Merge tag 'block-5.11-2021-01-10' of git://git.kernel.dk/linux-block
[linux/fpc-iii.git] / drivers / infiniband / hw / hfi1 / user_exp_rcv.c
blobb94fc7fd75a9618739e23b6cab14490d8392e0cb
1 /*
2 * Copyright(c) 2020 Cornelis Networks, Inc.
3 * Copyright(c) 2015-2018 Intel Corporation.
5 * This file is provided under a dual BSD/GPLv2 license. When using or
6 * redistributing this file, you may do so under either license.
8 * GPL LICENSE SUMMARY
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of version 2 of the GNU General Public License as
12 * published by the Free Software Foundation.
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
19 * BSD LICENSE
21 * Redistribution and use in source and binary forms, with or without
22 * modification, are permitted provided that the following conditions
23 * are met:
25 * - Redistributions of source code must retain the above copyright
26 * notice, this list of conditions and the following disclaimer.
27 * - Redistributions in binary form must reproduce the above copyright
28 * notice, this list of conditions and the following disclaimer in
29 * the documentation and/or other materials provided with the
30 * distribution.
31 * - Neither the name of Intel Corporation nor the names of its
32 * contributors may be used to endorse or promote products derived
33 * from this software without specific prior written permission.
35 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
36 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
37 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
38 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
39 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
40 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
41 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
42 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
43 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
44 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
45 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
48 #include <asm/page.h>
49 #include <linux/string.h>
51 #include "mmu_rb.h"
52 #include "user_exp_rcv.h"
53 #include "trace.h"
55 static void unlock_exp_tids(struct hfi1_ctxtdata *uctxt,
56 struct exp_tid_set *set,
57 struct hfi1_filedata *fd);
58 static u32 find_phys_blocks(struct tid_user_buf *tidbuf, unsigned int npages);
59 static int set_rcvarray_entry(struct hfi1_filedata *fd,
60 struct tid_user_buf *tbuf,
61 u32 rcventry, struct tid_group *grp,
62 u16 pageidx, unsigned int npages);
63 static void cacheless_tid_rb_remove(struct hfi1_filedata *fdata,
64 struct tid_rb_node *tnode);
65 static bool tid_rb_invalidate(struct mmu_interval_notifier *mni,
66 const struct mmu_notifier_range *range,
67 unsigned long cur_seq);
68 static int program_rcvarray(struct hfi1_filedata *fd, struct tid_user_buf *,
69 struct tid_group *grp,
70 unsigned int start, u16 count,
71 u32 *tidlist, unsigned int *tididx,
72 unsigned int *pmapped);
73 static int unprogram_rcvarray(struct hfi1_filedata *fd, u32 tidinfo,
74 struct tid_group **grp);
75 static void clear_tid_node(struct hfi1_filedata *fd, struct tid_rb_node *node);
77 static const struct mmu_interval_notifier_ops tid_mn_ops = {
78 .invalidate = tid_rb_invalidate,
82 * Initialize context and file private data needed for Expected
83 * receive caching. This needs to be done after the context has
84 * been configured with the eager/expected RcvEntry counts.
86 int hfi1_user_exp_rcv_init(struct hfi1_filedata *fd,
87 struct hfi1_ctxtdata *uctxt)
89 int ret = 0;
91 fd->entry_to_rb = kcalloc(uctxt->expected_count,
92 sizeof(struct rb_node *),
93 GFP_KERNEL);
94 if (!fd->entry_to_rb)
95 return -ENOMEM;
97 if (!HFI1_CAP_UGET_MASK(uctxt->flags, TID_UNMAP)) {
98 fd->invalid_tid_idx = 0;
99 fd->invalid_tids = kcalloc(uctxt->expected_count,
100 sizeof(*fd->invalid_tids),
101 GFP_KERNEL);
102 if (!fd->invalid_tids) {
103 kfree(fd->entry_to_rb);
104 fd->entry_to_rb = NULL;
105 return -ENOMEM;
107 fd->use_mn = true;
111 * PSM does not have a good way to separate, count, and
112 * effectively enforce a limit on RcvArray entries used by
113 * subctxts (when context sharing is used) when TID caching
114 * is enabled. To help with that, we calculate a per-process
115 * RcvArray entry share and enforce that.
