1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (c) 1999-2002 Vojtech Pavlik
9 #define pr_fmt(fmt) KBUILD_BASENAME ": " fmt
11 #include <linux/init.h>
12 #include <linux/types.h>
13 #include <linux/idr.h>
14 #include <linux/input/mt.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/random.h>
18 #include <linux/major.h>
19 #include <linux/proc_fs.h>
20 #include <linux/sched.h>
21 #include <linux/seq_file.h>
22 #include <linux/poll.h>
23 #include <linux/device.h>
24 #include <linux/mutex.h>
25 #include <linux/rcupdate.h>
26 #include "input-compat.h"
27 #include "input-poller.h"
29 MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
30 MODULE_DESCRIPTION("Input core");
31 MODULE_LICENSE("GPL");
33 #define INPUT_MAX_CHAR_DEVICES 1024
34 #define INPUT_FIRST_DYNAMIC_DEV 256
35 static DEFINE_IDA(input_ida
);
37 static LIST_HEAD(input_dev_list
);
38 static LIST_HEAD(input_handler_list
);
41 * input_mutex protects access to both input_dev_list and input_handler_list.
42 * This also causes input_[un]register_device and input_[un]register_handler
43 * be mutually exclusive which simplifies locking in drivers implementing
46 static DEFINE_MUTEX(input_mutex
);
48 static const struct input_value input_value_sync
= { EV_SYN
, SYN_REPORT
, 1 };
50 static inline int is_event_supported(unsigned int code
,
51 unsigned long *bm
, unsigned int max
)
53 return code
<= max
&& test_bit(code
, bm
);
56 static int input_defuzz_abs_event(int value
, int old_val
, int fuzz
)
59 if (value
> old_val
- fuzz
/ 2 && value
< old_val
+ fuzz
/ 2)
62 if (value
> old_val
- fuzz
&& value
< old_val
+ fuzz
)
63 return (old_val
* 3 + value
) / 4;
65 if (value
> old_val
- fuzz
* 2 && value
< old_val
+ fuzz
* 2)
66 return (old_val
+ value
) / 2;
72 static void input_start_autorepeat(struct input_dev
*dev
, int code
)
74 if (test_bit(EV_REP
, dev
->evbit
) &&
75 dev
->rep
[REP_PERIOD
] && dev
->rep
[REP_DELAY
] &&
76 dev
->timer
.function
) {
77 dev
->repeat_key
= code
;
78 mod_timer(&dev
->timer
,
79 jiffies
+ msecs_to_jiffies(dev
->rep
[REP_DELAY
]));
83 static void input_stop_autorepeat(struct input_dev
*dev
)
85 del_timer(&dev
->timer
);
89 * Pass event first through all filters and then, if event has not been
90 * filtered out, through all open handles. This function is called with
91 * dev->event_lock held and interrupts disabled.
93 static unsigned int input_to_handler(struct input_handle
*handle
,
94 struct input_value
*vals
, unsigned int count
)
96 struct input_handler
*handler
= handle
->handler
;
97 struct input_value
*end
= vals
;
98 struct input_value
*v
;
100 if (handler
->filter
) {
101 for (v
= vals
; v
!= vals
+ count
; v
++) {
102 if (handler
->filter(handle
, v
->type
, v
->code
, v
->value
))
115 handler
->events(handle
, vals
, count
);
116 else if (handler
->event
)
117 for (v
= vals
; v
!= vals
+ count
; v
++)
118 handler
->event(handle
, v
->type
, v
->code
, v
->value
);
124 * Pass values first through all filters and then, if event has not been
125 * filtered out, through all open handles. This function is called with
126 * dev->event_lock held and interrupts disabled.
128 static void input_pass_values(struct input_dev
*dev
,
129 struct input_value
*vals
, unsigned int count
)
131 struct input_handle
*handle
;
132 struct input_value
*v
;
139 handle
= rcu_dereference(dev
->grab
);
141 count
= input_to_handler(handle
, vals
, count
);
143 list_for_each_entry_rcu(handle
, &dev
->h_list
, d_node
)
145 count
= input_to_handler(handle
, vals
, count
);
153 /* trigger auto repeat for key events */
154 if (test_bit(EV_REP
, dev
->evbit
) && test_bit(EV_KEY
, dev
->evbit
)) {
155 for (v
= vals
; v
!= vals
+ count
; v
++) {
156 if (v
->type
== EV_KEY
&& v
->value
!= 2) {
158 input_start_autorepeat(dev
, v
->code
);
160 input_stop_autorepeat(dev
);
166 static void input_pass_event(struct input_dev
*dev
,
167 unsigned int type
, unsigned int code
, int value
)
169 struct input_value vals
[] = { { type
, code
, value
} };
171 input_pass_values(dev
, vals
, ARRAY_SIZE(vals
));
175 * Generate software autorepeat event. Note that we take
176 * dev->event_lock here to avoid racing with input_event
177 * which may cause keys get "stuck".
179 static void input_repeat_key(struct timer_list
*t
)
181 struct input_dev
*dev
= from_timer(dev
, t
, timer
);
184 spin_lock_irqsave(&dev
->event_lock
, flags
);
186 if (test_bit(dev
->repeat_key
, dev
->key
) &&
187 is_event_supported(dev
->repeat_key
, dev
->keybit
, KEY_MAX
)) {
188 struct input_value vals
[] = {
189 { EV_KEY
, dev
->repeat_key
, 2 },
193 input_set_timestamp(dev
, ktime_get());
194 input_pass_values(dev
, vals
, ARRAY_SIZE(vals
));
196 if (dev
->rep
[REP_PERIOD
])
197 mod_timer(&dev
->timer
, jiffies
+
198 msecs_to_jiffies(dev
->rep
[REP_PERIOD
]));
201 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
204 #define INPUT_IGNORE_EVENT 0
205 #define INPUT_PASS_TO_HANDLERS 1
206 #define INPUT_PASS_TO_DEVICE 2
208 #define INPUT_FLUSH 8
209 #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
211 static int input_handle_abs_event(struct input_dev
*dev
,
212 unsigned int code
, int *pval
)
214 struct input_mt
*mt
= dev
->mt
;
218 if (code
== ABS_MT_SLOT
) {
220 * "Stage" the event; we'll flush it later, when we
221 * get actual touch data.
223 if (mt
&& *pval
>= 0 && *pval
< mt
->num_slots
)
226 return INPUT_IGNORE_EVENT
;
229 is_mt_event
= input_is_mt_value(code
);
232 pold
= &dev
->absinfo
[code
].value
;
234 pold
= &mt
->slots
[mt
->slot
].abs
[code
- ABS_MT_FIRST
];
237 * Bypass filtering for multi-touch events when
238 * not employing slots.
244 *pval
= input_defuzz_abs_event(*pval
, *pold
,
245 dev
->absinfo
[code
].fuzz
);
247 return INPUT_IGNORE_EVENT
;
252 /* Flush pending "slot" event */
253 if (is_mt_event
&& mt
&& mt
->slot
!= input_abs_get_val(dev
, ABS_MT_SLOT
)) {
254 input_abs_set_val(dev
, ABS_MT_SLOT
, mt
->slot
);
255 return INPUT_PASS_TO_HANDLERS
| INPUT_SLOT
;
258 return INPUT_PASS_TO_HANDLERS
;
261 static int input_get_disposition(struct input_dev
*dev
,
262 unsigned int type
, unsigned int code
, int *pval
)
264 int disposition
= INPUT_IGNORE_EVENT
;
272 disposition
= INPUT_PASS_TO_ALL
;
276 disposition
= INPUT_PASS_TO_HANDLERS
| INPUT_FLUSH
;
279 disposition
= INPUT_PASS_TO_HANDLERS
;
285 if (is_event_supported(code
, dev
->keybit
, KEY_MAX
)) {
287 /* auto-repeat bypasses state updates */
289 disposition
= INPUT_PASS_TO_HANDLERS
;
293 if (!!test_bit(code
, dev
->key
) != !!value
) {
295 __change_bit(code
, dev
->key
);
296 disposition
= INPUT_PASS_TO_HANDLERS
;
302 if (is_event_supported(code
, dev
->swbit
, SW_MAX
) &&
303 !!test_bit(code
, dev
->sw
) != !!value
) {
305 __change_bit(code
, dev
->sw
);
306 disposition
= INPUT_PASS_TO_HANDLERS
;
311 if (is_event_supported(code
, dev
->absbit
, ABS_MAX
))
312 disposition
= input_handle_abs_event(dev
, code
, &value
);
317 if (is_event_supported(code
, dev
->relbit
, REL_MAX
) && value
)
318 disposition
= INPUT_PASS_TO_HANDLERS
;
323 if (is_event_supported(code
, dev
->mscbit
, MSC_MAX
))
324 disposition
= INPUT_PASS_TO_ALL
;
329 if (is_event_supported(code
, dev
->ledbit
, LED_MAX
) &&
330 !!test_bit(code
, dev
->led
) != !!value
) {
332 __change_bit(code
, dev
->led
);
333 disposition
= INPUT_PASS_TO_ALL
;
338 if (is_event_supported(code
, dev
->sndbit
, SND_MAX
)) {
340 if (!!test_bit(code
, dev
->snd
) != !!value
)
341 __change_bit(code
, dev
->snd
);
342 disposition
= INPUT_PASS_TO_ALL
;
347 if (code
<= REP_MAX
&& value
>= 0 && dev
->rep
[code
] != value
) {
348 dev
->rep
[code
] = value
;
349 disposition
= INPUT_PASS_TO_ALL
;
355 disposition
= INPUT_PASS_TO_ALL
;
359 disposition
= INPUT_PASS_TO_ALL
;
367 static void input_handle_event(struct input_dev
*dev
,
368 unsigned int type
, unsigned int code
, int value
)
372 /* filter-out events from inhibited devices */
376 disposition
= input_get_disposition(dev
, type
, code
, &value
);
377 if (disposition
!= INPUT_IGNORE_EVENT
&& type
!= EV_SYN
)
378 add_input_randomness(type
, code
, value
);
380 if ((disposition
& INPUT_PASS_TO_DEVICE
) && dev
->event
)
381 dev
->event(dev
, type
, code
, value
);
386 if (disposition
& INPUT_PASS_TO_HANDLERS
) {
387 struct input_value
*v
;
389 if (disposition
& INPUT_SLOT
) {
390 v
= &dev
->vals
[dev
->num_vals
++];
392 v
->code
= ABS_MT_SLOT
;
393 v
->value
= dev
->mt
->slot
;
396 v
= &dev
->vals
[dev
->num_vals
++];
402 if (disposition
& INPUT_FLUSH
) {
403 if (dev
->num_vals
>= 2)
404 input_pass_values(dev
, dev
->vals
, dev
->num_vals
);
407 * Reset the timestamp on flush so we won't end up
408 * with a stale one. Note we only need to reset the
409 * monolithic one as we use its presence when deciding
410 * whether to generate a synthetic timestamp.
