 break;
208 if (val == afe440x_attr->table_size)
209 return -EINVAL;
211 ret = regmap_field_write(afe->fields[afe440x_attr->field], val);
212 if (ret)
213 return ret;
215 return count;
218 static AFE440X_ATTR(in_intensity1_resistance, F_TIA_GAIN_SEP, afe4404_res_table);
219 static AFE440X_ATTR(in_intensity1_capacitance, F_TIA_CF_SEP, afe4404_cap_table);
221 static AFE440X_ATTR(in_intensity2_resistance, F_TIA_GAIN_SEP, afe4404_res_table);
222 static AFE440X_ATTR(in_intensity2_capacitance, F_TIA_CF_SEP, afe4404_cap_table);
224 static AFE440X_ATTR(in_intensity3_resistance, F_TIA_GAIN, afe4404_res_table);
225 static AFE440X_ATTR(in_intensity3_capacitance, TIA_CF, afe4404_cap_table);
227 static AFE440X_ATTR(in_intensity4_resistance, F_TIA_GAIN, afe4404_res_table);
228 static AFE440X_ATTR(in_intensity4_capacitance, TIA_CF, afe4404_cap_table);
230 static struct attribute *afe440x_attributes[] = {
231 &dev_attr_in_intensity_resistance_available.attr,
232 &dev_attr_in_intensity_capacitance_available.attr,
233 &afe440x_attr_in_intensity1_resistance.dev_attr.attr,
234 &afe440x_attr_in_intensity1_capacitance.dev_attr.attr,
235 &afe440x_attr_in_intensity2_resistance.dev_attr.attr,
236 &afe440x_attr_in_intensity2_capacitance.dev_attr.attr,
237 &afe440x_attr_in_intensity3_resistance.dev_attr.attr,
238 &afe440x_attr_in_intensity3_capacitance.dev_attr.attr,
239 &afe440x_attr_in_intensity4_resistance.dev_attr.attr,
240 &afe440x_attr_in_intensity4_capacitance.dev_attr.attr,
241 NULL
244 static const struct attribute_group afe440x_attribute_group = {
245 .attrs = afe440x_attributes
248 static int afe4404_read_raw(struct iio_dev *indio_dev,
249 struct iio_chan_spec const *chan,
250 int *val, int *val2, long mask)
252 struct afe4404_data *afe = iio_priv(indio_dev);
253 unsigned int value_reg = afe4404_channel_values[chan->address];
254 unsigned int led_field = afe4404_channel_leds[chan->address];
255 unsigned int offdac_field = afe4404_channel_offdacs[chan->address];
256 int ret;
258 switch (chan->type) {
259 case IIO_INTENSITY:
260 switch (mask) {
261 case IIO_CHAN_INFO_RAW:
262 ret = regmap_read(afe->regmap, value_reg, val);
263 if (ret)
264 return ret;
265 return IIO_VAL_INT;
266 case IIO_CHAN_INFO_OFFSET:
267 ret = regmap_field_read(afe->fields[offdac_field], val);
268 if (ret)
269 return ret;
270 return IIO_VAL_INT;
272 break;
273 case IIO_CURRENT:
274 switch (mask) {
275 case IIO_CHAN_INFO_RAW:
276 ret = regmap_field_read(afe->fields[led_field], val);
277 if (ret)
278 return ret;
279 return IIO_VAL_INT;
280 case IIO_CHAN_INFO_SCALE:
281 *val = 0;
282 *val2 = 800000;
283 return IIO_VAL_INT_PLUS_MICRO;
285 break;
286 default:
287 break;
290 return -EINVAL;
293 static int afe4404_write_raw(struct iio_dev *indio_dev,
294 struct iio_chan_spec const *chan,
295 int val, int val2, long mask)
297 struct afe4404_data *afe = iio_priv(indio_dev);
298 unsigned int led_field = afe4404_channel_leds[chan->address];