116 * If TID caching is not in use, PSM deals with usage on its
117 * own. In that case, we allow any subctxt to take all of the
118 * entries.
120 * Make sure that we set the tid counts only after successful
121 * init.
123 spin_lock(&fd->tid_lock);
124 if (uctxt->subctxt_cnt && fd->use_mn) {
125 u16 remainder;
127 fd->tid_limit = uctxt->expected_count / uctxt->subctxt_cnt;
128 remainder = uctxt->expected_count % uctxt->subctxt_cnt;
129 if (remainder && fd->subctxt < remainder)
130 fd->tid_limit++;
131 } else {
132 fd->tid_limit = uctxt->expected_count;
134 spin_unlock(&fd->tid_lock);
136 return ret;
139 void hfi1_user_exp_rcv_free(struct hfi1_filedata *fd)
141 struct hfi1_ctxtdata *uctxt = fd->uctxt;
143 mutex_lock(&uctxt->exp_mutex);
144 if (!EXP_TID_SET_EMPTY(uctxt->tid_full_list))
145 unlock_exp_tids(uctxt, &uctxt->tid_full_list, fd);
146 if (!EXP_TID_SET_EMPTY(uctxt->tid_used_list))
147 unlock_exp_tids(uctxt, &uctxt->tid_used_list, fd);
148 mutex_unlock(&uctxt->exp_mutex);
150 kfree(fd->invalid_tids);
151 fd->invalid_tids = NULL;
153 kfree(fd->entry_to_rb);
154 fd->entry_to_rb = NULL;
158 * Release pinned receive buffer pages.
160 * @mapped - true if the pages have been DMA mapped. false otherwise.
161 * @idx - Index of the first page to unpin.
162 * @npages - No of pages to unpin.
164 * If the pages have been DMA mapped (indicated by mapped parameter), their
165 * info will be passed via a struct tid_rb_node. If they haven't been mapped,
166 * their info will be passed via a struct tid_user_buf.
168 static void unpin_rcv_pages(struct hfi1_filedata *fd,
169 struct tid_user_buf *tidbuf,
170 struct tid_rb_node *node,
171 unsigned int idx,
172 unsigned int npages,
173 bool mapped)
175 struct page **pages;
176 struct hfi1_devdata *dd = fd->uctxt->dd;
177 struct mm_struct *mm;
179 if (mapped) {
180 pci_unmap_single(dd->pcidev, node->dma_addr,
181 node->npages * PAGE_SIZE, PCI_DMA_FROMDEVICE);
182 pages = &node->pages[idx];
183 mm = mm_from_tid_node(node);
184 } else {
185 pages = &tidbuf->pages[idx];
186 mm = current->mm;
188 hfi1_release_user_pages(mm, pages, npages, mapped);
189 fd->tid_n_pinned -= npages;
193 * Pin receive buffer pages.
195 static int pin_rcv_pages(struct hfi1_filedata *fd, struct tid_user_buf *tidbuf)
197 int pinned;
198 unsigned int npages;
199 unsigned long vaddr = tidbuf->vaddr;
200 struct page **pages = NULL;
201 struct hfi1_devdata *dd = fd->uctxt->dd;
203 /* Get the number of pages the user buffer spans */
204 npages = num_user_pages(vaddr, tidbuf->length);
205 if (!npages)
206 return -EINVAL;
208 if (npages > fd->uctxt->expected_count) {
209 dd_dev_err(dd, "Expected buffer too big\n");
210 return -EINVAL;
213 /* Allocate the array of struct page pointers needed for pinning */
214 pages = kcalloc(npages, sizeof(*pages), GFP_KERNEL);
215 if (!pages)
216 return -ENOMEM;
219 * Pin all the pages of the user buffer. If we can't pin all the
220 * pages, accept the amount pinned so far and program only that.
221 * User space knows how to deal with partially programmed buffers.