412 dev
->timestamp
[INPUT_CLK_MONO
] = ktime_set(0, 0);
413 } else if (dev
->num_vals
>= dev
->max_vals
- 2) {
414 dev
->vals
[dev
->num_vals
++] = input_value_sync
;
415 input_pass_values(dev
, dev
->vals
, dev
->num_vals
);
422 * input_event() - report new input event
423 * @dev: device that generated the event
424 * @type: type of the event
426 * @value: value of the event
428 * This function should be used by drivers implementing various input
429 * devices to report input events. See also input_inject_event().
431 * NOTE: input_event() may be safely used right after input device was
432 * allocated with input_allocate_device(), even before it is registered
433 * with input_register_device(), but the event will not reach any of the
434 * input handlers. Such early invocation of input_event() may be used
435 * to 'seed' initial state of a switch or initial position of absolute
438 void input_event(struct input_dev
*dev
,
439 unsigned int type
, unsigned int code
, int value
)
443 if (is_event_supported(type
, dev
->evbit
, EV_MAX
)) {
445 spin_lock_irqsave(&dev
->event_lock
, flags
);
446 input_handle_event(dev
, type
, code
, value
);
447 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
450 EXPORT_SYMBOL(input_event
);
453 * input_inject_event() - send input event from input handler
454 * @handle: input handle to send event through
455 * @type: type of the event
457 * @value: value of the event
459 * Similar to input_event() but will ignore event if device is
460 * "grabbed" and handle injecting event is not the one that owns
463 void input_inject_event(struct input_handle
*handle
,
464 unsigned int type
, unsigned int code
, int value
)
466 struct input_dev
*dev
= handle
->dev
;
467 struct input_handle
*grab
;
470 if (is_event_supported(type
, dev
->evbit
, EV_MAX
)) {
471 spin_lock_irqsave(&dev
->event_lock
, flags
);
474 grab
= rcu_dereference(dev
->grab
);
475 if (!grab
|| grab
== handle
)
476 input_handle_event(dev
, type
, code
, value
);
479 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
482 EXPORT_SYMBOL(input_inject_event
);
485 * input_alloc_absinfo - allocates array of input_absinfo structs
486 * @dev: the input device emitting absolute events
488 * If the absinfo struct the caller asked for is already allocated, this
489 * functions will not do anything.
491 void input_alloc_absinfo(struct input_dev
*dev
)
496 dev
->absinfo
= kcalloc(ABS_CNT
, sizeof(*dev
->absinfo
), GFP_KERNEL
);
498 dev_err(dev
->dev
.parent
?: &dev
->dev
,
499 "%s: unable to allocate memory\n", __func__
);
501 * We will handle this allocation failure in
502 * input_register_device() when we refuse to register input
503 * device with ABS bits but without absinfo.
507 EXPORT_SYMBOL(input_alloc_absinfo
);
509 void input_set_abs_params(struct input_dev
*dev
, unsigned int axis
,
510 int min
, int max
, int fuzz
, int flat
)
512 struct input_absinfo
*absinfo
;
514 input_alloc_absinfo(dev
);
518 absinfo
= &dev
->absinfo
[axis
];
519 absinfo
->minimum
= min
;
520 absinfo
->maximum
= max
;
521 absinfo
->fuzz
= fuzz
;
522 absinfo
->flat
= flat
;
524 __set_bit(EV_ABS
, dev
->evbit
);
525 __set_bit(axis
, dev
->absbit
);
527 EXPORT_SYMBOL(input_set_abs_params
);
531 * input_grab_device - grabs device for exclusive use
532 * @handle: input handle that wants to own the device
534 * When a device is grabbed by an input handle all events generated by
535 * the device are delivered only to this handle. Also events injected
536 * by other input handles are ignored while device is grabbed.
538 int input_grab_device(struct input_handle
*handle
)
540 struct input_dev
*dev
= handle
->dev
;
543 retval
= mutex_lock_interruptible(&dev
->mutex
);
552 rcu_assign_pointer(dev
->grab
, handle
);
555 mutex_unlock(&dev
->mutex
);
558 EXPORT_SYMBOL(input_grab_device
);
560 static void __input_release_device(struct input_handle
*handle
)
562 struct input_dev
*dev
= handle
->dev
;
563 struct input_handle
*grabber
;
565 grabber
= rcu_dereference_protected(dev
->grab
,
566 lockdep_is_held(&dev
->mutex
));
567 if (grabber
== handle
) {
568 rcu_assign_pointer(dev
->grab
, NULL
);
569 /* Make sure input_pass_event() notices that grab is gone */
572 list_for_each_entry(handle
, &dev
->h_list
, d_node
)
573 if (handle
->open
&& handle
->handler
->start
)
574 handle
->handler
->start(handle
);
579 * input_release_device - release previously grabbed device
580 * @handle: input handle that owns the device
582 * Releases previously grabbed device so that other input handles can
583 * start receiving input events. Upon release all handlers attached
584 * to the device have their start() method called so they have a change
585 * to synchronize device state with the rest of the system.
587 void input_release_device(struct input_handle
*handle
)
589 struct input_dev
*dev
= handle
->dev
;
591 mutex_lock(&dev
->mutex
);
592 __input_release_device(handle
);
593 mutex_unlock(&dev
->mutex
);
595 EXPORT_SYMBOL(input_release_device
);
598 * input_open_device - open input device
599 * @handle: handle through which device is being accessed
601 * This function should be called by input handlers when they
602 * want to start receive events from given input device.
604 int input_open_device(struct input_handle
*handle
)
606 struct input_dev
*dev
= handle
->dev
;
609 retval
= mutex_lock_interruptible(&dev
->mutex
);
613 if (dev
->going_away
) {
620 if (dev
->users
++ || dev
->inhibited
) {
622 * Device is already opened and/or inhibited,
623 * so we can exit immediately and report success.
629 retval
= dev
->open(dev
);
634 * Make sure we are not delivering any more events
635 * through this handle
643 input_dev_poller_start(dev
->poller
);
646 mutex_unlock(&dev
->mutex
);
649 EXPORT_SYMBOL(input_open_device
);
651 int input_flush_device(struct input_handle
*handle
, struct file
*file
)
653 struct input_dev
*dev
= handle
->dev
;
656 retval
= mutex_lock_interruptible(&dev
->mutex
);
661 retval
= dev
->flush(dev
, file
);
663 mutex_unlock(&dev
->mutex
);
666 EXPORT_SYMBOL(input_flush_device
);
669 * input_close_device - close input device
670 * @handle: handle through which device is being accessed
672 * This function should be called by input handlers when they
673 * want to stop receive events from given input device.
675 void input_close_device(struct input_handle
*handle
)
677 struct input_dev
*dev
= handle
->dev
;
679 mutex_lock(&dev
->mutex
);
681 __input_release_device(handle
);
683 if (!dev
->inhibited
&& !--dev
->users
) {
685 input_dev_poller_stop(dev
->poller
);
690 if (!--handle
->open
) {
692 * synchronize_rcu() makes sure that input_pass_event()
693 * completed and that no more input events are delivered
694 * through this handle
699 mutex_unlock(&dev
->mutex
);
701 EXPORT_SYMBOL(input_close_device
);
704 * Simulate keyup events for all keys that are marked as pressed.
705 * The function must be called with dev->event_lock held.
707 static void input_dev_release_keys(struct input_dev
*dev
)
709 bool need_sync
= false;
712 if (is_event_supported(EV_KEY
, dev
->evbit
, EV_MAX
)) {
713 for_each_set_bit(code
, dev
->key
, KEY_CNT
) {
714 input_pass_event(dev
, EV_KEY
, code
, 0);
719 input_pass_event(dev
, EV_SYN
, SYN_REPORT
, 1);
721 memset(dev
->key
, 0, sizeof(dev
->key
));
726 * Prepare device for unregistering
728 static void input_disconnect_device(struct input_dev
*dev
)
730 struct input_handle
*handle
;
733 * Mark device as going away. Note that we take dev->mutex here
734 * not to protect access to dev->going_away but rather to ensure
735 * that there are no threads in the middle of input_open_device()
737 mutex_lock(&dev
->mutex
);
738 dev
->going_away
= true;
739 mutex_unlock(&dev
->mutex
);
741 spin_lock_irq(&dev
->event_lock
);
744 * Simulate keyup events for all pressed keys so that handlers
745 * are not left with "stuck" keys. The driver may continue
746 * generate events even after we done here but they will not
747 * reach any handlers.
