Merge tag 'block-5.11-2021-01-10' of git://git.kernel.dk/linux-block
[linux/fpc-iii.git] / drivers / infiniband / core / rw.c
bloba96030b784eb21cf5f3885002d162fcc1ed70414
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (c) 2016 HGST, a Western Digital Company.
4 */
5 #include <linux/moduleparam.h>
6 #include <linux/slab.h>
7 #include <linux/pci-p2pdma.h>
8 #include <rdma/mr_pool.h>
9 #include <rdma/rw.h>
11 enum {
12 RDMA_RW_SINGLE_WR,
13 RDMA_RW_MULTI_WR,
14 RDMA_RW_MR,
15 RDMA_RW_SIG_MR,
18 static bool rdma_rw_force_mr;
19 module_param_named(force_mr, rdma_rw_force_mr, bool, 0);
20 MODULE_PARM_DESC(force_mr, "Force usage of MRs for RDMA READ/WRITE operations");
23 * Report whether memory registration should be used. Memory registration must
24 * be used for iWarp devices because of iWARP-specific limitations. Memory
25 * registration is also enabled if registering memory might yield better
26 * performance than using multiple SGE entries, see rdma_rw_io_needs_mr()
28 static inline bool rdma_rw_can_use_mr(struct ib_device *dev, u8 port_num)
30 if (rdma_protocol_iwarp(dev, port_num))
31 return true;
32 if (dev->attrs.max_sgl_rd)
33 return true;
34 if (unlikely(rdma_rw_force_mr))
35 return true;
36 return false;
40 * Check if the device will use memory registration for this RW operation.
41 * For RDMA READs we must use MRs on iWarp and can optionally use them as an
42 * optimization otherwise. Additionally we have a debug option to force usage
43 * of MRs to help testing this code path.
45 static inline bool rdma_rw_io_needs_mr(struct ib_device *dev, u8 port_num,
46 enum dma_data_direction dir, int dma_nents)
48 if (dir == DMA_FROM_DEVICE) {
49 if (rdma_protocol_iwarp(dev, port_num))
50 return true;
51 if (dev->attrs.max_sgl_rd && dma_nents > dev->attrs.max_sgl_rd)
52 return true;
54 if (unlikely(rdma_rw_force_mr))
55 return true;
56 return false;
59 static inline u32 rdma_rw_fr_page_list_len(struct ib_device *dev,
60 bool pi_support)
62 u32 max_pages;
64 if (pi_support)
65 max_pages = dev->attrs.max_pi_fast_reg_page_list_len;
66 else
67 max_pages = dev->attrs.max_fast_reg_page_list_len;
69 /* arbitrary limit to avoid allocating gigantic resources */
70 return min_t(u32, max_pages, 256);
73 static inline int rdma_rw_inv_key(struct rdma_rw_reg_ctx *reg)
75 int count = 0;
77 if (reg->mr->need_inval) {
78 reg->inv_wr.opcode = IB_WR_LOCAL_INV;
79 reg->inv_wr.ex.invalidate_rkey = reg->mr->lkey;
80 reg->inv_wr.next = &reg->reg_wr.wr;
81 count++;
82 } else {
83 reg->inv_wr.next = NULL;
86 return count;
89 /* Caller must have zero-initialized *reg. */
90 static int rdma_rw_init_one_mr(struct ib_qp *qp, u8 port_num,
91 struct rdma_rw_reg_ctx *reg, struct scatterlist *sg,
92 u32 sg_cnt, u32 offset)
94 u32 pages_per_mr = rdma_rw_fr_page_list_len(qp->pd->device,
95 qp->integrity_en);
96 u32 nents = min(sg_cnt, pages_per_mr);
97 int count = 0, ret;