299 unsigned int offdac_field = afe4404_channel_offdacs[chan->address];
301 switch (chan->type) {
302 case IIO_INTENSITY:
303 switch (mask) {
304 case IIO_CHAN_INFO_OFFSET:
305 return regmap_field_write(afe->fields[offdac_field], val);
307 break;
308 case IIO_CURRENT:
309 switch (mask) {
310 case IIO_CHAN_INFO_RAW:
311 return regmap_field_write(afe->fields[led_field], val);
313 break;
314 default:
315 break;
318 return -EINVAL;
321 static const struct iio_info afe4404_iio_info = {
322 .attrs = &afe440x_attribute_group,
323 .read_raw = afe4404_read_raw,
324 .write_raw = afe4404_write_raw,
327 static irqreturn_t afe4404_trigger_handler(int irq, void *private)
329 struct iio_poll_func *pf = private;
330 struct iio_dev *indio_dev = pf->indio_dev;
331 struct afe4404_data *afe = iio_priv(indio_dev);
332 int ret, bit, i = 0;
334 for_each_set_bit(bit, indio_dev->active_scan_mask,
335 indio_dev->masklength) {
336 ret = regmap_read(afe->regmap, afe4404_channel_values[bit],
337 &afe->buffer[i++]);
338 if (ret)
339 goto err;
342 iio_push_to_buffers_with_timestamp(indio_dev, afe->buffer,
343 pf->timestamp);
344 err:
345 iio_trigger_notify_done(indio_dev->trig);
347 return IRQ_HANDLED;
350 static const struct iio_trigger_ops afe4404_trigger_ops = {
353 /* Default timings from data-sheet */
354 #define AFE4404_TIMING_PAIRS \
355 { AFE440X_PRPCOUNT, 39999 }, \
356 { AFE440X_LED2LEDSTC, 0 }, \
357 { AFE440X_LED2LEDENDC, 398 }, \
358 { AFE440X_LED2STC, 80 }, \
359 { AFE440X_LED2ENDC, 398 }, \
360 { AFE440X_ADCRSTSTCT0, 5600 }, \
361 { AFE440X_ADCRSTENDCT0, 5606 }, \
362 { AFE440X_LED2CONVST, 5607 }, \
363 { AFE440X_LED2CONVEND, 6066 }, \
364 { AFE4404_LED3LEDSTC, 400 }, \
365 { AFE4404_LED3LEDENDC, 798 }, \
366 { AFE440X_ALED2STC, 480 }, \
367 { AFE440X_ALED2ENDC, 798 }, \
368 { AFE440X_ADCRSTSTCT1, 6068 }, \
369 { AFE440X_ADCRSTENDCT1, 6074 }, \
370 { AFE440X_ALED2CONVST, 6075 }, \
371 { AFE440X_ALED2CONVEND, 6534 }, \
372 { AFE440X_LED1LEDSTC, 800 }, \
373 { AFE440X_LED1LEDENDC, 1198 }, \
374 { AFE440X_LED1STC, 880 }, \
375 { AFE440X_LED1ENDC, 1198 }, \
376 { AFE440X_ADCRSTSTCT2, 6536 }, \
377 { AFE440X_ADCRSTENDCT2, 6542 }, \
378 { AFE440X_LED1CONVST, 6543 }, \
379 { AFE440X_LED1CONVEND, 7003 }, \
380 { AFE440X_ALED1STC, 1280 }, \
381 { AFE440X_ALED1ENDC, 1598 }, \
382 { AFE440X_ADCRSTSTCT3, 7005 }, \
383 { AFE440X_ADCRSTENDCT3, 7011 }, \
384 { AFE440X_ALED1CONVST, 7012 }, \
385 { AFE440X_ALED1CONVEND, 7471 }, \
386 { AFE440X_PDNCYCLESTC, 7671 }, \
387 { AFE440X_PDNCYCLEENDC, 39199 }
389 static const struct reg_sequence afe4404_reg_sequences[] = {
390 AFE4404_TIMING_PAIRS,
391 { AFE440X_CONTROL1, AFE440X_CONTROL1_TIMEREN },
392 { AFE4404_TIA_GAIN_SEP, AFE440X_TIAGAIN_ENSEPGAIN },
393 { AFE440X_CONTROL2, AFE440X_CONTROL2_OSC_ENABLE },
396 static const struct regmap_range afe4404_yes_ranges[] = {
397 regmap_reg_range(AFE440X_LED2VAL, AFE440X_LED1_ALED1VAL),