749 input_dev_release_keys(dev
);
751 list_for_each_entry(handle
, &dev
->h_list
, d_node
)
754 spin_unlock_irq(&dev
->event_lock
);
758 * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry
759 * @ke: keymap entry containing scancode to be converted.
760 * @scancode: pointer to the location where converted scancode should
763 * This function is used to convert scancode stored in &struct keymap_entry
764 * into scalar form understood by legacy keymap handling methods. These
765 * methods expect scancodes to be represented as 'unsigned int'.
767 int input_scancode_to_scalar(const struct input_keymap_entry
*ke
,
768 unsigned int *scancode
)
772 *scancode
= *((u8
*)ke
->scancode
);
776 *scancode
= *((u16
*)ke
->scancode
);
780 *scancode
= *((u32
*)ke
->scancode
);
789 EXPORT_SYMBOL(input_scancode_to_scalar
);
792 * Those routines handle the default case where no [gs]etkeycode() is
793 * defined. In this case, an array indexed by the scancode is used.
796 static unsigned int input_fetch_keycode(struct input_dev
*dev
,
799 switch (dev
->keycodesize
) {
801 return ((u8
*)dev
->keycode
)[index
];
804 return ((u16
*)dev
->keycode
)[index
];
807 return ((u32
*)dev
->keycode
)[index
];
811 static int input_default_getkeycode(struct input_dev
*dev
,
812 struct input_keymap_entry
*ke
)
817 if (!dev
->keycodesize
)
820 if (ke
->flags
& INPUT_KEYMAP_BY_INDEX
)
823 error
= input_scancode_to_scalar(ke
, &index
);
828 if (index
>= dev
->keycodemax
)
831 ke
->keycode
= input_fetch_keycode(dev
, index
);
833 ke
->len
= sizeof(index
);
834 memcpy(ke
->scancode
, &index
, sizeof(index
));
839 static int input_default_setkeycode(struct input_dev
*dev
,
840 const struct input_keymap_entry
*ke
,
841 unsigned int *old_keycode
)
847 if (!dev
->keycodesize
)
850 if (ke
->flags
& INPUT_KEYMAP_BY_INDEX
) {
853 error
= input_scancode_to_scalar(ke
, &index
);
858 if (index
>= dev
->keycodemax
)
861 if (dev
->keycodesize
< sizeof(ke
->keycode
) &&
862 (ke
->keycode
>> (dev
->keycodesize
* 8)))
865 switch (dev
->keycodesize
) {
867 u8
*k
= (u8
*)dev
->keycode
;
868 *old_keycode
= k
[index
];
869 k
[index
] = ke
->keycode
;
873 u16
*k
= (u16
*)dev
->keycode
;
874 *old_keycode
= k
[index
];
875 k
[index
] = ke
->keycode
;
879 u32
*k
= (u32
*)dev
->keycode
;
880 *old_keycode
= k
[index
];
881 k
[index
] = ke
->keycode
;
886 if (*old_keycode
<= KEY_MAX
) {
887 __clear_bit(*old_keycode
, dev
->keybit
);
888 for (i
= 0; i
< dev
->keycodemax
; i
++) {
889 if (input_fetch_keycode(dev
, i
) == *old_keycode
) {
890 __set_bit(*old_keycode
, dev
->keybit
);
891 /* Setting the bit twice is useless, so break */
897 __set_bit(ke
->keycode
, dev
->keybit
);
902 * input_get_keycode - retrieve keycode currently mapped to a given scancode
903 * @dev: input device which keymap is being queried
906 * This function should be called by anyone interested in retrieving current
907 * keymap. Presently evdev handlers use it.
909 int input_get_keycode(struct input_dev
*dev
, struct input_keymap_entry
*ke
)
914 spin_lock_irqsave(&dev
->event_lock
, flags
);
915 retval
= dev
->getkeycode(dev
, ke
);
916 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
920 EXPORT_SYMBOL(input_get_keycode
);
923 * input_set_keycode - attribute a keycode to a given scancode
924 * @dev: input device which keymap is being updated
925 * @ke: new keymap entry
927 * This function should be called by anyone needing to update current
928 * keymap. Presently keyboard and evdev handlers use it.
930 int input_set_keycode(struct input_dev
*dev
,
931 const struct input_keymap_entry
*ke
)
934 unsigned int old_keycode
;
937 if (ke
->keycode
> KEY_MAX
)
940 spin_lock_irqsave(&dev
->event_lock
, flags
);
942 retval
= dev
->setkeycode(dev
, ke
, &old_keycode
);
946 /* Make sure KEY_RESERVED did not get enabled. */
947 __clear_bit(KEY_RESERVED
, dev
->keybit
);
950 * Simulate keyup event if keycode is not present
951 * in the keymap anymore
953 if (old_keycode
> KEY_MAX
) {
954 dev_warn(dev
->dev
.parent
?: &dev
->dev
,
955 "%s: got too big old keycode %#x\n",
956 __func__
, old_keycode
);
957 } else if (test_bit(EV_KEY
, dev
->evbit
) &&
958 !is_event_supported(old_keycode
, dev
->keybit
, KEY_MAX
) &&
959 __test_and_clear_bit(old_keycode
, dev
->key
)) {
960 struct input_value vals
[] = {
961 { EV_KEY
, old_keycode
, 0 },
965 input_pass_values(dev
, vals
, ARRAY_SIZE(vals
));
969 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
973 EXPORT_SYMBOL(input_set_keycode
);
975 bool input_match_device_id(const struct input_dev
*dev
,
976 const struct input_device_id
*id
)
978 if (id
->flags
& INPUT_DEVICE_ID_MATCH_BUS
)
979 if (id
->bustype
!= dev
->id
.bustype
)
982 if (id
->flags
& INPUT_DEVICE_ID_MATCH_VENDOR
)
983 if (id
->vendor
!= dev
->id
.vendor
)
986 if (id
->flags
& INPUT_DEVICE_ID_MATCH_PRODUCT
)
987 if (id
->product
!= dev
->id
.product
)
990 if (id
->flags
& INPUT_DEVICE_ID_MATCH_VERSION
)
991 if (id
->version
!= dev
->id
.version
)
994 if (!bitmap_subset(id
->evbit
, dev
->evbit
, EV_MAX
) ||
995 !bitmap_subset(id
->keybit
, dev
->keybit
, KEY_MAX
) ||
996 !bitmap_subset(id
->relbit
, dev
->relbit
, REL_MAX
) ||
997 !bitmap_subset(id
->absbit
, dev
->absbit
, ABS_MAX
) ||
998 !bitmap_subset(id
->mscbit
, dev
->mscbit
, MSC_MAX
) ||
999 !bitmap_subset(id
->ledbit
, dev
->ledbit
, LED_MAX
) ||
1000 !bitmap_subset(id
->sndbit
, dev
->sndbit
, SND_MAX
) ||
1001 !bitmap_subset(id
->ffbit
, dev
->ffbit
, FF_MAX
) ||
1002 !bitmap_subset(id
->swbit
, dev
->swbit
, SW_MAX
) ||
1003 !bitmap_subset(id
->propbit
, dev
->propbit
, INPUT_PROP_MAX
)) {
1009 EXPORT_SYMBOL(input_match_device_id
);
1011 static const struct input_device_id
*input_match_device(struct input_handler
*handler
,
1012 struct input_dev
*dev
)
1014 const struct input_device_id
*id
;
1016 for (id
= handler
->id_table
; id
->flags
|| id
->driver_info
; id
++) {
1017 if (input_match_device_id(dev
, id
) &&
1018 (!handler
->match
|| handler
->match(handler
, dev
))) {
1026 static int input_attach_handler(struct input_dev
*dev
, struct input_handler
*handler
)
1028 const struct input_device_id
*id
;
1031 id
= input_match_device(handler
, dev
);
1035 error
= handler
->connect(handler
, dev
, id
);
1036 if (error
&& error
!= -ENODEV
)
1037 pr_err("failed to attach handler %s to device %s, error: %d\n",
1038 handler
->name
, kobject_name(&dev
->dev
.kobj
), error
);
1043 #ifdef CONFIG_COMPAT
1045 static int input_bits_to_string(char *buf
, int buf_size
,
1046 unsigned long bits
, bool skip_empty
)
1050 if (in_compat_syscall()) {
1051 u32 dword
= bits
>> 32;
1052 if (dword
|| !skip_empty
)
1053 len
+= snprintf(buf
, buf_size
, "%x ", dword
);
1055 dword
= bits
& 0xffffffffUL
;
1056 if (dword
|| !skip_empty
|| len
)
1057 len
+= snprintf(buf
+ len
, max(buf_size
- len
, 0),
1060 if (bits
|| !skip_empty
)
1061 len
+= snprintf(buf
, buf_size
, "%lx", bits
);
1067 #else /* !CONFIG_COMPAT */
1069 static int input_bits_to_string(char *buf
, int buf_size
,
1070 unsigned long bits
, bool skip_empty
)
1072 return bits
|| !skip_empty
?