99 reg->mr = ib_mr_pool_get(qp, &qp->rdma_mrs);
100 if (!reg->mr)
101 return -EAGAIN;
103 count += rdma_rw_inv_key(reg);
105 ret = ib_map_mr_sg(reg->mr, sg, nents, &offset, PAGE_SIZE);
106 if (ret < 0 || ret < nents) {
107 ib_mr_pool_put(qp, &qp->rdma_mrs, reg->mr);
108 return -EINVAL;
111 reg->reg_wr.wr.opcode = IB_WR_REG_MR;
112 reg->reg_wr.mr = reg->mr;
113 reg->reg_wr.access = IB_ACCESS_LOCAL_WRITE;
114 if (rdma_protocol_iwarp(qp->device, port_num))
115 reg->reg_wr.access |= IB_ACCESS_REMOTE_WRITE;
116 count++;
118 reg->sge.addr = reg->mr->iova;
119 reg->sge.length = reg->mr->length;
120 return count;
123 static int rdma_rw_init_mr_wrs(struct rdma_rw_ctx *ctx, struct ib_qp *qp,
124 u8 port_num, struct scatterlist *sg, u32 sg_cnt, u32 offset,
125 u64 remote_addr, u32 rkey, enum dma_data_direction dir)
127 struct rdma_rw_reg_ctx *prev = NULL;
128 u32 pages_per_mr = rdma_rw_fr_page_list_len(qp->pd->device,
129 qp->integrity_en);
130 int i, j, ret = 0, count = 0;
132 ctx->nr_ops = DIV_ROUND_UP(sg_cnt, pages_per_mr);
133 ctx->reg = kcalloc(ctx->nr_ops, sizeof(*ctx->reg), GFP_KERNEL);
134 if (!ctx->reg) {
135 ret = -ENOMEM;
136 goto out;
139 for (i = 0; i < ctx->nr_ops; i++) {
140 struct rdma_rw_reg_ctx *reg = &ctx->reg[i];
141 u32 nents = min(sg_cnt, pages_per_mr);
143 ret = rdma_rw_init_one_mr(qp, port_num, reg, sg, sg_cnt,
144 offset);
145 if (ret < 0)
146 goto out_free;
147 count += ret;
149 if (prev) {
150 if (reg->mr->need_inval)
151 prev->wr.wr.next = &reg->inv_wr;
152 else
153 prev->wr.wr.next = &reg->reg_wr.wr;
156 reg->reg_wr.wr.next = &reg->wr.wr;
158 reg->wr.wr.sg_list = &reg->sge;
159 reg->wr.wr.num_sge = 1;
160 reg->wr.remote_addr = remote_addr;
161 reg->wr.rkey = rkey;
162 if (dir == DMA_TO_DEVICE) {
163 reg->wr.wr.opcode = IB_WR_RDMA_WRITE;
164 } else if (!rdma_cap_read_inv(qp->device, port_num)) {
165 reg->wr.wr.opcode = IB_WR_RDMA_READ;
166 } else {
167 reg->wr.wr.opcode = IB_WR_RDMA_READ_WITH_INV;
168 reg->wr.wr.ex.invalidate_rkey = reg->mr->lkey;
170 count++;
172 remote_addr += reg->sge.length;
173 sg_cnt -= nents;
174 for (j = 0; j < nents; j++)
175 sg = sg_next(sg);
176 prev = reg;
177 offset = 0;
180 if (prev)
181 prev->wr.wr.next = NULL;
183 ctx->type = RDMA_RW_MR;
184 return count;
186 out_free:
187 while (--i >= 0)
188 ib_mr_pool_put(qp, &qp->rdma_mrs, ctx->reg[i].mr);
189 kfree(ctx->reg);
190 out:
191 return ret;
194 static int rdma_rw_init_map_wrs(struct rdma_rw_ctx *ctx, struct ib_qp *qp,
195 struct scatterlist *sg, u32 sg_cnt, u32 offset,
196 u64 remote_addr, u32 rkey, enum dma_data_direction dir)
198 u32 max_sge = dir == DMA_TO_DEVICE ? qp->max_write_sge :
199 qp->max_read_sge;
200 struct ib_sge *sge;
201 u32 total_len = 0, i, j;
203 ctx->nr_ops = DIV_ROUND_UP(sg_cnt, max_sge);
205 ctx->map.sges = sge = kcalloc(sg_cnt, sizeof(*sge), GFP_KERNEL);
206 if (!ctx->map.sges)
207 goto out;
209 ctx->map.wrs = kcalloc(ctx->nr_ops, sizeof(*ctx->map.wrs), GFP_KERNEL);