223 if (!hfi1_can_pin_pages(dd, current->mm, fd->tid_n_pinned, npages)) {
224 kfree(pages);
225 return -ENOMEM;
228 pinned = hfi1_acquire_user_pages(current->mm, vaddr, npages, true, pages);
229 if (pinned <= 0) {
230 kfree(pages);
231 return pinned;
233 tidbuf->pages = pages;
234 tidbuf->npages = npages;
235 fd->tid_n_pinned += pinned;
236 return pinned;
240 * RcvArray entry allocation for Expected Receives is done by the
241 * following algorithm:
243 * The context keeps 3 lists of groups of RcvArray entries:
244 * 1. List of empty groups - tid_group_list
245 * This list is created during user context creation and
246 * contains elements which describe sets (of 8) of empty
247 * RcvArray entries.
248 * 2. List of partially used groups - tid_used_list
249 * This list contains sets of RcvArray entries which are
250 * not completely used up. Another mapping request could
251 * use some of all of the remaining entries.
252 * 3. List of full groups - tid_full_list
253 * This is the list where sets that are completely used
254 * up go.
256 * An attempt to optimize the usage of RcvArray entries is
257 * made by finding all sets of physically contiguous pages in a
258 * user's buffer.
259 * These physically contiguous sets are further split into
260 * sizes supported by the receive engine of the HFI. The
261 * resulting sets of pages are stored in struct tid_pageset,
262 * which describes the sets as:
263 * * .count - number of pages in this set
264 * * .idx - starting index into struct page ** array
265 * of this set
267 * From this point on, the algorithm deals with the page sets
268 * described above. The number of pagesets is divided by the
269 * RcvArray group size to produce the number of full groups
270 * needed.
272 * Groups from the 3 lists are manipulated using the following
273 * rules:
274 * 1. For each set of 8 pagesets, a complete group from
275 * tid_group_list is taken, programmed, and moved to
276 * the tid_full_list list.
277 * 2. For all remaining pagesets:
278 * 2.1 If the tid_used_list is empty and the tid_group_list
279 * is empty, stop processing pageset and return only
280 * what has been programmed up to this point.
281 * 2.2 If the tid_used_list is empty and the tid_group_list
282 * is not empty, move a group from tid_group_list to
283 * tid_used_list.
284 * 2.3 For each group is tid_used_group, program as much as
285 * can fit into the group. If the group becomes fully
286 * used, move it to tid_full_list.
288 int hfi1_user_exp_rcv_setup(struct hfi1_filedata *fd,
289 struct hfi1_tid_info *tinfo)
291 int ret = 0, need_group = 0, pinned;
292 struct hfi1_ctxtdata *uctxt = fd->uctxt;
293 struct hfi1_devdata *dd = uctxt->dd;
294 unsigned int ngroups, pageidx = 0, pageset_count,
295 tididx = 0, mapped, mapped_pages = 0;
296 u32 *tidlist = NULL;
297 struct tid_user_buf *tidbuf;
299 if (!PAGE_ALIGNED(tinfo->vaddr))
300 return -EINVAL;
302 tidbuf = kzalloc(sizeof(*tidbuf), GFP_KERNEL);
303 if (!tidbuf)
304 return -ENOMEM;
306 tidbuf->vaddr = tinfo->vaddr;
307 tidbuf->length = tinfo->length;
308 tidbuf->psets = kcalloc(uctxt->expected_count, sizeof(*tidbuf->psets),
309 GFP_KERNEL);
310 if (!tidbuf->psets) {
311 kfree(tidbuf);
312 return -ENOMEM;
315 pinned = pin_rcv_pages(fd, tidbuf);
316 if (pinned <= 0) {
317 kfree(tidbuf->psets);
318 kfree(tidbuf);
319 return pinned;
322 /* Find sets of physically contiguous pages */
323 tidbuf->n_psets = find_phys_blocks(tidbuf, pinned);
326 * We don't need to access this under a lock since tid_used is per
327 * process and the same process cannot be in hfi1_user_exp_rcv_clear()
328 * and hfi1_user_exp_rcv_setup() at the same time.
330 spin_lock(&fd->tid_lock);
331 if (fd->tid_used + tidbuf->n_psets > fd->tid_limit)
332 pageset_count = fd->tid_limit - fd->tid_used;
333 else
334 pageset_count = tidbuf->n_psets;
335 spin_unlock(&fd->tid_lock);
337 if (!pageset_count)
338 goto bail;
340 ngroups = pageset_count / dd->rcv_entries.group_size;
341 tidlist = kcalloc(pageset_count, sizeof(*tidlist), GFP_KERNEL);
342 if (!tidlist) {
343 ret = -ENOMEM;
344 goto nomem;
347 tididx = 0;
350 * From this point on, we are going to be using shared (between master
351 * and subcontexts) context resources. We need to take the lock.