1073 snprintf(buf
, buf_size
, "%lx", bits
) : 0;
1078 #ifdef CONFIG_PROC_FS
1080 static struct proc_dir_entry
*proc_bus_input_dir
;
1081 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait
);
1082 static int input_devices_state
;
1084 static inline void input_wakeup_procfs_readers(void)
1086 input_devices_state
++;
1087 wake_up(&input_devices_poll_wait
);
1090 static __poll_t
input_proc_devices_poll(struct file
*file
, poll_table
*wait
)
1092 poll_wait(file
, &input_devices_poll_wait
, wait
);
1093 if (file
->f_version
!= input_devices_state
) {
1094 file
->f_version
= input_devices_state
;
1095 return EPOLLIN
| EPOLLRDNORM
;
1101 union input_seq_state
{
1104 bool mutex_acquired
;
1109 static void *input_devices_seq_start(struct seq_file
*seq
, loff_t
*pos
)
1111 union input_seq_state
*state
= (union input_seq_state
*)&seq
->private;
1114 /* We need to fit into seq->private pointer */
1115 BUILD_BUG_ON(sizeof(union input_seq_state
) != sizeof(seq
->private));
1117 error
= mutex_lock_interruptible(&input_mutex
);
1119 state
->mutex_acquired
= false;
1120 return ERR_PTR(error
);
1123 state
->mutex_acquired
= true;
1125 return seq_list_start(&input_dev_list
, *pos
);
1128 static void *input_devices_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
1130 return seq_list_next(v
, &input_dev_list
, pos
);
1133 static void input_seq_stop(struct seq_file
*seq
, void *v
)
1135 union input_seq_state
*state
= (union input_seq_state
*)&seq
->private;
1137 if (state
->mutex_acquired
)
1138 mutex_unlock(&input_mutex
);
1141 static void input_seq_print_bitmap(struct seq_file
*seq
, const char *name
,
1142 unsigned long *bitmap
, int max
)
1145 bool skip_empty
= true;
1148 seq_printf(seq
, "B: %s=", name
);
1150 for (i
= BITS_TO_LONGS(max
) - 1; i
>= 0; i
--) {
1151 if (input_bits_to_string(buf
, sizeof(buf
),
1152 bitmap
[i
], skip_empty
)) {
1154 seq_printf(seq
, "%s%s", buf
, i
> 0 ? " " : "");
1159 * If no output was produced print a single 0.
1164 seq_putc(seq
, '\n');
1167 static int input_devices_seq_show(struct seq_file
*seq
, void *v
)
1169 struct input_dev
*dev
= container_of(v
, struct input_dev
, node
);
1170 const char *path
= kobject_get_path(&dev
->dev
.kobj
, GFP_KERNEL
);
1171 struct input_handle
*handle
;
1173 seq_printf(seq
, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
1174 dev
->id
.bustype
, dev
->id
.vendor
, dev
->id
.product
, dev
->id
.version
);
1176 seq_printf(seq
, "N: Name=\"%s\"\n", dev
->name
? dev
->name
: "");
1177 seq_printf(seq
, "P: Phys=%s\n", dev
->phys
? dev
->phys
: "");
1178 seq_printf(seq
, "S: Sysfs=%s\n", path
? path
: "");
1179 seq_printf(seq
, "U: Uniq=%s\n", dev
->uniq
? dev
->uniq
: "");
1180 seq_puts(seq
, "H: Handlers=");
1182 list_for_each_entry(handle
, &dev
->h_list
, d_node
)
1183 seq_printf(seq
, "%s ", handle
->name
);
1184 seq_putc(seq
, '\n');
1186 input_seq_print_bitmap(seq
, "PROP", dev
->propbit
, INPUT_PROP_MAX
);
1188 input_seq_print_bitmap(seq
, "EV", dev
->evbit
, EV_MAX
);
1189 if (test_bit(EV_KEY
, dev
->evbit
))
1190 input_seq_print_bitmap(seq
, "KEY", dev
->keybit
, KEY_MAX
);
1191 if (test_bit(EV_REL
, dev
->evbit
))
1192 input_seq_print_bitmap(seq
, "REL", dev
->relbit
, REL_MAX
);
1193 if (test_bit(EV_ABS
, dev
->evbit
))
1194 input_seq_print_bitmap(seq
, "ABS", dev
->absbit
, ABS_MAX
);
1195 if (test_bit(EV_MSC
, dev
->evbit
))
1196 input_seq_print_bitmap(seq
, "MSC", dev
->mscbit
, MSC_MAX
);
1197 if (test_bit(EV_LED
, dev
->evbit
))
1198 input_seq_print_bitmap(seq
, "LED", dev
->ledbit
, LED_MAX
);
1199 if (test_bit(EV_SND
, dev
->evbit
))
1200 input_seq_print_bitmap(seq
, "SND", dev
->sndbit
, SND_MAX
);
1201 if (test_bit(EV_FF
, dev
->evbit
))
1202 input_seq_print_bitmap(seq
, "FF", dev
->ffbit
, FF_MAX
);
1203 if (test_bit(EV_SW
, dev
->evbit
))
1204 input_seq_print_bitmap(seq
, "SW", dev
->swbit
, SW_MAX
);
1206 seq_putc(seq
, '\n');
1212 static const struct seq_operations input_devices_seq_ops
= {
1213 .start
= input_devices_seq_start
,
1214 .next
= input_devices_seq_next
,
1215 .stop
= input_seq_stop
,
1216 .show
= input_devices_seq_show
,
1219 static int input_proc_devices_open(struct inode
*inode
, struct file
*file
)
1221 return seq_open(file
, &input_devices_seq_ops
);
1224 static const struct proc_ops input_devices_proc_ops
= {
1225 .proc_open
= input_proc_devices_open
,
1226 .proc_poll
= input_proc_devices_poll
,
1227 .proc_read
= seq_read
,
1228 .proc_lseek
= seq_lseek
,
1229 .proc_release
= seq_release
,
1232 static void *input_handlers_seq_start(struct seq_file
*seq
, loff_t
*pos
)
1234 union input_seq_state
*state
= (union input_seq_state
*)&seq
->private;
1237 /* We need to fit into seq->private pointer */
1238 BUILD_BUG_ON(sizeof(union input_seq_state
) != sizeof(seq
->private));
1240 error
= mutex_lock_interruptible(&input_mutex
);
1242 state
->mutex_acquired
= false;
1243 return ERR_PTR(error
);
1246 state
->mutex_acquired
= true;
1249 return seq_list_start(&input_handler_list
, *pos
);
1252 static void *input_handlers_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
1254 union input_seq_state
*state
= (union input_seq_state
*)&seq
->private;
1256 state
->pos
= *pos
+ 1;
1257 return seq_list_next(v
, &input_handler_list
, pos
);
1260 static int input_handlers_seq_show(struct seq_file
*seq
, void *v
)
1262 struct input_handler
*handler
= container_of(v
, struct input_handler
, node
);
1263 union input_seq_state
*state
= (union input_seq_state
*)&seq
->private;
1265 seq_printf(seq
, "N: Number=%u Name=%s", state
->pos
, handler
->name
);
1266 if (handler
->filter
)
1267 seq_puts(seq
, " (filter)");
1268 if (handler
->legacy_minors
)
1269 seq_printf(seq
, " Minor=%d", handler
->minor
);
1270 seq_putc(seq
, '\n');
1275 static const struct seq_operations input_handlers_seq_ops
= {
1276 .start
= input_handlers_seq_start
,
1277 .next
= input_handlers_seq_next
,
1278 .stop
= input_seq_stop
,
1279 .show
= input_handlers_seq_show
,
1282 static int input_proc_handlers_open(struct inode
*inode
, struct file
*file
)
1284 return seq_open(file
, &input_handlers_seq_ops
);
1287 static const struct proc_ops input_handlers_proc_ops
= {
1288 .proc_open
= input_proc_handlers_open
,
1289 .proc_read
= seq_read
,
1290 .proc_lseek
= seq_lseek
,
1291 .proc_release
= seq_release
,
1294 static int __init
input_proc_init(void)
1296 struct proc_dir_entry
*entry
;
1298 proc_bus_input_dir
= proc_mkdir("bus/input", NULL
);
1299 if (!proc_bus_input_dir
)
1302 entry
= proc_create("devices", 0, proc_bus_input_dir
,
1303 &input_devices_proc_ops
);
1307 entry
= proc_create("handlers", 0, proc_bus_input_dir
,
1308 &input_handlers_proc_ops
);
1314 fail2
: remove_proc_entry("devices", proc_bus_input_dir
);
1315 fail1
: remove_proc_entry("bus/input", NULL
);
1319 static void input_proc_exit(void)
1321 remove_proc_entry("devices", proc_bus_input_dir
);
1322 remove_proc_entry("handlers", proc_bus_input_dir
);
1323 remove_proc_entry("bus/input", NULL
);
1326 #else /* !CONFIG_PROC_FS */
1327 static inline void input_wakeup_procfs_readers(void) { }
1328 static inline int input_proc_init(void) { return 0; }
1329 static inline void input_proc_exit(void) { }
1332 #define INPUT_DEV_STRING_ATTR_SHOW(name) \
1333 static ssize_t input_dev_show_##name(struct device *dev, \
1334 struct device_attribute *attr, \
1337 struct input_dev *input_dev = to_input_dev(dev); \
1339 return scnprintf(buf, PAGE_SIZE, "%s\n", \
1340 input_dev->name ? input_dev->name : ""); \
1342 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
1344 INPUT_DEV_STRING_ATTR_SHOW(name
);
1345 INPUT_DEV_STRING_ATTR_SHOW(phys
);
1346 INPUT_DEV_STRING_ATTR_SHOW(uniq
);
1348 static int input_print_modalias_bits(char *buf
, int size
,
1349 char name
, unsigned long *bm
,
1350 unsigned int min_bit
, unsigned int max_bit
)
1354 len
+= snprintf(buf
, max(size
, 0), "%c", name
);
1355 for (i
= min_bit
; i
< max_bit
; i
++)
1356 if (bm
[BIT_WORD(i
)] & BIT_MASK(i
))
1357 len
+= snprintf(buf
+ len
, max(size
- len
, 0), "%X,", i
);
1361 static int input_print_modalias(char *buf
, int size
, struct input_dev
*id
,
1366 len
= snprintf(buf
, max(size
, 0),
1367 "input:b%04Xv%04Xp%04Xe%04X-",
1368 id
->id
.bustype
, id
->id
.vendor
,
1369 id
->id
.product
, id
->id
.version
);
1371 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1372 'e', id
->evbit
, 0, EV_MAX
);
1373 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1374 'k', id
->keybit
, KEY_MIN_INTERESTING
, KEY_MAX
);
1375 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1376 'r', id
->relbit
, 0, REL_MAX
);
1377 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1378 'a', id
->absbit
, 0, ABS_MAX
);
1379 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1380 'm', id