210 if (!ctx->map.wrs)
211 goto out_free_sges;
213 for (i = 0; i < ctx->nr_ops; i++) {
214 struct ib_rdma_wr *rdma_wr = &ctx->map.wrs[i];
215 u32 nr_sge = min(sg_cnt, max_sge);
217 if (dir == DMA_TO_DEVICE)
218 rdma_wr->wr.opcode = IB_WR_RDMA_WRITE;
219 else
220 rdma_wr->wr.opcode = IB_WR_RDMA_READ;
221 rdma_wr->remote_addr = remote_addr + total_len;
222 rdma_wr->rkey = rkey;
223 rdma_wr->wr.num_sge = nr_sge;
224 rdma_wr->wr.sg_list = sge;
226 for (j = 0; j < nr_sge; j++, sg = sg_next(sg)) {
227 sge->addr = sg_dma_address(sg) + offset;
228 sge->length = sg_dma_len(sg) - offset;
229 sge->lkey = qp->pd->local_dma_lkey;
231 total_len += sge->length;
232 sge++;
233 sg_cnt--;
234 offset = 0;
237 rdma_wr->wr.next = i + 1 < ctx->nr_ops ?
238 &ctx->map.wrs[i + 1].wr : NULL;
241 ctx->type = RDMA_RW_MULTI_WR;
242 return ctx->nr_ops;
244 out_free_sges:
245 kfree(ctx->map.sges);
246 out:
247 return -ENOMEM;
250 static int rdma_rw_init_single_wr(struct rdma_rw_ctx *ctx, struct ib_qp *qp,
251 struct scatterlist *sg, u32 offset, u64 remote_addr, u32 rkey,
252 enum dma_data_direction dir)
254 struct ib_rdma_wr *rdma_wr = &ctx->single.wr;
256 ctx->nr_ops = 1;
258 ctx->single.sge.lkey = qp->pd->local_dma_lkey;
259 ctx->single.sge.addr = sg_dma_address(sg) + offset;
260 ctx->single.sge.length = sg_dma_len(sg) - offset;
262 memset(rdma_wr, 0, sizeof(*rdma_wr));
263 if (dir == DMA_TO_DEVICE)
264 rdma_wr->wr.opcode = IB_WR_RDMA_WRITE;
265 else
266 rdma_wr->wr.opcode = IB_WR_RDMA_READ;
267 rdma_wr->wr.sg_list = &ctx->single.sge;
268 rdma_wr->wr.num_sge = 1;
269 rdma_wr->remote_addr = remote_addr;
270 rdma_wr->rkey = rkey;
272 ctx->type = RDMA_RW_SINGLE_WR;
273 return 1;
276 static void rdma_rw_unmap_sg(struct ib_device *dev, struct scatterlist *sg,
277 u32 sg_cnt, enum dma_data_direction dir)
279 if (is_pci_p2pdma_page(sg_page(sg)))
280 pci_p2pdma_unmap_sg(dev->dma_device, sg, sg_cnt, dir);
281 else
282 ib_dma_unmap_sg(dev, sg, sg_cnt, dir);
285 static int rdma_rw_map_sg(struct ib_device *dev, struct scatterlist *sg,
286 u32 sg_cnt, enum dma_data_direction dir)
288 if (is_pci_p2pdma_page(sg_page(sg))) {
289 if (WARN_ON_ONCE(ib_uses_virt_dma(dev)))
290 return 0;
291 return pci_p2pdma_map_sg(dev->dma_device, sg, sg_cnt, dir);
293 return ib_dma_map_sg(dev, sg, sg_cnt, dir);
297 * rdma_rw_ctx_init - initialize a RDMA READ/WRITE context
298 * @ctx: context to initialize
299 * @qp: queue pair to operate on
300 * @port_num: port num to which the connection is bound
301 * @sg: scatterlist to READ/WRITE from/to
302 * @sg_cnt: number of entries in @sg
303 * @sg_offset: current byte offset into @sg
304 * @remote_addr:remote address to read/write (relative to @rkey)
305 * @rkey: remote key to operate on
306 * @dir: %DMA_TO_DEVICE for RDMA WRITE, %DMA_FROM_DEVICE for RDMA READ
308 * Returns the number of WQEs that will be needed on the workqueue if
309 * successful, or a negative error code.