353 mutex_lock(&uctxt->exp_mutex);
355 * The first step is to program the RcvArray entries which are complete
356 * groups.
358 while (ngroups && uctxt->tid_group_list.count) {
359 struct tid_group *grp =
360 tid_group_pop(&uctxt->tid_group_list);
362 ret = program_rcvarray(fd, tidbuf, grp,
363 pageidx, dd->rcv_entries.group_size,
364 tidlist, &tididx, &mapped);
366 * If there was a failure to program the RcvArray
367 * entries for the entire group, reset the grp fields
368 * and add the grp back to the free group list.
370 if (ret <= 0) {
371 tid_group_add_tail(grp, &uctxt->tid_group_list);
372 hfi1_cdbg(TID,
373 "Failed to program RcvArray group %d", ret);
374 goto unlock;
377 tid_group_add_tail(grp, &uctxt->tid_full_list);
378 ngroups--;
379 pageidx += ret;
380 mapped_pages += mapped;
383 while (pageidx < pageset_count) {
384 struct tid_group *grp, *ptr;
386 * If we don't have any partially used tid groups, check
387 * if we have empty groups. If so, take one from there and
388 * put in the partially used list.
390 if (!uctxt->tid_used_list.count || need_group) {
391 if (!uctxt->tid_group_list.count)
392 goto unlock;
394 grp = tid_group_pop(&uctxt->tid_group_list);
395 tid_group_add_tail(grp, &uctxt->tid_used_list);
396 need_group = 0;
399 * There is an optimization opportunity here - instead of
400 * fitting as many page sets as we can, check for a group
401 * later on in the list that could fit all of them.
403 list_for_each_entry_safe(grp, ptr, &uctxt->tid_used_list.list,
404 list) {
405 unsigned use = min_t(unsigned, pageset_count - pageidx,
406 grp->size - grp->used);
408 ret = program_rcvarray(fd, tidbuf, grp,
409 pageidx, use, tidlist,
410 &tididx, &mapped);
411 if (ret < 0) {
412 hfi1_cdbg(TID,
413 "Failed to program RcvArray entries %d",
414 ret);
415 goto unlock;
416 } else if (ret > 0) {
417 if (grp->used == grp->size)
418 tid_group_move(grp,
419 &uctxt->tid_used_list,
420 &uctxt->tid_full_list);
421 pageidx += ret;
422 mapped_pages += mapped;
423 need_group = 0;
424 /* Check if we are done so we break out early */
425 if (pageidx >= pageset_count)
426 break;
427 } else if (WARN_ON(ret == 0)) {
429 * If ret is 0, we did not program any entries
430 * into this group, which can only happen if
431 * we've screwed up the accounting somewhere.
432 * Warn and try to continue.
434 need_group = 1;
438 unlock:
439 mutex_unlock(&uctxt->exp_mutex);
440 nomem:
441 hfi1_cdbg(TID, "total mapped: tidpairs:%u pages:%u (%d)", tididx,
442 mapped_pages, ret);
443 if (tididx) {
444 spin_lock(&fd->tid_lock);
445 fd->tid_used += tididx;
446 spin_unlock(&fd->tid_lock);
447 tinfo->tidcnt = tididx;
448 tinfo->length = mapped_pages * PAGE_SIZE;
450 if (copy_to_user(u64_to_user_ptr(tinfo->tidlist),
451 tidlist, sizeof(tidlist[0]) * tididx)) {
453 * On failure to copy to the user level, we need to undo
454 * everything done so far so we don't leak resources.
456 tinfo->tidlist = (unsigned long)&tidlist;
457 hfi1_user_exp_rcv_clear(fd, tinfo);
458 tinfo->tidlist = 0;
459 ret = -EFAULT;
460 goto bail;
465 * If not everything was mapped (due to insufficient RcvArray entries,
466 * for example), unpin all unmapped pages so we can pin them nex time.