->mscbit
, 0, MSC_MAX
);
1381 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1382 'l', id
->ledbit
, 0, LED_MAX
);
1383 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1384 's', id
->sndbit
, 0, SND_MAX
);
1385 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1386 'f', id
->ffbit
, 0, FF_MAX
);
1387 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1388 'w', id
->swbit
, 0, SW_MAX
);
1391 len
+= snprintf(buf
+ len
, max(size
- len
, 0), "\n");
1396 static ssize_t
input_dev_show_modalias(struct device
*dev
,
1397 struct device_attribute
*attr
,
1400 struct input_dev
*id
= to_input_dev(dev
);
1403 len
= input_print_modalias(buf
, PAGE_SIZE
, id
, 1);
1405 return min_t(int, len
, PAGE_SIZE
);
1407 static DEVICE_ATTR(modalias
, S_IRUGO
, input_dev_show_modalias
, NULL
);
1409 static int input_print_bitmap(char *buf
, int buf_size
, unsigned long *bitmap
,
1410 int max
, int add_cr
);
1412 static ssize_t
input_dev_show_properties(struct device
*dev
,
1413 struct device_attribute
*attr
,
1416 struct input_dev
*input_dev
= to_input_dev(dev
);
1417 int len
= input_print_bitmap(buf
, PAGE_SIZE
, input_dev
->propbit
,
1418 INPUT_PROP_MAX
, true);
1419 return min_t(int, len
, PAGE_SIZE
);
1421 static DEVICE_ATTR(properties
, S_IRUGO
, input_dev_show_properties
, NULL
);
1423 static int input_inhibit_device(struct input_dev
*dev
);
1424 static int input_uninhibit_device(struct input_dev
*dev
);
1426 static ssize_t
inhibited_show(struct device
*dev
,
1427 struct device_attribute
*attr
,
1430 struct input_dev
*input_dev
= to_input_dev(dev
);
1432 return scnprintf(buf
, PAGE_SIZE
, "%d\n", input_dev
->inhibited
);
1435 static ssize_t
inhibited_store(struct device
*dev
,
1436 struct device_attribute
*attr
, const char *buf
,
1439 struct input_dev
*input_dev
= to_input_dev(dev
);
1443 if (strtobool(buf
, &inhibited
))
1447 rv
= input_inhibit_device(input_dev
);
1449 rv
= input_uninhibit_device(input_dev
);
1457 static DEVICE_ATTR_RW(inhibited
);
1459 static struct attribute
*input_dev_attrs
[] = {
1460 &dev_attr_name
.attr
,
1461 &dev_attr_phys
.attr
,
1462 &dev_attr_uniq
.attr
,
1463 &dev_attr_modalias
.attr
,
1464 &dev_attr_properties
.attr
,
1465 &dev_attr_inhibited
.attr
,
1469 static const struct attribute_group input_dev_attr_group
= {
1470 .attrs
= input_dev_attrs
,
1473 #define INPUT_DEV_ID_ATTR(name) \
1474 static ssize_t input_dev_show_id_##name(struct device *dev, \
1475 struct device_attribute *attr, \
1478 struct input_dev *input_dev = to_input_dev(dev); \
1479 return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \
1481 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1483 INPUT_DEV_ID_ATTR(bustype
);
1484 INPUT_DEV_ID_ATTR(vendor
);
1485 INPUT_DEV_ID_ATTR(product
);
1486 INPUT_DEV_ID_ATTR(version
);
1488 static struct attribute
*input_dev_id_attrs
[] = {
1489 &dev_attr_bustype
.attr
,
1490 &dev_attr_vendor
.attr
,
1491 &dev_attr_product
.attr
,
1492 &dev_attr_version
.attr
,
1496 static const struct attribute_group input_dev_id_attr_group
= {
1498 .attrs
= input_dev_id_attrs
,
1501 static int input_print_bitmap(char *buf
, int buf_size
, unsigned long *bitmap
,
1502 int max
, int add_cr
)
1506 bool skip_empty
= true;
1508 for (i
= BITS_TO_LONGS(max
) - 1; i
>= 0; i
--) {
1509 len
+= input_bits_to_string(buf
+ len
, max(buf_size
- len
, 0),
1510 bitmap
[i
], skip_empty
);
1514 len
+= snprintf(buf
+ len
, max(buf_size
- len
, 0), " ");
1519 * If no output was produced print a single 0.
1522 len
= snprintf(buf
, buf_size
, "%d", 0);
1525 len
+= snprintf(buf
+ len
, max(buf_size
- len
, 0), "\n");
1530 #define INPUT_DEV_CAP_ATTR(ev, bm) \
1531 static ssize_t input_dev_show_cap_##bm(struct device *dev, \
1532 struct device_attribute *attr, \
1535 struct input_dev *input_dev = to_input_dev(dev); \
1536 int len = input_print_bitmap(buf, PAGE_SIZE, \
1537 input_dev->bm##bit, ev##_MAX, \
1539 return min_t(int, len, PAGE_SIZE); \
1541 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1543 INPUT_DEV_CAP_ATTR(EV
, ev
);
1544 INPUT_DEV_CAP_ATTR(KEY
, key
);
1545 INPUT_DEV_CAP_ATTR(REL
, rel
);
1546 INPUT_DEV_CAP_ATTR(ABS
, abs
);
1547 INPUT_DEV_CAP_ATTR(MSC
, msc
);
1548 INPUT_DEV_CAP_ATTR(LED
, led
);
1549 INPUT_DEV_CAP_ATTR(SND
, snd
);
1550 INPUT_DEV_CAP_ATTR(FF
, ff
);
1551 INPUT_DEV_CAP_ATTR(SW
, sw
);
1553 static struct attribute
*input_dev_caps_attrs
[] = {
1566 static const struct attribute_group input_dev_caps_attr_group
= {
1567 .name
= "capabilities",
1568 .attrs
= input_dev_caps_attrs
,
1571 static const struct attribute_group
*input_dev_attr_groups
[] = {
1572 &input_dev_attr_group
,
1573 &input_dev_id_attr_group
,
1574 &input_dev_caps_attr_group
,
1575 &input_poller_attribute_group
,
1579 static void input_dev_release(struct device
*device
)
1581 struct input_dev
*dev
= to_input_dev(device
);
1583 input_ff_destroy(dev
);
1584 input_mt_destroy_slots(dev
);
1586 kfree(dev
->absinfo
);
1590 module_put(THIS_MODULE
);
1594 * Input uevent interface - loading event handlers based on
1597 static int input_add_uevent_bm_var(struct kobj_uevent_env
*env
,
1598 const char *name
, unsigned long *bitmap
, int max
)
1602 if (add_uevent_var(env
, "%s", name
))
1605 len
= input_print_bitmap(&env
->buf
[env
->buflen
- 1],
1606 sizeof(env
->buf
) - env
->buflen
,
1607 bitmap
, max
, false);
1608 if (len
>= (sizeof(env
->buf
) - env
->buflen
))
1615 static int input_add_uevent_modalias_var(struct kobj_uevent_env
*env
,
1616 struct input_dev
*dev
)
1620 if (add_uevent_var(env
, "MODALIAS="))
1623 len
= input_print_modalias(&env
->buf
[env
->buflen
- 1],
1624 sizeof(env
->buf
) - env
->buflen
,
1626 if (len
>= (sizeof(env
->buf
) - env
->buflen
))
1633 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \
1635 int err = add_uevent_var(env, fmt, val); \
1640 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \
1642 int err = input_add_uevent_bm_var(env, name, bm, max); \
1647 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \
1649 int err = input_add_uevent_modalias_var(env, dev); \
1654 static int input_dev_uevent(struct device
*device
, struct kobj_uevent_env
*env
)
1656 struct input_dev
*dev
= to_input_dev(device
);
1658 INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1659 dev
->id
.bustype
, dev
->id
.vendor
,
1660 dev
->id
.product
, dev
->id
.version
);
1662 INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev
->name
);
1664 INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev
->phys
);
1666 INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev
->uniq
);
1668 INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev
->propbit
, INPUT_PROP_MAX
);
1670 INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev
->evbit
, EV_MAX
);
1671 if (test_bit(EV_KEY
, dev
->evbit
))
1672 INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev
->keybit
, KEY_MAX
);
1673 if (test_bit(EV_REL
, dev
->evbit
))
1674 INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev
->relbit
, REL_MAX
);
1675 if (test_bit(EV_ABS
, dev
->evbit
))
1676 INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev
->absbit
, ABS_MAX
);
1677 if (test_bit(EV_MSC
, dev
->evbit
))
1678 INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev
->mscbit
, MSC_MAX
);
1679 if (test_bit(EV_LED
, dev
->evbit
))
1680 INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev
->ledbit
, LED_MAX
);
1681 if (test_bit(EV_SND
, dev
->evbit
))
1682 INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev
->sndbit
, SND_MAX
);
1683 if (test_bit(EV_FF
, dev
->evbit
))
1684 INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev
->ffbit
, FF_MAX
);
1685 if (test_bit(EV_SW
, dev
->evbit
))
1686 INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev
->swbit
, SW_MAX
);
1688 INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev
);
1693 #define INPUT_DO_TOGGLE(dev, type, bits, on) \
1698 if (!test_bit(EV_##type, dev->evbit)) \
1701 for_each_set_bit(i, dev->bits##bit, type##_CNT) { \
1702 active = test_bit(i, dev->bits); \
1703 if (!active && !on) \
1706 dev->event(dev, EV_##type, i, on ? active : 0); \
1710 static void input_dev_toggle(struct input_dev
*dev
, bool activate
)
1715 INPUT_DO_TOGGLE(dev
, LED
, led
, activate
);
1716 INPUT_DO_TOGGLE(dev
, SND
, snd
, activate
);
1718 if (activate
&& test_bit(EV_REP
, dev
->evbit
)) {
1719 dev
->event(dev
, EV_REP
, REP_PERIOD
, dev
->rep
[REP_PERIOD
]);
1720 dev
->event(dev
, EV_REP
, REP_DELAY
, dev
->rep
[REP_DELAY
]);
1725 * input_reset_device() - reset/restore the state of input device
1726 * @dev: input device whose state needs to be reset
1728 * This function tries to reset the state of an opened input device and
1729 * bring internal state and state if the hardware in sync with each other.