311 int rdma_rw_ctx_init(struct rdma_rw_ctx *ctx, struct ib_qp *qp, u8 port_num,
312 struct scatterlist *sg, u32 sg_cnt, u32 sg_offset,
313 u64 remote_addr, u32 rkey, enum dma_data_direction dir)
315 struct ib_device *dev = qp->pd->device;
316 int ret;
318 ret = rdma_rw_map_sg(dev, sg, sg_cnt, dir);
319 if (!ret)
320 return -ENOMEM;
321 sg_cnt = ret;
324 * Skip to the S/G entry that sg_offset falls into:
326 for (;;) {
327 u32 len = sg_dma_len(sg);
329 if (sg_offset < len)
330 break;
332 sg = sg_next(sg);
333 sg_offset -= len;
334 sg_cnt--;
337 ret = -EIO;
338 if (WARN_ON_ONCE(sg_cnt == 0))
339 goto out_unmap_sg;
341 if (rdma_rw_io_needs_mr(qp->device, port_num, dir, sg_cnt)) {
342 ret = rdma_rw_init_mr_wrs(ctx, qp, port_num, sg, sg_cnt,
343 sg_offset, remote_addr, rkey, dir);
344 } else if (sg_cnt > 1) {
345 ret = rdma_rw_init_map_wrs(ctx, qp, sg, sg_cnt, sg_offset,
346 remote_addr, rkey, dir);
347 } else {
348 ret = rdma_rw_init_single_wr(ctx, qp, sg, sg_offset,
349 remote_addr, rkey, dir);
352 if (ret < 0)
353 goto out_unmap_sg;
354 return ret;
356 out_unmap_sg:
357 rdma_rw_unmap_sg(dev, sg, sg_cnt, dir);
358 return ret;
360 EXPORT_SYMBOL(rdma_rw_ctx_init);
363 * rdma_rw_ctx_signature_init - initialize a RW context with signature offload
364 * @ctx: context to initialize
365 * @qp: queue pair to operate on
366 * @port_num: port num to which the connection is bound
367 * @sg: scatterlist to READ/WRITE from/to
368 * @sg_cnt: number of entries in @sg
369 * @prot_sg: scatterlist to READ/WRITE protection information from/to
370 * @prot_sg_cnt: number of entries in @prot_sg
371 * @sig_attrs: signature offloading algorithms
372 * @remote_addr:remote address to read/write (relative to @rkey)
373 * @rkey: remote key to operate on
374 * @dir: %DMA_TO_DEVICE for RDMA WRITE, %DMA_FROM_DEVICE for RDMA READ
376 * Returns the number of WQEs that will be needed on the workqueue if
377 * successful, or a negative error code.