468 if (mapped_pages != pinned)
469 unpin_rcv_pages(fd, tidbuf, NULL, mapped_pages,
470 (pinned - mapped_pages), false);
471 bail:
472 kfree(tidbuf->psets);
473 kfree(tidlist);
474 kfree(tidbuf->pages);
475 kfree(tidbuf);
476 return ret > 0 ? 0 : ret;
479 int hfi1_user_exp_rcv_clear(struct hfi1_filedata *fd,
480 struct hfi1_tid_info *tinfo)
482 int ret = 0;
483 struct hfi1_ctxtdata *uctxt = fd->uctxt;
484 u32 *tidinfo;
485 unsigned tididx;
487 if (unlikely(tinfo->tidcnt > fd->tid_used))
488 return -EINVAL;
490 tidinfo = memdup_user(u64_to_user_ptr(tinfo->tidlist),
491 sizeof(tidinfo[0]) * tinfo->tidcnt);
492 if (IS_ERR(tidinfo))
493 return PTR_ERR(tidinfo);
495 mutex_lock(&uctxt->exp_mutex);
496 for (tididx = 0; tididx < tinfo->tidcnt; tididx++) {
497 ret = unprogram_rcvarray(fd, tidinfo[tididx], NULL);
498 if (ret) {
499 hfi1_cdbg(TID, "Failed to unprogram rcv array %d",
500 ret);
501 break;
504 spin_lock(&fd->tid_lock);
505 fd->tid_used -= tididx;
506 spin_unlock(&fd->tid_lock);
507 tinfo->tidcnt = tididx;
508 mutex_unlock(&uctxt->exp_mutex);
510 kfree(tidinfo);
511 return ret;
514 int hfi1_user_exp_rcv_invalid(struct hfi1_filedata *fd,
515 struct hfi1_tid_info *tinfo)
517 struct hfi1_ctxtdata *uctxt = fd->uctxt;
518 unsigned long *ev = uctxt->dd->events +
519 (uctxt_offset(uctxt) + fd->subctxt);
520 u32 *array;
521 int ret = 0;
524 * copy_to_user() can sleep, which will leave the invalid_lock
525 * locked and cause the MMU notifier to be blocked on the lock
526 * for a long time.
527 * Copy the data to a local buffer so we can release the lock.
529 array = kcalloc(uctxt->expected_count, sizeof(*array), GFP_KERNEL);
530 if (!array)
531 return -EFAULT;
533 spin_lock(&fd->invalid_lock);
534 if (fd->invalid_tid_idx) {
535 memcpy(array, fd->invalid_tids, sizeof(*array) *
536 fd->invalid_tid_idx);
537 memset(fd->invalid_tids, 0, sizeof(*fd->invalid_tids) *
538 fd->invalid_tid_idx);
539 tinfo->tidcnt = fd->invalid_tid_idx;
540 fd->invalid_tid_idx = 0;
542 * Reset the user flag while still holding the lock.
543 * Otherwise, PSM can miss events.
545 clear_bit(_HFI1_EVENT_TID_MMU_NOTIFY_BIT, ev);
546 } else {
547 tinfo->tidcnt = 0;
549 spin_unlock(&fd->invalid_lock);
551 if (tinfo->tidcnt) {
552 if (copy_to_user((void __user *)tinfo->tidlist,
553 array, sizeof(*array) * tinfo->tidcnt))
554 ret = -EFAULT;
556 kfree(array);
558 return ret;
561 static u32 find_phys_blocks(struct tid_user_buf *tidbuf, unsigned int npages)
563 unsigned pagecount, pageidx, setcount = 0, i;
564 unsigned long pfn, this_pfn;
565 struct page **pages = tidbuf->pages;
566 struct tid_pageset *list = tidbuf->psets;
568 if (!npages)
569 return 0;
572 * Look for sets of physically contiguous pages in the user buffer.
573 * This will allow us to optimize Expected RcvArray entry usage by
574 * using the bigger supported sizes.
576 pfn = page_to_pfn(pages[0]);
577 for (pageidx = 0, pagecount = 1, i = 1; i <= npages; i++) {
578 this_pfn = i < npages ? page_to_pfn(pages[i]) : 0;
581 * If the pfn's are not sequential, pages are not physically
582 * contiguous.
584 if (this_pfn != ++pfn) {
586 * At this point we have to loop over the set of
587 * physically contiguous pages and break them down it
588 * sizes supported by the HW.