1730 * We mark all keys as released, restore LED state, repeat rate, etc.
1732 void input_reset_device(struct input_dev
*dev
)
1734 unsigned long flags
;
1736 mutex_lock(&dev
->mutex
);
1737 spin_lock_irqsave(&dev
->event_lock
, flags
);
1739 input_dev_toggle(dev
, true);
1740 input_dev_release_keys(dev
);
1742 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
1743 mutex_unlock(&dev
->mutex
);
1745 EXPORT_SYMBOL(input_reset_device
);
1747 static int input_inhibit_device(struct input_dev
*dev
)
1751 mutex_lock(&dev
->mutex
);
1760 input_dev_poller_stop(dev
->poller
);
1763 spin_lock_irq(&dev
->event_lock
);
1764 input_dev_release_keys(dev
);
1765 input_dev_toggle(dev
, false);
1766 spin_unlock_irq(&dev
->event_lock
);
1768 dev
->inhibited
= true;
1771 mutex_unlock(&dev
->mutex
);
1775 static int input_uninhibit_device(struct input_dev
*dev
)
1779 mutex_lock(&dev
->mutex
);
1781 if (!dev
->inhibited
)
1786 ret
= dev
->open(dev
);
1791 input_dev_poller_start(dev
->poller
);
1794 dev
->inhibited
= false;
1795 spin_lock_irq(&dev
->event_lock
);
1796 input_dev_toggle(dev
, true);
1797 spin_unlock_irq(&dev
->event_lock
);
1800 mutex_unlock(&dev
->mutex
);
1804 #ifdef CONFIG_PM_SLEEP
1805 static int input_dev_suspend(struct device
*dev
)
1807 struct input_dev
*input_dev
= to_input_dev(dev
);
1809 spin_lock_irq(&input_dev
->event_lock
);
1812 * Keys that are pressed now are unlikely to be
1813 * still pressed when we resume.
1815 input_dev_release_keys(input_dev
);
1817 /* Turn off LEDs and sounds, if any are active. */
1818 input_dev_toggle(input_dev
, false);
1820 spin_unlock_irq(&input_dev
->event_lock
);
1825 static int input_dev_resume(struct device
*dev
)
1827 struct input_dev
*input_dev
= to_input_dev(dev
);
1829 spin_lock_irq(&input_dev
->event_lock
);
1831 /* Restore state of LEDs and sounds, if any were active. */
1832 input_dev_toggle(input_dev
, true);
1834 spin_unlock_irq(&input_dev
->event_lock
);
1839 static int input_dev_freeze(struct device
*dev
)
1841 struct input_dev
*input_dev
= to_input_dev(dev
);
1843 spin_lock_irq(&input_dev
->event_lock
);
1846 * Keys that are pressed now are unlikely to be
1847 * still pressed when we resume.
1849 input_dev_release_keys(input_dev
);
1851 spin_unlock_irq(&input_dev
->event_lock
);
1856 static int input_dev_poweroff(struct device
*dev
)
1858 struct input_dev
*input_dev
= to_input_dev(dev
);
1860 spin_lock_irq(&input_dev
->event_lock
);
1862 /* Turn off LEDs and sounds, if any are active. */
1863 input_dev_toggle(input_dev
, false);
1865 spin_unlock_irq(&input_dev
->event_lock
);
1870 static const struct dev_pm_ops input_dev_pm_ops
= {
1871 .suspend
= input_dev_suspend
,
1872 .resume
= input_dev_resume
,
1873 .freeze
= input_dev_freeze
,
1874 .poweroff
= input_dev_poweroff
,
1875 .restore
= input_dev_resume
,
1877 #endif /* CONFIG_PM */
1879 static const struct device_type input_dev_type
= {
1880 .groups
= input_dev_attr_groups
,
1881 .release
= input_dev_release
,
1882 .uevent
= input_dev_uevent
,
1883 #ifdef CONFIG_PM_SLEEP
1884 .pm
= &input_dev_pm_ops
,
1888 static char *input_devnode(struct device
*dev
, umode_t
*mode
)
1890 return kasprintf(GFP_KERNEL
, "input/%s", dev_name(dev
));
1893 struct class input_class
= {
1895 .devnode
= input_devnode
,
1897 EXPORT_SYMBOL_GPL(input_class
);
1900 * input_allocate_device - allocate memory for new input device
1902 * Returns prepared struct input_dev or %NULL.
1904 * NOTE: Use input_free_device() to free devices that have not been
1905 * registered; input_unregister_device() should be used for already
1906 * registered devices.
1908 struct input_dev
*input_allocate_device(void)
1910 static atomic_t input_no
= ATOMIC_INIT(-1);
1911 struct input_dev
*dev
;
1913 dev
= kzalloc(sizeof(*dev
), GFP_KERNEL
);
1915 dev
->dev
.type
= &input_dev_type
;
1916 dev
->dev
.class = &input_class
;
1917 device_initialize(&dev
->dev
);
1918 mutex_init(&dev
->mutex
);
1919 spin_lock_init(&dev
->event_lock
);
1920 timer_setup(&dev
->timer
, NULL
, 0);
1921 INIT_LIST_HEAD(&dev
->h_list
);
1922 INIT_LIST_HEAD(&dev
->node
);
1924 dev_set_name(&dev
->dev
, "input%lu",
1925 (unsigned long)atomic_inc_return(&input_no
));
1927 __module_get(THIS_MODULE
);
1932 EXPORT_SYMBOL(input_allocate_device
);
1934 struct input_devres
{
1935 struct input_dev
*input
;
1938 static int devm_input_device_match(struct device
*dev
, void *res
, void *data
)
1940 struct input_devres
*devres
= res
;
1942 return devres
->input
== data
;
1945 static void devm_input_device_release(struct device
*dev
, void *res
)
1947 struct input_devres
*devres
= res
;
1948 struct input_dev
*input
= devres
->input
;
1950 dev_dbg(dev
, "%s: dropping reference to %s\n",
1951 __func__
, dev_name(&input
->dev
));
1952 input_put_device(input
);
1956 * devm_input_allocate_device - allocate managed input device
1957 * @dev: device owning the input device being created
1959 * Returns prepared struct input_dev or %NULL.
1961 * Managed input devices do not need to be explicitly unregistered or
1962 * freed as it will be done automatically when owner device unbinds from
1963 * its driver (or binding fails). Once managed input device is allocated,
1964 * it is ready to be set up and registered in the same fashion as regular
1965 * input device. There are no special devm_input_device_[un]register()
1966 * variants, regular ones work with both managed and unmanaged devices,
1967 * should you need them. In most cases however, managed input device need
1968 * not be explicitly unregistered or freed.
1970 * NOTE: the owner device is set up as parent of input device and users
1971 * should not override it.
1973 struct input_dev
*devm_input_allocate_device(struct device
*dev
)
1975 struct input_dev
*input
;
1976 struct input_devres
*devres
;
1978 devres
= devres_alloc(devm_input_device_release
,
1979 sizeof(*devres
), GFP_KERNEL
);
1983 input
= input_allocate_device();
1985 devres_free(devres
);
1989 input
->dev
.parent
= dev
;
1990 input
->devres_managed
= true;
1992 devres
->input
= input
;
1993 devres_add(dev
, devres
);
1997 EXPORT_SYMBOL(devm_input_allocate_device
);
2000 * input_free_device - free memory occupied by input_dev structure
2001 * @dev: input device to free
2003 * This function should only be used if input_register_device()
2004 * was not called yet or if it failed. Once device was registered
2005 * use input_unregister_device() and memory will be freed once last
2006 * reference to the device is dropped.