379 int rdma_rw_ctx_signature_init(struct rdma_rw_ctx *ctx, struct ib_qp *qp,
380 u8 port_num, struct scatterlist *sg, u32 sg_cnt,
381 struct scatterlist *prot_sg, u32 prot_sg_cnt,
382 struct ib_sig_attrs *sig_attrs,
383 u64 remote_addr, u32 rkey, enum dma_data_direction dir)
385 struct ib_device *dev = qp->pd->device;
386 u32 pages_per_mr = rdma_rw_fr_page_list_len(qp->pd->device,
387 qp->integrity_en);
388 struct ib_rdma_wr *rdma_wr;
389 int count = 0, ret;
391 if (sg_cnt > pages_per_mr || prot_sg_cnt > pages_per_mr) {
392 pr_err("SG count too large: sg_cnt=%d, prot_sg_cnt=%d, pages_per_mr=%d\n",
393 sg_cnt, prot_sg_cnt, pages_per_mr);
394 return -EINVAL;
397 ret = rdma_rw_map_sg(dev, sg, sg_cnt, dir);
398 if (!ret)
399 return -ENOMEM;
400 sg_cnt = ret;
402 if (prot_sg_cnt) {
403 ret = rdma_rw_map_sg(dev, prot_sg, prot_sg_cnt, dir);
404 if (!ret) {
405 ret = -ENOMEM;
406 goto out_unmap_sg;
408 prot_sg_cnt = ret;
411 ctx->type = RDMA_RW_SIG_MR;
412 ctx->nr_ops = 1;
413 ctx->reg = kcalloc(1, sizeof(*ctx->reg), GFP_KERNEL);
414 if (!ctx->reg) {
415 ret = -ENOMEM;
416 goto out_unmap_prot_sg;
419 ctx->reg->mr = ib_mr_pool_get(qp, &qp->sig_mrs);
420 if (!ctx->reg->mr) {
421 ret = -EAGAIN;
422 goto out_free_ctx;
425 count += rdma_rw_inv_key(ctx->reg);
427 memcpy(ctx->reg->mr->sig_attrs, sig_attrs, sizeof(struct ib_sig_attrs));
429 ret = ib_map_mr_sg_pi(ctx->reg->mr, sg, sg_cnt, NULL, prot_sg,
430 prot_sg_cnt, NULL, SZ_4K);
431 if (unlikely(ret)) {
432 pr_err("failed to map PI sg (%d)\n", sg_cnt + prot_sg_cnt);
433 goto out_destroy_sig_mr;
436 ctx->reg->reg_wr.wr.opcode = IB_WR_REG_MR_INTEGRITY;
437 ctx->reg->reg_wr.wr.wr_cqe = NULL;
438 ctx->reg->reg_wr.wr.num_sge = 0;
439 ctx->reg->reg_wr.wr.send_flags = 0;
440 ctx->reg->reg_wr.access = IB_ACCESS_LOCAL_WRITE;
441 if (rdma_protocol_iwarp(qp->device, port_num))
442 ctx->reg->reg_wr.access |= IB_ACCESS_REMOTE_WRITE;
443 ctx->reg->reg_wr.mr = ctx->reg->mr;
444 ctx->reg->reg_wr.key = ctx->reg->mr->lkey;
445 count++;
447 ctx->reg->sge.addr = ctx->reg->mr->iova;
448 ctx->reg->sge.length = ctx->reg->mr->length;
449 if (sig_attrs->wire.sig_type == IB_SIG_TYPE_NONE)
450 ctx->reg->sge.length -= ctx->reg->mr->sig_attrs->meta_length;
452 rdma_wr = &ctx->reg->wr;
453 rdma_wr->wr.sg_list = &ctx->reg->sge;
454 rdma_wr->wr.num_sge = 1;
455 rdma_wr->remote_addr = remote_addr;
456 rdma_wr->rkey = rkey;
457 if (dir == DMA_TO_DEVICE)
458 rdma_wr->wr.opcode = IB_WR_RDMA_WRITE;
459 else
460 rdma_wr->wr.opcode = IB_WR_RDMA_READ;
461 ctx->reg->reg_wr.wr.next = &rdma_wr->wr;
462 count++;
464 return count;
466 out_destroy_sig_mr:
467 ib_mr_pool_put(qp, &qp->sig_mrs, ctx->reg->mr);
468 out_free_ctx:
469 kfree(ctx->reg);
470 out_unmap_prot_sg:
471 if (prot_sg_cnt)
472 rdma_rw_unmap_sg(dev, prot_sg, prot_sg_cnt, dir);
473 out_unmap_sg:
474 rdma_rw_unmap_sg(dev, sg, sg_cnt, dir);
475 return ret;
477 EXPORT_SYMBOL(rdma_rw_ctx_signature_init);
480 * Now that we are going to post the WRs we can update the lkey and need_inval
481 * state on the MRs. If we were doing this at init time, we would get double
482 * or missing invalidations if a context was initialized but not actually
483 * posted.