589 * There are two main constraints:
590 * 1. The max buffer size is MAX_EXPECTED_BUFFER.
591 * If the total set size is bigger than that
592 * program only a MAX_EXPECTED_BUFFER chunk.
593 * 2. The buffer size has to be a power of two. If
594 * it is not, round down to the closes power of
595 * 2 and program that size.
597 while (pagecount) {
598 int maxpages = pagecount;
599 u32 bufsize = pagecount * PAGE_SIZE;
601 if (bufsize > MAX_EXPECTED_BUFFER)
602 maxpages =
603 MAX_EXPECTED_BUFFER >>
604 PAGE_SHIFT;
605 else if (!is_power_of_2(bufsize))
606 maxpages =
607 rounddown_pow_of_two(bufsize) >>
608 PAGE_SHIFT;
610 list[setcount].idx = pageidx;
611 list[setcount].count = maxpages;
612 pagecount -= maxpages;
613 pageidx += maxpages;
614 setcount++;
616 pageidx = i;
617 pagecount = 1;
618 pfn = this_pfn;
619 } else {
620 pagecount++;
623 return setcount;
627 * program_rcvarray() - program an RcvArray group with receive buffers
628 * @fd: filedata pointer
629 * @tbuf: pointer to struct tid_user_buf that has the user buffer starting
630 * virtual address, buffer length, page pointers, pagesets (array of
631 * struct tid_pageset holding information on physically contiguous
632 * chunks from the user buffer), and other fields.
633 * @grp: RcvArray group
634 * @start: starting index into sets array
635 * @count: number of struct tid_pageset's to program
636 * @tidlist: the array of u32 elements when the information about the
637 * programmed RcvArray entries is to be encoded.
638 * @tididx: starting offset into tidlist
639 * @pmapped: (output parameter) number of pages programmed into the RcvArray
640 * entries.
642 * This function will program up to 'count' number of RcvArray entries from the
643 * group 'grp'. To make best use of write-combining writes, the function will
644 * perform writes to the unused RcvArray entries which will be ignored by the
645 * HW. Each RcvArray entry will be programmed with a physically contiguous
646 * buffer chunk from the user's virtual buffer.
648 * Return:
649 * -EINVAL if the requested count is larger than the size of the group,
650 * -ENOMEM or -EFAULT on error from set_rcvarray_entry(), or
651 * number of RcvArray entries programmed.
653 static int program_rcvarray(struct hfi1_filedata *fd, struct tid_user_buf *tbuf,
654 struct tid_group *grp,
655 unsigned int start, u16 count,
656 u32 *tidlist, unsigned int *tididx,
657 unsigned int *pmapped)
659 struct hfi1_ctxtdata *uctxt = fd->uctxt;
660 struct hfi1_devdata *dd = uctxt->dd;
661 u16 idx;
662 u32 tidinfo = 0, rcventry, useidx = 0;
663 int mapped = 0;
665 /* Count should never be larger than the group size */
666 if (count > grp->size)
667 return -EINVAL;
669 /* Find the first unused entry in the group */
670 for (idx = 0; idx < grp->size; idx++) {
671 if (!(grp->map & (1 << idx))) {
672 useidx = idx;
673 break;
675 rcv_array_wc_fill(dd, grp->base + idx);
678 idx = 0;
679 while (idx < count) {
680 u16 npages, pageidx, setidx = start + idx;
681 int ret = 0;
684 * If this entry in the group is used, move to the next one.
685 * If we go past the end of the group, exit the loop.