2008 * Device should be allocated by input_allocate_device().
2010 * NOTE: If there are references to the input device then memory
2011 * will not be freed until last reference is dropped.
2013 void input_free_device(struct input_dev
*dev
)
2016 if (dev
->devres_managed
)
2017 WARN_ON(devres_destroy(dev
->dev
.parent
,
2018 devm_input_device_release
,
2019 devm_input_device_match
,
2021 input_put_device(dev
);
2024 EXPORT_SYMBOL(input_free_device
);
2027 * input_set_timestamp - set timestamp for input events
2028 * @dev: input device to set timestamp for
2029 * @timestamp: the time at which the event has occurred
2030 * in CLOCK_MONOTONIC
2032 * This function is intended to provide to the input system a more
2033 * accurate time of when an event actually occurred. The driver should
2034 * call this function as soon as a timestamp is acquired ensuring
2035 * clock conversions in input_set_timestamp are done correctly.
2037 * The system entering suspend state between timestamp acquisition and
2038 * calling input_set_timestamp can result in inaccurate conversions.
2040 void input_set_timestamp(struct input_dev
*dev
, ktime_t timestamp
)
2042 dev
->timestamp
[INPUT_CLK_MONO
] = timestamp
;
2043 dev
->timestamp
[INPUT_CLK_REAL
] = ktime_mono_to_real(timestamp
);
2044 dev
->timestamp
[INPUT_CLK_BOOT
] = ktime_mono_to_any(timestamp
,
2047 EXPORT_SYMBOL(input_set_timestamp
);
2050 * input_get_timestamp - get timestamp for input events
2051 * @dev: input device to get timestamp from
2053 * A valid timestamp is a timestamp of non-zero value.
2055 ktime_t
*input_get_timestamp(struct input_dev
*dev
)
2057 const ktime_t invalid_timestamp
= ktime_set(0, 0);
2059 if (!ktime_compare(dev
->timestamp
[INPUT_CLK_MONO
], invalid_timestamp
))
2060 input_set_timestamp(dev
, ktime_get());
2062 return dev
->timestamp
;
2064 EXPORT_SYMBOL(input_get_timestamp
);
2067 * input_set_capability - mark device as capable of a certain event
2068 * @dev: device that is capable of emitting or accepting event
2069 * @type: type of the event (EV_KEY, EV_REL, etc...)
2072 * In addition to setting up corresponding bit in appropriate capability
2073 * bitmap the function also adjusts dev->evbit.
2075 void input_set_capability(struct input_dev
*dev
, unsigned int type
, unsigned int code
)
2079 __set_bit(code
, dev
->keybit
);
2083 __set_bit(code
, dev
->relbit
);
2087 input_alloc_absinfo(dev
);
2091 __set_bit(code
, dev
->absbit
);
2095 __set_bit(code
, dev
->mscbit
);
2099 __set_bit(code
, dev
->swbit
);
2103 __set_bit(code
, dev
->ledbit
);
2107 __set_bit(code
, dev
->sndbit
);
2111 __set_bit(code
, dev
->ffbit
);
2119 pr_err("%s: unknown type %u (code %u)\n", __func__
, type
, code
);
2124 __set_bit(type
, dev
->evbit
);
2126 EXPORT_SYMBOL(input_set_capability
);
2128 static unsigned int input_estimate_events_per_packet(struct input_dev
*dev
)
2132 unsigned int events
;
2135 mt_slots
= dev
->mt
->num_slots
;
2136 } else if (test_bit(ABS_MT_TRACKING_ID
, dev
->absbit
)) {
2137 mt_slots
= dev
->absinfo
[ABS_MT_TRACKING_ID
].maximum
-
2138 dev
->absinfo
[ABS_MT_TRACKING_ID
].minimum
+ 1,
2139 mt_slots
= clamp(mt_slots
, 2, 32);
2140 } else if (test_bit(ABS_MT_POSITION_X
, dev
->absbit
)) {
2146 events
= mt_slots
+ 1; /* count SYN_MT_REPORT and SYN_REPORT */
2148 if (test_bit(EV_ABS
, dev
->evbit
))
2149 for_each_set_bit(i
, dev
->absbit
, ABS_CNT
)
2150 events
+= input_is_mt_axis(i
) ? mt_slots
: 1;
2152 if (test_bit(EV_REL
, dev
->evbit
))
2153 events
+= bitmap_weight(dev
->relbit
, REL_CNT
);
2155 /* Make room for KEY and MSC events */
2161 #define INPUT_CLEANSE_BITMASK(dev, type, bits) \
2163 if (!test_bit(EV_##type, dev->evbit)) \
2164 memset(dev->bits##bit, 0, \
2165 sizeof(dev->bits##bit)); \
2168 static void input_cleanse_bitmasks(struct input_dev
*dev
)
2170 INPUT_CLEANSE_BITMASK(dev
, KEY
, key
);
2171 INPUT_CLEANSE_BITMASK(dev
, REL
, rel
);
2172 INPUT_CLEANSE_BITMASK(dev
, ABS
, abs
);
2173 INPUT_CLEANSE_BITMASK(dev
, MSC
, msc
);
2174 INPUT_CLEANSE_BITMASK(dev
, LED
, led
);
2175 INPUT_CLEANSE_BITMASK(dev
, SND
, snd
);
2176 INPUT_CLEANSE_BITMASK(dev
, FF
, ff
);
2177 INPUT_CLEANSE_BITMASK(dev
, SW
, sw
);
2180 static void __input_unregister_device(struct input_dev
*dev
)
2182 struct input_handle
*handle
, *next
;
2184 input_disconnect_device(dev
);
2186 mutex_lock(&input_mutex
);
2188 list_for_each_entry_safe(handle
, next
, &dev
->h_list
, d_node
)
2189 handle
->handler
->disconnect(handle
);
2190 WARN_ON(!list_empty(&dev
->h_list
));
2192 del_timer_sync(&dev
->timer
);
2193 list_del_init(&dev
->node
);
2195 input_wakeup_procfs_readers();
2197 mutex_unlock(&input_mutex
);
2199 device_del(&dev
->dev
);
2202 static void devm_input_device_unregister(struct device
*dev
, void *res
)
2204 struct input_devres
*devres
= res
;
2205 struct input_dev
*input
= devres
->input
;
2207 dev_dbg(dev
, "%s: unregistering device %s\n",
2208 __func__
, dev_name(&input
->dev
));
2209 __input_unregister_device(input
);
2213 * input_enable_softrepeat - enable software autorepeat
2214 * @dev: input device
2215 * @delay: repeat delay
2216 * @period: repeat period
2218 * Enable software autorepeat on the input device.
2220 void input_enable_softrepeat(struct input_dev
*dev
, int delay
, int period
)
2222 dev
->timer
.function
= input_repeat_key
;
2223 dev
->rep
[REP_DELAY
] = delay
;
2224 dev
->rep
[REP_PERIOD
] = period
;
2226 EXPORT_SYMBOL(input_enable_softrepeat
);
2228 bool input_device_enabled(struct input_dev
*dev
)
2230 lockdep_assert_held(&dev
->mutex
);
2232 return !dev
->inhibited
&& dev
->users
> 0;
2234 EXPORT_SYMBOL_GPL(input_device_enabled
);
2237 * input_register_device - register device with input core
2238 * @dev: device to be registered
2240 * This function registers device with input core. The device must be
2241 * allocated with input_allocate_device() and all it's capabilities
2242 * set up before registering.
2243 * If function fails the device must be freed with input_free_device().
2244 * Once device has been successfully registered it can be unregistered
2245 * with input_unregister_device(); input_free_device() should not be
2246 * called in this case.
2248 * Note that this function is also used to register managed input devices
2249 * (ones allocated with devm_input_allocate_device()). Such managed input
2250 * devices need not be explicitly unregistered or freed, their tear down
2251 * is controlled by the devres infrastructure. It is also worth noting
2252 * that tear down of managed input devices is internally a 2-step process:
2253 * registered managed input device is first unregistered, but stays in
2254 * memory and can still handle input_event() calls (although events will
2255 * not be delivered anywhere). The freeing of managed input device will
2256 * happen later, when devres stack is unwound to the point where device
2257 * allocation was made.
2259 int input_register_device(struct input_dev
*dev
)
2261 struct input_devres
*devres
= NULL
;
2262 struct input_handler
*handler
;
2263 unsigned int packet_size
;
2267 if (test_bit(EV_ABS
, dev
->evbit
) && !dev
->absinfo
) {
2269 "Absolute device without dev->absinfo, refusing to register\n");
2273 if (dev
->devres_managed
) {
2274 devres
= devres_alloc(devm_input_device_unregister
,
2275 sizeof(*devres
), GFP_KERNEL
);
2279 devres
->input
= dev
;
2282 /* Every input device generates EV_SYN/SYN_REPORT events. */
2283 __set_bit(EV_SYN
, dev
->evbit
);
2285 /* KEY_RESERVED is not supposed to be transmitted to userspace. */
2286 __clear_bit(KEY_RESERVED
, dev
->keybit
);
2288 /* Make sure that bitmasks not mentioned in dev->evbit are clean. */
2289 input_cleanse_bitmasks(dev
);
2291 packet_size
= input_estimate_events_per_packet(dev
);
2292 if (dev
->hint_events_per_packet
< packet_size
)
2293 dev
->hint_events_per_packet
= packet_size
;
2295 dev
->max_vals
= dev
->hint_events_per_packet
+ 2;
2296 dev
->vals
= kcalloc(dev
->max_vals
, sizeof(*dev
->vals
), GFP_KERNEL
);
2299 goto err_devres_free
;
2303 * If delay and period are pre-set by the driver, then autorepeating
2304 * is handled by the driver itself and we don't do it in input.c.