485 static void rdma_rw_update_lkey(struct rdma_rw_reg_ctx *reg, bool need_inval)
487 reg->mr->need_inval = need_inval;
488 ib_update_fast_reg_key(reg->mr, ib_inc_rkey(reg->mr->lkey));
489 reg->reg_wr.key = reg->mr->lkey;
490 reg->sge.lkey = reg->mr->lkey;
494 * rdma_rw_ctx_wrs - return chain of WRs for a RDMA READ or WRITE operation
495 * @ctx: context to operate on
496 * @qp: queue pair to operate on
497 * @port_num: port num to which the connection is bound
498 * @cqe: completion queue entry for the last WR
499 * @chain_wr: WR to append to the posted chain
501 * Return the WR chain for the set of RDMA READ/WRITE operations described by
502 * @ctx, as well as any memory registration operations needed. If @chain_wr
503 * is non-NULL the WR it points to will be appended to the chain of WRs posted.
504 * If @chain_wr is not set @cqe must be set so that the caller gets a
505 * completion notification.
507 struct ib_send_wr *rdma_rw_ctx_wrs(struct rdma_rw_ctx *ctx, struct ib_qp *qp,
508 u8 port_num, struct ib_cqe *cqe, struct ib_send_wr *chain_wr)
510 struct ib_send_wr *first_wr, *last_wr;
511 int i;
513 switch (ctx->type) {
514 case RDMA_RW_SIG_MR:
515 case RDMA_RW_MR:
516 for (i = 0; i < ctx->nr_ops; i++) {
517 rdma_rw_update_lkey(&ctx->reg[i],
518 ctx->reg[i].wr.wr.opcode !=
519 IB_WR_RDMA_READ_WITH_INV);
522 if (ctx->reg[0].inv_wr.next)
523 first_wr = &ctx->reg[0].inv_wr;
524 else
525 first_wr = &ctx->reg[0].reg_wr.wr;
526 last_wr = &ctx->reg[ctx->nr_ops - 1].wr.wr;
527 break;
528 case RDMA_RW_MULTI_WR:
529 first_wr = &ctx->map.wrs[0].wr;
530 last_wr = &ctx->map.wrs[ctx->nr_ops - 1].wr;
531 break;
532 case RDMA_RW_SINGLE_WR:
533 first_wr = &ctx->single.wr.wr;
534 last_wr = &ctx->single.wr.wr;
535 break;
536 default:
537 BUG();
540 if (chain_wr) {
541 last_wr->next = chain_wr;
542 } else {
543 last_wr->wr_cqe = cqe;
544 last_wr->send_flags |= IB_SEND_SIGNALED;
547 return first_wr;
549 EXPORT_SYMBOL(rdma_rw_ctx_wrs);
552 * rdma_rw_ctx_post - post a RDMA READ or RDMA WRITE operation
553 * @ctx: context to operate on
554 * @qp: queue pair to operate on
555 * @port_num: port num to which the connection is bound
556 * @cqe: completion queue entry for the last WR
557 * @chain_wr: WR to append to the posted chain
559 * Post the set of RDMA READ/WRITE operations described by @ctx, as well as
560 * any memory registration operations needed. If @chain_wr is non-NULL the
561 * WR it points to will be appended to the chain of WRs posted. If @chain_wr
562 * is not set @cqe must be set so that the caller gets a completion
563 * notification.