398 regmap_reg_range(AFE4404_AVG_LED2_ALED2VAL, AFE4404_AVG_LED1_ALED1VAL),
401 static const struct regmap_access_table afe4404_volatile_table = {
402 .yes_ranges = afe4404_yes_ranges,
403 .n_yes_ranges = ARRAY_SIZE(afe4404_yes_ranges),
406 static const struct regmap_config afe4404_regmap_config = {
407 .reg_bits = 8,
408 .val_bits = 24,
410 .max_register = AFE4404_AVG_LED1_ALED1VAL,
411 .cache_type = REGCACHE_RBTREE,
412 .volatile_table = &afe4404_volatile_table,
415 static const struct of_device_id afe4404_of_match[] = {
416 { .compatible = "ti,afe4404", },
417 { /* sentinel */ }
419 MODULE_DEVICE_TABLE(of, afe4404_of_match);
421 static int __maybe_unused afe4404_suspend(struct device *dev)
423 struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
424 struct afe4404_data *afe = iio_priv(indio_dev);
425 int ret;
427 ret = regmap_update_bits(afe->regmap, AFE440X_CONTROL2,
428 AFE440X_CONTROL2_PDN_AFE,
429 AFE440X_CONTROL2_PDN_AFE);
430 if (ret)
431 return ret;
433 ret = regulator_disable(afe->regulator);
434 if (ret) {
435 dev_err(dev, "Unable to disable regulator\n");
436 return ret;
439 return 0;
442 static int __maybe_unused afe4404_resume(struct device *dev)
444 struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
445 struct afe4404_data *afe = iio_priv(indio_dev);
446 int ret;
448 ret = regulator_enable(afe->regulator);
449 if (ret) {
450 dev_err(dev, "Unable to enable regulator\n");
451 return ret;
454 ret = regmap_update_bits(afe->regmap, AFE440X_CONTROL2,
455 AFE440X_CONTROL2_PDN_AFE, 0);
456 if (ret)
457 return ret;
459 return 0;
462 static SIMPLE_DEV_PM_OPS(afe4404_pm_ops, afe4404_suspend, afe4404_resume);
464 static int afe4404_probe(struct i2c_client *client,
465 const struct i2c_device_id *id)
467 struct iio_dev *indio_dev;
468 struct afe4404_data *afe;
469 int i, ret;
471 indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*afe));
472 if (!indio_dev)
473 return -ENOMEM;
475 afe = iio_priv(indio_dev);
476 i2c_set_clientdata(client, indio_dev);
478 afe->dev = &client->dev;
479 afe->irq = client->irq;
481 afe->regmap = devm_regmap_init_i2c(client, &afe4404_regmap_config);
482 if (IS_ERR(afe->regmap)) {
483 dev_err(afe->dev, "Unable to allocate register map\n");
484 return PTR_ERR(afe->regmap);
487 for (i = 0; i < F_MAX_FIELDS; i++) {
488 afe->fields[i] = devm_regmap_field_alloc(afe->dev, afe->regmap,
489 afe4404_reg_fields[i]);
490 if (IS_ERR(afe->fields[i])) {
491 dev_err(afe->dev, "Unable to allocate regmap fields\n");
492 return PTR_ERR(afe->fields[i]);
496 afe->regulator = devm_regulator_get(afe->dev, "tx_sup");
497 if (IS_ERR(afe->regulator)) {
498 dev_err(afe->dev, "Unable to get regulator\n");
499 return PTR_ERR(afe->regulator);
501 ret = regulator_enable(afe->regulator);
502 if (ret) {
503 dev_err(afe->dev, "Unable to enable regulator\n");
504 return ret;
507 ret = regmap_write(afe->regmap, AFE440X_CONTROL0,
508 AFE440X_CONTROL0_SW_RESET);
509 if (ret) {
510 dev_err(afe->dev, "Unable to reset device\n");