687 if (useidx >= grp->size) {
688 break;
689 } else if (grp->map & (1 << useidx)) {
690 rcv_array_wc_fill(dd, grp->base + useidx);
691 useidx++;
692 continue;
695 rcventry = grp->base + useidx;
696 npages = tbuf->psets[setidx].count;
697 pageidx = tbuf->psets[setidx].idx;
699 ret = set_rcvarray_entry(fd, tbuf,
700 rcventry, grp, pageidx,
701 npages);
702 if (ret)
703 return ret;
704 mapped += npages;
706 tidinfo = rcventry2tidinfo(rcventry - uctxt->expected_base) |
707 EXP_TID_SET(LEN, npages);
708 tidlist[(*tididx)++] = tidinfo;
709 grp->used++;
710 grp->map |= 1 << useidx++;
711 idx++;
714 /* Fill the rest of the group with "blank" writes */
715 for (; useidx < grp->size; useidx++)
716 rcv_array_wc_fill(dd, grp->base + useidx);
717 *pmapped = mapped;
718 return idx;
721 static int set_rcvarray_entry(struct hfi1_filedata *fd,
722 struct tid_user_buf *tbuf,
723 u32 rcventry, struct tid_group *grp,
724 u16 pageidx, unsigned int npages)
726 int ret;
727 struct hfi1_ctxtdata *uctxt = fd->uctxt;
728 struct tid_rb_node *node;
729 struct hfi1_devdata *dd = uctxt->dd;
730 dma_addr_t phys;
731 struct page **pages = tbuf->pages + pageidx;
734 * Allocate the node first so we can handle a potential
735 * failure before we've programmed anything.
737 node = kzalloc(sizeof(*node) + (sizeof(struct page *) * npages),
738 GFP_KERNEL);
739 if (!node)
740 return -ENOMEM;
742 phys = pci_map_single(dd->pcidev,
743 __va(page_to_phys(pages[0])),
744 npages * PAGE_SIZE, PCI_DMA_FROMDEVICE);
745 if (dma_mapping_error(&dd->pcidev->dev, phys)) {
746 dd_dev_err(dd, "Failed to DMA map Exp Rcv pages 0x%llx\n",
747 phys);
748 kfree(node);
749 return -EFAULT;
752 node->fdata = fd;
753 node->phys = page_to_phys(pages[0]);
754 node->npages = npages;
755 node->rcventry = rcventry;
756 node->dma_addr = phys;
757 node->grp = grp;
758 node->freed = false;
759 memcpy(node->pages, pages, sizeof(struct page *) * npages);
761 if (fd->use_mn) {
762 ret = mmu_interval_notifier_insert(
763 &node->notifier, current->mm,
764 tbuf->vaddr + (pageidx * PAGE_SIZE), npages * PAGE_SIZE,
765 &tid_mn_ops);
766 if (ret)
767 goto out_unmap;
769 * FIXME: This is in the wrong order, the notifier should be
770 * established before the pages are pinned by pin_rcv_pages.
772 mmu_interval_read_begin(&node->notifier);
774 fd->entry_to_rb[node->rcventry - uctxt->expected_base] = node;
776 hfi1_put_tid(dd, rcventry, PT_EXPECTED, phys, ilog2(npages) + 1);
777 trace_hfi1_exp_tid_reg(uctxt->ctxt, fd->subctxt, rcventry, npages,
778 node->notifier.interval_tree.start, node->phys,
779 phys);
780 return 0;
782 out_unmap:
783 hfi1_cdbg(TID, "Failed to insert RB node %u 0x%lx, 0x%lx %d",
784 node->rcventry, node->notifier.interval_tree.start,
785 node->phys, ret);
786 pci_unmap_single(dd->pcidev, phys, npages * PAGE_SIZE,
787 PCI_DMA_FROMDEVICE);
788 kfree(node);
789 return -EFAULT;
792 static int unprogram_rcvarray(struct hfi1_filedata *fd, u32 tidinfo,
793 struct tid_group **grp)
795 struct hfi1_ctxtdata *uctxt = fd->uctxt;
796 struct hfi1_devdata *dd = uctxt->dd;
797 struct tid_rb_node *node;
798 u8 tidctrl = EXP_TID_GET(tidinfo, CTRL);
799 u32 tididx = EXP_TID_GET(tidinfo, IDX) << 1, rcventry;
801 if (tididx >= uctxt->expected_count) {
802 dd_dev_err(dd, "Invalid RcvArray entry (%u) index for ctxt %u\n",
803 tididx, uctxt->ctxt);
804 return -EINVAL;
807 if (tidctrl == 0x3)
808 return -EINVAL;
810 rcventry = tididx + (tidctrl - 1);
812 node = fd->entry_to_rb[rcventry];
813 if (!node || node->rcventry != (uctxt->expected_base + rcventry))
814 return -EBADF;
816 if (grp)
817 *grp = node->grp;
819 if (fd->use_mn)
820 mmu_interval_notifier_remove(&node->notifier);
821 cacheless_tid_rb_remove(fd, node);
823 return 0;
826 static void clear_tid_node(struct hfi1_filedata *fd, struct tid_rb_node *node)
828 struct hfi1_ctxtdata *uctxt = fd->uctxt;
829 struct hfi1_devdata *dd = uctxt->dd;
831 trace_hfi1_exp_tid_unreg(uctxt->ctxt, fd->subctxt, node->rcventry,
832 node->npages,
833 node->notifier.interval_tree.start, node->phys,
834 node->dma_addr);
837 * Make sure device has seen the write before we unpin the
838 * pages.