565 int rdma_rw_ctx_post(struct rdma_rw_ctx *ctx, struct ib_qp *qp, u8 port_num,
566 struct ib_cqe *cqe, struct ib_send_wr *chain_wr)
568 struct ib_send_wr *first_wr;
570 first_wr = rdma_rw_ctx_wrs(ctx, qp, port_num, cqe, chain_wr);
571 return ib_post_send(qp, first_wr, NULL);
573 EXPORT_SYMBOL(rdma_rw_ctx_post);
576 * rdma_rw_ctx_destroy - release all resources allocated by rdma_rw_ctx_init
577 * @ctx: context to release
578 * @qp: queue pair to operate on
579 * @port_num: port num to which the connection is bound
580 * @sg: scatterlist that was used for the READ/WRITE
581 * @sg_cnt: number of entries in @sg
582 * @dir: %DMA_TO_DEVICE for RDMA WRITE, %DMA_FROM_DEVICE for RDMA READ
584 void rdma_rw_ctx_destroy(struct rdma_rw_ctx *ctx, struct ib_qp *qp, u8 port_num,
585 struct scatterlist *sg, u32 sg_cnt, enum dma_data_direction dir)
587 int i;
589 switch (ctx->type) {
590 case RDMA_RW_MR:
591 for (i = 0; i < ctx->nr_ops; i++)
592 ib_mr_pool_put(qp, &qp->rdma_mrs, ctx->reg[i].mr);
593 kfree(ctx->reg);
594 break;
595 case RDMA_RW_MULTI_WR:
596 kfree(ctx->map.wrs);
597 kfree(ctx->map.sges);
598 break;
599 case RDMA_RW_SINGLE_WR:
600 break;
601 default:
602 BUG();
603 break;
606 rdma_rw_unmap_sg(qp->pd->device, sg, sg_cnt, dir);
608 EXPORT_SYMBOL(rdma_rw_ctx_destroy);
611 * rdma_rw_ctx_destroy_signature - release all resources allocated by
612 * rdma_rw_ctx_signature_init
613 * @ctx: context to release
614 * @qp: queue pair to operate on
615 * @port_num: port num to which the connection is bound
616 * @sg: scatterlist that was used for the READ/WRITE
617 * @sg_cnt: number of entries in @sg
618 * @prot_sg: scatterlist that was used for the READ/WRITE of the PI
619 * @prot_sg_cnt: number of entries in @prot_sg
620 * @dir: %DMA_TO_DEVICE for RDMA WRITE, %DMA_FROM_DEVICE for RDMA READ
622 void rdma_rw_ctx_destroy_signature(struct rdma_rw_ctx *ctx, struct ib_qp *qp,
623 u8 port_num, struct scatterlist *sg, u32 sg_cnt,
624 struct scatterlist *prot_sg, u32 prot_sg_cnt,
625 enum dma_data_direction dir)
627 if (WARN_ON_ONCE(ctx->type != RDMA_RW_SIG_MR))
628 return;
630 ib_mr_pool_put(qp, &qp->sig_mrs, ctx->reg->mr);
631 kfree(ctx->reg);
633 if (prot_sg_cnt)
634 rdma_rw_unmap_sg(qp->pd->device, prot_sg, prot_sg_cnt, dir);
635 rdma_rw_unmap_sg(qp->pd->device, sg, sg_cnt, dir);
637 EXPORT_SYMBOL(rdma_rw_ctx_destroy_signature);
640 * rdma_rw_mr_factor - return number of MRs required for a payload
641 * @device: device handling the connection
642 * @port_num: port num to which the connection is bound
643 * @maxpages: maximum payload pages per rdma_rw_ctx
645 * Returns the number of MRs the device requires to move @maxpayload
646 * bytes. The returned value is used during transport creation to
647 * compute max_rdma_ctxts and the size of the transport's Send and
648 * Send Completion Queues.