511 goto disable_reg;
514 ret = regmap_multi_reg_write(afe->regmap, afe4404_reg_sequences,
515 ARRAY_SIZE(afe4404_reg_sequences));
516 if (ret) {
517 dev_err(afe->dev, "Unable to set register defaults\n");
518 goto disable_reg;
521 indio_dev->modes = INDIO_DIRECT_MODE;
522 indio_dev->channels = afe4404_channels;
523 indio_dev->num_channels = ARRAY_SIZE(afe4404_channels);
524 indio_dev->name = AFE4404_DRIVER_NAME;
525 indio_dev->info = &afe4404_iio_info;
527 if (afe->irq > 0) {
528 afe->trig = devm_iio_trigger_alloc(afe->dev,
529 "%s-dev%d",
530 indio_dev->name,
531 indio_dev->id);
532 if (!afe->trig) {
533 dev_err(afe->dev, "Unable to allocate IIO trigger\n");
534 ret = -ENOMEM;
535 goto disable_reg;
538 iio_trigger_set_drvdata(afe->trig, indio_dev);
540 afe->trig->ops = &afe4404_trigger_ops;
541 afe->trig->dev.parent = afe->dev;
543 ret = iio_trigger_register(afe->trig);
544 if (ret) {
545 dev_err(afe->dev, "Unable to register IIO trigger\n");
546 goto disable_reg;
549 ret = devm_request_threaded_irq(afe->dev, afe->irq,
550 iio_trigger_generic_data_rdy_poll,
551 NULL, IRQF_ONESHOT,
552 AFE4404_DRIVER_NAME,
553 afe->trig);
554 if (ret) {
555 dev_err(afe->dev, "Unable to request IRQ\n");
556 goto disable_reg;
560 ret = iio_triggered_buffer_setup(indio_dev, &iio_pollfunc_store_time,
561 afe4404_trigger_handler, NULL);
562 if (ret) {
563 dev_err(afe->dev, "Unable to setup buffer\n");
564 goto unregister_trigger;
567 ret = iio_device_register(indio_dev);
568 if (ret) {
569 dev_err(afe->dev, "Unable to register IIO device\n");
570 goto unregister_triggered_buffer;
573 return 0;
575 unregister_triggered_buffer:
576 iio_triggered_buffer_cleanup(indio_dev);
577 unregister_trigger:
578 if (afe->irq > 0)
579 iio_trigger_unregister(afe->trig);
580 disable_reg:
581 regulator_disable(afe->regulator);
583 return ret;
586 static int afe4404_remove(struct i2c_client *client)
588 struct iio_dev *indio_dev = i2c_get_clientdata(client);
589 struct afe4404_data *afe = iio_priv(indio_dev);
590 int ret;
592 iio_device_unregister(indio_dev);
594 iio_triggered_buffer_cleanup(indio_dev);
596 if (afe->irq > 0)
597 iio_trigger_unregister(afe->trig);
599 ret = regulator_disable(afe->regulator);
600 if (ret) {
601 dev_err(afe->dev, "Unable to disable regulator\n");
602 return ret;
605 return 0;
608 static const struct i2c_device_id afe4404_ids[] = {
609 { "afe4404", 0 },
610 { /* sentinel */ }
612 MODULE_DEVICE_TABLE(i2c, afe4404_ids);
614 static struct i2c_driver afe4404_i2c_driver = {
615 .driver = {
616 .name = AFE4404_DRIVER_NAME,
617 .of_match_table = afe4404_of_match,
618 .pm = &afe4404_pm_ops,
620 .probe = afe4404_probe,
621 .remove = afe4404_remove,
622 .id_table = afe4404_ids,
624 module_i2c_driver(afe4404_i2c_driver);
626 MODULE_AUTHOR("Andrew F. Davis <afd@ti.com>");
627 MODULE_DESCRIPTION("TI AFE4404 Heart Rate Monitor and Pulse Oximeter AFE");
628 MODULE_LICENSE("GPL v2");