2306 if (!dev
->rep
[REP_DELAY
] && !dev
->rep
[REP_PERIOD
])
2307 input_enable_softrepeat(dev
, 250, 33);
2309 if (!dev
->getkeycode
)
2310 dev
->getkeycode
= input_default_getkeycode
;
2312 if (!dev
->setkeycode
)
2313 dev
->setkeycode
= input_default_setkeycode
;
2316 input_dev_poller_finalize(dev
->poller
);
2318 error
= device_add(&dev
->dev
);
2322 path
= kobject_get_path(&dev
->dev
.kobj
, GFP_KERNEL
);
2323 pr_info("%s as %s\n",
2324 dev
->name
? dev
->name
: "Unspecified device",
2325 path
? path
: "N/A");
2328 error
= mutex_lock_interruptible(&input_mutex
);
2330 goto err_device_del
;
2332 list_add_tail(&dev
->node
, &input_dev_list
);
2334 list_for_each_entry(handler
, &input_handler_list
, node
)
2335 input_attach_handler(dev
, handler
);
2337 input_wakeup_procfs_readers();
2339 mutex_unlock(&input_mutex
);
2341 if (dev
->devres_managed
) {
2342 dev_dbg(dev
->dev
.parent
, "%s: registering %s with devres.\n",
2343 __func__
, dev_name(&dev
->dev
));
2344 devres_add(dev
->dev
.parent
, devres
);
2349 device_del(&dev
->dev
);
2354 devres_free(devres
);
2357 EXPORT_SYMBOL(input_register_device
);
2360 * input_unregister_device - unregister previously registered device
2361 * @dev: device to be unregistered
2363 * This function unregisters an input device. Once device is unregistered
2364 * the caller should not try to access it as it may get freed at any moment.
2366 void input_unregister_device(struct input_dev
*dev
)
2368 if (dev
->devres_managed
) {
2369 WARN_ON(devres_destroy(dev
->dev
.parent
,
2370 devm_input_device_unregister
,
2371 devm_input_device_match
,
2373 __input_unregister_device(dev
);
2375 * We do not do input_put_device() here because it will be done
2376 * when 2nd devres fires up.
2379 __input_unregister_device(dev
);
2380 input_put_device(dev
);
2383 EXPORT_SYMBOL(input_unregister_device
);
2386 * input_register_handler - register a new input handler
2387 * @handler: handler to be registered
2389 * This function registers a new input handler (interface) for input
2390 * devices in the system and attaches it to all input devices that
2391 * are compatible with the handler.
2393 int input_register_handler(struct input_handler
*handler
)
2395 struct input_dev
*dev
;
2398 error
= mutex_lock_interruptible(&input_mutex
);
2402 INIT_LIST_HEAD(&handler
->h_list
);
2404 list_add_tail(&handler
->node
, &input_handler_list
);
2406 list_for_each_entry(dev
, &input_dev_list
, node
)
2407 input_attach_handler(dev
, handler
);
2409 input_wakeup_procfs_readers();
2411 mutex_unlock(&input_mutex
);
2414 EXPORT_SYMBOL(input_register_handler
);
2417 * input_unregister_handler - unregisters an input handler
2418 * @handler: handler to be unregistered
2420 * This function disconnects a handler from its input devices and
2421 * removes it from lists of known handlers.
2423 void input_unregister_handler(struct input_handler
*handler
)
2425 struct input_handle
*handle
, *next
;
2427 mutex_lock(&input_mutex
);
2429 list_for_each_entry_safe(handle
, next
, &handler
->h_list
, h_node
)
2430 handler
->disconnect(handle
);
2431 WARN_ON(!list_empty(&handler
->h_list
));
2433 list_del_init(&handler
->node
);
2435 input_wakeup_procfs_readers();
2437 mutex_unlock(&input_mutex
);
2439 EXPORT_SYMBOL(input_unregister_handler
);
2442 * input_handler_for_each_handle - handle iterator
2443 * @handler: input handler to iterate
2444 * @data: data for the callback
2445 * @fn: function to be called for each handle
2447 * Iterate over @bus's list of devices, and call @fn for each, passing
2448 * it @data and stop when @fn returns a non-zero value. The function is
2449 * using RCU to traverse the list and therefore may be using in atomic
2450 * contexts. The @fn callback is invoked from RCU critical section and
2451 * thus must not sleep.
2453 int input_handler_for_each_handle(struct input_handler
*handler
, void *data
,
2454 int (*fn
)(struct input_handle
*, void *))
2456 struct input_handle
*handle
;
2461 list_for_each_entry_rcu(handle
, &handler
->h_list
, h_node
) {
2462 retval
= fn(handle
, data
);
2471 EXPORT_SYMBOL(input_handler_for_each_handle
);
2474 * input_register_handle - register a new input handle
2475 * @handle: handle to register
2477 * This function puts a new input handle onto device's
2478 * and handler's lists so that events can flow through
2479 * it once it is opened using input_open_device().
2481 * This function is supposed to be called from handler's
2484 int input_register_handle(struct input_handle
*handle
)
2486 struct input_handler
*handler
= handle
->handler
;
2487 struct input_dev
*dev
= handle
->dev
;
2491 * We take dev->mutex here to prevent race with
2492 * input_release_device().
2494 error
= mutex_lock_interruptible(&dev
->mutex
);
2499 * Filters go to the head of the list, normal handlers
2502 if (handler
->filter
)
2503 list_add_rcu(&handle
->d_node
, &dev
->h_list
);
2505 list_add_tail_rcu(&handle
->d_node
, &dev
->h_list
);
2507 mutex_unlock(&dev
->mutex
);
2510 * Since we are supposed to be called from ->connect()
2511 * which is mutually exclusive with ->disconnect()
2512 * we can't be racing with input_unregister_handle()
2513 * and so separate lock is not needed here.
2515 list_add_tail_rcu(&handle
->h_node
, &handler
->h_list
);
2518 handler
->start(handle
);
2522 EXPORT_SYMBOL(input_register_handle
);
2525 * input_unregister_handle - unregister an input handle
2526 * @handle: handle to unregister
2528 * This function removes input handle from device's
2529 * and handler's lists.
2531 * This function is supposed to be called from handler's
2532 * disconnect() method.
2534 void input_unregister_handle(struct input_handle
*handle
)
2536 struct input_dev
*dev
= handle
->dev
;
2538 list_del_rcu(&handle
->h_node
);
2541 * Take dev->mutex to prevent race with input_release_device().
2543 mutex_lock(&dev
->mutex
);
2544 list_del_rcu(&handle
->d_node
);
2545 mutex_unlock(&dev
->mutex
);
2549 EXPORT_SYMBOL(input_unregister_handle
);
2552 * input_get_new_minor - allocates a new input minor number
2553 * @legacy_base: beginning or the legacy range to be searched
2554 * @legacy_num: size of legacy range
2555 * @allow_dynamic: whether we can also take ID from the dynamic range
2557 * This function allocates a new device minor for from input major namespace.
2558 * Caller can request legacy minor by specifying @legacy_base and @legacy_num
2559 * parameters and whether ID can be allocated from dynamic range if there are
2560 * no free IDs in legacy range.
2562 int input_get_new_minor(int legacy_base
, unsigned int legacy_num
,
2566 * This function should be called from input handler's ->connect()
2567 * methods, which are serialized with input_mutex, so no additional
2568 * locking is needed here.
2570 if (legacy_base
>= 0) {
2571 int minor
= ida_simple_get(&input_ida
,
2573 legacy_base
+ legacy_num
,
2575 if (minor
>= 0 || !allow_dynamic
)
2579 return ida_simple_get(&input_ida
,
2580 INPUT_FIRST_DYNAMIC_DEV
, INPUT_MAX_CHAR_DEVICES
,
2583 EXPORT_SYMBOL(input_get_new_minor
);
2586 * input_free_minor - release previously allocated minor
2587 * @minor: minor to be released
2589 * This function releases previously allocated input minor so that it can be
2592 void input_free_minor(unsigned int minor
)
2594 ida_simple_remove(&input_ida
, minor
);
2596 EXPORT_SYMBOL(input_free_minor
);
2598 static int __init
input_init(void)
2602 err
= class_register(&input_class
);
2604 pr_err("unable to register input_dev class\n");
2608 err
= input_proc_init();
2612 err
= register_chrdev_region(MKDEV(INPUT_MAJOR
, 0),
2613 INPUT_MAX_CHAR_DEVICES
, "input");
2615 pr_err("unable to register char major %d", INPUT_MAJOR
);
2621 fail2
: input_proc_exit();
2622 fail1
: class_unregister(&input_class
);
2626 static void __exit
input_exit(void)
2629 unregister_chrdev_region(MKDEV(INPUT_MAJOR
, 0),
2630 INPUT_MAX_CHAR_DEVICES
);
2631 class_unregister(&input_class
);
2634 subsys_initcall(input_init
);
2635 module_exit(input_exit
);