650 unsigned int rdma_rw_mr_factor(struct ib_device *device, u8 port_num,
651 unsigned int maxpages)
653 unsigned int mr_pages;
655 if (rdma_rw_can_use_mr(device, port_num))
656 mr_pages = rdma_rw_fr_page_list_len(device, false);
657 else
658 mr_pages = device->attrs.max_sge_rd;
659 return DIV_ROUND_UP(maxpages, mr_pages);
661 EXPORT_SYMBOL(rdma_rw_mr_factor);
663 void rdma_rw_init_qp(struct ib_device *dev, struct ib_qp_init_attr *attr)
665 u32 factor;
667 WARN_ON_ONCE(attr->port_num == 0);
670 * Each context needs at least one RDMA READ or WRITE WR.
672 * For some hardware we might need more, eventually we should ask the
673 * HCA driver for a multiplier here.
675 factor = 1;
678 * If the devices needs MRs to perform RDMA READ or WRITE operations,
679 * we'll need two additional MRs for the registrations and the
680 * invalidation.
682 if (attr->create_flags & IB_QP_CREATE_INTEGRITY_EN ||
683 rdma_rw_can_use_mr(dev, attr->port_num))
684 factor += 2; /* inv + reg */
686 attr->cap.max_send_wr += factor * attr->cap.max_rdma_ctxs;
689 * But maybe we were just too high in the sky and the device doesn't
690 * even support all we need, and we'll have to live with what we get..
692 attr->cap.max_send_wr =
693 min_t(u32, attr->cap.max_send_wr, dev->attrs.max_qp_wr);
696 int rdma_rw_init_mrs(struct ib_qp *qp, struct ib_qp_init_attr *attr)
698 struct ib_device *dev = qp->pd->device;
699 u32 nr_mrs = 0, nr_sig_mrs = 0, max_num_sg = 0;
700 int ret = 0;
702 if (attr->create_flags & IB_QP_CREATE_INTEGRITY_EN) {
703 nr_sig_mrs = attr->cap.max_rdma_ctxs;
704 nr_mrs = attr->cap.max_rdma_ctxs;
705 max_num_sg = rdma_rw_fr_page_list_len(dev, true);
706 } else if (rdma_rw_can_use_mr(dev, attr->port_num)) {
707 nr_mrs = attr->cap.max_rdma_ctxs;
708 max_num_sg = rdma_rw_fr_page_list_len(dev, false);
711 if (nr_mrs) {
712 ret = ib_mr_pool_init(qp, &qp->rdma_mrs, nr_mrs,
713 IB_MR_TYPE_MEM_REG,
714 max_num_sg, 0);
715 if (ret) {
716 pr_err("%s: failed to allocated %d MRs\n",
717 __func__, nr_mrs);
718 return ret;
722 if (nr_sig_mrs) {
723 ret = ib_mr_pool_init(qp, &qp->sig_mrs, nr_sig_mrs,
724 IB_MR_TYPE_INTEGRITY, max_num_sg, max_num_sg);
725 if (ret) {
726 pr_err("%s: failed to allocated %d SIG MRs\n",
727 __func__, nr_sig_mrs);
728 goto out_free_rdma_mrs;
732 return 0;
734 out_free_rdma_mrs:
735 ib_mr_pool_destroy(qp, &qp->rdma_mrs);
736 return ret;
739 void rdma_rw_cleanup_mrs(struct ib_qp *qp)
741 ib_mr_pool_destroy(qp, &qp->sig_mrs);
742 ib_mr_pool_destroy(qp, &qp->rdma_mrs);