840 hfi1_put_tid(dd, node->rcventry, PT_INVALID_FLUSH, 0, 0);
842 unpin_rcv_pages(fd, NULL, node, 0, node->npages, true);
844 node->grp->used--;
845 node->grp->map &= ~(1 << (node->rcventry - node->grp->base));
847 if (node->grp->used == node->grp->size - 1)
848 tid_group_move(node->grp, &uctxt->tid_full_list,
849 &uctxt->tid_used_list);
850 else if (!node->grp->used)
851 tid_group_move(node->grp, &uctxt->tid_used_list,
852 &uctxt->tid_group_list);
853 kfree(node);
857 * As a simple helper for hfi1_user_exp_rcv_free, this function deals with
858 * clearing nodes in the non-cached case.
860 static void unlock_exp_tids(struct hfi1_ctxtdata *uctxt,
861 struct exp_tid_set *set,
862 struct hfi1_filedata *fd)
864 struct tid_group *grp, *ptr;
865 int i;
867 list_for_each_entry_safe(grp, ptr, &set->list, list) {
868 list_del_init(&grp->list);
870 for (i = 0; i < grp->size; i++) {
871 if (grp->map & (1 << i)) {
872 u16 rcventry = grp->base + i;
873 struct tid_rb_node *node;
875 node = fd->entry_to_rb[rcventry -
876 uctxt->expected_base];
877 if (!node || node->rcventry != rcventry)
878 continue;
880 if (fd->use_mn)
881 mmu_interval_notifier_remove(
882 &node->notifier);
883 cacheless_tid_rb_remove(fd, node);
889 static bool tid_rb_invalidate(struct mmu_interval_notifier *mni,
890 const struct mmu_notifier_range *range,
891 unsigned long cur_seq)
893 struct tid_rb_node *node =
894 container_of(mni, struct tid_rb_node, notifier);
895 struct hfi1_filedata *fdata = node->fdata;
896 struct hfi1_ctxtdata *uctxt = fdata->uctxt;
898 if (node->freed)
899 return true;
901 trace_hfi1_exp_tid_inval(uctxt->ctxt, fdata->subctxt,
902 node->notifier.interval_tree.start,
903 node->rcventry, node->npages, node->dma_addr);
904 node->freed = true;
906 spin_lock(&fdata->invalid_lock);
907 if (fdata->invalid_tid_idx < uctxt->expected_count) {
908 fdata->invalid_tids[fdata->invalid_tid_idx] =
909 rcventry2tidinfo(node->rcventry - uctxt->expected_base);
910 fdata->invalid_tids[fdata->invalid_tid_idx] |=
911 EXP_TID_SET(LEN, node->npages);
912 if (!fdata->invalid_tid_idx) {
913 unsigned long *ev;
916 * hfi1_set_uevent_bits() sets a user event flag
917 * for all processes. Because calling into the
918 * driver to process TID cache invalidations is
919 * expensive and TID cache invalidations are
920 * handled on a per-process basis, we can
921 * optimize this to set the flag only for the
922 * process in question.
924 ev = uctxt->dd->events +
925 (uctxt_offset(uctxt) + fdata->subctxt);
926 set_bit(_HFI1_EVENT_TID_MMU_NOTIFY_BIT, ev);
928 fdata->invalid_tid_idx++;
930 spin_unlock(&fdata->invalid_lock);
931 return true;
934 static void cacheless_tid_rb_remove(struct hfi1_filedata *fdata,
935 struct tid_rb_node *tnode)
937 u32 base = fdata->uctxt->expected_base;
939 fdata->entry_to_rb[tnode->rcventry - base] = NULL;
940 clear_tid_node(fdata, tnode);